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ABSTRACT OF THE DISSERTATION

Reliability and Timing Aware GPU Management on Embedded Systems

By

Haeseung Lee

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2017

Professor Mohammad Al Faruque, Chair

The demand for low-power and high-performance computing has been driving the semicon-

ductor industry for decades. In order to satisfy these demands, the semiconductor technol-

ogy has been scaled down and multi/many-core processors have been proposed. Among the

multi/many-core processors, Graphics Processing Units (GPUs) have been employed in the

critical path of applications due to its programmability, high-performance, and low power

consumption. Moreover, state-of-the-art GPUs have the capability to process multiple GPU

workloads concurrently. Therefore, GPUs have been considered to be an essential part of

embedded systems because of the increased number of throughput-oriented applications on

real-time embedded systems, such as autonomous driving and advanced driving assistant ap-

plications. However, there are several challenges for using the GPUs in embedded systems.

First, due to the small feature size, the state-of-the-art nano-scale multi-core processors,

including GPUs, has faced severe reliability challenges like soft-error and processor degrada-

tion. Next, there is a noticeable (die-to-die and within-die) parameter variation due to the

advanced semiconductor technology. Therefore, the lifetime and workload management of

embedded GPUs under process variation is considered one of the most important aspects to

ensure functional correctness over a long period of time. Last, existing application schedul-

ing frameworks on a GPU do not have enough flexibility to handle the dynamic behavior of

multiple event-driven applications.
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In order to tackle the above mentioned challenges, in this thesis, we propose a reliability and

timing aware workload management framework on GPU-based real-time embedded systems.

The proposed framework consists of two parts: design-time and run-time workload manage-

ment. The proposed design-time workload management unit analyzes GPU kernel functions

and generates PTX instruction schedules that maximizes the soft-error reliability. At the

same time, the application profiles are generated for run-time workload management. The

proposed run-time workload management unit includes two parts: Streaming Multiprocessor

(SM) scheduling unit and aging-aware workload distribution unit. During run-time, depend-

ing on the system status and requirements, the proposed scheduling unit partitions the GPU

workloads into sub-workload and generates sub-workloads launch sequences to handle the

dynamic behavior of the event-driven applications. Concurrently, in the SM, the proposed

aging-aware workload distribution unit jointly considers the current aging status and the

process variation status and distributes the workload across the SM to maximize the lifetime

of the GPU.
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Chapter 1

Introduction

1.1 Introduction

In recent years, embedded systems demand higher computational power, and need to respond

to many random external and internal events. The number of throughput-oriented applica-

tions in the embedded systems keeps increasing [29, 34, 53, 76, 79, 106, 136, 142]. To satisfy

these demands for low-power and high-performance computing, semiconductor industries

have done extensive technology scaling and have proposed various multi/many-core pro-

cessor architectures. Among these multi/many-core processors, Graphics Processing Units

(GPUs) have been considered and employed in the critical path of applications in embed-

ded systems due to their programmability, high-performance, and low power consumption

[11, 13, 43, 68, 76, 78, 85, 105, 112, 118, 146]. In addition to the previously mentioned

advantages, CPUs and GPUs, in GPU based embedded systems, share the same memory

which results in a near-zero data transfer latency [76].

Figure 1.1 shows an example of a real-world GPU-based embedded system. The figure

provides the abstract diagram of an intelligent driving assistance system, which is similar

1



Figure 1.1: Intelligent Driving Assistance System Similar to Audi A7’s Auto Pilot System
Utilizing GPU-based Embedded System [95].

to the Audi A7’s auto pilot system, on a GPU-based embedded system (a Tegra mobile

embedded system from Nvidia) [95]. In Figure 1.1, each box represents one (image) sensor

and the shaded area represents the coverage of each (image) sensor. These sensors monitor

the vehicle’s surroundings. Each sensor detects different objects, for example, sensors near

the windshield read traffic signs and sensors in the front detect pedestrians. Meanwhile,

the vehicle is connected to the vehicular network (e.g. vehicle to vehicle communication

network) through various communication modules.

While driving, a mixture of safety critical and non-safety applications is launched by the

system depending on the current system status. For example, when driving on a highway,

the system would launch a set of safety critical and high priority applications for vehicle

detection. On the other hand, when driving in a school area, the system would launch a

different set of safety critical and high priority applications for pedestrian detection and

traffic sign recognition. At the same time, non-safety critical and low priority applications

may be running on the system.

2



However, there are several challenges for using the GPU-based embedded systems. First, in

embedded systems, each application would have a different priority and deadline depending

on the current system status. Note that in this type of embedded system, small timing

violations may cause degradation in Quality of Service (QoS), such as glitches in an instance

of a traffic sign image. Therefore, the system is a soft real-time system and the QoS of the

system highly depends on the status of safety critical and high priority applications. However,

existing application scheduling frameworks on a GPU do not have enough flexibility to

handle the dynamic behavior of the event-driven applications. This is because in the existing

scheduling frameworks: 1) only temporal preemption is considered and 2) one application

occupies the GPU at a time.

Second, due to the small feature size, the state-of-the-art nano-scale multi-core processors,

including GPUs, have faced several reliability challenges such as soft-error [16, 19, 38, 40, 74,

120, 129, 130], aging effects [14, 19, 20, 37, 61, 84, 102, 137], and (die-to-die and with-in-die)

parameter variation [1, 4, 57, 64, 101, 110, 119, 132]. The real-world GPUs are susceptible to

the soft-errors even under normal conditions [24, 40, 90, 98]. The probability that the soft-

error occurs on a single hardware component is proportional to the time that the hardware

component is used [143]. The soft-error reliability of the GPU is important because the GPU-

based system handles most of its computation by using the GPU. In other words, if the GPU

produces incorrect results, the entire system may behave incorrectly. In order to improve

the soft-error reliability of the GPU, many methodologies have been proposed [32, 55, 73,

135, 139]. However, instruction scheduling has not been considered for improving the soft-

error reliability of the GPU. Negative Bias Temperature Instability (NBTI) and Hot Carrier

Injection (HCI) are considered among the most critical aging-related reliability challenges

in nano-scaled semiconductors [14, 19, 20, 37, 61, 84, 102, 137]. The amount of transistor

degradation caused by NBTI and HCI is proportional to the time a transistor is stressed or

switched [19, 75, 88, 103]. Various workload management techniques have been proposed

to balance the stress level across the chip to minimize NBTI and HCI effect. To alleviate

3



the effects of process variation, typically, multi-core processors have employed a chip-level

guardbanding technique, which operates at the lowest frequency. However, the state-of-the-

art multi-core processors uses a core-level guardbanding technique, which applies different

frequencies for each core, to further improve the overall performance. Due to the core-level

guardbanding technique, each core of a single-chip would have different operating frequency

and duty cycle, which leads to varying stress levels and thermal variations across the chip.

These stress/thermal variations likely introduce randomness in the system state. The existing

workload management techniques have a limitation in minimizing the aging effect with the

core-level guardbanding technique. Especially, with the core-level guardbanding technique,

the GPU randomly distributes the instructions to its cores. This is due to the asynchronous

behavior of the components in the GPU.

In summary, the state-of-the-art GPU-based embedded systems suffer from the following

challenges:

• Existing application scheduling frameworks on a GPU do not have enough flexibility

to handle the dynamic behavior of the event-driven applications.

• Due to the small feature size, the semiconductor technology has faced severe reliability

challenges like soft-error and processor degradation. The soft-error has been improved

by using various methodologies such as redundancy methodologies. However, the GPU

compiler has yet to be considered for improving the soft-error reliability of the GPU.

• A noticeable within-die parameter variation and core-level guardbanding technique

increase the randomness of the system state. Therefore, existing aging management

techniques have a limitation in maximizing the lifetime of embedded GPUs in the

presence of the parameter variation.

4



1.2 Motivational Case Studies

In order to highlight the above mentioned challenges, we perform several case studies on

real-world applications. Figure 1.2 illustrates a scenario where multiple applications, with

different priorities, are executed on the target GPU-based embedded system. Figure 1.2a de-

scribes the abstract behavior of the target system while Figure 1.2b provides the information

about the input applications. Since the current GPU processes the workloads sequentially,

the response time of each application heavily depends on the arrival time. In our example,

the high priority application A starts executing after the lower priority applications B and C

have completed. Note that application A does not meet its deadline. However, application

A could meet its deadline if the target GPU-based embedded system may be capable of

generating schedules during run-time, in addition to supporting preemption.

Note that after the host launches a kernel function, only the GPU can control the kernel

behavior [92]. In other words, due to the limitation of the GPU hardware, the GPU does

not allow the reallocation of the GPU resources for ongoing kernels. Therefore, the host

can either wait for the completion of the kernel, or alternatively, launch another kernel.

However, typically, a kernel is a collection of thousands of identical GPU threads and the

host partitions a kernel based on the configuration. After submitting an entire kernel to the

GPU, it is possible that some part of the kernel is running on the GPU and the other part

of the kernel is waiting on the GPU hardware queue. Therefore, when partitioning a GPU

kernel in the host, an opportunity arises to reallocate the GPU resources and implement

both temporal and spatial preemption on a GPU-based embedded system.

In order to see the feasibility of multiple sub-kernel launches, we measured the average

performance overhead for an empty kernel launch while using two different GPUs (Nvidia

GTX660 and Tegra K1). Figure 1.3a shows the source code while Figure 1.3b shows the

corresponding observational results. According to Figure 1.3b, the average empty kernel
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(a) Target GPU-based Embedded System.

App Prio. Arr. time deadline Exec. time Cmpl. time
A High 2.5ms 4.2ms 1.5ms 6.5ms
B Mid 1ms 3.5ms 2ms 3ms
C Low 2ms 6.5ms 2ms 5ms

(b) Input Event-driven Application Information.

Figure 1.2: Motivational Example Scenario on the GPU-based Embedded System.

launch overheads for GTX660 and Tegra K1 are 12µs and 64µs, respectively.

The example scenario shown in Figure 1.2 indicates that the GPU needs to be efficiently

assigned and provide preemption capabilities, in order to meet the deadlines of the applica-

tions. Moreover, the results in Figure 1.3 imply that the performance overhead of launching

multiple sub-kernels may be relatively small compared to the execution time, of the ker-

nel, within a single launch. The following capabilities are what make our groundbreaking

approach possible; 1) partitioning application kernels into multiple sub-kernels in order to

represent the GPU resources (re)allocation and 2) launching the sub-kernels with the objec-

tive of assigning more GPU cores to higher priority applications in order to apply the GPU

resources (re)allocation.
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1 __global__ void empty_kernel(input) {;}

2

3 int main()

4 {

5 ....

6 // Time measure start

7 ....

8 for (int i=0; i<repeat; i++) {

9 // launch empty kernel

10 empty_kernel <<<grid , block >>>(input);

11 // wait until empty kernel finish

12 cudaDeviceSynchronize ();

13 }

14 // Time measure end

15 ....

16 // Take the average and cleanup

17 ....

18 }

(a) Part of Source Code for Measuring Kernel
Launch Overhead.

(b) Instruction Distribution with Process
Variation.

Figure 1.3: Kernel Launch Overhead for Varying Number of Threads.

In order to observe how the instruction scheduling affects the soft-error reliability, we have

created a total of three matrix multiplications by modifying its instruction schedule. The

vulnerable period is the metric to measure the soft-error reliability of a GPU application

[55, 86] (see Section 3.2 for more details). The vulnerable period is the time from the

moment that the data is produced until the last moment that the data is consumed [86].

We then measured the vulnerable period of these three matrix multiplication applications by

using the GPGPU-Sim [8] simulator and show the experimental results in Figure 1.4. Below

we provide some observations of these experimental results.

The total amount of the vulnerable period is not proportional to the number of threads in a

thread block. The vulnerable periods vary depending on the number of threads in a thread

block.
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Figure 1.4: Motivational Example to Illustrate the Relation Between Vulnerable Period and
Instruction Schedule.

In addition, there is no instruction schedule that always shows the minimum vulnerable

period. For example, Scheduling Algorithm 1 shows the smallest vulnerable period when the

number of threads is 625. However, when the number of threads is 841, Scheduling Algorithm

2 shows the smallest vulnerable period.

These experimental results indicate that the vulnerable period of an application does not

only depend on the instruction scheduling but also on the parallel behavior of the GPU. The

result may show a small amount of change in the vulnerable period. This is because of the

simple kernel function and a small number of threads. However, the result in Figure 1 still

shows the possibility that the vulnerable period, which is related to the soft-error reliability,

may be improved through the instruction scheduling. Therefore, the parallel behavior of the

GPU and the instruction scheduling need to be considered together to further improve the

soft-error reliability.

Figure 1.5 provides example case studies to show how the process variation and core-level

guardbanding affect the workload distribution on the GPU. Figure 1.5(a) describes the sim-
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(a) Instruction Distribution without Process
Variation.

(b) Instruction Distribution with Process Varia-
tion.

Figure 1.5: Example Behavior of the Existing Warp Scheduler and Instruction Dispatcher
with/without Process Variation.

plified behavior of the instruction dispatcher and two clusters (C1 and C2) without the

process variation and core-level guardbanding. Without the core-level guardbanding, all the

clock signals (Cinst, CC1, and CC2) are synchronized and four instructions (A, B, C, and D)

are sent to the cluster 1, C1. The cluster 2, C2, will get the instructions after the cluster

1’s pipeline is full. However, with the core-level guardbanding, the instruction dispatcher

and the clusters show different behavior. As described in Figure 1.5(b), each component has

a different operating frequency due to the core-level guardbanding. Besides, because of the

asynchronous behavior, each cluster gets two instructions. The instructions A and D are

assigned to the C1 and the instructions B and C are assigned to the C2. The example in

Figure 1.5 implies that the process variation and the core-level guardbanding cause some

degree of workload distribution. However, as shown in Figure 1.5(b), the workload is not

evenly distributed because C1 and C2 have different operating frequencies.

In order to demonstrate the aforementioned unbalanced workload distribution with the pro-

cess variation and core-level guardbanding, we perform experiments with real world ap-

plications. In state-of-the-art embedded GPUs, such as NVIDIA’s Tegra TK1, multiple

instructions are issued in a single clock cycle. Each instruction represents the behavior of

32 threads which is handled by the cluster of 32 cores and called warp. This warp is the

basic execution unit of NVIDIA’s GPU. However, due to the process variation and cluster-

level guard banding, the stress is not evenly distributed across the GPU even though each

cluster processes the same number of instructions. We use the GPGPU-Sim simulator [8],
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(a) Stress Distribution Map Results for Multiple Kernels on the Embedded
GPU without Process Variation

(b) Stress Distribution Map Results for Multiple Kernels on the Embedded
GPU with Process Variation

Figure 1.6: Simulation Results to Show the Effect of the Process Variation on Embedded
GPUs.

which is a configurable cycle-level GPU architectural simulator. We configured the GPGPU-

Sim to have a similar configuration with the GPU in NVIDIA’s Tegra TK1 (1 Streaming

Multiprocessor, 192 CUDA cores, etc.) and executed the following benchmark applications:

bilateral filter and 2D convolution. In GPGPU-Sim, each Stream Processor (SP) and Special

Functional Unit (SFU) handles the execution of a single warp. The SP and SFU units are

mapped into a process variation map that is generated in [38, 120].

During the experiments, we evenly distributed the instructions to the SP and SFU units.

Then, the pipeline status of the SP and the SFU units are collected to generate a stress

(workload) distribution map for each benchmark application with/without the process vari-

ation. Figure 1.6 shows experimental results for various GPU kernel functions. Figure 1.6(a)

shows the stress map results when all the SP and SFU units operate with the same frequency.

The stress map and the standard deviation imply that the stress is evenly distributed across

the GPU. On the other hand, after considering the process variation and cluster-level guard-
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bandinf technique, the stress is not evenly distributed. Figure 1.6(b) shows the stress map

and standard deviation results with the process variation. The stress map shows that each

SP and SFU unit has a different amount of stress while processing the same number of in-

structions. In addition, the standard deviation of stress for the SP and SFU units is increased

by 4.3 and 52.3 times in average, respectively. The results indicate that that current warp

schedulers and instruction dispatchers have a limitation in minimizing the NBTI and HCI

effects under the process variation. Therefore, there is a need for a fine-grained workload

management technique that reconfigures the cluster of cores and distributes the workload to

minimize the NBTI and HCI effects on the embedded GPUs under the process variation.

1.3 Contributions

1.3.1 Problem and Research Challenges

The above mentioned problems for GPU-based embedded systems poses the following re-

search challenges :

• How to partition GPU kernels into multiple sub-kernels during run-time, such that

multiple application kernels could concurrently occupy the GPU, where the number of

the applications that meet their deadline is maximized.

• Estimation of the soft-error of GPU applications by considering the accurate GPU

execution model and Generation of the instruction schedule in order to maximize the

soft-error reliability of a GPU application during design-time.

• Due to the variation in degradation and core-level guard banding, the process variation

aware cluster (warp) formation is required. In addition, the warp scheduler and the
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instruction dispatcher should balance the workload distribution across the GPU by

considering the degradation levels and process variation together.

1.3.2 Our Novel Contributions

In order to address the above mentioned challenges, we propose a reliability and timing

aware workload management framework which includes:

• A GPU architecture-aware instruction scheduling algorithm (Section 3) that

maximizes the soft-error reliability of a GPU application during design-time by con-

sidering the impact of the parallel behavior of the GPU.

• A timing-aware workload scheduling framework (Section 5) which partitions the

GPU kernel into multiple sub-kernels during run-time in order to implement spatial

preemption. Depending on the current status of the target GPU-based embedded

system and the application priority, the proposed workload splitter decides the number

of sub-kernels and the size of each sub-kernel.

• A aging-aware workload distribution unit (Section 4) that generates core cluster

information based on the current NBTI and HCI information during run-time. Af-

ter that, the proposed workload distribution unit is configured based on the above

mentioned information. The instructions are distributed based on the instruction dis-

tribution ratio to minimize the aging effects under the process variation.

