
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Data-Efficient Learning and Generalization for Industrial Robotic Systems

Permalink
https://escholarship.org/uc/item/625827hs

Author
Wu, Zheng

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/625827hs
https://escholarship.org
http://www.cdlib.org/

Data-Efficient Learning and Generalization for Industrial Robotic Systems

By

Zheng Wu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Associate Professor Koushil Sreenath

Professor Pieter Abbeel

Spring 2024

Data-Efficient Learning and Generalization for Industrial Robotic Systems

Copyright 2024
by

Zheng Wu

1

Abstract

Data-Efficient Learning and Generalization for Industrial Robotic Systems

by

Zheng Wu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Autonomous robots have swiftly revolutionized several industries, enhancing manufacturing
processes by streamlining assembly lines for heightened efficiency, revolutionizing agriculture
with automated planting and harvesting, and refining logistics through the optimization of
warehousing and delivery systems. These advancements underscore the groundbreaking im-
pact of robotics on productivity and innovation across a diverse range of sectors. However,
the rapid advancement in autonomous robotics faces a significant challenge: the heavy de-
pendency on massive data and the daunting task of generalizing learned behaviors to new
tasks and environments. This challenge represents more than a mere technical obstacle;
it is a critical bottleneck that constrains the widespread adoption and effectiveness of au-
tonomous robots, stifling innovation and practical deployment across a myriad of industrial
applications.

In this dissertation, we study the problem of data-efficient learning and generalization for
industrial autonomous robots. Our goal is to develop algorithms that enable robots to learn
from limited data and generalize the learned behaviors to novel tasks and environments
effectively. The core idea is to leverage proper task knowledge and assumptions, embed-
ding them into the algorithmic designs to significantly enhance their data efficiency. Our
research endeavors are dedicated to three principal aspects: data-efficient reward learning,
data-efficient policy learning, and data-efficient policy generalization. These approaches are
meticulously applied across a wide array of industrial scenarios, such as autonomous vehicles,
robotic assembly, and robotic palletization, showcasing their versatility and effectiveness in
enhancing robotic efficiency and adaptability in real-world applications.

This dissertation unfolds in three distinct parts, offering a comprehensive examination of
data-efficient learning and generalization for autonomous robots. Part I lays the foundation
with an in-depth exploration of data-efficient reward learning, employing inverse reinforce-
ment learning (Chapter 2) and representation learning (Chapter 3) to uncover efficient ways
to infer reward signals from limited data. Part II shifts focus to the nuances of data-efficient

2

policy learning. Chapter 4 introduces a data-efficient reinforcement learning (RL) policy
specifically designed for robotic palletization, enhancing data efficiency by narrowing the
exploration space via learned action space masking. In Chapter 5, we propose a novel skill
representation method, namely motion primitives (MP), alongside a data-efficient framework
for learning MP-based insertion skills directly from human demonstrations. Concluding with
Part III, the dissertation advances into the realm of data-efficient policy generalization across
diverse tasks. In Chapter 6, a novel zero-shot policy generalization approach is presented,
capitalizing on the compositional structure of task representations to enable seamless adap-
tation to new tasks without the need for additional data.

i

To my family.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Background and Motivations . 1
1.2 Thesis Outline . 4

I Data-Efficient Reward Learning 8

2 Efficient Inverse Reinforcement Learning for Human Driving Trajectories 9
2.1 Introduction . 9
2.2 The Method . 11
2.3 Experiments on Driving Behavior . 15
2.4 Results and Discussion . 21
2.5 Conclusion . 26

3 Learning Dense Rewards for Contact-Rich Manipulation Tasks 27
3.1 Introduction . 27
3.2 Related Work . 29
3.3 Problem Statement . 30
3.4 Learning Rewards for Multimodal Observations 32
3.5 Experiments . 35
3.6 Conclusion . 39

II Data-Efficient Policy Learning 41

4 Efficient Reinforcement Learning of Task Planners for Robotic Palleti-
zation 42

iii

4.1 Introduction . 42
4.2 Related Work . 44
4.3 Our Approach . 45
4.4 Experimental Validations . 50
4.5 Conclusion . 56

5 A Framework to Learn and Adapt Primitive-Based Skills for Industrial
Insertion Tasks 59
5.1 Introduction . 59
5.2 Related Work . 61
5.3 Our Method . 62
5.4 Experimental Results . 67
5.5 Conclusion . 71

III Data-Efficient Policy Generalization 73

6 Zero-Shot Policy Transfer with Disentangled Task Representation 74
6.1 Introduction . 74
6.2 Related Work . 76
6.3 Our Proposed Approach . 77
6.4 Experimental Results . 81
6.5 Conclusion . 87

7 Concluding Remarks and Suggested Future Works 88

Bibliography 90

iv

List of Figures

1.1 Dissertation outline. This dissertation focuses on three important aspects of
data-efficient learning and generalization for industrial robotic systems. In Part
I, Chapters 2-3 focus on data-efficient reward learning. In Part II, we investigates
data-efficient policy learning algorithms. Finally Part III studies data-efficient
policy generalization. 4

2.1 The overview of the sampling process. 14
2.2 Re-distribution of samples. 15
2.3 Two roundabout scenarios in INTERACTION dataset. 17
2.4 The illustration of the proposed interactive features. The blue and green rect-

angles represent the ego and the other vehicle, respectively. The orange circle is
the conflict point of the two vehicles on their routes. The spatial distance d at t
is demonstrated via red dotted lines. The longitudinal distances to the collision
point for both vehicles at t are shown by the yellow dot curves. 19

3.1 We provide a reward learning approach (DREM) based on the notion of task
progress. For instance, in the figure, the robot is performing a peg-in-hole task.
As the robot moves closer to the peg, the learned reward signal increases, thereby
facilitating sample efficient training of RL algorithms. DREM arrives at this reward
function algorithmically by learning a mapping from robot’s multi-modal obser-
vations to task progress in a self-supervised manner. 28

3.2 DREM takes three sensor signals: RGB images from a fixed camera, RGB images
from a wrist-mounted camera, and 6-axis force data of the last 8 frames from a
F/T sensor. The latent embedding is learned using a reconstruction loss (defined
between the input and the decoded output) and a triplet loss (defined on the
temporal neighboring and non-neighboring pairs as detailed in Section 3.4, where
the data pairs are sampled from the task progress tree in Section 3.4). 32

3.3 The two manipulation tasks used in our experiments. 36
3.4 Visualization of the learned reward function on four different scripted policies for

peg-in-hole task. The results for USB insertion are similar and thus omitted. . . 37
3.5 Results of the policy learning experiments on peg-in-hole (a) and USB insertion

(b). Each method is run with three different random seeds for each task. 40

v

4.1 A typical robotic palletization system is composed of various modules, including
perception, task planner, trajectory planner, controller, etc. Task planning is the
main focus of our work. 43

4.2 An overview of our action masking learning process. The methodology unfolds
in three phases: data collection, for gathering relevant training data; learning
the action masking model, where a U-net architecture learns to distinguish stable
from unstable placements; and embedding the learned action masking model into
RL training, integrating the model to dynamically reduce the action space and
enhance RL optimization. 47

4.3 Visualization of our simulated palletization environment in MuJoCo [110]. Al-
though 80 boxes are displayed for illustrative purposes, the robot is programmed
to perceive and interact with only N boxes within the buffer area. The arrange-
ment of the boxes is randomized and unknown, shuffled anew for each RL episode. 50

4.4 The policy network architecture adopted in our study. We use a CNN to encode
the height map and a MLP to encode the dimensions of forthcoming boxes. The
resulting embeddings are concatenated and serve as the input to the policy net-
work. The action masking model, if it exists, helps the policy network ignore
infeasible actions during learning. 51

4.5 Learning curve of the three methods when buffer size N = 1. Results are averaged
over 5 random seeds. Our method (LearnedMask) converges faster and achieves
better space utilization compared to the baseline methods. 54

4.6 The policy performance along with the number of iterations T . The first two
iterations (T = 2, 3) significantly improves the performance, while the incremental
improvement in performance begins to diminish in later iterations (T = 4, 5). . . 55

4.7 (a) Real-world experiment setup. (b) The boxes (of 5 different sizes) used in the
real-world experiment. 56

4.8 Final pallet configuration from different viewpoints. The resulting pallet is com-
pact and stable, demonstrating the effectiveness and robustness of the learned
task planner. 57

5.1 An overview of our proposed primitive learning and generalization framework.
Our framework learns a dense objective function from human demonstrations. It
applies black-box optimization (Bayesian Optimization (BO) in our experiments)
to learn the primitive parameters w.r.t. the learned objective function. When
generalizing to unseen tasks, we first select similar tasks from the task library
based on the introduced similarity metric and then obtain a transferable search
space for the new task for BO. 60

5.2 An illustrative figure of the motion primitives designed for peg-in-hole tasks. We
show the start and the end states of the robot for each primitive. 63

5.3 Examples of two hole’s turning functions. Our task similarity metric is defined
as the L1 distance between the hole’s turning functions. 66

vi

5.4 Two peg-hole pair instances (waterproof and parallelogram) used in our experi-
ments. 68

5.5 Experimental results for primitive learning and generalization. Time: primitive
learning using task execution time as objective function, LfD: primitive learning
using learned objective function as described in Section 5.3, NoSim: primitive gen-
eralization without measuring task similarities, Full: full generalization method
as described in Section 5.3. ⋆ represents no successful trials is found during the
learning process. 70

5.6 The similarity distances between all insertion tasks. Given a new task, we use the
obtained similarity distances to select similar tasks from the existing task library
and transfer the task knowledge, i.e., primitive parameters, to the new task. . . 72

6.1 Illustration of unseen compositional tasks with existing degrees of variation. (a)
While (yellow, 1) image is unseen, both yellow and 1 are present in other images.
(b) While (real, front) is a novel task, both real and front are present in other
tasks. 75

6.2 Illustration of the targeted policy generalization setting in our work. We assume
the tasks of interest can be described as combinations of degrees of variation
(DoV). Given experience from training task set Ttrain (blue), we aim to generalize
across tasks (in red) whose DoV combinations are unseen but each DoV label is
present in Ttrain. 78

6.3 We achieve task decomposition via disentanglement in the latent task space. The
disentanglement is achieved by encoding different task DoVs with individual DoV
encoders and enforcing identical task DoVs across different tasks have similar
embeddings. 79

6.4 Three set of compositional tasks for algorithm evaluation. (a) Cheetah-vel-comp
with varying goal velocities and physics. (b) Ant-goal-comp with varying goal
positions and physics. (c) Tilted-peg-in-hole-comp with varying hole tilting di-
rections and physics. 82

6.5 Average return on test tasks during the training period. Our method and PEARL
apply the same meta-test strategy, where the first two trajectories are aggregated
into the context for task inference. 83

6.6 Evaluation results of policy generalization on test tasks (∗ not a zero-shot method).
Our zero-shot generalization significantly outperforms the two toher zero-shot
baselines, i.e., SAC and Prior (PEARL), indicating the effectiveness of our pro-
posed method. 84

6.7 Visualization of latent task embedding of our method compared to PEARL. The
embeddings of tasks with identical goal or physics labels are in the same color. . 84

6.8 The Tiled-peg-in-hole-comp task setup in the real world. (a) Real-world setup
with a FANUC LR Mate 200iD robot. (b) 5◦ tilted hole for experiment. 86

6.9 Results of ablation studies on (a) the sparsity ratio (α) of training tasks and (b)
the effect of Exponential Moving Average (EMA). 86

vii

List of Tables

2.1 A summary of the IRL algorithms in the non-interactive driving scenario. 22
2.2 A summary of the IRL algorithms in the interactive driving scenario. 22
2.3 The learned weights of reward function using our proposed approach (NID refers

to non-interactive driving scenario and ID refers to interactive driving scenario) 22
2.4 Generalization results of different IRL algorithms under the MED metric. The

results are in meters. 23
2.5 Generalization results of different IRL algorithms under the probabilistic metric. 24
2.6 The time cost of the three algorithms for both non-interactive and interactive

scenarios. Results are in minutes. 24
2.7 Experiment results of the non-interactive scenario with and without the step of

sample re-distribution. 25
2.8 Experiment results of the interactive scenario with and without the step of sample

re-distribution. 25

4.1 Average space utilization of the obtained policies under different buffer size N . . 54

5.1 Learnable parameters and corresponding range in the motion primitives. 69

viii

Acknowledgments

I extend my first and deepest gratitude to my Ph.D. advisor, Prof. Masayoshi Tomizuka,
whose invaluable guidance and unwavering support have been pivotal throughout my doc-
toral journey. More than a mentor, Prof. Tomizuka has been a guiding light, offering me
the freedom to explore my research interests while providing the wisdom to steer my ef-
forts when necessary. His commitment to academic excellence and genuine concern for my
personal and professional growth have profoundly shaped me. Under his mentorship, I have
evolved not only as a researcher but also as a person, aspiring to mirror his remarkable blend
of dedication, kindness, and zest for life. My transformative journey under Prof. Tomizuka’s
guidance is something I deeply cherish, and for which I am immensely grateful.

My heartfelt appreciation also goes to Prof. Koushil Sreenath and Prof. Pieter Abbeel
for their crucial contributions to my dissertation committee, and to Prof. Mark Muller, Prof.
Francesco Borrelli, Prof. Anil Aswani, along with Prof. Sreenath again, for their roles in
my qualifying exam committee. Their lectures and advice have laid a robust foundation in
controls and robotics that inspired my research path.

I am profoundly thankful for the opportunity to intern at Google X during two remarkable
summers, where I worked on industrial robotic manipulation projects with Dr. Wenzhao Lian
and Dr. Stefan Schaal. This experience introduced me to some of the field’s most challenging
problems and significantly influenced my research at UC Berkeley, enriching my academic
journey with practical insights and inspiring new research directions.

I extend my gratitude to Prof. Cewu Lu, Prof. Jiajun Wu, and Prof. Josh Tenenbaum
for their mentorship during my undergraduate years, which ushered me into the fascinating
world of research and set me on the path to pursuing my Ph.D.

