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bDepartment of Molecular Biology and Biochemistry, University of California, Irvine, California 
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Abstract

DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside 

triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the 

cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs 

observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic 

detection of dNTP analog incorporation enable exploration of the mechanism and limits to base 

discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase 

during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that 

can lead to evolution and genetic disease. Further improvements in time resolution and noise 

reduction of single-molecule studies will uncover deeper mechanistic understanding of this 

critical, first step in evolution.

Graphical abstract

Introduction

DNA polymerases have long served as models for successful and highly discriminating 

molecular recognition. The ability to select the correct deoxynucleoside triphosphate (dNTP) 

substrate from an assortment of closely related molecules is a key mechanistic step in the 

enzyme’s catalysis of DNA polymerization. Advancements over the last 5–10 years allow 
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observation of nucleotide incorporation in real-time at ultrafast time scales via observation 

of enzyme motions during catalysis [1–7]. Incorporation of dNTP analogs in combination 

with these recently developed techniques provide new insights into mechanisms of 

molecular recognition essential for the function of DNA polymerase [5,8,9].

Non-cognate substrates for DNA polymerization, including ribonucleoside triphosphates 

(rNTPs) and dideoxynucleoside triphosphates (ddNTPs), represent the molecular recognition 

challenge faced by DNA polymerase. The rNTPs, for example, are present at >10-fold 

higher concentrations than dNTPs in the cell [10], yet are rejected as substrates by DNA 

polymerase. Experiments with such substrates have generated insights into the enzyme’s 

preferences and formed the basis for sequencing technologies (e.g., Sanger sequencing using 

ddNTPs) [8,9,11–13]. Base-modified dNTP analogs can probe molecular recognition of both 

the incoming dNTP substrate and an appropriately substituted template base [5,14–19]. This 

review will survey the key biophysical techniques that have employed dNTP base and ribose 

analogs and the insights gained from these studies. Additionally, the limitations associated 

with current techniques and potential areas in which nucleotide analogs could be employed 

will be examined. The discussion will focus on studies of A-family polymerases, including 

the large fragments of DNA polymerase I from Escherichia coli (KF), Thermus aquaticus 
(KlenTaq), and Bacillus stearothermophilus (BF).

Crystallography provides insight with static visualization

High resolution crystal structures provide static images of polymerases at different stages of 

nucleotide incorporation. Historically, important crystallographic studies “trapped” DNA 

polymerase in the “closed” conformation – the result of a large reorientation of the fingers 

subdomain necessary for catalysis [20]. Comparison of the “open” and “closed” crystal 

structures revealed additional intra-protein and protein-primer/template (protein-P/T) 

interactions. New insights gained from crystal structures, including those in the presence of 

nucleotide analogs, can guide fluorescent and other experimental techniques to dissect 

nucleotide incorporation. For example, the recent discovery by time-resolved X-ray 

crystallography of a third Mg2+ cation necessary for catalysis revises our understanding of 

the “closed” structure of DNA polymerase [21].

DNA polymerase crystal structures from the past several years present a more thorough 

picture of enzyme nucleotide selection through co-crystallization with non-cognate 

substrates (Table 1). For example, rNTPs result in non-productive conformations of the O 

helix in the fingers subdomain [12]. One of the most interesting discoveries identified an 

“ajar” BF conformation in the presence of a mismatched dNTP; the position of the active 

site’s O helix is intermediate between the “open” and “closed” states via a kink at residue 

G711 (Figure 1) [13]. Complexes with rare tautomers of incoming dNTPs [22], bulky dNTP 

analogs [14], and unnatural base pairs [15,16] also resulted in an “ajar” conformation. Taken 

together, these results indicate that various structures of polymerases can accommodate 

binding, but not catalysis, of some non-cognate substrates, and the resultant ajar 

conformations represent frozen states along the pathway for nucleotide discrimination.
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Nucleotide analogs used in many biotechnological applications contain various functional 

groups, including fluorescent tags and sites for bioconjugation, on the C5 position of 

pyrimidines or the C7 position of 7-deazapurines (examples structures can be found in [18]). 

