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ABSTRACT OF THE THESIS

Onyx: A Phase-Change Memory Storage Array

by

Ameen Daniel Akel

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Steven Swanson, Chair

This thesis describes a prototype, high-performance, solid-state drive based

on first-generation phase-change memory (PCM) devices called Onyx. Onyx has

a capacity of 10 GB and connects to a host machine via PCI-Express. This thesis

also describes the PCM DIMMs that make up Onyx, including the PCM memory

devices used, and the FPGA-based controller that manages the PCM DIMMs.

This thesis provides insight into the PCM DIMM design process and shows the

changes required to integrate future-generation PCM. This thesis also describes

my experience with an existing wear-leveling technique, which I implemented in

Onyx in order to manage wear. My results show that Onyx outperforms a state-

of-the-art FusionIO ioDrive flash memory SSD for both reads and small writes.

Also, I show that Onyx also incurs significantly less CPU overhead per IOP for

x



small requests, which has the advantage of saving power. My results also show

that a first-generation PCM-based SSD performs on par with a flash-based SSD

in real-world workloads. As part of my study, I address the performance impact

of start-gap wear-leveling in Onyx.
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Chapter 1

Introduction

Flash memory has recently been the front-runner in the revolution of fast,

non-volatile storage systems. Bandwidth-hungry data consumers have found suc-

cess with fast, flash-memory-based systems such as FusionIO’s ioDrive [8], among

other offerings. While flash memory provides significant performance increases over

other non-volatile technologies (such as disk and tape), it does so with a significant

increase in complexity. Flash Translation Layers (or FTLs) add both complexity

and latency to flash-based systems, which limits the performance of these new

flash-based solid-state drives (SSDs). A new non-volatile memory technology–

phase-change memory (PCM)–is poised to provide similar or better gains than

flash memory, while avoiding the increased complexity brought by FTLs in flash-

based SSDs.

Predictions for future generations of PCM show that it will scale better

than flash memory in terms of density and performance [9]. PCM also allows for

in-place updates of data, versus the cumbersome erase and program process of

flash memory. This advantage also removes the necessity for a complex translation

layer (or FTL for flash memory), which decreases overall request latency for small

requests, lower total system power, and reduce overall CPU usage in a PCM-based

storage system. However, PCM exhibits its own usage quirks: non-uniform read

vs. write access times, wearout challenges, among other issues, which I explore in

this study.

In this work, I have built Onyx [3]: A system based on the Moneta SSD

1
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with PCM DIMMs in place of the original DDR2 DRAM. Onyx is a PCI-Express-

attached PCM SSD controlled by a highly optimized block driver. Onyx contains

8 GB of logically addressable PCM and an additional 2 GB of ”out-of-band” PCM

storage. In this paper, I describe the design of the PCM DIMMs that comprise

Onyx and Onyx’s PCM controller.

I also present results which compare the performance of Onyx to a state-

of-the-art flash-based, PCI-Express-attached SSD from FusionIO and the original

Moneta hardware. I found that Onyx performs at over 1.1 GB/s for reads and

outperforms datasheet expectations by up to 34% for writes. The results also show

that Onyx outperforms the FusionIO flash SSD for reads. However, although Onyx

outperforms the flash SSD for small writes under 2 KB, the flash SSD outperforms

Onyx for larger write requests.

The key observation from Onyx, and its comparison to the flash-based SSD,

is that correctly-architected PCM-based storage arrays have become and will re-

main formidable competitors for high-end flash-based SSDs, especially for work-

loads which require frequent small-sized accesses or workloads dominated by read

requests.



Chapter 2

Previous Work

2.1 Moneta SSD

Much of the Onyx SSD is based upon from the Moneta SSD design [7] [6].

Moneta is a fast, PCI-Express attached SSD. Moneta is comprised of both a hard-

ware and software stack that aim to minimize latency and maximize concurrency.

This section describes the hardware and software of Moneta.

Hardware Description

Moneta (shown in Figure 2.1) contains a central control unit called the

brain, a ring network, and eight memory controllers. The Moneta brain controls

and tracks requests as they move throughout the SSD: The brain receives requests,

schedules those requests throughout the system, and stores request information in

a scoreboard. The brain also includes a set of transfer buffers which store the data

it receives or sends via DMA from or to the host machine. The Moneta brain

interfaces with the rest of the system via a ring network. The ring network also

connects the eight memory controllers, which interface with the memory in the

DIMM slots.

The Moneta system (whose architecture is shown in Figure 2.2) is built atop

the BEE3 system [5] developed for use in the RAMP project [15]. Moneta connects

to a host machine via an eight-lane PCI-Express 1.1 connection, and can handle

3
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Figure 2.1: This shows the original version of Moneta’s high-level architecture.

up to 64 oustanding requests at a time. Four FPGAs connected in a ring–each

connected to two banks of two DDR2 DIMM slots–make up the physical Moneta

hardware.

Software Description

Moneta’s software stack consists of the operating system IO stack (Linux,

in Moneta) and the Moneta kernel driver. The driver issues requests through

PCI-Express to the Moneta hardware. The Moneta kernel driver is optimized for

parallel, low-latency accesses to hardware. It bypasses the Linux IO request sched-

uler, utilizes atomic PIO writes to issue requests and limit contention, processes

completed tags in parallel, and takes advantage of spin-waits to decrease latency.
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Figure 2.2: This shows the BEE3 prototyping system architecture. Both Moneta
and Onyx were built atop the BEE3 platform.

