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PREFACE 

 

In mammals, a typical night of sleep is composed by successive 

episodes of Slow Wave Sleep (SWS), Intermediate Sleep (IS) and Rapid 

Eye Movement (REM) sleep. In humans, IS and SWS are further 

subdivided into stages I and II and into stages III and IV, respectively. 

REM sleep is also strongly associated with dreaming in humans. IS tends 

to act as a transition state between SWS and REM. Throughout the night, 

there is a progression towards less SWS and more REM sleep. 

Electroencephalograms (EEGs) associated with these sleep stages follow 

a 1/f distribution, i.e. higher frequencies EEGs have smaller raw 

amplitudes and thus less spectral power. SWS are characterized by high 

amplitude and low frequency EEGs while REM sleep corresponds to a 

more “awake-like” raw signal with low amplitudes and high frequencies. 

Brief EEG landmarks known as spindles and K-complexes are often seen 

in IS.  

 While diverse neurotransmitters are known to be selectively 

activated in REM and Non-REM (NREM) sleep, the underlying 

mechanisms leading to these patterns are not known. In the cortex, a 
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higher degree of synchrony has been observed across neurons in SWS 

than in REM. Moreover K-complexes as well as the interdigitation of high 

and low frequencies as observed in EEGs have been recorded in the 

cortex. This suite of observations, which has never been observed outside 

of mammals, has led many to believe that the cortex was necessary for 

their generation.  

 Recent studies in zebra finches have however shown a sleep 

dependent replay of activity similar to that observed in mammals, 

suggesting that birds and mammals alike might be using similar features 

of sleep to consolidate information. A detailed study of avian sleep was 

thus needed in order to gain a better understanding of the roles of the 

cortex in sleep oscillations as well as the role of sleep in learning. 

 The systematic study of sleep in a new species is hampered by the 

same assumptions one makes when assessing sleep in pathological cases 

or genetically modified animals as there is no guarantee one can a priori 

use the same set of rules than in healthy human controls and wild type 

rodents. Moreover the guidelines used to assess sleep in the latter groups 

rely on the Rechtschaffen-Kales (RK) method. This method is based on a 

set of rules which make two important assumptions about sleep and 
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EEGs: 1) that scoring rules should minimize the degree of fragmentation 

of each sleep state, 2) a simple threshold can suffice to delineate certain 

sleep stages, i.e. that EEGs are linearly separable. Based on the 

implementation of these rules, the same 30 second segment of EEG data 

can be assigned a different designation depending on which 3 minute 

window the 30 sec epoch resides in -therefore suggesting that brain 

activity could be entirely different when the patterns produced are the 

same. These rules have been difficult to adhere to in humans their 

applicability has been increasingly called into question. This is mainly 

due to the individual variability in both sleep scorers and subjects (both 

longitudinally and across subjects). Given the somewhat poor reliability 

across human scorers, neural networks developed to emulate human 

scoring have been lacking in performance and further fail to make their 

clustering variables known. Thus, almost 40 years after the formulation of 

RK, sleep researchers and clinicians are bound to rely on human scoring 

of multiple electrophysiological channels in addition to behavioral 

monitoring in order to make more accurate classifications of sleep. There 

is thus an urgent need in the sleep field to formulate a new system to 
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classify sleep, one that makes the fewest assumptions about the data and 

which can be broadly applied across individuals and across laboratories.  

  My work in birds shows that finches produce patterns strikingly 

similar to the ones produced by mammals, even though they lack a 

neocortex. These observations were validated by both manual and 

automated scoring. The approach I developed for human sleep reveals 

human sleep to have a fine structure, observable in multiple subjects 

across multiple laboratories. This structure is apparent using a single 

channel of data, usually EEG, and can be used to develop powerful sleep 

scoring algorithms. Consequently, human REM sleep should no longer be 

perceived as being “awake-like” or “paradoxical.” 

Besides their ease of application, these analyses demonstrate a yet 

unreported convergence of sleep patterns across phylogeny as well as 

clearer taxonomy of sleep within clades: a new way to look at sleep.  
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ABSTRACT OF THE DISSERTATION 

 

A New Way To Look At Sleep: 
Separation & Convergence 

 
 
 

by 
 

 
 

Philip Steven Low 
 
 
 

Doctor of Philosophy in Biology / Specialization in 
Computational Neurobiology 

 
University of California, San Diego, 2007 

 
 

Professor Charles F. Stevens, Chair 
 
 
 
 Despite over 70 years of active research in mammalian EEGs, most 

of the neural structures responsible for sleep and waking rhythms have yet 
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to be identified. At time of writing, three major beliefs pervade the field 

of sleep: 

 

1)  The neocortex is largely necessary for the 

production of “mammalian” sleep rhythms;  

 

2) Human REM sleep is “paradoxical” insofar as 

the oscillations produced during REM sleep are 

“awake-like”;  

 

3) Human sleep can only be objectively analyzed 

by human scorers.  

 

This way of looking at sleep is in need of major revision, as: 

 

1) Birds, devoid of a neocortex, can produce oscillations 

which bare great similarity with those observed in 

mammals, in terms of both their raw signals and 

ultradian properties; 
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2) A temporal map of brain activity produced using a 

single channel of EEG is sufficient to clearly show that 

REM sleep and Waking have different and separable 

EEG profiles. Human REM sleep is therefore not 

paradoxical. 

 

3) Sleep and Waking Stages can in fact be easily  

identified computationally using a single channel of 

EEG, obviating the need for human based sleep 

scoring.  

 

Moreover, it appears that low-passing from the skull reflected in 

EEGs can be easily circumvented, thus providing researchers and 

clinicians with a non-invasive window into brain activity, with high 

resolution in both the time and frequency domains.  Furthermore, the 

possibility of there being yet another human sleep state should be fully 

explored.  The use of these and similar techniques will hopefully 
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minimize the significant strain placed on both humans and animals in at 

least the contexts of medicine as well as basic and clinical research. 



 

1 
 

CHAPTER 1 

 

Figure 1.1. Preferred Frequency Space. Every dot corresponds to the frequency with 
the highest normalized power value throughout the entire night at a given 30 second 
window extracted from a single channel of EEG. Colours and symbols are drawn from 
manual labeling (SWS = white, IS = cyan, REM = red, W = yellow, M = white 
diamonds). Raw data courtesy VA.  
 

Most of my doctoral work can be immediately traced back to 

 the concept outlined in this figure or treated as an elaborate variation, 

corollary or motivation thereof. Further refinements, explanations, 

implications and applications are put forth in the Preface, Abstract and,  

in significant detail, in the following Appendix.
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APPENDIX 
 

CHAPTER A1 
 

Mammalian-like Features of Sleep Structure in a Songbird 
 
 

A suite of complex electroencephalographic patterns of sleep 

occurs in mammals. In sleeping zebra finches, we observed slow wave 

sleep (SWS), rapid eye movement (REM) sleep, an intermediate sleep 

(IS) stage commonly occurring in, but not limited to, transitions between 

other stages, and high amplitude transients reminiscent of K-complexes. 

SWS density decreased while REM density increased throughout the 

night, with late-night characterized by substantially more REM than SWS, 

and relatively long bouts of REM. Birds share many features of sleep in 

common with mammals, but this collective suite of characteristics had not 

been known in any one species outside of mammals. Our results falsify 

the hypothesis that the patterns of sleep common in mammals require a 

neocortex. We hypothesize that shared, ancestral characteristics of sleep 

in amniotes evolved under selective pressures common to songbirds and 

mammals, resulting in convergent characteristics of sleep. 
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In mammals, a typical night of sleep is composed by successive 

episodes of Slow Wave Sleep (SWS), Intermediate Sleep (IS) and Rapid 

Eye Movement (REM) sleep. In humans, IS and SWS are further 

subdivided into stages I and II and into stages III and IV, respectively. 

REM sleep is also strongly associated with vivid dreaming in humans. IS 

tends to act as a transition state between SWS and REM. Throughout the 

night, there is typically a progression towards less SWS and more REM 

sleep. Electroencephalograms (EEGs) associated with these sleep stages 

follow a 1/f distribution, i.e. higher frequencies in the EEG have smaller 

raw amplitudes and thus less spectral power. SWS is characterized by a 

high amplitude and low frequency EEG signal while REM sleep 

corresponds to a more “awake-like” raw signal with lower amplitudes and 

higher frequencies (1-2). Brief EEG landmarks known as spindles and K-

complexes are often seen in Non-REM sleep (NREM) (1, 3-4). Since this 

suite of characteristics has never been observed outside of mammals, it 

has been proposed that the cortex was necessary for its generation (5-6).  

 

It is now well established that avian and mammalian forebrain 

organization share far more commonalities than has traditionally been 
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recognized (7).  These similarities are observed at molecular, cellular, and 

systems levels (8). A new terminology has been created to correct 

misconceptions especially regarding the avian forebrain, and which 

recognizes forebrain homologies comparing birds and mammals (8-9). Of 

relevance to this report, direct reciprocal thalamocortical projections have 

been implicated in generation of sleep rhythms in mammals (6).  These 

are not known in birds, but recent studies have identified descending 

recurrent projections of sensory pathways in birds that might serve similar 

functional roles, for example in the auditory system (10-11). 

 

Both REM and NREM are known for birds, with sleep in most 

species being dominated by NREM with brief REM episodes (12), 

although passerine birds exhibit greater amounts of REM (13-14). 

Circadian patterns in REM and NREM are commonly known in birds 

(15), and there is also fragmentary evidence regarding other 

characteristics (16). From these bases, and given our interest in sleep-

dependent mechanisms of birdsong learning, we explored the organization 

of sleep states in zebra finches. 
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We chronically implanted five birds with EEG electrodes, three 

with bilateral electrode pairs. From the recordings made after birds 

acclimated to the recording environment (including a cable leading to an 

overhead commutator), one full-night record was selected for each bird. 

These records were characterized by good quality EEG signals with 

relatively few movement-related or other artifacts and video monitoring 

of eye movements throughout the night (see Experimental Procedures).  

Sleep is associated with species-specific postures. Zebra finches 

commonly adopt a head-forward position and occasionally a head-

backward position during sleep. Our birds adopted both positions. 

Although we did not assess the relative frequency of these two behaviors 

compared to controls, this suggests that the birds experienced relatively 

undisturbed sleep in our experimental conditions. 

 

The EEG data from these recordings were scored both manually 

and automatically. Manual scoring relied on visual inspection of EEGs in 

parallel with scoring of overt behaviors such as eye, head and body 

movements. Sleep stages were scored in 3 s epochs to achieve sufficient 

temporal resolution for the rapid stage transitions commonly observed. 



6 

 
 

Manual scoring classified each epoch as either REM, NREM or awake. 

REM occurred reliably in conjunction with eye and low amplitude head 

movements, as seen in other species (3, 17). The eye movements were on 

the order of one saccade per second.  The head movements were not as 

reliable, but tended to follow the directional movement of the eyes when 

present. As well as visible differences in EEG waveforms, during NREM 

birds breathed slowly and regularly; eye and head movements were slow 

and infrequent, did not follow a stereotypical pattern and were quite 

distinct from those in REM.  

 

Automated scoring relied on 3 s EEG power spectra computed over 

2 orthogonal tapers following a standard multitaper estimation technique 

(18), over 1 s increments. Automated scoring was restricted to the data 

collected from sleeping birds as defined by manual scoring (i.e. excluding 

awake and artifacts). The automated scoring initially subdivided the sleep 

data into REM, NREM, SWS and non-SWS (NSWS). Epochs that were 

scored neither as REM nor as SWS were labeled as IS. While IS was 

observed by visual inspection, it was not systematically distinguished 

from SWS. Epochs that were automatically labeled as both REM and 
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SWS were relabeled as outliers. There were very few outliers in the data 

(Table A1.1). The agreement rate between manual and automated scoring 

was calculated by assessing each epoch scored as REM by only the 

manual or the automated scoring as an error, resulting in an average 

agreement rate of  84.30 ± 3.81 % (mean ± S.E.M.) (Table A1.1, Figs. 

A1.5). 

 

Full night spectrograms of the EEG signals identified temporal 

variations in power in the 1-4 Hz (Delta) and 30-55 Hz (Gamma) 

frequency bands, which were selected for automated classification of 

sleep stages.  The interdigitation of power in Delta and Gamma observed 

in the birds (Fig. A1.1A) was similar to interdigitation of low and high 

frequencies reported for cat cortical local field potentials (LFP) (Fig. 

A1.1B) (19). The power in Delta was used to separate SWS from NSWS. 

Since REM was not linearly separable from NREM in Gamma, the power 

ratio Gamma/Delta was used as a more robust parameter to extract REM. 

This separation of epochs into different stages was accomplished using a 

k-means clustering algorithm. Three additional variables were included 

for both separations: the standard deviation of the 3 s waveform and the 
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absolute values of the differences in Delta power and Gamma/Delta 

between successive and preceding epochs. REM epochs formed segments 

which punctured the sleep data in the latter variable at a 1 sec temporal 

resolution (Fig. A1.5). 

 

In each bird, a multivariate ANOVA on the 5-dimensional 

clustering space separated REM, SWS and IS (P < 0.001). When plotting 

Delta, Gamma/Delta and the differences in Gamma/Delta, SWS would 

form a spear along Delta and the differences in Gamma/Delta because 

during SWS epochs the Gamma/Delta ratio was not only low but stable 

across successive epochs as well (Fig. A1.1C). Conversely, when the 

differences in Gamma/Delta were replaced by the differences in Delta, 

REM sleep would now collapse into a spear (Fig. A1.1D) as variations in 

Delta tended to be small in REM sleep. Thus the intermediate state is 

distinct from SWS and REM, and can be thought of as the only sleep state 

which does not collapse into either spear in the two aforementioned 

parameter spaces. IS has previously only been reported in mammals (3-4, 

20-21). 
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The REM, SWS and IS epochs could also be visualized in a 3-

dimensional space defined by a Principal Component Analysis (PCA) of 

the 5-dimensional space spanned by Delta, Gamma, the standard 

deviation of each waveform and the  differences in Delta and 

Delta/Gamma. The three sleep stages occupied separate regions in the 3-

dimensional space (Fig. A1.1E). SWS and REM formed orthogonal 

planes in this space, with IS corresponding to a distinct, warped 

transitional region linking the two planes (Fig. A1.1F). A similar 3-

dimensional structure was observed when PCA was applied to data from 

each of the five birds (Fig. A1.6).   

