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EPIGRAPH

We shall not cease from exploration,
and the end of all our exploring will be to
arrive where we started
and know the place for the first time.

T. S Eliot
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PREFACE

In mammals, a typical night of sleep is composedsbgcessive
episodes of Slow Wave Sleep (SWS), IntermediateS{&5) and Rapid
Eye Movement (REM) sleep. In humans, IS and SWS farther
subdivided into stages | and Il and into stagesahdl 1V, respectively.
REM sleep is also strongly associated with drearmngumans. IS tends
to act as a transition state between SWS and RExbUGhout the night,
there is a progression towards less SWS and mor& RlEeep.
Electroencephalograms (EEGSs) associated with thlesp stages follow
a 1/f distribution, i.e. higher frequencies EEGsvéhasmaller raw
amplitudes and thus less spectral power. SWS amcterized by high
amplitude and low frequency EEGs while REM sleepesponds to a
more “awake-like” raw signal with low amplitudesdahigh frequencies.
Brief EEG landmarks known as spindles and K-congdeare often seen
in IS.

While diverse neurotransmitters are known to bécseely
activated in REM and Non-REM (NREM) sleep, the uhdeg

mechanisms leading to these patterns are not knowithe cortex, a
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higher degree of synchrony has been observed aoms®ns in SWS
than in REM. Moreover K-complexes as well as thershgitation of high
and low frequencies as observed in EEGs have beeosrded in the
cortex. This suite of observations, which has née&sn observed outside
of mammals, has led many to believe that the conag necessary for
their generation.

Recent studies in zebra finches have however shawsieep
dependent replay of activity similar to that observin mammals,
suggesting that birds and mammals alike might begusimilar features
of sleep to consolidate information. A detaileddstwf avian sleep was
thus needed in order to gain a better understanaliripe roles of the
cortex in sleep oscillations as well as the rolsleép in learning.

The systematic study of sleep in a new specibéamgpered by the
same assumptions one makes when assessing slpathatogical cases
or genetically modified animals as there is no gotee one caa priori
use the same set of rules than in healthy humatraterand wild type
rodents. Moreover the guidelines used to assesp siethe latter groups
rely on the Rechtschaffen-Kales (RK) method. Thethad is based on a

set of rules which make two important assumptiohsua sleep and
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EEGs: 1) that scoring rules should minimize therdegf fragmentation
of each sleep state, 2) a simple threshold camcsufd delineate certain
sleep stages, i.e. that EEGs are linearly separdbésed on the
implementation of these rules, the same 30 secegohent of EEG data
can be assigned a different designation dependmgvimch 3 minute
window the 30 sec epoch resides in -therefore sigge that brain
activity could be entirely different when the patie produced are the
same. These rules have been difficult to adherentthumans their
applicability has been increasingly called into gfimn. This is mainly
due to the individual variability in both sleep and subjects (both
longitudinally and across subjects). Given the sehag poor reliability
across human scorers, neural networks developedntolate human
scoring have been lacking in performance and furthié to make their
clustering variables known. Thus, almost 40 yeétes ¢he formulation of
RK, sleep researchers and clinicians are bouneélyoon human scoring
of multiple electrophysiological channels in addliti to behavioral
monitoring in order to make more accurate classiims of sleep. There

Is thus an urgent need in the sleep field to foataula new system to
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classify sleep, one that makes the fewest assungp#bout the data and
which can be broadly applied across individuals acrdss laboratories.

My work in birds shows that finches produce pattestrikingly
similar to the ones produced by mammals, even thahgy lack a
neocortex. These observations were validated by boanual and
automated scoring. The approach | developed foramusieep reveals
human sleep to have a fine structure, observablenuttiple subjects
across multiple laboratories. This structure isasppt using a single
channel of data, usually EEG, and can be usedvelae powerful sleep
scoring algorithms. Consequently, human REM slé&eulsl no longer be
perceived as being “awake-like” or “paradoxical.”

Besides their ease of application, these analyse®dstrate a yet
unreported convergence of sleep patterns acroswgdny as well as

clearer taxonomy of sleep within clades: a new twapok at sleep.
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ABSTRACT OF THE DISSERTATION

A New Way To Look At Sleep:
Separation & Convergence

by

Philip Steven Low

Doctor of Philosophy in Biology / Specialization in
Computational Neurobiology

University of California, San Diego, 2007

Professor Charles F. Stevens, Chair

Despite over 70 years of active research in mamm&8EGs, most

of the neural structures responsible for sleepveaidng rhythms have yet
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to be identified. At time of writing, three majoeliefs pervade the field

of sleep:

1)

2)

3)

The neocortex is largely necessary for the

production of “mammalian” sleep rhythms;

Human REM sleep is “paradoxical” insofar as
the oscillations produced during REM sleep are

“awake-like”;

Human sleep can only be objectively analyzed

by human scorers.

This way of looking at sleep is in need of majonsen, as:

1)

Birds, devoid of a neocortex, can produce osaifei
which bare great similarity with those observed in
mammals, in terms of both their raw signals and

ultradian properties;
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2) Atemporal map of brain activity produced using a
single channel of EEG is sufficient to clearly shibat
REM sleep and Waking have different and separable
EEG profiles. Human REM sleep is therefore not

paradoxical.

3) Sleep and Waking Stages can in fact be easily
identified computationally using a single chanrfel o
EEG, obviating the need for human based sleep

scoring.

Moreover, it appears that low-passing from theIslailected in
EEGs can be easily circumvented, thus providingaeshers and
clinicians with a non-invasive window into brairtiatty, with high
resolution in both the time and frequency domaifsrthermore, the
possibility of there being yet another human skgepe should be fully

explored. The use of these and similar techniguikfiopefully
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minimize the significant strain placed on both hasyand animals in at

least the contexts of medicine as well as basiccinital research.
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CHAPTER 1
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Figure 1.1. Preferred Frequency Space. Every doégponds to the frequency with
the highest normalized power value throughout titigeenight at a given 30 second
window extracted from a single channel of EEG. Qadcand symbols are drawn from
manual labeling (SWS = white, IS = cyan, REM = M5 yellow, M = white
diamonds). Raw data courtesy VA.

Most of my doctoral work can be immediately trabadk to
the concept outlined in this figure or treatecdaslaborate variation,
corollary or motivation thereof. Further refinemgngxplanations,
implications and applications are put forth in Breface, Abstract and,

in significant detail, in the following Appendix.



APPENDIX
CHAPTER Al

Mammalian-like Features of Sleep Structure in agbod

A suite of complex electroencephalographic patteofissleep
occurs in mammals. In sleeping zebra finches, weenled slow wave
sleep (SWS), rapid eye movement (REM) sleep, amrnmgdiate sleep
(IS) stage commonly occurring in, but not limited transitions between
other stages, and high amplitude transients reognisof K-complexes.
SWS density decreased while REM density increasedughout the
night, with late-night characterized by substahtialore REM than SWS,
and relatively long bouts of REM. Birds share méegtures of sleep in
common with mammals, but this collective suite lohm@cteristics had not
been known in any one species outside of mammals.réults falsify
the hypothesis that the patterns of sleep commamammals require a
neocortex. We hypothesize that shared, ancesteahcteristics of sleep
in amniotes evolved under selective pressures cammaongbirds and

mammals, resulting in convergent characteristics @cfeep.



In mammals, a typical night of sleep is composedsbgcessive
episodes of Slow Wave Sleep (SWS), IntermediateS{E5) and Rapid
Eye Movement (REM) sleep. In humans, IS and SWS farther
subdivided into stages | and Il and into stagesahdl 1V, respectively.
REM sleep is also strongly associated with vividaining in humans. 1S
tends to act as a transition state between SW3R&h. Throughout the
night, there is typically a progression towards I8&VS and more REM
sleep. Electroencephalograms (EEGs) associatedtigde sleep stages
follow a 1/f distribution, i.e. higher frequencigsthe EEG have smaller
raw amplitudes and thus less spectral power. SW®asacterized by a
high amplitude and low frequency EEG signal whil&EMR sleep
corresponds to a more “awake-like” raw signal viawer amplitudes and
higher frequencies (1-2). Brief EEG landmarks kn@grspindles and K-
complexes are often seen in Non-REM sleep (NREMB44). Since this
suite of characteristics has never been observesideuof mammals, it

has been proposed that the cortex was necessaty fmneration (5-6).

It is now well established that avian and mammaliarebrain

organization share far more commonalities than thaditionally been



recognized (7). These similarities are observadaeécular, cellular, and
systems levels (8). A new terminology has been tededo correct
misconceptions especially regarding the avian f@eb and which
recognizes forebrain homologies comparing birdsrmadmals (8-9). Of
relevance to this report, direct reciprocal thalaartical projections have
been implicated in generation of sleep rhythms ammals (6). These
are not known in birds, but recent studies havetified descending
recurrent projections of sensory pathways in bind$ might serve similar

functional roles, for example in the auditory syst@.0-11).

Both REM and NREM are known for birds, with sleep most
species being dominated by NREM with brief REM egdes (12),
although passerine birds exhibit greater amountsR&M (13-14).
Circadian patterns in REM and NREM are commonlyvamadn birds
(15), and there is also fragmentary evidence reggrdother
characteristics (16). From these bases, and giwennterest in sleep-
dependent mechanisms of birdsong learning, we exgblihve organization

of sleep states in zebra finches.



We chronically implanted five birds with EEG elextes, three
with bilateral electrode pairs. From the recordingade after birds
acclimated to the recording environment (includingable leading to an
overhead commutator), one full-night record wagea&el for each bird.
These records were characterized by good qualits Einals with
relatively few movement-related or other artifaatel video monitoring
of eye movements throughout the night (see ExperiaheProcedures).
Sleep is associated with species-specific postuiBsbra finches
commonly adopt a head-forward position and occadipna head-
backward position during sleep. Our birds adoptexth bpositions.
Although we did not assess the relative frequeridhese two behaviors
compared to controls, this suggests that the kasgerienced relatively

undisturbed sleep in our experimental conditions.

The EEG data from these recordings were scored inathually
and automatically. Manual scoring relied on visaapection of EEGs in
parallel with scoring of overt behaviors such a®,elgead and body
movements. Sleep stages were scored in 3 s eppdthieve sufficient

temporal resolution for the rapid stage transiticosnmonly observed.



Manual scoring classified each epoch as either REREM or awake.

REM occurred reliably in conjunction with eye amdvlamplitude head
movements, as seen in other species (3, 17). Tdieneyements were on
the order of one saccade per second. The headnmeoN® were not as
reliable, but tended to follow the directional mment of the eyes when
present. As well as visible differences in EEG wWaxms, during NREM

birds breathed slowly and regularly; eye and heagdements were slow
and infrequent, did not follow a stereotypical pait and were quite

distinct from those in REM.

Automated scoring relied on 3 s EEG power speanaputed over
2 orthogonal tapers following a standard multitapgtimation technique
(18), over 1 s increments. Automated scoring wasrioted to the data
collected from sleeping birds as defined by masaaling (i.e. excluding
awake and artifacts). The automated scoring ilytglbdivided the sleep
data into REM, NREM, SWS and non-SWS (NSWS). Epdbls were
scored neither as REM nor as SWS were labeled agViie IS was
observed by visual inspection, it was not systerallyi distinguished

from SWS. Epochs that were automatically labelecbathh REM and



SWS were relabeled as outliers. There were verydethers in the data
(Table Al.1). The agreement rate between manuabatamated scoring
was calculated by assessing each epoch scored kb dgEonly the

manual or the automated scoring as an error, neguibh an average
agreement rate of 84.30 = 3.81 % (mean = S.E.Vaple Al.1l, Figs.

AL1.5).

Full night spectrograms of the EEG signals idesdifitemporal
variations in power in the 1-4 Hz (Delta) and 30-BZ (Gamma)
frequency bands, which were selected for automatasdsification of
sleep stages. The interdigitation of power in ®alihd Gamma observed
in the birds (Fig. A1.1A) was similar to interdigiiion of low and high
frequencies reported for cat cortical local fieldtgntials (LFP) (Fig.
Al1l.1B) (19). The power in Delta was used to segatW/S from NSWS.
Since REM was not linearly separable from NREM an@na, the power
ratio Gamma/Delta was used as a more robust pagamoegextract REM.
This separation of epochs into different stages a@®mplished using a
k-means clustering algorithm. Three additional afales were included

for both separations: the standard deviation of3tsewaveformand the



absolute values of the differences in Delta powed &amma/Delta
between successive and preceding epochs. REM efmrohed segments
which punctured the sleep data in the latter végiab a 1 sec temporal

resolution (Fig. A1.5).

In each bird, a multivariate  ANOVA on the 5-dimersal
clustering space separated REM, SWS and IS (PG1D.0hen plotting
Delta, Gamma/Delta and the differences in Gamm&D&WS would
form a spear along Delta and the differences in BafDelta because
during SWS epochs the Gamma/Delta ratio was not lmw but stable
across successive epochs as well (Fig. A1.1C). @sply, when the
differences in Gamma/Delta were replaced by thé&emihces in Delta,
REM sleep would now collapse into a spear (Fig.1®).as variations in
Delta tended to be small in REM sleep. Thus thermediate state is
distinct from SWS and REM, and can be thought dhasonly sleep state
which does not collapse into either spear in the @forementioned
parameter spaces. IS has previously only beentezgpbor mammals (3-4,

20-21).



The REM, SWS and IS epochs could also be visualined 3-
dimensional space defined by a Principal CompoAerysis (PCA) of
the 5-dimensional space spanned by Delta, Gamma, standard
deviation of each waveform and the differences Delta and
Delta/Gamma. The three sleep stages occupied sepagpons in the 3-
dimensional space (Fig. A1.1E). SWS and REM fornmethogonal
planes in this space, with IS corresponding to stirdit, warped
transitional region linking the two planes (Fig. .AE). A similar 3-
dimensional structure was observed when PCA wabkeapi data from

each of the five birds (Fig. A1.6).

Each sleep stage was associated with specific HE@cteristics.
SWS had a high amplitude EEG signal with signiftqaower in the Delta
range (Figs. ALl.1A, Al1l.2A), as has been observednammals (Fig.
Al.1B). REM was characterized by a very low amp#u‘awake-like”
EEG signal (Figs. A1.2B, A1.2D), typically about@31VV with higher
power in Gamma (Fig. A1.1A) than NREM, also coreistwith REM in
mammals (1-2, 22). Birds with relatively little pemincrease in the 30-55

Hz range for REM had a greater power increaseen/100 Hz range.
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IS had highly variable amplitude, centered arous@ sV and did not
have significant power in either the Delta or Ganmrarages (Figs. AL.1A,
Al1.2C). Large, brief amplitude transients observe8iREM sleep, with
biphasic waveforms were observed in two birds (Biy2D, Table Al1.2).
These transients are reminiscent of mammalian Kptexes (1). As in
mammals, all birds exhibited a 1/f type patterm, higher frequencies
had lower power (Fig. A1.3).

We also observed instances when one eye was opgetharother
was closed. The hemisphere contralateral to tha ege displayed a low
amplitude and high frequency EEG while the hemisploentralateral to
the closed eye displayed SWS oscillations (Fig.2K)L. These instances
of unihemispheric sleep were almost exclusiveltrigsed to the light
phase, and were especially frequent towards theoktite subjective day
when birds had a greater tendency to nap (Tabl&)AUnihemispheric
sleep is broadly observed in birds, cetaceans #mel onarine mammals

(20, 23-24).

SWS and REM sleep were associated with specificadian

patterns, whose structure was not constrained hy abassification
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procedure for the epochs. There was an overalledserin SWS density
throughout the night (Figs. A1.4A, A1.7A, Table AlL.REM episodes
were typically brief early in the night and becaloeger throughout the
night (Fig. A1.4C, A1.7C, Table Al.1) as the REMnsligy increased
(Figs. A1.4B, A1.7B, Table Al1.1) and the inter-REervals decreased
(Figs. A1.4D, A1.7D, Table Al.1). These features similar to patterns
of sleep staging in mammals (25-26). The total amhaf REM sleep

averaged 22.99 + 3.83 % (mean + S.E.M.) (Table Abfithe dark

period, greater than reported in most avian sldegies, including the
few studies of oscines (13-14). The intermediateckp were brief and
numerous (Figs. A1.7 F,H, Table Al.1) and were lguaore stable

throughout the night than REM and SWS in terms e&fsity, average
episode duration and average number of episodesoper As is the case
in mammals (3-4), the intermediate stage consistated as, but was
not limited to, a transition phase between SWS R&d (Fig. A1.7G,

Table Al1.1).
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Sleep patterning is thought to differ between badsl mammals.
NREM and REM are known broadly among birds. Theeolstion of
REM sleep is by itself an insufficient basis to agu avian and
mammalian sleep patterns, except to distinguisimtiiem reptilian sleep
(27), where REM is poorly established (28), buteotsimilarities of sleep
architecture in birds and mammals have not beehas&blished. Avian
REM periods are reported to be extremely brief aricequent in most
species hence “rudimentary” (12) with the exceptitrat oscine
passerines have more REM (13-14, 23, 29). Mammadiaep has a
circadian distribution, is triphasic and is assteda with precise
electroencephalograhic and spectral patterns. Viimitis exhibit a pattern
of sleep closer to mammals than reptiles insodathay both have SWS
and REM, and circadian rhythms of SWS and REM, maham sleep
also entails other features such as intermediagpsiGamma oscillations
during REM sleep, K-complexes and Up and Down statieich have set

them apart from birds.

In contrast, the present study helps to bridgegtqe between birds

and mammals by highlighting a broad suite of charastics of sleep
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which mammals were not known to share with birdfiese include the
existence of similar spectral signatures, Delta) (#hd Gamma
interdigitations, overnight increases in REM asatad with an elongation
of REM episodes, IS (a transition state between SWEREM, distinct
from the drowsy state taking place during transgidrom Waking to
NREM (14), K-complexes, and other similarities. rdaver, the
interdigitation between Delta and Gamma power attw described here
(Fig. A1.1A) and K-complexes (Fig. A1.2D, Table A)1.during sleep
have been observed in — and sometimes specifiadtifjputed to — the
mammalian cortex (5-6, 19, 31Fig. A1.1B). In mammals these patterns
have been associated with Up and Down states (29, raising the
guestion as to whether these patterns are alsoageden the avian brain.
Birds have a well-developed thalamus but are dewdih neocortex.
Therefore, a neocortex is not necessary for theldpment of complex
sleep stages as defined by the systematic variati&@iG signals which
we have observed. Our observation of K-complexesdgs open the
possibility that these signals are not of cortimadjin in mammals as has
been suggested (5). Our results are therefore stensiwith previous

studies of K-complexes in reptiles (33) and nontemn networks from



14

multiple species displaying increased power in\a&emifrequency range

due to network synchronization (34-40).

Recent observations of REM-like sleep in basal malar(l7) are
consistent with the hypothesis that the charadtesisof sleep in the
amniotes leading to birds and mammals may have beme complex
than has been generally assumed. One hypothesthais REM is
associated with greater connectivity in avian arahmmalian forebrain as
compared to reptiles that apparently lack REM (28iowever, the
complex sleep architecture we have observed inazébhches has not
been reported in the numerous non-oscine (non-sah)gbpecies that
have been examined (23) but is likely to be broaslyared across
songbirds (13-14). Thus, this remarkable similaotycharacteristics may
have resulted from a convergent evolution in marsnaald songbirds. It
has been hypothesized that birds possess a mamntalilex homolog
(8-9). A specific form of this hypothesis homolbgs regions of the
avian forebrain with cortical layers (41). If sbheh the patterns of cortical
activation, interactions between thalamus and xpded the change in

those patterns in response to changes in behagiatal, may be similarly
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expressed in the avian forebrain. The developmem@alecular basis
conserving forebrain homologies, and potential Hogies of sleep

rhythms, between birds and mammals is not yet known

The selective pressures that resulted in theseurtssatof sleep
developing so prominently in songbirds but appdyenbt generally
among birds remains unresolved. Juvenile song ilearand adult
territorial and mating behaviors involving song acenplex sensorimotor
skills and social behaviors proving strong selectipressures on
songbirds. A causal link between song learning aswbciated behaviors
and the complex sleep architecture we have destrilere remains
speculative, and a viable alternate hypothesifas there exists greater
complexity to sleep structure broadly expressedsscbird species than
has commonly been recognized. The independent @j@weint of vocal
learning in parrots and some hummingbirds (42) @mglication broadly
across birds of the analysis procedures descrileeeiry provides good

material to test this hypothesis.
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Materials and Methods

Experimental procedures were approved by thiutisnal Animal
Care and Use Committee at the University of Chicdgopreliminary
acute experiments in urethane anesthetized animads,determined
coordinates for recording and ground platinum etelds relative to the
midsagittal sinus (in mm): (1.5R, 3L), (3R, 2L) a@@5C, OL). The

electrode impedance was 9Q kneasured in saline.

For chronic recordings, birds were briefly ahesized (Equithesin)
and L-shaped platinum electrodes were epiduralglamted, secured and
attached to a head connector. In subsequent daysgdrecordings, a
cable was attached linking the bird's head to amrfmad mercury
commutator (Drangonfly Inc, WV), allowing for fremovement in the
cage during data acquisition. Video recording wasomplished by an
infrared (IR) light and an IR camera (Ikegama, &dpa Strategically
placed mirrors facilitated detection of eye, heat] body movements. In
one case the animal's eyes were obscured from faewapproximately 1

hr, but nevertheless the EEG signal was easy toe stanually. EEGs
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were amplified by 1K, sampled at 1 kHz and filtedd1-100 Hz (with
60Hz notch filter, except for B133). In two bird8133 and E1), which
exhibited low frequency artifacts, the data waterfdd at 2-100 Hz. For

these birds, Delta was set at 2-4 Hz for the autedhanalysis.

As part of the automated analysis, EEGs werendampled to 200
Hz and DC filtered. Spectral power was computeduVff /Hz using
0.33Hz bins. For each epoch, the power differenc&elta power and in
Gamma/Delta were computed over the preceding aockssive epochs,
using the Matlab “gradient” function. All clustegnvariables were
normalized by z-scoring prior to the sleep stagessification. Following
initial REM/NREM and SWS/NSWS classification, theose of each
epoch was smoothed using a 5 second window in dodarinimize the
score contamination by brief artifacts which migbt have been isolated
by manual scoring. When artifacts occurring dusheep were manually
labeled, the algorithm would score such an artifattording to the state
of the following epoch unless the latter was awakewhich case the

algorithm would assign the sleep artifact the sodithe preceding epoch.
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For bilateral recordings during the dark phase, #womated
scoring algorithm filtered out epochs inconsistenth unihemispheric
sleep. The small number of remaining epochs, injucmtion with
simultaneous video recordings were subsequentlynead manually to

assess whether they constituted instances of urspéaric sleep.

The data analysis technique we developed enable wssolve
changes in power over a broad spectral range aimigla temporal
resolution, which were a key differentiating facfor automated REM
sleep detection. This analysis was further corrateal by extensive
manual scoring (Figs. A1.5, A1.8), which was restd to identification
of REM, NREM, awake and artifacts, distinctions anghals observable
by inspection of the EEG and video. Moreover, th#omated EEG
scoring relied on whole night statistics (21) rattiean on arbitrarily
defined thresholds, maximum likelihood methodsupesvised nonlinear
classifiers all of which tend to reflect and imp@skuman bias on the data

analysis.
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The double separation used in the automated sepaediows for a
minimum of two categories (REM and SWS) and a maxmof four
categories (REM, SWS, IS and the outliers which anelustered).
Therefore, the algorithm does not assume a fixenbaw of states. In that
respect, running the algorithm on data without R@d wakefulness) or
SWS greatly shortened the length of the respe&i® and SWS spears
while removing IS from the data caused the algoritho detect

insignificant levels of IS.
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Figure Al.1. Stage Separation in Zebra Finch Slégdelta power (top trace) and
Gamma power (bottom trace) for 2 hours, represeintechits of standard deviations
from the mean which has been set to O (i.e., thelevbDelta power time series and
Gamma power time series have been normalized).dbke correspond to 3 second
epochs, separated over 1 second increments. Zplelriadicates that the variable has
been z-scored. Delta and Gamma power activatioerdigitate with SWS (blue)
occurring in the Up states of Delta and Down stafe&amma whereas REM (red)
occurs during the Down states of Delta and Up stat&amma. The intermediate and
awake states are in cyan and yellow respectivetg. dwake state had amplitudes in
the Gamma range which were not always comparabileose of REM. Artifacts are
not shown. B) Delta (0.1-4 Hz) and Gamma (16-75 ptayer components from eight
local field potentials (LFP) recording from cat ¢ during 20 seconds of sleep. The
interdigitation of low and high frequencies is séemne as in A. Adapted from (19).

C) One night of sleep is represented in a 3-D sgpe@ned by Delta, Gamma/Delta
and the power differences in Gamma/Delta. In thasce, SWS (blue) forms a spear.
IS and REM are shown in cyan and red, respectiM@)yWhen the differences in
Gamma/Delta in C) are replaced with the differenicePelta, REM sleep collapses
into a spear. E-F. Separation of states in a retpeeameter space. A 5-dimensional
space is reduced to three dimensions with PCA. Riell), IS (cyan), SWS (blue) are
spatially localized (E). REM and SWS form orthodomdanes and IS (cyan)
corresponds to the warped region linking the twoanps (F).
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Figure Al.2. Representative samples of Zebra FIBEK Patterns. Representative
EEG samples for SWS (A), REM (B), IS (C), a K-coewlike transient (D), the
awake state (E) and unihemispheric sleep (F). Ard & were automatically
generated using the MATLAB “silhouette” function tive scatter plot in Figures Al.1
E-F. A-E were chosen from W 147; F was chosen f&rmh33 which exhibited the
most unihemispheric epochs (Table A1.1).
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Figure Al1.3. Representative Spectra of Zebra FEER Patterns. Power Spectra. A)
The log of the power (Ud vs frequency (0.33 Hz bins) for samples showFigure
Al.2 A-C and E. B) The log of the average of tlosver in all 3 second windows
scored as REM, SWS, IS and awake is shown acregsdncy.
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Figure Al1.4. A Mammalian-like Distribution. A-D: Aerage stage statistics are plotted
for each hour of the dark period for all birds.d&irexhibited a significant decrease in
SWS density (A), a significant increase in REM pldensity (B) and average REM
episode length (C) and a significant decreaseteriREM intervals throughout the
night. Bars correspond to the standard error®@htiean. Individual data for each bird
is plotted in Fig. A1.7.
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Figure A1.5. Manual and Automated Scoring of Zdkirech Sleep. Manual (top
traces) and automated (bottom traces) scoringeo$éime night. Delta and the
difference in Gamma/Delta are shown in A and Bpeesively. The traces
corresponding to the automated scoring have 3 tamasany points as those
displaying the manual scoring. NREM, REM and awpaéeods are shown in blue,
red and yellow, respectively.



33

Figure Al.6. Reduced Parameter Space. A-E: Redpaegineter space for W 147,
F1, R 244, B 133 and E1, respectively. SWS, ISREW are displayed in black, cyan
and red, respectively.
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Figure Al.7. Detailed Mammalian-like Distributiontafistics.A Mammalian-like
Distribution. A-D: Stage statistics are plotted &ach hour of the dark period for all
birds. 3 birds (W 147, E 1, F 1) exhibited a sig@iht decrease in SWS density (A)
throughout at least 7 consecutive hours. 4 bird284®& being the exception) exhibited
a significant increase in REM sleep density (B) amdrage REM episode length (C)
throughout at least 7 consecutive hours. Of thebads, all except E1, exhibited a
significant decrease in inter-REM intervals throoghthe night. E-F: Comparing
SWS, IS and REM for all birds. E. IS was shottan SWS and REM (E) in all
birds. Error bars correspond to the standard erfdhe mean. F. From left to right:
percentage of SWS epochs followed by IS; percent&é@e epochs followed by SWS;
percentage of REM epochs followed by IS; percentalgéS epochs followed by
REM. In all birds, SWS and REM tended to be exelelsi followed by IS which in
turn would lead to SWS or REM. G. There were m@eepisodes than there were
SWS or REM episodes in all birds.
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Figure A1.8. Two hypnograms showing automated @)land manual (RED) scoring.
The algorithm distinguishes between REM, IS (INdytliers and SWS using a
channel of EEG while the human scorer recognizesl REREM, wakefulness and
artifacts using EEG and video. Human and automeltessifications are performed at
a 3 and 1 sec temporal resolution, respectivelgr¥third score is displayed for the
hypnogram produced by the automated scoring. Treeatents between automated
and manual scoring are 86.7% (top) and 75% (bottéigures A and B correspond to
supplementary videos 1 and 2, respectively. Drasvoaurtesy of Sylvan Shank,
University of Chicago.
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Table Al.1. Stage statistics for 5 nights of slegef birds. Stage density, average
episode duration and number and stage transitiens determined. The percentage of
transitions out of each stage towards the interatedstage and the percentage of
transitions out of the intermediate stage towaldsdther stages are shown. For the
bihemispherically implanted birds (W147, R244 ant3B), unihemispheric sleep is
reported and the other statistics were computed thes hemisphere with the most
reliable data as determined by visual inspectiothefEEG and video and the absence
of outliers. The coefficient of regression was comapd over the stage densities and
inter-REM intervals for each hour and reflect theeadian distribution of SWS and
REM (* = [r*> 0.5 and p < 0.05], § =4 0.5 and p = 0.05], £ for values calculated
for hours 2-8, € for values calculated for hourg)1- The agreement rate between
automated and manual scoring was determined widnathout artifact rejection.
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Table Al.1 Stage Statistics W 147 | R 244 B 133 E1l F1
Stage Density (%)
SWS 41.72 28.10 41.47 22.98 34.25
IS 29.51 33.72 37.29 32.12 37.74
REM 18.59 29.96 15.51 34.30 16.56
AWAKE 10.18 8.18 5.73 10.56 11.45
UNIHEM 0.09 0.59 0.65 N/A N/A
OUTLIER 0.00 0.03 0.00 0.00 0.00
Average Episode Duration (sec)
SWS 14.63 11.75 10.81 10.65 9.12
IS 6.30 6.56 6.66 7.98 6.85
REM 9.38 10.37 8.53 16.43 9.03
AWAKE 11.37 12.10 9.30 16.11 12.02
UNIHEM 3.38 3.89 3.13 N/A N/A
OUTLIER N/A 2.25 N/A N/A N/A
Number of Episodes
SWS 821 689 1105 621 1081
IS 1350 1479 1613 1159 1586
REM 571 832 523 601 528
AWAKE 85 113 158 65 100
UNIHEM 8 44 60 N/A N/A
OUTLIER 0 4 0 0 0
Transitions
SWS — IS (% SWS) 97.44 90.86 95.02 95.00 97.32
REM — IS (% REM) 86.51 91.83 85.25 91.85 88.45
AWAKE — IS (% AWAKE) 65.48 76.99 74.68 27.69 67.68
IS —» SWS (% 1S) 55.93 42.15 64.35 50.65 64.38
IS —> REM (% IS) 39.19 51.01 28.02 45.30 29.63
IS - AWAKE (% IS) 4.89 6.83 7.63 4.06 5.99
Regression Coefficients
SWS Density (%/hour) -6.62* | -0.25 -0.11 -4.86% | -6.64*F
REM Density (%/hour) 4.59* 1.81 2.44* 7.47* 4.73*
REM avg. Episode Duration (sec/hour) 1.24° 0.47 0.98* 3.19* 1.4%F
Inter-REM-interval (sec/hour) -6.57* | -1.81 -2.96* -0.84 -16.80*
Agreement Rate (%) 90.86 77.41 90.87 72.88 89.49
Agreement Rate - No artifacts (%) 91.03 77.64 91.89 73.52 89.38
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Table Al1.2. Double-blind identification of K-complaignals in 2 birds. K-complexes
were identified by two human scorers (“Scorer 18 48corer 2”) who had access to
EEGs but not to videos of sleeping finches. Theseess were blind to the vigilance
state of the birds. Sleep stages were manuallylddbey an automated algorithm
(“Automated Classification”) and a third human sro(“Manual Classification”),
both blind to the K-complex analysis. The third ramscorer had also access to video
and he labeled artifacts. Amplitudes were calcdldig measuring the peak to peak
voltage deflection of the K-complex signals. Avexagmplitudes and durations are
given with the standard error of the mean. “ScoXe~ Scorer Y Agreement”
corresponds to the percentage of signals chose8cbyer X which Scorer Y also
designated as K-complex signals. Signals which videatified as a K-complex by
Scorer X only are listed under “Scorer X Outliei(g-complexes were found to
occur predominantly in NREM sleep as determinedobth automated and manual
classifications. Only 4 out of 102 signals wereoasged with artifacts.