Collaboration has been a cornerstone of my work, and I am grateful to all my co-authors,
including Liting Sun, Changhao Wang, Shiyu Jin, Xinghao Zhu, Lingfeng Sun, Xiang Zhang,
Jianyu Chen, Te Tang, Wei Zhan, Hengbo Ma, Yichuan Li, Yun-Hui Liu, Wenzhao Lian,
Stefan Schaal, Vaibhav Unhelkar, Wanqiao Xu, Zheqing Zhu, Jalaj Bhandari, and Daniel
Jiang, for their insightful discussions and contributions.

My time at the Mechanical System Controls (MSC) lab has been enriched by every
member I’ve had the pleasure to meet and work with, including Zining Wang, Jiachen Li,
Yeping Hu, Zhuo Xu, Saman Fahandezhsaadi, Yujiao Chen, Chen Tang, Jessica Leu, Huidong
Gao, Yiyang Zhou, Hengbo Ma, Jinning Li, Catherine Weaver, Wu-Te Yang, Chenran Li,
Akio Kodaira, Qiyang Qian, Ran Tian, Chenfeng Xu, Wei-Jer Chang, Jen-Wei Wang, Keita
Kobashi, Yuxin Chen, Boyuan Liang, Yixiao Wang, John Viljoen, and many others for their
friendship and support.

Lastly, my deepest love and gratitude go to my parents, Yuquan Wu and Zhanglan Yang,
and my wife, Mengxi Li, for your unconditional love, support, and encouragement. Your
unwavering presence, through both the good times and the challenging ones, has been my
steadfast source of strength and motivation. My achievements are a testament to your love
and belief in me, for which I am forever grateful.

1

Chapter 1

Introduction

1.1 Background and Motivations

Industrial robots are at the vanguard of a transformative movement within the automa-
tion industry, marking a paradigm shift towards more flexible and intelligent manufacturing
systems. The advent of learning methods, particularly Reinforcement Learning (RL) [105]
and Learning from Demonstrations (LfD) [6], has been instrumental in this transition, em-
powering robots with the capacity to operate in environments characterized by fewer con-
straints. These methodologies enable robotic systems to adapt to new tasks and environ-
ments through a process of learning, rather than being programmed with explicit instructions
for each possible scenario. As such, the application of learning methods in robotics facili-
tates a significant expansion in the range of tasks that robots can perform, moving beyond
repetitive, predefined tasks to more complex and dynamic operations [58].

However, the methodologies underpinning RL and LfD demand extensive data to effec-
tively imbue robots with the requisite skills for autonomous operation. This data-intensive
nature presents a formidable barrier to the application of these technologies, especially when
considering the deployment and transferability of learned skills across varied environments, a
task marked by significant challenges [107, 80]. Moreover, the acquisition of real-world data
on physical robotic systems entails considerable expense, limiting the feasibility of widespread
data collection and, by extension, the broad application of these learning methods in diverse
settings [12].

To this end, this dissertation addresses the challenge of enhancing data efficiency in the
context of industrial robotics from three distinct but interconnected perspectives: reward
learning, policy learning, and policy generalization. By dissecting the robot learning prob-
lem into these specific components, this thesis seeks to construct a holistic framework that
not only optimizes the acquisition and utilization of data but also ensures the robustness and
adaptability of learned behaviors across diverse industrial scenarios. Reward learning focuses
on the formulation and refinement of objectives that guide the robot’s actions, laying the
groundwork for effective decision-making. Policy learning then builds upon this foundation,

CHAPTER 1. INTRODUCTION 2

developing strategies that enable the robot to act in a manner that achieves these objectives
efficiently. Finally, policy generalization addresses the challenge of transferring these learned
strategies to new and varied environments, ensuring the robot’s performance remains consis-
tent even when faced with unfamiliar tasks or conditions. Together, these focal areas form
the cornerstone of this dissertation’s approach to advancing the deployment of data-efficient,
learning-based industrial robotic systems. In this section, the necessary background of this
dissertation will be provided.

Reinforcement Learning

Reinforcement Learning (RL) is a subfield of Machine Learning where an agent learns to
make decisions by taking actions in an environment to achieve some goals. The fundamental
principle of reinforcement learning is the concept of agents learning from the consequences
of their actions, rather than from being taught explicitly. This learning process involves
discovering which actions yield the most reward by trying them out and assessing the results.

The typical reinforcement learning scenario involves an agent, the environment, and the
interaction between the two. The agent takes actions in the environment, which is then
responded to by the environment through the provision of rewards and the presentation
of new states. This interaction is often modeled as a Markov Decision Process (MDP),
comprising a set of states (S), a set of actions (A), a transition function (P (st+1|st, at))
that models the dynamics of the environment, and a reward function (R(s, a)). The agent’s
objective is to maximize the cumulative reward it receives over time. The cumulative reward
is often defined as a discounted sum of future rewards:

J(π) = E

[
∞∑
t=0

γtRt

]
(1.1)

where γ is the discount factor, 0 ≤ γ ≤ 1, which determines the present value of future
rewards. Two common approaches for learning the optimal policy are value-based methods,
which involve learning the value function, and policy-based methods, which involve learning
the policy directly.

The key components of an RL system include:

• Agent: The learner or decision maker.

• Environment: The system with which the agent interacts.

• State: A representation of the current situation of the agent within the environment.

• Action: An intervention the agent makes in the environment.

• Reward: A feedback signal from the environment indicative of the success of an action.

• Policy: A strategy employed by the agent, mapping states to actions.

CHAPTER 1. INTRODUCTION 3

• Value Function: A function that estimates the expected return from states or state-
action pairs under a particular policy.

• Model (optional): A representation of the environment’s dynamics used for planning.

Learning from Demonstrations

Learning from Demonstration (LfD) stands as a cornerstone in the evolution of robotic
learning, enabling robots to acquire new skills by imitating human demonstrations. This
methodology circumvents the limitations of traditional programming by directly leveraging
the nuanced capabilities of human teachers, thus facilitating the transmission of complex
task knowledge to robots. The core premise of LfD is predicated on the observation and
replication of human behavior, through which robots discern and adopt the necessary actions
to accomplish a given task.

The mathematical foundation of LfD can be delineated through various problem formu-
lations, each corresponding to a distinct learning strategy within the LfD paradigm. Two
primary methodologies prevalent in LfD research are behavior cloning and inverse reinforce-
ment learning.

Behavior Cloning Behavior cloning (BC) conceptualizes the learning process as a direct
mapping from observed states to actions, akin to supervised learning. Given a dataset of
demonstration trajectories D = {(s1, a1), (s2, a2), . . . , (sN , aN)}, where si denotes the state
and ai the corresponding action at the i-th step of a demonstration, the objective of BC is to
learn a policy πθ that minimizes the discrepancy between the actions predicted by the policy
and those performed by the human demonstrator. The optimization problem is typically
formulated as:

min
θ

1

N

N∑
i=1

L(πθ(si), ai), (1.2)

where L is a loss function measuring the difference between the policy’s output and the
actual action taken by the demonstrator.

Inverse Reinforcement Learning Inverse Reinforcement Learning (IRL) seeks to infer
the underlying reward function that the demonstrator is optimizing. The foundational as-
sumption of IRL is that the demonstrator’s actions are rational and aimed at maximizing
a cumulative reward. Given a set of demonstrations, the goal of IRL is to find a reward
function R such that the demonstrated behavior is optimal under this reward. Formally,
this can be expressed as:

max
R

E(s,a)∼D[logP (a|s, R)], (1.3)

where P (a|s, R) denotes the probability of the demonstrator choosing action a in state s
under the reward function R. The expectation is taken over the distribution of state-action
pairs in the demonstration dataset.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis Outline

This dissertation contains three parts. Part I delves into data-efficient reward learning,
analyzing how we can derive meaningful objectives from trajectory data or multi-modal sen-
sory inputs. Part II shifts the focus towards data-efficient policy learning. Finally, Part III
tackles the intricacies of achieving data-efficient policy generalization, ensuring robust appli-
cability across a diverse array of tasks. Figure 1.1 illustrates the outline of this dissertation.
We provide more detailed descriptions of these components as follows.

Data-Efficient Reward Learning Data-Efficient Policy Learning

Data-Efficient Policy Generalization

Agent
(policy 𝜋)

Environment

action
𝑎!

reward
𝑟!

state
𝑠!

Other
EnvironmentsGene

ralize

Chapter 2
IRL-based reward learning

idea_overview.pdf

State Observation RewardTask Progress

0.05

0.55

0.95

0

1

Chapter 3
Representation-based reward learning

Chapter 6
Zero-shot policy generalization

!!

!!"! " !#$%&'#"!EMA

ℒ!"#"

"$!DoV
Encoder

DoV robot

Compositional Tasks

"$"DoV
Encoder

DoV goal

⋯ ⋯

"!

⋯

$% % &, ()
*%(&, %, ()

!!"" " !#$%&'#""EMA

ℒ!"#"

!(#$!"! , #&!"!)

!(#$#"" , #&#"")

Chapter 5
Primitive-based policy learning

Pallet height map

CNN

Dimensions of N
upcoming boxes

…

(W
, L

, H
)

…

MLP

MLP

Combinatorial
task plan

Env
Execution

Feedback

Action Masking
Model

Chapter 4
RL-based policy learning

Figure 1.1: Dissertation outline. This dissertation focuses on three important aspects of
data-efficient learning and generalization for industrial robotic systems. In Part I, Chapters
2-3 focus on data-efficient reward learning. In Part II, we investigates data-efficient policy
learning algorithms. Finally Part III studies data-efficient policy generalization.

Part I: Data-Efficient Reward Learning

Reward learning is pivotal as it enables robots to discern valuable insights into desired be-
haviors directly from expert demonstrations, bypassing the often complex and labor-intensive
process of manually designing reward functions. Moreover, this foundational understanding
of reward structures greatly benefits the subsequent policy learning stage, enhancing the
efficiency and effectiveness of developing robust policies. This part of dissertation discusses
methodologies developed for data-efficient reward learning.

CHAPTER 1. INTRODUCTION 5

Efficient Inverse Reinforcement Learning for Human Driving Trajectories

In Chapter 2, we present a data-efficient inverse reinforcement learning (IRL) algorithm
in continuous domain to efficiently learn reward functions from human driving trajectories.
Correctly inferring the reward functions of human drivers is crucial for enabling more nat-
uralistic and transparent interactions between the autonomous vehicles and humans. This
algorithm sets itself apart by incorporating a novel continuous-domain trajectory sampler,
allowing directly learning reward functions in the continuous domain while considering the
uncertainties in demonstrated trajectories from human drivers. By leveraging prior insights
into vehicle kinematics and motion planning, we crafted an efficient sampler that precisely
estimates the partition term crucial for accurate reward function retrieval. Our extensive
testing across various driving scenarios — both non-interactive and interactive — demon-
strates the algorithm’s superior performance over conventional IRL methods. It shines in de-
terministic and probabilistic metrics alike, including feature count deviation, mean Euclidean
distance, and the likelihood of demonstrations, while showcasing remarkable generalization
capabilities and a faster convergence rate. Part of this work was published in [119].

Learning Dense Rewards for Contact-Rich Manipulation Tasks

In Chapter 3, we explore learning dense reward functions from robot’s high-dimensional
observations, such as images and tactile feedback, for contact-rich manipulation tasks. In
robotics, the success of reinforcement learning (RL) relies heavily on the availability of high-
quality, dense reward signals. These dense rewards often need to be hand-crafted by a human
and require significant domain expertise and trial-and-error. In contact-rich manipulation
tasks, due to the discontinuous dynamics and high-dimensional observation spaces, the chal-
lenge of reward specification is further amplified; thus, making the adoption of RL methods
for robotic manipulation difficult in practice. Prior research leverages generative adversarial
learning and inverse reinforcement learning (IRL) techniques to learn rewards from continu-
ous, high-dimensional observation space. However, this class of methods inevitable inherits
the instabilities associated with adversarial training and fail to utilize multi-modal observa-
tions. In this chapter, we introduce a novel reward learning algorithm through the len of
representation learning. Our approach learns a mapping from the high-dimensional obser-
vation space to a latent measure of task progress, and thus derive dense rewards from the
measured task progress. We demonstrate the effectiveness and efficiency of our approach on
two contact-rich manipulation tasks, namely, peg-in-hole and USB insertion. The experi-
mental results indicate that the policies trained with the learned reward function achieves
better performance and faster convergence. The content of this chapter is based primarily
on [121].

CHAPTER 1. INTRODUCTION 6

Part II: Data-Efficient Policy Learning

The successful inference of reward functions is a critical precursor to the development
of efficient policy learning methodologies. Nonetheless, the pursuit of data efficiency within
policy learning introduces its own set of unique challenges and complexities. In Part II, we
delve into policy learning techniques specifically designed to enhance data efficiency.

Efficient Reinforcement Learning of Task Planners for Robotic Palletization

Chapter 4 focuses on developing data-efficient reinforcement learning (RL) policy for
tasking planning in robotic palletization systems. Confronted with the substantial challenge
of a vast action space, which is a significant impediment to efficiently apply out-of-the-
shelf RL methods, this chapter introduces a novel method of utilizing supervised learning
to iteratively prune and manage the action space effectively. By reducing the complexity
of the action space, our approach not only accelerates the learning phase but also ensures
the effectiveness and reliability of the task planning in robotic palletization. To assess the
efficacy of our proposed methodology, we conducted extensive experiments and compared our
results with existing RL-based solutions. Experimental results indicate that our proposed
method outperforms other baselines and is more sampling-efficient. Part of this work was
published in [118].