 

Each sleep stage was associated with specific EEG characteristics. 

SWS had a high amplitude EEG signal with significant power in the Delta 

range (Figs. A1.1A, A1.2A), as has been observed in mammals (Fig. 

A1.1B). REM was characterized by a very low amplitude “awake-like” 

EEG signal (Figs. A1.2B, A1.2D), typically about ±30 µV with higher 

power in Gamma (Fig. A1.1A) than NREM, also consistent with REM in 

mammals (1-2, 22). Birds with relatively little power increase in the 30-55 

Hz range for REM had a greater power increase in the 70-100 Hz range. 
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IS had highly variable amplitude, centered around ±50 µV and did not 

have significant power in either the Delta or Gamma ranges (Figs. A1.1A, 

A1.2C). Large, brief amplitude transients observed in NREM sleep, with 

biphasic waveforms were observed in two birds (Fig. A1.2D, Table A1.2). 

These transients are reminiscent of mammalian K-complexes (1). As in 

mammals, all birds exhibited a 1/f  type pattern, i.e. higher frequencies 

had lower power (Fig. A1.3). 

We also observed instances when one eye was open and the other 

was closed. The hemisphere contralateral to the open eye displayed a low 

amplitude and high frequency EEG while the hemisphere contralateral to 

the closed eye displayed SWS oscillations (Fig. A1.2F). These instances 

of unihemispheric sleep were almost exclusively restricted to the light 

phase, and were especially frequent towards the end of the subjective day 

when birds had a greater tendency to nap (Table A1.1). Unihemispheric 

sleep is broadly observed in birds, cetaceans and other marine mammals 

(20, 23-24). 

 

SWS and REM sleep were associated with specific circadian 

patterns, whose structure was not constrained by our classification 
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procedure for the epochs. There was an overall decrease in SWS density 

throughout the night (Figs. A1.4A, A1.7A, Table A1.1). REM episodes 

were typically brief early in the night and became longer throughout the 

night (Fig. A1.4C, A1.7C, Table A1.1) as the REM density increased 

(Figs. A1.4B, A1.7B, Table A1.1) and the inter-REM intervals decreased 

(Figs. A1.4D, A1.7D, Table A1.1). These features are similar to patterns 

of sleep staging in mammals (25-26). The total amount of REM sleep 

averaged 22.99 ± 3.83 % (mean ± S.E.M.) (Table A1.1) of the dark 

period, greater than reported in most avian sleep studies, including the 

few studies of oscines (13-14). The intermediate epochs were brief and 

numerous (Figs. A1.7 F,H, Table A1.1) and were usually more stable 

throughout the night than REM and SWS in terms of density, average 

episode duration and average number of episodes per hour. As is the case 

in mammals (3-4), the intermediate stage consistently acted as, but was 

not limited to, a transition phase between SWS and REM (Fig. A1.7G, 

Table A1.1).   
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Sleep patterning is thought to differ between birds and mammals.  

NREM and REM are known broadly among birds. The observation of 

REM sleep is by itself an insufficient basis to equate avian and 

mammalian sleep patterns, except to distinguish them from reptilian sleep 

(27), where REM is poorly established (28), but other similarities of sleep 

architecture in birds and mammals have not been well established. Avian 

REM periods are reported to be extremely brief and infrequent in most 

species hence “rudimentary” (12) with the exception that oscine 

passerines have more REM (13-14, 23, 29). Mammalian sleep has a 

circadian distribution, is triphasic and is associated with precise 

electroencephalograhic and spectral patterns. While birds exhibit a pattern 

of  sleep closer to mammals than reptiles insofar as they both have SWS 

and REM, and circadian rhythms of SWS and REM, mammalian sleep 

also entails other features such as intermediate sleep, Gamma oscillations 

during REM sleep, K-complexes and Up and Down states which have set 

them apart from birds.  

 

In contrast, the present study helps to bridge the gap between birds 

and mammals by highlighting a broad suite of characteristics of sleep 
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which mammals were not known to share with birds.  These include the 

existence of similar spectral signatures, Delta (30) and Gamma 

interdigitations, overnight increases in REM associated with an elongation 

of REM episodes, IS (a transition state between SWS and REM, distinct 

from the drowsy state taking place during transitions from Waking to 

NREM (14), K-complexes, and other similarities.  Moreover, the 

interdigitation between Delta and Gamma power activation described here 

(Fig. A1.1A) and K-complexes (Fig. A1.2D, Table A1.2) during sleep 

have been observed in – and sometimes specifically attributed to – the 

mammalian cortex (5-6, 19, 31)  (Fig. A1.1B). In mammals these patterns 

have been associated with Up and Down states (19, 32), raising the 

question as to whether these patterns are also generated in the avian brain. 

Birds have a well-developed thalamus but are devoid of a neocortex. 

Therefore, a neocortex is not necessary for the development of complex 

sleep stages as defined by the systematic variation in EEG signals which 

we have observed. Our observation of K-complexes leaves open the 

possibility that these signals are not of cortical origin in mammals as has 

been suggested (5). Our results are therefore consistent with previous 

studies of K-complexes in reptiles (33) and non-laminar networks from 
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multiple species displaying increased power in a given frequency range 

due to network synchronization (34-40).  

 

Recent observations of REM-like sleep in basal mammals (17) are 

consistent with the hypothesis that the characteristics of sleep in the 

amniotes leading to birds and mammals may have been more complex 

than has been generally assumed. One hypothesis is that REM is 

associated with greater connectivity in avian and mammalian forebrain as 

compared to reptiles that apparently lack REM (28).  However, the 

complex sleep architecture we have observed in zebra finches has not 

been reported in the numerous non-oscine (non-songbird) species that 

have been examined (23) but is likely to be broadly shared across 

songbirds (13-14). Thus, this remarkable similarity of characteristics may 

have resulted from a convergent evolution in mammals and songbirds. It 

has been hypothesized that birds possess a mammalian cortex homolog 

(8-9).  A specific form of this hypothesis homologizes regions of the 

avian forebrain with cortical layers (41). If so, then the patterns of cortical 

activation, interactions between thalamus and cortex, and the change in 

those patterns in response to changes in behavioral state, may be similarly 
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expressed in the avian forebrain. The developmental molecular basis 

conserving forebrain homologies, and potential homologies of sleep 

rhythms, between birds and mammals is not yet known. 

 

The selective pressures that resulted in these features of sleep 

developing so prominently in songbirds but apparently not generally 

among birds remains unresolved. Juvenile song learning and adult 

territorial and mating behaviors involving song are complex sensorimotor 

skills and social behaviors proving strong selective pressures on 

songbirds. A causal link between song learning and associated behaviors 

and the complex sleep architecture we have described here remains 

speculative, and a viable alternate hypothesis is that there exists greater 

complexity to sleep structure broadly expressed across bird species than 

has commonly been recognized. The independent development of vocal 

learning in parrots and some hummingbirds (42) and application broadly 

across birds of the analysis procedures described herein, provides good 

material to test this hypothesis. 
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Materials and Methods 

 

   Experimental procedures were approved by the Institutional Animal 

Care and Use Committee at the University of Chicago. In preliminary 

acute experiments in urethane anesthetized animals, we determined 

coordinates for recording and ground platinum electrodes relative to the 

midsagittal sinus (in mm): (1.5R, 3L), (3R, 2L) and (0.5C, 0L). The 

electrode impedance was 90 kΩ measured in saline. 

 

   For chronic recordings, birds were briefly anesthetized (Equithesin) 

and L-shaped platinum electrodes were epidurally implanted, secured and 

attached to a head connector. In subsequent days, during recordings, a 

cable was attached linking the bird's head to an overhead mercury 

commutator (Drangonfly Inc, WV), allowing for free movement in the 

cage during data acquisition. Video recording was accomplished by an 

infrared (IR) light and an IR camera (Ikegama, Japan).  Strategically 

placed mirrors facilitated detection of eye, head, and body movements. In 

one case the animal’s eyes were obscured from view for approximately 1 

hr, but nevertheless the EEG signal was easy to score manually. EEGs 
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were amplified by 1K, sampled at 1 kHz and filtered at 1-100 Hz (with 

60Hz notch filter, except for B133). In two birds (B133 and E1), which 

exhibited low frequency artifacts, the data was filtered at 2-100 Hz. For 

these birds, Delta was set at 2-4 Hz for the automated analysis. 

 

   As part of the automated analysis, EEGs were downsampled to 200 

Hz and DC filtered. Spectral power was computed in µV2 /Hz using 

0.33Hz bins. For each epoch, the power differences in Delta power and in 

Gamma/Delta were computed over the preceding and successive epochs, 

using the Matlab “gradient” function. All clustering variables were 

normalized by z-scoring prior to the sleep stage classification. Following 

initial REM/NREM and SWS/NSWS classification, the score of each 

epoch was smoothed using a 5 second window in order to minimize the 

score contamination by brief artifacts which might not have been isolated 

by manual scoring. When artifacts occurring during sleep were manually 

labeled, the algorithm would score such an artifact according to the state 

of the following epoch unless the latter was awake, in which case the 

algorithm would assign the sleep artifact the score of the preceding epoch. 
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For bilateral recordings during the dark phase, the automated 

scoring algorithm filtered out epochs inconsistent with unihemispheric 

sleep. The small number of remaining epochs, in conjunction with 

simultaneous video recordings were subsequently examined manually to 

assess whether they constituted instances of unihemispheric sleep. 

 

The data analysis technique we developed enabled us to resolve 

changes in power over a broad spectral range and a high temporal 

resolution, which were a key differentiating factor for automated REM 

sleep detection. This analysis was further corroborated by extensive 

manual scoring (Figs. A1.5, A1.8), which was restricted to identification 

of REM, NREM, awake and artifacts, distinctions and signals observable 

by inspection of the EEG and video. Moreover, the automated EEG 

scoring relied on whole night statistics (21) rather than on arbitrarily 

defined thresholds, maximum likelihood methods or supervised nonlinear 

classifiers all of which tend to reflect and impose a human bias on the data 

analysis.  
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The double separation used in the automated separation allows for a 

minimum of two categories (REM and SWS) and a maximum of four 

categories (REM, SWS, IS and the outliers which are unclustered). 

Therefore, the algorithm does not assume a fixed number of states.  In that 

respect, running the algorithm on data without REM (and wakefulness) or 

SWS greatly shortened the length of the respective REM and SWS spears 

while removing IS from the data caused the algorithm to detect 

insignificant levels of IS. 
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Figure A1.1. Stage Separation in Zebra Finch Sleep. A) Delta power (top trace) and 
Gamma power (bottom trace) for 2 hours, represented in units of standard deviations 
from the mean which has been set to 0 (i.e., the whole Delta power time series and 
Gamma power time series have been normalized). The dots correspond to 3 second 
epochs, separated over 1 second increments. Z[variable] indicates that the variable has 
been z-scored. Delta and Gamma power activation interdigitate with SWS (blue) 
occurring in the Up states of Delta and Down states of Gamma whereas REM (red) 
occurs during the Down states of Delta and Up states of Gamma. The intermediate and 
awake states are in cyan and yellow respectively. The awake state had amplitudes in 
the Gamma range which were not always comparable to those of REM. Artifacts are 
not shown. B) Delta (0.1-4 Hz) and Gamma (16-75 Hz) power components from eight 
local field potentials (LFP) recording from cat cortex during 20 seconds of sleep. The 
interdigitation of low and high frequencies is seen here as in A. Adapted from (19). 
C) One night of sleep is represented in a 3-D space spanned by Delta, Gamma/Delta 
and the power differences in Gamma/Delta. In this space, SWS (blue) forms a spear. 
IS and REM are shown in cyan and red, respectively. D) When the differences in 
Gamma/Delta in C) are replaced with the differences in Delta, REM sleep collapses 
into a spear. E-F. Separation of states in a reduced parameter space. A 5-dimensional 
space is reduced to three dimensions with PCA. REM (red), IS (cyan), SWS (blue) are 
spatially localized (E). REM and SWS form orthogonal planes and IS (cyan) 
corresponds to the warped region linking the two planes (F). 
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Figure A1.2. Representative samples of Zebra Finch EEG Patterns. Representative 
EEG samples for SWS (A), REM (B), IS (C), a K-complex like transient (D), the 
awake state (E) and unihemispheric sleep (F). A-C and E were automatically 
generated using the MATLAB “silhouette” function on the scatter plot in Figures A1.1 
E-F. A-E were chosen from W 147; F was chosen from B 133 which exhibited the 
most unihemispheric epochs (Table A1.1). 
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Figure A1.3. Representative Spectra of Zebra Finch EEG Patterns. Power Spectra. A) 
The log of the power (µV2) vs frequency (0.33 Hz bins) for samples shown in Figure 
A1.2 A-C and E.  B) The log of the average of the power in all 3 second windows 
scored as REM, SWS, IS and awake is shown across frequency. 
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Figure A1.4. A Mammalian-like Distribution. A-D: Average stage statistics are plotted 
for each hour of the dark period for all birds. Birds exhibited a significant decrease in 
SWS density (A), a significant increase in REM sleep density (B) and average REM 
episode length (C) and a significant decrease in inter-REM intervals throughout the 
night.  Bars correspond to the standard error of the mean. Individual data for each bird 
is plotted in Fig. A1.7.   
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Figure A1.5. Manual and Automated Scoring of Zebra Finch Sleep. Manual (top 
traces) and automated (bottom traces) scoring of the same night. Delta and the 
difference in Gamma/Delta are shown in A and B, respectively. The traces 
corresponding to the automated scoring have 3 times as many points as those 
displaying the manual scoring. NREM, REM and awake periods are shown in blue, 
red and yellow, respectively.
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Figure A1.6. Reduced Parameter Space. A-E: Reduced parameter space for W 147, 
F1, R 244, B 133 and E1, respectively. SWS, IS and REM are displayed in black, cyan 
and red, respectively. 
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Figure A1.7. Detailed Mammalian-like Distribution Statistics.A Mammalian-like 
Distribution. A-D: Stage statistics are plotted for each hour of the dark period for all 
birds. 3 birds (W 147, E 1, F 1) exhibited a significant decrease in SWS density (A) 
throughout at least 7 consecutive hours. 4 birds (R 244 being the exception) exhibited 
a significant increase in REM sleep density (B) and average REM episode length (C) 
throughout at least 7 consecutive hours. Of these 4 birds, all except E1, exhibited a 
significant decrease in inter-REM intervals throughout the night. E-F: Comparing 
SWS, IS and REM for all birds.  E.  IS was shorter than SWS and REM (E) in all 
birds. Error bars correspond to the standard error of the mean. F. From left to right: 
percentage of SWS epochs followed by IS; percentage of IS epochs followed by SWS; 
percentage of REM epochs followed by IS; percentage of IS epochs followed by 
REM. In all birds, SWS and REM tended to be exclusively followed by IS which in 
turn would lead to SWS or REM. G. There were more IS episodes than there were 
SWS or REM episodes in all birds.  
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Figure A1.8. Two hypnograms showing automated (black) and manual (RED) scoring. 
The algorithm distinguishes between REM, IS (INT), outliers and SWS using a 
channel of EEG while the human scorer recognizes REM, NREM, wakefulness and 
artifacts using EEG and video. Human and automated classifications are performed at 
a 3 and 1 sec temporal resolution, respectively. Every third score is displayed for the 
hypnogram produced by the automated scoring. The agreements between automated 
and manual scoring are 86.7% (top) and 75% (bottom). Figures A and B correspond to 
supplementary videos 1 and 2, respectively. Drawings courtesy of Sylvan Shank, 
University of Chicago. 
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Table A1.1. Stage statistics for 5 nights of sleep in 5 birds. Stage density, average 
episode duration and number and stage transitions were determined. The percentage of 
transitions out of each stage towards the intermediate stage and the percentage of 
transitions out of the intermediate stage towards the other stages are shown. For the 
bihemispherically implanted birds (W147, R244 and B133), unihemispheric sleep is 
reported and the other statistics were computed over the hemisphere with the most 
reliable data as determined by visual inspection of the EEG and video and the absence 
of outliers. The coefficient of regression was computed over the stage densities and 
inter-REM intervals for each hour and reflect the circadian distribution of SWS and 
REM (* = [r2 > 0.5 and p < 0.05], § = [r2 > 0.5 and p = 0.05], £ for values calculated 
for hours 2-8, € for values calculated for hours 1-7).  The agreement rate between 
automated and manual scoring was determined with and without artifact rejection.  
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Table A1.1 Stage Statistics  W 147  R 244  B 133   E 1  F 1  
      