Table A1.2 K-complex W 147 F1

Number of Signals 64 13
Average Duration (msec) 448.67 + 1.65 468.25 + 7.86
Average Amplitude (uV) 116.81 + 4.69 123.36 £11.85
Automated Classification

SWS 57 12

IS 5 1

REM 0 0

AWAKE 2 0

Manual Classification

NREM 58 12

REM 4 1

AWAKE 0 0

ARTIFACT 2 0

Scorer 1 - Scorer 2 Agreement (%) 74.42 92.86

Scorer 2 - Scorer 1 Agreement (%) 96.97 100

Scorer 1 Outlier(s)

Number of Signals 22 1
Average Duration (msec) 493.44 + 4.16 440
Average Amplitude (uV) 104.93 £8.94 93.87
Automated Classification

SWS 12 1

IS 6 0

REM 4 0

AWAKE 0 0
Manual Classification

NREM 15 1

REM 6 0

AWAKE 0 0

ARTIFACT 1 0

Scorer 2 Qutlier(s)

Number of Signals 2 0
Average Duration (msec) 390.94 + 38.23 N/A
Average Amplitude (uV) 89.57 + 12.67 N/A
Automated Classification

SWS 1 N/A

IS 0 N/A

REM 0 N/A

AWAKE 1 N/A
Manual Classification

NREM 1 N/A

REM 0 N/A

AWAKE 0 N/A

ARTIFACT 1 N/A

41
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Chapter Al is, in full, being prepared for publioat Co-authors
are S. Shank, T. Sejnowski and D. Margoliash. Tissedtation author
was responsible for the techniques described anoh mlaservations

therein and was the primary investigator and auttfehnis paper.
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CHAPTER A2

Fine Structure of Human Sleep

Traditional analysis of human sleep stages requseseral
channels of data and is usually performed by huswrers. Here we
show that by representing each temporal window pmclke in a single
channel of EEG by the frequency with the highestmadized power
across the length of the entire signal, a new mbgrain activity
throughout time is generated that exhibits newulest independent of
raw power, and allows Slow Wave Sleep (SWS), Inésgliate Sleep (IS)
and Rapid Eye Movement (REM) sleep states as walNakefulness (W)
to be automatically clustered, consistent with narscoring by experts,
with high resolution. This analysis reveals thamlan REM sleep is not
“awake-like” and therefore not paradoxical. Thessuits have been
validated on data collected with different instruntse in different labs

and manually scored by different personnel.

The discovery of brain electrical potentials inraals (1) and later
in humans (2) have provided physiologists and dlms with the

challenge to classify brain activity in separatgss. In 1937, a taxonomy
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of human sleep was devised (3). This 5 stage targmid not include
Rapid Eye Movement (REM) sleep which was discovered953 (4).
Five years later, Dement and Kleitman (5) providedkescription of sleep
encompassing REM sleep and 4 non-REM (NREM) staged968, a
committee led by Rechtschaffen and Kales devised MAnual of
Standardized terminology, Techniques and Scoringte®y for Sleep
Stages of Human Subject” (R-K) (6) which providemhtinuity with the
prior description of sleep stages established bm&# and Kleitman (5).
R-K classifies human sleep into two Slow Wave SI¢8VS) stages
(Stages Ill and 1V), two Intermediate Sleep staff&sges | and II) and
REM sleep. In this classification, SWS EEG is cosgzbof moderate to
large amounts of high amplitude, slow wave activiREM displays
relatively low voltage, mixed frequency EEG in aamgtion with episodic
REMs (Rapid Eye Movements) and low-amplitude eteafrogram
(EMG); IS has a relatively low voltage, mixed fremey EEG with stage
Il further displaying 12-14 Hz oscillations and ddrihigh amplitude K-
complexes; Wake EEG contains alpha activity ankdarvoltage, mixed
frequency activity. This characterization of slesp waking stages has

been highly influential in guiding sleep researRkcently, rules provided
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by R-K were amended (7) and the stages Il/IV disiom was removed,
leaving 3 NREM stages. While it is expected thaeplscorers will adapt
to the new system, the precise number of sleegstagstill very much a
topic of discussion (8-10).

Given the variability of sleep structure both asraand within
individuals as well as subjective nature of humeoriag (11-13), it is a
difficult exercise to find thresholds or state 8#ion statistics to
objectively segment a night of sleep into dististetges based on a “fixed”
interpretation of R-K (9); nor have techniques sashsupervised and
unsupervised classifiers been successful at auioneleep stage
classification across multiple data sets usingnglsichannel of either
human or animal brain activity (14-17).

Because human EEG recordings are low-pass filteyetthe skull,
higher frequency signals detected in intracranmials studies, such as
the interdigitation of high and low frequenciesidgrUp and Down SWS
states (18) or the gamma oscillation during REM) (h@ve not been
readily observed, but have been detected using @tiagmeasurements
(20). The scalp recordings further give human EEGgoor spatial

resolution. Thus it iIs not known whether human SW % REM are
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spatially “synchronized” and “desynchronized”, resfively, as suggested
by animal studies (18, 21). In view of these opaastions, we sought a
new mathematical framework with high spectral asmgoral resolution,
in which sleep stage information could be rapidiygl aeliably extracted

from a single channel of EEG.

One channel of EEG (C3-A2 derivation) from tweniy-sights (8
hours each) of sleep was obtained from twenty-sifergnt
polysomnographic recordings conducted in twentydsealthy human
subjects. The EEG data and manual scoring was gedvoy the UCSD
VA hospital in San Diego, CA, USA (n=6) and the MRbanck Institute
(MPI1) for Psychiatry in Munich, Germany (n=20). @&ximental
procedures were approved by the Institutional Revigbards at each
institution.

EEG data were collected at 256 Hz and bandpass@d-dt00Hz
with a 60 Hz notch filter (UCSD) or collected atO®2Hz and bandpassed
at 0.53-70 Hz (MPI). These recordings were ampulifeg 10 K and
manually scored in 30 sec epochs in accordance Riad For each

recording, the whole night spectrogram (WS, Fig.782 was computed
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over 2 orthogonal tapers on 30 sec epochs usingralard multitaper
technique (22). The power information was then radized by z-scoring
for each frequency bin (from 1 to 100 Hz, 30 bims plz) across time.
This normalized spectrogram (NS) thus weights efmebuency band
equally. Each 30 second segment can then be repedsdy the
frequency with the largest z-score. In this preférifrequency space
(PFS), sleep and waking states broadly separateddifferent patterns
(Figs. A2.1, A2.14, A2.15, A2.16 a,c, A2.20 a,c\W) was always
characterized by a band in alpha (7-12 Hz) and sormas by a band in
beta (15-25 Hz). IS exhibited prominent activityg the spindle
frequencies (12-15 Hz). Surprisingly, REM was dedinby compact
bands in theta (4-8 Hz) and sometimes beta (15-2p fHequencies
whereas SWS was dominated by delta activity. Whemputed over
overlapping 3 sec windows and a 1 sec sliding wawndsimilar trends
were visible in the PFS except that beta activiherged in REM (Fig. 2).
At that resolution, REM appears more “awake-likbart at a 30 sec
resolution. However, at that resolution, all theep states whether they
were identified manually or automatically had dhsti signatures in the

PFS (Table A2.1A).
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At each time point, using z-scoring, one can nomzeathe NS
across frequencies to create a doubly normalizedttsygram. In this
space, bands apparent in the PFS still had posraliges whereas dark
regions tended to have negative values. By addieg2NS values of
frequencies that show up as bands in the PFS dntchsting those that do
not, filters can be constructed that maximally safe states. One
maximizes W (‘W filter”), another separates NREMfr W and REM
(‘NREM filter’) and a third distinguishes IS fromVES (‘'SWS filter’)
(See ‘Materials & Methods’). The output of thebeet filters spans a
space in which the three broad sleep stages arehwvto separate (Figs.
A2.73, A2.22-A2.23).

Interestingly, Stage | did not cluster in eithgrase and SWS
formed only one cluster (rather than two, one ftag8 Il and one for
Stage IV). The latter is in accordance with theert¢crevision of R-K
which abandoned the Stage lll/ IV distinction (KJanual scoring of
Stages | and Il was done in 30 sec incrementshadttresolution, epochs
manually labeled as Stage Ill could not be disamdigd from epochs
manually labeled as Stage Il or Stage IV in theomiy) of recordings

(Table A2.2) and epochs manually labeled as Stageuld not be
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distinguished from epochs manually labeled as StageEM or W in

most recordings (Table A2.3) in the PFS. Thus icasceivable that
Stages | and Il are not sleep states per se anddsht best be thought of
as transitional rather than stationary states. Wewd&kEM was easily
distinguishable from Waking (Table A2.4). Thus, lmmREM sleep

should no longer be thought of as “awake-like” paradoxical”.

A K-means clustering algorithm (Scheme A2.1) wagliad to the
spaces above to classify sleep. Even though theaMAMPI data were
filtered differently, the general position of thieep and waking clusters
was similar across sets. Moreover, while the algoriwas optimized on
the MPI data set, it performed at 80.6% on the Va&tad which is
unprecedented using a single channel of data ansimgar to the
performance of other algorithms using many morenobé (17). The
standard error of the mean was also lower for tAes®t than the MPI set
even though the former had 6 subjects and ther late 20 subjects
(1.73% vs. 1.78%, respectively). The average ageaenate with human
scoring on the full data set was 77.58% on 4 stéfjables A2.1A and

A2.8). This striking concordance can be visualizegl overlapping
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automated and manually derived hypnograms, plotsictieg sleep
staging for a given subject for a given night (Fi§8.4-A2.5). In two out
of twenty-six recordings, it appeared that the atgm was mislabeling
the data and in these cases. While that data agpehfferent when
compared to the rest of the data set, visualizatfdhe manual scoring on
the preferred frequency map did however show sépaignatures for
sleep and waking stages. On the VA data, when {tgeritom’s
performance was compared against data rescoreldebgaime person or
scored by a more experienced scorer, the averageragnt rate with the
algorithm increased and was in the 82.4-83.3% rg@ihgkle A2.1B).

Further normalizations in time and frequency carapglied to the
whole night spectrogram, at both a 30 sec (Figs7 A&Zc, A2.8) and a 1
sec resolution ( Figs. A2.7 b,d, A2.9-A2.10). Hateep and waking
stages tile the entire 1-100 Hz spectrum with REWland IS exhibiting
broadband patterns (Figs. A2.8, A2.9-A2.10 c-d).

In this space, one can measure the average spreaormalized
power across time (temporal fragmentation) (FigsA2.16-A2.20 b,d,
A2.21.) (See “Materials & Methods”). This analysessealed a bimodal

distribution for REM sleep. This pattern persistgden the frequency
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range was narrowed to 4-40HZ (data not shown). Uingable part of
REM accounted for (mean + s.e.m) 26.18 + 1.7 % BMRat a rate of
37.42 + 2.70 epochs per night lasting an averadddf8 + 1.27 seconds
and separated by an average of 129.08 = 11.04 deaunstable REM
(Table A2.5). These components of REM do not spwead to tonic and
phasic REM (Table A2.6) and exhibit different spakcsignatures (Fig.
S21). The unstable part of REM sleep was moreliktelbe confused
with stage Il than the stable part (Tables S9-10)these cases some
spindles and K-complexes in the presence of REMexzhthese epochs to
be scored as stage Il (Figs. A2.1-A2.2, A2.16) etreugh they would
have been scored as REM at a finer temporal resolut R-K rules are
such that no spindles or K-complexes can be seghiay less than 3
minutes in REM (6). While K-complexes and spindt@s be found in
REM, according to the analysis presented here etlsggnals are not
responsible for the bimodal temporal fragmentajpattern observed in
REM since manually scored REM, presumably devbispmdles and K-
complexes, still exhibits this pattern (Figs. A2adb, A2.16-A2.20c,
A2.21a, Table A2.9 right columns). Moreover, REMI stxhibited a

bimodal distribution on a spectrum without spinfitequency power (Fig.
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A2.25). The temporal fragmentation is a measuresigea to sudden
changes in normalized power. Such changes carbalboought about by
artifacts and the changes they produce will beh&llmore consequent in
the background of a low power EEG. Therefore thaesimility that
artifacts of some sort are responsible for mostoif all of the bimodal
temporal fragmentation of REM should not be exctudé/hen epochs
adjacent to epochs known to contain movement atsifavere discarded
from the analysis as well as any epoch having &epesl frequency
greater than 25 Hz, the percentage of unstable REddchs was
diminished even if the bimodal pattern could did seen (Fig. A2.26).
The bimodal pattern was even less apparent wheme adifacts were
isolated (Fig. A2.27-A.2-28). However when thesdifacts were
included in the fragmentation analysis, in 4 oué @lases (5 out of 6 cases
when REM was visually identified by a second scptley accounted for
a higher percentage of the non-fragmented portid®Ed (6 out of 6 for
automated scoring) and in all but two cases for uahscoring (non-
fragmented portion of REM _71.91 % in subject 9 &@d73% and
52.24% in subject 20, depending on the scorer)imad but one case for

automated scoring (non-fragmented portion of REM5.9% in subject
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9), they accounted for less than 50% of eitheriporof REM (Table
A2.11). A nearest-neighbor analysis was performeeochs which did
not themselves include artifacts (Table A2.12). Tragmented portion of
REM had almost in all cases more neighbors whigttatoed an artifact
than the non-fragmented portion, according to mharagring (5/6
subjects for one scorer 6/6 subjects for the othéfien REM was
detected automatically, in most subjects, the ntgjoof both the
fragmented and non-fragmented epochs were devoigheafhboring
artifacts. High-resolution 1 sec automated and rahanalysis of these
data will be necessary to identify EEG grapho-el@smevhich might be
responsible for the observed patterns and posaiblgw state of sleep. In
the meantime, the temporal fragmentation providesaynother variable
wherein REM tends to be easily distinguished framthb/V and Stage |

(Table A2.7).

The new methods introduced here recovered both kreowd novel
signatures of sleep stages automatically. High ganactivity during
wakefulness was recently reported in human elegtticograms (23) and

IS present in our scalp recordings as well (Fig2.8AA2.10) though
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precise quantifications have yet to be made. Ingmbist we have shown
that a single channel of EEG was sufficient to dgd® sleep and waking
stages and these are clearly separable.

This study provides guidance in the debate conegrthie number
of human sleep stages and refutes the belief tkill Rleep is “awake-
like” or “paradoxical.” Although REM is known toxkibit theta, the clear
REM/W separation (Figs. A2.1-A2.4, A2.11, A2.15,.A2-A2.23, Tables
A2.4, A2.7-A2.8) as well as between other stagawmisapparent by eye
or by previous analysis from a single channel oman EEG. The
bimodal temporal fragmentation pattern of REM slegmlso striking
(Figs. A2.4, A2.16-A2.21, Tables A2.5-A2.7).

Alternative electrophysiological derivations andag@ment have
been of interest to sleep researchers and cliric{@i-26). The results
reported here appear to generalize beyond the CE#G derivation to
alternative derivations, including even a singlearamel of EOG (Figs.
A2.11-A2.13). Finally, these methods presenta@d; economic and
guantitatively rigorous alternative to manually b sleep staging in
both clinical and comparative research and shoudd fmany new

applications.
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Materials & Methods

The filters used in Figure Scheme A2.1 are as\iallo
sws_filter=mean(2NS@ Hz));

w_filter=mean(2NS(9-12Hz));
nrem_filter=mean(2NS(60-100Hz))+mean(2NS(3-4Hz)edm(2NS(12-
14Hz))+mean(2NS(25-60Hz))+mean(2NS(15-25Hz))];

AA= mean(2NS(12-14 Hz));

BB= mean(2NS(15-25 Hz));

CC=mean(W(3 Hz));

DD=mean(2NS(9-12H2);

WS and 2NS correspond to the raw and doubly nozexdli
spectrograms, respectively. The temporal fragntiemtacorresponds to
the zscore of the mean of the absolute value oteéhworal gradient of
the spectrum normalized throughout time and frequeand was

computed on a 1-100Hz range unless otherwise noted.
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Figure A2.1. Preferred frequency space. The predefrequency space was
computed at a 30 sec resolution on two sleep reggsdrom two different
subjects (a-b VA, c-d MPI). Each dot correspond8Q@aseconds of EEG. The
labels were drawn either directly from the manuebrsg (a,c) or the
automated algorithm (b,d). SWS, IS, REM and W agicted in white, cyan,
red and yellow, respectively. The white diamondsrespond to epochs
wherein movements were preventing the human scdrens assessing the
sleep or waking state of the subject (legend thmeesthroughout all figures
unless otherwise specified). The algorithm is dablenake such an assessment
despite these artifacts. Notice the discrepanciyvden the human and
automated scores towards the end of the night enréicording on the left
panels. When this portion of the data was reandlymevisual inspection, the
human scorer did find traces of REM, in accordamgcth the automated
classification (in order to avoid any bias towatlls automated method, the
original human scores were used in comparisons detwautomated and
manual scoring (Tables A2.1A and A2.8)).
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Figure A2.2. Preferred frequency space (High TampResolution). Same data as in
Figure A2.1, computed at a 3 sec spectral resoludier 1 sec increments. Beta bands
in REM are becoming visible in the VA data. Otheatures such as 60 Hz noise are
also visible. These tend to be more visible whesm BEG has less overall power.
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Figure A2.3. Clustering subspace. A subspace ofltistering space is shown for two
different sleep recordings from two different subge(a-b, c-d). Each dot corresponds
to 30 seconds of EEG. Labels are drawn from eitieamual (a,c) or automated (b,d)
scoring. Sleep and waking stages tend to localizifierent regions. The separation
for the subject on the left is more apparent iruFegA2.23.
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Figure A2.4. Bimodal Temporal Fragmentation of RE&leep. The temporal
fragmentation was computed at a 30 second resoluio two different sleep
recordings of two different subjects (a-b, c-d)abkls are drawn from either manual
(a, ¢) or automated (b, d) scoring. REM sleep,eih, 1split into two different groups
with either high or low temporal fragmentation. hivas apparent here in both
recordings, independently of whether the humarigorahm performed the scoring.
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Figure A2.5. Hypnograms. Hypnograms were computed4f different subjects (1

recording per panel). D and M correspond to timesnd which the subject was
disconnected from the recording equipment or mqviegpectively. The algorithm

computed a W, REM, IS or SWS assignment instealfl.oManual and automated

scoring are in red and blue, respectively. The ard blue hypnograms are mostly
overlapping which signifies that the manual andomsted scoring were in high
agreement.
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Figure A2.6. Hypnograms. Hypnograms were computed4f different subjects (1
recording per panel). D and M correspond to timesnd which the subject was
disconnected from the recording equipment or mqviegpectively. The algorithm
computed a W, REM, IS or SWS assignment instealfl.oManual and automated
scoring are in red and blue, respectively. The ard blue hypnograms are mostly
overlapping which signifies that the manual andomsted scoring were in high
agreement. Note that because the automated precethes not rely on fixed
transition probabilities between states, it carfgear well on unusual patterns such as
the frequent awakenings presented by the subjdagure A2.6d.



71

9'zy 2Inbi4 Iy ‘awi]
8 i 9 S v £ z L
epl 323[qns — [dW
s1y ‘swi|
8 2 9 S v £ z L

L

|

SISSU] MO

qg133gns — |dW

SMS

Sl

W34

SMS

Sl

W3y

siy ‘awl |

& ;] g ¥ £

T T T T

I L i L

SMS

g6 103[qns — |

SI ‘awil|
L 9 S 14 €

o

SMS

i ! s L

0L 1P3(ans — YA



72

Figure A2.7: Raw and Normalized Spectrograms. Raactsogram were calculated at
30 sec (a) or at a 3 sec spectral resolution oweclncrements (b). Each spectrogram
was then normalized across time and frequency aktiares yielding a normalized
spectrogram at 30 sec resolution (c) and anotheaba 3 sec spectral resolution over
1 sec increments (d). While only movement artifdese high frequency (>20 Hz)
content in the raw data (a-b), the normalized spgcams have much more high
frequency activity (c-d).
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Figure A2.8: Preferred frequency analysis over a&cspgram with multiple
normalizations at high temporal resolution. a, meaas Fig. A2.3 b and d,
respectively. The analyses from Figure A2.4 a antlebe respectively applied to a
and b to yield ¢ and d, respectively. The trendseoled in Fig. A2.4 are reinforced at
this temporal resolution. High-frequency infornaeatis also visible for SWS.
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Figure A2.9. Preferred frequency analysis over &cspgram with multiple
normalizations at high temporal resolution. a,dmse as Figure A2.7 b and d,
respectively. The analyses from Figure A2.8 a andebe respectively applied to a
and b to yield ¢ and d, respectively. The trendseoled in Figure A2.8 are reinforced
at this temporal resolution. High-frequency infatron is also visible for SWS.
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Figure A2.10. Preferred frequency analysis over pgacsogram with multiple
normalizations at high temporal resolution. Samalyais as in Figure A2.9 but for
another subject. 60 Hz noise is visible.
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Figure A2.11. Preferred Frequency Space on other 8&S was computed for C3-A2
(a) as well as for left and right electrooculogrde®G) (b,d), electromyogram
(EMG) (c). Stage 1 is represented with cyan croasesSWS is in black. SWS, IS,
REM and W exhibited different patterns in the EE@E &0G PFS. (Courtesy
NeuroVigil, Inc., La Jolla, CA).
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Figure A2.12. Preferred Frequency Space on other 8&S was computed for other

EEG derivations. Stage 1 is represented with cyasses and SWS is in black. SWS,
IS, REM and W exhibited different patterns in tHeSP (Courtesy NeuroVigil, Inc., La
Jolla, CA).
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Figure A2.13. Preferred Frequency Space on other 8&S was computed for other

EEG derivations. Stage 1 is represented with cyasses and SWS is in black. SWS,
IS, REM and W exhibited different patterns in tHeSP (Courtesy NeuroVigil, Inc., La
Jolla, CA).
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Figure A2.14. Some discrepancies between autonaatgananual scoring.

Only about 36% (Table A2.8) of the epochs score@WsS by the algorithm (white,
panel b) were given the same designation by theahuscorer (white, panel a). The
rest were scored as IS (cyan, panel a), yieldinggreement rate of 76.95% (Table

A2.1).
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Figure A2.15. Some discrepancies between autonaatgananual scoring.

Manual (a) and automated (b) analyses have anragreeof 80.53% (Table A2.1) but
over a quarter of the epochs scored by the hum&WAS (white, a) are scored as IS
(cyan, b) by the algorithm (Table A2.8).
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Figure A2.16. Some discrepancies between autonaatgananual scoring.

The overall agreement rate was 76.97% (Table Afuthalf of the epochs scored by
the human as IS (a, ¢, cyan) were found to be RENMé algorithm (b,d, red) (Table

A2.8). These epochs had a signature closer tooffREM than IS in both the PFS (a-
b) and the temporal fragmentation space (c-d), a@slbpe the second sets of epochs,
occurring approximately after 2.5 hours of sleepeXamination of these epochs by
the human scorer as well as by a second scordindidraces of REM. Manual scores

were left unchanged.
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Figure A2.17. PFS and Temporal Fragmentation. Sgme of figure as A2.16. The
overall agreement rate between automated and maooiahg for is 83.8%.
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Figure A2.18. PFS and Temporal Fragmentation. Sgpesof figure as A2.16-A2.17.
The overall agreement rate between automated andahscoring is 75.74%.
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Figure A2.19. PFS and Temporal Fragmentation. Sgpesof figure as A2.16-A2.18.
The overall agreement rate between automated andahscoring is 83.58%.
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Figure A2.20. PFS and Temporal Fragmentation. Sgpesof figure as A2.16-A2.19.
The overall agreement rate between automated andahscoring is 86.26%.
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Figure A2.21. Temporal Fragmentation. Temporal Fragtation over time in the
same recording in a subject with multiple awakesinhis is the same subject as the
one represented in Figure A2.6d. Note the strikingjfferent signatures of REM
(red), IS (cyan) and W (yellow) in both the man(&l and automated (b) labels. A
Kolmogorov-Smirnov test sharply rejects the nulpbthesis that REM is “awake-
like” or similar to Stage | (Table A2.7).
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Figure A2.22. Clustering subspace. Same analgsis Bigure A2.3 on three different
subjects. Labels are drawn either from manual) (o@utomated scoring (bottom).
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Figure A2.23. Clustering subspace. More advancpdraéon is possible using the
kinds of methods provided here. This analysisiighe subject in Figure 3 and b. We
show a similar clustering subspace in a and ¢ &gures A2.3 and A2.22. Another
subpace based on principal and independent companalysis (PCA and ICA) is
shown. Epochs manually designated as Stage | pietele in triangles and
movements are in fuchsia. Stage | does not clustther space, in agreement with
the hypothesis that is not a sleep state per setégseand Table A2.3). The manual (a-
b) and automated scoring (c-d) now have an agreeof@®i.14% for this subject
(Courtesy NeuroVigil, Inc., La Jolla, CA).
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Figure A2.24. Spectra in the normalized space ugtlated normalizations (the
spectrogram was normalized in time and frequencym®s). REM sleep was
manually scored. The stable and unstable compomemtsisolated with a K-means
clustering algorithm. The averages of the specirahfe stable (red) and unstable
(green) components are shown in the space withpteultormalizations across time
and frequency over multiple recordings (a-b VA,,d4PI1). Note the elevated relative
power at low frequencies for the unstable part BVRsleep as opposed to the stable
part. The depression at 60 Hz is the VA data istrcsy due to the use of a 60 Hz
notch filter.
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Figure A2.25. Bimodal Temporal Fragmentation withpawer in the spindle range.
The temporal fragmentation was displayed for tleomdings in A.24, with the 10-15
Hz (encompassing the spindles range) portion osgeetrum removed. The bimodal
temporal fragmentation pattern was still apparent.
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Figure A2.26. Movement Artifact Analysis. For trecordings shown in A2.24-A2.25,
epochs manually labeled as containing one or motédads, their immediate

neighbors as well as any epoch with a preferrequigacy over the normalized
spectrum (1 normalization across time as in Figdresd 2) exceeding 25 Hz, were
excluded. When the temporal fragmentation was &atied, the bimodal pattern was

present, yet less visible.
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Figure A2.27. Extended Artifact Analysis. On the V&cordings, an extensive artifact
analysis was performed, which identified high amd frequency artifacts as well eye
intrusions. The temporal fragmentation was far l@ssodal when these artifacts and
movement artifacts were excluded from the analysit higher REM fragmentation
values typically occurring at the edges of REM. Ugjo the artifact analysis was
usually limited to REM epochs, sometimes NREM epgosbkre also discarded (d).
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Figure A2.28. Extended Artifact Analysis. On the V&cordings, an extensive artifact
analysis was performed, which identified high amd frequency artifacts as well eye
intrusions. The temporal fragmentation was far l@ssodal when these artifacts and
movement artifacts were excluded from the analysit higher REM fragmentation
values typically occurring at the edges of REM.
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Low Thesis

SWS / NSWS

sws_filter & PC-1-2,-3 on RAW

2 clusters

(REM + AWAKE) / IS

IC-1, -2 on 2NS, AA, BB, CC
2 clusters

REM / AWAKE

IC-1, -2 on 2NS, w_filter
3 clusters, 1 AWAKE, 2 REM

TEMPORAL SMOOTHING

If P_rem=<0.05 If P_rem > 0.05
REM

IS /REM / AWAKE

Set AWAKE=REM
IC-1, -2 on 2NS, w_filter
3 clusters, 1 AWAKE, 1 1S, 1 REM

Scheme A2.1

Scheme A2.1. Algorithm. The algorithm serially idéas SWS, IS, REM and W
using variables described in Materials and Methddge data is then smoothed in
time. The REM/W separation is measured again bypcmimg a P value for the REM
distribution. If the latter exceeds a fixed val®&EM is rejected and replaced by W. If
REM is accepted, it is split in W, REM and W. Orenahoose as a precaution to
label REM-like events occurring at the very begmniof the night as W. The
increases in performance are slim as REM and W tenfbrm different clusters.
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Table A2.1A. Performance and Separatichc@lumn: Same algorithm was used on
US and German data setd® 2olumn: human/algorithm agreement. This agreement
was assessed only on epochs for which the humamerscould provide a sleep or
waking designation, i.e. the human was not perdlifce calling an epoch “M”
because of movement artifacts’® Zolumn: each manually and automatically
determined state was respectively assessed agauwst other manually and
automatically defined states, in the 1-100 Hz PBffguia Kolmogorov-Smirnov test
(KS) over 1 sec increments computed over 3 secawsdThe numbers shown in this
column correspond to the maximum of the largesalpe corresponding to a rejection
of the null hypothesis and 0.001. At this resolutithe null hypothesis was rejected
for all of the automatically scored data and wascated for all but four nights for the
manually scored data (P values for the rejections showed in the table:
*P_Stagell W=0.0605 and P_Stagel REM= 0.0783; Stagelll_StagelV=0.0561,
FP_Stagel_Stagell=0.1499 and P_Stagelll_StagelV#3.;26 P_Stagel W=0.0531).
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TABLE A2.1A-
PERFORMANCE

Overall KS
(%) (3s-1s)

76.4021| 0.001

85.5895| 0.001

76.9676| 0.036!

Ul

76.9474| 0.048:

W

0
1
8 | 83.8608| 0.001
9
0

83.8043| 0.048]

W

Mean | 80.59528

79.9582| 0.001%

76.096 | 0.016]

—

77.5899| 0.0208

75.7447| 0.002

84.9949| 0.001

83.5789| 0.001

80.5269| 0.001

84.0549| 0.0119

SO

86.3114| 0.001

=

86.2643| 0.001

70.0315| 0.002

Uy

66.7368| 0.001¢

54.5738| 0.001

77.0285| 0.0013

81.7801| 0.001:

(/'J(D(D(/'J(/'J(D(D(/'Jl(ﬂ(ﬂ(/)(/)(f)(f)(/)(/)
OOV N NN TR WWININ
OO |09 0|9 |T|9|T|9|C/9|0(9|0|D

)W T

79.7495| 0.001¢

S 10al 73.5572 | 0.001

S_10b| 78.2881 | 0.0022

S_11a)69.3122 | 0.013]

S 11b| 67.2632 | 0.0048

Mean | 76.672085
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Table A2.1B. Performance against multiple reviewsnultiple scorers. On the VA
data, the performance of the algorithm was assesgaidst two human scorers (S-1,
S-2), who examined the data twice (a, b). S-1la%2d correspond to scoring which
was done independently of the algorithm. S-1 besponds to scores derived when S-
1 had a chance to revise his scores in light ailtedy the algorithm, while S-2 b
corresponds to scores derived after S-2 vieweds®1iginal scores. S-1 had 15 years
of experience scoring EEGs at the time of his ahiscoring and 17 years of
experience by the time of his second scoring. &@ 28 years of experience at the
time of both of her scorings.

TABLE S-la S-1b S-2a S-2Db
A2.1B

76.93112
10 84.7162 84.4978
11 76.9676] 77.199 80.3241 79.9769
18 83.8608 83.860 84.3882 83.7014
19
20

S 9 76.4021] 73.121
85.5895 85.589

QOWTWTF U™

76.9474 75.578 76.73p8
83.8043 83.532 83.4056 81.4735
an | 80.59528 82.54535 83.20853| 82.4124
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Table A2.2. Stage lll. KS tests were performedfenRFS on the full spectrum (1-100
Hz) to determine the similarity between Stage hidl stages IV and Il. An H value of
0 or 1 means that the null hypothesis was respagtiaccepted or rejected with a
corresponding P value in the adjoining column.he majority of recordings, the null
hypothesis (stage Ill and the compared state atestatistically different) was
accepted in at least one condition, i.e. Stagavdl$ not disambiguated from SWS or
Stage Il in the PFS.



121

TABLE A2.2 — STAGE Ill

| H-SWS | P-SWS | H-sSIl | P-SI
VA
S 9 0 0.1334 1 4.95E-09
S 10 1 0.0015 1 1.50E-46
S 11 1 5.76E-08 0 0.1269
S 18 1 0.0013 1 1.18E-06
S 19 0 0.418 1 1.16E-17
S 20 1 1.69E-06 0 1.10E-01
MPI

S 2a 1 1.32E-05 1 0.0043
S 2b 1 0.0137 1 3.55E-04
S 3a 0 0.8531 1 0.0016
S 3b 0 0.1527 0 0.3381
S 4a 1 0.0018 1 1.27E-06
S 4b 1 3.76E-06 1 2.30E--3
S 5a 1 4.01E-04 1 8.88E-16
S 5b 1 4.53E-05 1 2.82E-10
S 6a 0 0.502 1 4.43E-07
S_6b 0 0.0654 1 2.19E-10
S 7a 0 0.7484 1 1.03E-23
S 7b 0 0.849 1 1.10E-14
S 8a NaN NaN 0 3.07E-01
S _8b 0 0.2658 1 8.36E-05
S 9a 1 1.01E-09 1 1.56E-04
S 9b 0 0.9592 1 1.75E-15
S 10a 1 0.0105 1 4.89E-05
S _10b 0 0.3407 1 1.21E-08
S 1la 0 0.5496 1 3.86E-08
S 11b 0 0.3837 1 3.39E-02
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Table A2.3. Stage I. Similar analysis as in thevpgus table, comparing Stage | with
Stage Il, REM and Waking (W). In all 22 out of Z&ordings, the null hypothesis was
accepted in at least one condition.
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TABLE A2.3 - STAGE |

| H-SIl | P-F-SIl | H-F-REM | P-F-REM | H-F-W | P-F-W
VA
S 9 1 | 5.96E-1( 1 1.85E-0 1| 1.63E{09
S10| © 0.5993 1 0.0065 0 0.3241
S11| 0 0.4964 0 0.4579 0 0.066
S 18| 1 | 2.91E-04 1 0.0194 1| 2.57E{07
S19| © 0.7925 0 0.402 0 0.2943
S20] © 0.3791 1 6.10E-0 0 0.3292
MPI
S2a| 1 0.005 1 0.0046 0 0.0786
S2b| © 0.1743 0 0.166 0 0.5593
S3a| 1 0.0443 0 0.062 0 0.7146
S 3| 1 | 1.24E-05 1 0.0107 1 0.0214
S4a|l 0 0.0814 0 0.1615 1 0.015
S 4b| 1 | 3.10E-03 1 0.0293 1 0.0197
S5al O 0.1308 0 0.8425 0 0.1457
S5b| 0 | 9.78E-01 0 0.2074 0 0.24
S6a| 1 0.0177 0 0.23 1 0.0095
S 6b| 0 | 1.44E-01 1 0.0024 0 0.8589
S7al 0 0.1186 1 0.0118 0 0.5723
S 7b| 0 | 9.99E-01 0 0.9606 0 0.3975
S8/ O 0.2488 0 0.079 0 0.3351
S 8| 0 | 2.58E-01 0 0.172 0 0.4921
S99l 0 0.3047 0 0.4271 0 0.5964
S9%| 0 | 1.18E-01 0 0.5353 0 0.6615
S 10al 0 0.191 1 0.0131 1 | 5.30E-05
S 10b] © 0.056 0 0.1773 0 0.9267
S 11al 0 0.1886 0 0.3219 0 0.3275
S 11b| 0 0.4501 0 0.2254 1 | 3.04E-06




124

Table A2.4. REM & Wakefulness. Similar analysisimshe previous tables with the
inclusion of an analysis for automated scores m st two columns. The null

hypothesis for REM and W was rejected by both tl@umal scoring and the algorithm
in two recordings.