Recent crystal structures further illustrate the flexibility of the KlenTaq active site to accept 

different modified nucleotides, identifying even specific residues required to stabilize the 

unnatural conformation [17]. The authors also identified alkene-modified nucleotides with 

more efficient incorporation than their native counterparts as supported by crystal structures 

of catalytically competent complexes. Why the polymerase preferentially incorporates 

alkene-modified nucleotides over alkyne-modified nucleotides remains unclear, however 

[19]. Using inspiration from the accommodating polymerase active site, a more 

comprehensive study with BF observed aromatic bases of dNTPs with strong affinity for an 

active-site arginine, which interacts with the dNTP via a π-cation interaction [24]. A recent 

review further expands on these polymerase crystal structures solved in the presence of 

modified nucleotides [18]. Despite the great deal of knowledge gained from crystal structure 

determination in the presence of nucleotide analogs, these static images by themselves do 

not provide adequate information about the kinetics and dynamic motions of specific and 

non-specific dNTP and dNTP analog incorporation events.

From static to dynamic: molecular dynamics simulations

Molecular dynamics (MD) simulations model protein motions using the crystal structures of 

DNA polymerase as starting points. The technique can uncover key aspects of enzymatic 

catalysis not observable by conventional experimental techniques. For example, the driving 

forces behind conformational transitions associated with catalysis, including nucleotide 

selection, can be identified. Simulated fluctuations of BF in the absence of substrate model 

the “open” to “ajar” transition as requiring less than 20 ns. This BF simulation suggested 

that the “ajar” intermediate acts as an energetic barrier to opening, and promotes correct 

dNTP incorporation [25]. A recent crystal structure of an “open” ternary BF complex 

allowed simulation of the events in active site assembly, which appears to include 

desolvation of the incoming dNTP [26]. As described, computer simulations have theorized 

persistently elusive rapid motions. However, simulations over short time scales require days 

to weeks of computational analysis. In any case, more advanced experimental techniques are 

required to support such data.

Molecular dynamics via single-molecule fluorescence experiments

Conformational fluctuations occur over a broad range of time-scales in equilibrium, and 

cannot be detected through ensemble-averaged experiments due to averaging from the large 

number of non-synchronous molecules in the population [27]. To address this limitation, 

single-molecule biophysical methods to measure DNA polymerase reactions can answer 

unresolved questions about nucleotide selectivity and DNA replication fidelity [28]. 

Fluorescent techniques, developed largely over the last two decades, allow observations of 

previously inaccessible transient intermediates during correct or mutagenic incorporation by 

DNA polymerases.
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The low quantum yields of fluorescent base analogs often limit their value in single-

molecule studies, which can require sensitive probes of the local environment. In a newly 

developed assay, however, single-molecule fluorescence with 2-aminopurine and pyrrolo-C-

containing templates were characterized for the first time in DNA and RNA, respectively 

[29]. A new thymidine analog, N,N-dimethylaniline-2’-deoxythymidine, has sensitive 

fluorescent properties that could be adapted to single-molecule experiments [30]. 

Characterization of fluorescent analogs in single-molecule experiments sets the stage for the 

application to polymerase dynamics during nucleotide incorporation. However, 

environmentally sensitive fluorophores alone do not always clarify which structural changes 

are associated with the fluorescent fluctuations.

Förster resonance energy transfer (FRET)-based assays permit distance measurements by 

defined placement of two fluorophores that undergo energy transfer only when in close 

proximity to one another. Single-molecule FRET (smFRET) is especially powerful, as it 

measures conformational motions along reaction pathways at millisecond timescales [31]. 

For these experiments, crystallographic information can suggest the placement or choice of 

fluorophores after defining the interaction to be explored. Non-nucleotide fluorophore pairs 

provide a direct readout of conformational transitions during incorporation of dNTP analog 

substrates by DNA polymerase. Alternatively, fluorescent base analogs have potential as 

acceptor fluorophores on the P/T [32] or as the incoming dNTP substrate.