The rest of this dissertation is organized as follows: Chapter 2 discusses related works. Chap-

ter 3 explains the design-time part of the proposed framework. Chapter 5 and 4 discuss the

run-time part of the proposed framework. Chapter 5 provides a discussion on the proposed

flexible run-time workload scheduling. Chapter 4 gives an explanation for the proposed
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aging-aware workload distribution under the process variation. Finally, Chapter 6 concludes

the dissertation.
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Chapter 2

Related Works

A large body of research aims to maximize the lifetime of embedded GPUs while increasing

the flexibility on workload scheduling. Research has been conducted to improve the soft-error

reliability of the processors including GPUs [32, 39, 54, 73, 111, 121, 128, 135, 139]. Some

research works have shown the impact of soft-errors by using radioactive sources [97, 133].

However, usage of these radioactive sources is difficult and not for the general purpose

applications, therefore some research works have focused on the technique to model the soft-

error behavior [6, 49, 62] and evaluate the soft-error resiliency of an application [31, 45, 86,

97, 122, 133]. Research works have proposed to detect the occurrence of the soft-errors and

ensure the correctness of an application by using various techniques (i.e. redundant execution

[54, 121, 128, 135, 139], insertion of protection code [32, 73], and leveraging architectural

characteristics [39, 111]). In the rest of this section, we discuss in detail the above mentioned

research works.

Various research works have been conducted to demonstrate the impact of soft-error and

evaluate the soft-error resilience of the GPU application [31, 45, 86, 97, 122, 133]. One

research [86] proposed a metric to quantify the soft-error reliability based on the detailed
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timing behavior of an application. Other research works [97] and [133] showed the impact

of the radiation-induced soft-error on the NVIDIA’s GPU. In order to inject the actual soft-

error into the GPU, the target system is exposed to the neutron beam. Another research

in [117] has evaluated the soft-error resilience of several safety-critical applications. An

embedded GPGPU platform has been exposed to neutron flux in order to measure the

soft-error resilience. A soft-error estimation framework is proposed in order to accurately

estimate the soft-error rate, work in [45]. Unlike the traditional netlist-based technique, the

proposed framework estimated the soft-error rate from the layout of the target processor.

The impact of soft-error reliability has been discussed in [31] and [122]. Various techniques

(i.e. debugger based fault injection) are used to show the impact of soft-error reliability of

the GPU. These research works have successfully demonstrated the impact of soft-error in

real-world environment and applications. However, these works do not propose the technique

to improve the soft-error reliability.

Research has been conducted to model the soft-error behavior. One research in [6] has pro-

posed a soft-error model to provide the failure probability of various interleaving techniques

for the SRAM. Other research in [49] has discussed about the soft-error model for 25nm

technology. Another research in [62] has proposed a cross layer analysis approach for mod-

eling the soft-error behavior on the FinFET transistors. The proposed approach performs

3D simulations from the interactions in FinFET structures up to circuit level. A soft-error

susceptibility estimation technique has been proposed in [83]. The proposed technique uses

symbolic modeling to estimate the soft-error susceptibility of a combinational logic circuit.

However, since the detailed GPU architecture is not available to the research community,

the research works are not applicable.

Research has been conducted to provide the soft-error injection tools because it is extremely

difficult to perform the experiment in a radiation environment [30, 72]. One research in [72]

has proposed a soft-error injection tool that injects a single bit-flip into the data object in the
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binary. Other research in [30] has proposed a soft-error injection technique that randomly

selects the instruction and changes its result. However, these research works have limitations

in modeling the random behavior of soft-error. For instance, although not all the injected

soft-errors cause bit-flips, these research works inject a bit-flip whenever the soft-error occurs.

Research has been conducted in order to find the incorrect behavior and ensure the functional

correctness [54, 77, 121, 128, 135, 139]. One research in [77] has proposed an application

framework to handle the soft-errors on GPU DRAM. The DRAM errors in GPUs are detected

by using the dual parity technique and the application is recovered from the checkpoints.

Other research in [139] has proposed a software level Dual-Modular Redundancy (DMR)

technique. Each stage has a monitor function and its result is compared to the result from

that monitor function. Another research in [54] has proposed a redundant technique that uti-

lizes the GPU idle time caused by the branch divergence. A duplication technique proposed

in [121] has redundant execution for the critical parts of the GPU pipeline and recomputes

erroneous results when error is detected. A redundant execution methodology is proposed in

[128] and it uses the idle time of the GPU in order to minimize the performance overhead. An

automatic Redundant Multithreading (RMT) technique is proposed in [135]. The proposed

technique modifies an application’s code during compile-time to add redundant execution.

However, these works may cause a significant amount of performance and power overhead,

because the proposed techniques are based on redundant execution or recomputation.

Research has also been conducted to improve the soft-error reliability by leveraging the

parallel behavior of the GPU [39, 111]. It is shown in [39] that the GPU’s soft-error reliability

is affected by its parallel behavior. For example, one research in [111] has demonstrated that

the Mean Executions Between Failures (MEBF) of a GPGPU application is affected by the

parallel behavior of the GPU. In order to show the relationship between the MEBF and

the parallel behavior of the GPU, the grid and the block size of a GPGPU application is

modified. However, these research works do not provide the techniques to find the grid and
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the block size and improve the soft-error reliability of the GPU.

Various instruction scheduling algorithms have been proposed to improve the soft-error re-

liability [114, 115, 116]. One research project in [115] has proposed a metric to quantify the

soft-error reliability by using both the detailed timing behavior of the application and the

hardware information. Based on the proposed metric, an instruction schedule is generated to

maximize the soft-error reliability. Other research in [114] has proposed an instruction sched-

ule algorithm to maximize the soft-error reliability under various performance constraints.

Another research in [116] has proposed an instruction schedule to maximize the soft-error

reliability for a specific component. Based on the compiler option, the proposed instruction

scheduling algorithm maximizes the soft-error reliability of the selected components. For ex-

ample, if the compiler option selects the register file, then the proposed instruction generates

an instruction schedule that maximizes the soft-error reliability of the register file. However,

since these instruction scheduling algorithms are based on RISC processors such as SPARC-

V8 architecture, they are not applicable to the GPU. In addition, due to the fact that the

probability of the soft-error occurrence is proportional to the time that the hardware com-

ponent is used, the performance-aware instruction scheduling may be considered to improve

the soft-error reliability [52]. However, since the performance-aware instruction scheduling

focuses on maximizing the GPU resource utilization, improvement in the soft-error reliability

is limited.

Research has been conducted for detection and protection of the vulnerable parts in GPGPU

applications [21, 32, 73, 100]. One research in [32] has proposed the checker functions that are

inserted to protect the potentially vulnerable parts of a GPGPU application. Other research

in [100] has proposed a compilation technique that improved the control-flow reliability.

Another research in [73] has proposed a compile-time methodology that protects the memory

access instructions by inserting checker instructions. One study in [21] has proposed an

application-level technique that modifies the loop code during the compile-time. However,
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these works have limitations in improving the soft-error reliability of the GPU because the

soft-error may occur in any part of a GPGPU application.

A large body of research aims to minimize the effects of NBTI and HCI on multi/many-core

systems. The work in [42] surveys various trade-off points between power, performance and

reliability in multi/many-core systems-on-chip. The surveys show that there are multiple

control knobs to optimize power, performance, and reliability of multi/many-core systems.

A task migration technique [9] is proposed to minimize the effect of NBTI. The proposed

technique uses the spare processor in order to migrate tasks from the near-to-die primary

processor to the young processor. However, this technique is not applicable to the GPUs

because they do not have spare cores. A circuit design technique is proposed to minimize the

amount of NBTI-induced clock skew [17]. A Network-on-Chip (NoC) router architecture was

proposed to increase the lifetime of the NoC-based general purpose Chip Multi-Processors

(CMPs) [63]. The proposed architecture optimizes the duty cycle of the NoC during its idle

time. Whenever the NoC router does not have any packet to process, the proposed exercise

module operates and optimizes the duty cycle as much as possible. However, the proposed

architecture is not applicable to the GPUs because it is tailored to the NoC-based general

purpose CMPs and has a considerable amount of area/power overhead that restricts its ap-

plication to GPUs which have many small cores. The work in [3] has proposed a dynamic

routing algorithm for heterogeneous NoC architectures to overcome the NBTI-induced per-

formance degradation. Based on the NBTI information of each router, the routing path is

generated to minimize the performance degradation.

Task allocation techniques are proposed to minimize the impact of NBTI degradation on het-

erogeneous multi-core processors [103, 126]. The proposed techniques assign the application’s

function to processors based on the application information and the current NBTI status.

However, unlike existing NoC-based multi-core architectures, the computational cores in the

GPU form clusters of cores and share the instructions. Therefore, the afore-mentioned works
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are not scalable to embedded GPUs. The concept of Capacity Rate (CR) [125] has been

proposed to indicate whether a core is able to accept the workload or not. The proposed CR

is estimated based on the critical path delay and the power consumption status of the core.

Based on the estimated CR, tasks are assigned to the cores to balance workloads while min-

imizing communication overhead. However, since there is no direct communication between

the cores in the GPUs, the proposed technique is not suitable. The work in [15] shows that

the power gating technique can be used to reduce the NBTI effect. Using the power gating

and several circuit models, the work shows that the power gating may allow synthesizing

low-leakage circuits with maximum lifetime. However, this work does not discuss how the

power gating should work with complex multi-core architectures to minimize the NBTI ef-

fect. An analytical model [47] has been proposed to estimate the lifetime of Multiprocessor

System-on-a-Chip (MPSoC). Based on the proposed analytical model, a mapping between

the tasks and the processors are generated. However, the proposed model aims for the MP-

SoC platform, thus it is not scalable to the GPUs. An on-chip NBTI degradation sensor

is proposed in [60]. The proposed sensor uses a delay-locked loop to measure the threshold

voltage in a PMOS transistor. However, there is no discussion on how to maximize the

lifetime of the GPUs.

Research has been conducted to control the behavior of processors under the process varia-

tion. A thread-to-core mapping technique is proposed in [120] to maximize the performance

of a many-core processor. During run-time, the proposed technique dynamically generates

thread-to-core mappings based on the current thermal and power profile. The work in [38]

has proposed a thread-to-core mapping technique to mitigate the aging effect on many-core

processors under the process variation. The proposed technique generates an aging predic-

tion map based on the power consumption pattern and the process variation. A scheduling

algorithm [46] is proposed to maximize the performance of MPSoC-based systems under

the process variation. The proposed scheduling algorithm considers the spatial correlation

between the processors to minimize the effect of the process variation. A run-time workload
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distribution technique [104] has been proposed to minimize the effect of the process variation.

It employs a scheduling policy that uses a linear programming and a bin-packing formulation

together. A variation-aware task mapping algorithm for MPSoC is proposed in [82] that as-

signs the execution time of each core. However, given that the above mentioned techniques

aim for Network-on-Chip (NoC) based multi/many-core platforms, they are not scalable to

the GPUs. A frequency assignment technique has been proposed in [2] to maximize the

performance of GPUs under process variation. The proposed technique assigns different fre-

quencies for each SM core. After this step, SMs are assigned to applications based on their

workload profile. The work in [81] has proposed a technique to minimize the effect of process

variation on a processor. The proposed technique controls the mapping between tasks and

cores based on the aging status and implements per-core Dynamic Voltage and Frequency

Scaling (DVFS) to maximize the lifetime of the processor. A notion called Instruction-Level

Vulnerability (ILV) has been proposed in [109]. Through the ILV, the process variation can

be exposed to the software to maximize the performance of systems. However, since the

proposed ILV is tailored to RISC processors, it is not applicable to the GPUs. The work in

[23] has proposed a technique to map application threads to Simultaneous Multithreading

(SMT) cores under the process variation. The proposed technique utilizes the operating sys-

tem and hardware performance counters to create an application profile under the process

variation. After creating the profile, based on the application profile, the mapping between

the application threads and the cores is generated to maximize the performance of the sys-

tem. However, the application’s profile based on the SMT cores is not able to capture the

characteristics of the GPUs.

Research has been conducted to alleviate the aging effects on the GPUs under the process

variation. A system-level technique [25] is proposed to measure the effect of NBTI on the

GPU and to find the defected cores. However, since the proposed technique only detects

defected cores, the proposed technique does not control workload distribution and maximize

the lifetime of the GPU. In order to minimize the NBTI effect on the warp scheduler in a
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GPU, the work in [147] has proposed a two-stage architecture. In order to minimize the

workload on the warp scheduler, the proposed two-stage architecture implements an input

module that checks the warps and sends some warps which are ready to execute. An NBTI-

aware register file allocation technique has been proposed in [88] that includes additional

hardware to perform aging-aware register assignment. The work in [127] has proposed a

technique to mitigate the effects of the NBTI and the process variation on the register file

of GPUs. The proposed technique classifies the register files into two categories: fast and

slow register files. After this classification, based on the application profile and NBTI status,

the fast and the slow register files are assigned. However, these works do not consider the

utilization of computational cores on the GPU.

To minimize the NBTI effect and maximize the lifetime of the GPU, compiler-based tech-

niques [75, 108] have been proposed. During run-time, the Just-In-Time (JIT) compiler

generates a healthy kernel function based on the current aging status of the GPU. This

healthy kernel includes some additional workloads to transfer the workloads from the de-

graded cores to healthy cores. The amount of additional workload depends on the number of

degraded cores. However, the proposed techniques require the JIT compiler support, which

causes a non-negligible performance overhead, for run-time kernel compilation. Moreover,

the additional workloads may cause a significant performance overhead to transfer the work-

loads between the degraded cores and healthy cores. An SM level clock gating technique [19]

has been proposed to maximize the lifetime of the GPUs. The proposed technique finds the

optimal number of SMs to handle GPU applications and controls the clock signal at SM gran-

ularity. However, in general, the embedded GPUs have few SMs [94]. Thus, the proposed

technique is not scalable in this case. A technique to minimize the process variation effect

on the GPU has been proposed in [70]. The proposed technique maximizes the performance

of the GPUs by applying maximum frequency to each core, which may aggravate aging or

disable slow cores which may result in performance loss. Overall, this technique does not

consider the lifetime of the GPUs under the process variation. A workload management
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technique [69] is proposed to maximize the lifetime of the GPU. It assigns the instructions

to different clusters based on the current aging status. However, since it does not consider

the process variation, it may not improve the lifetime of the GPU in the presence of process

variation.

State-of-the-art application scheduling frameworks have been proposed in order to leverage

the GPU-based embedded system’s performance and low power consumption. Works in

[51, 67] use GPUs to improve the performance of real-time graphics applications such as

3D image reconstruction and facial detection. Work in [148] improves the IP routing per-

formance by using GPUs. Work in [28] discusses the limitations of GPUs in the real-time

applications. Works in [33, 99, 131, 145] use GPUs to process the compute-intensive part

of medical imaging applications and archive real-time performance. Works in [22, 36] use

GPUs to improve the performance of object tracking applications. Work in [50] proposes

Application Programming Interfaces (APIs) for real-time systems in order to ease the use

of GPUs. Work in [134] proposes an algorithm to distribute the large amount of data and

schedule the workloads to achieve high utilization of a multi CPU-GPU platform (under

real-time constraints). Work in [87] presents a real-time road sign detection framework for

the Advanced Driving Assistance Systems (ADAS), where the presented framework uses the

Particle Swarm Optimization (PSO) algorithm to improve the detection performance. The

above mentioned research works use the GPUs to improve the performance of a single appli-

cation and achieve real-time performance. However, the above mentioned works are tailored

for single applications, they have limitations in handling multiple and different applications.

In order to support multiple applications on complex real-time embedded systems (such as

our target GPU-based embedded system), preemption is required. To overcome this problem,

various research works have been conducted. Work in [89] proposes a lowest priority first

based light-weight feasibility analysis of CPU-based real-time systems. However, since the

proposed work focuses on the feasibility analysis of CPU-based real-time systems, there is
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a limitation for distributing GPU resources to multiple applications. Work in [58] proposes

a GPGPU execution model to ensure the response time of high priority applications. Work

in [56] proposes an automatic task distribution technique on the CPU and the GPU for

a real-time systems. Work in [35] proposes a framework that controls multi-CPU/multi-

GPU real-time systems. Work in [27] proposes a locking protocol for globally-scheduled

Job-Level Static-Priority (JLSP) real-time systems (which uses GPUs as shared resources).

The utilization of the GPU is improved by using the proposed locking protocol. Work in

[138] proposes a priority donation based locking protocol for the globally-scheduled multi-

processor real-time systems. Work in [80] proposes a run-time task-scheduling and resource

management mechanism for the medical imaging applications. Work in [91] proposes a

run-time checkpoint framework that suspends and resumes the applications. Note that

this proposed framework manages the checkpoint and controls the application flow in the

main thread. Work in [26] describes the GPU as a shared resource and generates a GPU

allocation schedule for a given application set. Work in [59] proposes a GPU scheduler

for periodic applications. Different scheduling properties are assigned to each application.

According to the scheduling property and the priority of the application, the application is

selected and submitted to the GPU. However, a small number of applications is considered.

Work in [144] proposes a locking protocol for real-time systems on GPU-based real-time

systems. The utilization of the GPU is improved by using the proposed locking protocol.

However, one application can occupy the GPU at a time. The above mentioned research

works are limited in providing flexible and fine-grained GPU resource management due to the

limitation of allowing only one application to occupy the GPU. Moreover, although the GPU

is a multi-core processor, spatial preemption is not considered and only temporal preemption

is implemented (see Section 5.3.1 for our definition of temporal and spatial preemptions).

Work in [10] proposes a fine-grained GPU resource management framework. The proposed

framework partitions the GPU workload into small sub-workloads to implement preemp-

tion. However, since this framework only considers periodic applications, it has limitations
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in partitioning random GPU workloads during run-time. Work in [68] proposes a schedul-

ing framework for event-driven real-time systems. This framework generates the mapping

between the SMs and the applications in order to provide temporal and spatial preemption.

However, the scheduling policy in [68] assigns at least one SM to each running application.

This may cause a bottleneck when the number of running applications is larger than the

number of SMs.

In summary, the previously mentioned state-of-the-art workload management frameworks

suffer from the following limitations:

• Existing workload management techniques do not jointly consider periodic applications

and temporal preemption. They allow only one application to occupy the GPU at any

given time. Moreover, a performance bottleneck might be observed in the event that

the number of running applications is larger than the number of SMs.

• Existing workload management techniques distribute the workload based on the chip-

level guardbanding technique. Therefore, their workload management techniques may

not minimize the aging effect in the presence of the process variation and core-

level guardbanding. Although the register file and instruction scheduler have been

considered, computational cores have not been considered from the perspective of

aging optimization.