TABLE A2.4 - REM & W akefulness

H- P-REM H- PREM_AUT

REM REM_AUT
VA
S 9 1 1.75E-19 1 5.25E-12
S_10 1 5.30E-15 1 1.41E-14
S_11 1 2.16E-04 1 0.0045
S_18 1 5.01E-10 1 9.94E-12
S 19 1 1.06E-04 0 9.03E-02
S _20 1 3.50E-03 1 3.50E-03
MPI
S_2a 0 0.2188 1 0.0016
S _2b 0 0.6451 0 0.1276
S_3a 0 0.2267 1 3.19E-04
S 3b 1 3.25E-08 1 2.59E-05
S_4a 1 0.0022 1 1.24E-04
S_4b 1 5.33E-04 1 4.91E-06
S _5a 1 9.71E-06 1 3.14E-05
S_5b 1 3.70E-03 1 6.19E-09
S_6a 1 4.52E-02 1 1.26E-05
S_6b 1 5.70E-04 1 3.99E-07
S_7a 1 6.9360e-04 NaN NaN
S 7b 0 1.28E-01 1 3.70E-05
S_8a 1 1.54E-02 1 1.00E-05
S_8b 0 5.84E-01 1 3.50E-06
S _9a 0 3.72E-01 1 3.96E-02
S_9b 0 5.58E-01 0 1.30E-01
S 10a 1 1.20E-11 1 1.17E-33
S 10b, O 2.24E-01 1 6.92E-06
S 11a] O 5.57E-02 NaN NaN
S 11b| 1 6.08E-09 0 1.95E-01

125
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Table A2.5. Statistics on temporally fragmented pAREM sleep. The percentage of
REM, number of episodes, their mean duration apérs¢ion is represented in each
recording from both data sets.



TABLE A2.5 - TOP REM

%REM | Number | Mean Mean
Duration (s) | Separation (s)
VA
S 9| 25.2101 25 33.6 109.0909
S 10| 36.036 23 48.2609 102.6316
S 11| 11.1732 21 30 87.5
S 18| 15.1351 21 35.7143 163.6364
S 19| 359551 46 33.2609 96.7742
S 20| 29.0657 53 43.5849 137.0455
MPI
S 2a| 37.6471 63 44,2857 70.4348
S 2b| 41.8251 68 46.7647 74.6809
S 3a| 25.3086 25 44 .4 169.4118
S 3b| 22.7513 37 30 111.25
S 4d4a| 24.2553 48 31.875 119.1176
S 4b| 17.9724 33 29.0909 187.1429
S ba| 15.168% 21 30 312
S 5b| 13.4503 20 28.5 266.6667
S 6a| 17.1123 30 28 136.9565
S 6b| 16.2679 32 27.1875 161.0526
S 7a| 34.8958 54 31.1111 80.9091
S 7b| 31.7647 51 42.3529 97.5
S 8a| 25.247% 33 42.7273 140
S 8b| 34.2723 49 37.3469 120
S 9a| 30.1508 45 38 95.2941
S 9b| 33.3333 39 42.3077 86.5385
S 10al 15.8621] 21 31.4286 125
S 10b| 32.2034, 41 38.0488 102.8571
S 11al 29.3785| 41 32.9268 104.4828
S 11b| 29.3413| 33 40 08.1818

127
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Table A2.6. The fragmented and no-fragmented pustiof REM sleep do not
correspond to phasic or tonic REM. In the VA datdypREM was subdivided into
epochs without eye movements (tonic REM) and epeoahis 0-25%, 25-50%, 50-
75%, 75-100% eye movements (phasic REM). For eabiest, the percentage of
times one of the substates listed above occurhenunstable portion of REM is
reported. Both tonic REM and phasic REM take pladde unstable part of REM.

TABLE A2.6 - Eye Movements

Tonic Phasic

no eye | 0-25% 25- 50- 75-

mvmts 50% 75% | 100%
VA
S 9| 31.8182| 34.210516.6667 15.7895 20
S 10| 43.1818 | 35.087711.1111 0 NaN
S 11| 8.046 152941 O NaN NaN
S 18| 21.2766 16.092 9.375 5.5556 0
S 19| 38.8889 | 34.285726.6667| 33.3333] NaN
S 20| 44.4444 | 26.548710.2564| 14.2857| 20
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Table A2.7. REM has a unique temporal fragmentapattern which distinguishes it
from Stage | and W. A KS analysis at a 30 secosdluéion as in Tables A2.2 and
A2.3 is performed. The null hypothesis was rejected REM vs Stage | (left

columns) in 23 out 26 recordings and for REM vs.(Nght columns) 24 out of 26
recordings, as defined by manual scoring.
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TABLE A2.7 - Fragmentation
|H IS-1 REM | P_IS-1-REM | H W-REM | P W-REM

VA
S 9 1 6.89E-13 1 1.43E-28
S 10 1 2.83E-02 1 6.91E-08
S 11 1 0.0035 1 2.65E-02
S 18 1 1.15E-12 1 1.88E-27
S 19 1 6.27E-08 1 2.27E-17
S 20 1 5.78E-11 1 7.53E-06

MPI
S 2a 1 1.40E-04 1 0.0041
S 2b 0 0.2307 0 0.1047
S 3a 1 0.0054 1 1.62E-04
S 3b 1 5.41E-06 1 1.51E-07
S 4a 1 4.41E-06 1 5.94E-12
S 4b 1 9.02E-10 1 5.88E-19
S 5a 1 1.02E-04 1 4.99E-15
S 5b 1 2.11E-06 1 2.12E-2(
S 6a 1 1.81E-07 1 7.93E-28
S_6b 1 5.97E-07 1 2.14E-2(
S 7a 0 0.1648 1 3.17E-02
S 7b 1 1.84E-02 0 2.07E-01
S 8a 1 1.18E-13 1 1.88E-19
S _8b 1 1.17E-06 1 4.68E-17
S 9a 1 5.40E-03 1 6.00E-07
S 9b 0 0.8904 1 4.07E-04
S 10a 1 7.27E-16 1 9.06E-49
S _10b 1 1.04E-06 1 1.47E-11
S 1la 1 2.50E-03 1 5.75E-11
S 11b 1 8.12E-06 1 4.44E-04
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Table A2.8. Agreement matrices for each recorditay.each recording, two matrices
are presented, one to the left and one to the.ridhatrices on the left should be read
column-wise. Each box corresponds to the percenthdbe stage listed above, as
derived by automated classification, to be lisedé¢long to the stage on the left, as
derived by manual scoring. The columns do not abwvayd up 100% because some
the epochs were scored as M by the human scordricBg on the right should be
read row-wise, for each box corresponds to thegmage of times an epoch manually
labeled as the stage to the left was automaticddigsified as the stage above. Since
all the data is scored by the algorithm, the rowd ap to 100%. The last set of
matrices displays in each box an average of althef preceding values in that
particular box. This is not a precise estimateit & not weighed by the number of
epochs scored as particular stage. In certain dasesample, a single epoch per state
was found leading to either 0% or 100% agreernent



Table A2.8 - Agreement Matrix

MPI - 2a Automated
Human SWS IS REM W
SWS 96.8153 10.2439 0.2584 0
IS 3.1847 85.6098 32.8165 18.75
REM 0 1.2195 64.5995 0
W 0 0.4878 1.8088 81.25
MPI - 2b Automated
Human SWS IS REM W
SWS 82.7586 3.125 0 0
IS 15.0862 84.6591 33.871 69.2308
REM 0 7.9545 63.172 0
W 0.431 2.5568 2.6882 30.7692
MPI - 3a Automated
Human SWS IS REM W
SWS 69.145 1.432 0 0
IS 27.881 93.5561 39.2857 55
REM 0 3.58 58.3333 0
W 0 0.4773 1.5873 45

Automated
Human SWS IS REM W
SWS 77.9487 21.5385 0.5128 0
IS 1.0288 72.2222 26.1317 0.6173
REM 0 1.9608 98.0392 0
wW 0 9.0909 31.8182 59.0909
Automated
Human SWS IS REM W
SWS 94.5813 5.4187 0 0
IS 7.4786 63.6752 26.9231 1.9231
REM 0 10.6464 89.3536 0
W 4.,1667 375 41.6667 16.6667
Automated
Human SWS IS REM W
SWS 96.875 3.125 0 0
IS 12.9983 67.9376 17.1577 1.9064
REM 0 9.2593 90.7407 0
W 0 13.3333 26.6667 60

cel



Table A2.8, continued

MPI - 3b Automated
Human SWS IS REM W
SWS 63.8889 6.3882 0 0
IS 31.3492 87.9607 31.9549 45,7143
REM 0.7937 3.1941 65.4135 0
W 0 0.9828 1.1278 54.2857
MPI - 4a Automated
Human SWS IS REM W
SWS 93.2927 12.8364 0 0
IS 5.4878 82.8157 19.0311 11.1111
REM 0 1.8634 78.2007 0
W 0 0.4141 1.0381 88.8889
MPI - 4b Automated
Human SWS IS REM W
SWS 99.2248 20.471 0 0
IS 0 75.3623 9.3617 14.5833
REM 0 1.4493 88.9362 0
W 0 0.9058 0.4255 85.4167

Automated
Human SWS IS REM W
SWS 86.0963 13.9037 0 0
IS 14.684 66.5428 15.7993 2.974
REM 1.0582 6.8783 92.0635 0
W 0 15.3846 11.5385 73.0769
Automated
Human SWS IS REM W
SWS 71.1628 28.8372 0 0
IS 1.9149 85.1064 11.7021 1.2766
REM 0 3.8298 96.1702 0
wW 0 3.7736 5.6604 90.566
Automated
Human SWS IS REM W
SWS 53.112 46.888 0 0
IS 0 93.4831 4,9438 1.573
REM 0 3.6866 96.3134 0
W 0 10.6383 2.1277 87.234

eel



Table A2.8, continued
MPI - 5a Automated Automated
Human SWS IS REM W Human SWS IS REM W
SWS 98.8764 16.4384 0 0 SWS 70.9677 29.0323 0 0
IS 0 76.484 21.8182 46.6667 IS 0 82.9208 11.8812 5.198
REM 0 2.2831 76.3636 0 REM 0 5.618 94.382 0
W 0 3.8813 0.9091 53.3333 W 0 39.5349 4.6512 55.814
MPI - 5b Automated Automated
Human SWS IS REM W Human SWS IS REM W
SWS 95.3917 15.0476 0 0 SWS 72.3776 27.6224 0 0
IS 3.2258 77.7143 18.75 0 IS 1.5521 90.4656 7.9823 0
REM 0 3.2381 80.2083 0 REM 0 9.9415 90.0585 0
W 0.9217 1.5238 1.0417 100 W 5.1282 20.5128 5.1282 69.2308
MPI - 6a Automated Automated
Human SWS IS REM W Human SWS IS REM W
SWS 80.695 4.7009 0 0 SWS 90.4762 9.5238 0 0
IS 16.6023 88.2479 4.0201 26.6667 IS 9.0336 86.7647 1.6807 2.521
REM 0 3.4188 85.9296 0 REM 0 8.5561 91.4439 0
W 0 2.1368 10.0503 73.3333 W 0 15.873 31.746 52.381

veET



Table A2.8, continued

MPI - 6b Automated
Human SWS IS REM w
SWS 84.4221 10.7345 0 0
IS 14.0704 | 82.6742 4.5226 17.0732
REM 0 3.9548 94.4724 0
w 0 1.5066 1.005 82.9268
MPI - 7a Automated
Human SWS IS REM w
SWS 68.5393 1.6787 0 NaN
IS 31.4607 | 86.3309 46.8665 NaN
REM 0 1.9185 50.1362 NaN
w 0 8.1535 2.1798 NaN
MPI - 7b Automated
Human SWS IS REM w
SWS 99.1935 1.7654 0 0
IS 0.8065 63.0517 90 50
REM 0 32.1564 0 0
w 0 2.1438 0 50

Automated
Human SWS IS REM W
SWS 74.6667 25.3333 0 0
IS 5.7971 90.8903 1.8634 1.4493
REM 0 10.0478 89.9522 0
W 0 18.1818 45455 77.2727
Automated
Human SWS IS REM W
SWS 94.5736 5.4264 0 0
IS 9.5238 61.2245 29.2517 0
REM 0 4.1667 95.8333 0
W 0 80.9524 19.0476 0
Automated
Human SWS IS REM W
SWS 89.781 10.219 0 0
IS 0.1887 94.3396 3.3962 2.0755
REM 0 100 0 0
W 0 60.7143 0 39.2857

GET



Table A2.8, continued

MPI - 8a Automated
Human SWS IS REM W
SWS 28.1818 0.6696 0 0
IS 71.8182 74.5536 48.9627 56.6667
REM 0 22.0982 42.7386 0
W 0 1.5625 7.4689 43.3333
MPI - 8b Automated
Human SWS IS REM W
SWS 61.1111 1.7857 0 0
IS 38.4259 88.3929 28.6792 14.7059
REM 0 8.7054 65.6604 0
W 0 0 2.6415 85.2941
MPI - 9a Automated
Human SWS IS REM W
SWS 95.7983 6.4579 0 0
IS 4.2017 90.411 34.8765 8.3333
REM 0 0.9785 59.8765 0
W 0 0.5871 4.321 91.6667

Automated
Human SWS IS REM W
SWS 95.3846 4.6154 0 0
IS 24,5342 51.8634 18.323 5.2795
REM 0 49.0099 50.9901 0
W 0 13.7255 35.2941 50.9804
Automated
Human SWS IS REM W
SWS 94.2857 5.7143 0 0
IS 14.8214 70.7143 13.5714 0.8929
REM 0 18.3099 81.6901 0
wW 0 0 19.4444 80.5556
Automated
Human SWS IS REM W
SWS 77.551 22.449 0 0
IS 0.8606 79.5181 19.4492 0.1721
REM 0 2.5126 97.4874 0
W 0 10.7143 50 39.2857
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Table A2.8, continued
MPI - 9b Automated Automated
Human SWS IS REM W Human SWS IS REM W
SWS 95.5696 4.5064 0 0 SWS 87.7907 12.2093 0 0
IS 4.4304 92.7039 42.6866 0 IS 1.2027 74.2268 24.5704 0
REM 0 1.7167 53.1343 0 REM 0 4.3011 95.6989 0
W 0 0.8584 3.2836 100 W 0 22.2222 61.1111 16.6667
MPI - 10a Automated Automated
Human SWS IS REM W Human SWS IS REM W
SWS 62.6794 1.462 0 0 SWS 96.3235 3.6765 0 0
IS 34,9282 85.9649 19.9005 28.7129 IS 15.6989 63.2258 8.6022 12.4731
REM 0 3.8012 65.6716 0 REM 0 8.9655 91.0345 0
W 1.9139 8.7719 14.4279 71.2871 W 1.9324 14.4928 14.0097 69.5652
MPI - 10b Automated Automated
Human SWS IS REM W Human SWS IS REM W
SWS 61.9048 0.2028 0 0 SWS 99.2366 0.7634 0 0
IS 37.619 91.0751 24,5614 51.6129 IS 13.1667 74.8333 9.3333 2.6667
REM 0 4.2596 68.4211 0 REM 0 11.8644 88.1356 0
W 0 4.2596 6.1404 48.3871 W 1.9324 14.4928 14.0097 69.5652

LET



Table A2.8, continued

MPI - 11a Automated
Human SWS IS REM* w
SWS 91.7431 2.8015 0 0
IS 8.2569 65.8952 0 26.3158
REM 0 21.5591 0 73.6842
w 0 8.8916 100 0
MPI -11b Automated
Human SWS IS REM W+
SWS 64.557 0.3854 0 0
IS 32.2785 76.4933 47.8873 100
REM 3.1646 4.2389 49.2958 0
w 0 17.341 1.4085 0
VA-9 Automated
Human SWS IS REM w
SWS 69.3617 2.3102 0 0
IS 30.2128 86.4686 10.7914 28.7313
REM 0 4.2904 76.259 0
w 0.4255 6.9307 12.9496 71.2687

Automated
Human SWS IS REM W
SWS 81.3008 18.6992 0 0
IS 1.6216 97.4775 0 0.9009
REM 0 100 0 0
W 0 81.1111 3.3333 15.5556
Automated
Human SWS IS REM W
SWS 98.0769 1.9231 0 0
IS 8.7179 67.8632 23.2479 0.1709
REM 2.994 13.1737 83.8323 0
W 0 95.7447 4.2553 0
Automated
Human SWS IS REM W
SWS 95.8824 4,1176 0 0
IS 16.7059 61.6471 3.5294 18.1176
REM 0 10.9244 89.0756 0
W 0.4329 9.0909 7.7922 82.684
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Table A2.8, continued

VA - 10 Automated
Human SWS IS REM W
SWS 81.1475 2.5057 0 0
IS 18.4426 91.344 18.9394 19.0909
REM 0 3.4169 72.7273 0
W 0 1.3667 6.8182 80.9091
VA -11 Automated
Human SWS IS REM W
SWS 98.6047 5.2817 0.2833 0
IS 1.3953 94.0141 48.1586 53.3333
REM 0 0 50.7082 0
W 0 0.3521 0.2833 46.6667
VA - 18 Automated
Human SWS IS REM W
SWS 95.6098 4.0767 0 0
IS 3.9024 87.2902 26.4368 2.5641
REM 0 6.235 60.9195 0
W 0 1.199 9.9617 97.4359

Automated
Human SWS IS REM W
SWS 94.7368 5.2632 0 0
IS 9.1463 81.5041 5.0813 4.2683
REM 0 13.5135 86.4865 0
W 0 5.7692 8.6538 85.5769
Automated
Human SWS IS REM W
SWS 92.9825 6.5789 0.4386 0
IS 0.6696 59.5982 37.9464 1.7857
REM 0 0 100 0
wW 0 5.7692 8.6538 85.5769
Automated
Human SWS IS REM W
SWS 92.0188 7.9812 0 0
IS 1.8059 82.167 15.5756 0.4515
REM 0 14.0541 85.9459 0
W 0 4.6729 24.2991 71.028
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Table A2.8, continued

VA -19 Automated
Human SWS IS REM W
SWS 36.1963 0.5814 0 0
IS 63.8037 93.0233 22.8137 15.7895
REM 0 0.3876 66.9202 0
W 0 5.2326 7.6046 84.2105
VA - 20 Automated
Human SWS IS REM W
SWS 98.9474 7.4492 0 0
IS 1.0526 87.3589 22.9167 50
REM 0 1.5801 73.4375 0
W 0 1.5801 1.3021 50
Average Automated
Human SWS IS REM W
SWS 79.75599 | 5.589931 0.020835 0
IS 19.2278 | 84.20983 28.84266 32.42611
REM 0.152242 | 5.749927 61.98213 2.947368
W 0.142004 | 3.234758 7.787419 64.62652

Automated
Human SWS IS REM W
SWS 95.1613 4.8387 0 0
IS 16.0742 74.1886 9.2736 0.4637
REM 0 1.1236 98.8764 0
W 0 42.8571 31.746 25.3968
Automated
Human SWS IS REM W
SWS 74.0157 25.9843 0 0
IS 0.2066 79.9587 18.1818 1.6529
REM 0 2.4221 97.5779 0
W 0 35 25 40
Automated
Human SWS IS REM W
SWS 86.43716 | 13.52625 | 0.036592 0
IS 7.285862 | 75.93688 | 14.0538 | 2.723462
REM 0.155854 | 16.33716 | 83.50699 0
W 0.522792 | 26.19818 | 18.93074 | 54.3483

ovl
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Table A2.9. Agreement matrices for REM componédats.each subject, two matrices
as in Table A2.8 are presented. The matrices onettheand right should be read
column-wise and row-wise, respectively. Each boxhia left matrix corresponds to
the percentage of times an epoch of the stagel Isbeve as either the fragmented
(REM UP) or stable (REM DOWN) components of REMda$ined by the automated
algorithm has been labeled as the stage on thadedefined by the human scorer. M
corresponds to epochs labeled as movement. Eachnltb& right matrix corresponds
to the percentage of time an epoch on the lefiefised by an automatic separation of
manually identified REM is listed as the epoch abas defined by the algorithm. The
REM UP/DOWN distinction is always done by a K-meatgorithm on REM data,
whether it is identified by the human scorer or #igorithm. Average percentage
agreements were also computed for VA subjects, MPjects and both data sets,
respectively. These matrices exclude three casksreninspection of the preferred
frequency map shows suspicious performance onatteopeither the algorithm (MPI
7b and 11a) or the human scorer (MPI 8a). Mostualiylabeled REM components
fall into the same automatically labeled REM comgrus (right matrices). The
unstable portion of REM as defined by the algoritttmmost likely to be confused
with stage Il by the human when it is not score®RE# (left matrices).
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Table A2.9 - Agreement Matrix - REM
VA-9 Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 10 90 0 0
UP
SWS-3 0 0 REM 0 11.236 0 88.764 | O
DOWN
IS-2 12.5 1.2048
IS-1 10.7143 | 1.2048
REM 48.2143 0
UP
REM 0 95.1807
DOWN
W 28.5714 | 2.4096
M 0 0
VA - 10 Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 275 72.5 0 0
UP
SWS-3 0 0 REM 0 5.6338 0 94.366 | O
DOWN 2
IS-2 14 15.8537
IS-1 8 1.2195
REM 58 0
UP
REM 0 81.7073
DOWN
W 18 0
M 2 1.2195
VA -11 Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0.3861 REM 0 0 100 0 0
UP
SWS-3 0 0 REM 0 0 0 100 0
DOWN
IS-2 74.4681 | 36.2934
IS-1 3.1915 1.1583
REM 21.2766 0
UP
REM 0 61.39
DOWN
W 0 0.3861
M 1.0638 0.3861
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Table A2.9, continued

VA -18 Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 7.1429 | 92.85 0 0
UP 71
SWS-3 0 0 REM 0 15.286 0 84.713 | O
DOWN 6 4
IS-2 34.0909 | 8.0925
IS-1 15.9091 | 6.3584
REM 29.5455 0
UP
REM 0 76.8786
DOWN
W 17.0455 | 6.3584
M 3.4091 2.3121
VA -19 Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 3.125 | 96.87 0 0
UP 5
SWS-3 0 0 REM 0 0 0.877 1 99.122 | O
DOWN 2 8
IS-2 21.6 12.3188
IS-1 10.4 2.1739
REM 49.6 0
UP
REM 0.8 81.8841
DOWN
W 16 0
M 1.6 3.6232
VA - 20 Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 5.9524 | 89.28 | 47619 | O
UP 57
SWS-3 0 0 REM 0 0.9756 0 99.024 | O
DOWN 4
IS-2 25 13.8462
IS-1 6.4516 5
REM 60.4839 | 1.5385
UP
REM 0 78.0769
DOWN
W 3.2258 0.3846
M 4.8387 1.1538




Table A2.9, continued
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Average
VA Automated Automated
Human REM REM Human | SWS IS REM REM
UP DOWN UP | DOWN
SWS-4 0 0.06435 REM 0 8.9533 | 90.25 | 0.7936
UP 83 297 5
SWS-3 0 0 REM 0 5.522 | 0.146 | 94.331
DOWN 2 8
IS-2 30.2765 | 14.6015
7
IS-1 9.11108 | 2.85248
3 3
REM 44,5200 | 0.25641
UuP 5 7
REM 0.13333 | 79.1862
DOWN 3 7
W 13.8071 | 1.58978
2 3
M 2.15193 | 1.44911
3 7
MPI -2a Automated Automated
Human REM REM Human | SWS IS REM REM
UuP DOWN UP | DOWN
SWS-4 0 0 REM 0 1.0417 | 95.83 | 3.125
UP 33
SWS-3 | 0.6135 0 REM 0 2.5157 0 97.484
DOWN 3
IS-2 27.6074 | 24.5536
IS-1 11.0429 | 4.0179
REM 56.4417 | 1.3393
UuP
REM 0 69.1964
DOWN
W 3.681 0.4464
M 0.6135 0.4464
MPI -2b Automated Automated
Human REM REM Human | SWS IS REM REM
UuP DOWN UP | DOWN
SWS-4 0 0 REM 0 13.636 | 86.36 0
UP 4 36
SWS-3 0 0 REM 0 8.4967 0 91.503
DOWN 3
IS-2 22.695 | 31.1688
IS-1 6.383 5.6277
REM 67.3759 0
UP
REM 0 60.6061
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Table A2.9, continued

DOWN
W 3.5461 2.1645
M 0 0.4329
MPI -3a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 12.195 | 87.80 0 0
UP 1 49
SWS-3 0 0 REM 0 8.2645 0 91.735 | O
DOWN 5
IS-2 24 23.7288
IS-1 22.6667 | 12.4294
REM 48 0
UP
REM 0 62.7119
DOWN
W 4 0.565
M 1.3333 0.565
MPI -3b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 2.325 | 11.627 | 83.72 | 2.3256 | O
UP 6 9 09
SWS-3 0 0 REM 0.684 | 5.4795 0 93835 | O
DOWN 9 6
IS-2 25.6757 18.75
IS-1 20.2703 | 7.8125
REM 48.6486 | 0.5208
UP
REM 0 71.3542
DOWN
W 2.7027 0.5208
M 2.7027 1.0417
MPI -4a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 1.7544 | 98.24 0 0
UP 56
SWS-3 0 0 REM 0 4,4944 | 0561 | 94943 | O
DOWN 8 8
IS-2 15.5556 | 10.5528
IS-1 13.3333 | 4.0201
REM 62.2222 0
UP
REM 1.1111 | 84.9246
DOWN
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Table A2.9, continued

W 3.3333 0
M 4.4444 0.5025
MPI -4b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 15.384 | 84.61 0 0
UP 6 54
SWS-3 0 0 REM 0 1.1236 0 98.876 | O
DOWN 4
IS-2 7.1429 6.7358
IS-1 9.5238 1.0363
REM 78.5714 0
UP
REM 0 91.1917
DOWN
W 2.381 0
M 2.381 1.0363
MPI -5a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 22,222 | 77.77 0 0
UP 2 78
SWS-3 0 0 REM 0 2.649 0 97351 | O
DOWN
IS-2 51.8519 | 9.0361
IS-1 1.8519 2.4096
REM 38.8889 0
UP
REM 0 88.5542
DOWN
W 3.7037 0
M 3.7037 0
MPI -5b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 21.739 | 78.26 0 0
UP 1 09
SWS-3 0 0 REM 0 8.1081 | 0.675 | 91.216 | O
DOWN 7 2
IS-2 17.2414 | 14.7239
IS-1 10.3448 2.454
REM 62.069 0
UP
REM 3.4483 | 82.8221
DOWN




Table A2.9, continued
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W 6.8966 0
M 0 0
MPI -6a Automated Automated
Human REM REM Human | SWS IS REM REM
UP DOWN UP DOWN
SWS-4 0 0 REM 0 31.25 | 68.75 0
UP
SWS-3 0 0 REM 0 3.871 | 1.290 | 94.838
DOWN 3 7
IS-2 8.5106 1.9737
IS-1 2.1277 0
REM 46.8085 0
UP
REM 4.2553 | 96.7105
DOWN
W 38.2979 | 1.3158
M 0 0
MPI -6b Automated Automated
Human REM REM Human | SWS IS REM REM
UP DOWN UP DOWN
SWS-4 0 0 REM 0 35.294 | 64.70 0
UP 1 59
SWS-3 0 0 REM 0 5.1429 | 0.571 | 94.285
DOWN 4 7
IS-2 0 4,023
IS-1 4 0.5747
REM 88 0
UP
REM 4 94.8276
DOWN
W 4 0.5747
M 0 0
MPI -7a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 7.4627 | 92.53 0
UP 73
SWS-3 0 0 REM 0 2.4 0 97.6
DOWN
IS-2 25.5474 | 26.9565
IS-1 24.0876 | 18.2609
REM 45.2555 0
UP
REM 0 53.0435
DOWN
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Table A2.9, continued

W 2.9197 1.7391
M 2.1898 0
MPI -7b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 100 0 0 0
UP
SWS-3 0 0 REM 0 100 0 0 0
DOWN
IS-2 90 80
IS-1 0 10
REM 0 0
UP
REM 0 0
DOWN
W 0 0
M 10 10
MPI -8a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 76.470 | 23.52 0 0
UP 6 94
SWS-3 0 0 REM 0 39.735 | 0.662 | 59.602 | O
DOWN 1 3 6
IS-2 59.854 7.6923
IS-1 16.7883 | 4.8077
REM 8.7591 0
UP
REM 0.7299 | 86.5385
DOWN
W 12.4088 | 0.9615
M 1.4599 0
MPI -8b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 39.726 | 60.27 0 0
UP 4
SWS-3 0 0 REM 0 7.1429 [ 0.714 | 92.142 | ©
DOWN 3 9
IS-2 26.2626 | 18.0723
IS-1 13.1313 | 4.2169
REM 44.4444 0
UP
REM 1.0101 | 77.7108
DOWN
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Table A2.9, continued

W 7.0707 0
M 8.0808 0
MPI -9a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 6.6667 | 93.33 0 0
UP 33
SWS-3 0 0 REM 0 0.7194 0 99.280 | O
DOWN 6
IS-2 17.2727 | 18.6916
IS-1 22.7273 | 13.5514
REM 50.9091 0
UP
REM 0 64.486
DOWN
W 8.1818 2.3364
M 0.9091 0.9346
MPI -9b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 11.290 | 88.70 0 0
UP 3 97
SWS-3 0 0 REM 0 0.8065 0 99.193 | O
DOWN 5
IS-2 17.6991 | 16.2162
IS-1 24,7788 | 26.5766
REM 48.6726 0
UP
REM 0 55.4054
DOWN
W 7.0796 1.3514
M 1.7699 0.4505
MPI -
10a Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 30.434 | 69.56 0 0
UP 8 52
SWS-3 0 0 REM 0 4918 |4.098 | 90.983 | O
DOWN 4 6
IS-2 7.0175 | 11.1111
IS-1 12.2807 | 9.0278
REM 28.0702 0
UP
REM 8.7719 | 77.0833




Table A2.9, continued
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DOWN
W 43,8596 | 2.7778
M 0 0
MPI -
10b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 22.807 | 77.19 0 0
UP 3
SWS-3 0 0 REM 0 6.6667 0 93333 | O
DOWN 3
IS-2 6.8966 2.8369
IS-1 27.5862 | 15.6028
REM 50.5747 0
UP
REM 0 79.4326
DOWN
W 13.7931 | 1.4184
M 1.1494 0.7092
MPI -
1la Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 0 100 0 0
UP
SWS-3 0 0 REM 0 0 100 0 0
DOWN
IS-2 0 0
IS-1 0 0
REM 0 0
UP
REM 0 0
DOWN
W 100 100
M 0 0
MPI -
11b Automated Automated
Human REM REM Human | SWS IS REM REM W
UP DOWN UP DOWN
SWS-4 0 0 REM 0 20.408 | 79.59 0 0
UP 2 18
SWS-3 0 0 REM 4,237 | 10.169 | 6.779 | 78.813 | O
DOWN 3 5 7 6
IS-2 53.4351 | 26.7974
IS-1 7.6336 9.8039
REM 29.771 0
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Table A2.9, continued

UP
REM 6.1069 | 60.7843
DOWN
W 2.2901 0.6536
M 0.7634 1.9608
average
MPI Automated Automated
REM
Human REM REM Human | SWS IS REM | DOWN | W
UP DOWN UP
SWS-4 0 0 REM 0.136 | 17.937 | 81.60 | 0.3206 | O
UP 8 72 486 24
SWS-3 | 0.03608 0 REM 0.289 | 4.8804 | 0.864 | 93.965 | O
8 DOWN 541 94 212 76
IS-2 20.8477 | 15.6428
4 5
IS-1 13.7511 | 8.08367
7 6
REM 52.6308 | 0.10941
uP 1 8
REM 1.68844 | 74.7556
DOWN 7
W 9.27864 | 0.93317
1 1
M 1.76711 | 0.47528
8 8
average
ALL Automated Automated
Human REM REM Human | SWS IS REM REM w
uP DOWN uP DOWN
SWS-4 0 0.01678 REM 0.101 | 15.593 | 83.86 | 0.4440 | O
7 uP 113 98 089 22
SWS-3 | 0.02667 0 REM 0.214 | 5.0478 | 0.676 | 94.061 | O
4 DOWN 009 43 904 25
IS-2 23.3074 | 15.3712
1 1
IS-1 12.5407 | 6.71901
1 7
REM 50.5149 | 0.14776
UP 6 5
REM 1.28276 | 75.9114
DOWN 5 3
W 10.4599 | 1.10446
8 1
M 1.86750 | 0.72933
4
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Table A2.10. REM outliers. On 4 VA subjects, 1 geanually scored Stage Il
revealed that most of the spindles or K-complexictviwere scored as REM by the
algorithm did take place in the unstable part. $ame was true for baseline Stage Il

without spindles or K-complexes, in 3 out of 4 sd$ (left columns, the exception
being subject 10.