2.2 Start-Gap Wear-Leveling

Onyx employs a low-overhead wear-leveling technique developed at IBM

Research called start-gap wear-leveling [14]. The goal of start-gap is to distribute

the wear of a non-uniform write access pattern uniformly across the memory array,

such that the technique limits the wear on a single location in memory. Start-gap

does this by rotating the logical to physical address mapping for an array after a

fixed number of writes to that array. The technique accomplishes this with only

two registers: a start register and a gap register each representing a logical line in

memory, and a few gates worth of comparison and arithmetic logic. [13] includes

further improvemens to the start-gap technique.

The start-gap technique subdivides the memory space into a number of lines

(generally N = 2n total lines: 2n − 1 active lines and one spare, or gap, line). The

gap line begins at the last logical address in the array, while the start line initially

points to the head line in the memory array. Every G, or ”gap write interval”,

number of writes, the scheme swaps the gap line with the line logically before

it in the array. Every subsequent G writes, the gap line continues this pattern.
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Once the gap line reaches the top of the array, the start line points to the next

logical line in the array, and the gap line swaps with the bottom line in the array.

With this in mind, the logical to physical address (PA) translation for an access to

logical address LA becomes simple arithmetic: If (LA + start)%N >= gap, then

PA = (LA+ start)%N + 1; otherwise, PA = (LA+ start)%N .



Chapter 3

The PCM DIMM

In place of the DDR2 DIMMs on which Moneta stores data, Onyx uses a

set of custom-designed PCM DIMMs. This chapter describes the PCM used, the

PCM DIMM architecture, problems with the current revision of the PCM DIMM,

and potential changes for future PCM DIMMs.

3.1 The PCM Module

The PCM DIMM design uses Micron’s first generation P8P 16 MB PCM

devices (part number NP8P128A13B1760E) [2]. The PCM provides a NOR-flash-

like interface to the array. The devices provide 23 address bits, 16 data lines, and a

number of other interface lines (e.g. write enable, output enable, and chip enable).

To issues writes on a device with a NOR-like interface, a controller should send a

command and an address over the device’s IO lines, followed by a series of data

chunks. For a read, a controller should send a command and an address and wait

for the device to complete the read operation. Once the read has completed, the

controller should read the data in chunks from the device. Also, in NOR flash

devices, a device must perform an erase on an entire flash block before individual

cells may be programmed. However, unlike NOR flash, the PCM devices allow for

arbitrary bit-level writes to the memory array, which does away with flash-style

erase commands. The P8P device exposes various commands (e.g. read array,

write, buffered write) through which reads and writes take place. Future PCM

7
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devices should not be restricted to the limited NOR-flash-like interface that the

P8P parts provide, as it is not a limitation of the PCM technology itself.

3.1.1 P8P Command Interface

Reads to the P8P PCM are asynchronous. In order to read data from the

device, a controller must first place the device into read array mode, which primes

the PCM device to accept read commands. The controller should then set the

address lines, which places 16 bytes of data into an internal buffer. The controller

then toggles the output enable signal to stream the data from the internal buffer.

Writes are available in two forms: 16-bit writes and buffer-sized writes

(or buffered writes). Onyx uses buffered writes as its primary write mechanism

because buffered writes provide higher bandwidth to the PCM array. Compared

to writes, buffered writes require a more involved sequence of events. First, a

controller must send the buffered write command to the device and poll the status

register of the device until it has completely initialized its internal buffer. Then,

the controller sends a metadata packet followed by up to 64 bytes (one buffer’s

worth) of data. After the device receives a ”buffered write start” command, it

begins writing the buffer to the PCM array. Again, the controller must poll the

device’s status register to determine when the write has completed and the data

has been completely committed to the non-volatile array.

3.1.2 P8P Performance and Durability Characteristics

Theoretical maximum bandwidths and minimum latencies for both the read

and buffered write commands are reported in the P8P datasheet: Reads require

314 ns for every 16 bytes and buffered writes require 120 µs for every 64-byte buffer

of (random) data. PCM write latency varies based upon the actual data written.

The above latencies estimate the maximum read and buffered write bandwidths

per device of 48.6 MB/s and 0.5 MB/s, respectively.

Like other recent non-volatile memories (such as flash), PCM devices have

a tendency to wear out, and cause data corruption on both writes and reads. The
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P8P datasheet states that these devices have an average lifetime of one million

write cycles before the first bit error will appear.

3.1.3 P8P Voltage and Power Requirements

Each P8P PCM device operates between 2.7 and 3.6 V. IO voltages to the

device must be within the range of 1.7 and 3.6 V. According to the datasheet, a P8P

PCM device can draw up to 50 mA. This only occurs during write operations, as

read operations only require 42 mA and a device in standby requires only 160 µA.

While high current usage for operations appears to be normal for PCM devices,

the higher voltage requirement does not appear to be.

3.2 BEE3 Limits

Pin assignments, board dimensions, and power requirements are the most

important design constraints that I budgeted for in the DDR2 DIMM replacement

design. This section outlines the specifics of each constraint.

Pin Assignments

Each DDR2 socket in the BEE3 exposes 240 pins to the attached board.

Of the 240 pins: 64 ground pins, 11 power pins, 11 IO power pins, one reference

voltage pin, six I2C pins, one reset pin, and 11 reserved pins make up the set of

usable pins in the replacement card design. 135 pins remin for use as IO. The two

DDR2 DIMMs share 130 of those pins. The remaining five pins uniquely connect

to each DIMM in the pair.

Board Dimensions

The BEE3 enclosure only allows for a card height of just over 46.5 mm.

Also, the DDR2 socket imposes a number of dimension constraints on the design

of a DDR2 DIMM replacement card: Each card must measure exactly 133.35 mm

wide and 1.27 mm thick to meet the criteria of the DDR2 socket.
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Power Requirements

A conventional ATX power supply unit–the Thermaltake TR2-4800W–

provides power for the BEE3 system [4]. In order to accurately estimate the

available power budget available to each DIMM, I traced through the multitude of

power systems that exist throughout the BEE3. The BEE3 manual provides more

information about the BEE3 power distribution network.