A Framework to Learn and Adapt Primitive-Based Skills for Industrial
Insertion Tasks

In Chapter 5, we jump out of the framework of reinforcement learning (RL) and introduce
a novel approach to learn and adapt industrial insertion policies based on motion primitives
(MP). Distinct from RL, our MP-based methodology benefits from the incorporation of spe-
cific task priors, achieving greater sample efficiency. Our proposed framework is designed to
efficiently learn and adapt MP-based insertion skills from demonstrations, employing black-
box function optimization to refine primitive parameters by drawing on prior experiences.
Human demonstrations serve as a dense source of rewards, facilitating the targeted learn-
ing of parameters. The efficacy of our approach is empirically validated across a series of
eight peg-hole and connector-socket insertion tasks, demonstrating that our framework can
acquire new insertion skills in less than an hour and adapt to novel insertion tasks in as little
as fifteen minutes when implemented on a physical robot. Part of this work was published
in [122].

Part III: Data-Efficient Policy Generalization

In addition to efficient policy learning, achieving data-efficient policy generalization is
essential for the deployment of industrial robots. This allows them to swiftly adapt to new
tasks and environments with minimal data. This segment of the dissertation delves into
methodologies designed to accomplish data-efficient policy generalization.

CHAPTER 1. INTRODUCTION 7

Zero-Shot Policy Transfer with Disentangled Task Representation

Chapter 6 introduces a novel zero-shot policy generalization algorithm for reinforcement
learning (RL) agents, enabling them to generalize over unseen tasks. This chapter specif-
ically targets the transfer of policies across compositional tasks — novel combinations of
existing task elements. Utilizing the concept of task compositionality, we propose a meta-
RL algorithm that employs disentangled task representation. This approach allows for the
generalization of policies to unseen compositional tasks by inferring their representations
through the achieved disentanglement, eliminating the need for additional exploration. Our
methodology is rigorously evaluated through three simulated tasks and a complex real-world
robotic insertion challenge. The experimental results validate our algorithm’s ability to ef-
fectively generalize policies to novel compositional tasks in a zero-shot fashion. The content
of this chapter is based primarily on [123].

Lastly, we conclude by summarizing the key contributions of this dissertation and ex-
ploring promising directions for future research in Chapter 7.

8

Part I

Data-Efficient Reward Learning

9

Chapter 2

Efficient Inverse Reinforcement
Learning for Human Driving
Trajectories

2.1 Introduction

Although rapid progresses have been made in autonomous driving recently, many chal-
lenging problems remain open, particularly when interactions between autonomous vehicles
(AVs) and humans are considered. Advanced techniques in reinforcement learning (RL) and
optimization such as search-based methods[89, 34, 66], gradient-based approaches [65, 14]
and nested optimization [90] have significantly boosted our capability in finding the opti-
mal trajectories of autonomous vehicles that maximize the specified reward/cost functions.
However, to enable more naturalistic and transparent interactions between the AVs and hu-
mans, another question is of equal importance: what should we optimize? A mis-specified
reward function can cause severe consequences. The autonomous vehicles might be either
too conservative or too aggressive, neither of which are desirable or safe in real traffic. More
importantly, optimizing for reward functions that are misaligned with human expectations
will make the behavior of AVs non-transparent to humans, which will eventually degrade
the trust from human.

Thus, it is desired to extract what human drivers are optimizing from real traffic data.
Inverse reinforcement learning (IRL) [49, 77] have been widely explored and utilized for
acquiring reward functions from demonstrations, assuming that the demonstrations are (sub-
)optimal solutions of the underlying reward functions. Many examples have proved the
effectiveness of such IRL algorithms. For instance, [1] proposed an IRL algorithm based on
expected feature matching and evaluated it on the control of helicopters. [63] proposed an
online IRL algorithm to analyze complex human movement and control high-dimensional
robot systems. [125] used RL and IRL to develop planning algorithm for autonomous cars
in traffic and [26] designed a deep IOC algorithm based on neural networks and policy

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 10

optimization, which enabled the PR2 robots to learn dish placement and pouring tasks.
In [102] and [103], a courteous cost function and a hierarchical driving cost for autonomous
vehicles were learned respectively via IRL to allow autonomous vehicles to generate more
human-like behaviors while interacting with humans. [76] extensively studied the feature
selection in IRL for autonomous driving.

Typically, acquiring humans’ driving costs from real traffic data has to satisfy a set of
requirements:

• The trajectories of vehicles are continuous in a high-dimensional and spatiotemporal
space, thus the IRL algorithm needs to scale well in high-dimensional continuous space;

• The trajectories of the vehicles satisfy the vehicle kinematics and the IRL algorithms
should take it into consideration while learning reward functions;

• Uncertainties exist in real traffic demonstrations. The demonstrations in naturalistic
driving data are not necessarily optimal or near-optimal, and the IRL algorithms should
be compatible with such uncertainties;

• The features adopted in the reward functions of the IRL algorithms should be highly
interpretable and generalizable to improve the transparency and adaptability of the
AVs’ behaviors.

Unfortunately, it is not trivial to satisfy all the above requirements simultaneously. First
of all, most existing IRL algorithms, for instance, apprenticeship learning [1], maximum-
entropy IRL [140] and Bayesian IRL [86], are defined within the discrete Markov Decision
Process (MDP) framework with relatively small-scale state and action spaces and suffer from
the scaling problem in large-scale continuous-domain applications with long horizons. The
continuous-domain IOC algorithm proposed in [61] effectively addressed such issue by con-
sidering only the local shapes of the reward functions via Laplace approximation. However,
it is applicable to deterministic problems where all expert demonstrations are required to
be optimal or sub-optimal, which is practically impossible to satisfy via naturalistic driving
data, particularly when the features are not known in advance. Moreover, the Laplace ap-
proximation requires the calculation of both the gradients and the inverse of the Hessians of
the reward functions at the expert demonstrations. When the demonstrations contains long-
horizon trajectories, both variables are time-consuming to obtain. The deep IOC algorithm
in [26] can also work in continuous domain. However, its features are not interpretable, and
lead to poor generalization in different scenarios. In [47], a sampling-based IRL algorithm
was also proposed to address this issue, but it only considered the uncertainties caused by
the noises in control and can hardly capture the uncertainties induced by the sub-optimality
of different driving maneuvers.

In terms of application domain, this chapter is closely related to [59] which also utilize
inverse reinforcement learning to learn the reward functions from real driving trajectories. In
the forward problem at each iteration, it directly solves the optimization problem and use the

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 11

optimal trajectories to represent the expected feature counts. However, such optimization
process might be quite time-consuming, especially when the driving horizon is long.

Thus, in this chapter, we propose an efficient sampling-based maximum entropy IRL
(SMIRL) algorithm that satisfies all the above mentioned requirements in autonomous driv-
ing. In the algorithm, we explicitly leverage our prior knowledge on efficiently generating
feasible long-horizon trajectory samples which allow the autonomous vehicles to interact with
the environment, including human drivers. More specifically, in terms of problem formula-
tion, we adopt the principle of maximum entropy. In terms of efficient trajectory sampling
for the estimation of the partition term with maximum entropy, we integrate our previous
non-conservative and defensive motion planning algorithm with a sampling method to ef-
ficiently generate feasible and representative long-horizon trajectory samples. We compare
the performance of the proposed SMIRL algorithm with the other two IRL algorithms, i.e.,
the ones in [61] and [59] on real human driving data extracted from the INTERACTION
dataset. Three sets of evaluation metrics are employed, including both the deterministic
metrics such as mean Euclidean distance (MED) and feature count deviation and the prob-
abilistic metric such as the likelihood of the ground-truth trajectories. The experimental
results showed that our proposed SMIRL can achieve more accurate prediction performance
on the test set in both non-interactive and interactive driving scenarios.

2.2 The Method

Maximum-entropy IRL

Let x and u denote, respectively, the states and actions of vehicles. The dynamics of the
vehicle, f(·), can then be described as:

xk+1 = f(xk, uk). (2.1)

A driving trajectory in spatial-temporal domain, denoted as ξ, contains a sequence of states
and actions, i.e., ξ = [x0, u0, x1, u1, ..., xN−1, uN−1] where N is the length of the planning
horizon. Given a set of demonstrations ΞD = {ξi} with i=1, 2, · · · ,M , with the principle of
maximum-entropy [140], the IRL problem aims to recover the underlying reward function
from which the likelihood of the demonstrations can be maximized, assuming that the tra-
jectories are exponentially more likely when they have higher cumulative rewards (Boltzman
noisily-rational model [74]):

P (ξ, θ) ∝ eβR(ξ,θ) (2.2)

where the parameter vector θ specifies the reward function R. β is a hyper-parameter that
describes how close the demonstrations are to perfect optimizers. As β→∞, the demon-
strations approach to perfect optimizers. Without loss of generality, we set β=1 in this
work.

Note that in this work, we assume that all the agents/demonstrations share the same
dynamics defined in Equation 2.1. We also assume the reward function underlying the given

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 12

demonstration set is roughly consistent. Namely, we do not consider scenarios where human
drivers change their reward functions along the demonstrations. We also do not specify the
diversity of reward functions among different human drivers. Hence, the acquired reward
function is essentially an averaged result defined on the demonstration set.

We adopt linear-structured reward function with a selected feature space f(·) defined over
the trajectories ξ, i.e.,

R(ξ, θ) = θT f(ξ) (2.3)

Hence, the probability (likelihood) of the demonstration set becomes

P (ΞD|θ) =
M∏
i=1

eβR(ξi,θ)∫
ξ̃∈Φξi

eβR(ξ̃,θ)dξ̃
=

M∏
i=1

1

Zξi

eβR(ξi,θ) (2.4)

where Φξi represents the space of all trajectories that share the same initial and goal condi-
tions as in ξi. Our goal is to find the optimal θ∗ which maximizes the averaged log-likelihood
of the demonstrations, i.e.,

θ⋆=argmax
θ

1

M
logP (ΞD|θ)= argmax

θ

1

M

M∑
i=1

logP (ξi|θ). (2.5)

From Equation 2.4 and Equation 2.5, we can see that the key step in solving the opti-
mization problem in (2.5) is the calculation of the partition factors Zξi . In sampling-based
methods, Zξi for each demonstration is approximated via the sum over samples in the sample
set {τ im},m = 1, 2, ..., K:

Zξi ≈
K∑

m=1

eβR(τ im,θ). (2.6)

Thus, the objective function in Equation 2.5 becomes:

L(θ) =
1

M

M∑
i=1

logP (ξi|θ) =
1

M

M∑
i=1

log
eβR(ξi,θ)∑K

m=1 e
βR(τ im,θ)

=
1

M

M∑
i=1

{βR(ξi, θ)− log
K∑

m=1

eβR(τ im,θ)}. (2.7)

The derivative is thus given by:

∇θL =
β

M

M∑
i=1

(f(ξi)− f̃(ξi)) (2.8a)

f̃(ξi) =
K∑

m=1

eβR(τ im,θ)∑K
m=1 e

βR(τ im,θ)
f(τ im) (2.8b)

where f̃(ξi) defines the expected feature counts over all samples given θ.
Note that an additional l1 regularization over the parameter vector θ is introduced in the

training process to compensate for possible errors induced via the selected set of features.

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 13

The Sampler

From Equation 2.6, we can see that an efficient sampler is extremely important for
solving the aforementioned optimization problem in (2.5). Many sampling-based planning
algorithms have been widely explored by researchers [34, 66, 53]. In this section, we integrate
the sampler from [34] with our previous work on non-conservative defensive motion planning
[127] to efficiently generate samples to estimate Z in (2.4).

We represent maps via occupancy grids and feasible trajectory samples are generated
using decoupled spatio-temporal approaches. As shown in Figure 2.1, at each time step, the
sampler includes three steps: 1) global path sampling via discrete elastic band (ED), 2) path
smoothing via pure pursuit control, and 3) speed sampling via optimization and polynomial
curves.

Step I - Path Sampling via Discrete ED

The objective of the first step is to generate collision-free paths. The key insight is that
by constraining all samples to be safe, we have intrinsically considered the safety constraints
of the optimal problem that the demonstrators try to solve. Moreover, it can also reduce the
sample space to approximate Z, thus improving the efficiency of the inverse learning algo-
rithm. To account for moving objects, it considers the sweep-volume of each object of interest
within a temporal prediction horizon [34]. As shown in Step I in Figure 2.1, a path τ consists
of a sequence of elastic nodes (the blue shaded area), i.e., τ={nodei, INi,OUTi}, i=1, 2, · · ·, T.
For each elastic node, we calculate the weighted sum of three types of forces: the contraction
force (both left and right) from neighboring spatial nodes, the repulsive force from obstacles,
and the attraction force to drive the vehicle towards desired lane centers. Moreover, collision
check is conducted for the IN and OUT edges. Then a graph search method is utilized to find
a set of collision-free paths that satisfy {TI}={τ : collision(IN)=0,Force(node)≤Fthreshold}.
The Fthreshold is a hyper-parameter describing the threshold of the sample set.

Step II - Path Smoothing

All the samples in Step I are piece-wise linear but non-smooth paths, which is not feasible
for the vehicle kinematics and thus not suitable to estimate Z. Hence, in Step II, a pure-
pursuit tracking controller is employed to smoothen the paths in {TI} and generate {TII}.