Table A2.10 - REM Outliers

Stage Il Spindles K-complex
events | TOP (%) | DOWN (%) events | TOP (%) | DOWN (%) events | TOP (%) | DOWN (%)
VA -9 185 96.2162 3.7838 16 93.75 6.25 4 100 0
VA -10 550 33.6364 66.3636 34 55.8824 44,1176 10 50 50
VA -18 1123 66.4292 | 33.5708 126 76.1905 23.8095 12 66.6667 33.3333
VA - 19 1290 61.0078 38.9922 27 74.0741 25.9259 3 100 0

€at
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Table A2.11. Artifact and K-complex analysis. Ore tWA subjects, high and low
frequency artifacts, movement artifacts with anthauit high frequency artifacts, eye
intrusions (counted here as artifacts), times duwhich electrodes were disconnected
and K-complexes were identified by two scorersdd per scorer), during manually
labeled REM and sometimes in NREM. The percentdgeagmented (‘TOP’) and
non-fragmented (‘DOWN’) REM composed by K-complexgK’) and artifacts
(‘ART) is displayed for manually (‘Manual’) and samatically (‘Automated’) scored
REM. Results for VA-9 are the same across bothessdrecause the discrepancy of
their scoring was limited to NREM stages. Differemdn the automated results in
terms of percentages of artifacts present in eactiop of REM for subjects 18 and 20
are due to one scorer identifying more movemerifiaats than the to other scorer in
these subjects.



Table A2.11 - Artifact Analysis

Manual Automated
%K, TOP %K,DOWN | %ART,TOP | %ART,DOWN %K, TOP | %K,DOWN | %ART,TOP | %ART,DOWN
VA -9 3.3333 2.2472 46.6667 71.9101 0 2.4096 39.2857 75.9036
VA -9 3.3333 2.2472 46.6667 71.9101 0 2.4096 39.2857 75.9036
VA -10 7.5 4.2254 25 33.8028 0 1.2195 30 32.9268
VA -10 15.5556 7.8947 22.2222 32.8947 0 1.2195 30 32.9268
VA -11 5 8.805 25 20.1258 3.1915 8.4942 12.766 16.6023
VA - 11 10 12.5714 20 20 3.1915 8.4942 12.766 16.6023
VA - 18 10.7143 2.5478 35.7143 49.6815 2.2727 2.3121 36.3636 47.3988
VA - 18 12.9032 3.0303 32.2581 48.4848 2.2727 2.3121 35.2273 46.2428
VA - 19 1.5625 0 37.5 35.9649 0.8 0 32 34.7826
VA -19 1.5873 0 39.6825 36.2832 0.8 0 32 34.7826
VA - 20 13.0952 4.3902 33.3333 50.7317 10.4839 3.8462 30.6452 43.4615
VA - 20 18.4211 4.4776 34.2105 52.2388 10.4839 3.8462 29.8387 43.0769

GaT
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Table A2.12. Nearest neighbor analysis. In the ssmgects as in the previous table,
epochs devoid of artifacts were identified to eksabwvhether proximity to an artifact
could be responsible for the fragmented portioREBM. %XY means percentage of
neighbors of Y (TOP or DOWN) composed of X (O=ndifact in either neighbor,
1=o0ne neighbor is an artifact, 2=both neighborsaatiéacts). As in the previous table,
each row corresponds to a different scorer. Siitidar and differences observed
within results for subject 9, 18 and 20 are exm@dim the previous legend. Subjects 9
and 19 have respectively 18/34 and 45/85 epochghén fragmented part of
automatically identified REM which do not have amighboring artifacts, leading to
the same percentage in both cases.



Table A2.12 - Nearest Neighbor Analysis

Manual Automated

%0, %1, %2, %0, %1, %2, %0, %1, %2, %0, %1, %2,

TOP TOP TOP DOWN | DOWN | DOWN TOP TOP TOP DOWN | DOWN | DOWN
VA -9 12.5 62.5 25 36 24 40 52.9412 | 32.3529 | 14.7059 25 25 50
VA -9 12.5 62.5 25 36 24 40 52.9412 | 32.3529 | 14.7059 25 25 50
VA -10 | 36.6667 50 13.3333 | 53.1915 | 40.4255 | 6.383 37.1429 | 51.4286 | 11.4286 | 58.1818 | 36.3636 | 5.4545
VA -10 | 42.8571 | 45.7143 | 11.4286 | 56.8627 | 37.2549 | 5.8824 37.1429 | 51.4286 | 11.4286 | 58.1818 | 36.3636 | 5.4545
VA -11 20 60 20 67.7165 | 29.1339 | 3.1496 63.4146 | 31.7073 | 4.878 | 76.3889 | 21.2963 | 2.3148
VA -11 | 33.3333 50 16.6667 70 27.1429 | 2.8571 63.4146 | 31.7073 | 4.878 | 76.3889 | 21.2963 | 2.3148
VA -18 | 27.7778 | 61.1111 | 11.1111 | 48.1013 | 44.3038 | 7.5949 48.2143 | 46.4286 | 5.3571 | 57.1429 | 36.2637 | 6.5934
VA -18 | 38.0952 | 57.1429 | 4.7619 | 49.4118 | 43.5294 | 7.0588 54.386 | 42.1053 | 3.5088 | 58.0645 | 35.4839 | 6.4516
VA -19 30 57.5 12.5 68.4932 | 28.7671 | 2.7397 52.9412 | 38.8235 | 8.2353 | 75.5556 | 22.2222 | 2.2222
VA -19 | 28.9474 | 57.8947 | 13.1579 | 68.0556 | 29.1667 | 2.7778 52.9412 | 38.8235 | 8.2353 | 75.5556 | 22.2222 | 2.2222
VA -20 | 55.3571 | 35.7143 | 8.9286 | 53.4653 | 33.6634 | 12.8713 61.6279 | 32.5581 | 5.814 | 64.6259 | 24.4898 | 10.8844
VA -20 52 36 12 53.125 | 33.3333 | 13.5417 64.3678 | 29.8851 | 5.7471 | 64.1892 | 24.3243 | 11.4865

LST
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Chapter A2 is, in part, being prepared for pubiaratThe
co-author is T. Sejnowski. The dissertation autkias responsible for the
techniques described and main observations tharenwas the primary

investigator and author of this paper.
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CHAPTER A3

REM REVISITED

The recently discovered phenomenon of Disuse Hbgossitivity
(1-3) shows that neurons, especially immature meyjrhose activity has
been suppressed will progressively become mordadtei If this is true
in vivo, and there is some evidence for this, tlvemat happens to
networks which are not sufficiently activated dgrwakefulness? Could
such unused networks be stabilized by excitatiamdisleep?

Several studies show that Slow Wave Sleep is agedcwith a
replay of awake patterns of activity (4-5). It isrthg REM sleep that
patterns which have not been used much or at algluakefulness can
be activated (not necessarily in exclusivity). Thduced synchrony that
occurs during this phase makes it especially ap@@pfor such a task:
the less synchrony, the more neurons can be ceatadi without
triggering instabilities. Thus REM pressure cormgys, in this view, to a
response to reduced activity rather than to anloaérof information

during wakefulness.
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This simple hypothesis could explain certain phemoam For
example, in this framework, one would expect th&VRenhancement
reduces the probability of epileptic seizures amat,tconversely, REM
deprivation would have the opposite effect. Botke &mue (6-7). This
hypothesis can also offer an explanation as to wimycally depressed
patients have more REM sleep and why REM depriualielps reduce
depression (8-9). If one associates depressionamtbbsessive rehearsal
of negative events, and treat such a rehearsabashalation of the same
cortical networks at the expense of others, thegelaneural populations
would need to be stabilized via excitation duringNR sleep, making
REM more prominent in the sleep architecture. Gndther hand, REM
deprivation, would lead to large neural populatidoesng increasingly
excitable during subsequent awake states, whicHdniaterfere with the
repetitive stimulation underlying the rehearsal.

Furthermore, one might also understand why thetess REM in
the prefrontal cortex (PFC) than in other partstioé cortex (10):
multiplexing in the PFC reduces the probability baving large
populations of disused synapses in the awake s$tatg limiting the need

for subsequent REM sleep in that area.



161

Implications

Most of our dreams occur in REM sleep (11). If REdtivity
corresponds to, as suggested, a global stabilizatiodisused networks
via excitation, then information that was supprdskg attention during
wakefulness will be likely to appear during REM egle This can be
understood in light of the observation that attentmechanisms can
reduce the activity of neurons which tend to pmefiéally respond to an
unattended stimulus. Thus we would expect that 4aneuron is not
upregulated by attention during wakefulness (12-if%) spontaneous
activity during REM should be greater than in NREWhereas the
opposite would be predicted for V4 neurons whichremgpregulated by

an attentive mechanism during wakefulness.

It seems possible that this putative REM relatetdvidy of disused
neurons, could very well trigger attention relagedivity during sleep so
that our dreams would engage our attention atxperee of surrounding
stimuli, such as sounds. In this sense, REM cathdeght of as a sleep
promoting phase so that the body can rest followitgnse hormonal

activity during other phases of sleep. In this gaya, REM is not treated
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as a simple sleep-awake transition phase, especalce it is not
restricted to the final hours of sleep. If dreame #or the most part
necessary to maintain sleep, then we would expier species to be
selected by evolution to dream as well. We wouktdfore expect them
to have subjective experiences.

This hypothesis concerning dreams would expldiy we tend not
to remember our dreams: disused neurons are hasre diabilized and

their spontaneous activity during subsequent wake$s is reduced.

Back to the Crick-Mitchison theory

The Crick-Mitchison (C-M) theory of REM sleep (1gpsits that
during REM sleep, a reverse learning mechanism fmesdicortical
networks in order to reduce the likelihood of p#reasl modes during
subsequent wakefulness. In the present hypotHasy® scale excitation
of the hyperexcitable and parasitical neurons spords to this reverse

learning mechanism.
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However, as mentioned before, the parasitical madesd stem from
reduced neural activity, not overload. Neural ovad is likely to be
linked to sleep deprivation which we know givegrie more subsequent

Slow Wave Sleep (15).

A revised version of C-M can account for unsolvedues in the
original version. For example, one could see whiidapressants can
knock out REM sleep without any perceivable asgediacognitive
deficit: REM deprivation increases the subsequentral load and any

overload will be palliated in SWS.

Finally we can now understand why fetuses in thentwdvave REM
sleep: their cortical wiring is very limited, leadi large neural
populations to be disused and excitable, whichnglsoincreases REM

pressure.
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DYNAMIC SIGNAL PROCESSING

REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application No. 60/679,951,
entitled, “DYNAMIC SIGNAL PROCESSING,” filed May 10, 2005, which is hereby incorporated

by reference herein.

FIELD
The field relates to digital signal processing.

BACKGROUND

Raw signal data can commonly overrepresent certain frequencies due to high power signals
received from select frequency ranges in a frequency spectrum. In turn, in many fields of study, low
power frequency range information is disregarded or ignored when valuable information exists within
those frequencies in the raw signal. Within the medical and biological sciences there are many signals
analyzed to assess clinical states, pathological conditions, and the like. In particular, sleep is
commonly analyzed via electroencephalography (EEG) signals; signals which normally over represent
the low frequency ranges. However, the details of sleep reside within the full spectrum of frequency
information in the signal. As a person falls asleep, brain activity is modulated and there is a
progressive increase in the depth of sleep. A typical night’s sleep for a normal person quickly
transitions to a sleep stage known as slow wave sleep (SWS) characterized by low frequency, high
power EEG activity. At intervals during the night, sleep lightens into intermediate sleep stages and
can enter a sleep state known as rapid eye movement (REM) sleep characterized by high frequency,
low power EEG activity. EEGs follow a 1/f distribution where the higher frequency signals tend to
have lower amplitudes and therefore lower power. The current gold-standard for analyzing EEG
signals for sleep stage determination is the Rechtschaffen-Kales method. This method can rely on
manually scoring sleep EEG signals due to the low power frequency limitations of automated signal
analysis techniques. The Rechtschaffen-Kales method can be both highly unreliable and time
consuming because statistically significant shifts at high frequencies are usually not detectable by a
human scorer due to the very low amplitudes. Further, the Rechtschaffen-Kales method tends to have
poor temporal and spatial resolution, does not make all of its variables known, and commonly leads to
low inter-user agreement rates across manual as well as automated scorers. Unfortunately, alternative
sleep state determination methods, including artificial neural network classifiers, tend to emulate
human performance, thereby improving the time of determination without drastically improving

quality. There remains a need with the sleep sciences for a fast and quantitatively
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rigorous alternative to current EEG signal analysis methods. Accordingly, there also remains a clear
need to better analyze any signal data to elucidate valuable low power frequency range data that is

otherwise disregarded or ignored due to over represented high power frequency range data.

SUMMARY

Raw signal data can be adjusted to increase dynamic range for power within low power
frequency ranges as compared to higher power frequency ranges to determine adjusted source data
valuable for acquiring low power frequency range information. Low power frequency range
information can be used in the analysis of a variety of rtaw signal data. For example, low power
frequency range information within electroencephalography data for a subject from a period of sleep
can be used to determine sleep states. Similarly, automated full-frequency spectral
electroencephalography signal analysis can be useful for customized medical analysis including
assessing sleep quality, detecting pathological conditions, and determining the effect of medication on
sleep states.

The techniques described herein can be applied to any number of signal types where
determining low power frequency information from source data is desired.

Additional features and advantages of the technologies described herein will be made
apparent from the following detailed description of illustrated embodiments, which proceeds with

reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary system for determining low power frequency
information from source data with at least one low power frequency range.

FIG. 2 is a flowchart showing an exemplary method for adjusting source data.

FIG. 3 is a flowchart showing an exemplary method for adjusting source data to account for
differences in power over a spectrum of frequencies over time.

FIG. 4 is a block diagram of an exemplary system for determining sleep state information for
a subject.

FIG. 5 is a block diagram of another exemplary system for determining sleep state
information for a subject.

FIG. 6 is a flowchart showing an exemplary method for determining sleep states in a subject.

FIG. 7 is a flowchart showing an exemplary method for classifying sleep states in a subject.

FIG. 8 is a block diagram of an exemplary system for determining a pathological condition
of a subject from sleep states. .

FIG. 9 is a flowchart showing an exemplary computer-implemented method for determining
a pathological condition for a subject based on sleep states.

FIG. 10 is a block diagram of an exemplary system for dynamically determining customized

sleep scores for a subject.
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FIG. 11 is a screen shot of an exemplary whole night EEG source data frequency power
spectrogram.

FIG. 12 is a screen shot of the exemplary whole night EEG source data shown in FIG.11
after an exemplary adjustment technique has been applied.

FIG. 13 is a screen shot of a two hour time frame of the exemplary adjusted whole night
EEG source data shown in FIG.12.

FIG. 14 is a screen shot of an exemplary visualization of high and low power frequency
bands within the whole night EEG spectrogram shown in FIG. 12.

FIG. 15 is a screen shot of a two hour and forty minutes time frame of the exemplary
visualization of high and low power frequency bands within the whole night spectrogram shown in
FIG. 14.

FIG. 16 is a screen shot of an exemplary five-dimensional parameter space visualization of
the whole night EEG spectrogram of FIG. 12.

FIG. 17 is a screen shot of a two hour time frame of the exemplary five-dimensional
parameter space visualization of the whole night EEG visualization shown in FIG.16.

FIG. 18 is a screen shot of an exemplary visualization of classified sleep states based on
EEG spectrogram data.

FIG. 19 is a screen shot of another exemplary visualization of classified sleep states based on
EEG spectrogram data.

FIG. 20 is a screen shot of yet another exemplary visualization of classified sleep states
based on EEG spectrogram data.

FIG. 21 is screen shot from another vantage point of the exemplary visualization of classified
sleep states based on EEG spectrogram data of FIG. 20.

FIGS. 22, 23, 24, and 25 are screen shots of canonical spectra representative of frequency
weighted epochs designated as distinct sleep states in a subject for a period of time.

FIG. 26 is a screen shot of a canonical spectra representative of a frequency weighted epoch
that displays a transient sleep state having characteristics of more than one sleep state.

FIGS. 27 is a screen shot of an exemplary visualization of the degree of sleep stage
separation that distinguishes representative canonical spectra of distinct sleep states.

FIG. 28, 29, 30, 31, and 32 are screen shots of exemplary visualizations of sleep state
statistics for a subject according to sleep state designations of one or more epochs.

FIG. 33 is a screenshot of an exemplary visualization of classified anesthesia states of an
anesthetized cat based on EEG spectrogram data.

FIGS. 34 is a screenshots of an exemplary visualization of classified sleep states of a human
subject based on EEG spectrogram data.

FIG. 35 is flowchart showing yet another exemplary method for classifying sleep states in a
subject that can be implemented with the described technologies.
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FIG. 36 is an exemplary computer system that can be implemented with the described
technologies.

FIG. 37 is a screenshot of an exemplarly visualization of independent component analysis
applied on a normalized spectorogram to further determine appropriate frequency windows for
extracting information.

FIG. 38 is a screenshot of an exemplary visualization of independent components of FIG. 37
throughout time.

FIG. 39 is a screen shot of a six and a half hour time frame of an exemplary five-dimensional
parameter space visualization of frequency bands of the whole night EEG visualization from a human
subject with Alzheimer’s.

FIG. 40 is a screen shot of an exemplary visualization of classified unihemispheric sleep

from a bird.

DETAILED DESCRIPTION
Overview of Technologies

The techniques described herein can be used in any variety of scenarios in which analyzing
source data for determining low power frequency information is useful.

Low power frequency information includes any information extracted from frequencies in
source data that exhibit low power relative to other frequencies within the source data frequency
spectrum. For example, data representing high frequency signals having low power within the
frequency spectrum of source data can be low power frequency information.

An epoch includes any time series increment (e.g., time segment) of data. For example, data
can be segmented into one or more epochs for analyzing. Further, for example, epochs can be
determined via segmenting data by scanning a length of time of data via a scanning window and
moving along the data time domain in increments via a sliding window. For example, neighboring
epochs can have overlapping time series data when a sliding window is less than a scanning window
or non-overlapping time series data when a sliding window is greater than or equal to a scanning
window. Alternatively, an epoch can span an entire (e.g., whole) time series when a scanning window
and sliding window both cover the length of the entire time series..

A scanning window includes any set period of time for use in capturing discrete time series
of data. For example, a one minute time frame of received signal data can be scanned in increments
of ten seconds (e.g., a scanning window of ten seconds), resulting in six discrete time series segments
of the data.

A sliding window includes any set period of time for use in setting the starting time point of
a scanning window. For example, a one minute time frame of received signal data can be scanned
with a ten-second scanning window that begins every five seconds (e.g., a sliding window of five

seconds) resulting in ten-second epochs that overlap by five seconds.
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A frequency weighted epoch includes any epoch which has been normalized. For example,
an epoch that has undergone any normalization process to account for differences in frequency power
of the one or more epochs across time in data can be a frequency weighted epoch.

A sleep state includes any distinguishable period of sleep or wakefulness representative of
certain behavioral, physical, or signal characteristics. For example, slow wave sleep (SWS), rapid
eye movement sleep (REM), and intermediate (INTER or IS) sleep states (e.g., intermediate sleep
states I and IT) and awake state can be sleep states. Awake states can be further categorized into
vigilance (e.g., attentiveness or levels of alertness) states.

A sleep state designation includes any sleep state label or term for describing an epoch. For
example, sleep state designations can include slow wave sleep (SWS), non-slow wave sleep (NSWS),
rapid eye movement sleep (REM), non-rapid eye movement sleep (NREM), intermediate I sleep,
(INT I), intermediate II sleep (INT II), transient (e.g., spindles and K-complexes), outlier, artifact,
awake, and the like. Similarly, numbers can be used to represent sleep states (e.g., 0 for SWS and 1
for non-SWS sleep or vice versa). In such a way, computational methods can be used to average
neighboring epochs during the sleep state designation process.

An artifact includes any data that misrepresents the data intended to be received. For
example, movement data in an EEG can be an artifact.

Movement data includes any data representing movement in a subject during the acquisition
of source data. For example, movement data can be data representing a muscle twitch or the like.

Dynamic range includes any range of intensity measurement. For example, dynamic range
for power can be determined for frequency ranges within a frequency spectrum and compared,
resulting in a lower dynamic range for one frequency range versus another.

Segmenting includes separating, dividing or splitting information into components or
consitituents. The terms “segmenting” and “separating” can be used interchangeably. For example,

source data can be segmented (e.g. separated) into a plurality of time segments (e.g., epochs).

Example 1 - Exemplary Source Data

In any of the technologies described herein, a variety of source data can be analyzed

including electroencephalography (EEG) data, electrocardiography data (EKG), electrooculography

data (EOG), electromyography data (EMG), wave data including sound and pressure waves, and any
data exhibiting a 1/f nature where there are differences in dynamic range of power for various
frequencies across a frequency spectrum of the data. Source data can include encoded data stored at

low power frequency within source data.

Example 2 - Exemplary System for Determining Low Power Frequency Information from
Source Data with at Least One Low Power Frequency Range
FIG. 1 shows an exemplary system 100 for determining low power frequency information

from source data with at least one low power frequency range.
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Source data with at least one low power frequency range 102 is obtained and input into
software 104 to determine low power frequency information 106.
The software 104 can employ any combination of technologies, such as those described
herein, to determine low power frequency information 106 for the source data.
Methods for determining low power frequency information from source data with at least

one low power frequency range are described in detail below.

Example 3 - Exemplary Method for Adjusting Source Data

FIG. 2 shows an exemplary method 200 for adjusting source data. For example, the method
200 can be implemented within system 100 of FIG. 1.

At 202, source data with at least one low power frequency range is received. For example,
electroencephalography source data for a subject can be received. Source data can be received via a
single channel or multiple channels.

At 204, source data is adjusted to increase the dynamic range for power within at least one
low power frequency range of the frequency spectrum of the source data as compared to a second
higher power frequency range. Any of the adjustment techniques described herein (e.g.,
normalization, frequency weighting, and the like) can be used. For example, electroencephalography
source data can be analyzed to increase the low power, higher frequency range data relative to the
higher power, lower frequency range data.

After the source data is adjusted, various other processing can be done. For example, a
visualization of the adjusted source data can be presented. Further, low power frequency information
can be extracted from the adjusted source data. For example, low power frequency information can
be extracted from adjusted electroencephalography source data. Higher power frequency information
can also be extracted from the adjusted source data.

The method described in this or any of the other examples can be a computer-implemented
method performed via computer-executable instructions in one or more computer-readable media.

Any of the actions shown can be performed by software incorporated within a signal processing

system or any other signal data analyzer system.

Example 4 -Exemplary Method for Adjusting Source Data to Account for Differences in
Power over a Spectrum of Frequencies over Time
FIG. 3 shows an exemplary method 300 for adjusting source data to account for differences
in power over a spectrum of frequencies over time. For example, the method 300 can be implemented
within system 100 of FIG. 1.
At 302, source data with at least on low power frequency range is received. For example,
electroencephalography data with at least one low power frequency range can be received. Artifacts

in the data can be removed from the source data. For example, artifact data can be manually removed
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from the source data or automatically filtered out of source data via a filtering (e.g., direct current
filtering) or data smoothing technique.

At 304, the source data is segmented into one or more epochs. For example, the source data
can be segmented in a plurality of time segments via a variety of separating techniques. Scanning
windows and sliding windows can be used to separate the source data into time series increments.
The source data can also be filtered via direct current filtering during or prior to segmentation. The
source data can also be pretreated with component analysis.

At 306, the one or more epochs can be normalized to account for differences in power of the
one or more epochs across time. For example, the power of each epoch at one or more frequencies
can be normalized across time to determine appropriate frequency windows for extracting
information. Such normalization can reveal low power, statistically significant shifts in power at one
or more frequencies (e.g., Delta, Gamma, and the like). Any frequency range can be revealed and
utilized for analysis. Information can be calculated for each of the one or more epochs after
appropriate frequency windows have been established. Such information can include low frequency
power (e.g., Delta power), high frequency power (e.g., Gamma power), standard deviation, maximum
amplitude (e.g., maximum of the absolute value of peaks) and the sort. Further calculations can be
done on the information calculated for each of the one or more epochs creating information such as
Gamma power/Delta power, time derivative of Delta, time derivative of Gamma power/Delta power
and the like. Time derivatives can be computed over preceding and successive epochs. After
calculating the information, it can then be normalized across the one or more epochs. A variety of
data normalization techniques can be conducted including z-scoring and the like.

At 308, results of the adjustment of source data to account for differences in power over a
spectrum of frequencies over time can be presented as one or more epochs of data. For example,

frequency weighted epochs can be presented as adjusted source data.

Example 5 - Exemplary System for Determining Sleep State
Information for a Subject

FIG. 4 shows an exemplary system 400 for determining sleep state information for a subject.

Electroencephalography data for a subject 402 is obtained and input into software 404 to
determine sleep state information for the subject 406.

The software 404 can employ any combination of technologies, such as those described
herein, to determine sleep state information for the subject 406.

Methods for determining sleep state information for a subject are described in detail below.

r.

Example 6 - Another Ex lary System for Determining Sleep State

/ 4

Information for a Subject
FIG. 5 shows an exemplary system 500 for determining sleep state information for a subject.
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Electroencephalography data for a subject 502 is obtained and input into segmenter 504 to
segment the data into one or more epochs. In practice, epochs are of similar (e.g., the same) length.
Epoch length can be adjusted via a configurable parameter. The one or more epochs, in tum, are
input into normalizer 506 to normalize frequency data in the one or more epochs across time, thereby
frequency weighting the one or more epochs of electroencephalography data. The one or more
frequency weighted epochs are then input into classifier 508 to classify the data into sleep states,
thereby generating sleep state information for the subject 510.

Methods for determining sleep state information for a subject are described in detail below.

Example 7 - Exemplary Method for Determining Sleep States in a Subject

FIG. 6 shows an exemplary method 600 for determining sleep states in a subject. For
example, the method 600 can be implemented within system 500 of FIG. 5 or system 400 of FIG. 4.

At 602, electroencephalography (EEG) data for a subject is received. For
example, electroencephalography data which exhibits lower dynamic range for power in at least one
low power first frequency range in a frequency spectrum as compared to a second frequency range in
the frequency spectrum can be received.

At 604, the electroencephalography data for the subject is segmented into one or more
epochs. For example, the EEG data can be segmented into one or more epochs via a variety of
separating techniques. Scanning windows and sliding windows can be used to separate the EEG data
into one or more epochs. The source data can also be filtered via direct current filtering during, prior
to, or after segmenting. The source data can also be pretreated with component analysis (e.g.,
principle or independent component analysis). FIG. 11is a screen shot of an exemplary whole night
EEG source data frequency power spectrogram for a subject that has been segmented over three
second epochs spaced in 1 second increments. Power range is indicated in the shading, where white
shaded regions are higher in power than dark shaded regions. The higher frequencies (e.g., Gamma)
therefore exhibit lower power than the lower frequencies (e.g., Delta, Theta and the like) in the whole
night EEG data.

At 606, frequency power of the one or more epochs is weighted across time. For example,
the power of each epoch at one or more frequencies can be normalized across time to determine
appropriate frequency windows for extracting information. Such normalization can reveal low power,
statistically significant shifts in power at one or more frequencies (e.g., Delta, Gamma, and the like).
Additionally, each epoch can be represented by the frequency with the highest relative power over
time to determine appropriate frequency windows for extracting information. Alternatively,
component analyéis (e.g., principle component analysis (PCA) or independent component analysis
(ICA)) can be utilized after normalization to further determine appropriate frequency windows for
extracting information. For example, FIGS. 37 and 38 are screen shots of component analysis utilized

after normalization to suggest filters (e.g., screen shot 3700) and express independent components
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throughout time (e.g., screen shot 3800). Any frequency range can be revealed and utilized for
analysis.

Information can be calculated for each of the one or more epochs after appropriate frequency
windows have been established (e.g., after weighting frequency). Such information can include low
frequency power (e.g., Delta power), high frequency power (e.g., Gamma power), standard deviation,
maximum amplitude (e.g., maximum of the absolute value of peaks) and the sort. Further calculations
can be done on the information calculated for each of the one or more epochs creating information
such as Gamma power/Delta power, time derivative of Delta, time derivative of Gamma power/Delta
power and the like. Time derivatives can be computed over preceding and successive epochs. After
calculating the information, it can then be normalized across the one or more epochs. A variety of
data normalization techniques can be conducted including z-scoring and the like.

FIG. 12 is a screen shot of the exemplary whole night EEG source data shown in FIG.11
after an exemplary frequency power of the one or more epochs has been weighted across time. The
higher frequency data is now more clearly visible. FIG. 13 is a screen shot of a two hour time frame
of the exemplary adjusted whole night EEG source data shown in FIG.12. FIG. 14 is a screen shot of
an exemplary visualization of high (e.g., Gamma) and low (e.g., Delta) power frequency bands within
the whole night EEG spectrogram shown in FIG. 12. FIG. 15 is a screen shot of a two hour and forty
minutes time frame of the exemplary visualization of high and low power frequency bands shown in
FIG. 14.

FIG. 16 is a screen shot of an exemplary five-dimensional parameter space visualization of
the whole night EEG spectrogram of FIG. 12. The five parameters (e.g., variables) are information
calculated for each of the one or more epochs after weighting frequency. FIG. 17 is a screen shot of
a two hour time frame of the exemplary five-dimensional parameter space visualization of the whole
night EEG visualization shown in FIG.16.

At 608, sleep states in the subject are classified based on the one or more frequency
weighted epochs. For example, the one or more frequency weighted epochs can be clustered by any
variety of clustering techniques including k-means clustering. The clustering can be done on
information calculated from the epochs (e.g., Delta power, Gamma power, standard deviation,
maximum amplitude (Gamma/Delta), time derivative of Delta, time derivative of (Gamma /Delta),
and the sort). Component analysis (e.g., PCA or ICA) can be used to determine the parameter space
(e.g., types of information used) in the clustering. Subsequent to clustering, sleep state designations
can be assigned to the epochs. Sleep state designated epochs can then be presented as representations
of sleep states in the subject for the period of time represented by the epoch. Classification can also
incorporate manually determined sleep states (e.g., manually determined “awake” versus “sleeping”
sleep states). Additionally, artifact information (e.g. movement data, poor signal data, or the like) can

be utilized in the classification.
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Example 8 - Exemplary Sleep State Classification Techniques

Epochs can be classified according to a number of sleep states. An epoch can be classified
according to normalized variables (e.g., information calculated for an epoch) based on high frequency
information, low frequency information, or both high and low frequency information. For example,
REM sleep state epochs can have higher relative power than SWS at higher frequencies and lower
relative power than SWS at lower frequencies. Similarly, SWS sleep state epochs can have lower
relative power than REM at higher frequencies and higher relative power than REM at lower
frequencies. Additionally, epochs initially classified as both NREM and NSWS sleep (e.g., epochs
having low relative power at both higher and lower frequencies) can be classified as intermediate
sleep and epochs classified as both REM and SWS sleep (e.g., epochs having high relative power at
both higher and lower frequencies) can be classified as outliers. Further, epochs initially classified as
both NREM and NSWS sleep can be classified as intermediate stage I sleep and epochs initially
classified as both REM and SWS sleep can be classified as intermediate stage II sleep. Additionalty,
sleep states can be split in the classifying to look for spindles, k-complexes, and the like. Any group
of epochs initially classified as one sleep state can be split into multiple sub-classified sleep states
according to increasing levels of classification detail. For example, a group of epochs classified as

SWS can be reclassified as two distinct types of SWS.

Example 9 - Exemplary Artifact Classification Techniques

Artifact data (e.g. movement data, poor signal data, and the like) can also be used in sleep
state classification. For example, artifacts can be used to analyze whether epochs initially assigned a
sleep state designation should be reassigned a new sleep state designation due to neighboring artifact
data. For example, an epoch assigned a sleep state designation of REM that has a preceding
movement artifact or awake epoch can be reassigned a sleep state designation of awake. Further, for
example, an artifact epoch that has a succeeding SWS epoch can be reassigned a sleep state
designation of SWS because there is a high likelihood that the epoch represents a large SW'S sleep
epoch rather than a large movement artifact which is more common during wakefulness. In such

ways, for example, artifact data can be utilized in a data smoothing technique.

r

Example 10 - Ex lary Smoothing Technig
Any variety of data smoothing techniques can be used during the assigning of sleep states.
For example, numbers (e.g., 0 and 1) can be used to represent designated sleep states. Neighboring
epochs’ sleep state designation numbers can then be averaged to determine if one of the epochs is
inaccurately assigned a sleep state designation. For example, abrupt jumps from SWS-NSWS-SWS
(and REM-NREM-REM) are rare in sleep data. Therefore, should a gréup of epochs be assigned
sleep state designations representing abrupt jumps in sleep states, smoothing techniques can be

applied to improve the accuracy of the assigning.
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For example, in a scenario in which 0 represents SWS, 1 represents NSWS and the following
sleep state designations existed for five neighboring epochs, 00100, then an average of the five sleep
states would be 0.2. In such an instance, the middle epoch initially assigned a sleep designation of 1
(SWS) would be reassigned a sleep state designation of 0 (NSWS). The same technique could be
used for REM versus NREM where a second set of sleep designations for the same five neighboring
epochs is determined. For example, 1 can represent REM, 0 can represent NREM, and the following
designations can exit for the five neighboring epochs, 00100. Again, the average of the five sleep
states would be 0.2. Again, the middle epoch initially assigned a designation of 1 (REM) would be
reassigned a sleep state designation of 0 (NREM). Such smoothing techniques can improve the

accuracy of assigning sleep state designations.