• They control the parallel behavior of the GPU and modify the application source code

to improve the soft-error reliability. However, the instruction scheduling methodologies

have not been considered to further improve the soft-error reliability.
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Chapter 3

Design-time: GPU

Architecture-aware Instruction

Scheduling Algorithm

In this chapter, in order to improve the soft-error reliability of the GPU, we propose a novel

GPU architecture-aware instruction scheduling algorithm. The proposed algorithm jointly

considers the parallel behavior of the GPU hardware and the applications, and minimizes

the vulnerability of the GPU applications during instruction scheduling. In addition, the

proposed algorithm is able to complement any hardware based soft-error reliability improve-

ment techniques. We compared our instruction scheduling algorithm with the state-of-the-art

soft-error reliability-aware techniques and the performance-aware instruction scheduling al-

gorithm. We have injected the soft-errors during the experiments and have compared the

number of correct executions that have no erroneous output.
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3.1 GPU Application Model

In this section, we describe our target GPU-based embedded system. In this dissertation,

for the sake of consistency, we use terminology that is defined in NVIDIA’s Compute Unified

Device Architecture (CUDA) [92]. Our target platform is a GPU-based embedded system

that has similar GPU architecture to NVIDIA’s Fermi architecture. It has a multi-core CPU

and a single on-chip GPU that has a total of Ntot SMs. Note that both Kepler and Fermi

architectures contain similar hardware units to execute the GPU kernel [93].

We assume that the target platform has on-chip delay monitors that are shown in [19,

124]. These delay monitors provide aging information to the proposed technique. Note

that the in-situ aging monitors like the one proposed by [66] can be used to obtain aging

information. The embedded GPU in the target platform is assumed to have Dynamic Voltage

and Frequency Scaling (DVFS) functionality and include an on-chip power-gating unit, which

is shown in [141]. Generally, a GPGPU application consists of two parts: a host code and

a kernel code. The host code represents the code segment that is handled by the CPU

(host) and controls the behavior of a GPGPU application. The kernel code represents the

computationally intensive code segment, which is handled by the target GPU. When the

host launches a GPU kernel, the host must set the configuration for the GPU kernel to

create the thread hierarchy, where the grid indicates the dimension of the thread block and

the blocksize indicates the number of threads in the thread block. Right after the host

launches a kernel function, the mapping between the thread blocks and the SMs are created

based on the configuration and the entire kernel function is submitted into GPU hardware.

Generally, after the device starts executing the kernel function, it may not be suspended

without forced termination because of the hardware limitations of the GPU.

When the GPU executes a kernel function, the threads in the same thread block are grouped

into a warp. Note that a single thread block can have multiple warps. Warp is the basic
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unit of execution of the GPU. The threads in the same warp fetch and execute the same

instruction. The behavior of warps in the same thread block is sequential because they

share the single SM. Since multiple SMs operate at the same time, the behavior of thread

blocks could be either parallel or sequential. Since the detailed architecture of the GPU

is not available to the research community, we assume that the GPU uses the round robin

algorithm to schedule the warps as has been adopted in [8].

During run-time, the target system must respond to many random external and internal

events, such as physical events, user commands, messages from other embedded systems, and

so on. Therefore, the applications in the target system are event-driven and run concurrently.

A small timing violation may cause degradation in the QoS. However, this does not result

in a system failure. For example, let us assume that one image-processing application in the

system has a small timing violation (see Figure 1.1). The effect of this small timing violation

may cause a few graphical glitches in the video or image. However, these glitches may not

cause a system failure. Therefore, we assume that our target GPU-based embedded system

is a soft real-time system. In addition, the system is expected to increase the number of

higher priority applications meeting their deadlines as much as possible.

3.2 Fault Model

Neutron-induced soft-errors are considered as a primary reason for a bit-flip. Since the

natural radiation is evenly distributed across the chip, we assume that neutron-induced soft-

errors are evenly distributed over the GPU area. As discussed in Chapter 2, several metrics

and techniques have been proposed to quantify the impact of soft-errors.

Among these soft-error quantification metrics, the Architectural Vulnerability Factor (AVF)

[86] and the Instruction Vulnerability Index (IVI) [115] are two of the most well-known
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metrics used for quantifying the soft-error reliability. The AVF represents the probability

that a single soft-error on a hardware component causes a visible error. In AVF metric, the

probability of the soft-error is proportional to the amount of the time that the data resides

on a hardware component. In order to estimate the AVF, the detailed timing behavior of

hardware components needs to be obtained. Based on the usage of each hardware component,

the AVF is calculated. In AVF metric, a hardware component is susceptible to the soft-error

while the hardware component is in use. This susceptible period is referred to as vulnerable

period. The IVI metric does not only consider the temporal effect, which is considered in

the AVF metric, but also the spatial effect, the area of each component. Since the soft-error

is evenly distributed throughout the processor, the probability that the soft-error occurs on

the hardware component is affected by the area of the component as well.

In this dissertation, since a detailed Register Transfer Level (RTL) model, which must be

required for the IVI metric, is not available to the research community, we use the AVF

metric to quantify the soft-error effect. However, if the RTL model of the GPU is provided,

then our algorithm is also scalable to the IVI metric as has been done for the single-core

SPARC-V8 CPU in [115].

3.3 Vulnerable Period Estimation for GPU

Since the parallel behavior of the GPU affects the soft-error reliability of the GPU as well, the

architectural characteristics of the GPU also need to be considered to estimate the vulnerable

period of the GPU application. During run-time, each warp runs instructions in lock-step,

and it is assumed that the GPU hardware schedules the warps in a round-robin manner [8].

The latency of the instruction depends on the parallel behavior of the GPU pipeline and the

memory access latency [44]. By using the state-of-the-art GPU performance models, we may

estimate the timing behavior of the GPU and extract information to estimate the vulnerable
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period. Below, we provide more details about the latency estimation of the instruction which

uses the state-of-the-art GPU performance model from [7, 44]. The model parameters are

generated from the actual GPU by using micro benchmarks.

3.3.1 Latency of Instruction Execution

The nth instruction can be issued after all warps have issued the (n − 1)th instruction and

all the data for the nth instruction is ready to use. Therefore, the amount of time to execute

n instructions may be represented by the following equation:

tIn =
n∑
i=1

(
Liready + Lissue

)
+ Lnpipe + Lnmem (3.1)

where Lnready represents the latency to make the nth instruction ready. Lnissue represents the

latency to issue all the instructions for the nth instruction. Lnpipe and Lnmem represent the

pipeline and the memory access latency for the nth instruction, respectively. The instruction

issue latency, Lissue, shown in Figure 3.1 is represented by the following equation:

Lissue =
nwarp × sizeof(warp)

ncore × rissue
(3.2)

where nwarp represents the number of warps in a thread block. ncore represents the number

of streaming processors in a single SM, and rissue represents the instruction issue rate. The

pipeline latency, Lpipe, depends on the instruction and can be obtained empirically.

As mentioned in the beginning of this section, the nth instruction will be issued after all

the data dependencies are resolved. After the (n − 1)th instruction is issued completely, if

there is unresolved data dependency then the nth instruction will wait until all the data

is ready to use. The instruction ready latency, Lnready, is a function of the Lppipe and Lpmem

of the producer instructions p. Therefore, Lnready, depends on the latencies of the producer

instructions and may be represented by the following equation:
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Lnready = max(tn−1
issue comp, t

n
data ready)− tn−1

issue comp (3.3)

tn−1
issue comp represents the time that all the (n − 1)th instructions are issued and tndata ready

represents the time that all the data for the nth instructions are ready to use. Moreover,

the instruction execution may overlap with the other instruction’s issue and the memory

operation. Therefore, the completion time of the nth instruction may be described by the

following equation:

Equation 3.1 shows that the latencies caused by the data dependencies are related to both the

arithmetic and memory operations. To accurately measure the data dependent latency, the

latencies of the arithmetic and memory access instructions need to be considered together.

Figure 3.1: Example Pipeline Stages of Arithmetic Instructions.

Latency of Arithmetic Instruction

The latency of the arithmetic instruction consists of two latencies: the instruction ready

latency and the pipeline latency. The instruction ready latency is the period between the

issue completion time of the previous instruction and the latest completion time among

the predecessor instructions. Figure 3.1 shows an example of the instruction ready latency.

The issue completion time may be estimated by the summation of the instruction ready

latencies and the Lissue for all the instructions preceding the nth instruction. The instruction

ready latency may be estimated by the instruction whose execution time is the longest

and has finished after the issue completion time of the dependent instructions. Note that
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the pipeline latency likely overlaps with the issue latency. Therefore, the instruction ready

latency is calculated by subtracting the issue latency from the pipeline latency. In Figure

3.1, the instruction In−2 actually dominates the instruction ready latency since it has the

longest execution time. The instruction ready latency is two clock cycles for In because one

overlapped issue cycle of In−2 and one overlapped issue cycle of In−1 are subtracted from the

longest execution time.

Latency of Memory Access Instruction

The latency of the memory access instruction is calculated by subtracting the issue latency

from the total memory access time. Figure 3.2 shows an example of the memory access

latency.

Figure 3.2: Example Pipeline Stages of Memory Access Instructions.

Assuming that the system has adopted GDDR memory, the maximum memory bandwidth,

BWMEM , is the bandwidth of the bus multiplied by the clock frequency of memory (Equation

3.4) [41]. Due to the fact that the exact cache behavior may be impossible to estimate during

compile-time, the average memory access latency is used to estimate the memory access

latency for the nth instruction.

BWMEM = Bus width×Memory freq × 2 (3.4)

During run-time, the memory bandwidth is consumed by the memory accesses. The con-

sumed bandwidth for each memory access may be estimated by the following equation:
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bw = Fetch size× Core freq (3.5)

After that, the maximum number of concurrent memory accesses may be estimated by the

following equation:

Nmem req = bBWMEM/bwc (3.6)

During run-time, the number of total memory accesses from the instruction is calculated by

the following equation:

nmem req = nwarp × nSM (3.7)

Since all the memory accesses may not be served at the same time, the memory latency

is estimated based on currently available bandwidth, number of ongoing memory accesses,

and number of requested memory accesses. The memory latency consists of two parts:

the latency for memory accesses (Lmem) and the delay due to the fully occupied memory

bandwidth (dnfull).

Lnmem = Lmem + dnfull (3.8)

If there is no ongoing memory access, dnfull becomes 0 and the memory access latency may

be estimated by the following equations:

Nfull =
⌊ nmem
Nmem req

⌋
(3.9)

Nremain = MOD(nmem, Nmem req) (3.10)

Lmem =
(
Nfull +

⌈ Nremain

Nmem req

⌉)
× Lavg mem (3.11)

The above equations imply that the memory bandwidth is not always fully occupied. There-

fore, in order to track the memory bandwidth and describe the memory access latency, we

define three parameters: 1) the time when there is available memory bandwidth (tnnonfull),

2) the time when the memory access is completed (tnmemfinish), and 3) the number of avail-
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able memory accesses between tnnonfull and tnmemfinish (Nn
nonfull). By using these parameters,

we may describe the memory latency and track the bandwidth status. Note that Nn
nonfull

may represent the available memory bandwidth between tnnonfull and tnmemfinish because the

available memory bandwidth can be represented by the number of available memory ac-

cesses. In order to track the memory status, tnnonfull, t
n
memfinish, and Nn

nonfull need to be

updated for each instruction. If the nth instruction is not a memory access instruction, then

tnnonfull, t
n
memfinish, and Nn

nonfull are the same as the previous instruction‘s values, which are

tn−1
nonfull, t

n−1
memfinish, and Nn−1

nonfull. However, if the nth instruction is a memory access instruc-

tion, tnstartmem, tnnonfull, t
n
memfinish, and Nn

nonfull are updated based on the current memory

status, which is represented by tn−1
nonfull, t

n−1
memfinish, and Nn−1

nonfull. From Equation 3.1, by mak-

ing Lnmem = 0, it may be possible to estimate the time when the nth instruction‘s memory

accesses are sent to the memory system, tnstartmem.

Based on tn−1
nonfull, t

n−1
memfinish, and tnstartmem, there are three different possible scenarios for

estimating the memory accesses latency.

• tnstartmem is greater than tn−1
memfinish. In this scenario, there is no ongoing memory access

at time tnstartmem. Therefore, the memory access latency may be estimated by using

the above mentioned equations (Equations 3.9-3.11). In addition, Nn
nonfull is same as

Nremain.

• tnstartmem is between tn−1
nonfull and tn−1

memfinish. In this scenario, there are ongoing memory

accesses, but the memory bandwidth is not fully occupied. Some memory accesses can

begin immediately and the other memory accesses can begin after tn−1
memfinish. Therefore,

dnfull becomes 0 and based on the available bandwidth, Nn−1
nonfull, and Nremain, the mem-

ory latency and the parameters are updated. When Nremain is greater than Nn−1
nonfull,

the last memory access is followed by the memory accesses that start at tn−1
memfinish.

Therefore, the parameters are updated as follows:
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tnnonfull = tnstartmem + Lnmem (3.12)

tnmemfinish = tn−1
memfinish + Lnmem (3.13)

Nn
nonfull = Nmem req − (Nremain −Nn−1

nonfull) (3.14)

In the case hen Nremain is less than or equal to Nn−1
nonfull, the last memory access is

followed by the memory access that starts at tnstartmem. In addition, the available

memory bandwidth, Nn
nonfull, is related to the memory accesses that are finished at

time tn−1
memfinish. Therefore, the parameters are updated as follows:

tnnonfull = tn−1
memfinish + (Nfull × Lavg mem) (3.15)

tnmemfinish = tn−1
memfinish + Lnmem (3.16)

Nn
nonfull = Nmem req −Nremain (3.17)

In the case when Nremain is equal to 0, the memory access behavior is exactly the same

as the previous one. Therefore, the parameters are updated as follows:

tnnonfull = tnstartmem + (Nfull × Lavg mem) (3.18)

tnmemfinish = tn−1
memfinish + (Nfull × Lavg mem) (3.19)

Nn
nonfull = Nn−1

nonfull (3.20)

• tnstartmem is less than tn−1
nonfull. In this scenario, there is no available memory bandwidth.

Some memory bandwidth becomes available after tn−1
nonfull. This scenario is a special case

for the previous scenario where dnfull > 0 and the memory accesses at tn−1
nonfull, because

the memory access behavior will be similar as the previous scenario after tn−1
nonfull. The

memory access latency may be estimated by adding the delay dnfull to the equations in

the previous scenario. dnfull may be estimated by the following equation:

dnfull = tn−1
nonfull − t

n
startmem (3.21)
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3.3.2 Control Flow Management During Vulnerable Period Esti-

mation

Before estimating the vulnerable period of the application and scheduling of the instruc-

tions, the control flows of an application need to be considered. These control flows are

implemented by using the following: the loops and the branches. We provide the following

two observations to handle the loops and the branches during the vulnerable period estima-

tion. Note that these observations are based on the state-of-the-art GPU architecture and

performance models [8, 44].

Observation 1. Let’s assume that the register R includes the moment of data production

before the loop and the last moment of data consumption in the loop. The vulnerable period

of the register R, V PR, depends on the following:

• Execution time of one iteration in the loop, lloop.

• Time from the data production to the first data consumption in the loop, lpre−loop.

Proof. During run-time, depending on the data, the number of iteration N is changed. In

other words, two different instruction schedules will have the same number of loop iterations,

if the input data is the same. The vulnerable period of the register R may be represented

by the following equation:

V RR =


N × lloop, if

lpre−loop

lloop
≈ 0

N × lloop + lpre−loop, otherwise

(3.22)

From Equation 3.22, we can see that lpre−loop’s contribution to the V PR becomes negligible

if one of the following two cases is satisfied: 1)
lpre−loop

lloop
is approximately zero; or 2) N is

so large. Therefore, the vulnerable period of the loop can be improved during compile-

time by minimizing both the lloop and the lpre−loop. Figure 3.3(a) shows an example code to

demonstrate the proof of this theorem for a for-loop.
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Observation 2. For register R, which includes the moment of data production before the

branch instruction and the last moment of data consumption within the branch body, the

vulnerable period of R depends on the location of the last consumption of R.

Proof. Unlike the general CPU, the GPU likely executes every branch body to handle control

flow divergence no matter how the branch is taken. Moreover, for the same input data, two

different instruction schedules show the same branch behavior. Therefore, the vulnerable

period of the R is calculated based on the last place where R is used. Figure 3.3(b) shows

one such example case to demonstrate the proof of this theorem.

(a) for-loop
(b) if-else

Figure 3.3: Example Kernel Code for For-Loop and If-Else.

3.3.3 Vulnerable Period Estimation

Based on the GPU execution model and the control flow management, we can estimate the

vulnerable period of the application. The pseudo-code for the vulnerable period estimation

is shown in Algorithm 1. The input to the Algorithm 1 includes the instruction flow graph

of the kernel code, G, the configuration of the application, c, and the number of SMs, NSM

(Line 1). Each node in the graph represents the instruction and each edge in the graph
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Algorithm 1: Algorithm for Computing Vulnerable Period.
Input: Instruction Flow Graph G, configuration c, # of SM NSM

Output: Total vulnerable period TotV ulnPeriod
1 Function EstimateVulnPeriod (G, c, NSM )
2 begin
3 InitializeGraph(); // Initialize the node and the edge variables

4 TotVulnPeriod ← 0;
5 ProgMissMatchFlag ← 0;
6 G ← DuplicateGraph(G, c, NSM );
7 foreach N ∈ G do
8 Lissue ← GetIssueLatency(N); // Equation 3.2

9 SetNodeInfo(Lissue);
10 foreach Eout ∈ N do
11 if Eout ← � then
12 if N = MemOp then
13 nconcurrent ← FindConcurrentAccess(N) ; // Get the number of concurrent access

14 LIn ← EstimateMemLatency(N , nconcurrent) ; // Equation 3.4-3.21

15 else
16 LIn ← GetPipeLatency(N);

17 SetOutgoingEdge(N , Eout, Lexe) ;

18 foreach G ∈ G do
19 Edges ← Null ;
20 foreach E ∈ G do
21 Elongest ← Edges.find(E) ;
22 if Elongest = NULL then
23 Edges.add(E);

24 else
25 SetLongest(Edges, E) ;

26 TotVulnPeriod = GetSummation(G, Edges) ;
27 return TotVulnPeriod ;

represents the data dependency. After that, based on the degree of parallelism provided by

the configuration c and NSM , Algorithm 1 updates the timing information in the graph (Line

6). The loop (Lines 7-17) starts to update the weight of the edges, which will store LIn from

a node to its dependent nodes. For each node in the graph, Lissue is estimated (Line 8) and

then for each outgoing edge of the node N , the execution latency LIn is determined according

to the node type (Lines 10-17). In the second loop (Lines 18-25), the total vulnerable period

is explored by searching and adding the longest edge from each node.
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3.4 GPU Architecture Aware Instruction Scheduling

to Improve Soft-error Reliability

As mentioned in Section 1.3.2, our primary goal is to find the instruction scheduling that

has minimum vulnerable period. To do that, every possible instruction schedule needs to be

tested and verified. However, finding an instruction schedule is known to be an NP-hard

problem [123]. The overhead of finding an instruction schedule that minimizes the vulnerable

period could be significant. Therefore, in order to find the best instruction schedule while

minimizing the compilation overhead, we propose a heuristic instruction scheduling algorithm

that schedules the instructions based on the data dependency.