Unique intermediate FRET signatures, suggested to be fidelity checkpoints, occur between 

the “open” and “closed” states of KF in the presence of mismatched dNTPs [33–35]; these 

signatures are likely representative of the “ajar” crystal structures previously observed for 

BF [13]. Complementary nucleotides also produce an intermediate FRET signature that is 

short-lived and barely detectable, indicating the transient presence of this state along the 

catalytically relevant reaction pathway [33]. Observation of this intermediate step, 

previously unobserved for correct nucleotides, underscores the importance of this sensitive 

single-molecule technique.

In recent lifetime-resolved smFRET measurements, fluorogenic and pro-fluorogenic 

substrates indicated local changes in the microenvironment of intermediate or final reaction 

products [36,37]. This use of fluorogenic substrates as FRET acceptors could be coupled 

with a recently developed smFRET sensor that avoids use of a functionalized polymerase 

[38]. While such a system would certainly be appreciated in the investigation of phosphoryl 

transfer and pyrophosphate release by DNA polymerase, careful design of substrates will be 

required for successful catalysis. Overall, smFRET can uncover important aspects of 

nucleotide incorporation, but its limited time resolution can conceal rapid subdomain 

dynamics during this mechanism.

Current and potential single-molecule sequencing techniques as 

mechanistic tools

Polymerase-driven single-molecule technologies with potential for DNA sequencing can 

double as formidable tools for understanding the enzyme’s fidelity mechanism (Figure 2). 

By taking advantage of the enzyme’s biophysical characteristics during the substrate 
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recognition stage of polymerase catalysis, some sequencing approaches serve both basic 

research and applied methodology. One current example is a strategy used with nanopore 

devices, which are comprised of a thin membrane containing a biological or solid-state 

nanopore through which captured ssDNA can cause changes in ionic current [39,40]. 

Another DNA polymerase-monitoring technology relies on voltage-gating of single-walled 

carbon nanotube field-effect transistors (SWCNT-FETs). These devices, developed in our 

lab, provide a readout of the charged amino acids on the enzyme’s surface that move within 

1 nm of the nanotube during catalysis [4].

Recent nanopore sequencing systems measure motion of motor proteins with approximately 

7–8 times more spatial sensitivity than FRET [41,42]. A-family polymerases captured atop a 

nanopore in an applied electric field allow detection of polymerase-dependent DNA 

extension with single-base resolution [1]. The rate of polymerization by the DNA 

polymerase controls ssDNA translocation through the pore [2,3,43–45]. One notable study 

using nanopores analyzed rNTP- versus dNTP-bound ternary complexes and demonstrated 

distinct intermediate complexes with increasing stability. This study established the first step 

of complementary base recognition, followed by a deoxyribose recognition state, then 

fingers-closing, and finally an active site rearrangement [9]. These nanopore-based 

experiments have also recognized enzyme-P/T binary complex and enzyme-P/T-dNTP 

ternary complex discrimination [43], incorrect dNTP binding [2], and pre-equilibrium 

kinetics [46]. Nanopore devices based on ϕ29 DNA polymerase have facilitated 

understanding of deoxyribose discrimination [8], substrate binding, and dynamics of 

translocation [7,47].

Other strategies could be adapted to observe polymerases within a nanopore and further 

analyze catalysis. Advances in the nanopore system itself, including the optimization of 

applied potential and salt concentration, increase the system’s sensitivity for identifying 

differences in nucleotide structure [48]. In one strategy, nanopores with internally bound 

proteins [49] could evaluate a single enzyme over long time scales by measuring small 

changes in the protein’s conformation. In a second strategy, translocation of a protein-P/T 

complex through a nanopore could sequentially evaluate various single-molecules and 

permit determination of an activity distribution from single-molecule populations [50,51].