Stage Density (%)      
SWS 41.72 28.10 41.47 22.98 34.25 

IS 29.51 33.72 37.29 32.12 37.74 
REM 18.59 29.96 15.51 34.30 16.56 

AWAKE 10.18 8.18 5.73 10.56 11.45 
UNIHEM 0.09 0.59 0.65 N/A N/A 
OUTLIER 0.00 0.03 0.00 0.00 0.00 

      
Average Episode Duration (sec)      

SWS 14.63 11.75 10.81 10.65 9.12 
IS 6.30 6.56 6.66 7.98 6.85 

REM 9.38 10.37 8.53 16.43 9.03 
AWAKE 11.37 12.10 9.30 16.11 12.02 
UNIHEM 3.38 3.89 3.13 N/A N/A 
OUTLIER N/A 2.25 N/A N/A N/A 

      
Number of Episodes      

SWS 821 689 1105 621 1081 
IS 1350 1479 1613 1159 1586 

REM 571 832 523 601 528 
AWAKE 85 113 158 65 100 
UNIHEM 8 44 60 N/A N/A 
OUTLIER 0 4 0 0 0 

      
Transitions      

SWS → IS (% SWS) 97.44 90.86 95.02 95.00 97.32 
REM → IS (% REM) 86.51 91.83 85.25 91.85 88.45 

AWAKE → IS (% AWAKE) 65.48 76.99 74.68 27.69 67.68 
IS → SWS (% IS) 55.93 42.15 64.35 50.65 64.38 
IS → REM (% IS) 39.19 51.01 28.02 45.30 29.63 

IS → AWAKE (% IS) 4.89 6.83 7.63 4.06 5.99 
      

Regression Coefficients      
SWS Density (%/hour) -6.62* -0.25 -0.11 -4.86* -6.64*£ 

REM Density (%/hour) 4.59*€ 1.81 2.44* 7.47* 4.73* 

REM avg. Episode Duration (sec/hour) 1.24§ 0.47 0.98* 3.19* 1.4*£ 

Inter-REM-interval (sec/hour) -6.57* -1.81 -2.96* -0.84 -16.80* 
      

Agreement Rate (%) 90.86 77.41 90.87 72.88 89.49 
Agreement Rate - No artifacts (%) 91.03 77.64 91.89 73.52 89.38 
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Table A1.2. Double-blind identification of K-complex signals in 2 birds. K-complexes 
were identified by two human scorers (“Scorer 1” and “Scorer 2”) who had access to 
EEGs but not to videos of sleeping finches. These scorers were blind to the vigilance 
state of the birds. Sleep stages were manually labeled by an automated algorithm 
(“Automated Classification”) and a third human scorer (“Manual Classification”), 
both blind to the K-complex analysis. The third human scorer had also access to video 
and he labeled artifacts. Amplitudes were calculated by measuring the peak to peak 
voltage deflection of the K-complex signals. Average amplitudes and durations are 
given with the standard error of the mean. “Scorer X – Scorer Y Agreement” 
corresponds to the percentage of signals chosen by Scorer X which Scorer Y also 
designated as K-complex signals. Signals which were identified as a K-complex by 
Scorer X only are listed under “Scorer X Outlier(s)”. K-complexes were found to 
occur predominantly in NREM sleep as determined by both automated and manual 
classifications. Only 4 out of 102 signals were associated with artifacts. 
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Table A1.2 K-complex  W 147 F 1 
      

Number of Signals 64 13 
Average Duration (msec) 448.67 ± 1.65 468.25 ± 7.86 
Average Amplitude (µV) 116.81 ± 4.69 123.36 ± 11.85 
Automated Classification     

SWS 57 12 
IS 5 1 

REM 0 0 
AWAKE 2 0 

Manual Classification     
NREM 58 12 
REM 4 1 

AWAKE 0 0 
ARTIFACT 2 0 

      
Scorer 1 - Scorer 2 Agreement (%) 74.42 92.86 
Scorer 2 - Scorer 1 Agreement (%) 96.97 100 

      
Scorer 1 Outlier(s)     
Number of Signals 22 1 

Average Duration (msec) 493.44 ± 4.16 440 
Average Amplitude (µV) 104.93 ± 8.94 93.87 
Automated Classification     

SWS 12 1 
IS 6 0 

REM 4 0 
AWAKE 0 0 

Manual Classification     
NREM 15 1 
REM 6 0 

AWAKE 0 0 
ARTIFACT 1 0 

      
Scorer 2 Outlier(s)     
Number of Signals 2 0 

Average Duration (msec) 390.94 ± 38.23 N/A 
Average Amplitude (µV) 89.57 ± 12.67 N/A 
Automated Classification     

SWS 1 N/A 
IS 0 N/A 

REM 0 N/A 
AWAKE 1 N/A 

Manual Classification     
NREM 1 N/A 
REM 0 N/A 

AWAKE 0 N/A 
ARTIFACT 1 N/A 
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Chapter A1 is, in full, being prepared for publication. Co-authors 

are S. Shank, T. Sejnowski and D. Margoliash. The dissertation author 

was responsible for the techniques described and main observations 

therein and was the primary investigator and author of this paper. 
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CHAPTER A2 
 

Fine Structure of Human Sleep 
 
 

Traditional analysis of human sleep stages requires several 

channels of data and is usually performed by human scorers.  Here we 

show that by representing each temporal window or epoch in a single 

channel of EEG by the frequency with the highest normalized power 

across the length of the entire signal, a new map of brain activity 

throughout time is generated that exhibits new features, independent of 

raw power, and allows Slow Wave Sleep (SWS), Intermediate Sleep (IS) 

and Rapid Eye Movement (REM) sleep states as well as Wakefulness (W) 

to be automatically clustered, consistent with manual scoring by experts, 

with high resolution. This analysis reveals that human REM sleep is not 

“awake-like” and therefore not paradoxical. These results have been 

validated on data collected with different instruments, in different labs 

and manually scored by different personnel.   

 

The discovery of brain electrical potentials in animals (1) and later 

in humans (2) have provided physiologists and clinicians with the 

challenge to classify brain activity in separate stages. In 1937, a taxonomy 
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of human sleep was devised (3). This 5 stage taxonomy did not include 

Rapid Eye Movement (REM) sleep which was discovered in 1953 (4). 

Five years later, Dement and Kleitman (5) provided a description of sleep 

encompassing REM sleep and 4 non-REM (NREM) stages. In 1968, a 

committee led by Rechtschaffen and Kales devised “A Manual of 

Standardized terminology, Techniques and Scoring System for Sleep 

Stages of Human Subject” (R-K) (6) which provided continuity with the 

prior description of sleep stages established by Dement and Kleitman (5). 

R-K classifies human sleep into two Slow Wave Sleep (SWS) stages 

(Stages III and IV), two Intermediate Sleep stages (Stages I and II) and 

REM sleep. In this classification, SWS EEG is composed of moderate to 

large amounts of high amplitude, slow wave activity; REM displays 

relatively low voltage, mixed frequency EEG in conjunction with episodic 

REMs (Rapid Eye Movements) and low-amplitude electromyogram 

(EMG); IS has a relatively low voltage, mixed frequency EEG with stage 

II further displaying 12-14 Hz oscillations and brief high amplitude K-

complexes; Wake EEG contains alpha activity and/or low voltage, mixed 

frequency activity. This characterization of sleep and waking stages has 

been highly influential in guiding sleep research. Recently, rules provided 
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by R-K were amended (7) and the stages II/IV distinction was removed, 

leaving 3 NREM stages. While it is expected that sleep scorers will adapt 

to the new system, the precise number of sleep stages is still very much a 

topic of discussion (8-10).  

Given the variability of sleep structure both across and within 

individuals as well as subjective nature of human scoring (11-13), it is a 

difficult exercise to find thresholds or state transition statistics to 

objectively segment a night of sleep into distinct stages based on a “fixed” 

interpretation of R-K (9); nor have techniques such as supervised and 

unsupervised classifiers been successful at automatic sleep stage 

classification across multiple data sets using a single channel of  either 

human or animal brain activity (14-17).  

Because human EEG recordings are low-pass filtered by the skull, 

higher frequency signals detected in intracranial animals studies, such as 

the interdigitation of high and low frequencies during Up and Down SWS 

states (18) or the gamma oscillation during REM (19) have not been 

readily observed, but have been detected using magnetic measurements 

(20). The scalp recordings further give human EEGs a poor spatial 

resolution. Thus it is not known whether human SWS and REM are 
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spatially “synchronized” and “desynchronized”, respectively, as suggested 

by animal studies (18, 21).  In view of these open questions, we sought a 

new mathematical framework with high spectral and temporal resolution, 

in which sleep stage information could be rapidly and reliably extracted 

from a single channel of EEG.    

  

One channel of EEG (C3-A2 derivation) from twenty-six nights (8 

hours each) of sleep was obtained from twenty-six different 

polysomnographic recordings conducted in twenty-six healthy human 

subjects. The EEG data and manual scoring was provided by the UCSD 

VA hospital in San Diego, CA, USA (n=6) and the Max-Planck Institute 

(MPI) for Psychiatry in Munich, Germany (n=20).  Experimental 

procedures were approved by the Institutional Review Boards at each 

institution. 

EEG data were collected at 256 Hz and bandpassed at 0.3-100Hz 

with a 60 Hz notch filter (UCSD) or collected at 250 Hz and bandpassed 

at 0.53-70 Hz (MPI). These recordings were amplified at 10 K and 

manually scored in 30 sec epochs in accordance with R-K. For each 

recording, the whole night spectrogram (WS, Fig. A2.7a) was computed 
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over 2 orthogonal tapers on 30 sec epochs using a standard multitaper 

technique (22). The power information was then normalized by z-scoring 

for each frequency bin (from 1 to 100 Hz, 30 bins per Hz) across time. 

This normalized spectrogram (NS) thus weights each frequency band 

equally. Each 30 second segment can then be represented by the 

frequency with the largest z-score. In this preferred frequency space 

(PFS), sleep and waking states broadly separated into different patterns 

(Figs. A2.1, A2.14, A2.15, A2.16 a,c, A2.20 a,c ). W was always 

characterized by a band in alpha (7-12 Hz) and sometimes by a band in 

beta (15-25 Hz).  IS exhibited prominent activity in the spindle 

frequencies (12-15 Hz). Surprisingly, REM was defined by compact 

bands in theta (4-8 Hz) and sometimes beta (15-25 Hz) frequencies 

whereas SWS was dominated by delta activity. When computed over 

overlapping 3 sec windows and a 1 sec sliding window, similar trends 

were visible in the PFS except that beta activity emerged in REM (Fig. 2). 

At that resolution, REM appears more “awake-like” than at a 30 sec 

resolution.  However, at that resolution, all the sleep states whether they 

were identified manually or automatically had distinct signatures in the 

PFS (Table A2.1A).  
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At each time point, using z-scoring, one can normalize the NS 

across frequencies to create a doubly normalized spectrogram. In this 

space, bands apparent in the PFS still had positive values whereas dark 

regions tended to have negative values. By adding the 2NS values of 

frequencies that show up as bands in the PFS and subtracting those that do 

not, filters can be constructed that maximally separate states. One 

maximizes W (‘W filter”), another separates NREM from W and REM 

(‘NREM filter’) and a third distinguishes IS from SWS (‘SWS filter’) 

(See ‘Materials & Methods’).  The output of these three filters spans a 

space in which the three broad sleep stages and W tend to separate (Figs. 

A2.73, A2.22-A2.23).  

 Interestingly, Stage I did not cluster in either space and SWS 

formed only one cluster (rather than two, one for Stage III and one for 

Stage IV). The latter is in accordance with the recent revision of R-K 

which abandoned the Stage III/ IV distinction (7). Manual scoring of 

Stages I and III was done in 30 sec increments. At that resolution, epochs 

manually labeled as Stage III could not be disambiguated from epochs 

manually labeled as Stage II or Stage IV in the majority of recordings 

(Table A2.2) and epochs manually labeled as Stage I could not be 
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distinguished from epochs manually labeled as Stage II, REM or W in 

most recordings (Table A2.3) in the PFS. Thus it is conceivable that 

Stages I and III are not sleep states per se and should at best be thought of 

as transitional rather than stationary states. However REM was easily 

distinguishable from Waking (Table A2.4). Thus, human REM sleep 

should no longer be thought of as “awake-like” or “paradoxical”. 