3.4.1 Vulnerable Period Aware Instruction Scheduling

The vulnerable period of a register will reach a minimum if the data is immediately con-

sumed after it is produced. Therefore, the primary objective of our heuristic is minimizing

the distance between the producer instruction and the consumer instruction. Since our

heuristic places instructions based on the data dependencies, it is important to know the

last consumption of the data. Therefore, our heuristic uses a bottom-up strategy and places

the instructions from the ending point of the application. At the beginning of instruction

scheduling, the last instruction is selected and placed. Afterward, the producer instructions

corresponding to the last instruction are examined based on the following three conditions:

• There is no synchronization instruction between the producer and the consumer in-

struction. The synchronization instruction is used to prevent the race conditions be-

tween multiple threads. For example, if the instruction (Line 6 in Figure 3.4) is moved

after the synchronization instruction, then the functional correctness of the application

is not guaranteed.
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• There is no other instruction that consumes the same data produced by the producer

instruction. If the instruction is moved after its consumer instruction, the consumer

instruction has wrong data and the result will be corrupted. For example, in Figure

3.4, if the instruction in Line 8 is moved after Line 11, then the instruction in Line 11

will use the data in register %r22, which is not updated properly.

• The loop depth value of the producer instruction and the consumer instruction must

be identical. If the instruction is moved from the inside of the loop to the outside of

the loop, the data will not be properly updated. For example, in Figure 3.4, if the

instruction in Line 0 is moved after Line 4, which is outside of the loop, the value

in register %f1 will not be properly updated and the functional correctness is not

guaranteed.

In order to minimize the vulnerable period of the last instruction, our heuristic schedules

the predecessor instruction that satisfies all three conditions. After that, the scheduled

predecessor instruction becomes the consumer instruction and our heuristic repeats the above

mentioned process until all instructions are scheduled.

Algorithm 2 shows the pseudo-code for the proposed instruction scheduling algorithm.

At the beginning, the algorithm selects the last instruction and places it at the end of the

application code (Lines 10-13). For each predecessor instruction, the algorithm examines the

aforementioned three conditions (Lines 15-25). If the predecessor instruction satisfies these

three conditions, it will be placed near the consumer instruction (Lines 30-34). The overall

complexity of the instruction scheduling algorithm is given by O(n×n×n) = O(n3) because

of the three levels loop hierarchy.
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Algorithm 2: Algorithm for Instruction Scheduling.
Input: Instruction Flow Graph Gin

Output: New Instruction Flow Graph Gnew

1 Function BuildFromBottom (Gin)
2 begin
3 Gnew.clear();
4 Pos ← |Gin|;
5 ntgt ← �; RegSet ← �;
6 while Gin 6= � do
7 CandidateSet ← �;
8 pass ← true;
9 if Pos = |Gin| then

10 ntgt ← GetSinkNode(); Gnew.push(ntgt);
11 Gin.remove(ntgt);
12 Pos ← Pos - 1;

13 else
14 for idx = 0; idx < Pos; idx+ + do
15 for cnt = idx; cnt < Pos; cnt+ + do
16 if Gin[cnt].is sync() then
17 pass ← false;

18 if pass = true and Gin[cnt].is consume(Gin[idx].GetDest()) then
19 pass ← false;

20 if pass = true and Gin[idx].is in loop() then
21 if Gin[idx].GetLastLoopPos() < Pos then
22 pass ← false;

23 if pass = true and RegSet.exist(Gin[idx].GetDest()) then
24 CandidateSet.push(Gin[idx]);

25 if CandidateSet = � then
26 ntgt ← Gin.GetLastNode();

27 else
28 ntgt ← CandidateSet.front();

29 Gnew.push(ntgt);
30 Gin.remove(ntgt);
31 RegSet.RemoveDestRegs(ntgt);
32 RegSet.AddSrcRegs(ntgt);
33 Pos ← Pos - 1;

3.4.2 Example of the Proposed Instruction Scheduling

An example of our scheduling process is shown in Figure 3.4. In the figure, there are four

producer and consumer instruction pairs: instructions in Lines 2 and 5, in Lines 6 and 9, in

Lines 8 and 13, and in Lines 10 and 14. The first pair of instructions, in Lines 2 and 5, violates

the third condition because they are not in the same loop. The second pair of instructions,

in Lines 6 and 9, violates the first condition due to the synchronization instruction in Line

7. The third pair of instructions, in Lines 8 and 13, violates the second condition because

there is another consumption of the register %r22 in Line 11. However, the last pair of
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instructions, in Lines 10 and 14, satisfies all three conditions, and therefore the proposed

heuristic is able to place the instruction in Line 10 around its consumer instruction, in Line

14.

Figure 3.4: Example Code for the Proposed Instruction Scheduling.

3.4.3 Comparison with Performance-aware Instruction Schedul-

ing Algorithm

As mentioned in Section 1.1, the probability that the soft-error occurs on a single hardware

component is proportional to the time that the hardware component is used [143]. Therefore,

it may be possible to improve the soft-error reliability through performance improvement.

The instruction scheduling technique in [52] may be used to improve the performance of the

applications.

Current state-of-the-art GPUs do not support out-of-order execution and the instructions

will be held until all the data is ready to use [8, 44]. In order to improve the performance of

the GPU during compile-time, the instructions are scheduled to increase the Instruction Level
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(a) Instruction Scheduling
from Default NVCC Compiler

(b) Performance Aware In-
struction Scheduling [52]

(c) Our Proposed Instruction
Scheduling

Figure 3.5: Instruction Scheduling Results for BFS Application from the NVCC, Performance
Aware Instruction Scheduling [52], and Our Proposed Instruction Scheduling.

Parallelism (ILP). The increased ILP indicates that some of the data may not be consumed

right after its creation and the lifetime of the data is likely increased. Therefore, with the

performance aware instruction scheduling, the execution time of the GPU application may

be decreased, although the total vulnerable period of the GPU may be increased. Moreover,

the instruction scheduling in [52] does not change the instruction schedule in the basic block.

There is a possibility that the soft-error reliability of the basic block is not improved through

the performance aware instruction scheduling.

Figure 3.5 shows instruction scheduling results for the Breadth First Search (BFS) appli-

cation. Figures 3.5(a), 3.5(b), and 3.5(c) represent the instruction scheduling results from

the default NVCC compiler, the performance aware instruction scheduling [52], and our

proposed instruction scheduling, respectively. In Figure 3.5, three registers, %rd3, %r8,

and %r9, are highlighted to show the difference between the three instruction schedules.

For these three registers, the difference between the default instruction scheduling and our

instruction scheduling is the lifetime of the register %r9. Our instruction scheduling puts

fewer instructions between the creation and the last consumption of the data in the register

of %r9. However, in Figure 3.5(b), the performance aware instruction scheduling puts the
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largest number of instructions during the lifetime of the register %r9. For the register %rd3

and %r8, both the default and our instruction scheduling put the same number of instruc-

tions during their lifetime. On the other hand, the performance aware instruction scheduling

puts a larger number of instructions during the lifetime of the %rd3 and %r8.

The examples in Figure 3.5 show that the performance aware instruction scheduling may have

the largest vulnerable period even though the execution time of the application is minimal.

In Section 3.5, Figure 3.12 shows that the performance aware instruction scheduling achieves

the highest performance. However, Figure 3.9 shows that the performance aware instruction

scheduling cannot maximize the soft-error reliability of a GPU.

3.5 Evaluation

3.5.1 Experimental Setup

In order to evaluate our instruction scheduling algorithm, we have selected nine benchmark

applications because of their intensive usage in GPU applications for image processing and

scientific computing. Several applications are selected from the Rodinia benchmark suite [18],

GPGPU-Sim benchmark [8], and CUDA examples. The selected benchmark applications

are Backprop (Bp), BFS (Bfs), Srad, Kmeans (Km), Matrix Multiplication (Mat), Hotspot

(Hs), BoxFilter (Box), ConvolutionSeparable (Conv), and Mandelbrot (Man). During the

experiments, each benchmark application is executed 25 times with various fault injection

rates (10, 50, and 100 faults/1 Million (M) cycles). In addition, we have implemented a

clock cycle level fault injection tool which is integrated with the GPGPU-Sim [8] simulator.

Figure 3.6 shows the overview of our fault injection tool.

In our fault injection tool, each kernel is executed twice with GPGPU-Sim, where the list of
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Figure 3.6: Experimental Setup for Fault Injection Flow.

effective faults is created during the first execution and the actual data is changed based on

the effective fault list during the second execution. Since the injected faults do not all cause

the bit-flip, it is essential to know which fault actually causes the bit-flip.

During the first execution, based on the given fault rate, our fault injection tool periodically

and randomly generates the list of injected faults which includes the fault injection time

(clock cycles) and the faulty components. The possible faulty components are shown in

Figure 3.7, which shows the abstracted block diagram of the NVIDIA’s Fermi architecture

used for our experiments. Among these components, based on the area information from the

GPGPU-Sim, our fault injection tool selects the following components to inject soft-errors:

Register File, Load/Store unit, Integer ALU, Floating Point ALU, and Special Function

Units. After that, on each clock cycle, the fault injection tool tries to find a match from the

list of injected faults based on the following conditions:

• The fault injection time is matched with the current clock cycle number.

• The component in the injected fault list is in use.

If there is a match, the fault is considered as an effective fault, which means this fault causes

a bit-flip. The fault injection tool adds the fault into the effective faults log with the following

information: the clock cycle number (injection time), the SM number, the thread id, the

instruction string, and the faulty component.
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Figure 3.7: A High-Level Block Diagram of GPU Architecture Used for Our Experiments.

At the beginning of the second execution, the fault injection tool reads the effective faults log

and obtains the information for the faults. During the second execution, the fault injection

tool randomly selects one bit and flips the selected bit from the result of the instruction

that uses the faulty component. After the second execution, the entire simulation results are

compared to the correct results, which are generated without any fault injection. The output

is classified into the following categories: correct output, incorrect output, and application

crash.

3.5.2 Experimental Results

The algorithm execution time of our instruction scheduling is shown in Table 3.1. An Intel

CoreTM i7 Quad-core processor at 3.5 GHz is used to measure the algorithm execution

time. On average, our instruction scheduling algorithm requires 8.13 seconds to generate the

reliable instruction schedule (standard deviation is 5.356 seconds). The proposed instruction

scheduling algorithm adds two steps on top of vendor provided compilation process: 1) PTX

code extraction; and 2) execution of instruction scheduling algorithm. After that, vendor

provided compiler takes the optimized PTX code and generates the binary. For these two

steps, extraction of PTX code has negligible overhead. Therefore, the execution time of the

proposed instruction algorithm contributes most to the compilation overhead.
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Application Our algorithm exec. time (sec)
Backprop 13.215

BFS 0.94
Srad 4.41

Kmeans 2.355
Matrix 13.91
Hotspot 13.91

BoxFilter 3.24
convolutionSeparable 9.69

Mandelbrot 11.53
Avg. 8.13

Standard Dev. 5.356

Table 3.1: Our Algorithm Execution Time.

Figure 3.8 shows the vulnerable period improvement of our instruction scheduling compared

to reliability enhancement methodologies proposed in [32], array bounds checker in [73], and

performance aware instruction scheduling [52]. All results are normalized with the vulnerable

period results from the default NVCC compiler (with -O3 option). The results show that our

instruction scheduling can achieve the smallest vulnerable period for all, except the Hotspot

application. This is because our algorithm could not modify the instruction schedule due to

frequent usage of synchronization instructions in the Hotspot application’s kernel function

(Section 3.4.1). As mentioned in Section 3.4.3, some of the applications achieve similar

vulnerable period improvements through the performance improvement. However, as shown

in Figures 3.5 and 3.8, performance improvement cannot guarantee the minimum vulnerable

period.

Table 3.2 and Figure 3.9 show the list of effective faults during the entire execution time and

the soft-error reliability improvement compared to the state-of-the-art soft-error reliability

improvement methodologies [32, 73] and the performance aware instruction scheduling [52],

respectively. The results from Table 3.2 are related to the results in Figure 3.9, 3.8 and

3.11. Since the number of effective faults is proportional to the execution time, in order

to properly compare the number of effective faults, we also need to consider the execution
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Figure 3.8: Vulnerable Period Improvement Compared to [32], [73], and [52].

time of the application. For example, our algorithm shows less number of effective faults

for the BFS application, which has a small performance overhead. On the other hand,

our algorithm has more effective faults for the Mandelbrot application. However, since our

algorithm has large performance overhead, the actual effect of the effective faults may be

smaller compared to other methodologies. The smaller amount of effect for the effective

faults is shown in Figure 3.9 and Figure 3.8. Figure 3.8 shows that our algorithm has

smaller amount of normalized vulnerable period and Figure 3.9 supports the result in Figure

3.8 with the soft-error reliability improvement.

Figure 3.9 shows the comparison with the actual output of the benchmark applications.

The results show that our algorithm can further improve the soft-error reliability by 23%

compared to other two compilation methodologies (up to 64% and standard deviation is

19%). In other words, with our algorithm, the failure probability is decreased by 23%

on average (up to 64%). Compared to the performance aware instruction scheduling, our

algorithm shows up to 12% improved soft-error reliability (up to 52% and standard deviation

is 14%).

The major reason for the improvement is the decreased vulnerable period compared to other

methodologies. The methodologies presented in [32] and [73] protect the particular parts
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Figure 3.9: Soft-error Reliability Improvement Compared to [32], [73], and Performance
Driven Instruction Scheduling [52]. Each Application is Executed 25 Times with Different
Fault Injection Rates.

of applications with additional code. However, in general, the soft-errors randomly occur

throughout the application, and these methods may provide worse results by forcing the use

of additional protection functions. The additional functions increase the overall vulnerable

period of application.

The performance aware instruction scheduling may improve the soft-error reliability by im-

proving the performance and decreasing the vulnerable period. However, as shown in Section

3.4.3, the total vulnerable period is not minimized through the performance aware instruc-

tion scheduling. Therefore, the methodologies in [32], [73], and [52] may have less soft-error

reliability improvement than our instruction scheduling does.
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Application Faulty
Component

10 Faults / 1M Clock Cycle 50 Faults / 1M Clock Cycle 100 Faults / 1M Clock Cycle
Orig. Our [32] [73] [52] Orig. Our [32] [73] [52] Orig. Our [32] [73] [52]

Bp

REGISTER FILE 14 27 13 35 12 66 186 26 122 61 115 403 106 495 129
LDSTR UNIT 5 7 3 20 7 13 32 9 25 25 27 51 30 66 37

INT ALU 6 16 8 23 19 10 17 3 42 7 14 49 16 138 19
FLOAT ALU 19 19 18 18 5 55 85 46 60 100 103 235 149 142 131
SFU ALU 16 17 9 11 6 34 38 24 29 44 56 106 43 73 64

Bfs

REGISTER FILE 43 26 27 68 12 158 149 61 158 101 268 266 249 596 189
LDSTR UNIT 6 1 7 7 2 4 6 12 3 5 5 8 5 8 5

INT ALU 61 0 0 4 31 4 4 0 2 227 4 4 6 10 391
FLOAT ALU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SFU ALU 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Srad

REGISTER FILE 5 0 1 6 1 19 3 14 7 7 48 17 32 56 18
LDSTR UNIT 1 0 0 1 1 8 5 4 4 6 9 5 22 8 0

INT ALU 6 3 0 2 10 9 5 0 3 40 7 11 13 6 62
FLOAT ALU 3 0 4 0 3 8 7 5 3 7 16 7 29 13 7
SFU ALU 2 1 0 0 0 1 2 0 1 0 1 4 7 3 0

Km

REGISTER FILE 3 9 23 6 0 30 36 30 38 33 109 92 53 195 76
LDSTR UNIT 3 1 3 10 2 14 7 4 10 11 38 13 26 23 19

INT ALU 46 0 7 0 32 7 4 2 7 216 11 14 5 21 437
FLOAT ALU 24 4 13 12 11 51 31 34 37 58 115 93 54 88 113
SFU ALU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mat

REGISTER FILE 25 23 39 27 16 96 56 53 58 56 199 134 293 287 116
LDSTR UNIT 15 6 25 14 10 55 24 32 35 37 120 46 92 160 65

INT ALU 2 0 4 6 64 13 10 9 13 306 377 21 26 51 557
FLOAT ALU 9 8 5 7 3 24 30 15 24 48 86 76 28 62 72
SFU ALU 0 0 0 0 0 0 2 4 0 0 0 0 12 0 0

Hs

REGISTER FILE 6 5 14 21 5 19 19 34 41 35 66 87 189 228 73
LDSTR UNIT 2 2 5 6 1 2 0 5 11 8 9 28 33 33 11

INT ALU 16 20 46 31 67 29 25 78 48 310 87 110 257 248 585
FLOAT ALU 7 6 16 18 3 9 12 32 27 18 68 35 146 118 42
SFU ALU 3 0 3 0 2 5 0 8 6 1 8 8 24 23 9

Box

REGISTER FILE 29 31 68 80 67 248 178 259 308 274 443 477 472 457 434
LDSTR UNIT 0 0 0 2 0 0 0 0 0 0 3 2 0 1 2

INT ALU 41 25 53 35 37 242 89 219 238 212 538 325 469 424 409
FLOAT ALU 46 30 43 28 50 177 195 195 216 195 426 425 434 380 338
SFU ALU 18 16 37 31 23 111 67 140 159 122 255 185 219 271 229

Conv

REGISTER FILE 45 48 55 206 47 260 220 245 246 137 325 391 481 546 491
LDSTR UNIT 32 36 24 25 35 176 145 64 152 71 313 269 26 269 364

INT ALU 7 7 6 42 4 20 30 28 79 5 22 33 26 146 20
FLOAT ALU 97 89 71 47 126 416 301 563 419 197 662 543 785 636 854
SFU ALU 0 0 0 4 0 5 0 0 2 0 7 1 0 2 2

Man

REGISTER FILE 247 240 250 181 226 978 1086 852 967 1082 1860 2396 1599 1444 1614
LDSTR UNIT 3 2 1 0 2 1 11 1 2 16 3 13 10 5 6

INT ALU 0 7 0 1 1 5 10 7 14 2 11 42 15 20 6
FLOAT ALU 367 1432 371 404 361 2086 6466 1903 2216 1974 4084 13469 3633 2370 2928
SFU ALU 183 606 186 180 216 939 3130 861 1002 928 1747 6440 1685 1076 1400

Avg.