Power to the DIMM sockets originates from one of two 12 V/168W rails on

the PSU. Each 12 V rail provides power through three TI PTH08T210W power

modules. One of these modules provides 12 V to 1 V conversion to the two FPGAs

powered by this 12 V rail. The remaining two modules provide 12 V to 1.8 V

conversion to both the FPGAs and the eight DIMM sockets–each module powering

one FPGA and four DIMM sockets.

From estimates in the BEE3 manual, the first power module uses 28.56 W

to power the two FPGAs. This leaves 139.44 W for the two remaining power

modules. Further estimates from the BEE3 manual point to a power conversion

efficiency of 88.9% for each of the 12 V to 1.8 V power modules. This yields a

total of 41.994 W of available power for one FPGA with its DIMM sockets. The

FPGA on this rail could require up to a maximum of 10 W power from this power

subsystem. This leaves the four DIMM sockets with a power budget of 31.994 W.

3.3 Logical PCM DIMM Description

The two major goals of the PCM DIMM design were to maximize both

the read/write bandwidth and the capacity per board. This section discusses the

former while the next secion will elaborate on the latter. Since the P8P PCM chips

perform better than flash memory for reads and on the order of flash memory for

writes (120 µs per operation from Section 3.1.2), the PCM DIMM design optimizes

for write performance. To accomplish this, the design must maximize the number

of devices actively written to at any given time.

One design that satisfies this goal divides the available chips into groups

which execute an operation simultaneously, where all of the devices in each group
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share chip enable lines. I refer to devices grouped in this fashion as a rank. The

P8P PCM module device architecture provides a chip enable for each device, where

a device will only accept commands when a controller asserts this signal.

To simplify the PCM DIMM interface, I limited the data interface width–

or rank width–to a power-of-two devices. This reduces the complexity of striping

through Onyx, and easily maintains a contiguous address space throughout the

system. Also, since data integrity issues and wearout plague PCM, the PCM

DIMM design must include storage for error correcting codes, or ECC, and other

metadata. With the above restrictions in mind, a PCM DIMM rank must contain

a power-of-two number of devices plus an additional device for ECC and other

metadata, or 2M + 1 devices per rank (where M is defined below). Analysis in

Section 3.4 shows that a designer may place a maximum of eight ranks per PCM

DIMM.

In order to determine the number of chips that can operate in each rank, the

design must consider the number of total signals that must interface with the host

FPGA. All the chips on the pair PCM DIMMs share the following signals from the

FPGA: output enable, write enable, write protect, reset, and power good. Since

the design calls for independantly controllable ranks, each of the eight ranks require

a chip enable signal. Each DIMM uses an additional pin as a DIMM enable. Also,

each P8P PCM module also exports 23 address bits. Of the 135 pins, 99 pins

remain for the data interface. Since each P8P PCM module has 16 pins, M has an

optimal value of two (in 2M + 1 above). This requires an additional 80 pins. Eight

LEDs and a collection of forwards-compatible pins (for the next-generation Micron

PCM) use the remaining 19 pins. I discuss the next-generation Micron PCM pins

in Section 3.7.

3.4 Physical PCM DIMM Description

3.4.1 Physical Dimensions

With the physical design constraints from Section 3.2 in mind, each PCM

DIMM is 46.5 mm tall, 133.35 mm wide, and 1.27 mm thick (not including part
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thicknesses). These dimensions–minus reserved space for the DDR2 DIMM socket

pins, power converter circuitry, and other periphery– yielded enough space for 40

total chips per side. I did not populate both sides of the PCM DIMM because

of the additional routing complexity and strain on the PCM DIMM power sys-

tem. Likewise, the cost of fabrication for the PCM DIMM would have become

prohibitively expensive (because of the added routing layers to accomadate the

additional chips). Figure 3.1 shows a picture of the PCM DIMM.

Figure 3.1: This is an image of a PCM DIMM. Each DIMM contains 40 P8P
PCM parts, a boost converter, among other peripherals. Each DIMM contains
640 MB of non-volatile storage.

3.4.2 Peripheral Parts

The PCM DIMM also integrates a number of different parts to either sup-

port the function of the P8P PCM or perform other auxiliary tasks. The following

sections describe the peripherals in more detail.

Capacitors

Each PCM DIMM contains a number of different capacitors: small de-

coupling capacitors, medium decoupling capacitors, and very large atomic-write

capacitors. The small decoupling capacitors (0.1 µF) are evenly distributed across

the power plane on the back side of the PCM DIMM, at a frequency of six capac-

itors per PCM module as recommended in the P8P PCM datasheet. The medium

decoupling capacitors (4.7 µF) are likewise distributed at a rate of one for every six
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PCM devices. The atomic-write capacitors provide enough power for any number

of writes on a particular PCM DIMM to complete in the event of power loss. The

amount of capacitance provided by these capacitors totals 2.82 mF. The model for

current usage per PCM device used to derive this value models a simple RC circuit

with the worst-case current usage and buffered write operation time from the P8P

datasheet. As of this writing, the effectiveness of the atomic-write capacitors have

yet to be verified in a real system experiment.

Boost Converter

In order to provide conversion from the 1.8 V provided by the DDR2 DIMM

socket to the 3 V required by the P8P PCM, I use the LTC3425EUH four-phase

boost converter from Linear Technologies [10]. The converter requires four exter-

nal inductors and a number of resistors and capacitors to perform its function.

Section 3.5 provides more detail on the power conversion systems in the PCM

DIMM.

