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RECEIVED DATE  

Pertechnetate reduction by AHA. 

Abstract. 

Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has 

been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the 

relative concentrations of the reaction components and are accelerated at higher temperatures. The 

reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure 

spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical 

of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d5 

Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented by products of 
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reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-

technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-

n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies 

indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation 

by H2O2, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. 

The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle. 

Technetium, acetohydroxamic acid, nitrosyl, UREX, TBP extraction, XAFS, UV-vis 

Introduction. Technetium, a transition metal fission product, is a major component of spent nuclear 

fuel. Its fate in the UREX reprocessing scheme is modeled as pertechnetate (TcO4
-)1-3; however, recent 

work has shown that soluble, low-valency complexes can form in waste containing organic ligands4. 

 

Acetohydroxamic acid (AHA) is an organic ligand proposed for use in the UREX process5. It reduces 

neptunium and plutonium6-7, and the resultant hydrophilic complexes are separated from uranium by 

extraction with tributylphosphate (TBP) in a hydrocarbon diluent8-9. Hydroxamic acids undergo 

irreversible hydrolysis to hydroxylamine and the pertinent carboxylic acid10. The reported reduction 

potentials of AHA and pertechnetate6-7,11-12 indicate that it may be possible for AHA to reduce 

technetium, altering its fate in the fuel cycle. However, as later demonstrated for hydroxylamine13, in 

these systems the electrochemistry is largely controlled by other species, especially NO, adsorbed on the 

Pt electrode surface, and the reported reduction potentials for AHA may not be accurate. The detailed 

mechanism for oxidation of AHA in solution has not been reported; however, in the gas-phase, AHA is 

oxidized by a single electron to AHA+, which quickly decomposes to acetyl cation and aminoxyl radical 

(H2NO)14. In solution, AHA may be oxidized by a single electron, yielding AHA+, which is then 

hydrolyzed to yield acetic acid and aminoxyl radical (H2NO), which quickly disproportionates to N2 and 

water. The electrochemistry of AHA as well as its reaction chemistry may be complicated by the fact 
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that the reaction product, aminoxyl radical, is itself a good reducing agent, yielding nitroxyl (HNO) 

upon oxidation15. Previous studies of the behavior of technetium during the UREX process have not 

reported reduction1, but AHA is known to react immediately with Ru(III) in aqueous solution to yield a 

Ru(II) nitrosyl complex16. 

 

More work has been done on the interaction of hydroxylamine, also a reductant, and pertechnetate. In 

aqueous HCl, hydroxylamine can reduce Tc(VII) to form Tc(IV) hydroxylamine and chloride 

complexes17-18. Reaction of technetium with hydroxylamine often gives a mixture of products, most 

notably Eakins’ pink complex19 (2, [TcI(NO)(NH3)4]Cl2), the first reported technetium nitrosyl (TcNO) 

complex;  the source of NO may be hydroxylamine or its oxidation products, H2NO, or HNO20. Since its 

synthesis in 1963, reports on its chemistry21 and crystal structure22 have launched the production of an 

expanding number of Tc nitrosyl compounds, often by substitution23-29, but also synthesized directly 

from Tc(IV) halides using hydroxylamine, NaNO2, NO(g), or NO salts as the sources of nitrosyl19,30.  

Only recently have researchers exploited reductive nitrosylation of pertechnetate by hydroxylamine as a 

route to Tc nitrosyl complexes, including to 231.  

 

The strong π-acceptor character of the nitrosyl ligand stabilizes low valent Tc through backbonding, 

and few Tc(II) complexes without nitrosyl or thionitrosyl ligands are known32-33. Most Tc nitrosyl 

complexes are pseudo-octahedral Tc(I) and (II) complexes and trigonal bipyramidal Tc(III) complexes34-

36. The strong π-acidity of nitrosyl decreases the lability of the other ligands, stabilizing the complex. 

Given the high hydrophilicity of known AHA complexes, this stability may affect the fate of Tc in the 

fuel cycle and the strategies necessary to create a final waste form. 