 

A K-means clustering algorithm (Scheme A2.1) was applied to the 

spaces above to classify sleep. Even though the VA and MPI data were 

filtered differently, the general position of the sleep and waking clusters 

was similar across sets. Moreover, while the algorithm was optimized on 

the MPI data set, it performed at 80.6% on the VA data, which is 

unprecedented using a single channel of data and is similar to the 

performance of other algorithms using many more channels (17). The 

standard error of the mean was also lower for the VA set than the MPI set 

even though the former had 6 subjects and the latter had 20 subjects 

(1.73% vs. 1.78%, respectively). The average agreement rate with human 

scoring on the full data set was 77.58% on 4 stages (Tables A2.1A and 

A2.8). This striking concordance can be visualized by overlapping 
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automated and manually derived hypnograms, plots depicting sleep 

staging for a given subject for a given night (Figs. A2.4-A2.5). In two out 

of twenty-six recordings, it appeared that the algorithm was mislabeling 

the data and in these cases. While that data appeared different when 

compared to the rest of the data set, visualization of the manual scoring on 

the preferred frequency map did however show separate signatures for 

sleep and waking stages. On the VA data, when the algorithm’s 

performance was compared against data rescored by the same person or 

scored by a more experienced scorer, the average agreement rate with the 

algorithm increased and was in the 82.4-83.3% range (Table A2.1B). 

Further normalizations in time and frequency can be applied to the 

whole night spectrogram, at both a 30 sec (Figs. A2.7 a,c, A2.8) and a 1 

sec resolution ( Figs. A2.7 b,d, A2.9-A2.10).  Here sleep and waking 

stages tile the entire 1-100 Hz spectrum with REM, W and IS exhibiting 

broadband patterns (Figs. A2.8, A2.9-A2.10 c-d).  

In this space, one can measure the average spread in normalized 

power across time (temporal fragmentation) (Figs. 4, A2.16-A2.20 b,d, 

A2.21.) (See “Materials & Methods”).  This analysis revealed a bimodal 

distribution for REM sleep. This pattern persisted when the frequency 
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range was narrowed to 4-40HZ (data not shown). The unstable part of 

REM accounted for (mean ± s.e.m) 26.18 ± 1.7 % of REM at a rate of 

37.42 ± 2.70 epochs per night lasting an average of 36.18 ± 1.27 seconds 

and separated by an average of 129.08 ± 11.04 seconds of stable REM 

(Table A2.5).  These components of REM do not correspond to tonic and 

phasic REM (Table A2.6) and exhibit different spectral signatures (Fig. 

S21). The unstable part of REM sleep was more likely to be confused 

with stage II than the stable part (Tables S9-10). In these cases some 

spindles and K-complexes in the presence of REM caused these epochs to 

be scored as stage II (Figs. A2.1-A2.2, A2.16) even though they would 

have been scored as REM at a finer temporal resolution _ R-K rules are 

such that no spindles or K-complexes can be separated by less than 3 

minutes in REM  (6). While K-complexes and spindles can be found in 

REM, according to the analysis presented here, these signals are not 

responsible for the bimodal temporal fragmentation pattern observed in 

REM since manually scored  REM, presumably devoid of spindles and K-

complexes, still exhibits this pattern (Figs. A2.4 a-b, A2.16-A2.20c, 

A2.21a, Table A2.9 right columns). Moreover, REM still exhibited a 

bimodal distribution on a spectrum without spindle frequency power (Fig. 
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A2.25). The temporal fragmentation is a measure sensitive to sudden 

changes in normalized power. Such changes can also be brought about by 

artifacts and the changes they produce will be all the more consequent in 

the background of a low power EEG. Therefore the possibility that 

artifacts of some sort are responsible for most if not all of the bimodal 

temporal fragmentation of REM should not be excluded. When epochs 

adjacent to epochs known to contain movement artifacts were discarded 

from the analysis as well as any epoch having a preferred frequency 

greater than 25 Hz, the percentage of unstable REM epochs was 

diminished even if the bimodal pattern could still be seen (Fig. A2.26).   

The bimodal pattern was even less apparent when more artifacts were 

isolated (Fig. A2.27-A.2-28).  However when these artifacts were 

included in the fragmentation analysis, in 4 out of 6 cases (5 out of 6 cases 

when REM was visually identified by a second scorer), they accounted for 

a higher percentage of the non-fragmented portion of REM  (6 out of 6 for 

automated scoring) and in all but two cases for manual scoring (non-

fragmented portion of REM _71.91 % in subject 9 and 50.73%  and 

52.24% in subject 20, depending on the scorer) and in all but one case for 

automated scoring (non-fragmented portion of REM _ 75.9% in subject 
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9), they accounted for less than 50% of either portion of REM (Table 

A2.11). A nearest-neighbor analysis was performed on epochs which did 

not themselves include artifacts (Table A2.12). The fragmented portion of 

REM had almost in all cases more neighbors which contained an artifact 

than the non-fragmented portion, according to manual scoring (5/6 

subjects for one scorer 6/6 subjects for the other). When REM was 

detected automatically, in most subjects, the majority of both the 

fragmented and non-fragmented epochs were devoid of neighboring 

artifacts. High-resolution 1 sec automated and manual analysis of these 

data will be necessary to identify EEG grapho-elements which might be 

responsible for the observed patterns and possibly a new state of sleep. In 

the meantime, the temporal fragmentation provides yet another variable 

wherein REM tends to be easily distinguished from both W and Stage I 

(Table A2.7). 

 

The new methods introduced here recovered both known and novel 

signatures of sleep stages automatically. High gamma activity during 

wakefulness was recently reported in human electrocorticograms (23) and 

is present in our scalp recordings as well (Figs. A2.8-A2.10) though 
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precise quantifications have yet to be made. Importantly we have shown 

that a single channel of EEG was sufficient to decouple sleep and waking 

stages and these are clearly separable.  

This study provides guidance in the debate concerning the number 

of human sleep stages and refutes the belief that REM sleep is “awake-

like” or “paradoxical.”  Although REM is known to exhibit theta, the clear 

REM/W separation (Figs. A2.1-A2.4, A2.11, A2.15, A2.18-A2.23, Tables 

A2.4, A2.7-A2.8) as well as between other stages is not apparent by eye 

or by previous analysis from a single channel of human EEG. The 

bimodal temporal fragmentation pattern of REM sleep is also striking 

(Figs. A2.4, A2.16-A2.21, Tables A2.5-A2.7).  

Alternative electrophysiological derivations and placement have 

been of interest to sleep researchers and clinicians (24-26). The results 

reported here appear to generalize beyond the C3-A1 EEG derivation to 

alternative derivations, including even a single channel of EOG (Figs. 

A2.11-A2.13).   Finally, these methods presents a rapid, economic and 

quantitatively rigorous alternative to manually scored sleep staging in 

both clinical and comparative research and should find many new 

applications. 
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Materials & Methods 

 

The filters used in Figure Scheme A2.1 are as follows.  

sws_filter=mean(2NS(≤3 Hz)); 

w_filter=mean(2NS(9-12Hz)); 

nrem_filter=mean(2NS(60-100Hz))+mean(2NS(3-4Hz))-[mean(2NS(12-

14Hz))+mean(2NS(25-60Hz))+mean(2NS(15-25Hz))]; 

AA= mean(2NS(12-14 Hz)); 

BB= mean(2NS(15-25 Hz)); 

CC=mean(WS(≤3 Hz)); 

DD=mean(2NS(9-12HZ); 

 

WS and 2NS correspond to the raw and doubly normalized 

spectrograms, respectively.  The temporal fragmentation corresponds to 

the zscore of the mean of the absolute value of the temporal gradient of 

the spectrum normalized throughout time and frequency and was 

computed on a 1-100Hz range unless otherwise noted. 
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Figure A2.1. Preferred frequency space. The preferred frequency space was 
computed at a 30 sec resolution on two sleep recordings from two different 
subjects (a-b VA, c-d MPI). Each dot corresponds to 30 seconds of EEG. The 
labels were drawn either directly from the manual scoring (a,c) or the 
automated algorithm (b,d). SWS, IS, REM and W are depicted in white, cyan, 
red and yellow, respectively. The white diamonds correspond to epochs 
wherein movements were preventing the human scorers from assessing the 
sleep or waking state of the subject (legend the same throughout all figures 
unless otherwise specified). The algorithm is able to make such an assessment 
despite these artifacts.  Notice the discrepancy between the human and 
automated scores towards the end of the night in the recording on the left 
panels. When this portion of the data was reanalyzed by visual inspection, the 
human scorer did find traces of REM, in accordance with the automated 
classification (in order to avoid any bias towards the automated method, the 
original human scores were used in comparisons between automated and 
manual scoring (Tables A2.1A and A2.8)).      
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Figure A2.2.  Preferred frequency space (High Temporal Resolution). Same data as in 
Figure A2.1, computed at a 3 sec spectral resolution over 1 sec increments. Beta bands 
in REM are becoming visible in the VA data. Other features such as 60 Hz noise are 
also visible. These tend to be more visible when the EEG has less overall power.
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Figure A2.3. Clustering subspace. A subspace of the clustering space is shown for two 
different sleep recordings from two different subjects (a-b, c-d). Each dot corresponds 
to 30 seconds of EEG. Labels are drawn from either manual (a,c) or automated (b,d) 
scoring. Sleep and waking stages tend to localize in different regions. The separation 
for the subject on the left is more apparent in Figure A2.23.
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Figure A2.4. Bimodal Temporal Fragmentation of REM sleep. The temporal 
fragmentation was computed at a 30 second resolution for two different sleep 
recordings of two different subjects (a-b, c-d).  Labels are drawn from either manual 
(a, c) or automated (b, d) scoring. REM sleep, in red, split into two different groups 
with either high or low temporal fragmentation. This was apparent here in both 
recordings, independently of whether the human or algorithm performed the scoring.     
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Figure A2.5. Hypnograms. Hypnograms were computed for 4 different subjects (1 
recording per panel). D and M correspond to times during which the subject was 
disconnected from the recording equipment or moving, respectively. The algorithm 
computed a W, REM, IS or SWS assignment instead of M. Manual and automated 
scoring are in red and blue, respectively. The red and blue hypnograms are mostly 
overlapping which signifies that the manual and automated scoring were in high 
agreement.  
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Figure A2.6. Hypnograms. Hypnograms were computed for 4 different subjects (1 
recording per panel). D and M correspond to times during which the subject was 
disconnected from the recording equipment or moving, respectively. The algorithm 
computed a W, REM, IS or SWS assignment instead of M. Manual and automated 
scoring are in red and blue, respectively. The red and blue hypnograms are mostly 
overlapping which signifies that the manual and automated scoring were in high 
agreement. Note that because the automated procedure does not rely on fixed 
transition probabilities between states, it can perform well on unusual patterns such as 
the frequent awakenings presented by the subject in Figure A2.6d. 
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Figure A2.7: Raw and Normalized Spectrograms. Raw spectrogram were calculated at 
30 sec (a) or at a 3 sec spectral resolution over 1 sec increments (b). Each spectrogram 
was then normalized across time and frequency several times yielding a normalized 
spectrogram at 30 sec resolution (c) and another one at a 3 sec spectral resolution over 
1 sec increments (d). While only movement artifacts have high frequency (>20 Hz) 
content in the raw data (a-b), the normalized spectrograms have much more high 
frequency activity (c-d). 
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Figure A2.8: Preferred frequency analysis over a spectrogram with multiple 
normalizations at high temporal resolution. a, b same as Fig. A2.3 b and d, 
respectively. The analyses from Figure A2.4 a and b were respectively applied to a 
and b to yield c and d, respectively. The trends observed in Fig. A2.4 are reinforced at 
this temporal resolution.  High-frequency information is also visible for SWS.    
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Figure A2.9. Preferred frequency analysis over a spectrogram with multiple 
normalizations at high temporal resolution.  a, b same as Figure A2.7 b and d, 
respectively. The analyses from Figure A2.8 a and b were respectively applied to a 
and b to yield c and d, respectively. The trends observed in Figure A2.8 are reinforced 
at this temporal resolution.  High-frequency information is also visible for SWS.    
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Figure A2.10. Preferred frequency analysis over a spectrogram with multiple 
normalizations at high temporal resolution. Same analysis as in Figure A2.9 but for 
another subject. 60 Hz noise is visible. 
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Figure A2.11. Preferred Frequency Space on other data. PFS was computed for C3-A2 
(a) as well as for left and right electrooculogram (EOG) (b,d),  electromyogram 
(EMG) (c). Stage 1 is represented with cyan crosses and SWS is in black. SWS, IS, 
REM and W exhibited different patterns in the EEG and EOG PFS. (Courtesy 
NeuroVigil, Inc., La Jolla, CA).
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Figure A2.12. Preferred Frequency Space on other data. PFS was computed for other 
EEG derivations. Stage 1 is represented with cyan crosses and SWS is in black. SWS, 
IS, REM and W exhibited different patterns in the PFS. (Courtesy NeuroVigil, Inc., La 
Jolla, CA).
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Figure A2.13. Preferred Frequency Space on other data. PFS was computed for other 
EEG derivations. Stage 1 is represented with cyan crosses and SWS is in black. SWS, 
IS, REM and W exhibited different patterns in the PFS. (Courtesy NeuroVigil, Inc., La 
Jolla, CA).
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Figure A2.14. Some discrepancies between automated and manual scoring.  
Only about 36% (Table A2.8) of the epochs scored as SWS by the algorithm (white, 
panel b) were given the same designation by the human scorer (white, panel a). The 
rest were scored as IS (cyan, panel a), yielding an agreement rate of 76.95% (Table 
A2.1). 
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Figure A2.15. Some discrepancies between automated and manual scoring.  
Manual (a) and automated (b) analyses have an agreement of 80.53% (Table A2.1) but 
over a quarter of the epochs scored by the human as SWS (white, a) are scored as IS 
(cyan, b) by the algorithm (Table A2.8).   
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Figure A2.16. Some discrepancies between automated and manual scoring.  
The overall agreement rate was 76.97% (Table A2.1) but half of the epochs scored by 
the human as IS (a, c, cyan) were found to be REM by the algorithm (b,d, red) (Table 
A2.8). These epochs had a signature closer to that of REM than IS in both the PFS (a-
b) and the temporal fragmentation space (c-d), especially the second sets of epochs, 
occurring approximately after 2.5 hours of sleep. Reexamination of these epochs by 
the human scorer as well as by a second scorer did find traces of REM. Manual scores 
were left unchanged.   
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Figure A2.17. PFS and Temporal Fragmentation. Same type of figure as A2.16. The 
overall agreement rate between automated and manual scoring for is 83.8%. 
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Figure A2.18. PFS and Temporal Fragmentation. Same type of figure as A2.16-A2.17. 
The overall agreement rate between automated and manual scoring is 75.74%. 
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Figure A2.19. PFS and Temporal Fragmentation. Same type of figure as A2.16-A2.18. 
The overall agreement rate between automated and manual scoring is 83.58%. 
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Figure A2.20. PFS and Temporal Fragmentation. Same type of figure as A2.16-A2.19. 
The overall agreement rate between automated and manual scoring is 86.26%. 
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Figure A2.21. Temporal Fragmentation. Temporal Fragmentation over time in the 
same recording in a subject with multiple awakenings. This is the same subject as the 
one represented in Figure A2.6d. Note the strikingly different signatures of REM 
(red), IS (cyan) and W (yellow) in both the manual (a) and automated (b) labels. A 
Kolmogorov-Smirnov test sharply rejects the null hypothesis that REM is “awake-
like” or similar to Stage I (Table A2.7).  
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Figure A2.22.  Clustering subspace. Same analysis as in Figure A2.3 on three different 
subjects.  Labels are drawn either from manual (top) or automated scoring (bottom).    
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Figure A2.23. Clustering subspace. More advanced separation is possible using the 
kinds of methods provided here. This analysis is for the subject in Figure 3 and b. We 
show a similar clustering subspace in a and c as in Figures A2.3 and A2.22. Another 
subpace based on principal and independent component analysis (PCA and ICA) is 
shown. Epochs manually designated as Stage I are depicted in triangles and 
movements are in fuchsia. Stage I does not cluster in either space, in agreement with 
the hypothesis that is not a sleep state per se (see text and Table A2.3). The manual (a-
b) and automated scoring (c-d) now have an agreement of 91.14% for this subject 
(Courtesy NeuroVigil, Inc., La Jolla, CA).