REGISTER FILE 46.33 45.44 54.44 70.00 42.89 208.22 214.78 174.89 216.11 198.44 381.44 473.67 386.00 478.22 348.89
LDSTR UNIT 7.44 6.11 7.56 9.44 6.67 30.33 25.56 14.56 26.89 19.89 58.56 48.33 27.11 63.67 56.56

INT ALU 13.89 8.67 13.78 16.00 26.11 37.67 21.56 38.44 49.56 147.22 119.00 67.67 92.56 118.22 276.22
FLOAT ALU 63.56 176.44 60.11 59.33 62.44 314.00 791.89 310.33 333.56 288.56 617.78 1,653.67 584.22 423.22 498.33
SFU ALU 24.67 71.11 26.11 25.11 27.44 121.67 359.89 115.22 133.22 121.67 230.56 749.33 221.11 160.89 189.33

Table 3.2: The List of Effective Faults During the 25-times of Soft-error Reliability Exper-
iments. Each Number Indicates How Many Effective Faults are Occurred on Each Compo-
nents During the Experiments.

From Figure 3.9, we observe that the simulation result for the hotspot application with 50

faults injection does not match with the vulnerable period estimation result from Figure

3.8. Our algorithm should show a similar failure rate, but our algorithm shows improved

failure rate. This is because of the random fault injection. Since we randomly inject faults

on random components, the randomly generated faults may cause extreme behavior and

generate abnormal results. In order to verify and show the effect from the extreme behavior

of random fault injection, we performed an additional 25 times of simulation for the hotspot

application with 50 fault injections and plotted the ratio of correct output for all the 50 times
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Figure 3.10: Ratio of Correct Output for Hotspot Application with 50 Faults Injection.

of simulation (Figure 3.10). From Figure 3.10, we may observe that our algorithm does not

have converged in terms of ratio of correct output after 25 times of simulation. However,

after 50 times of simulation, all the methodologies, including ours, have converged in terms

of ratio of correct output. In addition, the results show that our algorithm has a similar

failure rate to the original application and it matches with the vulnerable period estimation

(Figure 3.8).

We observe that there is no correct output from the Matrix multiplication and BoxFilter

applications when the fault injection rate is 100 faults/1M cycles. This is because the be-

havior of the Matrix multiplication and BoxFilter applications are sensitive to soft-errors.

The failure rate of an application depends on two things: the timing behavior (vulnerable pe-

riod) and the functional behavior (masking effect, propagation, and etc.). The applications

default soft-error reliability may be decided based on the functional behavior. For exam-

ple, lets assume we have two different applications that have the same vulnerable period:

the application with multiplication instruction (MUL) and the application with addition in-

struction (ADD). Although they have the same vulnerable period, MUL may have a higher

failure rate because the multiplication operation likely propagates the soft-error effect and
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produces incorrect results. In Figure 3.9, the results from the Matrix multiplication and

BoxFilter applications show examples of the above mentioned case. Both applications have

a kernel function that consists of multiple loops with multiplication operation. Thus, the

matrix multiplication and the box filter applications may have higher soft-error sensitivities

than other applications. Therefore, with a 100 faults/1M cycles fault injection rate, the

failure of the Matrix multiplication and BoxFilter applications is an expected outcome.

In Figure 3.9, for the Srad application, we can observe that the performance driven instruc-

tion scheduling shows better soft-error reliability than ours. This is one example of how the

soft-error reliability can be achieved through performance improvement. Since the execution

time of the Srad is really short, the performance improvement may reduce the time that the

soft-error occurs during the execution time.

Figure 3.11 and Figure 3.12 show the performance and the power overhead. The performance

and power overhead results are normalized with respect to the original application’s perfor-

mance and power consumption. In addition, in Figure 3.11 and Figure 3.12, the original

application’s performance and power consumption are described by red lines. As mentioned,

since our algorithm sacrifices the performance to improve the soft-error reliability, our algo-

rithm consumes less power compared to other methodologies. Note that [73] has less power

consumption than our algorithm and it is because of the idle time from the additional mem-

ory operations. The performance overhead of our algorithm is 125% on average and the

power overhead is -7% on average. This negative power overhead is an expected result be-

cause there is no change in the GPU hardware and our algorithm sacrifices the performance

to improve the soft-error reliability. Therefore, since our algorithm consumes more time to

execute the application, the less power consumption is an expected result.

From Figure 3.11, we can observe that our algorithm has a considerable amount of perfor-

mance overhead (125%). However, without the Mandelbrot application, the performance

overhead from our algorithm is only 47%, which is less than other two reliability method-
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Figure 3.11: Performance Overheads Compared to [32], [73], and [52].

Figure 3.12: Average Power Consumption Overheads Compared to [32], [73], and [52].

ologies. The performance overheads from [32] and [73] are 53% and 92%, respectively. The

major reason for the performance overhead is that 1) our algorithm does not have any ad-

ditional source code; and 2) our algorithm tries to generate an instruction schedule and

configuration in order to minimize the vulnerable period. Srad and Matrix applications are

the examples that the proposed algorithm improves the performance. However, our algo-

rithm shows a significant performance overhead in the Mandelbrot application because of the

scheduling of memory access instructions and the change of the application’s configuration

to minimize the effect of the effective faults. These results show that the outcome of the

soft-error reliability improvement is not always the performance improvement or the power
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consumption improvement. Our algorithm may sacrifice performance to improve the soft-

error reliability if it is necessary. In other words, the trade-off for the soft-error improvement

is very application specific.

In summary, the experimental results imply that, as shown in Figure 3.5, the soft-error

reliability is related to the detailed timing behavior of an application and the performance

improvement does not guarantee the improvement in soft-error reliability.

3.6 Chapter Summary

In this chapter, we have proposed a novel GPU architecture-aware instruction scheduling

algorithm in order to improve the soft-error reliability of the GPU-based system. The pro-

posed instruction scheduling algorithm minimizes the vulnerable period and improve the

soft-error reliability of an application. Based on the analysis of the state-of-the-art GPU

architecture, we model the behavior of an application to estimate its soft-error vulnerability

and generate the best instruction schedule and configuration. In addition, we have devel-

oped a fine-grained fault injection tool that is integrated with the state-of-the-art cycle-level

GPU simulator to evaluate the proposed algorithm. We also have developed theorems and

proofs to handle the application’s control flows during the vulnerable period estimation. The

experimental results show that our algorithm generates the instruction schedule within 8.13

seconds on average. Through our algorithm, the soft-error reliability is improved by 23% and

12% (up to 64% and 52%) compared to the state-of-the-art soft-error reliability improvement

methodologies and performance aware instruction scheduling, respectively. Compared to the

state-of-the-art methodologies, our algorithm has similar performance and power overheads

in most cases while improving the soft-error reliability. In addition, the experimental results

shows that the soft-error reliability of GPU is not related to the performance, but instead

to the fine-grained timing behavior of an application.
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Chapter 4

Run-time: Part I: Aging-aware GPU

Workload Distribution Unit

In this chapter, we propose a low-overhead aging and aging-aware workload distribution unit

for embedded GPUs under process variation. Due to the small feature size, chip aging and

within-die parameter variations have been considered to be among the challenging problems

for state-of-the-art processors, including GPUs. In order to deal with the process variation,

the state-of-the-art multi-core processors improve their performance efficiency through core-

level guardbanding that may use a different operating frequency for each core. Existing

aging management techniques are based on the chip-level guardbanding, which assigns the

same number of instructions to the cores that have the same aging status. However, in the

presence of the process variation, existing aging management techniques have a limitation in

minimizing the aging effect because each core has a different amount of stress for the same

number of instructions. In order to tackle this problem, the proposed workload distribution

unit considers the process variation and the current aging status together, and assigns a

different number of instructions to clusters to minimize the aging effect in the presence of

process variation.
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4.1 Aging Model

Transistors age mainly when they are under stress (NBTI) and switch their state (HCI).

NBTI mainly occurs on PMOS transistors and consists of two different phases. When a

PMOS transistor is under stress, the threshold voltage, |Vth|, is increased due to traps,

which are generated in the interface between the oxide layer and silicon/channel. After that,

when the PMOS transistor is not under stress, some traps are filled and the |Vth| is decreased

(recovery phase). However, the |Vth| shift cannot be fully recovered and the overall |Vth| is

increased over time. The |Vth| shift depends on several aspects (i.e. supply voltage Vdd, duty

cycle δ, usage, power-gating, etc.).

HCI mainly occurs on NMOS transistors. In NMOS transistors, the collision between the

accelerated electrons and the gate oxide interface generates electron-hole pairs. After that,

free electrons get trapped in the gate oxide layer and the |Vth| is increased [96]. Since the

electrons are accelerated when the NMOS transistor changes its state [96], the total amount

of |Vth| shift is very sensitive to the number of state transitions. In short, HCI depends upon

the switching activity.

In this dissertation, we have employed a micro-architectural level aging analysis framework

of [96] to estimate the impact of the NBTI and the HCI at the same time. In [96], the Vth

shift at time t due to the NBTI is estimated by the following equation:

∆Vth(t) ≤
1∫

0

ANu(Vdd)
(v(TB) · δB · δe · tm)n

w(δB · δe, TB, t)2n
dδe (4.1)

with

u(Vdd) = (Vdd − Vth) · exp((Vdd − Vth)/E0 (4.2)
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v(T ) = ξ4 · exp(−Ea/kT ) (4.3)

w = 1−

(
1−

ξ1 +
√
ξ3 · v(T ) · (1− δ(t)) · tm
ξ2 +

√
v(T ) · t

) 1
2n

(4.4)

where δB represents a duty cycle of a transistor inside a block B, δe represents the effective

duty cycle, TB represents the temperature of a block B, and tm describes the sampling

period. AN , E0, Ea, n, and ξi are technology dependent constants.

The Vth shift at time t due to the HCI is estimated by the following equation:

∆Vth(t) = AH ·
√
αavg,B · u(Vdd) · v(TB) ·

√
αB · f · t (4.5)

with

u(Vdd) = exp((Vdd − Vth)/E1) (4.6)

v(T ) = exp(−Ea/kT ) (4.7)

where αavg,B describes the average switching activity of all gates in a block B, αB the

activity factor of a block B, and f represents the clock frequency. AH and E1 are technology

dependent constants.

From the ∆Vth due to NBTI and HCI (Equations 4.1 and 4.5), the amount of the relative

change in delay at time t may be estimated by the following equation:

∆reld(t) =

(
1− ∆Vth(t)

Vdd − Vth(t0)

)r
− 1 (4.8)

where r is a technology dependent constant. Definitions of the parameters used in the

equations and detailed description of aging analysis framework can be found in [96].
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4.2 Process Variation Model

We consider leakage power and frequency variations. In order to generate the process vari-

ation map of the target platform, we have employed the state-of-the-art process variation

model used in [38, 107, 140]. To apply the process variation model, the GPU in the target

platform is partitioned based on the area description in the GPGPU-Sim [8] and GPUWattch

[71] simulator. After that, the entire GPU surface is modeled as a fine two-dimensional grid

(Nchip × Nchip).

In the presence of process variation, the value of the process parameter at grid cell (i, j) can

be modeled as a Gaussian random variable with mean µp and standard deviation σp [107].

In [107], a correlation coefficient, ρi,j,k,l, is used to describe the process parameters at two

different grid points. By using the model in [140], the spatial correlation between two grid

points are represented by the following equation:

ρi,j,k,l = e−α
√

(i−k)2+(j−l)2 ∀i, j, k, l ∈ [1, Nchip] (4.9)

In [140], the maximum frequency of core Ci with critical path CP (Ci) is represented by the

following equation:

fi = α× min
x,y∈S(CP,i)

(1/θx,y) (4.10)

where α is the technology dependent constant and the S(CP,i) represents a set of grid points

corresponding to the critical path, CP (Ci). The total power consumption of Ci is estimated

by the following equation:

p(i,j,k) = pdyn(i,j,k) +
∑

(x,y)∈Ci

pleakx,y × eVthθx,y/VT (4.11)

where pdyn(i,j,k) is the dynamic power consumption of Ci when it executes a thread τk of an

application Aj. p
leak
x,y represents the nominal leakage power at grid point (x, y). VT = KTi/q
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represents the thermal voltage where Ti represents the temperature of Ci. In addition, VT

captures the temperature dependence of leakage power. A more detailed description of the

process variation model can be found in [107] and [140].

4.3 Aging-Aware Resource Management on Embed-

ded GPUs under Process Variation

The proposed aging-aware resource management technique consists of the host part and the

device part. The host part includes the aging-aware cluster formation algorithm and the

process variation-aware instruction distribution algorithm. These algorithms operate on the

device driver. Right before the host launches a kernel function, the host collects the critical

path delay information from on-chip delay monitors [19, 124]. Using that delay information,

the aging-aware cluster formation algorithm sorts the cores and creates groups of cores. The

aged clusters are selected for power-gating based on the resource utilization information,

which is generated in design-time. After the power-gating, in order to evenly distribute the

stress across the embedded GPU, the proposed instruction distribution algorithm estimates

the instruction distribution ratio by using the critical path delay and the process variation in-

formation. Next, the host sends the following information to the GPU: cluster configuration

(including operating frequency), power-gating configuration, and the instruction distribu-

tion ratio. Then, the GPU is configured with the information from the host. At last, the

host launches a kernel function and the GPU starts its computation. Figure 4.1 shows the

overview and the high-level flow of the proposed aging-aware workload management on the

embedded GPU under the process variation.

The degradation of the components in a multi/many-core processor is closely related to

stress and power management. Moreover, the aging gap between the clusters will become
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Figure 4.1: High-level Flow and Overview of the Proposed Technique.

larger over time due to the process variation, cluster-level guardbanding, and unbalanced

stress distribution. In order to minimize the effects of the process variation and the cluster-

level guardbanding, the proposed aging-aware cluster formation algorithm (re)configures the

clusters by using the current aging information. Before the host launches a kernel function,

the host obtains the current aging information for all the cores in the GPU through the delay

monitors. Then, the host sorts the cores based on the aging information in descending order

and groups the cores to create the clusters. Thus, each cluster has cores that have similar

degradation levels and minimum aging variations. The sorting and clustering process do

not need to consider the process variation at this point because the amount of degradation

is the result of the process variation. After that, each cluster sets its operating frequency

by finding a core with minimum operating frequency. Since the entire GPU may not be

required to execute the kernel function, after the clustering, the proposed aging-aware cluster

formation algorithm selects some degraded clusters for power-gating based on the GPU

resource utilization information, which is generated in design-time.

Algorithm 3 shows the behavior of our aging-aware cluster formation algorithm. The
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Algorithm 3: Aging-Aware Cluster Formation.
Input: Component type T , Delay information D, Resource utilization for current kernel RK , Warp size Nwarp

Output: Clustered computational components C, Operating frequency F
1 Function WarpFormation (T , D, RK , Nwarp)
2 begin
3 C ← ∅;
4 F ← ∅;

// Cluster the computational components

5 foreach t ∈ T do
6 Csort ← SortComponents(t, D) ; // Sort computational components based on the critical path delay

7 while Csort 6= ∅ do
8 Ccluster ← GetClusterForWarp(Csort, Nwarp);
9 Csort.remove(Ccluster);

10 C.add(Ccluster) ; // Add the cluster to the cluster information

// Select the cluster for the power-gating

11 foreach t ∈ T do
12 Cworking ← ∅;
13 RD ← ∅;
14 CT ← GetClusterType(t, C) ; // Get the clusters based on the type

15 SortCluster(CT ) ; // Sort the clusters with the aging information

16 pT ← GetPowerGateInfo(t, RK) ; // Get the resource utilization information

17 foreach c ∈ CT do
18 if c.GetOrder() > pt then
19 PowerGateCluster(c) ;

20 else
21 Cworking .add(c) ;

22 F.AddOperatingFreq(Cworking) ;

23 return [C, F] ;

proposed algorithm takes the following information as input: the types of computational

components T , delay information D, resource utilization for current kernel RK , and warp

size Nwarp (Line 1). The computational components are sorted based on the current delay

information (Line 6). After that, based on the warp size, Nwarp, the components are clustered

and the cluster information is updated (Lines 7-10). Next, the proposed algorithm selects

clusters for power-gating based on the resource utilization information (Lines 11-21). The

remaining clusters are selected as the working clusters (Lines 17-21). The operating frequency

is selected for working clusters (Line 22). At the end, the clustering information, which

includes power-gating, and the operating frequencies are returned (Line 23).
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4.3.1 Process Variation-aware Workload Distribution Algorithm

Due to the process variation, the same number of instructions cause a different amount of

degradation for each cluster. In order to evenly distribute the stress across the GPU, each

working cluster should process a different number of instructions. The proposed process

variation-aware workload distribution algorithm estimates the instruction distribution ratio

between the active clusters.

For each kernel, the proposed algorithm assigns the same number of instructions for each

working cluster and gets the aging estimation. Each working cluster will have a different

aging status due to the different operating frequencies, which are caused by the process

variation. Then, the proposed algorithm gets the average from the aging estimation of

working clusters and sets this average as a desired aging status after executing the kernel

function. The amount of stress for each cluster can be obtained by subtracting the current

aging status from the desired aging status. By using the amount of stress and the process

variation information, the instruction distribution ratio is estimated.