 

In this work, we demonstrate that pertechnetate undergoes reductive nitrosylation by AHA under a 

variety of conditions. The resulting divalent technetium is complexed by AHA to form the pseudo-

octahedral TcII(NO)(AHA)2(H2O)+ (1, Figure 1), as characterized by extended x-ray absorption fine 
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structure spectroscopy (EXAFS) - the first EXAFS reported for a Tc nitrosyl complex. This complex is 

the sole technetium product of the reaction and is different from the product of reaction of pertechnetate 

with hydroxylamine. The observed partial orders of the reagents were determined and a potential 

mechanism proposed. In contrast to other AHA complexes of other divalent transition metals37-39 and 

divalent uranyl40, and Cr(V)41, 1 is very soluble in water and stable for months in a 0.235 M solution. 

Like the Pu and Np AHA complexes, 1 is extremely hydrophilic and does not extract into 30% TBP in 

dodecane, which could affect the UREX scheme. Its stability, solubility, and straightforward aqueous 

synthesis could allow its use as a precursor to other technetium nitrosyl complexes. 
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Figure 1. A, trans-aquonitrosyl-cis-diacetohydroxamic-technetium(II). B, trans-aquonitrosyl-trans-

diacetohydroxamic-technetium(II). 

 

Experimental Section 

Caution! 99Tc is a β-emitter (Emax = 294 keV, t½ = 2 x 105 years). All operations were carried out in 

radiochemical laboratories equipped for handling this isotope. 

 

Reagents and Solutions. Ammonium pertechnetate was purchased from Oak Ridge National 

Laboratory and purified as described elsewhere42. Water was purified to >18 MΩ by a MilliQ system. 

All other chemicals were used as received. A 0.18 M Tc stock solution was prepared for all studies and 

its concentration confirmed spectrophotometrically at 289 nm (ε = 2380 L mol-1 cm-1) and/or via liquid 

scintillation counting (LSC) for every experiment. Amorphous TcO2 was generated by adding hydrazine 
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hydrate to a solution of ammonium pertechnetate, then washing the resultant black precipitate twice with 

ultrapure water. Stock solutions of up to 5.0 M AHA and hydroxylamine hydrochloride were generated 

frequently and in small batches to avoid hydrolysis. For the organic phase (30% TBP), 30 mL of 

tributylphosphate were diluted up to 100 mL with n-dodecane. 

 

Synthesis. The effects of acid, Tc, and AHA concentrations were determined by systematically 

varying the initial concentrations over a series of three or more values at constant temperature (Figures 

S1-S2, Supporting Information). Solutions from 0.05 to 20 mM Tc in up to 4.0 M AHA and up to 2.0 M 

HClO4 or HNO3 were generated by diluting the Tc stock solution into AHA, then acidifying. The 

solutions turned from colorless to brown immediately upon addition of acid, and the color deepened 

with time. The Tc concentration was confirmed for each sample by UV-vis and LSC in HClO4 and by 

LSC in HNO3. The reactions were followed via UV-vis continuously for up to 12 days and intermittently 

up to 6 weeks (Figure S3 in Supporting Information). The complex was also generated from amorphous 

TcO2 dissolved to 0.235 M in a 4.0 M solution of AHA, then acidified to 1 M H+. Dissolution of the 

anionic Tc(IV) complex [(n-Bu)4N]2[TcCl6] into 1.0 M AHA in dry ethanol did not generate any 

reaction over the period studied. 

 

Tc-hydroxylamine. Tc-hydroxylamine compounds were generated and monitored as above, from both 

pertechnetate and amorphous technetium dioxide, using hydroxylamine hydrochloride instead of AHA. 

The addition of nitric or perchloric acid was not necessary for this reaction, though it increased the rate. 

The yellow Tc-hydroxylamine (3) was purified from the pink 2 via extraction with 30% TBP.  

 

Analytical Techniques. Electron paramagnetic resonance (EPR) spectra were obtained at room 

temperature with a Varian E-12 spectrometer equipped with cryostat cooled by liquid nitrogen boil-off, 

an EIP-547 microwave frequency counter, and a Varian E-500 gaussmeter, which was calibrated using 