105 

 
 

 



106 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2.24. Spectra in the normalized space with iterated normalizations (the 
spectrogram was normalized in time and frequency 19 times). REM sleep was 
manually scored. The stable and unstable components were isolated with a K-means 
clustering algorithm. The averages of the spectra for the stable (red) and unstable 
(green) components are shown in the space with multiple normalizations across time 
and frequency over multiple recordings (a-b VA, c-d, MPI). Note the elevated relative 
power at low frequencies for the unstable part of REM sleep as opposed to the stable 
part. The depression at 60 Hz is the VA data is most likely due to the use of a 60 Hz 
notch filter. 
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Figure A2.25. Bimodal Temporal Fragmentation without power in the spindle range. 
The temporal fragmentation was displayed for the recordings in A.24, with the 10-15 
Hz (encompassing the spindles range) portion of the spectrum removed. The bimodal 
temporal fragmentation pattern was still apparent. 



109 

 
 



110 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2.26. Movement Artifact Analysis. For the recordings shown in A2.24-A2.25, 
epochs manually labeled as containing one or more artifacts, their immediate 
neighbors as well as any epoch with a preferred frequency over the normalized 
spectrum (1 normalization across time as in Figures 1 and 2) exceeding 25 Hz, were 
excluded. When the temporal fragmentation was calculated, the bimodal pattern was 
present, yet less visible.  
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Figure A2.27. Extended Artifact Analysis. On the VA recordings, an extensive artifact 
analysis was performed, which identified high and low frequency artifacts as well eye 
intrusions. The temporal fragmentation was far less bimodal when these artifacts and 
movement artifacts were excluded from the analysis, with higher REM fragmentation 
values typically occurring at the edges of REM. Though the artifact analysis was 
usually limited to REM epochs, sometimes NREM epochs were also discarded (d). 
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Figure A2.28. Extended Artifact Analysis. On the VA recordings, an extensive artifact 
analysis was performed, which identified high and low frequency artifacts as well eye 
intrusions. The temporal fragmentation was far less bimodal when these artifacts and 
movement artifacts were excluded from the analysis, with higher REM fragmentation 
values typically occurring at the edges of REM.  
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Scheme A2.1. Algorithm. The algorithm serially identifies SWS, IS, REM and W 
using variables described in Materials and Methods. The data is then smoothed in 
time. The REM/W separation is measured again by computing a P value for the REM 
distribution. If the latter exceeds a fixed value, REM is rejected and replaced by W. If 
REM is accepted, it is split in W, REM and W. One can choose as a precaution to 
label REM-like events occurring at the very beginning of the night as W. The 
increases in performance are slim as REM and W tend to form different clusters.
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Table A2.1A. Performance and Separation. 1st column: Same algorithm was used on 
US and German data sets. 2nd column: human/algorithm agreement. This agreement 
was assessed only on epochs for which the human scorer could provide a sleep or 
waking designation, i.e. the human was not penalized for calling an epoch “M” 
because of movement artifacts. 3rd column: each manually and automatically 
determined state was respectively assessed against every other manually and 
automatically defined states, in the 1-100 Hz PFS using a Kolmogorov-Smirnov test 
(KS) over 1 sec increments computed over 3 sec windows. The numbers shown in this 
column correspond to the maximum of the largest p-value corresponding to a rejection 
of the null hypothesis and 0.001. At this resolution, the null hypothesis was rejected 
for all of the automatically scored data and was rejected for all but four nights for the 
manually scored data (P values for the rejections are showed in the table:  
*P_StageII_W=0.0605 and P_StageI_REM= 0.073; † P_StageIII_StageIV=0.0561;  
‡P_StageI_StageII=0.1499 and P_StageIII_StageIV=0.2593;  € P_StageI_W=0.0531).  
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TABLE A2.1A- 
PERFORMANCE 
   Overall 

(%) 
KS 

(3s-1s) 
  
VA 
  
S_9 76.4021 0.001 
S_10 85.5895 0.001 
S_11 76.9676 0.0365 
S_18 83.8608 0.001 
S_19 76.9474 0.0483 
S_20 83.8043 0.0483 
Mean 80.59528   
  
MPI 
  
S_2a 79.9582 0.001* 
S_2b 76.096 0.0161 
S_3a 77.5899 0.0208 
S_3b 75.7447 0.002 
S_4a 84.9949 0.001 
S_4b 83.5789 0.001 
S_5a 80.5269 0.001 
S_5b 84.0549 0.0119 
S_6a 86.3114 0.001† 
S_6b 86.2643 0.001 
S_7a 70.0315 0.0022 
S_7b 66.7368 0.0016 
S_8a 54.5738 0.001 
S_8b 77.0285 0.001‡ 
S_9a 81.7801 0.0013 
S_9b 79.7495 0.001€ 
S_10a 73.5572 0.001 
S_10b 78.2881 0.0022 
S_11a 69.3122 0.0131 
S_11b 67.2632 0.0048 
Mean 76.67205   
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Table A2.1B. Performance against multiple reviews by multiple scorers. On the VA 
data, the performance of the algorithm was assessed against two human scorers (S-1, 
S-2), who examined the data twice (a, b). S-1a and S-2a correspond to scoring which 
was done independently of the algorithm. S-1 b corresponds to scores derived when S-
1 had a chance to revise his scores in light of results by the algorithm, while S-2 b 
corresponds to scores derived after S-2 viewed S-1’s original scores. S-1 had 15 years 
of experience scoring EEGs at the time of his initial scoring and 17 years of 
experience by the time of his second scoring. S-2 had 23 years of experience at the 
time of both of her scorings.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

         

TABLE 
A2.1 B 

S-1 a S-1  b S- 2 a S-2 b 

  
VA 
  
   S_9 76.4021 73.1217  76.9312 

S_10 85.5895 85.5895 84.7162 84.4978 
S_11 76.9676 77.1991 80.3241 79.9769 
S_18 83.8608 83.8608 84.3882 83.7014 
S_19 76.9474 75.5789  76.7368 
S_20 83.8043 83.532 83.4056 81.4735 
Mean 80.59528 82.54535 83.20853 82.4124 
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Table A2.2. Stage III. KS tests were performed on the PFS on the full spectrum (1-100 
Hz) to determine the similarity between Stage III and stages IV and II. An H value of 
0 or 1 means that the null hypothesis was respectively accepted or rejected with a 
corresponding P value in the adjoining column. In the majority of recordings, the null 
hypothesis (stage III and the compared state are not statistically different) was 
accepted in at least one condition, i.e. Stage III was not disambiguated from SWS or 
Stage II in the PFS. 
 
 
 



121 

 
 

TABLE A2.2 – STAGE III 
  H-SWS P-SWS H-SII P-SII 
  
VA 
 

S_9 0 0.1334 1 4.95E-09 
S_10 1 0.0015 1 1.50E-46 
S_11 1 5.76E-08 0 0.1269 
S_18 1 0.0013 1 1.18E-06 
S_19 0 0.418 1 1.16E-17 
S_20 1 1.69E-06 0 1.10E-01 

 
 

MPI 
 

S_2a 1 1.32E-05 1 0.0043 
S_2b 1 0.0137 1 3.55E-04 
S_3a 0 0.8531 1 0.0016 
S_3b 0 0.1527 0 0.3381 
S_4a 1 0.0018 1 1.27E-06 
S_4b 1 3.76E-06 1 2.30E--3 
S_5a 1 4.01E-04 1 8.88E-16 
S_5b 1 4.53E-05 1 2.82E-10 
S_6a 0 0.502 1 4.43E-07 
S_6b 0 0.0654 1 2.19E-10 
S_7a 0 0.7484 1 1.03E-23 
S_7b 0 0.849 1 1.10E-14 
S_8a NaN NaN 0 3.07E-01 
S_8b 0 0.2658 1 8.36E-05 
S_9a 1 1.01E-09 1 1.56E-04 
S_9b 0 0.9592 1 1.75E-15 
S_10a 1 0.0105 1 4.89E-05 
S_10b 0 0.3407 1 1.21E-08 
S_11a 0 0.5496 1 3.86E-06 
S_11b 0 0.3837 1 3.39E-02 
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Table A2.3. Stage I.  Similar analysis as in the previous table, comparing Stage I with 
Stage II, REM and Waking (W). In all 22 out of 26 recordings, the null hypothesis was 
accepted in at least one condition.   
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TABLE A2.3 - STAGE I 
  H-SII  P-F-SII H-F-REM  P-F-REM H-F-W P-F-W 
  
VA 

 
S_9 1 5.96E-10 1 1.85E-08 1 1.63E-09 
S_10 0 0.5993 1 0.0065 0 0.3241 
S_11 0 0.4964 0 0.4579 0 0.066 
S_18 1 2.91E-04 1 0.0194 1 2.57E-07 
S_19 0 0.7925 0 0.402 0 0.2943 
S_20 0 0.3791 1 6.10E-07 0 0.3292 

 

MPI 
 

S_2a 1 0.005 1 0.0046 0 0.0786 
S_2b 0 0.1743 0 0.166 0 0.5593 
S_3a 1 0.0443 0 0.062 0 0.7146 
S_3b 1 1.24E-05 1 0.0107 1 0.0214 
S_4a 0 0.0814 0 0.1615 1 0.015 
S_4b 1 3.10E-03 1 0.0293 1 0.0197 
S_5a 0 0.1308 0 0.8425 0 0.1457 
S_5b 0 9.78E-01 0 0.2074 0 0.24 
S_6a 1 0.0177 0 0.23 1 0.0095 
S_6b 0 1.44E-01 1 0.0024 0 0.8589 
S_7a 0 0.1186 1 0.0118 0 0.5723 
S_7b 0 9.99E-01 0 0.9606 0 0.3975 
S_8a 0 0.2488 0 0.079 0 0.3351 
S_8b 0 2.58E-01 0 0.172 0 0.4921 
S_9a 0 0.3047 0 0.4271 0 0.5964 
S_9b 0 1.18E-01 0 0.5353 0 0.6615 
S_10a 0 0.191 1 0.0131 1 5.30E-05 
S_10b 0 0.056 0 0.1773 0 0.9267 
S_11a 0 0.1886 0 0.3219 0 0.3275 
S_11b 0 0.4501 0 0.2254 1 3.04E-06 
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Table A2.4. REM & Wakefulness. Similar analysis as in the previous tables with the 
inclusion of an analysis for automated scores in the last two columns.  The null 
hypothesis for REM and W was rejected by both the manual scoring and the algorithm 
in two recordings.  
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TABLE A2.4 - REM & W akefulness 
 H-

REM 
P-REM H-

REM_AUT  
PREM_AUT 

 
VA 

 
S_9 1 1.75E-19 1 5.25E-12 
S_10 1 5.30E-15 1 1.41E-14 
S_11 1 2.16E-04 1 0.0045 
S_18 1 5.01E-10 1 9.94E-12 
S_19 1 1.06E-04 0 9.03E-02 
S_20 1 3.50E-03 1 3.50E-03 

 

MPI 
 

S_2a 0 0.2188 1 0.0016 
S_2b 0 0.6451 0 0.1276 
S_3a 0 0.2267 1 3.19E-04 
S_3b 1 3.25E-08 1 2.59E-05 
S_4a 1 0.0022 1 1.24E-04 
S_4b 1 5.33E-04 1 4.91E-06 
S_5a 1 9.71E-06 1 3.14E-05 
S_5b 1 3.70E-03 1 6.19E-09 
S_6a 1 4.52E-02 1 1.26E-05 
S_6b 1 5.70E-04 1 3.99E-07 
S_7a 1 6.9360e-04 NaN NaN 
S_7b 0 1.28E-01 1 3.70E-05 
S_8a 1 1.54E-02 1 1.00E-05 
S_8b 0 5.84E-01 1 3.50E-06 
S_9a 0 3.72E-01 1 3.96E-02 
S_9b 0 5.58E-01 0 1.30E-01 
S_10a 1 1.20E-11 1 1.17E-33 
S_10b 0 2.24E-01 1 6.92E-06 
S_11a 0 5.57E-02 NaN NaN 
S_11b 1 6.08E-09 0 1.95E-01 
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Table A2.5. Statistics on temporally fragmented part of REM sleep. The percentage of 
REM, number of episodes, their mean duration and separation is represented in each 
recording from both data sets. 
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TABLE A2.5 - TOP REM 
  %REM  Number  Mean 

Duration (s) 
Mean 
Separation (s) 

  
VA 
  
S_9 25.2101 25 33.6 109.0909 
S_10 36.036 23 48.2609 102.6316 
S_11 11.1732 21 30 87.5 
S_18 15.1351 21 35.7143 163.6364 
S_19 35.9551 46 33.2609 96.7742 
S_20 29.0657 53 43.5849 137.0455 
  
  
MPI 
  
S_2a 37.6471 63 44.2857 70.4348 
S_2b 41.8251 68 46.7647 74.6809 
S_3a 25.3086 25 44.4 169.4118 
S_3b 22.7513 37 30 111.25 
S_4a 24.2553 48 31.875 119.1176 
S_4b 17.9724 33 29.0909 187.1429 
S_5a 15.1685 21 30 312 
S_5b 13.4503 20 28.5 266.6667 
S_6a 17.1123 30 28 136.9565 
S_6b 16.2679 32 27.1875 161.0526 
S_7a 34.8958 54 31.1111 80.9091 
S_7b 31.7647 51 42.3529 97.5 
S_8a 25.2475 33 42.7273 140 
S_8b 34.2723 49 37.3469 120 
S_9a 30.1508 45 38 95.2941 
S_9b 33.3333 39 42.3077 86.5385 
S_10a 15.8621 21 31.4286 125 
S_10b 32.2034 41 38.0488 102.8571 
S_11a 29.3785 41 32.9268 104.4828 
S_11b 29.3413 33 40 98.1818 
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Table A2.6. The fragmented and no-fragmented portions of REM sleep do not 
correspond to phasic or tonic REM. In the VA data only, REM was subdivided into 
epochs without eye movements (tonic REM) and epochs with 0-25%, 25-50%, 50-
75%, 75-100% eye movements (phasic REM). For each subject, the percentage of 
times one of the substates listed above occurs in the unstable portion of REM is 
reported. Both tonic REM and phasic REM take place in the unstable part of REM. 
 