Example 11 - Exemplary Method for Classifying Sleep States in a Subject

FIG. 7 shows an exemplary method 700 for classifying sleep states in a subject. For
example, the method 700 can be implemented within system 500 of FIG. 5, system 400 of FIG. 4 or
within the classifying 608 of method 600.

At 702, one or more frequency weighted epochs are received. For example, frequency
weighted epochs determined from the weighting 606 of method 600 can be received.

At 704, the one or more frequency weighted epochs are clustered. For example, the one or
more frequency weighted epochs can be clustered by any variety of clustering techniques including k-
means clustering. The clustering can be done on information calculated from the epochs (e.g., Delta
power, Gamma power, standard deviation, maximum amplitude (Gamma/Delta), time derivative of
Delta, time derivative of Gamma /Delta, and the sort). Exemplary visualizations of clustered sleep
states are shown in FIGS. 18 and 19. FIG. 18 shows epochs clustered via Delta, Gamma/Delta, and
the time derivative of Delta. In such a manner, REM-like epochs form a visual spear point shape.
FIG. 19 shows epochs clustered via Delta, Gamma/Delta, and the time derivative of (Gamma/Delta).
In such a manner, SWS-like epochs form a visual spear point shape. Additional exemplary
visualizations of clustered sleep states are shown in FIGS. 20 and 21, in which clustering was done
using parameters (e.g., variables) derived via principle component analysis.

At 706, the one or more clustered, frequency weighted epochs are assigned sleep state
designations. For example, an epoch with significant relative power at low frequency can be assigned
a slow wave sleep designation and an epoch with significant relative power at high frequency can be
assigned a rapid eye movement sleep designation. For example, REM sleep can have higher
Gamma/Delta and a higher absolute value of the time derivative of (Gamma/Delta) compared to
SWS, whereas SWS can have higher delta and a higher absolute value of the time derivative of delta
than REM sleep. Further, for example, standard deviation can be used in assigning sleep state
designations. It is possible for the same epoch to be assigned both a slow wave sleep designation and
a rapid eye movement sleep designation. In such cases, the epoch can be reassigned a new sleep state

designation of outlier or intermediate stage II sleep. Alternatively, an epoch can be assigned both a
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non-slow wave sleep designation and a non-rapid eye movement sleep designation. In such cases, the
epoch can be reassigned a new sleep state designation of intermediate sleep or intermediate stage I
sleep. For example, when high frequency is expressed by dividing it by Delta and the parameter
space Delta, Gamma/Delta, abs(derivative(Delta)), abs(derivative(Gamma/Delta)), and ,optionally,
standard deviation, then intermediate sleep designation can be the intersection between NREM and
NSWS while outlier designation can be the intersection between REM and SWS. Alternatively, for
example, if Delta alone or with standard deviation is used to determine SWS from NSWS and gamma
alone or with abs(derivative(Delta)) alone or with standard deviation is used to determine REM from
NREM, then intermediate stage I sleep designation can be the intersection between NREM and
NSWS while intermediate stage II sleep designation can be the intersection between REM and SWS.
Any variety of data smoothing techniques can be used during the assigning of sleep states. Artifact
data can also be used during the assigning of sleep states.

At 708, sleep state designations are presented as indicative of sleep states for the period of
time represented by the one or more epochs. The sleep states can be presented in the form of sleep
statistics across time. For example, FIGS. 28, 29, 30, 31, and 32 depict presentations of sleep
statistics for sleep state designated epochs as a function of time. For example in FIG. 28, a screen
shot 2800 depicts sleep state density as a percentage for each sleep state type per hour during a night
of electroencephalography data for a subject. InFIG. 29, a screen shot 2900 depicts average episode
length for each sleep stage across every hour. In FIG. 30, a screen shot 3000 depicts number of
episodes for each sleep stage across every hour. InFIG. 31, a screen shot 3100 depicts average time
intervals between successive REM sleep state intervals for each hour. In FIG. 32, a screen shot 3200
depicts stage transitions across the night.

Additionally, one or more frequency weighted epochs can be presented as canonical spectra
representative of the sleep state in the subject for the period of time represented by the one or more
epochs having similar sleep state designations. For example, an epoch within the middle of a group
of epochs designated as having the same sleep state designations can be selected and its spectra
presented as canonical specira representative of the sleep state. Alternatively, an epoch having a
weighted power closest to the average weighted power of one or more epochs having similar sleep
state designations can be selected and its spectra presented as canonical spectra representative of the
sleep state. For example, FIGS. 22, 23, 24, 25, and 26 are screen shots of exemplary visualizations of
epochs for various sleep states in a subject (e.g., screen shot 2200 is SWS, screen shot 2300 is REM
sleep, screen shot 2400 is Intermediate sleep, screen shot 2500 is awake, and screen shot 2600 is
transient) based on EEG spectrogram data analysis.

Additionally, sleep state designations can be presented as a function of success versus
manual scoring and quality measures can be presented (e.g., sleep state designation separation
statistics including single variable and multivariable one-way ANOV As, regression coefficients
calculated for each stage for sleep densities, number of episodes, average episode length, cycle time,

and the like). An exemplary visualization of presenting quality measures is shown in FIG. 27. A
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screen shot 2700 depicts an exemplary visualization of the degree of sleep stage separation that
distinguishes representative canonical spectra of distinct sleep states. For example, independent
component analysis (ICA) can be used to establish the quality of sleep stage separation in the
presented sleep states by applying ICA to canonical spectra or average spectra for each sleep state
presented. Any variety of classifying techniques can be used to determine the quality of initially sleep

stage classification.

Example 12 - Exemplary System for Determining a Pathological Condition of a Subject
from Sleep States

FIG. 8 shows an exemplary system 800 for determining a pathological condition of a subject
from sleep states.

Electroencephalography data for a subject 802 is obtained and input into sleep state analyzer
804 to determine a pathological condition of the subject 806.

Methods for determining a pathological condition of a subject from sleep states exhibited by
a subject, as determined from analyzing electroencephalography data, are described in detail below.

Example 13 - Exemplary Comp Impl ted Method for Determining a Pathological

Condition for a Subject from Sleep States

FIG. 9 shows an exemplary computer-implemented method 900 for determining a
pathological condition for a subject from sleep states. The computer-implemented method 900 can be
utilized in system 800 of FIG. 8.

At 902, electroencephalography data for a subject is received. For example,
electroencephalography data which exhibits lower dynamic range for power in at least one low power
first frequency range in a frequency spectrum as compared to a second frequency range in the
frequency spectrum can be received.

At 904, the electroencephalography data is analyzed with frequency analysis.

For example, frequency analysis can be the adjusting 204 of method 200.

At 906, sleep states in the subject are assigned based on the frequency analysis. For example,
method 700 for classifying sleep states of FIG. 7 can be used to assign sleep states in the subject.

At 908, a pathological condition can be detected in a subject based on the sleep states. For
example, sleep states can be acquired for an individual and analyzed to determine whether the sleep
states represent normal sleep or abnormal sleep. Abnormal sleep could indicate a pathological
condition. For example, sleep states can be acquired from individuals with pathological conditions
and analyzed for common attributes to generate an exemplary distinctive “pathological condition”
sleep state profile and/or sleep state statistics representative of having the pathological condition.
Such a profile or statistics can be compared to sleep states determined for a subject in order to detect
whether the subject has the pathological condition or any early indicators of the pathological
condition. Any variety of pathological conditions can be detected and/or analyzed. For example

181
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sleep related pathological conditions can include epilepsy, Alzheimer’s disease, depression, brain
trauma, insomnia, restless leg syndrome, and sleep apnea. For example, polysomnographically,
subjects with Alzheimer’s can show decreased rapid eye movement sleep in proportion to the extent

of their dementia.

Example 14 - Exemplary System for Dynamically Determining
Customized Sleep Scores for a Subject

FIG. 10 shows an exemplary system for dynamically determining customized sleep scores
for a subject

A data collector 1002 can obtain electroencephalography data for a subject from a period of
sleep.

A data normalizer 1004 can assess the electroencephalography data to determine low power
frequency information.

A data presenter 1006 can present sleep states for the subject based at least on the low power
frequency information.

Methods for dynamically determining customized sleep scores for a subject are described

herein, including method 500 of FIG. 5, method 600 of FIG. 6, and method 700 of FIG. 7.

Example 15 - Exemplary Pathological Conditions
In any of the technologies described herein, a variety of pathological conditions can be
determined from source data obtained for a subject. For example, depression, brain trauma, epilepsy,
and Alzheimer’s disease can be pathological conditions determined from sleep states determined from
source data obtained for a subject. For example, FIG. 39 is a screenshot 3900 of an application of the
technologies described herein to determine sleep states indicative of characterizations of Alzheimer’s

disease from a whole night EEG from a human subject with Alzheimer’s.

Example 16 - Exemplary Medications and Chemicals that can Affect Sleep

In any of the technologies described herein, the effect of medications and chemicals on sleep
states of a subject can be determined via analyzing source data obtained for a subject. For example,
sleep states can be modified by alcohol, nicotine, and cocaine use. Exemplary medications that affect
sleep include steroids, theophylline, decongestants, benzodiazepines, antidepressants, monoamine
oxidase inhibitors (e.g., Pheneizine and Moclobemide), selective serotonin reuptake inhibitors (e.g.,
Fluoxetine (distributed under the Prozac® name) and Sertralie (distributed under the Zolofit® name),
thyroxine, oral contraceptive pills, antihypertensives, antihistamines, neuroleptics, amphetamines,

barbiturates, anesthetics, and the like.

Example 17 - Exemplary Sleep Statistics

In any of the technologies described herein, any variety of statistics can be generated from
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adjusted source data. For example, sleep statistics can be generated from adjusted source EEG data
that has been classified into sleep states. Exemplary sleep statistics can include information including
sleep stage densities, number of sleep stage episodes, sleep stage average duration, cycle time,
interval time between sleep stages, sleep stage separation statistics, onset of sleep, rapid eye
movement sleep latency, regression coefficients of trends, measures of statistical significance of

trends, and the like.

Example 18 - Exemplary Impl. tation of a Method of Determining
Sleep States in a Subject over a Period of Time

Sleep is common and may be ubiquitous in all major taxa of the animal kingdom, but it is
poorly understood. There is growing evidence from human studies from a variety of low-level
psychophysical perceptual and motor tasks that sleep helps to remediate performance loss that is
otherwise observed following task learning (Karni et al. 1994; Mednick et al. 2002; Mednick et al.
2003; Fenn et al. 2003). Animal studies have provided evidence of 'replay' during sleep, which may
be a central component of the sleep process involved in consolidation of performance.

Recently, it has been shown that during sleep, robustus archistriatalis (RA) neurons of the
zebra finch, Taeniopygia guttata, song system rehearse song patterns spontaneously and respond to
playback of the bird's own song (Dave & Margoliash, 2000). During song development in zebra
finches, juvenile birds start changiﬁg singing patterns the day following exposure to new vocal
material from tutors (Tchernichovski et al. 2001). There is no conclusive evidence though that song
learning in juveniles or song maintenance in adult birds requires or benefits from sleep.

Investigation of the possible role of sleep in song learning or maintenance is hampered by
the limited knowledge of sleep states in passerine birds. Previous studies have not reported different
phases of sleep in the zebra finch (Nick & Konishi, 2002; Hahnloser et al., 2002). In contrast, studies
in other birds, including passerine birds (Ayala-Guerrero et al., 1988; Szymczak et al., 1993;
Rattenborg et al., 2004), have reported REM sleep in this phylum. Moreover, in rat hippocampus
different patterns of neuronal replay are known to take place during different phases of sleep
(Buzsaki, 1989; Wilson & McNaughton, 1994; Louie & Wilson, 2001). Therefore, staging of sleep
in zebra finches was investigated.

In order to determine the type, arrangement and location of electrodes, a series of acute
experiments with birds anesthetized with urethane (20%, circa 90 ul over 1 hr) was first conducted.
Optimal EEG recordings, as judged by amplitude and reliability of signals, were obtained using
differentially paired thick platinum electrodes (A-M systems, WA) touching the dura mater, with an
additional ground over the cerebellum. The stereotaxic coordinates for the recording and ground
electrodes were respectively: (1.5R, 3L), (3R, 2L) and (0.5C, OL).

Five birds were then anesthetized and implanted with 3 mm long L-shaped platinum
electrodes at the aforementioned locations with the last 2 mm of the electrodes tangential to the dura

mater along the medial-lateral axis. The electrode impedance was 0.15 Ohms. In order to assess
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unihemispheric sleep, three birds were implanted with bilateral EEG electrodes. Electrodes were
secured at their base with dental acrylic and attached with fine copper wire (A-M systems, WA) to a
head connector. Birds were given 3 days to recover from the surgery and to habituate to the recording
environment.

During recordings, a light cable was attached linking the bird's head to an overhead mercury
commutator (Drangonfly Inc, WV). This setup allowed the bird relative freedom of movement within
the cage and is preferable to restraining the animal since restraint-induced stress is known to modify
sleep architecture (Altman et al., 1972). During the dark phase of the 16:8 light/dark cycle,
electrophysiological recordings with direct observation of sleeping birds were combined. Birds were
bathed in infrared (IR) Iiéht and monitored with an IR camera (Ikegama, Japan). Strategically placed
mirrors facilitated detection of eye, head, and body movements. EEGs were amplified by 1K,
sampled at 1 kHz and filtered at 1-100 Hz. In one bird, which exhibited low frequency artifacts, the
data was filtered at 2-100 Hz. A 60Hz notch filter was also used to improve the signal-to-noise ratio.

In order to establish high confidence in the data analysis, the data was scored both manually
as well as automatically. Manual scoring relied on visual inspection of 3 seconds EEG epochs in
parallel with scoring of overt behaviors such as eye, head and body movements. Manual scoring
classified each epoch as either REM, NREM (non-REM) or awake, including the artifacts.
Automated scoring was restricted to the sleep data. The Sleep Parametric EEG Automated
Recognition System (SPEARS) for stage separation and quantification of single channel EEG data
was used. EEGs were downsampled to 200 Hz, DC filtered, and analyzed over 3 seconds epochs
using a 1 second sliding window to combine high spectral, temporal and statistical resolutions. In
order to minimize spectral leakage and to increase statistical resolution in the frequency domain, EEG
power spectra were computed over 2 orthogonal tapers following a standard multi-taper estimation
technique (Thomson, 1982).

The 1-4 Hz (Delta) and 30-55 Hz (Gamma) frequency bands were selected for the stage
classification. Delta and Gamma/Delta were respectively used to separate SWS from NSWS (Non-
SWS) and REM from NREM. The separation was done with a k-means clustering algorithm and
refined by the inclusion of additional variables: the standard deviation and the absolute values of the
time derivative of Delta and of (Gamma/Delta). For each epoch, the time derivative was computed
over the preceding and successive epochs, using the Matlab “gradient” function. The initial
separation was done over the artifact free sleep data. Thereafter, sleep artifacts were attributed the
same score as the first non-artifact epoch immediately following it, unless it was an awake epoch in
which case the sleep artifact was given the score of the first preceding artifact free epoch (which
could not be an awake epoch for otherwise the artifact would have been labeled as an awake artifact
by manual scoring). This convention did not significantly reduce the agreement rate with manual
scoring (TABLE 1). It was imporiant to include the sleep artifacts since removing or not scoring
them would respectively shrink or puncture sleep episodes and thereby change the calculated density,

average number of epochs and length for each stage.
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Following initial separation, the score of each epoch was smoothed using a 5 second window
in order to minimize the score contamination by brief artifacts which might not have been isolated by
manual scoring. Epochs that were scored neither as REM nor as SW'S were labeled as intermediate
(INTER). Conversely, any epoch that had been labeled as belonging to both REM and SWS was
relabeled as an outlier. There were very few outliers in the data (TABLE 1).

The REM, SWS and intermediate epochs can be visualized in a 3-dimensional space (FIGS.
20-21) defined by the principal components of the 5 dimensional space defined by Delta,
Gamma/Delta, the standard deviation and the derivatives of Delta and (Gamma/Delta) (FIGS. 16-17).
In each bird, a multivariate ANOVA on the 5-dimensional clustering space yielded a P <0.001 for the
separation of REM, SWS and the intermediate stage.

Using the MATLAB “silhouette” function, the most representative examples for the SWS,
REM, intermediate and awake epochs were automatically generated (FIGS. 22, 23, 24, 25, and 26).

The agreement between manual and automated scoring was calculated by classifying each
epoch scored as REM by only the manual or the automated scoring as an error. The general
agreement rate was remarkably high given the high temporal resolution of the manual and automated
scoring (TABLE 1).

Based on the antomated analysis, the stage density (FIG. 28), average episode number (FIG.
30) and duration (FIG. 29), inter REM interval (FIG. 31) and stage transitions (FIG. 32) were
computed (TABLE 1). All analyses were conducted in Matlab (MathWorks Inc, MA).

Table 1. Stage statistics for 5 nights of sleep in 5 birds.

Stage density, average episode duration and number and stage transitions were
determined. The percentage of transitions out of each stage towards the intermediate stage
and the percentage of transitions out of the intermediate stage towards the other stages are
shown. For the bihemispherically implanted birds (Animals 1-3), unihemispheric sleep is
reported and the other statistics were computed over the hemisphere with the most reliable
data as determined by visual inspection of the EEG and video and the absence of outliers.
The coefficient of regression was computed over the stage densities and inter-REM intervals
for each hour and reﬂeqt the circadian distribution of SWS and REM (* = [*> 0.5 and p <
0.05], § = [r*> 0.5 and p = 0.05], £ for values calculated for hours 2-8, € for values
calculated for hours 1-7). The agreement rate between automated and manual scoring was

determined with and without artifact rejection.
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TABLE 1 Animal 1 Animal2 | Animal3 | Animal4 | Animal5
Stage Density (%)

SWS 44.44 30.14 41.03 2571 36.59
INTER 30.96 30.34 3746 31.70 37.49
REM 21.06 30.51 15.79 30.77 15.12
AWAKE 3.54 8.94 573 11.83 10.80
UNIHEM 0.09 0.59 0.65 N/A N/A
OUTLIER 0.00 0.08 0.00 0.00 0.00
Average Episode Duration (sec)
SWS 14.11 12.54 10.84 10.90 9.11
INTER 595 6.05 6.67 8.07 6.62
REM 9.84 10.11 8.53 16.98 9.21
AWAKE 11.37 12.10 9.30 16.11 12.02
UNIHEM 3.38 3.84 3.19 N/A NA
OUTLIER N/A 222 N/A N/A NA
Number of Episodes
SWS 835 704 1092 629 1073
INTER 1378 1482 1623 1137 1601
REM 599 853 541 572 557
AWAKE 85 113 159 65 100
UNIHEM 8 44 59 N/A N/A
OUTLIER 0 9 0 0 0
Transitions
SWS-INTER (% SWS) 97.57 88.54 9521 93.93 97.05
REM-INTER (% REM) 85.49 90.34 86.06 92.64 83.75
AWAKE-INTER (% AWAKE) 60.49 71.94 72.15 27.79 64.16
OUT-INTER (% OUT) NA 25.00 N/A N/A N/A
INTER-SWS (% INTER) 56.57 43.06 63.23 51.31 66.49
INTER-REM (% INTER) 38.55 49.33 29.52 43.72 26.78
INTER-AWAKE (% INTER) 4.88 7.61 725 4.97 6.73
INTER-OUT (% INTER) N/A 0.00 N/A NA NA
| Regression coefficients
Stage Density per hour
SWS -6.20 -1.11 0.10 -5.46 -2.94
INTER 1.57 1.93 -0.29 421 4.09
REM 4.89 3.16 2.44 8.08 4.77
AWAKE -0.25 -3.99 2.25 -6.83 -5.92
OUTLIER N/A 0.01 N/A N/A N/A
Average Episode Duration per hour
SWS -1.44 -0.37 0.59 -6.08 -1.11
INTER 0.05 0.24 0.21 137 0.31
REM 0.90 0.80 1.06 2.77 0.53
AWAKE -0.74 -0.89 -0.21 -6.34 -0.92
OUTLIER N/A N/A N/A N/A N/A
Number of Episodes per hour
SWS -3.93 -1.07 -6.13 -3.61 0.82
INTER 8.00 529 -8.11 293 14.46
REM . 13.82 5.68 2.01 6.93 16.21
AWAKE -0.29 -1.54 -6.05 0.18 -1.61
OUTLIER N/A -0.04 N/A N/A N/A
Inter-REM-interval per hour -7.56 -2.66 2.27 -0.75 -15.10
Cycle Time per hour 10.45 21.50 4.88 93.51 1.45
Agreement Rate (%) 89.94 76.75 90.52 73.23 88.44
Agreement Rate - No artifacts (%) 90.08 76.93 91.52 7391 88.28
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The analysis of the recordings indicate that zebra finches exhibit at least three distinct phases
of sleep: SWS, REM and intermediate sleep. SWS had a high amplitude EEG signal with significant
power in the Delta range (FIGS.14-17). REM was characterized by a very low amplitude “awake-
like” EEG signal (FIG. 23), typically about £30 uV with higher power in Gamma (FIGS. 14 and 15)
than NREM, a feature that up to now had only been detected in mammals (Maloney et al., 1997;
Cantero et al., 2004). The intermediate epochs had highly variable amplitudes, centered around +50
1V and did not have significant power in either the Delta or Gamma ranges (FIGS. 14, 15 and 24).
The intermediate stage has previously only been observed in mammals (Gottesmann et al., 1984; Glin
etal., 1991; Kirov & Moyanova, 2002). Both birds on normal circadian patterns and shifted
circadian schedules displayed these three sleep stages.

SWS epochs were longer than REM and intermediate episodes early in the night and would,
following a mammalian-like distribution, decrease in duration (FIG. 29) throughout the night, leading
to an overall decrease in stage density (FIG. 28) (TABLE 1).

During NREM birds breathe slowly and regularly; eye and head movements do not follow a
stereotypical pattern and are quite distinct from those in REM. We observed several instances when
one eye was open and the other was closed. The hemisphere contralateral to the open eye displayed a
low amplitude and high frequency EEG while the hemisphere contralateral to the closed eye displayed
SWS oscillations. These instances of unihemispheric sleep would usually account for less than 5% of
the dark cycle (TABLE 1) and were more frequent in the light cycle. Such patterns of unihemispheric
sleep have been previously detected in other species of birds, cetaceans and other marine mammals
(Mukhametov et al., 1984; Mukhametov, 1987; Szymczak et al., 1996; Rattenborg et al., 1999;
Lyamin et al., 2002).

REM episodes were typically brief early in the night and would become longer throughout
the night (FIG. 29) as the number of episodes would increase as well (FIG. 30), leading the Inter-
REM intervals to exhibit a downward “mammalian-like” trend throughout the night (FIG. 31)
(TABLE 1). REM occurred reliably in conjunction with eye and subtle twitching head movements, as
seen in other species (Siegel et al., 1999). The eye movements were on the order of one saccade per
second. The head movements were not as reliable, but tended to follow the directional movement of
the eyes when present. Head movements were not the result of displacement of the head by the
weight of the attached cable during REM neck muscle atonia because the head movements were
observed in conjunction with eye movements in intact, un-tethered animals.

The intermediate epochs were brief and numerous. The intermediate state was usually more
stable throughout the night, in term of density (FIG. 28), average epoch duration (FIG. 29) and
average number of episodes per hour (FIG.30) than REM and SWS. As is the case in mammals, the
intermediate stage consistently acted as -but was not limited to- a transition phase between SW'S and
REM (FIG. 32) (TABLE 1).

In all birds, large peak-to-peak EEG transients lasting approximately 500 milliseconds were
detected in NREM (FIG. 26). These signals are reminiscent of the description of mammalian K-



188

WO 2006/121455 PCT/US2005/027562

10

15

20

25

30

35

complexes (Rowan & Tolunsky, 2003). K-complexes have likely never been previously observed in a
non-mammalian species.

In previous studies of zebra finch sleep EEG, only SWS has been reported. In addition to
finding a suitable location over which to implant EEG electrodes, this study was successful in
detecting NSWS (REM and the intermediate stage) presumably because the nature of the chronic
recording setup did not restrain the animals and obviated the need of pharmacological agents such as
melatonin to induce sleep. In one study (Mintz et al., 1998), infusion of melatonin was shown to
induce SWS in pigeons. It is possible that melatonin might have a similar effect in zebra finches, thus
reducing the amount of observable NSWS at night (Hahnloser et al. 2002).

The data analysis technique we used enabled us to resolve changes in power at the lower
power, high frequencies, which was a key differentiating factor for REM sleep detection. Moreover,
the automated analysis restricted manual scoring to the awake state and artifacts, which are easily
detectable to a human scorer. Additionally, automated EEG scoring relied on whole night statistics
(Gervasoni et al.) rather than on arbitrarily defined threshold, maximum likelihood methods or
supervised nonlinear classifiers all of which tend to reflect and impose a human bias on the data
analysis.

The results imply that mammalian-like sleep features have evolved in parallel in both
mammals and birds. The basic pattern of interdigitation between Delta and Gamma power activation
described herein (FIGS. 14 and 15) is highly similar to the one observed in the mammalian cortex
during sleep (Destexhe, Contreras & Steriade, 1999). Furthermore, some of the signals we have
observed have been specifically attributed to the mammalian cortex (Amzica & Steriade, 1998). Birds
are however devoid of a large laminar cortex, raising the possibility that the cortex might be at best
sufficient but not necessary for the development of mammalian-like sleep features. Conversely, it is
conceivable that birds do indeed possess a mammaljan cortex homolog in a non-laminar form
(Karten, 1997). Future work at the cellular and molecular levels will be needed to assess which of
these highly intriguing possibilities proves to be correct.
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Example 19- Exemplary Method for Determining
Sleep States in a Subject over a Period of Time
FIG. 35 shows yet another exemplary method 3500 for determining sleep states in a subject

over a period of time. The method 3500 incorportates a wide variety of techniques described herein.

Example 20 - Exemplary Transformation Techniq
There are a wide variety of data transformation methods used in signal processing to
determine power for a variety of frequencies in time series data. As described herein, transformation
methods can include multi-taper transform, Fourier transform, wavelet transform. Any other
transformation method for measuring power for a variety of frequencies represented in a plurality of

time series or epochs in a source signal can be used.
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Example 21 - Exemplary Comp ional Methods for
Differentiating Groups of Data

There are a wide variety of clustering and classification methods used in computational
signal processing to differentiate data into distinct classes. As described herein, the clustering method
used is k-means clustering but any computational signal processing method for differentiating groups
of data could be used. Similarly, classification methods such as component analysis (e.g., principle
and independent component analysis) are used as described herein.

An overview of computational methods is provided below.

Clustering (or cluster analysis) is unsupervised learning where the classes are unknown a
priori and the goal is to discover these classes from data. For example, the identification of new
tumor classes using gene expression profiles is a form of unsupervised learning.

Classification (or class prediction) is a supervised learning method where the classes are
predefined and the goal is to understand the basis for the classification from a set of labeled objects
and build a predictor for future unlabeled observations. For example, the classification of
malignancies into known classes is a form of supervised learning.

CLUSTERING:
Clustering involves several distinct steps:
1. Defining a suitable distance between objects
2. Selecting a applying a clustering algorithm.

Clustering procedures commonly fall into two categories: hierarchical methods and
partitioning methods. Hierarchical methods can be either divisive (top-down) or agglomerative
(bottom-up). Hierarchical clustering methods produce a tree or dendrogram. Hierarchical methods
provide a hierarchy of clusters, from the smallest, where all objects are in one cluster, through to the
largest set, where each observation is in its own cluster

Partitioning methods usually require the specification of the number of clusters. Then, a
mechanism for apportioning objects to clusters must be determined. These methods partition the data
into a prespecified number k of mutually exclusive and exhaustive groups. The method iteratively
reallocates the observations to clusters until some criterion is met (e.g. minimize within-cluster sums-
of-squares). Examples of partitioning methods include k-means clustering, Partitioning around
medoids (PAM), self organizing maps (SOM), and model-based clustering.

Most methods used in practice are agglomerative hierarchical methods, in a large part due to
the availability of efficient exact algorithms. However both clustering methods have their advantages
and disadvantages. Hierarchical advantages include fast computation, at least for agglomerative
clustering, and disadvantages include that they are rigid and cannot be corrected later for erroneous
decisions made earlier in the method. Partitioning advantages include that such methods can provide
clusters that (approximately) satisfy an optimality criterion, and disadvantages include that one needs

an initial k and the methods can take long computation time.



191

WO 2006/121455 PCT/US2005/027562

10

15

20

25

30

35

In summary, clustering is a more difficult problem than classifying for a variety of reasons
including the following:
1. there is no learning set of labeled observations
2. the number of groups is usually unknown
3. implicitly, one must have already selected both the relevant features and distance measures used in
clustering methods.
CLASSIFICATION:

Techniques involving statistics, machine learning, and psychometrics can be used. Examples
of classifiers include logistic regression, discriminant analysis (linear and quadratic), principle
component analysis (PCA), nearest neighbor classifiers (k-nearest neighbor), classification and
regression trees (CART), prediction analysis for microarrays, neural networks and multinomial log-
linear models, support vector machines, aggregated classifiers (bagging, boosting, forests), and
evolutionary algorithms.

Logistic regression:

Logistic regression is a variation of linear regression which is used when the dependent
(response) variable is a dichotomous variable (i.e., it takes only two values, which usually represent
the occurrence or non-occurrence of some outcome event, usually coded as 0 or 1) and the
independent (input) variables are continuous, categorical, or both. For example, in a medical study,
the patient survives or dies, or a clinical sample is positive or negative for a certain viral antibody.

Unlike ordinary regression, logistic regression does not directly model a dependent variable
as a linear combination of dependent variables, nor does it assume that the dependent variable is
normally distributed. Logistic regression instead models a function of the probability of event
occurrence as a linear combination of the explanatory variables. For logistic regression, the function
relating the probabilities to the explanatory variables in this way is the logistic function, which has a
sigmoid or S shape when plotted against the values of the linear combination of the explanatory
variables.

Logistic regression is used in classification by fitting the logistic regression model to data
and classifying the various explanatory variable patterns based on their fitted probabilities.
Classifications of subsequent data are then based on their covariate patterns and estimated
probabilities.

Discriminant analysis:

In summary discriminant analysis represents samples as points in space and then classifies
the points. Linear discriminant analysis (LDA) finds an optimal plane surface that best separates
points that belong to two classes. Quadratic discriminant analysis (QDA) finds an optimal curved
(quadratic) surface instead. Both methods seek to minimize some form of classification error.

Fisher linear discriminant analysis (FLDA or LDA):
LDA finds linear combinations (discriminant variables) of data with large ratios of between-

groups to within-groups sums of squares and predicts the class of an observation x by the class whose
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mean vector is closest to x in terms of the discriminant variables. Advantages of LDA include that it
is simple and intuitive where the predicted class of a test case is the class with the closest mean and it
is easy to implement with a good performance in practice. Disadvantages of LDA include the
following:
1. linear discriminant boundaries may not be flexible enough
2. features may have different distributions within classes
3. in the case of too many features, performance may degrade rapidly due to over parameterization
and high variance of parameter estimates.

Nearest neighbor classifiers:

Nearest neighbor methods are based on a measure of distance between observations, such as
the Euclidean distance or one minus the correlation between two data sets. K-nearest neighbor
classifiers work by classifying an observation x as follows:

- find the k observations in the learning set that are closest to x
- predict the class of x by majority vote, i.e., choose the class that is most common among these k
neighbors. Simple classifiers with k=1 can generally be quite successful. A large number of
irrelevant or noise variables with little or no relevance can substantially degrade the performance of a
nearest neighbor classifier.

Classification trees:

Classification trees can be used, for example, to split a sample into two sub-samples
according to some rule (feature variable threshold). Each sub-sample can be further split, and so on.
Binary tree structured classifiers are constructed by repeated splits of subsets (nodes) into two
descendant subsets. Each terminal subset of the tree is assigned a class label and the resulting
partition corresponds to the classifier. The three main aspects of tree construction include selection of
splits (at each node, the split that maximize the decrease in impurity is chosen), decision to declare a
node terminal or to continue splitting (to grow a large tree, the tree is selectively pruned upwards
getting a decreasing sequence of subtrees), and assignment of each terminal node to a class (the class
the minimizes the resubstitution estimate of the misclassification probability is chosen for each
terminal node).