2,2-diphenyl-1-picrylhydrazyl (DPPH, g = 2.0036).   The low temperature spectrum was fit using a 
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version of the code ABVG modified to use a pseudo Voigt line shape and modified to fit spectra using 

the downhill simplex method.  The ABVG code includes second-order effects in the calculation of the 

peak positions but cannot simulate anisotropic line widths, so all peaks in the simulation have the same 

line width.{References A}  In the least squares fit, the spectrum at fields less than 2400 gauss and 

greater than 3900 gauss was weighted 3 times more heavily than the spectrum between 2400 and 3900 

gauss due to problems caused by the narrower peaks at the center of the spectrum.  The simulated 

solution spectra were also calculated using a downhill simplex version of ABVG in which all g and A-

values were identical.  For the solution spectra, the simulation used a Lorentzian line shape with the line 

width dependence described by Kivelson.{References B} UV-visible spectra were obtained using 

Varian Cary 6000i and Ocean-Optics ST2000 spectrometers. Temperature was monitored and 

maintained via a Varian Peltier thermostable multicell sample holder. Liquid scintillation counting was 

performed on a Perkin-Elmer Tri-Carb 3100TR instrument.  

{References for EPR fitting: Set A 

Bruce, S.D.; Higinbotham, J.; Marshall, I.; Beswick, P.H J. Mag. Reson. 2000, 142, 57-63. 

Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran 77: the 

Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, 1992.} 

{Set B: 

Daul, C.; Schläpfer, C.W.; Mohos, B.; Ammeter, J.; Gamp, E. Comp. Phys. Commun. 1981, 21, 385-

395. 

Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran 77: the 

Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, 1992. 

Kivelson, D. J. Chem. Phys.  1960, 33, 1094-1106.} 

 

 

X-ray absorption fine structure (XAFS) spectra were acquired at the Stanford Synchrotron Radiation 

Laboratory (SSRL) at beamline 11-2 using a Si(220) double crystal monochromator. Higher order 
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harmonics were rejected by detuning the monochromator by 30%. X-ray absorption spectra were 

obtained in the transmission mode at room temperature using Ar-filled ionization chambers. The spectra 

were energy calibrated using the first inflection point of the pre-edge peak from the Tc K-edge spectrum 

of an aqueous solution of NH4TcO4, defined as 21044 eV. To determine the Tc K-edge charge state 

shifts, the energies of the Tc K-edges at half height were used. Extended x-ray absorption fine structure 

(EXAFS) data analysis was performed by standard procedures using the programs ifeffit43 and 

Athena/Artemis44; theoretical EXAFS phases and amplitudes were calculated using FEFF745; Fitting of 

the Tc K-edge spectrum of the reaction product of TcO4
- with AHA was performed as previously 

described43.  Statistical relevance of the EXAFS parameters was checked using the F-test.*  The   All 

99Tc samples were triply contained inside sealed polyethylene vessels.  

* Downward, L.; Booth, C.H.; Lukens, W.W.; Bridges, F. AIP Conference Proceedings 2007, 882, 

129-132. 

Extraction. The decrease in pertechnetate was followed by UV-vis and LSC in perchloric acid and by 

extraction with tetraphenylarsonium chloride in chloroform42 and LSC in nitric acid. Extraction with 

30% TBP was performed by combining equal volumes organic and aqueous phases and mixing 

vigorously by vortexing for 60 seconds, followed by centrifugation. The technetium concentration in 

both phases was determined by LSC. 

 

Results and Discussion 

Synthesis and characterization. The TcII(NO)(AHA)2(H2O)+ complex, as confirmed by UV-vis 

spectrometry, was the only Tc species detected from the reaction of ammonium pertechnetate and AHA 

in acid. The reaction proceeded with concentrations as low as 0.5 M acid, 0.5 M AHA, and 0.2 mM 

NH4TcO4. TcII(NO)(AHA)2(H2O)+ can be generated consistently from ammonium pertechnetate at 

various temperatures: a sample generated by heating 20 mM NH4TcO4, 1 M HNO3, and 4 M AHA to 95 

ºC for 15 minutes, which visibly evolved gas, had the same UV-vis spectrum (Figure 2) as those 

generated from similar concentrations over 12 days at 20 ºC and 4 days at 30 ºC.  
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Figure 2. Basis spectrum of Tc(NO)AHA2. λmax = 428 nm, ε = 2216. 