 
 

TABLE A2.6 - Eye Movements 
  Tonic Phasic 
  no eye 

mvmts 
0-25% 25-

50% 
50-

75% 
75-

100% 
  
VA 
  
S_9 31.8182 34.2105 16.6667 15.7895 20 
S_10 43.1818 35.0877 11.1111 0 NaN 
S_11 8.046 15.2941 0 NaN NaN 
S_18 21.2766 16.092 9.375 5.5556 0 
S_19 38.8889 34.2857 26.6667 33.3333 NaN 
S_20 44.4444 26.5487 10.2564 14.2857 20 
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Table A2.7. REM has a unique temporal fragmentation pattern which distinguishes it 
from Stage I and W. A KS analysis at a 30 second resolution as in Tables A2.2 and 
A2.3 is performed. The null hypothesis was rejected for REM vs Stage I (left 
columns) in 23 out 26 recordings and for REM vs. W (right columns) 24 out of 26 
recordings, as defined by manual scoring.  
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TABLE A2.7 - Fragmentation 
  H_IS-1_REM P_IS-1-REM H_W-REM P_W-REM 
  
VA 
  

S_9 1 6.89E-13 1 1.43E-29 
S_10 1 2.83E-02 1 6.91E-08 
S_11 1 0.0035 1 2.65E-02 
S_18 1 1.15E-12 1 1.88E-27 
S_19 1 6.27E-08 1 2.27E-17 
S_20 1 5.78E-11 1 7.53E-06 

  
  
MPI 
  

S_2a 1 1.40E-04 1 0.0041 
S_2b 0 0.2307 0 0.1047 
S_3a 1 0.0054 1 1.62E-04 
S_3b 1 5.41E-06 1 1.51E-07 
S_4a 1 4.41E-06 1 5.94E-12 
S_4b 1 9.02E-10 1 5.88E-19 
S_5a 1 1.02E-04 1 4.99E-15 
S_5b 1 2.11E-06 1 2.12E-20 
S_6a 1 1.81E-07 1 7.93E-28 
S_6b 1 5.97E-07 1 2.14E-20 
S_7a 0 0.1648 1 3.17E-02 
S_7b 1 1.84E-02 0 2.07E-01 
S_8a 1 1.18E-13 1 1.88E-19 
S_8b 1 1.17E-06 1 4.68E-12 
S_9a 1 5.40E-03 1 6.00E-07 
S_9b 0 0.8904 1 4.07E-04 
S_10a 1 7.27E-16 1 9.06E-49 
S_10b 1 1.04E-06 1 1.47E-11 
S_11a 1 2.50E-03 1 5.75E-11 
S_11b 1 8.12E-06 1 4.44E-04 
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Table A2.8. Agreement matrices for each recording. For each recording, two matrices 
are presented, one to the left and one to the right. Matrices on the left should be read 
column-wise. Each box corresponds to the percentage of the stage listed above, as 
derived by automated classification, to be listed to belong to the stage on the left, as 
derived by manual scoring. The columns do not always add up 100% because some 
the epochs were scored as M by the human scorer. Matrices on the right should be 
read row-wise, for each box corresponds to the percentage of times an epoch manually 
labeled as the stage to the left was automatically classified as the stage above. Since 
all the data is scored by the algorithm, the rows add up to 100%.  The last set of 
matrices displays in each box an average of all of the preceding values in that 
particular box. This is not a precise estimate, as it is not weighed by the number of 
epochs scored as particular stage. In certain cases for example, a single epoch per state 
was found leading to either 0% or 100% agreement* .    
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Table A2.8 , continued  

Table A2.8 - Agreement Matrix  
  
MPI - 2a Automated   Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 96.8153 10.2439 0.2584 0 SWS 77.9487 21.5385 0.5128 0 

IS 3.1847 85.6098 32.8165 18.75 IS 1.0288 72.2222 26.1317 0.6173 
REM 0 1.2195 64.5995 0 REM 0 1.9608 98.0392 0 

W 0 0.4878 1.8088 81.25 W 0 9.0909 31.8182 59.0909 
 
 
 
 

MPI - 2b Automated  Automated 
Human SWS IS REM W Human SWS IS REM W 
SWS 82.7586 3.125 0 0 SWS 94.5813 5.4187 0 0 

IS 15.0862 84.6591 33.871 69.2308 IS 7.4786 63.6752 26.9231 1.9231 
REM 0 7.9545 63.172 0 REM 0 10.6464 89.3536 0 

W 0.431 2.5568 2.6882 30.7692 W 4.1667 37.5 41.6667 16.6667 
 
 
 
 

MPI - 3a Automated   Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 69.145 1.432 0 0 SWS 96.875 3.125 0 0 

IS 27.881 93.5561 39.2857 55 IS 12.9983 67.9376 17.1577 1.9064 
REM 0 3.58 58.3333 0 REM 0 9.2593 90.7407 0 

W 0 0.4773 1.5873 45 W 0 13.3333 26.6667 60 
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Table A2.8 , continued  

 
 
MPI - 3b 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 63.8889 6.3882 0 0 SWS 86.0963 13.9037 0 0 

IS 31.3492 87.9607 31.9549 45.7143 IS 14.684 66.5428 15.7993 2.974 
REM 0.7937 3.1941 65.4135 0 REM 1.0582 6.8783 92.0635 0 

W 0 0.9828 1.1278 54.2857 W 0 15.3846 11.5385 73.0769 
 
 
 
 

MPI - 4a Automated    Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 93.2927 12.8364 0 0 SWS 71.1628 28.8372 0 0 

IS 5.4878 82.8157 19.0311 11.1111 IS 1.9149 85.1064 11.7021 1.2766 
REM 0 1.8634 78.2007 0 REM 0 3.8298 96.1702 0 

W 0 0.4141 1.0381 88.8889 W 0 3.7736 5.6604 90.566 
 
 
 
 

MPI - 4b Automated    Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 99.2248 20.471 0 0 SWS 53.112 46.888 0 0 

IS 0 75.3623 9.3617 14.5833 IS 0 93.4831 4.9438 1.573 
REM 0 1.4493 88.9362 0 REM 0 3.6866 96.3134 0 

W 0 0.9058 0.4255 85.4167 W 0 10.6383 2.1277 87.234 
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Table A2.8 , continued  

 
 

MPI - 5a 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 98.8764 16.4384 0 0 SWS 70.9677 29.0323 0 0 

IS 0 76.484 21.8182 46.6667 IS 0 82.9208 11.8812 5.198 
REM 0 2.2831 76.3636 0 REM 0 5.618 94.382 0 

W 0 3.8813 0.9091 53.3333 W 0 39.5349 4.6512 55.814 
 
 
 
 

MPI - 5b 

 
 
 
 

Automated    

 
 
 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 95.3917 15.0476 0 0 SWS 72.3776 27.6224 0 0 

IS 3.2258 77.7143 18.75 0 IS 1.5521 90.4656 7.9823 0 
REM 0 3.2381 80.2083 0 REM 0 9.9415 90.0585 0 

W 0.9217 1.5238 1.0417 100 W 5.1282 20.5128 5.1282 69.2308 
 
 
 
 

MPI - 6a Automated    Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 80.695 4.7009 0 0 SWS 90.4762 9.5238 0 0 

IS 16.6023 88.2479 4.0201 26.6667 IS 9.0336 86.7647 1.6807 2.521 
REM 0 3.4188 85.9296 0 REM 0 8.5561 91.4439 0 

W 0 2.1368 10.0503 73.3333 W 0 15.873 31.746 52.381 
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Table A2.8 , continued  

 
 
MPI - 6b 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 84.4221 10.7345 0 0 SWS 74.6667 25.3333 0 0 

IS 14.0704 82.6742 4.5226 17.0732 IS 5.7971 90.8903 1.8634 1.4493 
REM 0 3.9548 94.4724 0 REM 0 10.0478 89.9522 0 

W 0 1.5066 1.005 82.9268 W 0 18.1818 4.5455 77.2727 

 
MPI - 7a 

 
 

Automated   

 
 

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 68.5393 1.6787 0 NaN SWS 94.5736 5.4264 0 0 

IS 31.4607 86.3309 46.8665 NaN IS 9.5238 61.2245 29.2517 0 
REM 0 1.9185 50.1362 NaN REM 0 4.1667 95.8333 0 

W 0 8.1535 2.1798 NaN W 0 80.9524 19.0476 0 
 
 
 
 

MPI - 7b Automated    Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 99.1935 1.7654 0 0 SWS 89.781 10.219 0 0 

IS 0.8065 63.0517 90 50 IS 0.1887 94.3396 3.3962 2.0755 
REM 0 32.1564 0 0 REM 0 100 0 0 

W 0 2.1438 0 50 W 0 60.7143 0 39.2857 
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Table A2.8 , continued  

 
 

MPI - 8a 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 28.1818 0.6696 0 0 SWS 95.3846 4.6154 0 0 

IS 71.8182 74.5536 48.9627 56.6667 IS 24.5342 51.8634 18.323 5.2795 
REM 0 22.0982 42.7386 0 REM 0 49.0099 50.9901 0 

W 0 1.5625 7.4689 43.3333 W 0 13.7255 35.2941 50.9804 
 
 
 
 

MPI - 8b 

 
 
 
 

Automated    

 
 
 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 61.1111 1.7857 0 0 SWS 94.2857 5.7143 0 0 

IS 38.4259 88.3929 28.6792 14.7059 IS 14.8214 70.7143 13.5714 0.8929 
REM 0 8.7054 65.6604 0 REM 0 18.3099 81.6901 0 

W 0 0 2.6415 85.2941 W 0 0 19.4444 80.5556 
 
 
 
 

MPI - 9a 

 
 
 
 

Automated    

 
 
 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 95.7983 6.4579 0 0 SWS 77.551 22.449 0 0 

IS 4.2017 90.411 34.8765 8.3333 IS 0.8606 79.5181 19.4492 0.1721 
REM 0 0.9785 59.8765 0 REM 0 2.5126 97.4874 0 

W 0 0.5871 4.321 91.6667 W 0 10.7143 50 39.2857 
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Table A2.8 , continued  

 
 

MPI - 9b 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 95.5696 4.5064 0 0 SWS 87.7907 12.2093 0 0 

IS 4.4304 92.7039 42.6866 0 IS 1.2027 74.2268 24.5704 0 
REM 0 1.7167 53.1343 0 REM 0 4.3011 95.6989 0 

W 0 0.8584 3.2836 100 W 0 22.2222 61.1111 16.6667 
 
 

 
 
MPI - 10a 

 
 

Automated    

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 62.6794 1.462 0 0 SWS 96.3235 3.6765 0 0 

IS 34.9282 85.9649 19.9005 28.7129 IS 15.6989 63.2258 8.6022 12.4731 
REM 0 3.8012 65.6716 0 REM 0 8.9655 91.0345 0 

W 1.9139 8.7719 14.4279 71.2871 W 1.9324 14.4928 14.0097 69.5652 

 
 

MPI - 10b 

 
 
 
 

Automated    
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 61.9048 0.2028 0 0 SWS 99.2366 0.7634 0 0 

IS 37.619 91.0751 24.5614 51.6129 IS 13.1667 74.8333 9.3333 2.6667 
REM 0 4.2596 68.4211 0 REM 0 11.8644 88.1356 0 

W 0 4.2596 6.1404 48.3871 W 1.9324 14.4928 14.0097 69.5652 
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Table A2.8 , continued  

 
 

MPI - 11a 

 
 

Automated  

 
 

Automated  
Human SWS IS REM* W Human SWS IS REM W 
SWS 91.7431 2.8015 0 0 SWS 81.3008 18.6992 0 0 

IS 8.2569 65.8952 0 26.3158 IS 1.6216 97.4775 0 0.9009 
REM 0 21.5591 0 73.6842 REM 0 100 0 0 

W 0 8.8916 100 0 W 0 81.1111 3.3333 15.5556 
 
 
 
 

MPI -11b 
 

Automated    

 
 

Automated  
Human SWS IS REM W* Human SWS IS REM W 
SWS 64.557 0.3854 0 0 SWS 98.0769 1.9231 0 0 

IS 32.2785 76.4933 47.8873 100 IS 8.7179 67.8632 23.2479 0.1709 
REM 3.1646 4.2389 49.2958 0 REM 2.994 13.1737 83.8323 0 

W 0 17.341 1.4085 0 W 0 95.7447 4.2553 0 
 
 
 