Step III - Speed Sampling

This step will generate speed samples for each path sample in Step I. First, a suggested
speed profile is generated by finding the time-optimal speed plan under physical constraints
(e.g., the acceleration/deceleration limits). Second, local speed curve sampling based on
polynomials is performed to explore the neighborhood of the suggested speed profile. The
key insight behind such a two-step speed sampling approach is to reduce the exploration
space of the speed profile based on the prior knowledge on human drivers, namely they tend

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 14

Step I: Discrete Elastic Band (Collision-Free Paths)

Step II: Path Smoother via Pure-Pursuit Control

start end

Frepel
<latexit sha1_base64="kdyehZH9vGoBvQPicHrCyQd1z5g=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CbaCp5JURI9FQTxWsLXQhrDZTtulmw92J9IS8le8eFDEq3/Em//GbZuDtj4YeLw3w8w8PxZcoW1/G4W19Y3NreJ2aWd3b//APCy3VZRIBi0WiUh2fKpA8BBayFFAJ5ZAA1/Aoz++mfmPTyAVj8IHnMbgBnQY8gFnFLXkmeXqrZf2ECaYSohBZFnVMyt2zZ7DWiVOTiokR9Mzv3r9iCUBhMgEVarr2DG6KZXImYCs1EsUxJSN6RC6moY0AOWm89sz61QrfWsQSV0hWnP190RKA6Wmga87A4ojtezNxP+8boKDKzflYZwghGyxaJAICyNrFoTV5xIYiqkmlEmub7XYiErKUMdV0iE4yy+vkna95pzXLu7rlcZ1HkeRHJMTckYcckka5I40SYswMiHP5JW8GZnxYrwbH4vWgpHPHJE/MD5/ABaGlHo=</latexit>

Fright contract
<latexit sha1_base64="8cZz7bLO+kCYpvvPD/VwqS73tLs=">AAACBHicbVBNS8NAEN3Ur1q/oh57CbaCp5JURI9FQTxWsB/QhrDZbtulm03YnYgl5ODFv+LFgyJe/RHe/Ddu2hy09cHA470ZZub5EWcKbPvbKKysrq1vFDdLW9s7u3vm/kFbhbEktEVCHsqujxXlTNAWMOC0G0mKA5/Tjj+5yvzOPZWKheIOphF1AzwSbMgIBi15Zrl67SV9oA+QSDYag0VCARITSNOqZ1bsmj2DtUycnFRQjqZnfvUHIYkDKoBwrFTPsSNwEyyBEU7TUj9WNMJkgke0p6nAAVVuMnsitY61MrCGodQlsju0+nsiwYFS08DXnQGGsVr0MvE/rxfD8MJNmIhioILMFw1jbkFoZYlYAyYpAT7VBBPJ9K0WGeMsA51bSYfgLL68TNr1mnNaO7utVxqXeRxFVEZH6AQ56Bw10A1qohYi6BE9o1f0ZjwZL8a78TFvLRj5zCH6A+PzBwbLmFg=</latexit>

F le
ft

co
nt

ra
ct

<latexit sha1_base64="lwcT5lUO9pLv6gEuLHVHvGFsER4=">AAACA3icbVBNS8NAEN3Ur1q/qt70EmwFTyWpiB6LgnisYD+gLWWznbRLN5uwOxFLKHjxr3jxoIhX/4Q3/42btgdtfTDweG+GmXleJLhGx/m2MkvLK6tr2fXcxubW9k5+d6+uw1gxqLFQhKrpUQ2CS6ghRwHNSAENPAENb3iV+o17UJqH8g5HEXQC2pfc54yikbr5g+J1N2kjPGAiwEebhRIVZTgeF7v5glNyJrAXiTsjBTJDtZv/avdCFgcgkQmqdct1IuwkVCFnAsa5dqwhomxI+9AyVNIAdCeZ/DC2j43Ss/1QmZLpHUb9PZHQQOtR4JnOgOJAz3up+J/XitG/6CRcRjGCZNNFfixsDO00ELvHFTAUI0MoU9zcarMBTTMwseVMCO78y4ukXi65p6Wz23KhcjmLI0sOyRE5IS45JxVyQ6qkRhh5JM/klbxZT9aL9W59TFsz1mxmn/yB9fkDKDKX2w==</latexit>

Fattract
<latexit sha1_base64="NLpjDI0hK2fDqlGbYhpboia3AQM=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWwFVyWpiC6LgrisYB/QhjCZTtqhkwczN2INwV9x40IRt/6HO//GSduFth64cDjnXu69x4sFV2BZ30ZhaXllda24XtrY3NreMXf3WipKJGVNGolIdjyimOAhawIHwTqxZCTwBGt7o6vcb98zqXgU3sE4Zk5ABiH3OSWgJdc8qFy7aQ/YA6QEQBIKWVZxzbJVtSbAi8SekTKaoeGaX71+RJOAhUAFUaprWzE4KZHAqWBZqZcoFhM6IgPW1TQkAVNOOrk+w8da6WM/krpCwBP190RKAqXGgac7AwJDNe/l4n9eNwH/wkl5GCfAQjpd5CcCQ4TzKHCfS0ZBjDUhVHJ9K6ZDkmegAyvpEOz5lxdJq1a1T6tnt7Vy/XIWRxEdoiN0gmx0juroBjVQE1H0iJ7RK3oznowX4934mLYWjNnMPvoD4/MHu7eVaQ==</latexit>

elastic-band node

spatial node

Step III: speed sampling

pass

yield

time

sp
ee

d

Figure 2.1: The overview of the sampling process.

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 15

to pursue time-optimal speed plans. To account for discrete driving decisions in interactive
scenarios, we will find one suggested speed profile under each decision and conduct separate
local speed curve search around them as in [127]. For instance, as shown in Step III in
Figure 2.1, when the ego vehicle and another vehicle are driving simultaneously towards an
intersection from crossing directions, we will generate suggested speed profile (thick curves
in Figure 2.1) and local speed samples under both the “yield” (red) and the “pass” (blue)
decisions. Third-order polynomials are employed for speed curve samples. Hence, via Step
III, a spatio-temporal trajectory set {TIII} is generated.

Re-Distribution of Samples

Note that in Equation 2.4, the probability of a trajectory ξ is evaluated via the normal-
ization term Z which is estimated via the samples in {TIII}. However, the samples in {TIII}
are not necessarily uniformly distributed in the selected feature space f(ξ), which will cause
biased evaluation of probabilities, as pointed in [11]. To address this problem, we propose
to use Euclidean distance in the feature space as a similarity metric for re-distributing the
samples. As shown in Figure 2.2, the re-distribution process takes two steps: 1) with an
initial sample set {TIII} ([11](a)), we uniformly divide the feature space into discrete bins,
and 2) re-sample within each bin to make sure that each bin has roughly equal number of
samples.

Figure 2.2: Re-distribution of samples.

Summary of the SMIRL algorithm

The proposed SMIRL algorithm can thus be summarized in Algorithm 1.

2.3 Experiments on Driving Behavior

We apply the proposed SMIRL to learn the human driving behavior from real traffic data.
Experiments on two types of driving scenarios are conducted: one focusing on independent

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 16

Algorithm 1 The Proposed Sampling-based Maximum Entropy IRL for Driving

Result: optimized reward function parameters θ⋆

Input: The demonstration dataset DM = {ξi}i=1:M , the convergence threshold ϵ and the
learning rate α.

1 Initialize θ0, k = 0 and compute expected expert feature count f(DM) = 1
M

∑M
i=1 f(ξi)

2 Generate the sample set D0
s = {τ im}m=1:K,i=1:M using the sampler in Chapter ??

3 Re-distribute the samples according to their similarities as discussed in Chapter ??, and
generate a new sample set Ds

4 Compute the initial expected feature count over all samples f̃0(Ds) =
1

M

∑M
i=1 f̃0(ξi) =

1

M

∑M
i=1

1
K

∑K
m=1

expR(τ im,θ0)∑M
m=1 expR(τ im,θ0)

f(τ im)

5 while ∥f(DM)− f̃k(Ds)∥2 ≥ ϵ do

6 Update θk using gradient decent, i.e., θk+1 = θk +∇θkL = θk + α(f(DM)− f̃(Ds))

7 Compute the expected feature count based on θk+1 over all samples f̃k+1(Ds) =
1

M

∑M
i=1 f̃k+1(ξi) =

1

M

∑M
i=1

1
K

∑K
m=1

expR(τ im,θk+1)∑M
m=1 expR(τ im,θk+1)

f(τ im)

8 k = k + 1

9 end
10 θ∗ = θk

driving behavior (i.e., non-interactive driving (NID)) and the other on interactive driving
(ID) behavior at merging traffic. The NID scenario aims to recover humans’ preference when
they are driving freely, and the ID case aims to capture how human drivers interact with
others in merging traffic.

Dataset

We select training data from the INTERACTION dataset [129, 128] with the NID tra-
jectories from the subset DR USA Roundabout SR and ID trajectories from the subset
DR USA Roundabout FT, as shown in Figure 2.3.

In the NID scenario, we select 113 driving trajectories which travel across the roundabout
horizontally, as demonstrated by the red lines in Figure 2.3(a). 80 trajectories are used as
training data and the remaining 33 as test data. In the ID scenario, we selected 233 pairs
of interactive driving trajectories with two vehicles: an ego vehicle trying to merge into
the roundabout and an interacting vehicle that is already in the roundabout (interactive
trajectories at different locations of the roundabout are contained). An illustrative example
is shown in Figure 2.3(b) where the blue and red lines represent, respectively, the trajectories
of the ego vehicle and the interacting vehicle. The solid segments of the red and blue lines
in Figure 2.3(b) indicate the time period when the two vehicles are interacting with each
other, and we use them for learning. 150 pairs of trajectories are for training and the other

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 17

83 for testing. The sampling time of all trajectories is ∆t = 0.1s.

(a) The NID scenario with
DR USA Roundabout SR

(b) The ID scenario with
DR USA Roundabout FT

Figure 2.3: Two roundabout scenarios in INTERACTION dataset.

Feature Selection

Recall that in (2.3), we assume that the reward function is a linear combination of a set
of specified features. The goal of such a feature space is to explicitly capture the properties
that humans care when they are driving. We categorize the features into two types: non-
interactive features and interactive features.

Non-interactive features

Speed To describe human’s incentives to drive fast and the influence of traffic rules, we
define the speed feature as

fv(ξ) =
1

N

N∑
i=1

(vi − vdesired)
2 (2.9)

where vdesired is the speed limit.

Longitudinal and lateral accelerations Accelerations are related to not only the power
consumption of the vehicle, but also to the comfort of the drivers. To learn human’s prefer-

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 18

ence on them, we include both of them as features:

fa lon(ξ) =
1

N

N∑
i=1

a2lon (2.10)

fa lat(ξ) =
1

N

N∑
i=1

a2lat (2.11)

Longitudinal jerk We also have included longitudinal jerk as a feature since it can de-
scribe the comfort level of human’s driving behavior. It is defined as:

fjerk(ξ) =
1

N

N∑
i=1

(
at − at−1

∆t
)2 (2.12)

Interactive features

To capture the mutual influence between interactive drivers, we define two interactive
features.

Future distance The future distance d is defined as the minimum spatial distance of two
interactive vehicles within a predicted horizon τpredict assuming that they are maintaining
their current speeds (in this chapter, we use τpredict=1s). As demonstrated in Figure 2.4,
between time t and t+τ , the blue vehicle drives from pegot to pegot+τ and the green one drives
from pothert to pothert+τ . At time t, their spatial distance is demonstrated via dt. Hence, The
feature of future distance d is given by

fdist(ξ) =
1

N

N∑
i=1

e
−minτ∈[0,τpredict]

d
(
ti+τ

)
. (2.13)

Future interaction distance Different from fdist(ξ), the feature related to future inter-
action distance is defined as the minimum distance between their distances to the collision
point, i.e.,

fint dist(ξ)=
1

N

N∑
i=1

e
−minτ∈[0,τpredict]

|sego(ti+τ)−sother(ti+τ)|
(2.14)

where sego(ti + τ) and sother(ti + τ) represent, respectively, the longitudinal distances of the
blue and green vehicles to the shared collision point (the orange circle in Figure 2.4) at time
ti+τ . Again, we assume the vehicles maintain their speeds at ti through the horizon τpredict.

Note that the above features all have different physical meanings and units. Hence, to
assure fair comparison of their contributions to the reward function, we normalize all of
them to be within (0,1) before the learning process by dividing them by their own maximum
values on the dataset.

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 19

Figure 2.4: The illustration of the proposed interactive features. The blue and green rect-
angles represent the ego and the other vehicle, respectively. The orange circle is the conflict
point of the two vehicles on their routes. The spatial distance d at t is demonstrated via
red dotted lines. The longitudinal distances to the collision point for both vehicles at t are
shown by the yellow dot curves.

Baseline Methods

To validate the effectiveness and efficiency of our proposed method, we compare our
method with three other representative IRL algorithms: the continuous-domain IRL (CIOC)
in [61], the optimization-approximated IRL (Opt-IRL) in [59], and the guided cost learning
(GCL) algorithm in [26]. CIOC, Opt-IRL and our method are model-based, while GCL is
model-free (i.e., deep learning based). All of them are based on the principle of maximum
entropy, but differ in the estimation of Z.

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 20

• CIOC estimates Z in a continuous domain via Laplace approximation. Specifically, the
reward at an arbitrary trajectory ξ̃ can be approximated by its second-order Taylor
expansion at a demonstration trajectory ξ̂D, i.e.,

R(θ, ξ̃) ≈ R(θ, ξ̂D) + (ξ̃ − ξ̂D)
T ∂R

∂ξD
+ (ξ̃ − ξ̂D)

T ∂
2R

∂ξ2D
(ξ̃ − ξ̂D). (2.15)

This simplifies Z=
∫
ξ̃
eβR(θ,ξ̃)dξ̃ as a Gaussian integral. For more details, one can refer

to [61].

• Opt-IRL estimates Z=
∫
ξ̃
eβR(θ,ξ̃)dξ̃ via the optimal trajectory ξopt. Namely at each

training iteration, with the updated θ, an optimal trajectory ξopt can be obtained by
minimizing the updated reward function, and Z≈eβR(θ,ξopt) is utilized as an approxi-
mation.

• Different from model-based IRL, GCL parameterizes the reward function as well as the
policy via two deep neural networks which are trained together. It uses samples of the
policy network to estimate Z in each iteration. Note that the key difference between
GCL and the model-based IRL is that GCL does not need manually crafted features,
but automatically learns features via the neural networks.

Evaluation Metrics

We employ three metrics to evaluate the performance of different IRL algorithms: 1)
feature deviation from the ground truth as in [1], 2) mean Euclidean distance to the ground
truth as in [102] and [103], and 3) the likelihood of the ground truth. Definitions of the three
metrics are given below.