Other ICs and LEDs

The design employs a I2C EEPROM to store identification information on

a per-PCM DIMM basis. The EEPROM connects to the reserved I2C data lines

in the DDR2 DIMM standard. The PCM DIMM also employs two OR gates to

control its chip enable lines. Each set of OR gates interfaces with a DIMM enable

and a chip enable, so that a chip enable assertion will only apply to the PCM

DIMM that is currently selected (since chip enable lines are shared amongst PCM

DIMMs in a pair). A set of eight green LEDs are connected directly to the FPGA

via PCM DIMM pins. Some of these LEDs are connected to shared pins while

others are connected via DIMM-unique pins.

3.5 Power System

Since the P8P PCM chips require a significant amount of power, power

conversion for the PCM DIMMs is a non-trivial task. As noted in Section 3.2,
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each DDR2 DIMM socket provides 1.8 V. Also, Section 3.1.3 shows that each

P8P PCM device requires a voltage between 2.7 and 3.6 V. The design uses a

voltage of 3.0 V on the recommendation of Micron engineers, so as to strike a

balance between high performance and higher reliability. Section 3.1.3 also defines

the current usage of the P8P PCM module as no greater than 50 mA. I use this

estimated current throughout the power system calculations in order to provide

conservative estimates for the power budget.

Given the operating voltage and estimated current usage of a P8P PCM

module, each module requires no more than 165 mW of power. Across 40 chips,

each PCM DIMM requires up to 6.0 W of power (or 2 A at 3 V). According to the

LTC3425EUH datasheet, the IC will operate at an approximate efficiency of 88.5%

when converting from 1.8 V to 3.0 V at 2 A. This requires 6.78 W at the input of

the boost converter in order to satisfy its power requirement. My analysis ignores

the other subsystems in the PCM DIMM because of their relative insignificance

when compared to the power usage of 40 P8P PCM modules (< 10 mA at 3.0V).

So, for a four-DIMM group, the total power required is 27.12 W. This meets the

power budget of 31.994 W available at the combined inputs of the DDR2 DIMM

sockets.

The design of the PCM DIMM power system was one of the more significant

challenges in developing Onyx. Because the PCM devices draw a large amount of

current (and therefore a large amount of power), the power system needed to

provide enough current at the right time for all of the operating devices without

becoming unstable or lowering the operating voltage below the operating range

of the PCM devices. I overcame the challenge through exhaustive modeling of

the proposed power system through Linear Technology’s LTSpice circuit simulator

[11] and through real-world testing with a mock PCM DIMM modeled with passive

resistors.
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3.6 Potential PCM DIMM Improvements

Throughout the testing phases of the PCM DIMM bringup, I suggested a

couple of design improvements. Most are not critical features, but aid in initial

board bringup. One suggested improvement provides a method for current mea-

surement on the PCM DIMMs themselves. Although this addition is not trivial,

it is a feature that may prove to be useful in future experiments. The second

improvement exposes regular test points for all PCM DIMM signals. This helps

with both bringup, and helps debug non-functional boards.

3.7 Changes for New Micron PCM

New 45 nm PCM from Micron Technologies will bring a number of welcome

changes that affect the PCM DIMM design: lower supply voltages (and thereby

lower power), higher capacity, and synchronous reads. Characteristics of the new

45 nm PCM come from a preliminary datasheet provided by Micron [1].

3.7.1 Lower Supply Voltages

The 45 nm generation of PCM will operate within the supply voltage range

of 1.7 to 2.0 V, in contrast with the 2.7 to 3.6 V range of the P8P PCM modules.

Since the BEE3 supplies 1.8 V at the DDR2 DIMM socket, the 45 nm PCM will

not require voltage conversion. This eliminates the boost converter (or any similar

IC) from the next-generation PCM DIMM design. The complexity savings will

afford cheaper board manufacturing costs, and the space savings will allow for

potentially more PCM on the board.

3.7.2 Higher Capacity

A P8P PCM module only provides 128 Mb worth of storage; however, a

45 nm PCM module providess 1 Gb worth of storage. This will increase the amount

of storage per PCM DIMM by 8×, without any changes in module count. This

will increase the total capacity from 640 MB to 5 GB per PCM DIMM. This also
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impacts the physical design of the PCM DIMM: 45 nm PCM requires 26 address

bits versus the 23 in the P8P PCM modules. This addition already exists in the

current version of the PCM DIMM.

3.7.3 Synchronous Reads

45 nm PCM also brings about faster, synchronous reads. This requires

additional signals: address valid, clock, and wait. These signals already exist in

the current PCM DIMM design; however, the next designer should examine the

merits of length-matching these traces in the next PCM DIMM revision.



Chapter 4

The Onyx PCM SSD

The Onyx system operates almost identically to the Moneta system de-

scribed in Section 2.1. The increased number of transfer buffers (from eight to

16) and the memory controllers (DDR2 DRAM to PCM) make up the only major

differences between the Moneta SSD and Onyx SSD designs. Figure 4.1 shows an

overview of the modified Moneta design that comprises Onyx. I use the remainder

of this section to describe the Onyx memory controller.

4.1 The Onyx Memory Controller

Onyx employs a custom PCM memory controller which translates requests

received from the ring and schedules them on the correct PCM DIMM rank. Here,

I describe the inner workings of the Onyx PCM memory controller.

4.1.1 Functional Description

Of the four PCM DIMMs connected to each FPGA, a single memory con-

troller controls two. Figure 4.2 shows the internal architecture of each of the two

memory controllers in each Onyx FPGA.

17
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Figure 4.1: This shows the modified version of Moneta’s high-level architecture
which comprises Onyx. It is comprised of the brain module, a ring network, 16
transfer buffers, and eight memory controllers.

Start-Gap Module

The ring interface receives requests over the ring. That module passes

the requests to the start-gap wear-leveling module, which applies the principles

described in Section 2.2. As a result of the discussion in Section 5.2, I set the

start-gap line size in Onyx to 4 KB, and G, or the ”gap write interval”, to 128

writes.