 

VA - 9 

 
 
 
 

Automated    

 
 
 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 69.3617 2.3102 0 0 SWS 95.8824 4.1176 0 0 

IS 30.2128 86.4686 10.7914 28.7313 IS 16.7059 61.6471 3.5294 18.1176 
REM 0 4.2904 76.259 0 REM 0 10.9244 89.0756 0 

W 0.4255 6.9307 12.9496 71.2687 W 0.4329 9.0909 7.7922 82.684 
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Table A2.8 , continued  

 
 
VA - 10 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 81.1475 2.5057 0 0 SWS 94.7368 5.2632 0 0 

IS 18.4426 91.344 18.9394 19.0909 IS 9.1463 81.5041 5.0813 4.2683 
REM 0 3.4169 72.7273 0 REM 0 13.5135 86.4865 0 

W 0 1.3667 6.8182 80.9091 W 0 5.7692 8.6538 85.5769 
 
 
 
 

VA - 11 Automated    Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 98.6047 5.2817 0.2833 0 SWS 92.9825 6.5789 0.4386 0 

IS 1.3953 94.0141 48.1586 53.3333 IS 0.6696 59.5982 37.9464 1.7857 
REM 0 0 50.7082 0 REM 0 0 100 0 

W 0 0.3521 0.2833 46.6667 W 0 5.7692 8.6538 85.5769 

 
 
 

VA - 18 

 
 

Automated    

 
 
 

 
Automated 

Human SWS IS REM W Human SWS IS REM W 
SWS 95.6098 4.0767 0 0 SWS 92.0188 7.9812 0 0 

IS 3.9024 87.2902 26.4368 2.5641 IS 1.8059 82.167 15.5756 0.4515 
REM 0 6.235 60.9195 0 REM 0 14.0541 85.9459 0 

W 0 1.199 9.9617 97.4359 W 0 4.6729 24.2991 71.028 
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Table A2.8 , continued  

 
 

VA - 19 

 
 

Automated  

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 36.1963 0.5814 0 0 SWS 95.1613 4.8387 0 0 

IS 63.8037 93.0233 22.8137 15.7895 IS 16.0742 74.1886 9.2736 0.4637 
REM 0 0.3876 66.9202 0 REM 0 1.1236 98.8764 0 

W 0 5.2326 7.6046 84.2105 W 0 42.8571 31.746 25.3968 
 
 
 
 

VA - 20 Automated    Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 98.9474 7.4492 0 0 SWS 74.0157 25.9843 0 0 

IS 1.0526 87.3589 22.9167 50 IS 0.2066 79.9587 18.1818 1.6529 
REM 0 1.5801 73.4375 0 REM 0 2.4221 97.5779 0 

W 0 1.5801 1.3021 50 W 0 35 25 40 

 
 

Average 
 

Automated    

 
 

 
 

Automated  
Human SWS IS REM W Human SWS IS REM W 
SWS 79.75599 5.589931 0.020835 0 SWS 86.43716 13.52625 0.036592 0 

IS 19.2278 84.20983 28.84266 32.42611 IS 7.285862 75.93688 14.0538 2.723462 
REM 0.152242 5.749927 61.98213 2.947368 REM 0.155854 16.33716 83.50699 0 

W 0.142004 3.234758 7.787419 64.62652 W 0.522792 26.19818 18.93074 54.3483 
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Table A2.9. Agreement matrices for REM components. For each subject, two matrices 
as in Table A2.8 are presented. The matrices on the left and right should be read 
column-wise and row-wise, respectively. Each box in the left matrix corresponds to 
the percentage of times an epoch of the stage listed above as either the fragmented 
(REM UP) or stable (REM DOWN) components of REM as defined by the automated 
algorithm has been labeled as the stage on the left as defined by the human scorer. M 
corresponds to epochs labeled as movement. Each box in the right matrix corresponds 
to the percentage of time an epoch on the left, as defined by an automatic separation of 
manually identified REM is listed as the epoch above as defined by the algorithm. The 
REM UP/DOWN distinction is always done by a K-means algorithm on REM data, 
whether it is identified by the human scorer or the algorithm. Average percentage 
agreements were also computed for VA subjects, MPI subjects and both data sets, 
respectively. These matrices exclude three cases, where inspection of the preferred 
frequency map shows suspicious performance on the part of either the algorithm (MPI 
7b and 11a) or the human scorer  (MPI 8a). Most manually labeled REM components 
fall into the same automatically labeled REM components (right matrices). The 
unstable portion of REM as defined by the algorithm is most likely to be confused 
with stage II by the human when it is not scored as REM (left matrices).  
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Table A2.9, continued 

Table A2.9 - Agreement Matrix - REM 
VA - 9 Automated  Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

   W 

SWS-4 0 0 
 

REM 
UP 

0 10 90 0 0 

SWS-3 0 0 REM 
DOWN 

0 11.236 0 88.764 0 

IS-2 12.5 1.2048 
IS-1 10.7143 1.2048 
REM 
UP 

48.2143 0 

REM 
DOWN 

0 95.1807 

W 28.5714 2.4096 
M 0 0 

 

 

VA - 10 Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 27.5 72.5 0 0 

SWS-3 0 0 REM 
DOWN 

0 5.6338 0 94.366
2 

0 

IS-2 14 15.8537 
IS-1 8 1.2195 
REM 
UP 

58 0 

REM 
DOWN 

0 81.7073 

W 18 0 
M 2 1.2195 

 

 

VA - 11 Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0.3861 REM 
UP 

0 0 100 0 0 

SWS-3 0 0 REM 
DOWN 

0 0 0 100 0 

IS-2 74.4681 36.2934 
IS-1 3.1915 1.1583 
REM 
UP 

21.2766 0 

REM 
DOWN 

0 61.39 

W 0 0.3861 
M 1.0638 0.3861 
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Table A2.9, continued 

VA - 18 Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 7.1429 92.85
71 

0 0 

SWS-3 0 0 REM 
DOWN 

0 15.286
6 

0 84.713
4 

0 

IS-2 34.0909 8.0925 
IS-1 15.9091 6.3584 
REM 
UP 

29.5455 0 

REM 
DOWN 

0 76.8786 

W 17.0455 6.3584 
M 3.4091 2.3121 

 

 

VA - 19 Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 3.125 96.87
5 

0 0 

SWS-3 0 0 REM 
DOWN 

0 0 0.877
2 

99.122
8 

0 

IS-2 21.6 12.3188 
IS-1 10.4 2.1739 
REM 
UP 

49.6 0 

REM 
DOWN 

0.8 81.8841 

W 16 0 
M 1.6 3.6232 

 

 

VA - 20 Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 5.9524 89.28
57 

4.7619 0 

SWS-3 0 0 REM 
DOWN 

0 0.9756 0 99.024
4 

0 

IS-2 25 13.8462 
IS-1 6.4516 5 
REM 
UP 

60.4839 1.5385 

REM 
DOWN 

0 78.0769 

W 3.2258 0.3846 
M 4.8387 1.1538 
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Table A2.9, continued 

Average 
VA 

 
Automated 

  
Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

W 

SWS-4 0 0.06435 REM 
UP 

0 8.9533
83 

90.25
297 

0.7936
5 

0 

SWS-3 0 0 REM 
DOWN 

0 5.522 0.146
2 

94.331
8 

0 

IS-2 30.2765 14.6015
7 

IS-1 9.11108
3 

2.85248
3 

REM 
UP 

44.5200
5 

0.25641
7 

REM 
DOWN 

0.13333
3 

79.1862
7 

W 13.8071
2 

1.58978
3 

M 2.15193
3 

1.44911
7 

 

 

MPI -2a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 1.0417 95.83
33 

3.125 0 

SWS-3 0.6135 0 REM 
DOWN 

0 2.5157 0 97.484
3 

0 

IS-2 27.6074 24.5536 
IS-1 11.0429 4.0179 
REM 
UP 

56.4417 1.3393 

REM 
DOWN 

0 69.1964 

W 3.681 0.4464 
M 0.6135 0.4464 

 

 

MPI -2b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 13.636
4 

86.36
36 

0 0 

SWS-3 0 0 REM 
DOWN 

0 8.4967 0 91.503
3 

0 

IS-2 22.695 31.1688 
IS-1 6.383 5.6277 
REM 
UP 

67.3759 0 

REM 0 60.6061 
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Table A2.9, continued 

DOWN 
W 3.5461 2.1645 
M 0 0.4329 

 
MPI -3a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 12.195
1 

87.80
49 

0 0 

SWS-3 0 0 REM 
DOWN 

0 8.2645 0 91.735
5 

0 

IS-2 24 23.7288 
IS-1 22.6667 12.4294 
REM 
UP 

48 0 

REM 
DOWN 

0 62.7119 

W 4 0.565 
M 1.3333 0.565 

 

 

MPI -3b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

2.325
6 

11.627
9 

83.72
09 

2.3256 0 

SWS-3 0 0 REM 
DOWN 

0.684
9 

5.4795 0 93.835
6 

0 

IS-2 25.6757 18.75 
IS-1 20.2703 7.8125 
REM 
UP 

48.6486 0.5208 

REM 
DOWN 

0 71.3542 

W 2.7027 0.5208 
M 2.7027 1.0417 

 

 

MPI -4a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 1.7544 98.24
56 

0 0 

SWS-3 0 0 REM 
DOWN 

0 4.4944 0.561
8 

94.943
8 

0 

IS-2 15.5556 10.5528 
IS-1 13.3333 4.0201 
REM 
UP 

62.2222 0 

REM 
DOWN 

1.1111 84.9246 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



146 

 

Table A2.9, continued 

W 3.3333 0 
M 4.4444 0.5025 

 
 
MPI -4b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 15.384
6 

84.61
54 

0 0 

SWS-3 0 0 REM 
DOWN 

0 1.1236 0 98.876
4 

0 

IS-2 7.1429 6.7358 
IS-1 9.5238 1.0363 
REM 
UP 

78.5714 0 

REM 
DOWN 

0 91.1917 

W 2.381 0 
M 2.381 1.0363 

 

 

MPI -5a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 22.222
2 

77.77
78 

0 0 

SWS-3 0 0 REM 
DOWN 

0 2.649 0 97.351 0 

IS-2 51.8519 9.0361 
IS-1 1.8519 2.4096 
REM 
UP 

38.8889 0 

REM 
DOWN 

0 88.5542 

W 3.7037 0 
M 3.7037 0 

 

 

MPI -5b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 21.739
1 

78.26
09 

0 0 

SWS-3 0 0 REM 
DOWN 

0 8.1081 0.675
7 

91.216
2 

0 

IS-2 17.2414 14.7239 
IS-1 10.3448 2.454 
REM 
UP 

62.069 0 

REM 
DOWN 

3.4483 82.8221 
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Table A2.9, continued 

W 6.8966 0 
M 0 0 

 
 
MPI -6a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 31.25 68.75 0 0 

SWS-3 0 0 REM 
DOWN 

0 3.871 1.290
3 

94.838
7 

0 

IS-2 8.5106 1.9737 
IS-1 2.1277 0 
REM 
UP 

46.8085 0 

REM 
DOWN 

4.2553 96.7105 

W 38.2979 1.3158 
M 0 0 

 

 

MPI -6b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 35.294
1 

64.70
59 

0 0 

SWS-3 0 0 REM 
DOWN 

0 5.1429 0.571
4 

94.285
7 

0 

IS-2 0 4.023 
IS-1 4 0.5747 
REM 
UP 

88 0 

REM 
DOWN 

4 94.8276 

W 4 0.5747 
M 0 0 

 

 

MPI -7a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 7.4627 92.53
73 

0 0 

SWS-3 0 0 REM 
DOWN 

0 2.4 0 97.6 0 

IS-2 25.5474 26.9565 
IS-1 24.0876 18.2609 
REM 
UP 

45.2555 0 

REM 
DOWN 

0 53.0435 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



148 

 

Table A2.9, continued 

W 2.9197 1.7391 
M 2.1898 0 

 
 
MPI -7b Automated   Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 100 0 0 0 

SWS-3 0 0 REM 
DOWN 

0 100 0 0 0 

IS-2 90 80 
IS-1 0 10 
REM 
UP 

0 0 

REM 
DOWN 

0 0 

W 0 0 
M 10 10 

 

 

MPI -8a Automated   Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 76.470
6 

23.52
94 

0 0 

SWS-3 0 0 REM 
DOWN 

0 39.735
1 

0.662
3 

59.602
6 

0 

IS-2 59.854 7.6923 
IS-1 16.7883 4.8077 
REM 
UP 

8.7591 0 

REM 
DOWN 

0.7299 86.5385 

W 12.4088 0.9615 
M 1.4599 0 

 

 

MPI -8b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 39.726 60.27
4 

0 0 

SWS-3 0 0 REM 
DOWN 

0 7.1429 0.714
3 

92.142
9 

0 

IS-2 26.2626 18.0723 
IS-1 13.1313 4.2169 
REM 
UP 

44.4444 0 

REM 
DOWN 

1.0101 77.7108 
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Table A2.9, continued 

W 7.0707 0 
M 8.0808 0 

 
 
MPI -9a Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 6.6667 93.33
33 

0 0 

SWS-3 0 0 REM 
DOWN 

0 0.7194 0 99.280
6 

0 

IS-2 17.2727 18.6916 
IS-1 22.7273 13.5514 
REM 
UP 

50.9091 0 

REM 
DOWN 

0 64.486 

W 8.1818 2.3364 
M 0.9091 0.9346 

 

 

MPI -9b Automated  Automated  
Human REM 

UP 
REM 

DOWN 
Human  SWS IS REM 

UP 
REM 

DOWN 
W 

SWS-4 0 0 REM 
UP 

0 11.290
3 

88.70
97 

0 0 

SWS-3 0 0 REM 
DOWN 

0 0.8065 0 99.193
5 

0 

IS-2 17.6991 16.2162 
IS-1 24.7788 26.5766 
REM 
UP 

48.6726 0 

REM 
DOWN 

0 55.4054 

W 7.0796 1.3514 
M 1.7699 0.4505 

 

 

MPI -
10a 

 
Automated 

  
Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

W 

SWS-4 0 0 REM 
UP 

0 30.434
8 

69.56
52 

0 0 

SWS-3 0 0 REM 
DOWN 

0 4.918 4.098
4 

90.983
6 

0 

IS-2 7.0175 11.1111 
IS-1 12.2807 9.0278 
REM 
UP 

28.0702 0 

REM 8.7719 77.0833 
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Table A2.9, continued 