Feature Deviation

Given a learned reward function, we can correspondingly generate a best predicted future
trajectory for every sample in the test set. The feature deviation (FD) between the predicted
trajectories and the ground-truth trajectories is defined as follows:

EFD =
1

M

M∑
i=1

1

Ni

|f(ξgti)− f(ξpredi)|
f(ξgti)

. (2.16)

where M is the number of trajectories in the test set, and Ni is the length of the i-th
trajectory.

Mean Euclidean Distance (MED)

The mean Euclidean distance is defined as:

EMED =
1

M

M∑
i=1

1

Ni

||ξgti − ξpredi ||2. (2.17)

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 21

Probabilistic Metrics

We also evaluate the likelihood of the ground-truth trajectories given the learned reward
functions through different IRL algorithms. Recalling (2.4), the likelihood of a ground-truth
demonstration ξ in the test set is given by

P (ξ|θ, {T }) = exp (R(ξ, θ))

exp (R(ξ, θ)) +
∑M

i=1 exp (R(τi, θ))
, (2.18)

where {T } is the set of samples generated via our proposed approach. In our proposed
method, CIOC and Opt-IRL, R(ξ, θ)=θT f(ξ), and in GCL, it is given via a neural network.
Among the four IRL algorithms, the one that generates the highest likelihood on the ground-
truth trajectories wins.

Experiment Conditions

Among the four different IRL algorithms (i.e., ours vs the three baselines), the CIOC,
Opt-IRL and ours are model-based and need manually selected features. GCL, on the other
hand, learns to extract features. Hence, for first three approaches, we used the four mentioned
features in the non-interactive case (speed (v des), longitudinal acceleration (a lon), lateral
acceleration (a lat) and longitudinal jerk (j lon)) and six features in the interactive case
(speed (v des), longitudinal acceleration (a lon), lateral acceleration (a lat), longitudinal jerk
(j lon), future distance (fut dis), and future interaction distance (fut int dis)). For the GCL
algorithm, no manual features were utilized, and the inputs were directly trajectories.

Other hyper-parameters of the proposed algorithm is set as follows: Fthreshold = 1.0 with
weights on different forces as wcontract = wrepel = wattract = 1/3, i.e., no preference was
introduced during the path sampling process over the smoothness of the paths, deviations
from the reference lane, and the distance to obstacles.

2.4 Results and Discussion

The performances of the four algorithms, i.e., ours, CIOC, Opt-IRL and GCL, are evalu-
ated based on the metrics in Section 2.3. We conducted two types of tests: one on test sets
in the same environment (seen) as the training sets, and one on completely new test sets in
a new merging environment (unseen).

Performance on Test Sets in Seen Environments

The results of the four IRL algorithms under the non-interactive and interactive driving
scenarios are listed in Table 2.1 and Table 2.2, respectively.

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 22

Table 2.1: A summary of the IRL algorithms in the non-interactive driving scenario.

a lon j lon v des a lat MED Win Count Log Likelihood
Ours 0.16±0.12 0.20±0.15 0.09±0.04 0.09± 0.03 0.21± 0.06 33 -238.98

Opt-IRL 0.19± 0.19 0.32± 0.19 0.13± 0.06 0.11± 0.03 0.29± 0.09 0 -398.93
CIOC 0.48± 0.42 0.23± 0.17 0.10± 0.07 0.06± 0.05 0.23± 0.09 0 -662.16
GCL — — — — 3.73± 1.95 0 -1377.65

Table 2.2: A summary of the IRL algorithms in the interactive driving scenario.

a lon j lon a lat v des fut dis fut int dis MED Win Count Log Likelihood

Ours
0.15±
0.24

0.54±
0.19

0.19±
0.24

0.034±
0.026

0.012±
0.0078

0.032±
0.045

0.066±
0.038

63 -515.97

Opt-IRL
0.69±
1.04

0.55±
0.40

0.20±
0.23

0.083±
0.11

0.021±
0.018

0.043±
0.066

0.14±
0.16

4 -802.01

CIOC
0.42±
0.77

0.69±
0.26

0.26±
0.23

0.064 ±
0.10

0.023±
0.012

0.045±
0.10

0.14±
0.14

9 -595.27

GCL — — — — — —
1.53±
1.16

0 -1196.75

Table 2.3: The learned weights of reward function using our proposed approach (NID refers
to non-interactive driving scenario and ID refers to interactive driving scenario)

a lon j lon a lat v des fut dis fut int dis
NID 1 0.363 0.001 0.14 - -
ID 1 0.007 0.002 0.102 0.007 0.022

Feature Deviation

Feature deviation was evaluated among the three model-based approaches, i.e., ours,
CIOC and Opt-IRL. We can see that compared to the other two algorithms, the proposed
SMIRL algorithm achieved relatively smaller EFD on most of the features in non-interactive
scenario, except for the feature a lat. In the interactive scenario, the proposed algorithm
achieved smaller EFD on all features. Moreover, the variations of EFD are consistently smaller
across different features and scenarios. This means that the proposed algorithm learned a
reward function that can better capture the general driving preference in the dataset, and
thus achieve more stable performance. The learned weights via our proposed approach are
given in Table 2.3. We can see that the contribution of the feature a lat is relatively small in
both scenarios, particularly in the non-interactive case. Therefore, the proposed algorithm
generated a relatively large feature deviation on a lat in the non-interactive case.

MED

MED was evaluated among all four IRL algorithms. In Table 2.1 and Table 2.2, we can
see that our method achieved smaller MEDs and variances compared to the CIOC, Opt-

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 23

IRL and GCL in both driving scenarios. This indicates that the our algorithm can find a
reward function that better explains human driving behaviors, i.e., generates more human-
like trajectories. An interesting finding is that GCL, as a deep learning based method, did
not necessarily achieve better performance than the model-based IRL algorithms. There
might be multiple reasons leading to such an outcome. First, the training sets we utilized
were too small for deep learning based models to converge well. Second, the data from real
traffic contained noises which might deteriorate the performance of GCL, particularly when
the amount of data was not sufficient. Such outcomes also further verified the data efficiency
and better robustness of model-based IRL algorithms in the presence of data noises.

Probabilistic Metric

The results of the four methods in terms of the probabilistic metric are also shown in
Table 2.1 and Table 2.2. We can see that in both scenarios, the ground-truth trajectories in
the test sets all have higher likelihood using the reward function retrieved by our approach
compared to those by the other three algorithms, which demonstrates the effectiveness of
our proposed approach.

The learned weights in Table 2.3 indicate that humans care more about longitudinal
accelerations in both non-interactive and interactive scenarios. During interaction, human
drivers pay more attention to future interaction distance, and less on longitudinal jerks and
lateral accelerations.

Performance on Test Sets in Unseen Environments

To validate the robustness and generalization ability of our proposed method, we also
conducted a comparison among the four IRL algorithms on new test sets in an unseen
environment in the training sets. More specifically, we trained all four algorithms using the
roundabout merging in the training data and directly tested the trained models on other
unseen merging scenarios with different road structures. Both interactive and non-interactive
scenarios were tested. The results were given in Table 2.4 and Table 2.5. It is shown that all
model-based IRL algorithms, including ours, can generalize better compared to GCL. Both
the MED and likelihood did not degrade as significantly as the GCL algorithm.

Table 2.4: Generalization results of different IRL algorithms under the MED metric. The
results are in meters.

Seen NID Unseen NID Seen ID Unseen ID
Ours 0.21 0.74 0.066 0.072

Opt-IRL 0.29 0.89 0.14 0.17
CIOC 0.23 0.90 0.14 0.16
GCL 3.73 46.70 1.53 4.69

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 24

Table 2.5: Generalization results of different IRL algorithms under the probabilistic metric.

Seen NID Unseen NID Seen ID Unseen ID
Ours -238.98 -399.85 -515.97 -571.60

Opt-IRL -398.93 -472.51 -802.01 -870.72
CIOC -662.16 -1153.74 -595.27 -621.13
GCL -1377.65 -3140.24 -1196.75 -2898.64

Computation Complexity

We also compared the convergence speed of the four IRL algorithms. The time cost is
summarized in Table 2.6. We can see that the convergence speed of our method is signif-
icantly faster than that of CIOC, Opt-IRL and GCL. Such a superior convergence speed
benefits from two reasons. First, the sampling method in our proposed approach is efficient
(around 1 minute to generate all samples for the entire training set). Second, the sampling
process is one-shot in the algorithm through the training process. On the contrary, in each
iteration, Opt-IRL needs to solve an optimization problem through gradient descent to find
the optimal trajectory given the updated reward function. Such procedure can be extremely
time-consuming, particularly when the planning time horizon is long. Thus, Opt-IRL might
suffer from the scaling problem with long planning horizon and large training set. GCL also
adopts a sampling-based method. However, it needs to re-generate all the samples in every
training iteration, while our method only needs to generate all samples once. As for CIOC,
the main computation load comes from the computation of gradient and hessian introduced
via the Laplace approximation as shown in (2.15). Besides, we also find the stability of the
training performance for CIOC is quite sensitive to data noise and the selection of feature
sets. Numerical computation issues, particularly for the hessian calculation, could happen
and influence the learning performance in the presence of large data noise and/or miss-
specified feature sets. As a comparison, our proposed method is much less sensitive to either
noise and feature selection, which is also a significant advantage.

Table 2.6: The time cost of the three algorithms for both non-interactive and interactive
scenarios. Results are in minutes.

Ours CIOC Opt-IRL GCL
Non-interactive 6 60 1800 40

Interactive 5 90 1260 30

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 25

T
ab

le
2.
7:

E
x
p
er
im

en
t
re
su
lt
s
of

th
e
n
on

-i
n
te
ra
ct
iv
e
sc
en
ar
io

w
it
h
an

d
w
it
h
ou

t
th
e
st
ep

of
sa
m
p
le

re
-d
is
tr
ib
u
ti
on

.

a
lo
n

j
lo
n

v
d
es

a
la
t

M
E
D

W
in

C
ou

n
t

L
og

L
ik
el
ih
o
o
d

w
/
re
-d
is
tr
ib
u
ti
on

0.
16
±

0.
12

0.
20
±

0.
15

0.
09
±

0.
04

0.
09
±

0.
03

0.
21
±

0.
06

33
-2
38
.9
82

w
/o

re
-d
is
tr
ib
u
ti
on

0.
18
±

0.
10

0.
30
±

0.
16

0.
12
±

0.
05

0.
11
±

0.
04

0.
26
±

0.
08

0
-2
59
.0
64

T
ab

le
2.
8:

E
x
p
er
im

en
t
re
su
lt
s
of

th
e
in
te
ra
ct
iv
e
sc
en
ar
io

w
it
h
an

d
w
it
h
ou

t
th
e
st
ep

of
sa
m
p
le

re
-d
is
tr
ib
u
ti
on

.

a
lo
n

j
lo
n

a
la
t

v
d
es

fu
t
d
is

fu
t
in
t
d
is

M
E
D

W
in

C
ou

n
t

L
og

L
ik
el
ih
o
o
d

w
/
sa
m
p
le

re
-d
is
tr
ib
u
ti
on

0.
14
±

0.
24

0.
53
±

0.
18

0.
19
±

0.
23

0.
03
2
±

0.
02
6

0.
01
2
±

0.
00
74

0.
02
7
±

0.
04
4

0.
07
2
±

0.
04
3

76
-5
15
.9
65

w
/o

sa
m
p
le

re
-d
is
tr
ib
u
ti
on

0.
23
±

0.
53

0.
55
±

0.
18

0.
19
±

0.
23

0.
03
1
±

0.
02
8

0.
01
2
±

0.
00
62

0.
02
7
±

0.
04
5

0.
06
7
±

0.
04
1

0
-5
57
.3
07

CHAPTER 2. EFFICIENT INVERSE REINFORCEMENT LEARNING FOR HUMAN
DRIVING TRAJECTORIES 26

The Effect of Sample Re-Distribution

We investigated the effect of sample re-distribution step (in Chapter ??) for the learning
performance. The experiment results with and without the re-distribution step for the non-
interactive and interactive scenarios are shown in Table 2.7 and Table 2.8, respectively. We
can see that with the procedure of sample re-distribution, the proposed SMIRL algorithm
can learn a better reward function in terms of the three categories of metrics: feature count
deviations, MED and probabilistic metric of the ground-truth demonstrations in the test
set. Most significant improvements are the results on “Win Count”: the re-distribution of
samples can help better evaluate the probabilities of ground-truth demonstrations. Such
results are consistent with the conclusion from [11], namely a uniformed distribution of
samples via appropriate similarity function can help generate more accurate probabilistic
predictions using the Boltzmann noisily-rational model in Equation 2.2.

2.5 Conclusion

In this chapter, we proposed a sampling-based maximum entropy inverse reinforcement
learning (IRL) algorithm in continuous domain to efficiently learn human driving behaviors.
By explicitly leveraging prior knowledge on vehicle kinematics and motion planning, an
efficient sampler was designed to estimate the intractable partition term when retrieving the
reward function. Such benefits were verified by experiments on both non-interactive and
interactive driving scenarios using the INTERACTION dataset. Comparing to the other
three popular IRL algorithms, the proposed algorithm achieved better results in terms of
both deterministic metrics such as feature count deviation and mean Euclidean distance,
and probabilistic metrics such as the likelihood of demonstrations in the test set. Moreover,
the proposed IRL algorithm shows better generalization ability and converges significantly
faster than the baseline methods.

In this work, the effectiveness of the proposed approach for learning driving cost functions
was verified in an offline manner, i.e., the ground-truth trajectories and the optimal trajecto-
ries from the learned cost functions were compared. In the future, we would like to extend to
online experimental verifications where real human drivers can interact with robot vehicles
driven by the learned cost functions in simulators. Also, the proposed IRL algorithm in this
work was designed specifically for mobile robot systems such as ground vehicles. Extension
to general robotic systems with higher dimensions such as robot manipulators will also be
considered. Furthermore, the Euclidean distance metric used in the re-sampling step is not
necessarily the best metric, and we will explore better metrics in future works.