 

A sample that had reached equilibrium at pH 3.3 was divided, and half was titrated with acid and half 

with base. Spectra were taken at approximately half-integral pH values (Figure S4, Supporting 

Information). The dilution-corrected spectrum was identical from pH -0.6 (calculated) up to pH 4, 

meaning that the kinetics could be tracked via the maximum at 428 nm, since, in contrast to the pH-

sensitive spectrum of the uranium AHA complex40, 1 exhibits the same spectrum under all reaction 

conditions examined. Above pH 4, the spectrum began to shift, and the sample turned green in a basic 

environment. Addition of acid restored the original yellow-brown color immediately, indicating that the 

color change is due to deprotonation of the complex.  

 

Samples were microscale and contained only 5-100 ug Tc each vs. 60 mg nitrate and up to 300 mg 

excess AHA and acetic acid. Attempts to isolate enough of the compound for IR and crystallographic 

studies via concentration, coprecipitation, ion exchange, extraction, and thin-layer chromatography were 

unsuccessful. Therefore the structure of 1 was studied by solution-phase EXAFS. The EXAFS fitting 

parameters are given in Table 1; fitted Fourier Transform and k3–EXAFS spectra are shown in Figure 3. 

The geometry and bond lengths obtained by this method are consistent, within the error of the method, 

with those obtained by x-ray crystallography of known Re and Tc nitrosyl compounds (Table 2).  The 

octahedral O,O bidentate bond has been similarly seen via EXAFS in iron46,  and the M-N and N-O 
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bond distances are consistent with those of rhenium(II) nitrosyl complexes47. It has been shown that 

AHA is an electron-donor9,48, which may help stabilize the electron-withdrawing nitrosyl moiety. 

 

Figure 3. Data (black lines) and fit (colored lines) of the k3- weighted EXAFS data and its Fourier 

transform. 

Table 1: Fitting parameters  

Neighbor # of 
Neighbors 

Distance 
(Å) 

σ
2 (Å2) F-test 

(p)b 

N 1 1.77(1) 0.004(2) 2×10-3 

O 5 2.06(1) 0.006(1) 2×10-8 

Oc 1 2.95(1) 0.003(1) 5×10-4 

 

a) S0
2=1.13 (from fitting the TcO4

- reference), ∆E0 = 0(2) eV; b) Probability that improvement in the 
fit quality resulting from adding these atoms is due to chance; c) Nitrosyl oxygen. Includes 2 
multiple scattering (MS) paths with the same parameter; 

 

Table 2. Comparison of Tc(NO)AHA2 to known TcNO complexes. 

Molecule Tc-N (Å) N-O (Å) Tc-Ltrans (Å) O-N-Tc 

TcII(NO)(AHA)2(H2O)+ (this study) 1.77 1.18 2.06 180 ◦ 

Eakins’ pink complex (Tc(I))22 1.716(4) 1.203(6) 2.169(4) 178.7(2)◦ 

TcICl2NO(HNNC5H4N)(PPh3)
23 1.752(4) 1.1180(5) 2.153(4) 175.1(4)◦ 

TcICl2NO(py-PPh2-P,N)(PPh2-P)24 1.743(5) 1.170(6) 2.441(2) 177.2(5)◦ 
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TcINOBr2(CNCMe3)3
29 1.726(15) 1.136(17) 2.137(22) 174.9(8)◦ 

[TcICl(µ-Cl)(CO)2NO]2
30 1.749(14) 1.16(2) 2.455(5) 177.4(8)◦ 

[TcICl(µ-Cl)(CO)2NO]2
30 1.794(14) 1.15(2) 2.380(5) 174.3(9)◦ 

[TcICl(NO)(DPPE)2]PF6•CH2Cl2
 31 1.717(3) 1.145(3) 2.3262(7) 179.0(2) ◦ 

[TcINO(NH3)(phen)2]
2+  32 1.739(9) 1.160(9) n.a. 171.9(8) ◦ 

TcIIINOCl(SC10-H13)3
36 1.767(6) 1.150(7) n.a. 175.9(2) ◦ 

 

The oxidation state of 1 was determined from its EPR spectrum, shown in Figure 4 in frozen solution 

and in Figure S10 in liquid solution. The g-values, g1, g2, and g3, obtained by fitting the spectrum shown 

in Figure 4 are 2.041, 2.028, and 1.949, respectively, and the associated hyperfine coupling constants, 

A11, A22, and A33, are 118, 108, and 259 × 10-4 cm-1, respectively, with smaller, off-diagonal elements: 

A12, A13, and A23 are 3, 33, and 5 × 10-4 cm-1, respectively.  These g and A-values are similar to those of 

Tc(II) nitrosyl complexes as reported in Table S2. Of these complexes, the EPR parameters of 1 are 

most similar to those of trichloronitrosyl(acetylacetonato)-technetium, which is the only reported Tc(II) 

nitrosyl complex with an oxygen donor ligand that is similar to AHA. The spectroscopic data all support 

the proposed structure of 1 shown in Figure 1. 