DOWN 
W 43.8596 2.7778 
M 0 0 

 
MPI -
10b 

 
Automated 

  
Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

W 

SWS-4 0 0 REM 
UP 

0 22.807 77.19
3 

0 0 

SWS-3 0 0 REM 
DOWN 

0 6.6667 0 93.333
3 

0 

IS-2 6.8966 2.8369 
IS-1 27.5862 15.6028 
REM 
UP 

50.5747 0 

REM 
DOWN 

0 79.4326 

W 13.7931 1.4184 
M 1.1494 0.7092 

 

 

MPI - 
11a 

 
Automated  

  
Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

W 

SWS-4 0 0 REM 
UP 

0 0 100 0 0 

SWS-3 0 0 REM 
DOWN 

0 0 100 0 0 

IS-2 0 0 
IS-1 0 0 
REM 
UP 

0 0 

REM 
DOWN 

0 0 

W 100 100 
M 0 0 

 

 

MPI - 
11b 

 
Automated 

  
Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

W 

SWS-4 0 0 REM 
UP 

0 20.408
2 

79.59
18 

0 0 

SWS-3 0 0 REM 
DOWN 

4.237
3 

10.169
5 

6.779
7 

78.813
6 

0 

IS-2 53.4351 26.7974 
IS-1 7.6336 9.8039 
REM 29.771 0 
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Table A2.9, continued 

UP 
REM 

DOWN 
6.1069 60.7843 

W 2.2901 0.6536 
M 0.7634 1.9608 

 
average 

MPI 
 

Automated 
  

Automated  
 

Human 
 

REM 
UP 

 
REM 

DOWN 

 
Human  

 
SWS 

 
IS 

 
REM 
UP 

REM 
DOWN 

 
W 

SWS-4 0 0 REM 
UP 

0.136
8 

17.937
72 

81.60
486 

0.3206
24 

0 

SWS-3 0.03608
8 

0 REM 
DOWN 

0.289
541 

4.8804
94 

0.864
212 

93.965
76 

0 

IS-2 20.8477
4 

15.6428
5 

IS-1 13.7511
7 

8.08367
6 

REM 
UP 

52.6308
1 

0.10941
8 

REM 
DOWN 

1.68844
7 

74.7556 

W 9.27864
1 

0.93317
1 

M 1.76711
8 

0.47528
8 

 

 

average 
ALL 

 
Automated 

  
Automated  

Human REM 
UP 

REM 
DOWN 

Human  SWS IS REM 
UP 

REM 
DOWN 

W 

SWS-4 0 0.01678
7 

REM 
UP 

0.101
113 

15.593
98 

83.86
089 

0.4440
22 

0 

SWS-3 0.02667
4 

0 REM 
DOWN 

0.214
009 

5.0478
43 

0.676
904 

94.061
25 

0 

IS-2 23.3074
1 

15.3712
1 

IS-1 12.5407
1 

6.71901
7 

REM 
UP 

50.5149
6 

0.14776
5 

REM 
DOWN 

1.28276
5 

75.9114
3 

W 10.4599
8 

1.10446
1 

M 1.86750
4 

0.72933 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



152 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A2.10. REM outliers. On 4 VA subjects, 1 sec manually scored Stage II 
revealed that most of the spindles or K-complex, which were scored as REM by the 
algorithm did take place in the unstable part.  The same was true for baseline Stage II 
without spindles or K-complexes, in 3 out of 4 subjects (left columns, the exception 
being subject 10.   



 

 

 
 
 
 
 
 
Table A2.10 - REM Outliers 

Stage II  Spindles  K-complex   
  
  
  

events TOP (%) DOWN (%)  events TOP   (%) DOWN (%)  events TOP (%) DOWN (%) 

             
VA - 9 185 96.2162 3.7838  16 93.75 6.25  4 100 0 

            
VA - 10 550 33.6364 66.3636  34 55.8824 44.1176  10 50 50 

            
VA - 18 1123 66.4292 33.5708  126 76.1905 23.8095  12 66.6667 33.3333 

            
VA - 19 1290 61.0078 38.9922  27 74.0741 25.9259  3 100 0 

 
 
 

 
 
 
 
 
 
  
 1
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Table A2.11. Artifact and K-complex analysis. On the VA subjects, high and low 
frequency artifacts, movement artifacts with and without high frequency artifacts, eye 
intrusions (counted here as artifacts), times during which electrodes were disconnected 
and K-complexes were identified by two scorers (1 row per scorer), during manually 
labeled REM and sometimes in NREM. The percentage of fragmented (‘TOP’) and 
non-fragmented (‘DOWN’) REM composed by K-complexes (‘K’) and artifacts 
(‘ART’) is displayed for manually (‘Manual’) and automatically (‘Automated’) scored 
REM. Results for VA-9 are the same across both scorers because the discrepancy of 
their scoring was limited to NREM stages. Differences in the automated results in 
terms of percentages of artifacts present in each portion of REM for subjects 18 and 20 
are due to one scorer identifying more movement artifacts than the to other scorer in 
these subjects. 



 

 

Table A2.11 - Artifact Analysis 
Manual   Automated 

%K,TOP %K,DOWN %ART,TOP %ART,DOWN  %K,TOP %K,DOWN %ART,TOP %ART,DOWN 
  
  

         
VA - 9 3.3333 2.2472 46.6667 71.9101  0 2.4096 39.2857 75.9036 
VA - 9 3.3333 2.2472 46.6667 71.9101  0 2.4096 39.2857 75.9036 

          
VA - 10 7.5 4.2254 25 33.8028  0 1.2195 30 32.9268 
VA - 10 15.5556 7.8947 22.2222 32.8947  0 1.2195 30 32.9268 

          
VA - 11 5 8.805 25 20.1258  3.1915 8.4942 12.766 16.6023 
VA - 11 10 12.5714 20 20  3.1915 8.4942 12.766 16.6023 

          
VA - 18 10.7143 2.5478 35.7143 49.6815  2.2727 2.3121 36.3636 47.3988 
VA - 18 12.9032 3.0303 32.2581 48.4848  2.2727 2.3121 35.2273 46.2428 

          
VA - 19 1.5625 0 37.5 35.9649  0.8 0 32 34.7826 
VA - 19 1.5873 0 39.6825 36.2832  0.8 0 32 34.7826 

          
VA - 20 13.0952 4.3902 33.3333 50.7317  10.4839 3.8462 30.6452 43.4615 
VA - 20 18.4211 4.4776 34.2105 52.2388  10.4839 3.8462 29.8387 43.0769 

 
 
 
 
 
 
 
  
 

1
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Table A2.12. Nearest neighbor analysis. In the same subjects as in the previous table, 
epochs devoid of artifacts were identified to establish whether proximity to an artifact 
could be responsible for the fragmented portion of REM. %XY means percentage of 
neighbors of Y (TOP or DOWN) composed of X (0=no artifact in either neighbor, 
1=one neighbor is an artifact, 2=both neighbors are artifacts). As in the previous table, 
each row corresponds to a different scorer. Similarities and differences observed 
within results for subject 9, 18 and 20 are explained in the previous legend. Subjects 9 
and 19 have respectively 18/34 and 45/85 epochs in the fragmented part of 
automatically identified REM which do not have any neighboring artifacts, leading to 
the same percentage in both cases. 



 

 

Table A2.12 - Nearest Neighbor Analysis 
Manual   Automated 

%0, 
TOP 

%1, 
TOP 

%2, 
TOP 

%0, 
DOWN 

%1, 
DOWN 

%2, 
DOWN 

 %0, 
TOP 

%1, 
TOP 

%2, 
TOP 

%0, 
DOWN 

%1, 
DOWN 

%2, 
DOWN 

  
  
  

             
VA - 9 12.5 62.5 25 36 24 40  52.9412 32.3529 14.7059 25 25 50 
VA - 9 12.5 62.5 25 36 24 40  52.9412 32.3529 14.7059 25 25 50 

              
VA -10 36.6667 50 13.3333 53.1915 40.4255 6.383  37.1429 51.4286 11.4286 58.1818 36.3636 5.4545 
VA -10 42.8571 45.7143 11.4286 56.8627 37.2549 5.8824  37.1429 51.4286 11.4286 58.1818 36.3636 5.4545 

              
VA -11 20 60 20 67.7165 29.1339 3.1496  63.4146 31.7073 4.878 76.3889 21.2963 2.3148 
VA -11 33.3333 50 16.6667 70 27.1429 2.8571  63.4146 31.7073 4.878 76.3889 21.2963 2.3148 

              
VA -18 27.7778 61.1111 11.1111 48.1013 44.3038 7.5949  48.2143 46.4286 5.3571 57.1429 36.2637 6.5934 
VA -18 38.0952 57.1429 4.7619 49.4118 43.5294 7.0588  54.386 42.1053 3.5088 58.0645 35.4839 6.4516 

              
VA -19 30 57.5 12.5 68.4932 28.7671 2.7397  52.9412 38.8235 8.2353 75.5556 22.2222 2.2222 
VA -19 28.9474 57.8947 13.1579 68.0556 29.1667 2.7778  52.9412 38.8235 8.2353 75.5556 22.2222 2.2222 

              
VA -20 55.3571 35.7143 8.9286 53.4653 33.6634 12.8713  61.6279 32.5581 5.814 64.6259 24.4898 10.8844 
VA -20 52 36 12 53.125 33.3333 13.5417  64.3678 29.8851 5.7471 64.1892 24.3243 11.4865 
 
 
 
  
 

1
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Chapter A2 is, in part, being prepared for publication. The  

co-author is T. Sejnowski. The dissertation author was responsible for the 

techniques described and main observations therein and was the primary 

investigator and author of this paper.  
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CHAPTER A3 
 

 
REM REVISITED 

 
 The recently discovered phenomenon of Disuse Hypersensitivity 

(1-3) shows that neurons, especially immature neurons, whose activity has 

been suppressed will progressively become more excitable. If this is true 

in vivo, and there is some evidence for this, then what happens to 

networks which are not sufficiently activated during wakefulness? Could 

such unused networks be stabilized by excitation during sleep?  

 Several studies show that Slow Wave Sleep is associated with a 

replay of awake patterns of activity (4-5). It is during REM sleep that 

patterns which have not been used much or at all during wakefulness can 

be activated (not necessarily in exclusivity).  The reduced synchrony that 

occurs during this phase makes it especially appropriate for such a task: 

the less synchrony, the more neurons can be co-activated without 

triggering instabilities. Thus REM pressure corresponds, in this view, to a 

response to reduced activity rather than to an overload of information 

during wakefulness.  
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This simple hypothesis could explain certain phenomena. For 

example, in this framework, one would expect that REM enhancement 

reduces the probability of epileptic seizures and that, conversely, REM 

deprivation would have the opposite effect. Both are true (6-7). This 

hypothesis can also offer an explanation as to why clinically depressed 

patients have more REM sleep and why REM deprivation helps reduce 

depression (8-9). If one associates depression with an obsessive rehearsal 

of negative events, and treat such a rehearsal as a stimulation of the same 

cortical networks at the expense of others, then larger neural populations 

would need to be stabilized via excitation during REM sleep, making 

REM more prominent in the sleep architecture. On the other hand, REM 

deprivation, would lead to large neural populations being increasingly 

excitable during subsequent awake states, which would interfere with the 

repetitive stimulation underlying the rehearsal.     

 Furthermore, one might also understand why there is less REM in 

the prefrontal cortex (PFC) than in other parts of the cortex (10): 

multiplexing in the PFC reduces the probability of having large 

populations of disused synapses in the awake state, thus limiting the need 

for subsequent REM sleep in that area. 
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 Implications  

 

 Most of our dreams occur in REM sleep (11). If REM activity 

corresponds to, as suggested, a global stabilization of disused networks 

via excitation, then information that was suppressed by attention during 

wakefulness will be likely to appear during REM sleep. This can be 

understood in light of the observation that attentive mechanisms can 

reduce the activity of neurons which tend to preferentially respond to an 

unattended stimulus. Thus we would expect that if a V4 neuron is not 

upregulated by attention during wakefulness (12-13), its spontaneous 

activity during REM should be greater than in NREM whereas the 

opposite would be predicted for V4 neurons which were upregulated by 

an attentive mechanism during wakefulness. 

 It seems possible that this putative REM related activity of disused 

neurons, could very well trigger attention related activity during sleep so 

that our dreams would engage our attention at the expense of surrounding 

stimuli, such as sounds. In this sense, REM can be thought of as a sleep 

promoting phase so that the body can rest following intense hormonal 

activity during other phases of sleep. In this paradigm, REM is not treated 
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as a simple sleep-awake transition phase, especially since it is not 

restricted to the final hours of sleep. If dreams are for the most part 

necessary to maintain sleep, then we would expect other species to be 

selected by evolution to dream as well. We would therefore expect them 

to have subjective experiences. 

  This hypothesis concerning dreams would explain why we tend not 

to remember our dreams: disused neurons are have been stabilized and 

their spontaneous activity during subsequent wakefulness is reduced.  

 

 Back to the Crick-Mitchison theory  

 

The Crick-Mitchison (C-M) theory of REM sleep (14) posits that 

during REM sleep, a reverse learning mechanism modifies cortical 

networks in order to reduce the likelihood of parasitical modes during 

subsequent wakefulness.  In the present hypothesis, large scale excitation 

of the hyperexcitable and parasitical neurons corresponds to this reverse 

learning mechanism.  
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However, as mentioned before, the parasitical modes would stem from 

reduced neural activity, not overload. Neural overload is likely to be 

linked to sleep deprivation which we know gives rise to more subsequent 

Slow Wave Sleep (15). 

A revised version of C-M can account for unsolved issues in the 

original version. For example, one could see why antidepressants can 

knock out REM sleep without any perceivable associated cognitive 

deficit: REM deprivation increases the subsequent neural load and any 

overload will be palliated in SWS.  

Finally we can now understand why fetuses in the womb have REM 

sleep: their cortical wiring is very limited, leading large neural 

populations to be disused and excitable, which strongly increases REM 

pressure.   
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CHAPTER A4  
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2005, entitled "Dynamic Signal Processing" 
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B. PCT Patent Application Serial No. US2006/018120 filed May 9, 2006, 

entitled "Automated Detection of Sleep and Waking States" 

Inventors:  Philip Low and Terrence Sejnowski    
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