27

Chapter 3

Learning Dense Rewards for
Contact-Rich Manipulation Tasks

3.1 Introduction

Reinforcement learning (RL) has shown promising performance on a variety of complex
tasks, ranging from playing video games to vision-based robotic control [105, 73, 48]. How-
ever, the success of RL techniques relies heavily on the availability of high-quality, dense
reward signals. Learning policies on tasks with sparse rewards, such as Montezuma’s re-
venge [73], remains notoriously challenging. In robotics, these dense rewards often need to
be hand-crafted by a human. This reward engineering typically requires significant domain
expertise as well as trial-and-error. In contact-rich manipulation tasks, due to the discontinu-
ous dynamics and high-dimensional observation spaces, the challenge of reward specification
is further amplified; thus, making the adoption of RL methods for robotic manipulation
difficult in practice.

The goal of this chapter is to reduce the effort involved in reward specification for contact-
rich manipulation tasks, such as peg-in-hole and connector insertion [55]. Inverse reinforce-
ment learning (IRL) techniques, which learn reward functions from expert demonstrations,
offer one such alternative to circumvent the challenge of reward engineering [1]. However,
classical IRL techniques require hand-engineered states or features, making their application
to tasks with high-dimensional and continuous observation spaces (such as camera images
and tactile feedback) challenging [1, 86, 140]. More recently, by leveraging generative ad-
versarial learning [31], IRL techniques have been developed to address continuous [26, 29],
high-dimensional observation spaces [99, 72] and successfully demonstrated on robotic ma-
nipulation tasks. However, despite their encouraging performance, this class of methods
inevitable inherits the instabilities associated with adversarial training [91] and fail to utilize
multi-modal observations.

To learn reward functions for contact-rich manipulation tasks while avoiding the chal-
lenges of generative adversarial learning, we propose a novel approach Dense Rewards

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 28

State Observation RewardTask Progress

0.05

0.55

0.95

0

1

Figure 3.1: We provide a reward learning approach (DREM) based on the notion of task
progress. For instance, in the figure, the robot is performing a peg-in-hole task. As the robot
moves closer to the peg, the learned reward signal increases, thereby facilitating sample
efficient training of RL algorithms. DREM arrives at this reward function algorithmically
by learning a mapping from robot’s multi-modal observations to task progress in a self-
supervised manner.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 29

for Multimodal Observations (DREM). Several contact-rich manipulations tasks can be
specified through sparse reward signals, such as a goal state or a Boolean measure of task
success (e.g., a peg being inside a hole, electricity passing through a connector and socket
pair). While these readily available sparse reward signals are often insufficient for sample
efficient high-dimensional RL, they can help design dense reward signals when coupled with
expert demonstrations or, even, self-supervision. Our approach, thus, combines a sparse
reward signal, self-supervision, and (optionally) observation-only expert demonstrations to
extract a dense reward function. This dense reward can then be used with any appropriate
RL technique to arrive at the robot policy.

Given the sparse measure of task success and optional expert demonstrations, DREM learns
a mapping from the high-dimensional observation space to a latent measure of task progress.
For an arbitrary robot observation, this latent measure aims to provide its task-specific dis-
tance to the goal state, thereby serving as a proxy for the dense reward signal. Intuitively, our
approach builds on the insight that a state that is closer to the task goal (in a task-specific
metric) should be assigned a higher reward than one that is farther, as shown in Figure 3.1.
Our core contribution is to realize this insight computationally for high-dimensional, multi-
modal, and continuous observation spaces. DREM achieves this by first creating a dataset of
observations and their corresponding task progress (latent space labels) through an efficient,
self-supervised sampling process. This dataset is then used to train an encoder-decoder
network, attain a latent space, and obtain the dense reward function.

We evaluate the proposed approach to reward learning on two representative contact-rich
manipulation tasks: peg-in-hole and USB insertion. In these evaluations, DREM learns the
reward using only one expert demonstration. The learned reward function is then used to
generate robot policies using Soft Actor-Critic, a model-free RL algorithm [38]. Experimental
results show that the policies trained with our learned reward achieves better performance
and faster convergence compared to baseline reward functions, including those obtained by
recent reward learning approaches.

3.2 Related Work

In this section, we provide a brief review of research on reward learning, with emphasis
on applications in contact-rich manipulation. Rewards provide a mechanism for humans to
specify tasks to robots [105]. However, reward specification is challenging and can lead to
unanticipated behavior [98, 4]. Consequently, approaches to reward learning have attracted
increasing attention in the last two decades [16, 39, 95], with inverse reinforcement learning
(IRL) being the prominent paradigm [6]. IRL aims to recover a reward function given expert
demonstrations [8, 77, 1]. However, as many rewards may explain the demonstrations equally
well, additional objective criteria that help identify the correct reward have been explored
[9, 86, 140, 40]. For instance, [140] utilize the principle of maximum entropy to learn the
reward.

Recently, deep variants of IRL have also been developed with the goal of addressing tasks

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 30

with larger state, observation, and action spaces [26, 29, 30]. For instance, Finn et al. [26]
provide guided cost learning, which uses neural networks to parameterize the reward func-
tion. [29] provide a reward learning approach robust to changes in environment dynamics.
These IRL techniques and others have been successfully demonstrated on a diverse set of
problems, such as modeling driving behaviors [140, 59, 119], robotic manipulation [26, 75],
and grasping [47]. Despite the steady success of IRL techniques, several open challenges
remain. First, most techniques require hand-engineered features (or states) while efficient
learning of rewards from high-dimensional observations remains difficult. Second, state-of-
the-art IRL techniques utilize adversarial optimization [26, 29, 30], thereby inheriting the
associated training instabilities [91]. Consequently, we seek to develop a reward learning
approach that can reason over high-dimensional observations spaces without utilizing adver-
sarial training.

There are a few related attempts along this line of research. Specifically, [117] re-framed
imitation learning within the standard reinforcement learning setting using expert policy
support estimation. However, they only evaluated their method on a low-dimensional state
space. [13] proposed to use reward sketching provided by annotators to learn a dense model
from the image input. The major drawback of their work is that their method requires many
execution trajectories and the corresponding annotations, which are expensive to acquire. By
contrast, in our proposed method, the data used to train the reward model is self-generated
by the robot. The sampling process only takes a single execution trajectory, much cheaper
than [13].

Many research efforts have been devoted in recent years to learning contact-rich manipu-
lation skills, such as peg insertion, block packing, etc. However, most of the works use either
images [62, 96, 138] or haptic feedback [46, 108, 104] as the policy input. There are only a
few works that exploit image and force together. Specifically, [24] combined vision and force
to learn to play Jenga, [60] proposed to learn a multi-modal representation of sensor inputs
and utilize the representation for policy learning on peg insertion tasks, and the authors in
[51] achieved motion generation for manipulation with multi-modal sensor feedback using
manipulation graphs. However, all the previous works focus on policy learning for manip-
ulation tasks, while our method tries to learn the reward function that can be seamlessly
integrated into policy learning algorithms for manipulation. To the best of our knowledge,
our work is the first attempt to learn dense rewards from multi-modal inputs.

3.3 Problem Statement

Tasks of Interest

Motivated by near-term applications in assembly, we focus on contact-rich robotic manip-
ulation tasks. In particular, we consider tasks that can be suitably modeled as discrete-time
Markov decision processes (MDPs) [84]. Briefly, MDPs describe sequential decision-making
problems and are parameterized via the tuple M ≡ (S,A, T , R), where S corresponds to

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 31

the state space, A corresponds to the action space, T denotes the transition model, and
R(s)→ ℜ represents the real-valued reward of state s.

In contact-rich manipulation tasks, the state space is composed of high-dimensional,
continuous observations available from robot sensors. The robot observation is typically
multi-modal, e.g., visual (through cameras), tactile (through force-torque sensors), and pro-
prioceptive (through measurements of joint angles and velocities). The action space models
the actuation capability of the robot. Prior works have explored a variety of action spaces
across the joint space, the operational space, and their combinations [71]. Our problem is
agnostic to the specification of the action space. In our analysis, without loss of generality,
we model actions as the end-effector twist (linear and angular velocity) of the robot.

The transition model represents the physics of the environment. Due to the task being
contact-rich, the model is highly non-linear, potentially discontinuous, and difficult to specify
analytically. This motivates the need for model-free RL techniques. The objective of an agent
solving the MDP is to arrive at a policy π(s) → a that maximizes its expected cumulative
reward. Several contact-rich manipulation tasks encountered in the manufacturing domain
can be suitably described by the above MDPs, such as peg-in-hole, connector insertion, and
gear assembly [55].

Inputs and Outputs

Assembly tasks are typically categorized by their repeatability and presence of a goal
state sG, which can be used to arrive at a sparse reward (i.e., a positive value at sG and zero
otherwise). We denote this sparse goal reward as RG. However, as motivated in Section 3.1,
this sparse signal is often inadequate for learning the policy for high-dimensional continuous
MDPs, requiring prohibitive amounts of exploration. Instead, to achieve sample efficiency,
RL techiques require a richer reward signal that can guide exploration and result in faster
convergence to the optimal policy.

Hence, our problem focuses on learning a dense reward function (denoted as R), which
when provided as the reward signal to RL techniques results in the optimal policy for the
MDP,M ≡ (S,A, T , RG). To solve this problem, we assume access to the MDP state and
action specifications, the sparse reward function RG, a training environment (i.e., robot’s
real or simulated environment), and (optionally) expert observation-only demonstrations1,
i.e., state sequences from an expert performing the task. Further, we delimit our scope to
manipulation tasks where task progress is monotonic (i.e., the optimal policy does not induce
cycles in the state space). In relation to RL, the two rewards RG and R can be viewed as
extrinsic (specified by the human designer) and intrinsic (self-supervised) reward signals of
the robot, respectively [100].

1Acquiring measurements of actions is challenging when collecting demonstrations from human experts
[6], motivating the focus on observation-only demonstrations.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 32

3.4 Learning Rewards for Multimodal Observations

Image encoder Image decoder

Force encoder

Image encoder

Fusion module

Image decoder

Force decoder

Task
progress

embedding

Temporal
non-neighboring

pair

Temporal
neighboring

pair

Task progress tree

… … …

Figure 3.2: DREM takes three sensor signals: RGB images from a fixed camera, RGB images
from a wrist-mounted camera, and 6-axis force data of the last 8 frames from a F/T sensor.
The latent embedding is learned using a reconstruction loss (defined between the input
and the decoded output) and a triplet loss (defined on the temporal neighboring and non-
neighboring pairs as detailed in Section 3.4, where the data pairs are sampled from the task
progress tree in Section 3.4).

The core idea of our method is to learn a continuous variable p ∈ [0, 1] from the ob-
servation to represent the current progress towards completing the given task. We name it
the task progress variable. When p = 0, it indicates the robot is at the initial state and
p = 1 indicates the task is finished. If task progress is learned for each observation, it can
then be directly used as the reward for policy learning algorithms, i.e., R(st) = p(st). We
propose to learn the function R(s), such that on a nominal task execution trajectory, the
task progress variable is aligned with the temporal positions of the states observed. Namely,
for any nominal task execution trajectory τ = [s0, s1, ..., sN−1] and sN−1 coincides with the
goal state sG, we have

t2 − t1 > ϵ → R(st2) > R(st1) (3.1)

where 0 ≤ t1 < t2 ≤ N − 1 and ϵ > 0. Our approach uses this insight for learning an
embedding from the observation space S to a latent space H, hϕ : S → H, in which the
task progress can be measured as the distance between any state st and the goal state sG.
Once the embedding is learned, the reward function can be easily derived using the ratio of
distance in the latent space:

R(st) = 1− dist(hϕ(st), hϕ(sG))

dist(hϕ(s0), hϕ(sG))
. (3.2)

Our proposed framework, titled DREM, is composed of two stages. First, we adopt a novel
backward sampling process, i.e., sampling from the goal state to the feasible start region,

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 33

to create a dataset of observations s and their temporal positions p(s) . Second, we use the
generated data to learn the embedding that satisfies the constraints defined in Equation (3.1)
and Equation (3.2). It is worth noting that a single observation-only expert trajectory is
used in the backward sampling process and the embedding is learned in a self-supervised
manner.

Backward Sampling

To learn the embedding hϕ, state observations with different temporal positions are re-
quired as the training data. One straightforward solution is to collect many (tens to hundreds
of) expert demonstrations and record the corresponding observations for each state. How-
ever, such data collection can be extremely time-consuming, making the adoption of our
method difficult in practice. Thus, we propose a novel backward sampling process (i.e.,
sampling from the goal state to start region) to tackle the data generation problem. The
similar idea was also explored in [28] for policy learning with increasing difficulty and [126]
for learning generalizable shape descriptor for kit assembly.

Our proposed sampling process is based on the insight that for most manipulation prob-
lems the variance of goal state is much smaller than the start state. For instance, consider
the peg-in-hole task where goal state corresponds to the peg being inside the hole, while
the start state corresponds to the robot holding the peg in free space. For this task, the
goal state is significantly more constrained than the start state (which has much larger vari-
ance), thereby making backward sampling more efficient compared to forward sampling. We
demonstrate the efficacy of the backward sampling method with a single observation-only
(without action annotations) expert demonstration available.

We achieve the backward sampling process by constructing a state tree, named as the task
progress tree, where each node represents a state observation and the node’s depth represents
its temporal position (in reverse order). A general framework to build task progress trees is
detailed as follows:

1. Add goal state sG to an empty seed set Q0 with maximum capacity N ; assign the current
depth d to 0.

2. For each of the state sq in Qd, sample M random actions {ak, k = 1, 2, ...,M} and apply
each of them to sq to get the next state observations {sd+1

k|q , k = 1, 2, ...,M}. Add the M
next state observations into the tree as the child nodes of the parent node sq.