 

 

Figure 4. EPR spectrum of a frozen solution of 1. The g-values of the simulation are 2.041, 2.028, and 
1.949, and the associated hyperfine coupling constants are 118, 108, and 259 × 10-4 cm-1 with smaller, 
off-diagonal elements. 
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Kinetics and proposed mechanism 

Unlike the reaction with AHA, the reaction of pertechnetate with hydroxylamine hydrochloride was 

not consistent: occasionally, different aliquots of the same mother solution of the reagents generated 

different complexes, and in some cases, no reaction was observed. The solutions generally turned yellow 

over time, indicating the formation of 3, but in some instances reaction produced 2, confirmed by UV-

vis in comparison to literature, and even reversibly turned green upon heating (likely TcNOCl5
21). Both 

2 and 3 formed more often in perchloric rather than nitric acid. The UV-vis spectrum of 3 matches the 

description of a TcIV-hydroxylamine complex, though its spectrum was not published18; it is presented 

here in Figure 5. The rate of Tc(VII) reduction by hydroxylamine was much slower than that by AHA, as 

determined by UV-vis (Table 3). 
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Figure 5. Basis spectrum of Tc-hydroxylamine. λmax = 350 nm, ε = 4360. 

Table 3. Decrease in pertechnetate; total [Tc] 0.55 mM. 

M  Rate (∆ A289nm/min) 

 Hydroxylamine AHA 

3.66 -0.00020 -0.00170 

1.83 -0.00010 -0.00020 

0.92 -0.00004 -0.00003 
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Tc(IV) hexachloride, TcCl6
2-, is often a starting material for synthesis of technetium nitrosyl 

complexes. This compound can be heated with hydroxylamine hydrochloride to form the 

tetrachloronitrosyl Tc(II) complex49.  In this study, it was found that 1 can be formed from Tc(IV) as 

TcO2•xH2O ; dissolution into AHA forms a wine-red solution with a distinct UV-vis spectrum (Figure 

S5), which upon acidification forms the yellow-brown 1, reaching equilibrium within an hour. The 

initial red complex could not be recovered even upon the addition of base (to 1.0 M) and hydrogen 

peroxide (to 1.0 M). The formation of 1 from pertechnetate was much slower than from amorphous 

technetium oxide. The overall rate of that reaction depends on the temperature, but by holding the 

temperature constant over a series of trials the partial order of each reagent in the production of 1 could 

be ascertained by observing the reaction over time (Tables 4, S3; Figure S6).  

 

Table 4: Partial reaction orders for the reaction of TcO4
- with AHA in acid. 

Formation of product, monitored at 428 nm 

HNO3 

Reagent Observed Partial 
Order 

R2 

NH4TcO4 1.028 ± 0.003 1.000 

H+ 0.991 ± 0.023 1.000 

AHA 1.968 ± 0.149 0.994 

HClO4 

Reagent Observed Partial 
Order 

R2 

NH4TcO4 0.967 ± 0.003 1.00 

H+ 1.004 ± 0.037 0.999 

AHA 1.994 ± 0.193 0.991 

Loss of TcO4
-, monitored at 289 nm 

Reagent Observed Partial 
Order 

R2 
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NH4TcO4 0.867 ± 0.055 0.996 

H+ 1.066 ± 0.052 0.998 

AHA 1.742 ± 0.171 0.991 

 

All of the complexes generated from hydroxylamine are distinct from TcII(NO)(AHA)2(H2O)+, 

indicating that the ligands on 1 are not formed from the acid hydrolysis of AHA to hydroxylamine and 

acetic acid. Attempts to form 1 from mixtures of hydroxylamine reductant and acetic acid ligand in 

nitric and perchloric acids formed other distinct complexes whose UV-vis spectra varied with the ratio 

of hydroxylamine to acetic acid (Figure S7). The UV-vis spectrum of 1 was the same regardless of 

which mineral acid was used. These results strongly support the assignment of the equatorial ligands to 

AHA.  