Algorithm 4 describes the behavior of the proposed process variation-aware instruction

distribution algorithm. This algorithm takes the working cluster information Cwork, the

process variation information PV, and the number of instructions Ninst as inputs. At the

beginning, the algorithm evenly distributes the instructions to working clusters (Line 5). The

algorithm estimates the aging status of each working cluster using the number of instructions

neven inst and the process variation information (Lines 6 - 7). Then, the average aging is

estimated based on the total amount of aging (Line 8). After estimating the average aging

information, the algorithm estimates the amount of stress for each working cluster (Line 10).

Based on this amount of stress and the process variation, the algorithm decides the number

of instructions for each cluster (Line 13). Finally, the algorithm returns the instruction

distribution ratio for each working cluster (Line 14).
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Algorithm 4: Process Variation Aware Instruction Distribution Ratio.
Input: Working Clusters Cwork, Process Variation information PV, Number of Instructions Ninst

Output: Instruction Distribution Ratio RD

1 Function GetInstDistRatio (Cwork, PV, Ninst)
2 begin
3 RD ← ∅;
4 AvgAge ← ∅;

// Evenly distribute instructions

5 neven inst ← Ninst
sizeof(Cwork)

;

6 foreach C ∈ Cwork do
7 AgeSum ← AgeSum + GetAging(C, PV) ; // Get total aging information with evenly distributed

instructions

// Get the average aging and finalize instruction distribution ratio

8 AvgAge ← AgeSum
sizeof(Cwork)

;

9 foreach C ∈ Cwork do
10 ST ← AvgAge - GetStatus(C) ;
11 R ← GetInstNum(ST , PV) ;
12 RD.add(R);

13 GenerateRatio(RD);
14 return RD ;

Figure 4.2 shows an example of estimating the instruction distribution ratio with 4 working

clusters. Figure 4.2(a) shows the current aging status of 4 working clusters. In Figure 4.2(b),

the algorithm evenly distributes the instructions to the working clusters. However, due to

the process variation, each cluster has a different amount of aging. Then, the algorithm

estimates average aging, which is represented by a dashed line box. The next step is shown

in Figure 4.2(c). Using the average aging and the current aging information, the amount of

stress for each working cluster is obtained. At last, as shown in Figure 4.2(d), the instruction

distribution ratio for each working cluster is generated.

4.3.2 Instruction Distribution Unit

The proposed instruction distribution unit incorporates the existing warp scheduler and

instruction dispatch unit to balance the stress across the GPU. The host configures the in-

struction distribution unit using the instruction distribution ratio before launching a kernel

function. After the host launches a kernel function, the instruction distribution unit controls

the behavior of the warp scheduler and the instruction dispatch unit to evenly distribute
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(b) Evenly Distribute the Instruc-
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the Average Aging.
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(d) Finalize the Instruction Distri-
bution Ratio.

Figure 4.2: Example for Estimation of Instruction Distribution Ratio with 4 Working Clus-
ters (WCs).

the stress over the GPU. When an instruction is ready, the instruction dispatch unit sends

the instruction to the first available cluster and increases the corresponding instruction dis-

tribution counter. When all the instruction distribution counters reach their limits, then

the instruction distribution unit resets the counters and sends the instruction to the first

available cluster.

Algorithm 5 describes the behavior of the proposed instruction distribution unit. The algo-

rithm takes the following information as inputs (Line 1): the component types T , clustering

information C, operating frequencies F, instruction distribution ratio RD, and instructions

I. The host configures the clusters using the clustering information C and the operating

frequencies (Line 4). Then the algorithm power-gates the non-working clusters and sets the
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Algorithm 5: Algorithm For Instruction Distribution Unit.
Input: Component types T , Clustering information C, Operating frequencies F, Instruction distribution ratio RD,

Instructions I
1 Function InstDistributionUnit (C, RD, I)
2 begin

// Power-gate non-working cluster

3 foreach t ∈ T do
4 ClusterConfig(C, F) ;
5 CT ← GetClusterType(t, C) ; // Get the clusters based on the component type

6 foreach c ∈ CT do
7 if c.is working() = False then
8 PowerGateCluster(c) ;

9 else
10 SetInstDistCnt(c, RD);

// Distribute the instructions based on the ratio during run-time

11 foreach i ∈ I do
12 t ← GetType(i) ;
13 R ← GetRatioType(RD, I) ;
14 c ← GetNextAvailCluster(t, R) ;
15 W ← GetCorrespndingWarpSch(c) ;
16 W .sendInst(i) ;
17 IncDistributionCnt(c) ;
18 if IsDistCntFull() = True then
19 ResetDistRatio();

instruction distribution ratio for working clusters (Lines 6-10). After the configuration, the

host launches a kernel function and the instructions are fetched (Line 11). For each instruc-

tion, the algorithm gets the instruction type and the corresponding instruction distribution

ratio (Lines 12-13). Next, the instruction is sent to the first available working cluster and the

algorithm increases the instruction distribution counter (Lines 14-17). At last, the algorithm

resets the instruction distribution counter if all the instruction distribution counters reach

their limit (Lines 18-19).

Figure 4.3 shows an example of the instruction distribution unit. The host configures the

GPU using the clustering and power-gating information and the instruction distribution

ratio. In the figure, Cluster 3 is selected for power-gating. The instruction distribution ratio

for Clusters 1, 2, and 4 are 4:3:3, respectively. After the configuration, the host launches a

kernel and the instruction distribution unit starts fetching and distributing the instructions

based on the instruction distribution ratio.
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Figure 4.3: Example of the Instruction Distribution Unit.

4.4 Evaluation

4.4.1 Experimental Setup

In order to evaluate our technique, we have used GPGPU-Sim [8], which is a configurable

cycle-level simulator. GPGPU-Sim includes a configurable and extensible GPU energy model

called GPUWattch [71]. We configure GPGPU-Sim to have a similar configuration with the

embedded GPU in the NVIDIA’s Tegra TK1. The configuration details are in Table 4.1.
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Table 4.1: GPGPU-Sim Configuration for NVIDIA’s Tegra TK1

Name Value Name Value
# of SM 1 L1 Cache 16 KByte
# of Cores 192 Shared Mem 48 KByte
# of Register 65536 Core Clk Freq. 876 MHz

We have selected various benchmark applications from NVIDIA’s Compute Unified Device

Architecture (CUDA) toolkit to evaluate our technique with different computational work-

loads for the embedded GPUs. The selected benchmark applications and their configurations

are shown in Table 4.2.

Table 4.2: Benchmark Applications and Configurations.

Application Abbreviation Grid Size Block Size
BilateralFilter BL 48 256
BinomialOptions BN 4 128
BlackScholes BLK 480 128
ConvolutionSeparable CONV 128 64
FastWalshTransform FT 64 256
Montecarlo MC 128 128
Reduction RD 32 256
SobelFilter SO 1024 64

Figure 4.4: Overview of the Experimental Setup.

We have generated 50 different process variation maps by using the area information in

GPGPU-Sim and the process variation model from [38, 65, 113]. During the experiment, we

have extracted duty cycle information and power traces for all the benchmark applications

66



and process variation maps. Hotspot [48] simulator is used to estimate the embedded GPU

temperature. Then, we feed the duty cycle information and the embedded GPU temperature

to the aging estimation framework in [96]. Figure 4.4 shows the overview of our experimental

setup.

During the experiments, the following state-of-the-art aging management techniques are used

to evaluate our technique:

• Compiler-based technique (Comp) [75]: this techniques used a JIT compiler-

based technique to maximize the lifetime of the GPU. Depending on the aging status,

healthy kernel function is generated to transfer the workload from the aged cluster to

the healthy cluster.

• Even distribution algorithm (Even) [69]: this technique assigns the same number

of instructions to the clusters that have the same age.

• Original application (Orig): the unmodified applications are used to set the baseline

results.

4.4.2 Experimental Results

We measured the algorithm execution time with an Intel CoreTM i7 Quad-core processor at

3.5 GHz. Our aging-aware workload management algorithm requires 0.413 milliseconds on

average (standard deviation is 0.0182 milliseconds).

Aging Improvement Comparison:

We evaluate our technique with 50 different process variation maps to demonstrate the

effectiveness of our technique. During the experiment, for each process variation map, the

relative critical path delay after 3 years is collected. Figure 4.5 shows the aging trace of SO

application over the 3 years. The aging results are generated for each process variation map

and the collected results are plotted in Figure 4.5. The results show that our technique and
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(a) Relative Delay with Our Technique. (b) Relative Delay with Even Distribution.

(c) Relative Delay with Compiler-based Tech-
nique.

(d) Relative Delay with Original Application.

Figure 4.5: Relative Delay for SobelFilter Application with 50 Different Process Variation
Maps: a) Our Technique, b) Even Distribution [69], c) Compiler-based Technique [75] and
d) Original Application.

the even distribution algorithm can further improve aging compared to the compiler-based

technique. Moreover, the compiler-based technique shows varying aging improvements for

different process variation maps, whereas our technique and the even distribution technique

consistently improve the aging of embedded GPUs. This is because the compiler-based

technique only disables the aged clusters and sends all the workloads to the healthy clusters.

Figure 4.6 shows the average and standard deviation of relative delays after 3 years for the

50 process variation maps. Our technique improves the aging by 3% and 2.9% on average

compared to the original applications and compiler-based technique, respectively (up to

3.75% and 19.53%). In addition, compared to the even distribution technique, our technique

improves the aging up to 2.35%. From Figure 4.6, we can observe that our technique has a

small standard deviation and shows aging improvement for all the applications. Since the

other techniques do not consider the randomness of the process variation, their optimizations

do not maximize the lifetime of embedded GPUs.
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Figure 4.6: Normalized Average Relative Delay After 3 Years Compared to the Even Distri-
bution [69], the Compiler-based Technique [75], and Original Applications.

Success Rate Comparison:

We collect the success rate of aging improvement for all the process variation maps to show

the impact of randomness of the process variation. Figure 4.7 shows the success rates of aging

improvement. The average success rate of aging improvement for our technique, the even

distribution, and compiler-based technique are 97.25%, 75.25%, and 70%, respectively. In

the figure, we can observe that the even distribution and the compiler-based technique have

lower success rates compared to our technique. This is because the process variation and

the cluster-level guardbanding may cause a different amount of stress for the same number

of instructions and increase the randomness in the system state. Since this random behavior

is not considered by the other techniques, they have lower success rate compared to our

technique.

We measure the relative standard deviation of aging of SP/SFU units to observe the impact

of the above mentioned randomness. Figure 4.8 shows the average relative standard deviation

for all the 50 process variation maps. We can observe that the aging is well balanced across
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Figure 4.7: Success Rate of Aging Improvement for 50 Different Process Variation Maps
Compared to the Even Distribution [69] and Compiler-based Technique [75].

the embedded GPU with our technique. However, the other techniques do not show the

balanced aging distribution. This is because other techniques’ optimization may not capture

the randomness of the process variation. The results in Figure 4.7 and 4.8 imply that other

techniques may worsen the aging of embedded GPU without proper consideration for process

variation.

Figure 4.8: Average of Relative Standard Deviations of SP/SFU Units Across the Embed-
ded GPU Compared to the Even Distribution [69], the Compiler-based Technique [75], and
Original Applications.
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Performance Overhead Analysis:

Figure 4.9 shows the normalized performance overheads compared to the even distribution

and the compiler-based technique [75]. The results show that the performance overhead

of our technique is 1.05% on average (up to 7.92%), whereas the compiler-based technique

has an overhead of 42.87% on average (up to 359.33%). The even distribution technique

requires 0.5% less execution time compared to the original one. The performance overhead

of our technique is mainly caused by the instruction dispatch unit, which updates/resets the

instruction distribution count and sends the instructions to the working cluster. However,

the compiler-based technique has to use redundant workloads to transfer the workload infor-

mation from the degraded cluster to the healthier cluster. Moreover, in order to transfer the

workload between the clusters, the compiler-based technique uses atomic operations, which

are quite expensive. Due to the atomic operation, all the read/write operations for workload

transfer are serialized and cause a non-negligible performance overhead.

Figure 4.9: Normalized Average Performance Overhead for Our Technique, the Even Distri-
bution [69], and the Compiler-based Technique [75].

Power Consumption Overhead Analysis:

Figure 4.10 shows the average power consumption overheads for our technique, the even

distribution, and the compiler-based technique [75]. All the results are normalized to the
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Figure 4.10: Normalized Average Power Consumption Overhead for Our Technique, the
Even Distribution [69], the Compiler-based Technique [75], and Original Applications.

original applications’ average power consumption. On average, our technique uses 0.5% less

power than the original applications. This is because our technique needs additional time

to balance the stress while maintaining the same throughput. Moreover, our technique does

not require any code modification. The even distribution technique and the compiler-based

technique consume 0.75% and 1.45% less power, respectively. This is because the compiler-

based technique’s atomic operations cause a noticeable amount of idle time to read/write

workload information.

The aforementioned experimental results imply that our workload management technique

can maximize the lifetime of the embedded system while satisfying its timing requirements.

In addition, the compiler-based technology [75] would have increased soft-error susceptibility

because its atomic operations cause noticeable performance overheads while it maintains the

same throughput. However, since our approach does not require any additional workload,

our approach will not exhibit this limitation.
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4.5 Chapter Summary

In this chapter, we propose an aging-aware workload management unit for embedded GPUs in

the presence of process variation. The proposed workload management unit incorporates the

existing warp scheduler and instruction dispatcher to balance the stress across the embedded

GPUs with process variation. The warp formation and workload distribution algorithms

generate information to (re)configure the cluster and balance the stress across an embedded

GPU. Then, the host configures the GPU with the results from the algorithms before it

launches a kernel function. After that, the GPU distributes the instructions based on the

instruction distribution ratio. The simulation results show that our technique improves the

GPU aging over 95% of cases whereas the state-of-the-art compiler-based technique improves

the GPU aging in 72.25% of cases. Moreover, compared to the compiler-based technique,

our workload management unit reduces the performance overhead by 40% while achieving

almost the same GPU aging improvement. These experimental results indicate that our

technique may minimize the aging effect of embedded GPUs in the presence of process

variation. Moreover, our workload management unit has less soft-error susceptibility than

the state-of-the-art compiler-based technique because of the lower performance overhead.

73



Chapter 5

Run-time: Part II: Timing-aware

GPU Workload Scheduling

Framework

In this chapter, we propose a novel run-time scheduling framework to handle the dynamic be-

havior of the event-driven applications. The existing GPU workload scheduling frameworks

do not have enough flexibility for increasing number of event-driven applications. This is

because in the existing scheduling frameworks: 1) only temporal preemption is considered

and 2) one application occupies the GPU at a time. In order to solve that problem and

implement both temporal and spatial preemption, the proposed scheduling framework parti-

tions the GPU workloads into sub-workloads and generates sub-workloads launch sequences

to handle the dynamic behavior of the event-driven applications. We demonstrate the ca-

pability and novelty of our framework compared to the existing scheduling frameworks with

realistic benchmark applications and with different execution scenarios.
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5.1 System Model

Our target GPU-based embedded system has a GPU with a total of Ntot SMs. For a given

set of event-driven applications, A={A1, A2, ..., Ai}, the execution time information for the

applications, and the priority of the applications are provided. The goal of this work is

to: 1) partition the application kernels to multiple sub-kernels and 2) generate sub-kernel

launch sequences in such a way that satisfies Res(Ai) < Tdead(i), where Res(Ai) and Tdead(i)

represent the response time and the deadline of the application Ai, respectively.

Figure 5.1 shows an overview of the proposed application scheduling framework. During run-

time, event-driven applications are launched by the user or the system itself. We assume that

the system has no prior knowledge of the applications. The application includes the following

information: 1) deadlines, 2) priority, and 3) execution time information (see Section 5.2 for

more details). Based on the current status of the system and the applications, the proposed

workload splitter partitions the application kernels into multiple sub-kernels. After that, sub-

kernel launch sequences are generated by the proposed GPU execution schedule generator.

Figure 5.1: Overview of the Proposed Run-time Scheduling Framework on a GPU-based
Embedded System.
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5.2 Event-driven Application Model

A set of event-driven applications, A={A1, A2, ..., Ai}, will be randomly injected into the

target GPU-based embedded system. The application processes a set of input data. The

following two example scenarios describe the behavior of two event-driven applications in

the system in Figure 1.1:

• When the system launches the traffic sign recognition application, each image sensor

captures a video, with different frame rate, or image. The frame rate of each image

sensor depends on several factors such as the image sensor specification, distance from

the object, and driving direction of the vehicle. After that, the system launches the

applications to process these frames. These frames are processed with exactly the same

function such as motion estimation, motion tracking, and/or object detection.

• While driving, secure vehicular communication is required when the system commu-

nicates with various internal/external systems such as sub-systems of the vehicle, and

other vehicles. Although the size of data varies, the exact same data encryption/de-

cryption applications are used to encrypt/decrypt the set of input communication data

in order to achieve secure communication.

The previously mentioned set of behaviors is very common among event-driven applications.

An application needs to process a set of inputs, which is denoted by I =
⋃
n=1,...,N {In} where

N represents the total number of inputs. Note that the value of N may vary. If a CPU is

used, the same function is launched N times to process a set of inputs I. However, these

multiple function launches are easily transformed into data-level parallelism which is the

specialization of GPUs. Work in [76] has implemented throughput-oriented (data-parallel)

GPGPU applications of the previously mentioned scenarios.

The application is a single-threaded application and has at least one throughput-oriented

kernel function to process a set of input data. Moreover, since the execution time of the
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application is dominated by these kernel functions, the kernel function is considered as a

basic unit of execution1.

Each kernel function is represented by a tuple, <Ki, Pi, Tdead(i),Ei(k, nSM)>. Ki represents

a set of kernel functions {K(i,1), K(i,2), . . . , K(i,j)}. Pi and Tdead(i) represent the priority and

the deadline of the application Ai, respectively. Ei(K,nSM) represents the execution time

of the kernel K with nSM SMs. In this dissertation, we assume that the execution of

the kernels in one application is sequential. In addition, the internal dependencies that

implement task-level parallelism are not considered. In other words, the host cannot launch

the kernel K(i,k) until the previous kernel K(i,k−1) completes its operation. This sequential

execution of the kernels is caused by the limitation of the GPU which is discussed in 3.1.