3. For each child node sampled in Step 2, compute an approximate progress measure f(sd+1
k|q).

Intuitively, the progress measure f(·) indicates whether the state observation is progressing
away from the goal state. It can either be task-agnostic such as measuring the information
gain on the distribution of visited states [97], or task-specific such as using one or multiple
observation-only expert trajectories as a reference. The latter option is adopted in our
implementation and detailed below.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 34

4. Select N samples from the M · N child nodes in Step 2 as the new seed set Qd+1 based
on the progress measure in Step 3; increment d to d+ 1.

5. Repeat Steps 2-4 until the number of the states in Qd that are in the start region is above
a threshold N · δ, where δ ∈ (0, 1). For instance, for the peg-in-hole task, the start region
is defined as the set of states with robot’s end effector position being above a pre-defined
height threshold.

As mentioned above, a single observation-only expert trajectory is used to construct the
task-specific progress measure in our implementation (Step 3). Specifically, given the expert
trajectory ξ = {s0e, s1e, ..., sN−1

e }, we simplify Steps 2-4 by setting N = 1. At depth d, we
assign Qd as a single element set, containing the state closest to sN−d−1

e (the d−th state in
reversed order of the expert trajectory ξ) measured by robot’s end-effector pose difference.
The obtained task progress tree, consists of state observation nodes along with their depths,
equivalently, temporal positions (in reversed order). These states and temporal positions are
then used as training data to train the desired embedding hϕ.

Multi-Modal Representation Learning

We aim to learn the embedding from multi-modal inputs that satisfy Equation (3.2) using
the data generated in Section 3.4. Figure 3.2 illustrates our representation learning model.

Multi-Modality Encoder

Three sources of sensory data are used as the inputs of our multi-modality encoder: RGB
images from a fixed camera, RGB images from a wrist-mounted camera, and force-torque
(F/T) readings from a wrist-mounted F/T sensor. We adopt a similar encoder architecture
as used in [60]. For 128x128x3 RGB images, we use a 6-layer Convolutional Neural Network,
followed by a fully-connected layer to transform each image to a 64 dimensional vector. For
F/T readings, we take the last 8 readings from the 6-axis F/T sensor as a 8x6 time-series and
perform 4-layer causal convolution [79] to transform the F/T readings into a 32 dimensional
vector. The three vectors are concatenated and passed as input to a 2-layer Multi-Layer
Perceptron to produce the final 128 dimensional hidden vector.

Multi-Modality Decoder

The decoder takes the fused hidden representation as input and tries to reconstruct
the multi-modal sensor input. For reconstructing RGB images, we use 7-layer transposed
convolution to upsample the hidden vector to the original 128x128x3 size. For F/T readings,
we use 3-layer 1-d transpose convolution to convert the data back to 8x6 size. The loss
function is defined between the original sensor input and reconstructed output. We use
Sigmoid loss for RGB images and L2 loss for F/T readings.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 35

Task Progress Latent Representation Learning

Our goal is to obtain a latent space, where the distance measure between any state
latent representation hϕ(st) and goal state latent representation hϕ(sG) reflects the current
task progress (reward), as shown in Eq (3.2). The supervision signal comes only from the
corresponding temporal positions of the states. This is achieved by enforcing the prior that
for any state pair (st1 , st2) , when t1 < t2, st2 should be closer to the goal state sG than
st1 in terms of the distance measure in the latent space. Let g(st1 , st2) be the distance gap
between (st1 , sG) and (st2 , sG) in the latent space, i.e., g(st1 , st2) = dist(hϕ(st1), hϕ(sG)) −
dist(hϕ(st2), hϕ(sG)). We train the desired latent representation by defining the triplet loss
as:

Ltriplet =

max[0, β1(t2 − t1)− g(st1 , st2)],

if ϵ < (t2 − t1); and

max[0, g(st2 , st1)] + max[0, g(st1 , st2)− β2],

if 0 ≤ (t2 − t1) ≤ ϵ,

where ϵ, β1, β2 are hyper-parameters in our model. We set ϵ = 4, β1 = 0.04, β2 = 0.04. ϵ is
the temporal margin we set to distinguish temporally neighboring pairs from non-neighboring
pairs. For temporally neighboring pairs, we enforce them to have similar distances w.r.t. the
goal state in the latent space. For non-neighboring pairs, we enforce states whose temporal
positions are closer to the goal state should also be closer to the goal state in terms of the
distance measure in the latent space. The distance metric in the latent space is defined as:

dist(hϕ(st), hϕ(sG)) = 1− ⟨hϕ(st), hϕ(sG)⟩, (3.3)

where ⟨·, ·⟩ denotes the dot product and h denotes L2 normalization. Intuitively, the distance
from any state to the goal state is represented by 1−cos(θ), where θ denotes the angle between
the two corresponding embedding vectors.2

The whole network is trained using a weighted sum of the reconstruction loss and triplet
loss, L = Ltriplet+αLreconstruction. We set α = 0.2 during training. To prevent the data imbal-
ance issue, we collect the same number of temporal neighboring pairs and non-neighboring
pairs when sampling from the task progress tree. Once the embedding is trained, we obtain
the reward function according to Equation (3.2).

3.5 Experiments

We aim to investigate two questions in the experiments. First, we examine if the learned
reward realizes our insight, namely, states that are closer to the task goal should have higher
rewards. This allows us to evaluate the effectiveness of our learned reward. Second, we
study how the learned reward can be applied to policy learning in acquiring contact-rich

2We explored other distance metrics, e.g., the Euclidean distance, using which our method also works.
We empirically found policies trained with rewards using the chosen metric achieves the fastest convergence.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 36

(a) The peg-in-hole task (b) The USB insertion task

Figure 3.3: The two manipulation tasks used in our experiments.

manipulation skills. Our study is based on the evaluation in two common contact-rich
manipulation tasks: peg-in-hole and USB insertion (shown in Figure 3.3).

Experimental Setup

All the experiments are conducted in Isaac Gym [68], a GPU-accelerated simulator based
on NVIDIA PhysX and Flex simulation backends, which provides high physics fidelity for
contact-rich simulation. We defer validating our approach on real-robots to future work.
The tasks are performed using a 7-DoF robotic arm modeled on the Kuka LBR IIWA robot.
Three types of sensor observations are served as the input to the robot: 128x128 RGB images
from a fixed camera, 128x128 RGB images from a wrist-mounted camera, and 6-axis F/T
readings from a wrist-mounted F/T sensor. For the peg-in-hole task, we use a round peg with
a clearance of 2.4mm. For the USB insertion task, the clearance is 1.0mm. The simulated
robot is torque controlled and the torque command is computed via the following control
law:

τ = −JTKD(ẋ− ẋref), (3.4)

where τ denotes the 7-dimension joint torque, J the Jacobian, and KD the gain matrix. ẋ is
the current end-effector twist, and ẋref is the twist command (action) computed by an RL
agent or a scripted policy. The joint torques are sent to the robot at 100Hz and the policies
are queried at 5Hz.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 37

Figure 3.4: Visualization of the learned reward function on four different scripted policies
for peg-in-hole task. The results for USB insertion are similar and thus omitted.

Implementation Details

In the backward sampling process for both tasks, we set the number of random actions
M = 500. We randomly perturb the colors of the objects (peg & hole and USB male & USB
female) in the scene to prevent overfitting to certain colors. To train the latent embedding
model, we adopted the network architecture detailed in Section 3.4. We trained the model
on a Titan 2080Ti GPU for 20, 000 iterations using Adam [56] with learning rate lr = 2e−4.

Learned Reward Examination

In this experiment, we want to examine the rationality of the learned reward. Specifically,
we want to test if the output of our reward model assigns sensible values to the visited states
under various policies. To achieve this, we test our learned reward model with four different
scripted policies on the peg-in-hole task listed below.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 38

1. Imitate the expert demonstrator by directly inserting the peg into the hole (Direct
Success).

2. Approach the hole with a small translation error until contact → Align the peg with
the hole center → Insert the peg into the hole (Align Success).

3. Approach the hole with a small translation error until contact → Move away from the
hole center while the peg is in contact with the hole → The peg loses contact with the
hole (Search Fail).

4. Random policy (Random).

The results of the learned reward model on the four scripted policies are shown in Figure 3.4.
In Direct Success, the reward increases (approximately) linearly from 0 to 1 along with the
number of timesteps in the trajectory. The reward in Align Success first increases similarly
as in Direct Success, until the peg makes contact with the hole surface. Then it roughly
stays the same while attempting to align with the hole center, and continues increasing to
1 when the peg is aligned and being inserted into the hole. For Search Fail, the reward
behaves similarly as in Align Success at the beginning (increases and then plateaus). The
reward then abruptly decreases to a small value (below 0.1). That is exactly the timestep
when the peg loses contact with the hole surface (the force in z-axis rapidly changes from a
large positive value to around 0). The reward of Random just fluctuates around a small value
close to 0. The above observations demonstrate the interpretability of our learned reward
model and its potential to provide denser supervision for policy learning.

RL Policy Learning with Learned Reward

The policy learning experiments aim to demonstrate the effectiveness of our learned re-
ward, and provide a rigorous comparison with other reward design methods. While our
approach to reward learning is agnostic to the RL algorithm being used, we use Soft Actor-
Critic (SAC) in our evaluations [38]. DREM refers to our learned reward model introduced in
Section 6.3, with all three modalities as input. We compare it with four baseline methods:
Sparse represents the sparse reward, i.e., the binary success indicator at the end of episode;
Engineered represents a handcrafted reward − exp(κ||x− xG||2), i.e., a function of the L2

distance between the current robot’s end-effector pose and the target pose; VICE-RAQ repre-
sents the state-of-the-art reward learning algorithm on high-dimensional (image) input [99];
Image learned represents our reward model with only images as input. For all baseline
experiments, we use RGB images as the input of the policy, while for DREM we use RGB
images and force data as the input. We adopted a similar neural network in Section 3.4 as
the policy network. The experimental results are shown in Figure 3.5.

It can be observed that our learned reward (DREM and Image learned) outperforms the
other reward designs in both peg-in-hole and USB insertion, indicating that our proposed
reward learning framework is able to learn reward functions that boosts RL training. The

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 39

fact that DREM achieves faster convergence and a higher success rate than Image learned

demonstrates the advantages of multi-modal input (force-torque signals in our case), i.e.,
enabling a more efficient and robust policy. Sparse does not achieve any success within
the training budget, showing difficulty of the two contact-rich tasks. Engineered performs
satisfactorily at peg-in-hole but much worse at the more difficult USB insertion, as it requires
a tighter fit and a strict orientation alignment. It should be noted that VICE-RAQ does not
succeed at the two tasks experimented with; the success rate remains 0 after 150k training
steps. We hypothesize that only using images, adversarial training is easily stuck in a local
optimal as similar images got similar rewards even though they might be in different contact
states. We constructed a significantly easier task by configuring the peg to be close to the
hole initially (aligned right above the hole center), to avoid training getting stuck due to
frequent contact states. A 0.10 success rate is achieved after 50k training steps; however,
if the peg is initially misaligned with the hole center, though close, training fails to achieve
any success.

3.6 Conclusion

In summary, we propose an approach to learn dense rewards from multi-modal observa-
tions (DREM), with particular emphasis on contact-rich manipulation tasks. A novel backward
sampling method is proposed to generate requisite training data through exploration, guided
by a single expert demonstration. Dense rewards are learned from the high-dimensional ob-
servation space without adversarial training. We evaluate DREM on two assembly tasks and
demonstrate its efficacy through comparisons with other learned and handcrafted reward
functions.

Our work also motivates several future directions. For instance, currently DREM is geared
towards monotonic tasks, i.e., where task progress is monotonic in the observation space.
While this assumption is valid for a range of assembly tasks (due to the presence of defined
start and goal states), extension of DREM to non-monotonic tasks remains of interest. Further,
the experiments indicate that task-specific logical concepts (such as in-contact or losing-
contact) underlie our learned reward. Hence, another interesting direction is to formalize
the problem of recovering such logical concepts from dense rewards to enable multi-task
learning and consequently further improve sample efficiency.

CHAPTER 3. LEARNING DENSE REWARDS FOR CONTACT-RICH
MANIPULATION TASKS 40

Timestep

Timestep

Su
cc

es
s R

at
e

Su
cc

es
s R

at
e

(a)

(b)

Figure 3.5: Results of the policy learning experiments on peg-in-hole (a) and USB insertion
(b). Each method is run with three different random seeds for each task.

41

Part II

Data-Efficient Policy Learning

42

Chapter 4

Efficient Reinforcement Learning of
Task Planners for Robotic
Palletization

4.1 Introduction

The demand for efficient palletization in warehouses and logistics centers has grown
significantly in recent years. This increase is largely driven by the expansion of global trade
and the rise of e-commerce, which require rapid and precise handling of goods. Traditional,
manual methods of palletization are often unable to meet these demands due to their labor-
intensive nature and potential for inconsistency. Consequently, the development of robotic
systems for palletization has become crucial. These robotic systems, as illustrated in Fig 4.1,
are complex and composed of various integral components, including perception systems for
item identification and localization, task planning modules for decision-making, trajectory
planning and control modules for collision-free and precise execution, etc. In this study,
our focus is primarily on the task planning module of robotic palletization systems, which
functions as determining the optimal picking order from a stream of boxes, deciding how
each box should be rotated, and identifying the precise location for placing each box on the
pallet, all in an online and dynamic fashion.