Prediction analysis for microarrays:

These methods utilize nearest shrunken centroid methodology. First, a standardized centroid
for each class is computed. Then each class centroid is shrunk toward the overall centroid for all
classes by the so-called threshold (chosen by the user). Shrinkage consists of moving the centroid
towards zero by threshold, setting it equal to zero if it hits zero.

Artificial Neural Networks :

The key element of the artificial neural network (ANN) model is the novel structure of the

information processing system. It is composed of many highly interconnected processing elements

that are analogous to neurons and are tied together with weighted connections that are analogous to
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synapses. As with all classification methods, once the ANN is trained on known samples, it will be
able to predict samples automatically.
Support Vector Machines:

Support Vector Machines are learning machines that can perform binary classification
(pattern recognition) and real valued function approximation (regression estimation) tasks. Support
Vector Machines non-linearly map their n-dimensional input space into a higher dimensional feature
space. In this high dimensional feature space a linear classifier is constructed.

Aggregating classifiers:

This method works by aggregating predictors built from perturbed versions of a learning set.
In classification, the multiple versions of the predictor are aggregated by voting. Bootstrapping is the
simplest form of bagging in which perturbed learning sets of the same size as the original learning set
are non-parametric bootstrap replicates of the learning set, i.., drawn at random with replacement
from the learning set. Parametric bootstrapping involves perturbed learning sets that are generated
according to a mixture of multivariate Gaussian distributions. Random Foresting is a combination of
tree classifiers (or other), where each tree depends on the value of 2 random vector for all trees in the
forest. In boosting, classifiers are constructed on weighted version the training set, which are
dependent on previous classification results. Initiaily, all objects have equal weights, and the first
classifier is constructed on this data set. Then, weights are changed according to the performance of
the classifier. Erroneously classified objects get larger weights, and the next classifier is boosted on
the reweighted training set. In this way, a sequence of training sets and classifiers is obtained, which

is then combined by simple majority voting or by weighted majority voting in the final decision.

Example 22 - Exemplary Sleep Data Presenter
In any of the examples herein, an electronic or paper-based report based on sleep state data
can be presented. Such reports can include customized sleep state information, sleep state statistics,
pathological conditions, medication and/or chemical effects on sleep, and the like for a subject.
Recommendations for screening tests, behavioral changes, and the like can also be presented.
Although particular sleep data and low frequency information results are shown in some examples,

other sleep data presenters and visualizations of data can be used.

Example 23 - Exemplary Sleep State Information for Subjects
Exemplary sleep state information can be obtained from a variety of subjects using any of the
technologies described herein. FIG. 33 includes a screenshot 3300 of an exemplary visualization of
classified anesthesized states of an anesthetized cat based on analyzed EEG spectrogram data. For
example, in screenshot 3300, a SW'S classification corresponds to a deep anesthesized state, a REM
sleep classification corresponds to a light anesthesized state, and an INTER sleep classification
corresponds to an intermediate anesthesized state. In such a manner, the technologies described

herein can be utilized to determine anesthesized states in a human or other mammalian subject. FIGS.
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34 includes a screenshot 3400 of an exemplary visualization of classified sleep states of a human

subject based on analyzed EEG spectrogram data.

Example 24 - Exemplary Advantages and Applications of Technologies

The speed at which this data analysis can be performed, the customized and unsupervised
nature of analysis, and the ability to extract previously disregarded or unanalyzed low power
frequency information make this methodology particularly attractive to a variety of fields of study.
The technology can be highly adaptable using a variable number of states, a variable number of
identification rules, adaptable calibration, variable time resolution, and variable spectral resolution.
Adjusting source data to generate adjusted source data can be especially applicable to analyzing
animal signal data in testing for pathological conditions and medication and chemical effects. In any
of the examples herein, low amplitude but highly variable frequency data can be extracted and
analyzed (e.g., discovering temporal patterns in data). Applications can include diverse uses from
analyzing stock market data (e.g., analyzing fluctuations in penny stocks to determine common
variability otherwise disregarded due to small price changes) to accessing encoded data (e.g., Morse
code data stored in low power, very high or very low frequencies within sound waves) to analyzing
visual images with several spatial frequencies. Similarly, the technologies described herein can be
used to determine customized sleep quality determinations for a subject via sleep state information
generated.

In any of the examples herein, the methods can be applied to source data received from one
channel or multiple channels. The methods can be applied independently to source data from
multiple channels with comparison made between the channels. For example, unihemispheric sleep
can be determined from independent EEG channel data received from each hemisphere of a brain.
FIG. 40 shows a screen shot 4000 of unihemispheric sleep determined from independent EEG channel
data received from each hemisphere of a bird’s brain. Alternatively, the methods can be
simultaneously applied to source data from multiple channels, thereby analyzing combined multiple
channel source data. For example, EEG channel data and EMG channel data for a subject can be
simultaneously analyzed to determine awake versus REM sleep states whereby a REM designated
sleep state from analysis of EEG data can be reassigned as an awake sleep state if the EMG data falls
into a high amplitude cluster.

Further, in any of the examples herein, methods such as denoising source separation (dss)
and the like can be used in combination with the methods described herein to determine sleep states.

For example, dss can use low frequency information to determine REM sleep.
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‘While the techniques described herein can be particularily valuable for analyzing low power
frequency information they can also be applied to clustering and determining sleep stages from any
variety of signals including signals wherein the high and low frequencies have the same power
distributions. Additionally, techniques pertaining to spectrogram analysis, stage classification and

confidence measures can be used independently of one another.

Example 25 - Exemplary Visualizations of Data

In any of the techniques described herein, exemplary visualizations of data can utilize colors
to depict different aspects of that data. For example, classified data (e.g., sleep state classifications
such as REM, SWS, and INTER) can be color coded for each classification state for visualization of
the classified data. Alternatively, greyscale can be used to code for each classification state for

visualization of the classified data.

Example 26 - Exemplary Computer System for Conducting Analysis

FIG. 36 and the following discussion provide a brief, general description of a suitable
computing environment for the software (for example, computer programs) described above. The
methods described above can be implemented in computer-executable instructions (for example,
organized in program modules). The program modules can include the routines, programs, objects,
components, and data structures that perform the tasks and implement the data types for implementing
the techniques described above.

‘While FIG. 36 shows a typical configuration of a desktop computer, the technologies may be
implemented in other computer system configurations, including multiprocessor systems,
microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers,
and the like. The technologies may also be used in distributed computing environments where tasks
are performed in parallel by processing devices to enhance performance. For example, tasks can be
performed simultaneously on multiple computers, multiple processors in a single computer, or both.
In a distributed computing environment, program modules may be located in both local and remote
memory storage devices. For example, code can be stored on a local machine/server for access
through the Internet, whereby data from assays can be uploaded and processed by the local
machine/server and the results provided for printing and/or downloading. .

The computer system shown in FIG. 36 is suitable for implementing the technologies
described herein and includes a computer 3620, with a processing unit 3621, a system memory 3622,
and a system bus 3623 that interconnects various system components, including the system memory to
the processing unit 3621. The system bus may comprise any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using a bus
architecture. The system memory includes read only memory (ROM) 3624 and random access
memory (RAM) 3625. A nonvolatile system (for example, BIOS) can be stored in ROM 3624 and

contains the basic routines for transferring information between elements within the personal
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computer 3620, such as during start-up. The personal computer 3620 can further include a hard disk
drive 3627, a magnetic disk drive 3628, for example, to read from or write to a removable disk 3629,
and an optical disk drive 3630, for example, for reading a CD-ROM disk 3631 or to read from or
write to other optical media. The hard disk drive 3627, magnetic disk drive 3628, and optical disk
3630 are connected to the system bus 3623 by a hard disk drive interface 3632, a magnetic disk drive
interface 3633, and an optical drive interface 3634, respectively. The drives and their associated
computer-readable media provide nonvolatile storage of data, data structures, computer-executable
instructions (including program code such as dynamic link libraries and executable files), and the like
for the personal computer 3620. Although the description of computer-readable media above refers
to a hard disk, a removable magnetic disk, and a CD, it can also include other types of media that are
readable by a computer, such as magnetic cassettes, flash memory cards, DVDs, and the like.

A number of program modules may be stored in the drives and RAM 3625, including an
operating system 3635, one or more application programs 3636, other program modules 3637, and
program data 3638. A user may enter commands and information into the personal computer 3620
through a keyboard 3640 and pointing device, such as a mouse 3642. Other input devices (not
shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and
other input devices are often connected to the processing unit 3621 through a serial port interface
3646 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel
port, game port, or a universal serial bus (USB). A monitor 3647 or other type of display device is
also connected to the system bus 3623 via an interface, such as a display controller or video adapter
3648. In addition to the monitor, personal computers typically include other peripheral output
devices (not shown), such as speakers and printers.

The above computer system is provided merely as an example. The technologies can be
implemented in a wide variety of other configurations. Further, a wide variety of approaches for
collecting and analyzing source data are possible. For example, the data can be collected and
analyzed, and the results presented on different computer systems as appropriate. In addition, various
software aspects can be implemented in hardware, and vice versa. Further, paper-based approaches to
the technologies are possible, including, for example, purely paper-based approaches that utilize
instructions for interpretation of algorithms, as well as partially paper-based approaches that utilize

scanning technologies and data analysis software.

Example 27 - Exemplary Computer-Implemented Methods

3 r

Any of the computer-implemented methods described herein can be performed by software
executed by software in an automated system (for example, a computer system). Fully-automatic (for
example, without human intervention) or semi-automatic operation (for example, computer processing
assisted by human intervention) can be supported. User intervention may be desired in some cases,

such as to adjust parameters or consider results.
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Such software can be stored on one or more computer-readable media comprising computer-
executable instructions for performing the described actions. Such media can be tangible (e.g.,

physical) media.

Alternatives

Having illustrated and described the principles of the invention in exemplary embodiments,
it should be apparent to those skilled in the art that the described examples are illustrative
embodiments and can be modified in arrangement and detail without departing from such principles.
Techniques from any of the examples can be incorporated into one or more of any of the other
examples.

In view of the many possible embodiments to which the principles of the invention may be
applied, it should be understood that the illustrative embodiments are intended to teach these
principles and are not intended to be a limitation on the scope of the invention. We therefore claim as

our invention all that comes within the scope and spirit of the following claims and their equivalents.
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We claim:
1. A method of analyzing source data comprising:
5 receiving the source data, wherein the source data exhibits lower dynamic range for power in

10

15
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25
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35

at least one low power first frequency range in a frequency spectrum as compared to a second
frequency range in the frequency spectrum;

applying an adjustment technique to the source data thereby generating adjusted source data;
and

wherein the adjustment technique comprises increasing the dynamic range for power within

the low power frequency range of the frequency spectrum as compared to the second frequency range.

2. The method of claim 1 further comprising removing artifacts from the source data.

3. The method of claim 1 further comprising presenting a visualization of the adjusted
source data.

4. The method of claim 1 further comprising:

prior to applying the adjustment technique, segmenting the source data in a plurality of time

segments.

5. The method of claim 4 wherein segmenting the source data comprises:
direct current filtering; and

separating the source data into one or more epochs of similar length.

6. The method of claim 5 wherein the separating comprises determining a scanning

window and a sliding window.

7. The method of claim 6 wherein the separating comprises determining at least one
time series increment selected from the group consisting of: '

whole time series;

overlapping time series; and

non-overlapping series.
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8. The method of claim 5 wherein power content of one or more frequencies within

the one or more epoch is determined via at least one transformation method selected from the group

consisting of:

multi-taper transform;
Fourier transform; and

wavelet transform.

9. The method of claim 8 wherein the adjustment technique comprises

weighting frequency power of the one or more frequencies of the one or more epochs across time.

10. The method of claim 9 wherein the source data comprises at least one

type of data selected from the group consisting of:

electromyography data;
electrocardiography data;
electrooculography data; and

wave data.

11. The method of claim 9 wherein the source data comprises electroencephalography

data for a subject.

12. The method of claim 11 wherein the electroencephalography data is received via a

single channel.

13. The method of claim 11 further comprising classifying at least one state in the

subject from the electroencephalography data for the subject selected from the group consisting of:

sleep states;
anesthesia states; and

vigilance states.

14. A method of accessing encoded data stored at low power frequency

within source data comprising the method of claim 1.

15. One or more computer-readable media having instructions stored

thereon for causing a computer system to perform the method of claim 1.
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16. A method for determining sleep states in a subject over a period of time comprising:

receiving electroencephalography data for the subject over the period of time, wherein the
electroencephalography data exhibits lower dynamic range for power in at least one low power first
frequency range in a frequency spectrum as compared to a second frequency range in the frequency -
spectrum;

segmenting the electroencephalography data into one or more epochs;

weighting frequency power of the one or more epochs across time, wherein the weighting
comprises increasing the dynamic range for power within the low power frequency range of the
frequency spectrum as compared to the second frequency range, thereby generating one or more
frequency weighted epochs; and

classifying sleep states in the subject based on the one or more frequency weighted epochs.

17.  The method for claixn 16 wherein classifying sleep states in the
subject comprises:

clustering the one or more frequency weighted epochs; e;nd

assigning sleep state designations to the one or more frequency weighted epochs according
to the clustering; and

presenting the sleep state designations as indicative of sleep states in the subject for the

period of time represented by the one or more frequency weighted epochs.

18. The method of claim 17 wherein clustering the one or more frequency weighted

epochs comprises k-means clustering.

19. The method of claim 17 further comprising pretreating the

electroencephalography data with component analysis.

20. The method of claim 16 wherein classifying sleep states in the subject comprises

applying independent component analysis to the one or more frequency weighted epochs.

21. The method of claim 16 wherein classifying sleep states further

comprises incorporating manually determined sleep states.

22. The method of claim 16 wherein classifying sleep states further

comprises incorporating artifact information.
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23.  The method of claim 17 wherein assigning sleep state designations to
the one or more frequency weighted epochs comprises:

determining a slow wave sleep designation from a non-slow wave sleep designation based at
least on low frequency information; and

determining a rapid eye movement sleep designation from a non-rapid eye movement sleep

designation based at least on high frequency information.

24. The method of claim 23 wherein an epoch with significant

weighted power at low frequency is assigned a slow wave sleep designation.

25. The method of claim 23 wherein an epoch with significant weighted

power at high frequency is assigned a rapid eye movement sleep designation.

26. The method of claim 23 wherein assigning sleep state designations to the
one or more frequency weighted epochs further comprises determining at least one sleep state
designation based on both low frequency and high frequency information, the sleep state designation
comprising at least one sleep state designation selected from the group consisting of:

intermediate stage I sleep designation;

intermediate stage II sleep designation; and

outlier sleep designation.

217. The method of claim 26 wherein an epoch with insignificant weighted
power at both high and low frequencies is assigned an intermediate or an intermediate stage I sleep

designation.

28. The method of claim 26 wherein an epoch with significant weighted power at both

high and low frequencies is assigned an outlier or intermediate stage II sleep designation.

29. The method of claim 17 wherein assigning sleep state designations to the one or
more frequency weighted epochs further comprises applying a smoothing window to the one or more
weighted epochs, wherein the smoothing window comprises averaging sleep state designations across

the one or more weighted epochs.

30. The method of claim 17 further comprising presenting one or more frequency

weighted epochs as canonical spectra representative of the sleep state in the subject for the period of

Hona vanrvanantad ke tha ana nr mars annche having cimilar claen ctate dacionatinne
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31. The method of claim 30 further comprising analyzing the canonical

spectra with independent component analysis to establish sleep state classification confidence.

32. The method of claim 17 further comprising presenting sleep statistics for the subject

according to the sleep state designations of the one or more frequency weighted epochs.

33. The method of claim 32 wherein sleep statistics comprise at least one sleep
statistical measurement selected from the group consisting of:

sleep stage densities;

number of sleep stage episodes;

sleep stage average duration;

cycle time;

interval time between sleep stages;

sleep stage separation statistics;

onset of sleep;

rapid eye movement sleep latency;

regression coefficients of trends; and

measures of statistical significance of trends.

34. A method of assessing sleep quality in a subject comprising determining sleep states

over a period of time according to claim 16.

35. A method of determining the effect of medication on sleep states of a subject
comprising determining the sleep states prior and subsequent to the administration of medication

according to claim 16.

36. The method of claim 35 wherein the medication comprises at least one medication
selected from the group consisting of:
anesthetics; and

anti-depressants.

37. One or more computer-readable media having instructions stored thereon for

causing a computer system programmed thereby to perform the method of claim 16.
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38. A computer implemented method for detecting a pathological condition in a
subject, the method comprising:

receiving electroencephalography channel data for the subject;

analyzing the data with frequency analysis, the frequency analysis comprising normalizing
the data;

assigning sleep states in the subject according to the analyzing; and

detecting the pathological condition for the subject according to the sleep states.

39. The computer implemented method of claim 38 wherein the

pathological condition is depression.

40. The computer implemented method of claim 38 wherein the pathological condition

is brain trauma.

41. The computer implemented method of claim 38 wherein the pathological condition is

Alzheimer’s disease.

42. A system for dynamic customized sleep scoring for a subject, the system comprising:

a sleep data collector for obtaining electroencephalography data for a subject from a period
of sleep;

a sleep data normalizer for assessing the electroencephalography data to determine low
power frequency information; and

a sleep data presenter for presenting sleep states for the subject based at least on the low

power frequency information.

43. A system for dynamic customized sleep scoring for a subject, the system comprising:

means for obtaining electroencephalography data for a subject from a period of sleep;

means for assessing the electroencephalography data to determine low power frequency
information; and

means for presenting sleep states for the subject based at least on the low power frequency

information.
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AUTOMATED DETECTION OF SLEEP AND WAKING STATES

Cross—Reference to Related Applications

[0001] This application claims priority to U.S. Provisional
Application Serial No. 60/679,951, filed on May 10, 2005.
The disclosure of the prior application is considered part of

(and is incorporated by reference in) the disclosure of this

application.
Background
[0002] Sleep states and other brain activity have been

commonly analyzed via electroencephalography or EEG signals.
As a person falls asleep, the brain activity is modulated,
representing different depths and phases of sleep. In a
typical person, the sleep states transition over time;
starting at a first sleep state known as slow wave sleep or
SWS. SWS has low frequency high power EEG activity. The
sleep may lighten into so-called intermediate sleep states.
Other sleep states known as rapid eye movement sleep is
characterized by a lower power EEG activity.

[0003] EEG signals follow a distribution where higher
frequency signals have lower amplitudes and therefore lower
power. This so-called 1/f distribution means that the highest

amplitudes are present at the lowest frequencies.
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'[0004] EEG signals for sleep stage determination are
conventionally analyzed using the Rechtschaffen-Kales method.
This method can rely on manually scoring sleep EEG signals due
to the low power frequency limitations of automated signal
analysis techniques. The Rechtschaffen-Kales method can be
both highly unreliable and time consuming because
statistically significant shifts at high frequencies are
usually not detectable by a human scorer due to the very low
amplitudes. Further, the Rechtschaffen-Kales method tends to
have poor temporal and spatial resolution, does not make all
of its variables known, and commonly leads to low inter-user
agreement rates across both manual as well as automated
scorers. Unfortunately, alternative sleep state determination
methods, including artificial neural network classifiers,
usually rely on multiple channels and tend to emulate human
performance, thereby improving the time of determination

without drastically improving quality.

Summary

[0005] The present application describes normalizing data
indicative of brainwave activity to increase the dynamic range
of information within the data.

[0006] The embodiments explain using this information to
determine sleep states automatically. Other applications are
described which automatically assess sleep quality,

pathological conditions, and medication effects.
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Brief description of the drawings

[0007] Figure 1 is a block diagram of an exemplary system
for determining low power frequency information from source
data with at least one low power frequency range;

[0008] Figure 2 is a flowchart showing an exemplary method
for adjusting source data;

[0009] Figure 3 is a flowchart showing an exemplary method
for adjusting source data to account for differences in power
over a spectrum of frequencies over time;

[0010] Figure 4 is a block diagram of an exemplary system
for determining sleep state information for a subject;

[0011] Figure 5 is a block diagram of another exemplary
system for determining sleep state information for a subject;
[0012] Figure 6 is a flowchart showing an exemplary method
for determining sleep states in a subject;

[0013] Figure 7 is a flowchart showing an exemplary method
for classifying sleep states in a subject;

[0014] Figure 8 is a block diagram of an exemplary system
for determining a pathological condition of a subject from
sleep states;

[0015] Figure 9 is a flowchart showing an exemplary
computer-implemented method for determining a pathological
condition for a subject based on sleep states;

[0016] Figure 10 is a block diagram of an exemplary system
for dynamically determining customized sleep scores for a

subject;
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[0017] Figure 11 is a screen shot of an exemplary whole
night EEG source data frequency power spectrogram;

[0018] Figure 12 is a screen shot of the exemplary whole
night EEG source data shown in Figure 11 after an exemplary
adjustment technique has been applied;

[0019] Figure 13 is a screen shot of a two hour time frame
of the exemplary adjusted whole night EEG source data shown in
Figure 12;

[0020] - Figure 14 is a screen shot of an exemplary
visualization of high and low power frequency bands within the
whole night EEG spectrogram shown in Figure 12;

[0021] Figure 15 is a screen shot of a two hour and forty
minutes time frame of the exemplary visualization of high and
low power frequency bands within the whole night spectrogram
shown in Figure 14.

[0022] Figure 16 is a screen shot of an exemplary five-
dimensional parameter space visualization of the whole night
EEG spectrogram of Figure 12;

[0023] Figure 17 is a screen shot of a two hour time frame
of the exemplary five-dimensional parameter space
visualization of the whole night EEG visualization shown in
Figure 16;

[0024] Figure 18 is a screen shot of an exemplary
visualization of classified sleep states based on EEG

spectrogram data;
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[0025] Figure 19 is a screen shot of another exemplary
visualization of classified sleep states based on EEG
spectrogram data;

[0026] Figure 20 is a screen shot of yet another exemplary
visualization of classified sleep states based on EEG
spectrogram data;

[0027] Figure 21 is a screen shot from another vantage
point of the exemplary visualization of classified sleep
states based on EEG spectrogram data of Figure 20;

[0028] Figures 22, 23, 24 and 25 are screen shots of
canonical spectra representative of frequency weighted epochs
designated as distinct sleep states in a subject for a period
of time;

[0029] Figure 26 is a screen shot of a canonical spectra
representative of a frequency weighted epoch that displays a
transient sleep state having characteristics of more than one
sleep state;

[00301] Figure 27 is a screen shot of an exemplary
visualization of the degree of sleep stager separation that
distinguishes representative canonical spectra of distinct
sleep state;

[0031] Figures 28, 29, 30, 31 and 32 are screen shots of
exemplary visualization of sleep state statistics for a
subject according to sleep state designations of one or more

epochs;
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[0032] Figures 33 is a screen shot of an exemplary
visualization of classified anesthesia states of an
anesthetized cat based on EEG spectrogram data;

[0033] Figure 34 is a screen shot of an exemplary
visualization of classified sleep states of a human subject
based on EEG spectrogram data;

[0034] Figure 35 is a flowchart showing yet another
exemplary method for classifying sleep states in a subject
that can be implemented with the described technologies;
[0035] Figure 36 is an exemplary computer system that can
be implemented with the described technologies;

[0036] Figure 37 is a screen shot of an exemplary
visualization of independent component analysis applied on a
normalized spectrogram to further determine appropriate
frequency windows for extracting information;

[00371] Figure 38 is a screen shot of an exemplary
visualization of independent components of Figure 37
throughout time;

[0038] Figure 39 is a screen shot of a six and a half hour
time frame of an exemplary five-dimensional parameter space
visualization of frequency bands of the whole night EEG
visualization from a human subject with Alzheimer's;

[0039] Figure 40 is a screen shot of an exemplary
visualization of classified unihemispheric sleep from a bird;
[0040] Figure 41 illustrates a flowchart of operation of

another embodiment which uses a double normalization;
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[0041] = Figures 42a-42c show the raw spectrogram, single

normalized spectrogram, and double normalized spectrogram

respectively;

[0042] Figure 43 shows the preferred frequency over time;
[0043] Figure 44 shows a diagram of these frequencies;
[0044] Figure 45 shows a three-dimensional view of the

data; and
[0045] Figure 46 shows a graph of spectral fragmentation

for the frequencies.
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Detailed description

[0046] One important recognition of the present system is
that the low frequency ranges in EEG signals often have the
most energy, and hence have mistakenly led many researchers to
overanalyze that low frequency range. However, one reason
found for the increased power in those lower frequencies, was
found by the inventors to be the low-pass characteristic of
the skull. Other reasons may also contribute to the increased
power in lower frequencies.

[0047] Obtained EEG signals are low-power frequency signals
and follow a 1/f distribution, whereby the power in the signal
is inversely related, e.g., inversely proportional, to the
frequency.

[0048] EEG signals have typically been examined in time in
series increments called epochs. For example, when the EEG
signal is used for analyzing sleep, sleep may be segmented
into one or more epochs to use for analysis. The epochs can
be segmented into different sections using a scanning window,
where the scanning window defines different sections of the
time series increment. The scanning window can move via a
sliding window, where sections of the sliding window have
overlapping time series sequences. An epoch can alternatively

span an entire time series, for example.
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[0049] According to the present application, different
forms of sleep state may be monitored. A sleep state is
described as any distinguishable sleep or wakefulness that is
representative of behavioral, physical or signal
characteristics. Sleep states which are referred to in this
application include slow wave sleep or SWS, rapid eye movement
sleep or REM, intermediate sleep states also called inter or
IS states, and awake states. Awake states may actually be
part of the sleep state, and the awake states can be
characterized by vigilance into attentiveness or levels of
alertness. The intermediate sleep can also be characterized
as intermediate-1 sleep and intermediate-2 sleep.

[0050] An artifact may also be obtained during acquisition
of an EEG. An artifact is data that misrepresents the EEG.
For example, movement within a user that registers on the EEG
may be an artifact. Example artifacts include muscle twitches
and the like.

[0051] Example 1 - Exemplary Source Data

[0052] In any of the embodiments described herein, a
variety of source data can be analyzed including
electroencephalography (EEG) data, electrocardiography data
(EKG) , electrooculography data (EOG), electromyography data
(EMG), local field potential (LFP) data, spike train data,
wave data including sound and pressure waves, and any data
exhibiting where there are differences in dynamic range of

power for various frequencies across a frequency spectrum of
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the data e.g., a 1/f distribution. Source data can include
encoded data stored at low power frequency within source data.
[0053] Example 2 - Exemplary System for Determining Low
Power Frequency Information from Source Data with at Least One
Low Power Frequency Range

[0054] FIG. 1 shows an exemplary system 100 for determining
low power frequency information from source data with at least
one low power frequency range.

[0055] Source data with at least one low power frequency
range 102 is obtained and input into software 104 to determine
low power frequency information 106.

[0056] The software 104 can employ any combination of
technologies, such as those described herein, to determine low
power frequency information 106 for the source data.

[0057] Methods for determining low power frequency
information from source data with at least one low power

frequency range are described in detail below.

[0058] Example 3 - Exemplary Method for Adjusting Source
Data
[0059] FIG. 2 shows an exemplary method 200 for adjusting

source data. For example, the method 200 can be implemented

within system 100 of FIG. 1.
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[0060] At 202, source data with at least one low power
frequency range is received. For example,
electroencephalography source data for a subject can be
received. Source data can be received via a single channel or
multiple channels.

[0061] At 204, source data is adjusted to increase the
dynamic range for power within at least one low power
frequency range of the frequency spectrum of the source data
as compared to a second higher power frequency range. A number
of adjustment techniques described herein, including
normalization and frequency weighting can be used. In an
embodiment, electroencephalography source data is normalized
to increase the low power, higher frequency range data
relative to the higher power, lower frequency range data or,
more generally, to normalize the powers of the different
signal parts.

[0062] After the source data is adjusted, various other
processing can be done. For example, a visualization of the
adjusted source data can be presented. Further, low power
frequency information can be extracted from the adjusted
source data. For example, low power frequency information can
be extracted from adjusted electroencephalography source data.
Higher power frequency information can also be extracted from

the adjusted source data.
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[0063] The method described in this or any of the other
examples can be a computer-implemented method performed via
computer-executable instructions in one or more computer-
readable media. Any of the actions shown can be performed by
software incorporated within a signal processing system or any
other signal data analyzer system.

[0064] Example 4 -Exemplary Method for Adjusting Source
Data to Account for Differences in Power over a Spectrum of
Frequencies over Time

[0065] FIG. 3 shows an exemplary method 300 for adjusting
source data to account for differences in power over a
spectrum of freqguencies over time. For example, the method 300
can be implemented within system 100 of FIG. 1.

[0066] At 302, source data with at least on low power
frequency range 1s received. For example,
electroencephalography data with iat least one low power
frequency range can be received. Artifacts in the data can be
removed from the source data. For example, artifact data can
be manually removed from the source data or automatically
filtered out of source data via a filtering (e.g., DC
filtering) or data smoothing technique. The source data can
also be pretreated with component analysis.

[0067] At 304, the source data is segmented into one or
more epochs; where each epoch is a portion of data from the
series. For example, the source data can be segmented into a

plurality of time segments via a variety of separating
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techniques. Scanning windows and sliding windows can be used
to separate the source data into time series increments.
[0068] At 306, the one or more epochs are normalized for
differences in power of the one or more epochs across time.
For example, the power of each epoch at one or more
frequencies can be normalized across time to determine
appropriate frequency windows for extracting information. Such
normalization can reveal low power, statistically significant
shifts in power at one or more frequencies (e.g., Delta,
Gamma, and the like). Any frequency range can be revealed and
utilized for analysis. Information can be calculated for each
of the one or more epochs after appropriate frequency windows
have been established. Such information can include low
frequency power (e.g., Delta power), high frequency power
(e.g., Gamma power), standard deviation, maximum amplitude
(e.g., maximum of the absolute value of peaks) and the sort.
Further calculations can be done on the information calculated
for each of the one or more epochs creating information such
as Gamma power/Delta power, time derivative of Delta, time
derivative of Gamma power/Delta power and the like. Time
derivatives can be computed over preceding and successive
epochs. After calculating the information, that information
can then be normalized across the one or more epochs. A
variety of data normalization techniques can be conducted

including z-scoring and other similar techniques.
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[0069] At 308, results of the adjustment of source data to
account for differences in power over a spectrum of
frequencies over time can be presented as one or more epochs
of data. For example, frequency weighted epochs can be

presented as adjusted source data.

[0070] Example 5 - Exemplary System for Determining Sleep
State

[0071] Information for a Subject

[0072] FIG. 4 shows an exemplary system 400 for determining

sleep state information for a subject. Electroencephalography
data for a subject 402 is obtained and input into software 404
to determine sleep state information for the subject 406.
[0073] The software 404 can employ any combination of
technologies, such as those described herein, to determine
sleep state information for the subject 406.

[0074] Methods for determining sleep state information for
a subject are described in detail below.

[0075] Example 6 - Another Exemplary System for Determining
Sleep State Information for a Subject

[0076] FIG. 5 shows an exemplary system 500 for determining
sleep state information for a subject.

[0077] Electroencephalography data for a subject 502 is
obtained and input into segmenter 504 to segment the data into
one or more epochs. In practice, epochs are of similar (e.g.,
the same) length. Epoch length can be adjusted via a

configurable parameter. The one or more epochs, in turn, are
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input into normalizer 506 to normalize frequency data in the
one or more epochs across time, thereby frequency weighting
the one or more epochs of electroencephalography data. The one
or more frequency weighted epochs are then input into
classifier 508 to classify the data into sleep states, thereby
generating sleep state information for the subject 510.

[0078] Methods for determining sleep state information for
a subject are described in detaill below.

[0079] Example 7 - Exemplary Method for Determining Sleep
States in a Subject

[0080] FIG. 6 shows an exemplary method 600 for determining
sleep states in a subject. For example, the method 600 can be
implemented within system 500 of FIG. 5 or system 400 of FIG.
4.

[0081] At 602, electroencephalography (EEG) data for a
subject is received. For example, electroencephalography data,
which exhibits lower dynamic range for power in at least one
low power first frequency range in a frequency spectrum as
compared to a second frequency range in the frequency
spectrum, can be received.

[0082] At 604, the electroencephalography data for the
subject is segmented into one or more epochs. For example, the
EEG data can be segmented into one or more epochs via a
variety of separating techniques. Scanning windows and sliding
windows can be used to separate the EEG data into one or more

epochs. The source data can also be filtered via direct
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current riltering during, prior to, or after segmenting. The
source data can also be pretreated with component analysis
(e.g., principle or independent component analysis).

[0083] FIG. 11 is a screen shot of an exemplary whole night
EEG source data frequency power spectrogram for a subject that
has been segmented over three second epochs spaced in 1 second
increments. Power range is indicated in the shading, where
white shaded regions are higher in power than dark shaded
regions. The higher frequencies (e.g., Gamma) therefore
exhibit lower power than the lower frequencies (e.g., Delta,
Theta and the like) in the whole night EEG data.

[0084] At 606, frequency power of the one or more epochs is
weighted across time. For example, the power of each epoch at
one or more frequencies can be normalized across time to
determine appropriate frequency windows for extracting
information. Such normalization can reveal low power,
statistically significant shifts in power at one or more
frequencies (e.g., Delta, Gamma, and the like). Additionally,
each epoch can be represented by the frequency with the
highest relative power over time to determine appropriate
frequency windows for extracting information. Alternatively,
component analysis (e.g., principle component analysis (PCA)
or independent component analysis (ICA)) can be utilized after
normalization to further determine appropriate frequency
windows for extracting information. For example, FIGS. 37 and

38 are screen shots of component analysis utilized after
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normalization to suggest filters (e.g., screen shot 3700) and
express independent components throughout time (e.g., screen
shot 3800). Any frequency range can be revealed and utilized
for analysis.