We assume that the makespan of kernel functions is estimated during design-time by using

a measurement based heuristic method and the estimations are provided as an input to our

scheduling framework. The work in [12] is one of the estimation techniques that can be used

to estimate the makespan of a kernel.

5.3 Run-time Scheduling Framework for GPU-based

Real-time Embedded Systems

5.3.1 Temporal and Spatial Preemption

The proposed scheduling framework implements two types of preemptions: temporal and

spatial preemption. As mentioned in Section 3.1, it may be impossible to suspend and

resume the kernel function after the GPU starts executing the kernel function. In other

1Although the concept of the kernel is similar with the concept of the task, in GPGPU computing, the
term kernel is the general name to refer a workload (or task) that is handled by the GPU. Moreover, since
this dissertation is about to schedule the GPU workloads, we use the term kernel to represent the basic unit
of execution.
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words, the interruption of a kernel that is running on the GPU is not allowed. Therefore,

temporal preemption of the GPU is related to the time that the host sends a kernel to

the GPU. Since the GPUs are multi-core processor, it may be possible that each running

application uses different amount of GPU resources, spatial preemption is related to the

number of SMs for each running application. In this dissertation, the temporal and the

spatial preemptions are defined as follows:

Definition 1. An application A is temporally preempted by an application B if the

following conditions are satisfied:

• Application A and B are waiting for the GPU resources in the host at the same time.

• TBinit < TAinit, where TAppinit represents the time that the host sends a kernel in an appli-

cation App to the GPU to use the GPU resources.

• When the host sends the kernel to the GPU, the priority of the application B is higher

than the priority of the application A.

Definition 2. An application A is spatially preempted by an application B if the fol-

lowing conditions are satisfied:

• Application A and B are running on the GPU at the same time.

• For given time t, nASM(t) < nBSM(t), where nAppSM (t) represents the number of SMs for

the application App at time t.

• At the time of GPU resource assignment, the priority of the application B is higher

than the application A.

5.3.2 Workload Splitter

The proposed workload splitter partitions a kernel into multiple sub-kernels based on the

current status of an event-driven application and a target GPU-based embedded system. In

addition, the configurations for the sub-kernels are generated to control the mapping between
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the kernel and the SMs in the GPU and represent the GPU resource (re)allocation. Thus,

the workload splitter implements the spatial preemption.

The response time of an application Resp(Ai) may be represented as:

Resp(Ai) = Linit +

Nk−1∑
n=0

[
Llnch + E(K(i,n))

]
+Dtran (5.1)

where Linit represents the delay between the start of the application Ai and the assignment

of the GPU resources to Ai. Llnch represents the kernel launch overhead and E(K(i,n))

represents the execution time of nth kernel of the application Ai. Dtran represents the data

transfer latency.

Since the kernels may be executed with different number of GPU resources, the execution

time of each kernel would, therefore, depend on the number of assigned GPU resources.

Moreover, since data transfer latency between the host and the device is approximately zero,

Equation 5.1 is re-written as:

Resp(Ai) = Linit +

Nk−1∑
n=0

[
Llnch + E(K(i,n), nSM(i))

]
(5.2)

Hence, to satisfy the deadline, the total response time of an event-driven application has to

be less than, or equal to, the deadline of the application:

Tdead(i) ≥ Linit +

Nk−1∑
n=0

[
Llnch + E(K(i,n), nSM(i))

]
(5.3)

Since multiple applications may be concurrently running on the target GPU-based embedded

system, it is critical to estimate the amount of GPU resources that satisfy Equation 5.3.

Therefore, the amount of GPU resources can be estimated by:

Tavail(i) = Tdead(i) − Tcurr ≥ R(S(Ai), nSM) (5.4)
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where Tcurr represents the current time. Tdead(i) represents the deadline of Ai (Equation

5.3), and S(Ai) represents the current status of Ai. Equation 5.4 estimates the available

time Tavail(i), to run the application. The R(S(Ai), nSM) represents the estimated remaining

execution time of Ai with nSM SMs based on the current status of Ai.

The current status of the application S(Ai) is represented by the tuple <ntb(i,k), nr(i)>,

where ntb(i,k) describes the number of processed thread blocks in the current kernel and nr(i)

describes the number of remaining kernels. Since the kernel workload granularity, on the

target GPU-based embedded system, is a thread block, the remaining execution time of the

current kernel with nSM SMs is:

Rc(K(i,k), nSM) =
|K(i,k)| − ntb(i,k)

|K(i,k)|
× E(K(i,k), nSM) (5.5)

The expected execution time of the remaining kernels is provided as:

Rr(K(i,k), nr(i), nSM) =

Nk−1∑
n=nr(i)

[
Llnch + E(K(i,n), nSM)

]
(5.6)

By using Equation 5.5 and 5.6, the remaining execution time of an event-driven application

with nSM SMs is derived as:

R(Ai, nSM) = Rc(K(i,k), nSM) +Rr(K(i,k), nr(i), nSM) (5.7)

The proposed workload splitter estimates the smallest nSM , for each running application,

that would satisfy Equation 5.4. Note that there may be additional time slot between the

estimated completion time of the application and its deadline. After estimating nSM for each

running application, the proposed workload splitter will adjust nSM based on the following

three possible cases:

• The GPU is idle: In this case, there is no application kernel running on the GPU.

Hence, the workload splitter partitions the application kernel into multiple sub-kernels,
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based on nSM , and sends them to the GPU execution schedule generator.

• The GPU has available resources: In this case, at least one application kernel is

running on the GPU. The workload splitter determines whether the currently available

GPU resources are enough to meet the deadlines. If the available GPU resources are

not enough, the proposed workload splitter adjusts nSM , for the running application

kernel, and partitions the application kernel based on the adjusted nSM . After that,

the partitioned application kernels are sent to the GPU execution schedule generator.

• The GPU is fully occupied by higher priority applications: In this case, the

workload splitter partitions the kernel into the smallest granularity possible and waits

until the GPU has the available resources. Once the GPU has the available resources,

then the rest of the process is the same as case 2).

After adjusting nSM , the workload splitter generates the configurations for the sub-kernels

by using the nSM . Then the sub-kernels are generated with the configuration and the current

status of the application which is obtained by the application status monitor (see Section

5.3.4 for a complete example).

Algorithm 6 shows the pseudo code of the workload splitter. In Lines 7-15, the workload

splitter reallocates the GPU resource when there is a request for GPU resource reallocation.

The loop in Lines 6-15 is the main body of the workload splitter. In Line 7 the workload

splitter checks whether the previous sub-kernel is consumed or not. In Line 8 the amount of

assigned GPU resources is retrieved. After that, sub-kernels are created and added to the

list in Lines 10-13. Depending on the GPU resource status, the GPU resource reallocation

request is sent in Lines 14-15. A set of sub-kernels is returned in Line 16.

The function ResRealloc() in Line 5 has a complexity of O(nlog(n) + 2n). The function

GetrequiredRes() in Line 8 has a complexity of O(Ntot), thus, the loop in Lines 6-15 has
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Algorithm 6: Algorithm to Split the Application Kernels.
Input: A set of application kernels K = {K(o,l),K(p,m), . . . ,K(q,n)};
Output: A set of splitted sub-kernels k = {k′(o,l), k

′
(p,m), . . . , k

′
(q,n)};

1 Function SplitKernel (K)
2 begin

/* Variable initialization. */

3 k ← ∅;
/* Check the resource reallocation request flag. */

4 if ReallocReqStatus() = true then
5 ResRealloc() ;

6 foreach K ∈ K do
/* Create new sub-kernel from the kernel K if it is required. */

7 if K.NeedNewSubKernel() = true then
8 n = GetRequiredRes(K);
9 if n = 0 then

/* Create smallest sub-kernel if the kernel does not have any GPU

resource. */

10 k’ ← SplitSmallestKernel(K) ;

11 else
/* Create sub-kernel with assigned GPU resource. */

12 k’ ← SplitKernel(K, n) ;

13 k’.push(k’) ;
/* If the kernel does not have enough GPU resource, set the resource

reallocation flag. */

14 if K.HasEnoughRes() = false then
15 SetReallocReq();

16 return k’ ;

a complexity of O(Ntot×n). Consequently, the overall complexity of the proposed workload

splitter algorithm is given by O(|nlog(n) + 2n+Ntot×n|) = O(nlogn).

Algorithm 7 describes the procedure to reallocate the GPU resources. The variables are

initialized in Lines 3-4. A list of application kernels is created and the amount of GPU

resources is estimated for resource reallocation in Line 5. The loop in Lines 6-18 is the main

part of the GPU resource reallocation. The target application kernel is fetched from the list

in Line 7. The amount of GPU resources to meet the deadline (Equation 5.4) is estimated

in Line 8. If there is enough amount of GPU resources, the workload splitter assigns the

required amount of GPU resources in Lines 9-12. On the other hand, if the amount of GPU

resources is not enough, the workload splitter allocates all the remaining GPU resources and
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Algorithm 7: Algorithm to Reallocate GPU Resources for Each Running Application
Kernels.
Input: Application kernels for resource reallocation K;

1 Function ResRealloc (K)
2 begin

/* Initialize the variables. */

3 Nrealloc ← ∅ ;
4 Kre ← ∅ ;

/* Create resource reallocation list. */

5 [Kre, Nrealloc] ← CreateReallocList(K) ;
/* Main loop for resource reallocation. */

6 while Kre.size() > 0 and Nrealloc > 0 do
/* Estimate the amount of GPU resources to meet the response time

requirement. */

7 K ← Kre.front() ;
8 Nreq = GetNewResource(K) ;

/* Determine the amount of GPU resources for the application kernel based on

the current available GPU resources and the required amount of GPU

resources. */

9 if Nrealloc ≥ Nreq then
10 K.SetResource(Nreq);
11 K.HasEnoughRes(true);
12 Nrealloc = Nrealloc - Nreq;

13 else
/* Use all available GPU resources. */

14 Nreq = Nrealloc;
15 K.SetResource(Nrealloc);
16 K.HasEnoughRes(false);
17 Nrealloc = Nrealloc - Nreq;

18 Kre.popfront() ;

marks the application kernel as not having enough GPU resource in Lines 13-17. After that,

the target application kernel is removed from the list in Line 18.

The function CreateReallocList() in Line 5 has a complexity of O(nlog(n)+n) The function

GetNewResource() in Line 8 has a complexity of O(Ntot), thus, the outer-loop in Lines 6-18

has a complexity of O(Ntot×n). Consequently, the overall complexity of the GPU resource

reallocation algorithm is given by O(|nlog(n) + n+Ntot×n|) = O(nlogn).

Algorithm 8 describes the procedure to create the list of the application kernels for the GPU

resource reallocation. In Line 5, the running application kernels are sorted based on their

priorities. If the applications have the same priority then they are sorted according to the
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Algorithm 8: Algorithm to Create Reallocation List.
Input: A set of application kernels K;
Output: A set of kernels for GPU resource reallocation Kre,

Amount of GPU resource for resource reallocation Nre;
1 Function CreateReallocList() begin

/* Resource reallocation variable initialization. */

2 ForceLowerApp = false; /* Flag to include lower priority applications. */

3 Nre ← false;
4 Kre ← ∅;

/* Sort applications based on the priority. */

5 Ksort = PrioritySort(K) ;
/* Sort same priority with EDF algorithm. */

6 CreateOrderBasedOnEDF(Ksort) ;
7 foreach K ∈ Ksort do
8 if ForceLowerApp = false then
9 if K.HasEnoughRes() = false then

10 ForceLowerApp ← true ;
11 Kre.push(K);
12 Nre = ReturnResource(K);

13 else
14 Nre = ReturnResource(K);
15 Kre.push(K)

16 return [Kre, Nre] ;

Earliest Deadline First (EDF) algorithm in Line 6. The loop in Lines 7-15 is the main body

of the reallocation list creation. The current GPU resource status of the running application

kernels is checked in Line 9-12. If the application kernel does not have enough resource, the

application kernel and all the lower priority application kernels will be added to the GPU

resource reallocation list in Lines 10-12 and Lines 13-15. The algorithm returns the GPU

resource reallocation list and the amount of the GPU resource for reallocation in Line 16.

The sort functions in Lines 5-6 have a complexity of O(nlog(n)) and the loop in Lines 7-15

has a complexity of O(n). Consequently, the overall complexity of creation of the reallocation

kernel list algorithm is given by O(|nlog(n) + n|) = O(nlogn).
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5.3.3 GPU Execution Schedule Generator

The statuses of the submitted sub-kernels are tracked by the GPU status monitor (see Figure

5.1). The GPU status monitor triggers the GPU execution schedule generator based on the

GPU status. Then, the GPU execution schedule generator selects the sub-kernels, which are

partitioned by the workload splitter, based on the priority and the deadline of the application.

After that, the selected sub-kernels are submitted to the GPU hardware queue and the GPU

resource (re)allocation is applied. Thus, the GPU execution schedule generator implements

the temporal preemption.

During run-time, whenever the GPU has available resources, the GPU hardware selects one

sub-kernel from its hardware queue and assigns the GPU resources to process the sub-kernel.

Thus, in order to maximize the performance, and the number of applications that meet the

deadlines, the sub-kernels must be submitted to the GPU hardware queue before the GPU

has idle resources.

(a) Sub-kernel Launch Without the GPU
Idle Time.

(b) Sub-kernel Launch With the GPU
Idle Time.

Figure 5.2: Examples for Launching Sub-kernels.

Figure 5.2(a) shows two sub-kernels launch without any GPU idle time. In the figure, the

shaded boxes represent the kernel launch overhead. The time difference between the response

time of the first sub-kernel, Resp(k′(l,0)), and the launch time of the second sub-kernel, tlnch2,

is greater than the kernel launch overhead. Therefore, the second sub-kernel waits in the
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Figure 5.3: Example Sub-kernel Launches on the GPU Execution Schedule Generator.

GPU hardware queue and could start its operation right after the first sub-kernel completes

its operation. On the other hand, in Figure 5.2(b), the kernel launch overhead is greater than

the time difference between Resp(k′(l,0)) and tlnch2. In this case, the second sub-kernel could

not wait in the GPU hardware queue. However, the overall response time of the application

is larger than the case in Figure 5.2(a) because the GPU is idle between the sub-kernel

executions. The sub-kernel launch time limit, Tlnch, is represented by the following equation:

tlnch ≤ Resp(k′(i,k))− Llnch (5.8)

Since multiple applications may be executed on our target GPU-based embedded system,

tlnch would need to be estimated based on the minimum response time among the currently

running sub-kernels (Equation 5.9).

tlnch ≤ min(Respk′∈S(k′))− Llnch (5.9)

Figure 5.3 shows the example behavior of the GPU execution schedule generator. In this

example, the target GPU has four SMs. Three different application sub-kernels are sent

from the workload splitter. Note that Equation 5.9 estimates the sub-kernel launch time

limit, tlnch. During run-time, it is possible that the difference between the response time of

the application and the deadline of the application is large enough to process starved low

priority sub-kernels. As described in Section 5.3.2, when no GPU resource is assigned to the

application kernel, the workload splitter partitions the application kernel into the smallest
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Algorithm 9: Algorithm for GPU Execution Schedule Generator.
Input: Application sub-kernels k’,

Starved application sub-kernels k’starve;
1 Function GpuExecScheGen (k’, k’starve)
2 begin

/* Sort applications based on the priority */

3 k’sort = PrioritySort(k’) ;
/* Sort same priority with EDF algorithm */

4 CreateOrderBasedOnEDF(k’sort) ;
5 k”sort = PrioritySort(k’starve) ;
6 CreateOrderBasedOnEDF(k”sort) ;

/* Main loop for resource reallocation */

7 foreach k’ ∈ k’sort do
8 Tdead ← GetDeadline(k’);
9 Tresp ← GetRespTime(k’);

10 Tavail ← Tdead - Tresp;
11 Texec ← GetExecTime(k”sort.front());
12 if Tavail > Texec then
13 LaunchSubKernel(k”sort.front());
14 k”sort.popfront();

15 else
16 [k”, Texec ] ← GetMinExecKernel(k”sort);
17 if Tavail > Texec then
18 LaunchSubKernel(k”);
19 k”sort.remove(k”);

20 LaunchSubKernel(k’);
21 k’sort.remove(k’);

granularity possible.

Algorithm 9 shows the procedure of the GPU execution schedule generator. The GPU

execution schedule generator sorts the sub-kernels based on the priority and the deadline of

the application in Lines 3-4. After that, in Lines 5-6, the GPU execution schedule generator

sorts the sub-kernels that do not have the GPU resources. The loop in Lines 7-21 is the

main part of the GPU execution schedule generator. The available time for the low-priority

sub-kernel Tavail is estimated in Lines 8-10. If there is a low priority sub-kernel that may

complete its operation within Tavail, the GPU execution schedule generator launches the low

priority sub-kernel in Lines 12-19. After that, the sub-kernel k′ is launched in Line 20. The

function CreateOrderBasedOnEDF () in Line 4 and 6 has a complexity of O(nlog(n)). The

loop in lines 7-21 has a complexity of O(n×Ntot). Consequently, the overall complexity of the
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App Tdead(i) Pi |K| Kernel info
Name(NTB) Exec time

High 6ms High 2
A(3) 2ms/TB
B(3) 2ms/TB

Mid 8ms Medium 3
C(3) 2ms/TB
D(4) 1ms/TB
E(3) 3ms/TB

Low 9ms Low 1 F(5) 2ms/TB

(a) Input Application Information.

(b) Sub-kernel Execution Flow on the GPU.

Figure 5.4: Complete Working Example of the Proposed Scheduling Framework.

proposed GPU execution schedule generator algorithm is given by O(|2nlog(n) +Ntot×n| =

O(nlogn).

5.3.4 Example of the Scheduling Framework

Figure 5.4 shows a complete working example of our scheduling framework. In this example,

it is assumed that the GPU has four SMs. Figure 5.4(a) shows the information about the

input applications while Figure 5.4(b) shows the behavior of the GPU. The three applications

High, Mid, and Low are launched at 1 ms, 0 ms, and 4 ms, respectively.