The start-gap module also breaks up the requests receieved over the ring

into 64 byte chunks and passes the address and data components of each chunk on

to the next stage through the address and data FIFOs shown in Figure 4.2.
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Figure 4.2: This is a high-level depiction of Onyx’s PCM memory controller.
This design allows Onyx to maximize write parallelism for an access pattern which
targets all ranks.

Request Scheduler

The request scheduler is the heart to the Onyx memory controller design. It

translates addresses to the proper locations in the PCM DIMM arrays, schedules

requests among the available ranks of PCM, and also tracks, queries, and completes

outstanding write requests.

A read request in the memory controller does not require much state: The

request scheduler sends out a read request to the appropriate rank(s) and processes

the next request. However, a write request is more complex. Upon receiving a

write request, the request scheduler marks the requisite rank(s) associated with

the incoming address as busy in the scoreboard. The active list structure then

stores a pointer to the current request. The request scheduler streams the data

associated with this request from the incoming data FIFO and the addresses from

the address FIFO to the PCM control module to a specific rank in the PCM array.

Since the request scheduler keeps track of requests at rank granularity, it
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processes requests on up to 16 ranks at any given time (with the current PCM

DIMM design). This allows the request scheduler to overlap the long PCM write

latency with other requests. This optimization allows Onyx to achieve its write

bandwith performance.

The request scheduler also tracks and generates status requests, which poll

the PCM ranks (through the PCM control module) for the status of their write

requests. A small amount of state tracks which ranks have outstanding status

requests. This logic sends out status requests for ranks that both have a write

outstanding but no outstanding status check. This ensures that each rank is con-

sistently checked for completion. When a status check makes its way back through

the PCM response FIFO, the request scheduler checks to see if all of the chips

on a given rank have finished their write requests. If there are no outstanding

writes in a given rank, the request scheduler clears the corresponding state in the

scoreboard.

Scoreboard Control Detail

Though the scoreboard appears above as a single structure, the underlying

pieces are more sophisticated. Outstanding write request metadata storage requires

two-cycles, and involves three data storage structures: the scoreboard, the write

table, and active/free lists. Figure 4.3 demonstrates this relationship.

The write table stores data on a write-request basis: Each entry in the

write table represents the number of outstanding writes to individual PCM ranks.

A zero in an active entry represents a completed write request. The scoreboard

contains an entry for each rank abstracted by the PCM DIMMs (16 entries in

this revision of Onyx). Each write request represented in a write table entry is

comprised of writes to one or more ranks, or one or more entries in the scoreboard.

With that in mind, each entry in the scoreboard contains a pointer to its ”parent”

write table entry.

Here is a short illustration of how the scoreboard functions. When the

request scheduler processes a write, a pointer to the first free entry in the write

table (read from the free list and transferred to the active list) is stored into the
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Figure 4.3: This details the Onyx memory controller’s scoreboard. The score-
board tracks requests on each rank, while the write table tracks outstanding write
requests. The active list stores active entries in the write table, and the free list
stores empty entries.

scoreboard entry for the rank that will process the first part of this write. On the

following cycle, the scoreboard state machine increments the allocated entry in the

right table to signify that one rank is processing the data for this request. If this

write request spans more than one rank, the state machine repeats that process

for each rank involved in the request.

When a request completes, the request scheduler clears an entry in the

scoreboard, which signals the scoreboard control logic to decrement the proper

write table entry (pointed to by the reference in the soon-to-be-cleared scoreboard

entry). This process continues until the write table entry for a particular request

reaches zero, at which time the request completion module completes the request.

Request Completion

Onyx allows for two different methods for write request completion: early

and late. Early completion allows for a write to be signaled as complete (back to
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the Onyx brain, and thereby the host system) as soon as the entire request has

been read out of the FIFOs in the request scheduler. This allows Onyx to overlap

PCM write times with the request latency through the system. The Onyx system

guarantees that all requests for which it generates write completions will be written

to the PCM array in the event of any power loss through the use of large system-

wide and PCM-DIMM-wide capacitance. The late completion scheme completes

requests only when a write request has been written to the PCM array.

The request completion module both frees completed requests from the

write table and generates write completion signals for the late completion scheme.

This module montiors the write table (in the order that requests were sent to the

memory controller). When all of the ranks processing the parts of a write request

have completed (and the relevant write table entry reaches zero outstanding ranks),

the request completion module transfers that entry in the write table from the

active list to the free list. It is at this point that the Onyx memory controller

generates a late write completion request.

PCM Control

While the request completion module generates requests intended for the

PCM array, it only generates high-level requests and does not deal with the in-

tricacies of communicating with the PCM. The PCM control module handles this

communication.

Requests destined for the PCM array come through the PCM request FIFO.

The PCM control module translates these requests into low-level requests sent

directly to the PCM. This module also verifies that the PCM array is ready for

data on a buffered write operation and communicates status request results back

through the PCM response FIFO. Lastly, the PCM control module routes data

read from the PCM array for read requests back to the ring interface.

4.1.2 Design Improvements

A few design improvements may potentially increase the performance or

resource usage of the Onyx memory controller and the Onyx design as a whole:
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increased clock speed from 125 MHz to 250+ MHz, out-of-order completions, early

completions at the Onyx brain, background erasing for faster write performance,

and write suspends.