[0085] Information can be calculated for each of the one or
more epochs after appropriate frequency windows have been
established (e.g., after weighting frequency). Such
information can include low frequency power (e.g., Delta
power), high frequency power (e.g., Gamma power), standard
deviation, maximum amplitude (e.g., maximum of the absolute
value of peaks) and the sort. Further calculations can be done
on the information calculated for each of the one or more
epochs creating information such as Gamma power/Delta power,
time derivative of Delta, time derivative of Gamma power/Delta
power and the like. Time derivatives can be computed over
preceding and successive epochs. After calculating the
information, it can then be normalized across the one or more
epochs. A variety of data normalization techniques can be
conducted including z-scoring and the like.

[0086] FIG. 12 is a screen shot of the exemplary whole
night EEG source data shown in FIG.11l after an exemplary
frequency power of the one or more epochs has been weighted
across time. The higher frequency data is now more clearly
visible. FIG. 13 is a screen shot of a two hour time frame of
the exemplary adjusted whole night EEG source data shown in

FIG.12. FIG. 14 is a screen shot of an exemplary visualization



253

WO 2006/122201 PCT/US2006/018120

of high (e.g., Gamma) and low (e.g., Delta) power frequency
bands within the whole night EEG spectrogram shown in FIG. 12.
FIG. 15 is a screen shot of a two hour and forty minutes time
frame of the exemplary visualization of high and low power
frequency bands shown in FIG. 14.

[0087] FIG. 16 is a screen shot of an exemplary five-
dimensional parameter space visualization of the whole night
EEG spectrogram of FIG. 12. The five parameters (e.g.,
variables) are information calculated for each of the one or
more epochs after weighting frequency. FIG. 17 is a screen
shot 6f a two hour time frame of the exemplary five-
dimensional parameter space visualization of the whole night
EEG visualization shown in FIG.16.

[0088] At 608, sleep states in the subject are classified
based on the one or more frequency weighted epochs. For
example, the one or more frequency weighted epochs can be
clustered by any variety of clustering techniques including k-
means clustering. The clustering can be done on information
calculated from the epochs (e.g., Delta power, Gamma power,
standard deviation, maximum amplitude (Gamma/Delta), time
derivative of Delta, time derivative of (Gamma /Delta, and the
sort). Component analysis (e.g., PCA or ICA) can be used to
determine the parameter space (e.g., types of information

used) in the clustering.
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[0089] Subsequent to clustering, sleep state designations
can be assigned to the epochs. Sleep state designated epochs
can then be presented as representations of sleep states in
the subject for the period of time represented by the epoch.
Classification can also incorporate manually determined sleep
states (e.g., manually determined "awake" versus "sleeping”
sleep states). Additionally, artifact information (e.g.
movement data, poor signal data, or the like) can be utilized

in the classification.

[0090] Example 8 - Exemplary Sleep State Classification
Techniques
[0091] Epochs can be classified according to the sleep

states they represent. An epoch can be classified according to
normalized variables (e.g., information calculated for an
epoch) based on high frequency information, low frequency
information, or both high and low frequency information. For
example, REM sleep state epochs can have higher relative power
than SWS at higher frequencies and lower relative power than
SWS at lower frequencies. Similarly, SWS sleep state epochs
can have lower relative power than REM at higher frequencies
and higher relative power than REM at lower frequencies.
Additionally, epochs initially classified as both NREM and
NSWS sleep (e.g., epochs having low relative power at both
higher and lower frequencies) can be classified as
intermediate sleep and epochs classified as both REM and SWS

sleep (e.g., epochs having high relative power at both higher
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and lower frequencies) can be classified as outliers. Further,
epochs initially classified as both NREM and NSWS sleep can be
classified as intermediate stage I sleep and epochs initially
classified as both REM and SWS sleep can be classified as
intermediate stage II sleep. Additionally, sleep states can be
split in the classifying to look for spindles, k-complexes,
and other parts. Any group of epochs initially classified as
one sleep state can be split into multiple sub-classified
sleep states according to increasing levels of classification
detail. For example, a group of epochs classified as SWS can

be reclassified as two distinct types of SWS.

[0092] Example 9 - Exemplary Artifact Classification
Technigues
[0093] Artifact data (e.g. movement data, poor signal data,

and the like) can also be used in sleep state classification.
For example, artifacts can be used to analyze whether epochs
initially assigned a sleep state designation should be
reassigned a new sleep state designation due to neighboring
artifact data. For example, an epoch assigned a sleep state
designation of REM that has a preceding movement artifact or
awake epoch can be reassigned a sleep state designation of
awake. Further, for example, an artifact epoch that has a
succeeding SWS epoch can be reassigned a sleep state
designation of SWS because there is a high likelihood that the
epoch represents a large SWS sleep epoch rather than a large

movement artifact which is more common during wakefulness. In
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such ways, for example, artifact data can be utilized in a
data smoothing technique.

[0094] Example 10 - Exemplary Smoothing Techniques

[0095] Any variety of data smoothing techniques can be used
during the assigning of sleep states. For example, numbers
(e.g., 0 and 1) can be used to represent designated sleep
states. Neighboring epochs' sleep state designation numbers
can then be averaged to determine if one of the epochs is
inaccurately assigned a sleep state designation. For example,
abrupt jumps from SWS-NSWS-SWS (and REM-NREM-REM) are rare in
sleep data. Therefore, should a group of epochs be assigned
sleep state designations representing abrupt jumps in sleep
states, smoothing techniques can be applied to improve the
accuracy of the assigning.

[0096] For example, in a scenario in which 0 represents
SWS, 1 represents NSWS and the following sleep state
designations existed for five neighbofing epochs, 00100, then
an average of the five sleep states would be 0.2. In such an
instance, the middle epoch initially assigned a sleep
designation of 1 (SWS) would be reassigned a sleep state
designation of 0 (NSWS). The same technique could be used for
REM versus NREM where a second set of sleep designations for
the same five neighboring epochs is determined. For example, 1
can represent REM, 0 can represent NREM, and the following
designations can exit for the five neighboring epochs, 00100.

Again, the average of the five sleep states would be 0.2.
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Again, the middle epoch initially assigned a designation of 1
(REM) would be reassigned a sleep state designation of 0
(NREM) . Such smoothing techniques can improve the accuracy of
assigning sleep state designations.

[0097] Example 11 - Exemplary Method for Classifying Sleep
States in a Subject

[0098] FIG. 7 shows in a flowchart an exemplary method 700
for classifying sleep states in a subject. For example, the
method 700 can be implemented within system 500 of FIG. 5,
system 400 of FIG. 4 or within the classifying 608 of method
600.

[0099] At 702, one or more frequency weighted epochs are
received. For example, frequency welghted epochs determined
from the weighting 606 of method 600 can be received.

[00100] At 704, the one or more frequency weighted epochs
are clustered. For example, the one or more frequency weighted
epochs can be clustered by any variety of clustering
techniques including k-means clustering. The clustering can be
done on information calculated from the epochs (e.g., Delta
power, Gamma power, standard deviation, maximum amplitude
(Gamma/Delta), time derivative of Delta, time derivative of
Gamma /Delta, and the sort). Exemplary visualizations of
clustered sleep states are shown in FIGS. 18 and 19. FIG. 18
shows epochs clustered via Delta, Gamma/Delta, and the time
derivative of Delta. In such a manner, REM-like epochs form a

visual spear point shape. FIG. 19 shows epochs clustered via
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Delta, Gamma/Delta, and the time derivative of (Gamma/Delta).
In such a manner, SWS-like epochs form a visual spear point
shape. Additional exemplary visualizations of clustered sleep
states are shown in FIGS. 20 and 21, in which clustering was
done using parameters (e.g., variables) derived via principle
component analysis.

[00101] At 706, the one or more clustered, frequency
weighted epochs are assigned sleep state designations. For
example, an epoch with significant relative power at low
frequency can be assigned a slow wave sleep designation and an
epoch with significant relative power at high frequency can be
assigned a rapid eye movement sleep designation. For example,
REM sleep can have higher Gamma/Delta and a higher absolute
value of the time derivative of (Gamma/Delta) compared to SWS,
whereas SWS can have higher delta and a higher absolute value
of the time derivative of delta than REM sleep. Further, for
example, standard deviation can be used in assigning sleep
state designations. It is possible for the same epoch to be
assigned‘both a slow wave sleep designation and a rapid eye
movement sleep designation. In such cases, the epoch can be
reassigned a new sleep state designation of outlier or
intermediate stage II sleep. Alternatively, an epoch can be
assigned both a non-slow wave sleep designation and a non-
rapid eye movement sleep designation. In such cases, the epoch
can be reassigned a new sleep state designation of

intermediate sleep or intermediate stage I sleep. For example,
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when high frequency is expressed by dividing it by Delta and
the parameter space Delta, Gamma/Delta,

abs (derivative (Delta)), abs(derivative (Gamma/Delta)), and,
optionally, standard deviation, then intermediate sleep
designation can be the intersection between NREM and NSWS
while outlier designation can be the intersection between REM
and SWS. Alternatively, for example, if Delta alone or with
standard deviation is used to determine SWS from NSWS and
gamma alone or with abs(derivative (Delta)) alone or with
standard deviation is used to determine REM from NREM, then
intermediate stage I sleep designation can be the intersection
between NREM and NSWS while intermediate stage II sleep
designation can be the intersection between REM and SWS. Any
variety of data smoothing techniques can be used during the
assigning of sleep states. Artifact data can also be used
during the assigning of sleep states.

[00102] At 708, sleep state designations are presented as
indicative of sleep states for the period of time represented
by the one or more epochs. The sleep states can be presented
in the form of sleep statistics across time. For example,
FIGS. 28, 29, 30, 31, and 32 depict presentations of sleep
statistics for sleep state designated epochs as a function of
time. For example in FIG. 28, a screen shot 2800 depicts sleep
state density as a percentage for each sleep state type per
hour during a night of electroencephalography data for a

subject. In FIG. 29, a screen shot 2900 depicts average
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episode length for each sleep stage across every hour. In FIG.
30, a screen shot 3000 depicts number of episodes for each
sleep stage across every hour. In FIG. 31, a screen shot 3100
depicts average time intervals between successive REM sleep
state intervals for each hour. In FIG. 32, a screen shot 3200
depicts stage transitions across the night.

[00103] Additionally, one or more frequency weighted epochs
can be presented as canonical spectra representative of the
sleep state in the subject for the period of time represented
by the one or more epochs having similar sleep state
designations. For example, an epoch within the middle of a
group of epochs designated as having the same sleep state
designations can be selected and its spectra presented as
canonical spectra representative of the sleep state.
Alternatively, an epoch having a weighted power closest to the
average weighted power of one or more epochs having similar
sleep state designations can be selected and its spectra
presented as canonical spectra representative of the sleep
state. For example, FIGS. 22, 23, 24, 25, and 26 are screen
shots of exemplary visualizations of epochs for various sleep
states in a subject (e.g., screen shot 2200 is SWS, screen
shot 2300 is REM sleep, screen shot 2400 is Intermediate
sleep, screen shot 2500 is awake, and screen shot 2600 is

transient) based on EEG spectrogram data analysis.
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[00104] Additionally, sleep state designations can be
presented as a function of success versus manual scoring and
quality measures can be presented (e.g., sleep state
designation separation statistics including single variable
and multivariable one-way ANOVAs, regression coefficients
calculated for each stage for sleep densities, number of
episodes, average episode length, cycle time, and the like).
An exemplary visualization of presenting quality measures is
shown in FIG. 27. A screen shot 2700 depicts an exemplary
visualization of the degree of sleep stage separation that
distinguishes representative canonical ;pectra of distinct
sleep states. For example, independent component analysis
(ICA) can be used to establish the quality of sleep stage
separation in the presented sleep states by applying ICA to
canonical spectra or average spectra for each sleep state
presented. Any variety of classifying techniques can be used
to determine the quality of initially sleep stage
classification.

[00105] Example 12 - Exemplary System for Determining a

Pathological Condition of a Subject from Sleep States

[00106] FIG. 8 shows an exemplary system 800 for determining

a pathological condition of a subject from sleep states.
[00107] Electroencephalography data for a subject 802 is
obtained and input into sleep state analyzer 804 to determine

a pathological condition of the subject 806.
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[00108] Methods for determining a pathological condition of
a subject from sleep states exhibited by a subject, as
determined from analyzing electroencephalography data, are
described in detail below.

[00109] Example 13 - Exemplary Computer-Implemented Method
for Determining a Pathological Condition for a Subject from
Sleep States

[00110] FIG. 9 shows an exemplary computer-implemented
method 900 for determining a pathological condition for a
subject from sleep states. The computer-implemented method 900
can be utilized in system 800 of FIG. 8.

[00111] At 902, electroencephalography data for a subject is
received. For example, electroencephalography data which
exhibits lower dynamic range for power in at least one low
power first frequency range in a frequency spectrum as
compared to a second frequency range in the frequency spectrum
can be received.

[00112] At 904, the electroencephalography data is analyzed
with frequency analysis. For example, frequency analysis can
be the adjusting 204 of method 200.

[00113] At 906, sleep states in the subject are assigned
based on the frequency analysis. For example, method 700 for
classifying sleep states of FIG. 7 .can be used to assign sleep

states in the subject.
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[00114] At 908, a pathological condition can be detected in
a subject based on the sleep states. For example, sleep states
can be acquired for an individual and analyzed to determine
whether the sleep states represent normal sleep or abnormal
sleep. Abnormal sleep could indicate a pathological condition.
For example, sleep states can be acquired from individuals
with pathological conditions and analyzed for common
attributes to generate an exemplary distinctive "pathological
condition" sleep state profile and/or sleep state statistics
representative of having the pathological condition. Such a
profile or statistics can be compared to sleep states
determined for a subject in order to detect whether the
subject has the pathological condition or any early indicators
of the pathological condition. Any variety of pathological
conditions can be detected and/or analyzed. For example, sleep
related pathological conditions can include epilepsy,
Alzheimer's disease, depression, brain trauma, insomnia,
restless leg syndrome, and sleep apneé. For example,
polysomnographically, subjects with Alzheimer's can show
decreased rapid eye movement sleep in proportion to the extent
of their dementia.

[00115] Example 14 - Exemplary System for Dynamically
Determining Customized Sleep Scores for a Subject
[00116] FIG. 10 shows an exemplary system for dynamically

determining customized sleep scores for a subject.
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[00117] A data collector 1002 can obtain
electroencephalography data for a subject from a period of
sleep.

[00118] A data normalizer 1004 can assess the
electroencephalography data to determine low power frequency
information.

[00119] A data presenter 1006 can present sleep states for
the subject based at least on the low power frequency

information.

[00120] Methods for dynamically determining customized sleep

scores for a subject are described herein, including method

500 of FIG. 5, method 600 of FIG. 6, and method 700 of FIG. 7.

[00121] Example 15 - Exemplary Pathological Conditions
[00122] In any of the technologies described herein, a
variety of pathological conditions can be determined from
source data obtained for a subject. For example, depression,
brain trauma, epilepsy, and Alzheimer's disease can be
pathological conditions determined from sleep states

determined from source data obtained for a subject. For

example, FIG. 39 is a screenshot 3900 of an application of the

technologies described herein to determine sleep states
indicative of characterizations of Alzheimer's disease from a

whole night EEG from a human subject with Alzheimer's.
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[00123] Example 16 - Exemplary Medications and Chemicals
that can Affect Sleep

[00124] In any of the technologies described herein, the
effect of medications and chemicals on sleep states of a
subject can be determined via analyzing source data obtained
for a subject. For example, sleep states can be modified by
alcohol, nicotine, and cocaine use. Exemplary medications that
affect sleep include steroids, theophylline, decongestants,
benzodiazepines, antidepressants, monoamine oxidase inhibitors
(e.g., Pheneizine and Moclobemide), selective serotonin
reuptake inhibitors (e.g., Fluoxetine (distributed under the
Prozac® name) and Sertralie (distributed under the Zoloft®
name), thyroxine, oral contraceptive pills, antihypertensives,
antihistamines, neuroleptics, amphetamines, barbiturates,
anesthetics, and the like.

[00125] Example 17 - Exemplary Sleep Statistics

[00126] In any of the technologies described herein, any
variety of statistics can be generated from adjusted source
data. For example, sleep statistics can be generated from
adjusted source EEG data that has been classified into sleep
states. Exemplary sleep statistics can include information
including sleep stage densities, number of sleep stage
episodes, sleep stage average duration, cycle time, interval
time between sleep stages, sleep stage separation statistics,

onset of sleep, rapid eye movement sleep latency, regression
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coefficients of trends, measures of statistical significance
of trends, and the like.

[00127] Example 18 - Exemplary Implementation of a Method of
Determining Sleep States in a Subject over a Period of Time
[00128] Sleep is common and may be ubiquitous in all major
taxa of the animal kingdom, but it is poorly understood. There
is growing evidence from human studies from a variety of low-
level psychophysical perceptual and motor tasks that sleep
helps to remediate performance loss that is otherwise observed
following task learning (Karni et al. 1994; Mednick et al.
2002; Mednick et at. 2003; Fenn et al. 2003). Animal studies
have provided evidence of 'replay' during sleep, which may be
a central component of the sleep process involved in
consolidation of performance.

[00129] Recently, it has been shown that during sleep,
robustus archistriatalis (RA) neurons of the zebra finch,
Taeniopygia guttata, song system rehearse song patterns
spontaneously and respond to playback of the bird's own song
(Dave & Margoliash, 2000). During song development in zebra
finches, juvenile birds start changing singing patterns the
day following exposure to new vocal material from tutors
(Tchernichovski et al. 2001). There is no conclusive evidence
though that song learning in juveniles or song maintenance in

adult birds requires or benefits from sleep.
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[00130] Investigation of the possible role of sleep in song
learning or maintenance is hampered by the limited knowledge
of sleep states in passerine birds. Previous studies have not
reported different phases of sleep in the zebra finch (Nick &
Konishi, 2002; Hahnloser et al., 2002). In contrast, studies
in other birds, including passerine birds (Ayala-Guerrero et
al., 1988; Szymczak et al., 1993; Rattenborg et al., 2004),
have reported REM sleep in this phylum. Moreover, in rat
hippocampus different patterns of neuronal replay are known to
take place during different phases of sleep (Buzsaki, 1989;
Wilson & McNaughton, 1994; Louile & Wilson, 2001). Therefore,
staging of sleep in zebra finches was investigated.

[00131] In order to determine the type, arrangement and
location of electrodes, a series of acute experiments with
birds anesthetized with urethane (20%, circa 90 1.11 over I
hr) was first conducted. Optimal EEG recordings, as judged by
amplitude and reliability of signals, were obtained using
differentially paired thick platinum electrodes (A-M systems,
WA) touching the dura mater, with an additional ground over
the cerebellum. The stereotaxic coordinates for the recording
and ground electrodes were respectively: (1.5R, 3L), (3R, 2L)

and (0.5C, OL).
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[00132] Five birds were then anesthetized and implanted with
3 mm long L-shaped platinum electrodes at the aforementioned
locations with the last 2 mm of the electrodes tangential to
the dura mater along the medial-lateral axis. The electrode
impedance was 0.15 Ohms. In order to assess unihemispheric
sleep, three birds were implanted with bilateral EEG
electrodes. Electrodes were secured at their base with dental
acrylic and attached with fine copper wire (A-M systems, WA)
to a head connector. Birds were given 3 days to recover from
the surgery and to habituate to the recording environment.
[00133] During recordings, a light cable was attached
linking the bird's head to an overhead mercury commutator
(Drangonfly Inc, WV). This setup allowed the bird relative
freedom of movement within the cage and is preferable to
restraining the animal since restraint-induced stress is known
to modify sleep architecture (Altman et al., 1972). During the
dark phase of the 16:8 light/dark cycle, electrophysiological
recordings with direct observation of sleeping birds were
combined. Birds were bathed in infrared (IR) light and
monitored with an IR camera (Ikegama, Japan). Strategically
placed mirrors facilitated detection of eye, head, and body
movements. EEGs were amplified by 1K, sampled at 1 kHz and
filtered at 1-100 Hz. In one bird, which exhibited low
frequency artifacts, the data was filtered at 2-100 Hz. A 60Hz
notch filter was also used to improve the signal-to-noise

ratio.
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[00134] In order to establish high confidence in the data
analysis, the data was scored both manually as well as
automatically. Manual scoring relied on visual inspection of 3
seconds EEG epochs in parallel with scoring of overt behaviors
such as eye, head and body movements. Manual scoring
classified each epoch as either REM, NREM (non-REM) or awake,
including the artifacts. Automated scoring was restricted to
the sleep data. The Sleep Parametric EEG Automated Recognition
System (SPEARS) for stage separation and quantification of
single channel EEG data was used. EEGs were downsampled to 200
Hz, DC filtered, and analyzed over 3 seconds epochs using a 1
second sliding window to combine high spectral, temporal and
statistical resolutions. In order to minimize spectral leakage
and to increase statistical resolution in the frequency
domain, EEG power spectra were computed over 2 orthogonal
tapers following a standard multi-taper estimation technique
(Thomson, 1982).

[00135] The 1-4 Hz (Delta) and 30-55 Hz (Gamma) frequency
bands were selected for the stage classification. Delta and
Gamma/Delta were respectively used to separate SWS from NSWS
(Non-SWS) and REM from NREM. The separation was done with a k-
means clustering algorithm and refined by the inclusion of
additional variables: the standard deviation and the absolute
values of the time derivative of Delta and of (Gamma/Delta).
For each epoch, the time derivative was computed over the

preceding and successive epochs, using the Matlab "gradient”
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function. The initial separation was done over the artifact
free sleep data. Thereafter, sleep artifacts were attributed
the same score as the first non-artifact epoch immediatgly
following it, unless 1t was an awake epoch in which case the
sleep artifact was given the score of the first preceding
artifact free epoch (which could not be an awake epoch for
otherwise the artifact would have been labeled as an awake
artifact by manual scoring). This convention did not
significantly reduce the agreement rate with manual scoring
(TABLE 1). It was important to include the sleep artifacts
since removing or not scoring them would respectively shrink
or puncture sleep episodes and thereby change the calculated
density, average number of epochs and length for each stage.
[00136] Following initial separation, the score of each
epoch was smoothed using a 5 second window in order to
minimize the score contamination by brief artifacts which
might not have been isolated by manual scoring. Epochs that
were scored neither as REM nor as SWS were labeled as
intermediate (INTER). Conversely, any epoch that had been
labeled as belonging to both REM and SWS was relabeled as an
outlier. There were very few outliers in the data (TABLE 1).
[00137] The REM, SWS and intermediate epochs can be

visualized in a 3-dimensional space (FIGS. 20-21) defined by

the principal components of the 5 dimensional space defined by

Delta, Gamma/Delta, the standard deviation and the derivatives

of Delta and (Gamma/Delta) (FIGS. 16-17). In each bird, a
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multivariate ANOVA on the 5-dimensional clustering space
yielded a P < 0.001 for the separation of REM, SWS and the
intermediate stage.

[00138] Using the MATLAB "silhouette" function, the most
rgpresentative examples for the SWS, REM, intermediate and
awake epochs were automatically generated (FIGS. 22, 23, 24,
25, and 26).

[00139] The agreement between manual and automated scoring
was calculated by classifying each epoch scored as REM by only
the manual or the automated scoring as an error. The general
agreement rate was remarkably high given the high temporal
resolution of the manual and automated scoring (TABLE 1).
[00140] Based on the automated analysis, the stage density
(FIG. 28), average episode number (FIG. 30) and duration (FIG.
29), inter REM interval (FIG. 31) and stage transitions (FIG.
32) were computed (TABLE 1). All analyses were conducted in
Matlab (MathWorks Inc, MA).

[00141] Table 1. Stage statistics for 5 nights of sleep in 5
birds.

[00142] Stage density, average episode duration and number
and stage transitions were determined. The percentage of
transitions out of each stage towards the intermediate stage
and the percentage of transitions out of the intermediate
stage towards the other stages are shown. For the
bihemispherically implanted birds (Animals 1-3),

unihemispheric sleep is reported and the other statistics were

271



272

WO 2006/122201 PCT/US2006/018120

computed over the hemisphere with the most reliable data as
determined by visual inspection of the EEG and video and the
absence of outliers. The coefficient of regression was
computed over the stage densities and inter-REM intervals for
each hour and reflect the circadian distribution of SWS and
REM (* = [r®> 0.5 and p < 0.05], § = [r? > 0.5 and p = 0.05), £
for values calculated for hours 2-8, & for values calculated
for hours 1-7). The agreement rate between automated and
manual scoring was determined with and without artifact

rejection.
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[00143] The analysis of the recordings indicate that zebra
finches exhibit at least three distinct phases of sleep: SWS,
REM and intermediate sleep. SWS had a high amplitude EEG
signal with significant power in the Delta range (FIGS.14-17).
REM was characterized by a very low amplitude "awake-like" EEG
signal (FIG. 23), typically about #30 pV with higher power in
Gamma (FIGS. 14 and 15) than NREM, a feature that up to now
had only been detected in mammals (Maloney et al., 1997;
Cantero et al., 2004). The intermediate epochs had highly
Qariable amplitudes, centered around *50 pV and did not have
significant power in either the Delta or Gamma ranges (FIGS.
14, 15 and 24). The intermediate stage has previously only
been observed in mammals (Gottesmann et al., 1984; Glin et
al., 1991; Kirov & Moyanova, 2002). Both birds on normal
circadian patterns and shifted circadian schedules displayed
these three sleep stages.

[00144] SWS epochs were longer than REM and intermediate
episodes early in the night and would, following a mammalian-
like distribution, decrease in duration (FIG. 29) throughout
the night, leading to an overall decrease in stage density
(FIG. 28) (TABLE 1).

[00145] During NREM birds breathe slowly and regularly; eye
and head movements do not follow a stereotypical pattern and
are quite distinct from those in REM. We observed several
instances when one eye was open and the other was closed. The

hemisphere contralateral to the open eye displayed a low
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amplitude and high frequency EEG while the hemisphere
contralateral to the closed eye displayed SWS oscillations.
These instances of unihemispheric sleep would usually account
for less than 5% of the dark cycle (TABLE 1) and were more
frequent in the light cycle. Such patterns of unihemispheric
sleep have been previously detected in other species of birds,
cetaceans and other marine mammals (Mukhametov et al., 1984;
Mukhametov, 1987; Szymczak et al., 1996; Rattenborg et al.,
1999; Lyamin et al., 2002).

[00146] REM episodes were typically brief early in the night
and would become longer throughout the night (FIG. 29) as the
number of episodes would increase as well (FIG. 30), leading
the Inter-REM intervals to exhibit a downward "mammalian-like"
trend throughout the night (FIG. 31) (TABLE 1). REM occurred
reliably in conjunction with eye and subtle twitching head
movements, as seen in other species (Siegel et al., 1999). The
eye movements were on the order of one saccade per second. The
head movements were not as reliable, but tended to follow the
directional movement of the eyes when present. Head movements
were not the result of displacement of the head by the weight
of the attached cable during REM neck muscle atonia because
the head movements were observed in conjunction with eye

movements in intact, un-tethered animals.
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[00147] The intermediate epochs were brief and numerous. The
intermediate state was usually more stable throughout the
night, in term of density (FIG. 28), average epoch duration
(FIG. 29) and average number of episodes per hour (FIG.30)
than REM and SWS. As is the case in mammals, the intermediate
stage consistently acted as -but was not limited to- a
transition phase between SWS and REM (FIG. 32) (TABLE 1).
[00148] In all birds, large peak-to-peak EEG transients
lasting approximately 500 milliseconds were detected in NREM
(FIG. 26). These signals are reminiscent of the description of
mammalian K-complexes (Rowan & Tolunsky, 2003). K-complexes
have likely never been previously observed in a non-mammalian
species.

[00149] In previous studies of zebra finch sleep EEG, only
SWS has been reported. In addition to finding a suitable
location over which to implant EEG electrodes, this study was
successful in detecting NSWS (REM and the intermediate stage)
presumably because the nature of the chronic recording setup
did not restrain the animals and obviated the need of
pharmacological agents such as melatonin to induce sleep. In
one study (Mintz et al., 1998), infusion of melatonin was
shown to induce SWS in pigeons. It is possible that melatonin
might have a similar effect in zebra finches, thus reducing
the amount of observable NSWS at night (Hahnloser et al.

2002).
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[00150] The data analysis technique enabled resolving
changes in power at the lower power, high frequencies, which
was a key differentiating factor for REM sleep detection.
Moreover, the automated analysis restricted manual scoring to
the awake state and artifacts, which are easily detectable to
a human scorer. Additionally, automated EEG scoring relied on
whole night statistics (Gervasoni et al.) rather than on
arbitrarily defined threshold, maximum likelihood methods or
supervised nonlinear classifiers all of which tend to reflect
and impose a human bias on the data analysis.

[00151] The results imply that mammalian-like sleep features
have evolved in parallel in both mammals and birds. The basic
pattern of interdigitation between Delta and Gamma power
activation described herein (FIGS. 14 and 15) is highly
similar to the one observed in the mammalian cortex during
sleep (Destexhe, Contreras & Steriade, 1999). Furthermore,
some of the signals we have observed have been specifically
attributed to the mammalian cortex (Amzica & Steriade, 1998).
Birds are however devoid of a large laminar cortex, raising
the possibility that the cortex might be at best sufficient
but not necessary for the development of mammalian-like sleep
features. Conversely, it is conceivable that birds do indeed
possess a mammalian cortex homolog in a non-laminar form
(Karten, 1997). Future work at the cellular and molecular
levels will be needed to assess which of these highly

intriguing possibilities proves to be correct.
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[00166] Example 19- Exemplary Method for Determining Sleep
States in a Subject over a Period of Time

[00167] FIG. 35 shows yet another exemplary method 3500 for
determining sleep states in a subject over a period of time.
The method 3500 incorporates a wide variety of techniques
described herein.

[00168] Example 20 - Exemplary Transformation Techniques
[00169] There are a wide variety of data transformation
methods used in signal processing to determine power for a
variety of frequencies in time series data. As described
herein, transformation methods can include multi-taper
transform, Fourier transform, wavelet transform. Any other
transformation method for measuring power for a variety of
frequencies represented in a plurality of time series or

epochs in a source signal can be used.
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[00170] Example 21 - Exemplary Computational Methods for
Differentiating Groups of Data
[00171] There are a wide variety of clustering and
‘classification methods used in computational signal processing
to differentiate data into distinct classes. As described
herein, the clustering method used is k-means clustering but
any computational signal processing method for differentiating
groups of data could be used. Similarly, classification
methods such as component analysis (e.g., principle and
independent component analysis) are used as described herein.
[00172] An overview of computational methods is provided
below.

[00173] Clustering (or cluster analysis) is unsupervised
learning where the classes are unknown a priori and the goal
is to discover these classes from data. For example, the
identification of new tumor classes using gene expression
profiles is a form of unsupervised learning.

[00174] Classification (or class prediction) is a supervised
learning method where the classes are predefined and the goal
is to understand the basis for the classification from a set
of labeled objects and build a predictor for future unlabeled
observations. For example, the classification of malignancies
into known classes is a form of supervised learning.

[00175] CLUSTERING:
[00176] Clustering involves several distinct steps:

[001771 Defusin

g a suitable distance between
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[00178] Selecting a applying a clustering algorithm.

[00179] Clustering procedures commonly fall into two
categories: hierarchical methods and partitioning methods.
Hierarchical methods can be either divisive (top-down) or
agglomerative (bottom-up). Hierarchical clustering methods
produce a tree or dendrogram. Hierarchical methods provide a
hierarchy of clusters, from the smallest, where all objects
are in one cluster, through to the largest set, where each
observation is in its own cluster

[00180] Partitioning methods usually require the
specification of the number of clusters. Then, a mechanism for
apportioning objects to clusters must be determined. These
methods partition the data into a prespecified number k of
mutually exclusive and exhaustive groups. The method
iteratively reallocates the observations to clusters until
some criterion is met (e.g. minimize within—cluster sumsof-
squares). Examples of partitioning methods include k-means
clustering, Partitioning around medoids (PAM), self organizing
maps (SOM), and model-based clustering.

[00181] Most methods used in practice are agglomerative
hierarchical methods, in a large part due to the availability
of efficient exact algorithms. However both clustering methods
have their advantages and disadvantages. Hierarchical
advantages include fast computation, at least for
agglomerative clustering, and disadvantages include that they

are rigid and cannot be corrected later for erroneous
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decisions made earlier in the method. Partitioning advantages
include that such methods can provide clusters that
(approximately) satisfy an optimality criterion, and
disadvantages include that one needs an initial k and the
methods can take long computation time.

[00182] In summary, clustering is a more difficult problem
than classifying for a variety of reasons including the
following:

[00183] there is no learning set of labeled observations
[00184] the number of groups is usually unknown

[00185] implicitly, one must have already selected both the
relevant features and distance measures used in clustering
methods.

[00186] CLASSTIFICATION:

[00187] Techniques involving statistics, machine learning,
and psychometrics can be used. Examples of classifiers include
logistic regression, discriminant analysis (linear and
quadratic), principle component analysis (PCA), nearest
neighbor classifiers (k-nearest neighbor), classification and
regression trees (CART), prediction analysis for microarrays,
neural networks and multinomial log-linear models, support
vector machines, aggregated classifiers (bagging, boosting,
forests), and evolutionary algorithms.