At 0 ms, after the application Mid starts its operation, our scheduling framework generates

and submits the sub-kernel C ′0 to the GPU. The size of C ′0 is the same as the original kernel
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C, which is 3, due to the idle state of the GPU. At 1 ms, the application High starts its

operation. Due to the higher priority than the application Mid, nHighSM and nMid
SM are modified

by the proposed workload splitter where nHighSM and nMid
SM represent the number of SMs for the

application High and Mid, respectively. The sub-kernel size for the application High is the

same as original kernel due to the highest priority. The sub-kernel size for the application

Mid is decreased to 1 which is the same as the number of remaining SMs in the GPU. After

that, the sub-kernel A′0 is submitted to the GPU. At this point, since only 1 SM is available,

a part of the A′0 starts running on the GPU.

At 2 ms, after the sub-kernel C ′0 completes its operations, the rest of the A′0 use the GPU

resources. At the same time, sub-kernels D′0, D′1, and D′2 are generated and submitted to the

GPU. At 4 ms, the workload splitter creates sub-kernels B′0 and D′3 from the kernel B and

D, respectively. After that, the GPU execution schedule generator sends these sub-kernels

according to the priority of the application. The application Low starts its operation, but it

cannot get the GPU resources because all the GPU resources are occupied by the application

High and Mid. At 5 ms, the sub-kernel D′3 completes its operation, the sub-kernel E ′0 is

generated and submitted to the GPU by our scheduling framework.

At 6 ms, the application High completes its entire operation. Since there are no higher

priority applications, the application Mid may use more GPU resources, therefore nMid
SM is

increased to 2. Since there is no higher priority applications, the application Low starts

using the GPU resources. After that, sub-kernels E ′1 and F ′0 are generated and submitted

to the GPU. The size of E ′1 and F ′0 are 2 and 1, respectively. At 7 ms, the sub-kernel F ′1 is

generated from the kernel F and submitted to the GPU.

At 8 ms, the application Mid completes its entire operation. Since there is no other running

applications, nLowSM is increased to 3. Then the sub-kernel F ′1 is generated and submitted to

the GPU. After 2 ms, the application Low completes its entire operation at 10 ms. This

example shows that the sub-kernel size is dynamically changed during run-time depending
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on the status of the system (i.e. number of running applications, number of available GPU

resources, and so on).

5.4 Evaluation

5.4.1 Experimental Setup

We have extensively evaluated our framework by comparing it to several state-of-the-art

existing frameworks. We have built the simulator that represents our target GPU-based

embedded system (as described in Section 3.1) and the simulator is assumed to resemble

Nvidia’s Tegra mobile embedded system. We also assumed that our target GPU has a

total of 13 SMs and the off-chip memory is shared by the CPUs and the GPU. In order

to evaluate our scheduling framework with realistic event-driven applications, during the

experiments, we generate a set of workloads by randomly selecting applications from the

Rodinia Benchmark Suite [18]. During the workload generation process, if the number of

applications in the Rodinia Benchmark Suite is smaller than the number of applications

for a workload, then same application has been selected multiple times. Table 5.1 shows

the dwarves, the domains of the benchmark applications, and the problem sizes for the

benchmark application. Dwarves are common computation and communication pattern of

GPGPU applications [5].

Before the evaluation, we have assigned priorities to the benchmark applications based on

the application domains and dwarves. Since most of the image processing applications, on

an embedded system, require real-time behavior, image processing applications are classified

as high priority application. In addition, a HotSpot application is also classified as a high

priority application because applications like HotSpot could be used to estimate the current

system status. The benchmark applications which have simple behavior (i.e. graph traversal,
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Table 5.1: Rodinia Benchmark Suite [18].

Application Name Dwarves Domains Problem Size

Leukocyte Structured Grid Medical Imaging 640x480 pixels/frame

Heart Wall Structured Grid Medical Imaging 656x744 pixels/frame

CFD Solver Unstructured Grid Fluid Dynamics 200k elements

HotSpot Structured Grid Physics Simulation 512512 data points

Back Propagation Unstructured Grid Pattern Recognition 65536 input nodes

Kmeans Dense Linear Algebra Data Mining
204800 data points,

34 features

Breadth-First Search Graph Traversal Graph Algorithms 1M nodes

SRAD Structured Grid Image Processing 20482048 data points

Streamcluster Dense Linear Algebra Data Mining
65536 points,

256 dimensions

PathFinder Dynamic Programming Grid Traversal 1k× 1k grid

Gaussian Elimination Dense Linear Algebra Linear Algebra 256×256 matrix

B+ Tree Graph Traversal Search 1M nodes

vector computation) are classified as low priority. Remaining benchmark applications are

classified as medium priority. After classifying the priority of the application, we have

assigned the deadlines to the benchmark applications based on the application domains,

the dwarves, and the execution time of the applications. The classification results (and

deadlines) for our experiments are as follows:

• High priority: Leukocyte (50ms), Heart Wall (50ms), HotSpot (1000ms), and SRAD

(30ms);

• Medium priority: Back Propagation (30ms), PathFinder (20ms), Kmeans (100ms),

and Streamcluster (2400ms);

• Low priority: Breadth-First Search (15ms), B+ Tree (400ms), Gaussian Elimination

(1700ms), and CFD Solver (70000ms);

Note that the system may have a low-priority application that does not have a specific dead-

line. We have set the long deadline (70000ms) for the CFD solver application to represent

the low-priority application that does not have a specific deadline.

For each application, the execution time information with different number of SMs needs

to be provided as an input. Existing GPU-based embedded system does not have 13 SMs
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and may be saturated with higher number of injected applications. However, the technology

roadmap projects that even in a GPU-based mobile embedded system the number of SMs

will increase. Moreover, we focus on the problem of scheduling throughput-oriented appli-

cations on the GPU. Therefore, in our simulator, we assumed that the system has enough

computational capability to concurrently handle multiple applications. In order to obtain

the execution time information with different number of SMs, we have used a NVIDIA

Tesla K20m graphics card which has a similar GPU architecture (Kepler architecture) with

NVIDIA Tegra K1 processor.

5.4.2 Number of the Applications Meeting Deadlines

In order to evaluate the proposed scheduling framework, we have randomly selected a number

of applications and injected them into the simulator. Delays between the target applications

are also randomly chosen within a 0.2 second window. The experimental results of our

scheduling framework are compared to the state-of-the-art scheduling frameworks, Time-

Graph [59], k-exclusion locking protocol [144], and GPU-EvR [68]. Figure 5.5 shows the

number of applications that meet the deadlines. From the results, we observe that, with our

scheduling framework, more applications meet their deadlines. The major reason for such

an improvement is the fine-grained control of the application behavior through the temporal

and the spatial preemptions. Since TimeGraph and k-Exclusive Locking Protocol implement

only temporal preemption, these two scheduling framework have a limitation for controlling

the GPU resources for multiple application. On the other hand, by implementing the tem-

poral and the spatial preemptions together, our scheduling framework efficiently distributes

the GPU resources to the multiple applications. Thus, the number of applications meet-

ing deadlines is maximized with our scheduling framework (see Section 5.3.4 for example

behavior of our scheduling framework).
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Figure 5.5: Number of Applications Which Meet Deadlines Compared to [59], [144], and [68]
.

However, our scheduling framework and GPU-EvR start saturating once 80 applications are

injected. When the system is completely saturated with a large number of applications,

the partitioning of GPU kernels may cause a negative effect on the applications. Therefore,

when the system is saturated, our scheduling framework and GPU-EvR may be suffered by

the performance bottleneck caused by their scheduling policy. Compared to our scheduling

framework, GPU-EvR has more severe performance bottleneck due to its scheduling policy.

GPU-EvR assigns the GPU resources to every running application, but our scheduling frame-

work may not assign the GPU resources to some lower priority applications. Therefore, our

scheduling framework may assign more GPU resources to the higher priority applications.

Table 5.2: Average Algorithm Execution Time Compared to [59], [144], and [68].

Average Algorithm
Exec. Time (us)

Implemented
Preemptions

Our scheduling framework 9.21 Temporal & Spatial
TimeGraph [59] 2.32 Temporal

k-Exclusion Locking Protocol [144] 1.80 Temporal
GPU-EvR [68] 6.74 Temporal & Spatial
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Table 5.2 shows the average algorithm execution time of each of the scheduling frameworks

and the preemptions that are implemented by each of the scheduling frameworks. The av-

erage algorithm execution time is obtained using an Intel Core i7 Quad-core processor at

3.5 GHz. The results show that our scheduling framework and GPU-EvR have more perfor-

mance overhead compared to other scheduling frameworks due to the implementation of the

temporal and the spatial preemptions. In particular, compared to GPU-EvR, our scheduling

framework has a greater performance overhead which is introduced by the improved schedul-

ing policy. TimeGraph and k-Exclusion Locking Protocol have less performance overhead,

because they do not implement the spatial preemption. However, the performance overhead

of our scheduling framework is similar to the kernel launch overhead (see Section 1.2) which is

very small compared to the kernel execution time. In addition, the execution of the workload

splitter and the GPU execution schedule generator may be overlapped with the execution of

other sub-kernels. In addition, the execution of the workload splitter and the GPU execution

schedule generator may be overlapped with the execution of other sub-kernels. Therefore,

the performance overhead of our preemption algorithms may not cause significant effect.

Figure 5.6 shows the ratio of applications that meet deadlines for each of the priority levels.

For each priority level, we observe that more applications meet their deadlines with our

scheduling framework (unless the system is completely saturated). From the figure, we can

observe that the low priority applications have a larger ratio for meeting their deadlines.

Since the system may have low-priority applications that do not have specific deadlines,

low-priority applications, which are represented by the CFD solver application, may have a

highest ratio for meeting deadline.

In addition, compared to GPU-EvR, more high priority applications meet their deadlines with

our scheduling framework. As mentioned previously, our scheduling framework can assign

more GPU resources to the higher priority applications, because our scheduling framework

may decide not to assign the GPU resources to some lower priority applications. However,
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Figure 5.6: Priority Distribution of the Applications Which Meet Deadlines Compared to
[59], [144], and [68].

when 20 applications are injected, the results show that slightly more high priority appli-

cations meet their deadline with GPU-EvR. Since our scheduler has the largest algorithm

execution overhead (see Table 5.2), the implementation of the temporal and the spatial pre-

emptions may cause performance bottleneck. Therefore, when a small number of applications

are injected, high priority applications may not have highest ratio for meeting deadlines due

to the algorithm execution overhead of our scheduling framework.

5.4.3 Controlling the Effect of Timing Violation

Figure 5.7 shows the total timing violation. In the figure, we observe that the amount of total

timing violation is proportional to the number of injected applications. However, total timing

violations, in our scheduling framework, is much less than in TimeGraph [59], k-exclusion

locking protocol [144], and GPU-EvR [68]. It is observed, from the figure, that our scheduling
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Figure 5.7: Average Total Timing Violation Compared to [59], [144], and [68].

framework has a better control of the timing violation. Since our scheduling framework allows

concurrent execution of applications and has fine-grained control of the application behavior,

our scheduling framework is able to minimize timing violations. We observe that the amount

of total timing violation of our scheduling framework is significantly increased when the

injected number of applications is greater than 80. However, our scheduling framework

shows less total timing violations compared to [59], [144], and [68]. On the other hand,

after the injection of 80 applications, the total timing violation of GPU-EvR is significantly

increased and is greater than other two scheduling frameworks. Due to the performance

bottleneck caused by the scheduling policy, GPU-EvR shows a greater amount of total timing

violation. By using our scheduling framework, the average timing violation is decreased by

54.57%, 50.45%, and 46.39% compared to [59], [144], and [68], respectively. Therefore, we

can conclude that our scheduling framework has, for the most part, a better control of timing

violation than the other two state-of-the-art scheduling frameworks.
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Figure 5.8: Scalability Comparison of Our Scheduling Framework Compared to [59], [144],
and [68].

5.4.4 Scalability Analysis of the Scheduling Frameworks

We have also evaluated the scalability of our scheduling framework compared to TimeGraph

[59], k-exclusion locking protocol [144], and GPU-EvR [68]. During our experiment, randomly

selected applications are injected within a short period of time. The number of injected

applications is in the range of 1 to 15. Figure 5.8 shows the average number of applications

that meet their deadlines. When the number of the injected applications is increased to

7, all the scheduling frameworks scale in a similar manner. However, after the injected

number of applications is greater than 7, TimeGraph and k-exclusion locking protocol start

saturating. In addition, GPU-EvR starts saturating after the number of injected application

is greater than 9. On the other hand, our scheduling framework scales for larger number of

injected applications. The experimental results show that our scheduling framework is able to

guarantee up to 1.56 times as many applications as [59], [144], and [68]. Since our scheduling

framework handles multiple applications concurrently, and controls application behavior

by partitioning the GPU kernels, our scheduling framework shows better scalability than
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Figure 5.9: Priority Distribution Which Meet Deadlines During Scalability Analysis Com-
pared to [59], [144], and [68].

the other two scheduling frameworks. GPU-EvR has a greater saturation limit than other

two scheduling frameworks due to its fine-grained GPU resource management. However,

since GPU-EvR assigns the GPU resources to every running application, GPU-EvR has less

saturation limit than our scheduling framework.

Figure 5.9 shows the ratio of applications that meet deadlines for each of the priority levels

during the scalability analysis. The results show that TimeGraph and k-exclusion locking

protocol scheduling frameworks could not assign the GPU resources to medium priority

applications. On the other hand, GPU-EvR scheduling framework could assign more GPU

resources to medium and high priority applications due to the fine-grained GPU resource

management. However, as shown in Figure 5.8, our scheduling framework more efficiently

distributes the GPU resources to the applications. The major reason for this improvement

is the scheduling policy that implements both temporal and spatial preemption.
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5.5 Chapter Summary

In this chapter, we have presented a novel run-time scheduling algorithm for event-driven ap-

plications on a GPU-based embedded system. The presented scheduling framework consists

of two modules: the workload splitter and the GPU execution schedule generator. The work-

load splitter partitions the GPU application kernels into multiple sub-kernels based on the

current system status and the application requirement. By using our application model, the

workload splitter may estimate the amount of required GPU resources in order to meet the

application deadlines. The size of the sub-kernels and the number of sub-kernels are decided

(spatial preemption) according to the above estimation. After the workload splitter creates

sub-kernels, the GPU execution schedule generator generates sub-kernel launch sequences

according to the priority and the deadline (temporal preemption) of the applications.

We have evaluated our scheduling framework by comparing with TimeGraph [59], and k-

exclusion locking protocol [144]. Experimental results show that our scheduling framework

is able to guarantee up to 1.37 times as many applications as [59] and [144]. In addition,

our scheduling framework has a better control of timing violations. The results clearly

show that our scheduling framework manages concurrent execution of multiple applications

very efficiently. Moreover, the total amount of timing violation is decreased by up to 54.57%,

compared to [59] and [144]. The above result implies that our scheduling framework provides

better control of timing violation compared to other scheduling frameworks. Moreover, due

to the fine-grained application behavior control, our scheduling framework shows better

scalability than the other two scheduling frameworks. Our scheduling framework is able to

guarantee up to 1.56 times as many applications compared to [59] and [144].
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Chapter 6

Conclusion and Future Works

6.1 Conculstion

In recent years, GPUs have been employed in the critical path of applications in embedded

systems due to their programmability, high-performance, and low power consumption. The

embedded systems have been used in the increasing number of throughput-oriented appli-

cations and system events. At the same time, Moore’s law has driven the semiconductor

industry and the transistor size has been scaled down for decades.

Due to the increasing number of throughput-oriented applications and the nanoscale multi-

core processors (including GPUs), the GPU-based embedded system have faced several chal-

lenges. Existing workload management techniques do not have enough flexibility to handle

multiple applications while interacting with dynamic environment. In addition, due to the

small feature size, the state-of-the-art nano-scale multi-core processors have faced several

reliability challenges such as aging, soft-error, and process variation. In order to tackle these

challenges, this dissertation proposes a reliability and timing aware workload management

framework for GPU-based real-time embedded systems. The proposed framework includes
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the following content:

Instruction scheduling for improving the soft-error reliability: As shown, the

probability of having a soft-error on a single hardware component is proportional to the

time that the hardware component is used [143]. In order to maximize the soft-error relia-

bility, we propose an instruction scheduling algorithm. It takes a PTX code and application

information as input, and then it generates an instruction schedule and a configuration that

maximizes the soft-error reliability of GPU application.

Timing-aware workload scheduling for real-time embedded systems: Due to the

increased number of throughput applications, the system should be able to manage its

resource efficiently. However, the existing workload management techniques do not have

enough flexibility to assign different amounts of resource to multiple applications. In order

to tackle this problem, we propose a scheduling framework that partitions the GPU workload

into small sub-workloads and generates a flexible schedule for them.

Aging-aware workload management on embedded GPUs: The state-of-the-art nano-

scale multi-core processors, including GPUs, have faced several reliability challenges such

Negative Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI), and (die-to-die

and with-in-die) process variation. The amount of transistor degradation caused by NBTI

and HCI is proportional to the time a transistor is stressed or switched. Moreover, the

process variation increases the randomness in the system status. The existing state-of-the-

art GPU workload management techniques focus on maximizing the performance [69], thus

the stress or switching activity is not evenly distributed across the GPU. Since the process

variation is not considered, the existing techniques may not minimize the aging effect on

embedded GPUs under process variation. In order to solve this problem, we proposed a

workload management technique that evenly distributes the stress. The proposed technique

takes the number of instructions and the critical path delay information to balance workload

distribution on GPUs while considering the randomness of process variation.
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In summary, our reliability and timing aware workload management framework is able to

minimize the amount of aging effect on embedded GPUs and flexibly generate GPU workload

schedules to handle the increasing number of throughput oriented applications.

6.2 Future Works

In addition to the research work we have presented in this dissertation, we would like to

explore the following directions in the future. In this dissertation, we focus on minimizing

aging effect and improving soft-error reliability on embedded GPUs. At the same time, our

GPU workload scheduling framework generates schedule to maximize the number of appli-

cations that satisfy their deadlines. However, since performance and power are considered

as overheads, our workload management framework may not be functioning properly if the

performance and power are given as constraints. It is common to design the embedded sys-

tems with strict performance and power budget. Therefore, we will take performance and

power into consideration.

We consider the process variation and core-level guradbanding to further improve the lifetime

of the GPU. However, it is possible that the process variation causes asynchronous behavior

and the arithmetic pipeline is not properly utilized. Figure 1.5(b) is such an example. The

asynchronous behavior in the presence of the process variation need to be considered to

further improve the lifetime of embedded GPUs.
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