Clock Speed Increase

The current memory controller design for Onyx runs at 125 MHz. An

increase in clock speed of the Onyx memory controller increases the total read

bandwidth overall as a result. 8 ns (125 MHz) is the current cycle time of the

design. A single page-mode read in the current generation of PCM requires 25 ns

per chunk of data; however, the current memory controller design can only read at

32 ns increments (without data corruption). This wastes 7 ns per chunk of data

read. An increase in clock speed to 250 MHz decreases the wasted cycle time to

3 ns–which results in a significant increase (around 100 MB/s for large reads) in

read bandwith for large accesses. Small read operations will see a less-significant

improvement in bandwidth. This increase in clock speed also benefits writes and

status requests, however, marginally. This improvement requires partitioning the

request scheduler state machine, as it is the most complex part of the memory

controller design.

Out-of-order Completion

Out-of-order completion support is a more daunting task, and would not

provide a significant benefit in the presence of the early completion request strategy.

It requires a number of interface changes between the start-gap module and the

request scheduler, which allows for write completion notifications to be sent out of

order (the current design only allows for write completion requests to be generated

in the order that requests are sent to the request scheduler). Once this interface can

accomodate out-of-order completion notifications, the request completion module

must be modified to take into account all active entries in the write table instead

of solely the oldest active entry.
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Brain Completion

Brain completion support allows the system to mitigate more overhead (ring

transfer time, etc.) by allowing new requests to be sent through the system sooner.

The design contains a version of this change, however, it does not yet function

correctly. Changes required for this improvement would be more implementation

rather than architecture-based.

Background Erases

While PCM, unlike flash, does not require erase operations between writes

or programs, erased areas of the PCM array program faster than non-erased areas.

Writes on erased areas of the 90 nm PCM devices require (typically) 41% less

programming time than their non-erased counterparts. This gap deepens for 45 nm

PCM, as writes on erased areas require 58% less programming time. There are a

few disadvantages to this improvement: If applied too aggressively, this technique

exposes a significant amount of extra wear on the PCM (in the worst case, half of

the lifetime will be consumed by erases). Also, if this technique is executed just

before an incoming write, it can potentially increase the write latency of a request

(though use of the erase suspend command may mitigate the negative impact of

this scenario).

Background erases require changes to the request scheduler, as that module

would best know when to optimally execute an erase. Also, potentially, the design

can employ prediction heuristics to determine the best time in which to execute a

background erase.

Write Suspends

Because of the long write latencies for current-generation PCM, mixed (read

and write) workloads can suffer if a read follows a write to the same PCM DIMM

rank (but not to the same location). The Onyx system can suspend ongoing writes

in order to service other requests, like reads in order to lower read latencies. This

paper mentions a similar technique [12]. Write suspends allow Onyx to lower the

read latency of requests in specific cases. The new 45 nm PCM limits the benefits
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of this improvement with the introduction of partitions and simultaneous inter-

partition operations (Section 4.1.3). In order to fully implement write suspends,

the request scheduler needs the ability to determine when a write suspend should

be initiated, and the PCM control module must either stall a request until the

suspend goes into effect or communicate the status of the suspend back to the

request scheduler.

4.1.3 Changes for New Micron PCM

The new Micron 45 nm PCM includes a number of new features, many of

which Section 3.7 addressed at the PCM-DIMM-level. This section addresses the

PCM changes that will affect the Onyx memory controller design: larger internal

write buffers, simultaneous interpartition read/write operations, and synchronous

read operations.

512-byte Internal Write Buffers

The new Micron PCM includes larger 512-byte write buffers (compared with

64 bytes). The buffers allow for more data storage per buffered write operation.

This highlights a shortcoming in the Onyx memory controller: Without changes,

the smallest possible write request becomes 2 KB (instead of 256 bytes). This

problem exists because of the interface currently exposed to the Onyx memory

controller. Requests enter the memory controller as 32 byte increments, and no

indication is given of the size of the request as a whole. So, in order to support

buffered writes, the memory controller must assume that the current request will

satisfy a minimum of one rank’s worth in buffered writes. This is not a problem

with the 90 nm PCM, as the minimum write size is 64 bytes-per-buffer across four

chips per rank (or 256 bytes); however, with the new 90 nm PCM, the minimum

write size becomes 512 bytes-per-buffer across four chips per rank (or 2 KB). The

problem is exacerbated by the fact that the PCM write protocol requires the size

of the buffered write to be communicated to the PCM before any data is sent

to the PCM. A couple feasible solutions exist for this problem: restructuring the

interface into the request scheduler so that it communicates the size of the current
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request or buffering one request’s worth in data in the request scheduler before it

issues a write command to the PCM. Resource and performance-conscious design

points to the former solution.

Simultaneous Interpartition Read and Write Operations

The new 45 nm PCM partitions its storage into 16×64 Mb blocks. The

device also allows for two simultaneous operations to occur on different partitions,

with some restrictions. The most useful set of operations allows for both a read

and a write to occur simultaneously. The request scheduler and scoreboard logic

will need to be aware of differing partitions and need to be able to schedule both

reads and writes on the same rank (given the correct circumstances).

Synchronous Read Operations

The next generation of PCM exposes a faster, synchronous interface from

which to read data from the PCM array. This will allow for faster reads, as long

as the reads satisfy the burst-length (at least 4, 8, or 16 words) and alignment

constraints. The largest burst-length (16 words across four devices per rank):

128 bytes, does not pose the same problem that exists in the larger-write-buffer

case above. The main changes required to properly support synchronous writes

are limited to the protocol-laden PCM control module, as it needs to support the

new ADV, WAIT, and CLK signals.

Portions of the content in Chapter 4 appeared in the Proceedings of the

3rd USENIX Conference on Hot Topics in Storage and File Systems, 2011. A.

Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson. Onyx: A Pro-

totype Phase Change Memory Storage Array. The thesis author was the primary

investigator and author of this paper.