[00188] Logistic regression:

[00189] Logistic regression is a variation of linear

regression which is used when the dependent (response)
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variable is a dichotomous variable (i.e., it takes only two
values, which usually represent the occurrence or non-
occurrence of some outcome event, usually coded as 0 or 1) and
the independent (input) variables are continuous, categorical,
or both. For example, in a medical study, the patient survives
or dies, or a clinical sample is positive or negative for a
certain viral antibody.

[00190] Unlike ordinary regression, logistic regression does
not directly model a dependent variable as a linear
combination of dependent variables, nor does it assume that
the dependent variable is normally distributed. Logistic
regression instead models a function of the probability of
event occurrence as a linear combination of the explanatory
variables. For logistic regression, the function relating the
probabilities to the explanatory variables in this way is the
logistic function, which has a sigmoid or S shape when plotted
against the values of the linear combination of the
explanatory variables.

[00191] Logistic regression is used in classification by
fitting the logistic regression model to data and classifying
the various explanatory variable patterns based on their
fitted probabilities. Classifications of subsequent data are
then based on their covariate patterns and estimated

probabilities.
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[00192] Discriminant analysis:
[00193] In summary discriminant analysis represents samples

as points in space and then classifies the points. Linear
discriminant analysis (LDA) fmds an optimal plane surface that
best separates points that belong to two classes. Quadratic
discriminant analysis (QDA) fmds an optimal curved {quadratic)
surface instead. Both methods seek to minimize some form of
classification error.

[00194] Fisher linear discriminant analysis (FLDA or LDA):
[00195] LDA fmds linear combinations (discriminant
variables) of data with large ratios of between~groups to
within-groups sums of squares and predicts the class of an
observation x by the class whose mean vector is closest to x
in terms of the discriminant variables. Advantages of LDA
include that it is simple and intuitive where the predicted
class of a test case is the class with the closest mean and it
is easy to implement with a good performance in practice.

Disadvantages of LDA include the following:

[00196] linear discriminant boundaries may not be flexible
enough

[00197] features may have different distributions within
classes

[00198] in the case of too many features, performance may

degrade rapidly due to over parameterization and high variance

of parameter estimates.



WO 2006/122201 PCT/US2006/018120
[00199] Nearest neighbor classifiers:

[00200] Nearest neighbor methods are based on a measure of
distance between observations, such as the Euclidean distance
or one minus the correlation between two data sets. K-nearest
neighbor classifiers work by classifying an observation x as
follows:

[00201] - find the k observations in the learning set that
are closest to x.

[00202] - predict the class of x by majority vote, i.e.,
choose the class that is most common among these k neighbors.
Simple classifiers with k=1 can generally be quite successful.
A large number of irrelevant or noise variables with little or
no relevance can substantially degrade the performance of a
nearest neighbor classifier.

[00203] Classification trees:

[00204] Classification trees can be used, fir example, to
split a sample into two sub-samples according to some rule
(feature variable threshold). Each sub-sample can be further
split, and so on. Binary tree structured classifiers are
constructed by repeated splits of subsets (nodes) into two
descendant subsets. Each terminal subset of the tree is
assigned a class label and the resulting partition corresponds
to the classifier. The three main aspects of tree construction
include selection of splits (at each node, the split that
maximize the decrease in impurity is chosen), decision to

declare a node terminal or to continue splitting (toc grow a
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large tree, the tree is selectively pruned upwards getting a
decreasing sequence of subtrees), and assignment of each
terminal node to a class (the class the minimizes the
resubstitution estimate of the misclassification probability
is chosen for each terminal node).

[00205] Prediction analysis for microarrays:

[00206] These methods utilize nearest shrunken centroid
methodology. First, a standardized centroid for each class is
computed. Then each class centroid is shrunk toward the
overall centroid for all classes by the so-called threshold
(chosen by the user). Shrinkage consists of moving the
centroid towards zero by threshold, setting it equal to zero
if it hits zero.

[00207] Artificial Neural Networks
[00208] The key element of the artificial neural network
(ANN) model is the novel structure of the information
processing system. It is composed of many highly
interconnected processing elements that are analogous to
neurons and are tied together with weighted connections that
are analogous to synapses. As with all classification methods,
once the ANN is trained on known samples, it will be able to
predict samples automatically.

[00209] Support Vector Machines:

[00210] Support Vector Machines are learning machines that
can perform binary classification (pattern recognition) and

real valued function approximation (regression estimation)
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tasks. Support Vector Machines non-linearly map their n-
dimensional input space into a higher dimensional feature
space. In this high dimensional feéture space a linear
classifier is constructed.

[00211] Aggregating classifiers:

[00212] This method works by aggregating predictors built
from perturbed versions of a learning set. In classification,
the multiple versions of the predictor are aggregated by
voting. Bootstrapping is the simplest form of bagging in which
perturbed learning sets of the same size as the original
learning set are non-parametric bootstrap replicates of the
learning set, i.e., drawn at random with replacement from the
learning set. Parametric bootstrapping involves perturbed
learning sets that are generated according to a mixture of
multivariate Gaussian distributions. Random Foresting is a
combination of tree classifiers (or other), where each tree
depends on the value of a random vector for all trees in the
forest. In boosting, classifiers are constructed on weighted
version the training set, which are dependent on previous
classification results. Initially, all objects have equal
weights, and the first classifier is constructed on this data
set. Then, weights are changed according to the performance of
the classifier. Erroneously classified objects get larger
weights, and the next classifier is boosted on the reweighted
training set. In this way, a sequence of training sets and

classifiers is obtained, which is then combined by simpl
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majority voting or by welghted majority voting in the
decision.

[00213] Example 22 - Exemplary Sleep Data Presenter

[00214] In any of the examples herein, an electronic or
paper-based report based on sleep state data can be presented.
Such reports can include customized sleep state information,
sleep state statistics, pathological conditions, medication
and/or chemical effects on sleep, and the like for a subject.
Recommendations for screening tests, behavioral changes, and
the like can also be presented. Although particular sleep data
and low frequency information results are shown in some
examples, other sleep data presenters and visualizations of
data can be used.

[00215] Example 23 - Exemplary Sleep State Information for
Subjects

[00216] Exemplary sleep state information can be obtained
from a variety of subjects using any of the technologies
described herein. FIG. 33 includes a screenshot 3300 of an
exemplary visualization of classified anesthesized states of
an anesthetized cat based on analyzed EEG spectrogram data.
For example, in screenshot 3300, a SWS classification
corresponds to a deep anesthesized state, a REM sleep
classification corresponds to a light a:nesthesized state, and
an INTER sleep classification corresponds to an intermediate

anesthesized state. In such a manner, the technologies
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states in a human or other mammalian subject. FIG. 34 includes
a screenshot 3400 of an exemplary visualization of classified
sleep states of a human subject based on analyzed EEG
spectrogram data.

[00217] Example 24 - Exemplary Advantages and Applications
of Technologies

[00218] The speed at which this data analysis can be
performed, the customized and unsupervised nature of analysis,
and the ability to extract previously disregarded or
unanalyzed low power frequency information make this
methodology particularly attractive to a variety of fields of
study. The technology can be highly adaptable using a variable
number of states, a variable number of identification rules,
adaptable calibration, variable time resolution, and variable
spectral resolution. Adjusting source data to generate
adjusted source data can be especially applicable to analyzing
animal signal data in testing for pathological conditions and
medicatioﬁ and chemical effects. In any of the examples
herein, low amplitude but highly variable frequency data can
be extracted and analyzed (e.g., discovering temporal patterns
in data). Applications can include diverse uses from analyzing
stock market data (e.g., analyzing fluctuations in penny
stocks to determine common variability otherwise disregarded
due to small price changes) to accessing encoded data (e.g.,
Morse code data stored in low power, very high or very low

frequencies within

sound waves) to analyzin



290

WO 2006/122201 PCT/US2006/018120
with several spatial frequencies. Similarly, the technologies
described herein can be used to determine customized sleep
quality determinations for a subject via sleep state
information generated.

[00219] In any of the examples herein, the methods can be
applied to source data received from one channel or multiple
channels. The methods can be applied independently to source
data from multiple channels with comparison made between the
channels. For example, unihemispheric sleep can be determined
from independent EEG channel data received from each
hemisphere of a brain. FIG. 40 shows a screen shot 4000 of
unihernispheric sleep determined from independent EEG channel
data received from each hemisphere of a bird's brain.
Alternatively, the methods can be simultaneously applied to
source data from multiple channels, thereby analyzing combined
multiple channel source data. For example, EEG channel data
and EMG channel data for a subject can be simultaneously
analyzed to determine awake versus REM sleep states whereby a
REM designated sleep state from analysis of EEG data can be
reassigned as an awake sleep state if the EMG data falls into
a high amplitude cluster.

[00220] Further, in any of the examples herein, methods such
as denoising source separation (dss) and the like can be used
in combination with the methods described herein to determine
sleep states. For example, dss can use low frequency

information to determine REM sleep.
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[00221] While the techniques described herein can be
particularily valuable for analyzing low power frequency
information they can also be applied to clustering and
determining sleep stages from any variety of signals including
signals wherein the high and low frequencies have the same
power distributions. Additionally, techniques pertaining to
spectrogram analysis, stage classification and confidence
measures can be used independently of one another.

[00222] Example 25 - Exemplary Visualizations of Data
[00223] In any of the techniques described herein, exemplary
visualizations of data can utilize colors to depict different
aspects of that data. For example, classified data (e.g.,
sleep state classifications such as REM, SWS, and INTER) can
be color coded for each classification state for visualization
of the classified data. Alternatively, greyscale can be used
to code for each classification state for visualization of the
classified data.

[00224] Example 26 - Exemplary Computer System for
Conducting Analysis
[00225] FIG. 36 and the following discussion provide a
brief, general description of a suitable computing environment
for the software (for example, computer programs) described
above. The methods described above can be implemented in
comp;ter—executable instructions (for example, organized in
program modules). The program modules can include the

routines, programs, objects, components, and data structures
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that perform the tasks and implement the data types for
implementing the techniques described above.

[00226] While FIG. 36 shows a typical configuration of a
desktop computer, the technologies may be implemented in other
computer system configurations, including multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, and the like.
The technologies may also be used in distributed computing
environments where tasks are performed in parallel by
processing devices to enhance performance. For example, tasks
can be performed simultaneously on multiple computers,
multiple processors in a single computer, or both. In a
distributed computing environment, program modules may be
located in both local and remote memory storage devices. For
example, code can be stored on a local machine/server for
access through the Internet, whereby data from assays can be
uploaded and processed by the local machine/server and the
results provided for printing and/or downloading.

[00227] The computer system shown in FIG. 36 is suitable for
implementing the technologies described herein and includes a
computer 3620, with a processing unit 3621, a system memory
3622, and a system bus 3623 that interconnects various system
components, including the system memory to the processing unit
3621. The system bus may comprise any 6f several types of bus
structures including a memory bus or memory controller, a

peripheral bus, and a local bus using a bus architecture. The
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system memory includes read only memory (ROM) 3624 and random
access memory (RAM) 3625. A nonvolatile system (for example,
BIOS) can be stored in ROM 3624 and contains the basic
routines for transferring information between elements within
the personal computer 3620, such as during start-up. The
personal computer 3620 can further include a hard disk drive
3627, a magnetic disk drive 3628, for example, to read from or
write to a removable disk 3629, and an optical disk drive
3630, for example, for reading a CD-ROM disk 3631 or to read
from or write to other optical media. The hard disk drive
3627, magnetic disk drive 3628, and optical disk 3630 are
connected to the system bus 3623 by a hard disk drive
interface 3632, a magnetic disk drive interface 3633, and an
optical drive interface 3634, respectively. The drives and
their assoclated computer-readable media provide nonvolatile
storage of data, data structures, computer-executable
instructions (including program code such as dynamic link
libraries and executable files), and the like for the personal
computer 3620. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic disk,
and a CD, it can also include other types of media that are
readable by a computer, such as magnetic cassettes, flash

memory cards, DVDs, and the like.
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[00228] A number of program modules may be stored in the
drives and RAM 3625, including an operating system 3635, one
or more application programs 3636, other program modules 3637,
and program data 3638. A user may enter commands and
information into the personal computer 3620 through a keyboard
3640 and pointing device, such as a mouse 3642. Other input
devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the processing unit 3621
through a serial port interface 3646 that is coupled to the
system bus, but may be connected by other interfaces, such as
a parallel port, game port, or a universal serial bus (USB). A
monitor 3647 or other type of display device is also connected
to the system bus 3623 via an interface, such as a display
controller or video adapter 3648. In addition to the monitor,
personal computers typically include other peripheral output
devices (not shown), such as speakers and printers.

[00229] The above computer system is provided merely as an
example. The technologies can be implemented in a wide variety
of other configurations. Further, a wide variety of approaches
for collecting and analyzing source data are possible. For
example, the data can be collected and analyzed, and the
results presented on different computer systems as
appropriate. In addition, various software aspects can be
implemented in hardware, and vice versa. Further, paper-based

approaches to the technologies are possible, including, for
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example, purely paper-based approaches that utilize
instructions for interpretation of algorithms, as well as
partially paper-based approaches that utilize scanning
technologies and data analysis software.

[00230] Example 27 - Exemplary Computer-Implemented Methods
[00231] Any of the computer-implemented methods described
herein can be performed by software executed by software in an
automated system (for example, a computer system). Fully-
automatic (for example, without human intervention) or semi-
automatic operation (for example, computer processing assisted
by human intervention) can be supported. User intervention may
be desired in some cases, such as to adjust parameters or
consider results.

[00232] Such software can be stored on one or more computer-—
readable media comprising computer-executable instructions for
performing the described actions. Such media can be tangible
(e.g., physical) media.

[00233] Having illustrated and described the principles of
the invention in exemplary embodiments, it should be apparent
to those skilled in the art that the described examples are
illustrative embodiments and can be modified in arrangement
and detail without departing from such principles. Techniques
from any of the examples can be incorporated into one or more

of any of the other examples.
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[00234] Another embodiment uses a dual normalization for
even further dynamic range increase. This embodiment explains,
and relies on, data from human sleep subjects, rather than
birds as in some of the previous embodiments. Moreover, any
of the applications described above for the previous
embodiments are equally applicable for this embodiment, as are
the techniques of normalization and clustering.

[00235] This embodiment uses many of the characteristics of
the previous embodiments and also adds some refinements. The
embodiment operates to analyze brain wave activities. The
signals from a brainwave, e.g., an EEG, typically follows the
characteristic where the amount of power in the brain wave is
related to, e.g., proportional to 1/f, where f is the
frequency of the brain wave: The amount of power is inversely
proportional to the frequency. As explained with reference to
previous embodiments, this 1/f spectral distribution has
tended to obscure the higher frequency portions of the signal,
since those higher frequency portions of the signals had
smaller voltage amplitudes.

[00236] Human observers who observed the waves representing
the EEGs have historically been unable to ascertain any
substantial information relative to the higher frequency.

Many reasons for this have been postulated by the inventors.
One reason is that higher frequencies of brainwave activities
have been more filtered from the skull, because the physical

'

structure of the skull acts as a low pass filter.
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[00237] Previous embodiments have shown how normalization,
for example using Z scoring, allowed analysis of more
information from the brainwave signal. The analysis which was
previously carried out normalized power information across
frequencies. The normalization preferably used Z scoring, but
any other kind of data normalization can be used. The
normalization which is used is preferably unitless, like 2
scoring. As well-known in the art, z scoring can be used to
normalize a distribution without changing a shape of the
envelope of the distribution. The z scores are essentially
changed to units of standard deviation. Each z score
normalized unit reflects the amount of power in the signal,
relative to the average of the signal. The scores are
converted into mean deviation form, by subtracting the mean
from each score. The scores are then normalized relative to
standard deviation. All of the z scored normalized units have
standard deviations that are equal to unity.

[00238] While the above describes normalization using 2%
scores, it should be understood that other normalizations can
also be carried out, including T scoring, and others.

[00239] The above embodiments describe normalizing the power
at every frequency within a specified range. The range may be
from 0, to 100 hz, or to 128 hz, or to 500 hz. The range of
frequencies is only restricted by the sampling rate. With an
exemplary sampling rate of 3OKHz, an analysis up to 15KHz can

be done.
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[00240] According to the present embodiment, an additional
normalization is carried out which normalizes the power across
time for each frequency. This results in information which
has been normalized across frequencies and across time being
used to create a doubly normalized spectrogram.

[00241] This embodiment can obtain additional information
from brainwave data, and the embodiment describes
automatically detecting different periods of sleep from the
analyzed data. The periods of sleep that can be detected can
include, but are not limited to, short wave sleep (SWS), rapid
eye movement sleep (REM), intermediate sleep (IIS) and
wakefulness. According to an important feature, a single
channel of brainwave activity (that is obtained from a single
location on the human skull) is used for the analysis.

[00242] The operation is carried out according to the
flowchart of figure 41, which may be executed in any of the
computer devices described herein, or may be executed across a
network or in any other known way. At 4100, data is obtained.
As described above, the obtained data can be one channel of
EEG information from a human or other subject. The EEG data
as obtained can be collected, for example, using a 256 Hz
sampling rate, or can be sampled at a higher rate. The data
is divided into epochs, for example 30 second epochs, and

characterized according to frequency.
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[00243] At 4110, a first frequency normalization is carried
out. The power information is normalized using a z scoring
technique on each frequency bin. In the embodiment, the bins
may extend from one to 100 Hz and 30 bins per hertz. The
normalization occurs across time; This creates a normalized
spectrogram or NS, in which each frequency band from the
signal has substantially the same weight. In the embodiment,
each 30 second epoch is represented by a "preferred frequency"
which is the frequency with the largest z score within that
epoch.

[00244] This creates a special frequency space called the
preferred frequency space. Figure 42A illustrates the raw
spectrogram, and figure 42 B illustrates the normalized
spectrum. Each epoch, e.g., a 30 second segment in figure 43,
or or a 1 second sliding window epoch in Figure 44, is
represented by the frequency with the largest z score. Figure
44 illustrates how this broadly separates into different
patterns.

[00245] Analysis of how those patterns are formed and allow
analysis of the characteristics of the patterns. For example,
the W or wakefulness state has been found by analysis to be
characterized by a band in the alpha band, or 7 to 12 Hz and

sometimes by a band in the beta (15 to 25 Hz).
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[00246] Intermediate states display Delta values in the 1 to
4 Hz range, and the spindle frequencies in 12 to 15 Hz. These
also show activity of the higher frequencies and the gamma
range 3- 90 Hz. Surprisingly, REM state defines compact bands
at Delta and Theta frequencies, and short wave sleep was
dominated by diffuse broad-spectrum activity.

[00247] Different sleep states, therefore, can be defined
according to a discrimination function, where the
discrimination function looks for certain activity in certain
areas, and non-activity in other areas. The function may
evaluate sleep states according to which of the frequency at
areas have activity and which do not have activity.

[00248] More generally, however, any form of dynamic
spectral scoring can be carried out on the compensated data.
The discrimination function may require specific values, or
may simply require a certain amount of activity to be present
or not present, in each of a plurality of frequency ranges.
The discrimination function may simply match envelopes of
frequency response. The discrimination function may also look
at spectral fragmentation and temporal fragmentation.

[00249] 4120 illustrates a second normalization which is
carried out across frequencies. The second normalization at
4120 produces a doubly normalized spectrogram. This produces
a new frequency space, in which the bands become even more
apparent. The second normalization is shown as Figure 42C,

where bands show as lighter values, representing the positive
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values, while darker regions will tend to have negative
values.

[00250] The doubly normalized spectrogram values can be used
to form filters that maximally separate the values within the
space. Figure 43 illustrates a graph of preferred frequency
as a fuﬁction of time, showing the different clusters of
frequencies.

[00251] 4130 illustrates a clustering technique which is
carried out on the doubly normalized frequency. For example,
the clustering technique may be a K means technique as
described in the previous embodiments. The clusters form
groups, as shown in Figure 43. Figure 44 illustrates how the
areas between different states, such as boundary 4400, form
multiple different clusters. Each cluster can represent a
sleep state.

[00252] The clusters are actually multi dimensional
clusters, which can themselves be graphed to find additional
information, as shown in Figure 45. The number of dimensions
can depend on the number of clustering variables. This
illustrates how the doubly normalized spectrogram also allows
many more measurement characteristics. Figure 45 is actually
a three-dimensional graph, of different characteristics, and
can allow detection of the different states. The analysis,
however, reveals that slow wave sleep is more unstable and

time and frequency than rapid eye movement sleep or
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wakefulness. Intermediate sleep often forms a bridge to and
from the short wave sleep.

[00253] Measurement of the average spread in normalized
power across frequency which illustrates the spectral
fragmentation is also possible, as shown in Figure 46
illustrates the spectral fragmentation. Fragmentation values
can alternatively be based on temporal fragmentation for the
different states may also be used as part of the
discrimination function.

[00254] For example:

[00255] Using Z and ZZ to correspond to the NS and 2NS
values respectively:

[00256] w_filter=mean(ZZ (12-15 Hz))+mean(ZZ(1-4
Hz))+mean (2% (4-7 Hz)).

[00257] nrem_filter=mean (ZZ(60-100 Hz))+mean (2% (4-7 Hz))-
[mean (ZZ (12-15 Hz))+mean (ZZ (25-60Hz) ) +mean (2% (15-25 Hz))]
[00258] sws_filter= mean(Z(4-7 Hz))+mean(Z(7-12 Hz))
[00259] The fragmentation values are as follows:
[00260] Spectral_ frag= mean (abs(grad f(ZZ(1-100 Hz))));
[00261] Spectral_temp= mean (abs (grad_t(Z2z(1-100 Hz))));
[00262] Where grad_f and grad_t correspond to the two-

dimensional nearest neighbor gradients of Z%Z.
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[00263] These two functions are evaluated on the doubly
normalized spectrum, relying on homogeneous increases in gain
at all frequencies as caused movement artifacts in NREM sleep
and W would lead to abnormally elevated fragmentation values
in the singly normalized spectrum.

[00264] These fragmentation values may be used as part of
the discrimination function. Importantly, and as described
above, this discrimination function is typically not apparent
from any previous analysis technique, including manual
techniques.

[00265] The computation may be characterized by segmenting,
or may use overlapping windows or a sliding window, to
increase the temporal registration. This enables many
techniques that have never been possible before. By
characterizing on-the-fly, this enables distinguishing using
the dynamic spectral scoring, between sleep states and awake
states using the brainwave signature alone.

[00266] Another aspect includes a machine which
automatically obtains EEG information, and includes a computer
that analyzes the EEG information to determine information
about the sleep state. For example, the information may
include the actual sleep state, or other parts of the sleep
state. The computer may also include nonvolatile memory
therein to store the information indicative of the sleep
state, and may include, for example, a wireless network

connection to allow sending the information indicative of the
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sleep state to a remote device. The user can wear the
machine, or an electrode that is connected to the machine, in
order to characterize his or her sleep.

[00267] The above has described how information can be used
to determine sleep states. These techniques may also be used
for other applications including characterizing sleep states,
and other techniques. Applications may include determination
of whether a patient has taken certain kinds of drugs based on
their sleep state, and based on variables that were previously
determined as changing in brain function based on those sleep
states. Another application can analyze brain wave signals to
determine alcohol consumption, e.g., forming a system that can
be used as a “breathglyzer”.

[00268] The general structure and techniques, and more
specific embodiments which can be used to effect different
ways of carrying out the more general goals are described
herein.

[00269] Although only a few embodiments have been disclosed
in detail above, other embodiments are possible and the
inventors intend these to be encompassed within this
specification. The specification describes specific examples
to accomplish a more general goal that may be accomplished in
another way. This disclosure is intended to be exemplary, and
the claims are intended to cover any modification or
alternative which might be predictable to a person having

ordinary skill in the art. For example, other applications
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are possible, and other forms of discrimination functions and
characterization is possible. While the above extensively
described characterizing the frequency in terms of its
"preferred frequency", it should be understood that more
rigorous characterization of the information may be possible.
Also, while the above only refers to aetermining sleep states
from the EEG data, and refers to only a few different kinds of
determination of sleep states, it should be understood that
other applications are contemplated.

[00270] Also, the inventors intend that only those claims
which use the words “means for” are intended to be interpreted
under 35 USC 112, sixth paragraph. Moreover, no limitations
from the specification are intended to be read into any
claims, unless those limitations are expressly included in the
claims.

[00271] The computers described herein may be any kind of
computer, either general purpose, or some specific purpose
computer such as a workstation. The computer may be a Pentium
class computer, running Windows XP or Linux, or may be a
Macintosh computer. The computer may also be a handheld
computer, such as a PDA, cell phone, or laptop.

[00272] The programs may be written in C, or Java, Brew or
any other programming language. The programs may be resident
on a storage medium, e.g., magnetic or optical, e.g. the
computer hard drive, a removable disk or media such as a

memory stick or SD media, or other removable medium. The
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programs may also be run over a network, for example, with a
server or other machine sending signals to the local machine,
which allows the local machine to carry out the operations

described herein.
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What is claimed is

1. A method, comprising:

obtaining data indicative of brainwave activity:;

normalizing at least one frequency range of said data to
change a power level of the data in said at least one
frequency range relative to data in another frequency range,
to form normalized data indicative of brainwave activity; and

analyzing said normalized data indicative of brainwave
activity to determine at least one parameter indicative of

sleep state from said analyzing.

2. A method as in claim 1, wherein said analyzing
comprises automatically clustering said normalized data into
clusters, and using said clusters in said analyzing, to

determine said parameter.

3. A method as in claim 1, wherein said normalizing

comprises Z scoring the data.

4. A method as in claim 1, further comprising a second
normalizing the data, to form double normalized data, prior to

said analyzing.

5. A method as in claim 4, wherein said second

normalizing comprises normalizing frequencies across time.
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6. A method as in claim 5, wherein said first and second

normalizing each use Z scoring for the normalizing.

7. A method as in claim 5, further comprising definiﬁg a
discrimination function which represents characteristics of
the said double normalized data for a plurality of different
sleep states, and using said discrimination function to

determine a sleep state from said double normalized data.

8. A method as in claim 7, wherein said discrimination
function is a function that is in terms of frequencies which
are present in specified ranges and not present in specified

other ranges, to define a sleep state.

9. A method as in claim 4, further comprising
characterizing a preferred frequency as a frequency which has
the highest normalized value in any specified time, and
analyzing the preferred frequency to determine said at least

one parameter.

10. A method as in claim 9, further comprising defining
a discrimination function as a function of preferred
frequency, where a discrimination function defines a sleep
state in terms of frequencies which are present, and

frequencies which are not present.
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11. A method as in claim 4, further comprising analyzing
a fragmentation of the double normalized data, and using the

fragmentation as to the part of said analyzing.

12. A method as in claim 1, wherein said parameter
indicative of sleep state comprises a probable sleep state

corresponding to the current time period.

13. A method as in claim 1, wherein said parameter
indicative of sleep state comprises information indicative of

likely drug consumption.

14. A method as in claim 1, wherein said normalizing is

carried out using a computer to change the data.

15. The method of claim 1 further comprising removing

artifacts from the source data.

16. The method of claim 1 further comprising: prior to
said normalizing, segmenting the source data in a plurality of

time segments.

17. The method of claim 16 wherein the separating

comprises using one of a scanning window or a sliding window.
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separating

comprises determining at least one time series increment

selected from the group consisting of:
whole time series;
overlapping time series; and

non-overlapping series.

19. A method for determining sleep states in a subject

over a period of time comprising:

receiving brain wave data for the subject over the period

of time, wherein the brain wave data exhibits lower dynamic

range for power in at least one low power first frequency

range in a frequency spectrum as compared to
frequency range in the frequency spectrum;
segmenting the brain wave data into one
weighting frequency power of the one or
across time, wherein the weighting comprises
dynamic range for power within the low power

of the frequency spectrum as compared to the

a second

or more epochs;
more epochs

increasing the
frequency range

second frequency

range, thereby generating one or more frequency weighted

epochs; and
classifying sleep states in the subject

or more frequency weighted epochs.

based on the one
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20. The method as in claim 19 wherein classifying sleep
states in the subject comprises:
clustering the one or more frequency weighted epochs; and
assigning sleep state designations to the one or more
frequency weighted epochs according to the clustering; and
presenting the sleep state designations as indicative of
sleep states in the subject for the period of time represented

by the one or more frequency weighted epochs.

21. The method of claim 19 wherein clustering the one or

more frequency weighted epochs comprises k-means clustering.

22. The method of claim 19 further comprising
pretreating the electroencephalography data with component

analysis.

23. The method of claim 19 wherein classifying sleep
states in the subject comprises applying independent component

analysis to the one or more frequency weighted epochs.

24. The method of claim 19 wherein classifying sleep
states further comprises incorporating manually determined

sleep states.
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25. The method of claim 19 wherein assigning sleep state
designations to the one or more frequency weighted epochs
comprises:

determining a slow wave sleep designation from a non-slow
wave sleep designation based at least on low freguency
information; and

determining a rapid eye movement sleep designation from a
non-rapid eye movement sleep designation based at least on

high frequency information.

26. The method of claim 25 further comprising assigning
a slow wave sleep designation to an epoch that has significant

weighted power at low frequencies.

27. The method of claim 25 further comprising assigning
a rapid eye movement sleep designation to an epoch with

significant weighted power at high frequency.

28. The method of claim 19 wherein assigning sleep state
designations to the one or more frequency weighted epochs
further comprises applying a smoothing window to the one or
more weighted epochs, wherein the smoothing can comprise
averaging sleep state designations across the one or more

weighted epochs.
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29. The method of claim 19 further comprising presenting
one or more frequency weighted epochs as canonical spectra
representative of the sleep state in the subject for the
period of time represented by the one or more epochs having

similar sleep state designations.

30. The method of claim 29 further comprising analyzing
the canonical spectra with independent component analysis to

establish sleep state classification confidence.

31. The method of claim 19 further comprising presenting
sleep statistics for the subject according to the sleep state

designations of the one or more frequency weighted epochs.

32. The method as in claim 19, further comprising second
weighting power to normalize the data according to a second
dimension, prior to said classifying to form doubly normalized

data.

33. The method as in claim 32, wherein said second
weighting comprises normalizing at least one frequency across

time.

34. A method as in claim 32,wherein said weighting and
sald second weighting each use Z scoring to carry out

normalizing.
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35. A method as in claim 32, further comprising defining
a discrimination function which represents characteristics of
the double normalized data for a plurality of different sleep
states, and using said discrimination function to determine a

sleep state from said double normalized data.

36. A method as in claim 35, wherein said discrimination
function is a function that is in terms of frequencies which
are present in specified ranges and not present in specified

other ranges, to define a sleep state.

37. A method as in claim 32, further comprising
characterizing a preferred frequency as a frequency which has
the highest normalized value in any specified time, and
analyzing the preferred frequency to determine said at least

one parameter.

38. A method as in claim 37, further comprising defining
a discrimination function as a function of said preferred
frequency, where a discrimination function defines a sleep
state in terms of frequencies which are present, and

frequencies which are not present.
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39. A method as in claim 32, further comprising

analyzing a spectral fragmentation of the double normalized

data, and using the spectral fragmentation as part of said

analyzing.

40. A method as in claim 32, further comprising
analyzing a temporal fragmentation of the double normalized
data, and using the temporal fragmentation as part of said

analyzing.

41. An apparatus, comprising:

a computing device, receiving at least one signal
indicative of brainwave activity, and normalizing at least one
frequency range of said signal to change a power level of data
in said at least one frequency range relative to data in
another frequency range, to form normalized data indicative of
brainwave activityyand using said normalized data indicative
of brainwave activity to determine at least one parameter

indicative of sleep state.

42. An apparatus as in claim 41, wherein said computing

device carries out said normalizing by Z scoring the data.

43. An apparatus as in claim 41, wherein said computer
operates to carry out a second normalizing of the data, to

form double normalized data, prior to using said data.
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44. An apparatus as in claim 43, wherein said second
normalizing carried out by said computer comprises normalizing

frequencies across time.

45. An apparatus as in claim 42, wherein said computer
operates based on a discrimination function which represents
characteristics of said double normalized data for plurality
of different sleep states, and uses said discrimination

function to determine a sleep state from said normalized data.

46. An apparatus as in claim 46, wherein said
discrimination function is a function that is in terms of
frequencies which are present in specified ranges and not

present in specified other ranges, to define a sleep state.

47. An apparatus as in claim 43, wherein said computer
operates to determine a preferred frequency as a frequency
which has a highest normalized value in any specified time,
and analyzes the preferred frequency to determine said at

least one parameter.

48. An apparatus as in claim 43, wherein said computer
determines a fragmentation of the double normalized data as a

part of said analyzing.
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49. An apparatus as in claim 41, further comprising a

brain wave electrode, connected to obtain said signal.

50. An apparatus, comprising:

a first receiving part, receiving information indicative
of brainwave signals; and

a processing part, normalizing at least one frequency
range of said brainwave signals, to form normalized data
indicative of brainwave activity and using said normalized
data indicative of brainwave activity to determine at least

one parameter indicative of sleep state.

51. An apparatus as in claim 50, wherein said processing

part carries out said normalizing by Z scoring the data.

52. An apparatus as in claim 50, wherein said processing
part carries out two separate normalizing of the data, to form

double normalized data, prior to using said data.
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