 

The slow rate of reaction of pertechnetate with AHA and the very rapid reaction of Tc(IV) with AHA, 

as well as the previously observed rapid reaction of Ru(III) with AHA, suggests that the technetium 

species reductively nitrosylated is a lower valent complex.  In addition, the nitrosylating agent must be 

AHA itself, since the rate of reductive nitrosylation of Tc(IV) is much faster than the rate of hydrolysis 

of AHA to hydroxylamine.  Furthermore, the observation that Tc(IV) is much more reactive than TcO4
- 

strongly supports a reductive nitrosylation mechanism similar to that previously proposed for the 

reductive nitrosylation of Ru(III) as illustrated in Scheme 1.  The proposed mechanism is closely related 

to the previously proposed mechanism for reductive nitrosylation of V(V) by hydroxylamine studied by 

Wieghardt50 and proceeds via a coordinated nitroxyl ligand previously observed51.  Since the terminal 

oxo group of Tc(VI), Tc(V) or Tc(IV) is more nucleophilic than a terminal oxo group of TcO4
-, the 

postulate that reductive nitrosylation proceeds by initial nucleophilic attack on the coordinated carbonyl 

group of AHA is consistent with the observed reactivity.  
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Scheme 1: Proposed mechanism for reductive nitrosylation of Tc(VI) (n=1) or Tc(V) (n=2)  by AHA.   

 

As the reaction of lower-valent Tc complexes with AHA is rapid, the initial step is most likely 

reduction of TcO4
- to a lower valent complex that subsequently undergoes reductive nitrosylation. The 

observed partial reaction orders provide two indications about the potential mechanism. First, steps prior 

to the rate determining step (rds) involve one TcO4
-, one proton, and two molecules of AHA. Second, 

the rate law for formation of 1 is the same as that for loss of TcO4
-; therefore all steps prior to the rds 

must be reversible. This latter fact eliminates the most straightforward mechanism for the reaction of 

TcO4
- with AHA: the direct reaction of TcO4

- with AHA to produce TcO4
2-, which will rapidly 

disproportionate to Tc(V)52.  The reaction of TcO4
- with AHA would be irreversible, yielding a rate law 

for loss of TcO4
- equivalent to k[TcO4

-][AHA], not k[TcO4
-][H+][AHA] 2, as observed. 

 

An alternative mechanism for reduction of TcO4
- to Tc(VI) is suggested by the reaction of 

alkenes with Tc(VII) complexes53. In that study, TcO4
- was unreactive, but an octahedral Tc(VII) 

complex, TcO3(AA)Cl 3 where AA is a diamine ligand such as 1,10-phenanthroline, was sufficiently 

oxidizing to react with alkenes to form a coordinated diol ligand. Likewise, TcO4
- may be insufficiently 

oxidizing to react with AHA, but an octahedral Tc(VII) complex is likely to be more oxidizing.  The 
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proposed mechanism for reduction of Tc(VII) to Tc(VI) involves a preequilibrium to form an octahedral 

Tc(VII) complex, as illustrated in Scheme 2.  Thus, the overall proposed mechanism is formation of an 

octahedral Tc(VII) complex that reacts with AHA to form an octahedral Tc(VI) complex, which either is 

reductively nitrosylated by the coordinated AHA ligand, as illustrated in Scheme 1, or disproportionates 

to form an octahedral Tc(V) complex that is reductively nitrosylated by the coordinated AHA ligand. 

 

TcO4
- + AHA  TcO3(OH)(η2-AHA) -  K1 

TcO3(OH)(η2-AHA) - + H  TcO3(OH2)(η
2-AHA)  K2 

TcO3(OH2)(η
2-AHA) + AHA    TcO3(OH2)(η

2-AHA) - + AHA+ k3, irreversible, rds 

Scheme 2: Proposed mechanism for reduction of TcO4
- by AHA in aqueous acid. 