Chapter 5

Onyx’s Performance

This section uses both a microbenchmark and a real-world application to

measure Onyx’s performance. I also use the microbenchmark to tune striping

performance of Onyx, to understand the CPU usage of Onyx, and to characterize

the performance impact of start-gap wear-leveling in Onyx.

5.1 Raw Performance

Figure 5.1 shows the results of the microbenchmark XDD [16] on Onyx

compared with the results from FusionIO’s 80 GB ioDrive [8] flash SSD and the

Moneta SSD. XDD performs reads and writes to a raw device, and measures the

bandwidth of that device as a function of request size. In Figure 5.1, the results

show the bandwidth of a particular device as a function of both request size and

benchmark type (100% reads, 100% writes, and 50% reads/writes). Table 5.1,

Table 5.2, and Table 5.3 show the results from Figure 5.1 for reads, writes, and

read/writes (respectively) in a tabular format. The XDD benchmarks all employ

16 IO threads, unless otherwise specified.

For reference, the measured random read and write latencies for the ioDrive

are 36 µs and 60 µs, respectively. For the Moneta device the measured random

read and write latencies are 13 µs and 14 µs, respectively.

The results show that Onyx sustains over 1.1 GB/s for large-request-size/device-

bandwidth-limited reads and over 340 MB/s for writes with early completion no-

27
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Graph 5.1: This graph depicts the results of a bandwidth versus request size
study, which compares Onyx (with both early and late completion methods), Mon-
eta, and the FusionIO ioDrive.
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Table 5.1: This table demonstrates the read bandwidth results shown in
Graph 5.1. Onyx outperforms the ioDrive in terms of read bandwidth across all
request sizes (by between 7% and 300%). Moneta outperfoms both.

Access Size (bytes) Read Bandwidth (MB/s)
Onyx FusionIO Moneta

512 183.865 46.074 338.157
1024 350.364 93.422 720.615
2048 581.633 192.413 1272.399
4096 701.020 381.316 1334.618
8192 851.713 791.569 1504.561
16384 1022.392 885.925 1743.099
32768 1131.279 894.507 1742.896
65536 1142.802 899.541 1742.348
131072 1094.287 899.364 1743.424
262144 1147.993 899.087 1742.788
524288 1112.242 904.800 1740.112
1048576 1114.176 903.606 1742.847
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Table 5.2: This table demonstrates the write bandwidth results shown in
Graph 5.1. The Onyx-Early results show a significant improvement over Onyx-
Late. Onyx-Early outperforms the ioDrive for writes up to 2 KB, the reverse
occurs for larger requests.

Access Size (bytes) Write Bandwidth (MB/s)
Onyx-Late Onyx-Early FusionIO Moneta

512 33.398 95.384 44.531 327.433
1024 64.393 145.077 87.213 518.534
2048 107.629 196.384 179.637 974.390
4096 139.072 226.045 291.704 1286.862
8192 164.643 236.118 504.485 1595.978
16384 206.857 287.123 562.643 1737.253
32768 233.694 313.177 563.129 1739.333
65536 234.023 330.814 564.271 1737.388
131072 240.230 333.963 563.587 1737.372
262144 246.084 339.665 561.792 1737.772
524288 249.590 340.820 561.918 1737.508
1048576 248.879 338.282 557.153 1741.268

Table 5.3: This table demonstrates the bandwidth results for a 50% read/write
workload shown in Graph 5.1. The results of the read/write workload show similar
trends to those in the write-only workload.

Access Size (bytes) 50% Read/Write Bandwidth (MB/s)
Onyx-Late Onyx-Early FusionIO Moneta

512 60.775 126.421 38.871 316.787
1024 112.733 202.849 78.639 526.501
2048 189.761 314.063 153.875 1135.785
4096 281.868 424.427 290.316 1720.071
8192 344.614 487.003 509.003 2317.422
16384 417.928 540.693 629.320 3159.317
32768 474.233 607.689 698.708 3152.228
65536 446.594 570.224 731.198 3161.368
131072 460.417 579.057 737.300 3093.404
262144 453.781 573.664 715.835 3094.214
524288 457.365 573.811 694.755 3039.301
1048576 461.622 565.913 678.558 2916.509
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tifications enabled. Given that each PCM device, from Section 3.1.2, theoretically

supports up to 48.6 MB/s for reads and 0.5 MB/s for writes, Onyx nearly meets the

projected large-request-size read bandwidth of 1.5 GB/s and exceeds the projected

write bandwidth of 256 MB/s by up to 34%.

The data also compares the performance difference between early and late

write completions. As expected, the completion method does not affect the read

performance of Onyx; however, early completion notifications improved write per-

formance by between 32% for large requests and 147% for small requests. The data

for the 50% read/write benchmark show similar gains. Because of its superior per-

formance, the Onyx system uses early completion notifications for the remainder

of the paper.

The benchmarks also compare the performance of Onyx to that of the

FusionIO ioDrive and the Moneta SSD. Onyx outperforms the ioDrive for reads of

all request sizes (by between 7% and 300%); however, more diversity exists for write

performance. Onyx outperforms the ioDrive for smaller writes (through 2 KB) by

between 9% and 114%; however, the ioDrive outperforms Onyx by between 29%

and 113% for writes larger than 2 KB. I attribute the performance increase through

2 KB requests to the complex Flash Translation Layer (FTL) that the ioDrive uses,

which is not present in Onyx (and which PCM SSDs will not require). I attribute

the difference in write performance for larger request sizes to raw write performance

differences of the underlying technology in each SSD: The write performance of the

late-generation raw flash devices outperforms that of first-generation Micron PCM.