A new single-molecule electronic technique for examining DNA polymerase was initially 

developed in our lab to detect conformational transitions during catalysis by various 

enzymes, including KF [4]. Although the exact nature of the observed conformations for KF 

is unclear, distinct states have been observed for dNTP analogs [5]. These unique states 

implicate active site residues in a fidelity-checking mechanism, and are likely affected by 

changes in the analogs’ electronic distribution. This result provides a novel opportunity – 

perhaps “electronic” analogs can be optimized with electronic-based experiments in the 

same way that fluorescent base analogs are with fluorescent-based techniques. Despite a 

recent report that touted the short probe-able distance from electronic biosensors as a 

limitation [52], this distance-limited sensitivity can in fact be an advantage to reduce noise 

from more distant and extraneous protein motion. Recently, the dNTP-induced fingers-

closing transition was observed with a commercial biosensor that also revealed previously 

unidentified tight binding states for Taq and KF, and could presumably be expanded to 
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measure analog incorporation [6]. The location of attachment is significant for the thermal 

stability of immobilized enzymes [53] and rapid, stable immobilization in a reproducible, 

specific orientation is required for consistent, sensitive detection [54].

Concluding remarks

Nucleotide analogs that are easily accepted by polymerases provide a strategy to probe the 

enzyme’s response to closely related substrates and explore the mechanistic underpinnings 

of mutagenesis. The enzymes described here exhibit broad tolerance for dNTP analogs, 

which make their tremendous fidelity all the more remarkable. The alternative and 

intermediate conformations trapped by such analogs clarify how the enzymes test each 

potential substrate’s fit before catalysis.

Continued development of techniques to study DNA polymerase offers both new DNA 

sequencing approaches and insight into this machine at the heart of cell division and life. 

Experimental limitations inherent to the study of the rapid, non-rate-limiting steps of the 

DNA polymerase reaction, however, prevent complete structural characterization of its 

mechanistic intermediates. Even the millisecond timescale of state-of-the-art fluorescent 

experimental techniques can be insufficient for observing subdomain motions during 

nucleotide incorporation. Techniques with improved time resolution, elongated time scales, 

and minimal non-native modifications are required to further elucidate the dynamic 

processes of DNA polymerase catalysis. Improvement in single-molecule biophysical 

techniques will continue to clarify the precise nature of nucleotide selection through 

experiments with non-native substrates.
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• DNA polymerases must differentiate between closely related deoxynucleoside 

triphosphate and other substrates

• These enzymes have a surprising tolerance for dNTP analogs

• Observing incorporation of dNTP analogs by DNA polymerases may provide 

insight into the mechanisms of mutagenesis as a first step in evolution

• Single-molecule biophysical methods for DNA polymerization of dNTP 

analogs developed over the past 5–10 years will be discussed
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Figure 1. 
An “ajar” conformation of Bst polymerase (magenta, PDB ID: 3HT3) was identified in the 

pathway from “open” (light blue, PDB ID: 1L3T) to “closed” (dark blue, PDB ID: 1LV5) for 

a mismatched incoming dNTP. The motion of the O helix, responsible for molecular 

recognition of the dNTP, is especially notable for a “kinking” effect along the 

conformational pathway. The position of this kink along the O helix at residue G711 is 

indicated by the green arrow.
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Figure 2. 
Single-molecule electronic techniques to measure DNA polymerase activity in the presence 

of nucleotide analogs. a) Nanopore sequencing is a commercialized technology that reads 

DNA nucleobases via an ionic current blockage unique to each base. The development of 

this technique also enabled measurements of distinct DNA polymerase-P/T complexes in the 

presence of mismatched nucleotides or other incorrect substrates. b) Single-walled carbon 

nanotubes (SWNTs) functionalized with polymerase molecules provide a read-out of 

enzyme motion. This type of measurement is possible due to charged amino acids on the 

polymerase surface that change the SWNT conductivity. Observations of novel signals for 

nucleotide analogs compared to native, complementary nucleotides during base 

incorporation support the potential of this technique for DNA sequencing.
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