 

Extraction. In the absence of AHA, pertechnetate extraction into TBP was consistent with literature 

reports54. Pertechnetate reduction begins immediately upon contact with acidic AHA, as does the 

decrease in the extraction of Tc; the change in Kd with time is shown in Figure S8. The increase of 1 

from an initial solution of 0.5 mM NH4TcO4 and 1M HNO3, charted as a function of AHA concentration 

via its absorbance maximum, can be correlated with a decrease of the technetium distribution between 

the aqueous and TBP phases. Figure 6 shows this relationship after the reaction has proceeded 24 hours. 
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Figure 6. Correlation of absorbance of 1 at 428 nm with the distribution factor into 30% TBP-dodecane 
after 1 day. Triangle, Kd; diamond, A428nm. 
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The reduction and complexation of technetium by AHA, even before complete transformation to the 

nitrosyl complex, inhibits its extraction into TBP. Even at 0.5 M AHA and 1.0 M HNO3 - conditions 

close to UREX+ - there is an immediate effect, culminating in a 42% reduction of the distribution 

constant after 1 day compared to the reaction without AHA. At 4.0 M AHA, only 1.4% of the Tc can be 

extracted after 1 day. When the reaction is allowed to proceed for just 4 hours, then washed 5x with 

TPACl to remove pertechnetate42, only 2% of the total Tc is extracted, compared with 1.5% for the best 

known cationic technetium nitrosyl, Eakins’ pink complex, and 2% of the red Tc-AHA complex 

generated from Tc(IV). When chloride is substituted for the coordinated AHA 1 by dilution into 

concentrated HCl (Figure S9), the anionic Tc(NO)Cl4
- complex formed is extracted into TBP with a Kd 

of 0.92, very similar to the 0.95 of pertechnetate.   

 

This information indicates that the formation of a Tc nitrosyl complex does not necessarily affect the 

extraction of Tc; rather, it is the formation of a hydrophilic AHA complex that inhibits the extraction of 

Tc. These complexes may take time to form at 20 °C, but at the elevated temperatures likely during 

reprocessing, their formation may be significantly faster. 

 

Although the pH is changing, the distribution coefficient measured from pH -0.6 (calculated) up to 11 

was the same within error (Table S4).  The concentration of Tc in the organic phase was so low as to be 

immeasurable, and the difference in the concentration in the aqueous phase before and after extraction 

was within the error of the measurement; essentially no Tc is extracted into the organic phase. 

 

Conversely, 3 extracts well into TBP, with a Kd of 1.35. The UV-vis spectrum in organic solvents is 

identical to that in aqueous solution.  For this reason, extraction can be used to separate 3 (presumably 

Tc(IV)(AHA) 2) product from 2 after the reaction of pertechnetate with hydroxylamine. 
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Conclusions 

 

The observation of pertechnetate reduction by AHA under conditions similar to reprocessing, and its 

subsequent effect on the extraction behavior of Tc, is surprising and important. Currently, the UREX+ 

flowsheet indicates that AHA is added to the dilute nitric acid scrub solution, which is loaded with U, 

Tc, Np, and Pu, rather than the feed solution, which contains the spent fuel dissolved in concentrated 

nitric acid.  With reduced concentrations of competing noble metal fission products, especially 

ruthenium, which may also be converted into nitrosyl complexes, reductive nitrosylation of techenetium 

needs to be considered if AHA is going to be used in the UREX+ process since. 

 

The Tc-nitrosyl structure determined by EXAFS is consistent with previously reported TcNO and 

metal-AHA structures. The facile formation of this complex from AHA without side products should 

advance interest in the synthesis low-valency TcNO complexes directly from pertechnetate, especially if 

this reaction works with other substituted hydroxamic acids. More work is needed to determine whether 

the presence of actinides will affect the formation of these complexes, and thus the fate of technetium in 

the fuel cycle. 
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[TcNO(AHA)2H2O]+  

Synopsis. Ammonium pertechnetate is reduced and complexed by acetohydroxamic acid in aqueous 

nitric and perchloric acids under conditions close to those proposed for reprocessing spent nuclear fuel . 

The resulting hydrophilic technetium(II) nitrosyl complex, TcNO(AHA)2 (H2O), is not extracted by a 

solution of tri-n-butylphosphate in dodecane diluent. This reaction could impact the proposed nuclear 

fuel cycle. 