With this in mind, I predict that with next-generation PCM from Micron, a future

version of Onyx will outperform the ioDrive in both reads (by 2×) and writes

(by 5-6×). The data for the 50% read/write performance shows that there is no

disadvantage of performing both reads and writes simultaneously in either system,

as the results show an average of both pure read and pure write performance. The

Moneta results show significant performance improvements versus both Onyx and

the ioDrive. Specifically, the Moneta results show an upper bound for future Onyx

performance.
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5.2 Effects of Stripe Size

Graph 5.2: A 4 KB stripe size provides the best read performance in Onyx. A
4 KB stripe allows for efficient transfer buffer usage and high memory-controller-
level parallelism.
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This study varies the granularity at which Onyx stripes data across its eight

memory controllers. Figure 5.2 shows the results of this study for read bandwidth

across request size with XDD. The data show that the optimal stripe size for Onyx

with current-generation PCM stands at 4 KB. This result largely depends on the

size of the internal buffers in current-generation PCM. For reads, smaller request

sizes provide for better read bandwidths; however, because of the transfer buffer

space allocation in Onyx, not enough 1 KB requests reach the memory controller

to provide the appropriate read parallelism. I expect that smaller stripe sizes will

outperform larger stripe sizes as design changes address this shortcoming in the

Onyx brain.

Write stripe size selection depends upon the internal characteristics of the

PCM: Section 3.1.2 reveals the internal write buffer size of current-generation PCM

as 64 bytes. Across 16 ranks of 4 PCM devices per rank, each memory controller

commands an internal write buffer size of 4 KB. As mentioned above, the internal

write buffer capacity at each memory controller directly influences the optimal

stripe size for writes. A stripe size larger than the write buffer size would queue
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the remaining data for a request at the memory controller. The additional requests

would incur an additional write latency penalty as the PCM devices processed the

other write requests. A stripe size less than the buffer size (with the current

transfer buffer allocation scheme in Onyx) would waste buffer space. In this case,

the system would not queue up enough requests at the memory controller to exploit

the maximum amount of parallelism. With this discussion in mind, all of the results

presented for Onyx in this paper assume a stripe size of 4 KB.

5.3 CPU Usage

Due to the relative simplicity of Onyx’s driver in comparison to that of the

ioDrive’s, Onyx uses less CPU time per operation than the ioDrive. A system using

Onyx uses 20-51% less CPU time per IO operation with the XDD benchmark. This

reduction in CPU time also yields a savings in total system power. This advantage

also increases the availablity of CPU time for other computation in the system.

5.4 Effects of Start-Gap

Graph 5.3: Start-gap interval selection has a significant impact on bandwidth,
because it interferes with request parallelism, while its impact on latency is less
significant.
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Figure 5.3 shows the effect of varying G (the gap write interval) on both

write latency and write bandwidth with XDD. The x-axis varies the gap write
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interval from four writes per gap move to 128 writes per gap move. The last

data point on the x-axis shows the result of each test while start-gap is off. The

write latency data (right axis) shows results using a single XDD thread performing

4 KB accesses to a single memory controller. The write bandwidth data (left axis)

shows results for a 16-threaded XDD run across the entire Onyx device. The effect

of start-gap on the latency of a single write request in Onyx is minimal: The

write latency only varies by 23 µs across the gap write interval sweep. This shows

that write latency through the Onyx software and hardware stacks overshadows

the latency penalty associated with a gap move. However, start-gap significantly

affects Onyx’s write bandwidth: The data show that bandwidth can vary by up to

80 MB/s from a gap write interval of four to a system without start-gap. From this

data, a system designer can deduce that selecting a gap write interval as small as 32

writes will minimally impact the performance of Onyx (around 10 MB/s in terms

of bandwidth and a negligible impact on latency). As defined in Section 4.1.1, the

Onyx system assumes a gap write interval of 128.

5.5 Real-world Applications

Graph 5.4: The BerkeleyDB results show real-world performance of each system
under test: Onyx, the FusionIO ioDrive, and Moneta.
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This section measures the real-world performance of Onyx versus the io-

Drive and Moneta with a database benchmark called BerkeleyDB (BDB). Fig-

ure 5.4 shows the results of two distinct BDB storage benchmarks: HashTable,
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which stores its database in the form of a hash table, and BTree, which stores its

database in the form of a b-tree. The employed BDB configuration includes full

transaction support and performs synchronous IO. The BDB benchmark performs

transactional swaps of the values of two keys in the database. The graph shows

the results of the best performing thread count for each device: one for the io-

Drive, four for Onyx, and two for Moneta. While the ioDrive outperforms Onyx

for the BTree benchmark at 48% greater operations per second, Onyx outperforms

the ioDrive for the HashTable benchmark by sustaining 21% greater operations

per second. Moneta outperforms both the ioDrive and Onyx in both BDB bench-

marks, and, as in the raw performance results, shows an upper bound for Onyx

with faster PCM.

Portions of the content in Chapter 5 appeared in the Proceedings of the

3rd USENIX Conference on Hot Topics in Storage and File Systems, 2011. A.

Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson. Onyx: A Pro-

totype Phase Change Memory Storage Array. The thesis author was the primary

investigator and author of this paper.



Chapter 6

Conclusion

Onyx shows the current state of PCM-based storage arrays and allows de-

signers to understand the idiosyncrasies of PCM as a storage medium. This ex-

ploration of first-generation PCM as the storage medium for a fast, non-volatile

SSD shows PCM’s viability as a flash alternative for certain workloads, and that

future-generation PCM will only improve its viability.

While Onyx performs well in many regards, it has yet to overcome many

challenges: Future designers must integrate and tune for future-generation PCM,

find ways to further increase parallelism to take advantage of PCM’s long-latency

writes, among other tweaks to the Onyx architecture. However, even with a sig-

nificant amount of oustanding challenges, Onyx has shown that, with the correct

design choices and optimizations, first-generation PCM SSDs are a viable and

formidable alternative to state-of-the-art flash memory SSDs.
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