The task planning for robotic palletization in most industrial environments can be con-
ceptually framed as a variant of the online 3D Bin Packing Problems (BPP), where the in-
ventory of items is predetermined, yet their sequence of arrival remains unpredictable [115].
Furthermore, in our work we address a more realistic and challenging problem setting that
reflects common practice in robotic palletization systems by including a ”buffer” area. This
consideration allows the robot to utilize an auxiliary space for storing up to N pending
items, thereby expanding its operational capabilities beyond merely handling the immediate
one. While many research efforts have been made towards addressing online 3D BPP [52,
36, 116, 115], most of the studies rely on hand-coded heuristic methods. In contrast to

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 43

Perception

Trajectory
planner

noun-brain-
1355044.png

Task
planner

noun-brain-
1355044.png

Controller

……

Figure 4.1: A typical robotic palletization system is composed of various modules, including
perception, task planner, trajectory planner, controller, etc. Task planning is the main focus
of our work.

these approaches, our work aims to statistically learn an optimal and physically feasible pal-
letization task planner. While there are several existing works that use RL to solve online
3D BPP [134, 132, 133], these works are characterized by two primary limitations. Firstly,
during policy training, these studies either neglect the aspect of packing stability [134, 132]
or assess stability through heuristic-based analyses [133], rendering the policies derived from
such methods less viable for deployment in real-world systems where systematic uncertainties
are present. Secondly, the problem settings in these works typically overlook the existence of
the buffer area, thus potentially limiting their applicability and effectiveness in more complex
scenarios.

In this work, we aim to provide an effective solution to our specific online 3D BPP prob-
lem. Due to the combinatorial nature of the action space of the problem, applying RL to
solve online 3D BPP suffers from the problem of large action space. This challenge is further
exacerbated with the introduction of the ”buffer” area. One commonly used solution to the
problem of RL with large action space is through ”invalid action masking” [112, 10, 124],
which identifies and masks out the invalid actions and directs the policy to exclusively sam-

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 44

ple valid actions during the learning phase. Our work adopts a similar approach, pinpointing
valid actions as task plans that guarantee the stability of intermediate item stacks on the pal-
let under gravitational forces throughout the training process. Accurately estimating action
masks (i.e., valid actions) for varying states during RL training is crucial, albeit challenging.
To address this, we introduce a methodology that learns to estimate action masks through
supervised learning (Section 4.3). Specifically, leveraging the image-like characteristics of
observation and action mask data, we employ a semantic segmentation paradigm [15, 69]
to train the action masking model. The training dataset is compiled through an offline
data collection phase, utilizing a physics engine to verify the stability of specific placements
across various pallet configurations. Moreover, to ameliorate the potential issue of distribu-
tion shift inherent in our approach, we propose a DAgger-like framework [88] designed to
iteratively refine the action masking model, thereby enhancing the RL policy’s performance
(Section 4.3).

To assess the efficacy of our proposed methodology, we conducted extensive experiments
and compared our results with existing RL-based online 3D BPP solutions. Experimental
results indicate that our proposed method outperforms other baselines and is more sampling-
efficient. We also demonstrate the effectiveness of our proposed iterative framework through
experimental evaluations. Lastly, our learned task planner is deployed in a real-world robotic
palletizer to demonstrate the robustness and applicability of our approach in real-world
settings.

4.2 Related Work

In this section, we provide a brief review of research on 3D Bin Packing Problems (BPP)
under both the offline and online settings.

Offline 3D BPP

The problem of 3D bin packing, a complex variant of the classical bin packing problem,
involves efficiently packing objects of various sizes into a finite number of bins or containers
with fixed dimensions in three dimensions. The offline version of the problem, where all
information about the objects to be packed is known in advance, has been particularly
challenging due to its NP-hard nature. Early strategies were heavily reliant on heuristic
methods, as initially demonstrated by [70] that extended 2D BPP algorithms to 3D context.
This is followed by many research efforts that propose various heuristic and meta-heuristic
algorithms to approximate the solutions [23, 17, 50]. More recently, [41, 131] propose to use
deep reinforcement learning (DRL) to learn the policy for offline 3D BPP. Our work differs
from these works by focusing on online 3D BPP instead of offline version.

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 45

Online 3D BPP

In contrast to offline scenarios, online 3D bin packing problems involve making packing
decisions without knowledge of future items, presenting unique challenges in achieving opti-
mality and efficiency. Research in this domain has focused on developing adaptive heuristics
and algorithms that can handle the sequential nature of item arrivals. Notably, Karabulut
et al. [52] proposes deep-bottom-left (DBL) heuristics and Ha et al. [36] extends [52] by
employing a strategy that orders empty spaces using the DBL method and positions the
current item into the earliest suitable space. [116] introduces a Heightmap-Minimization
technique aimed at reducing the volume expansion of items in a package when viewed from
the loading perspective. Aside from heuristics-based methods, there are also research at-
tempts utilizing DRL to solve the problem of online 3D BPP [134, 132]. DRL for online
3D BPP typically suffers from the problem of large action space, making the RL algorithms
hard to optimize. [134] address this challenge by implementing straightforward heuristics
to reduce the action space, yet their demonstrations are confined to scenarios with limited
discretization resolution. Conversely, another study by [132] seeks to alleviate this issue by
devising a packing configuration tree that employs more intricate heuristics to identify a sub-
set of feasible actions, marking a progression from their prior work. Our research is distinct
from these approaches in two critical aspects. Firstly, the scenario we investigate is notably
more complex and mirrors real-world conditions more closely. Specifically, we introduce a
”buffer” area, enabling the agent to select any item from a queue of upcoming boxes and
rotate it along any axis, thereby significantly expanding the action space. Furthermore, our
model accounts for translational and rotational uncertainties that occur when a robot places
a box onto the pallet—factors that are overlooked by [132, 134] but are prevalent in actual
physical systems. Secondly, from a methodological perspective, our approach diverges from
the reliance on varying heuristics to trim the action space. Instead, we introduce a supervised
learning-based pipeline to develop an action masking mechanism.

4.3 Our Approach

In this section, we provide detailed description of our proposed method. Initially we
specify the problem setting of the online 3D Bin Packing Problem (BPP) addressed in this
study. Then a comprehensive description of our action masking pipeline, along with its
integration into reinforcement learning (RL), is presented. Furthermore, we introduce the
iterative adaptation of our proposed algorithm, illustrating the progressive refinement of our
approach.

Problem Formulation

The online 3D BPP can be formulated as a Markov decision process (MDP), denoted
by M = (S,A,P ,R, γ), where S signifies the state space, A denotes the action space,
P represents the transition probability between states, and R encapsulates the real-valued

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 46

rewards. The objective of RL is to find a policy, π(a|s), that can maximize the accumulated
discounted reward J(π) = E [

∑∞
t=0 γ

tRt], where γ represents the discounted factor. In the
following, we details the components of the MDP in this study.

State In the process of palletization, the policy π evaluates two primary sources of infor-
mation: the present configuration of the pallet and the dimensions of the forthcoming boxes.
Consequently, we model the state at any given time t as st = {Ct, dt}, where Ct denotes the
current configuration of the pallet, and dt encapsulates the dimensions of the forthcoming
boxes. Following [134], we employ a height map to depict the pallet configuration. This
involves discretizing the pallet into an lp × wp matrix, where each element signifies the dis-
cretized height at the corresponding location on the pallet. The variable dt is conceptualized
as a list of N 3-dimensional tuples, with each tuple specifying the (length, width, height)
of a box. Here, N represents the capacity of the ”buffer” area, which is ascertained by the
perception system and typically ranges between 3 and 5.

Action At each timestep, the policy π is tasked with executing three sequential decisions:
selecting a box from the N boxes in the upcoming queue (buffer area), rotating the box to
the desired orientation, and positioning the box on the pallet. We restrict our consideration
to axis-aligned orientations of the boxes, yielding 6 possible orientations. Furthermore, the
front-left-bottom (FLB) corner of the box can be positioned in any grid cell among the lp×wp

cells available on the pallet. Consequently, the action space is of a combinatorial nature,
characterized by a dimensionality of N×6× lp×wp, i.e., action a ∈ RN×6×lp×wp . In a typical
industrial context, with N = 5 and lp = wp = 25 (at a 1-inch discretization resolution),
this translates to an action space with 18, 750 dimensions. The extensive size of the action
space introduces additional complexity to the RL problem, complicating the optimization
process [22].

Reward We conceptualize the accumulated reward as a measure of the space utilization
of the current pallet, contingent upon the stability of the items positioned on it. The reward
function R is formally defined as follows:

R(st) = 1(st) ·
Vtotal

Vmax

(4.1)

Here, 1(st) serves as an indicator function that validates the physical stability of the boxes
on the pallet at state st. Vtotal refers to the cumulative volume of the boxes currently
situated on the pallet, while Vmax signifies the theoretical maximum volume the pallet can
accommodate. Given considerations for safety during transport, it is assumed that the
maximum height of the boxes on the pallet should not surpass hp = 25 inches, thus defining
Vmax = lp ·wp · hp = 253. Consequently, we can delineate a dense reward at each timestep as
rd(st) = 1(st) · Vt

Vmax
, where Vt denotes the volume of the most recently placed item.

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 47

Learning action maskingData collection

Policy

States s!

Action Masking
Model

Masked action space

Init RL Training

Uniformly
sample states

Pallet height map
Box-to-place
dimension

WL

H

Physics
simulation

Action masking annotation

L L L …
L
L

L

…

…

…

…

…

H H H …
H
H

H

…

…

…

…

…

Pallet height map Box length

Box width Box height

W W W …
W
W

W

…

…

…

…

…

4-
ch

an
ne

l i
m

ag
e

U-Net

Figure 4.2: An overview of our action masking learning process. The methodology unfolds
in three phases: data collection, for gathering relevant training data; learning the action
masking model, where a U-net architecture learns to distinguish stable from unstable place-
ments; and embedding the learned action masking model into RL training, integrating the
model to dynamically reduce the action space and enhance RL optimization.

Action Space Masking via Supervised Learning

The principal challenge in applying RL to address the online 3D BPP resides in the
expansive dimensionality of the action space, which complicates the optimization of RL
algorithms. To counteract this issue, we embrace the strategy of ”invalid action masking”
[112, 10, 124], which serves to alleviate the aforementioned challenge. This section elucidates
our methodology for developing the action masking model through supervised learning. The
fundamental premise behind action space masking is the exclusion of invalid placements that
could culminate in unstable pallet configurations. While prior studies have implemented sim-
ilar strategies to exclude unstable placements and thereby simplify the learning process[133,
134], their approaches to action masking rely predominantly on heuristic algorithms. We
posit that heuristic-based action masking exhibits several limitations: (i) The necessity for
multiple hyperparameters in most action masking methods poses a challenge in tuning these
parameters to accommodate diverse scenarios, such as variations in box sizes and weights.
ii) Heuristic methods, particularly those involving the analysis of the center-of-mass (CoM),
fail to account for uncertainties inherent in palletization execution, necessitating further
elaboration. For instance, consider a heuristic that uses CoM analysis to prevent tipping
by restricting box placements that significantly shift the CoM. However, this doesn’t con-
sider real-world uncertainties like slight placement inaccuracies due to robot sensor errors,

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 48

leading to unexpected CoM shifts and potentially unstable configurations despite heuristic
approval. This example underscores the limitations of CoM-based heuristics, highlighting
their lack of accommodation for practical uncertainties in robot execution, which questions
their reliability in real-world scenarios. In response, our work investigates the feasibility of
adopting supervised learning to construct the action masking model. Figure 4.2 delineates
the framework of our proposed methodology for learning action masking. Specifically, the
learning process is segmented into the following phases:

Data Collection The action masking models eliminate unstable placements by learning
to infer the stability of sampled box placements during RL training process. Specifically,
we aim to identify a set of feasible placements, or action masks gt ∈ Rlp×wp , based on the
configurations of the pallet Ct and the (rotated) dimensions of the boxes bt, formulated as
gt = fθ(Ct, bt). The collection of data samples consisting of (Ct, bt) pairs along with their
corresponding gt is essential for the learning of the action masking model fθ. However,
ensuring that the collected data accurately reflects the RL training distribution poses a
significant challenge. To address this, we initially employ a heuristic-based method to develop
an initial RL policy πo, from which we systematically sample and store (Ct, bt) pairs for
subsequent offline data collection.

In the data collection phase, our goal is to generate the corresponding annotations gt
given the sampled RL states (Ct, bt). Specifically, gt represents the placement stability on
every discretized bin of the pallet for a given pallet state Ct and box dimension bt. To achieve
this, we leverage the physics simulation, i.e., MuJoCo [110], to evaluate the stability of every
potential placement on the pallet, thereby generating gt. The dataset thus compiled, denoted
as D = {(Ct, bt, gt)}, forms the basis for the subsequent learning stage of the action masking
model.

Learning the Action Masking Model As illustrated in Figure 4.2, gt functions as a
binary image corresponding in size to Ct, with pixels valued at 1 indicating stable placements
and those valued at 0 signifying unstable ones. Leveraging the image-like properties of
both the input and the output, we transform the learning challenge into a well-established
computer vision task known as semantic segmentation [15, 69, 87]. To this end, we generate
three single-channel images mirroring the dimensions of Ct, each channel encoding the length,
width, and height of the box, respectively. These images are then combined with Ct to
produce a 4-channel image, which serves as the input, with gt acting as the target output.
This input-output pair is subsequently processed by a conventional U-net [87] architecture
for training purposes. The resulting neural network, regarded as the trained action masking
model fθ, is subsequently integrated into the RL training regimen.

Embedding the Learned Action Masking Model into RL Training We employ the
developed action masking model to trim the action space during RL training, enhancing the
efficiency of the learning process. At each timestep, with the pallet configuration Ct and the

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 49

dimensions of the box to be placed bt given, the model fθ identifies a viable subset ĝt from
the total available placements (lp · wp placements). The RL policy π is then restricted to
selecting placements solely from this feasible subset ĝt. This strategy effectively narrows the
action space, significantly facilitating the RL training. We demonstrate the effectiveness of
the action masking model for RL training in Section 6.4.

Iterative Action Masking for RL Training

While being effective, the learned action masking model can still be inaccurate in cer-
tain states, particularly for the out-of-distribution (OOD) states encountered during the RL
training process. Such discrepancies arise because during RL training the agent might ex-
plore states that diverge significantly from those within the training dataset D = (Ct, bt, gt),
leading to a misalignment between the distributions of the training data and the actual
scenarios the model faces.

Inspired by DAgger [88], we introduce an iterative enhancement pipeline for refining the
learning of the action masking model. This process begins with the application of a heuristic-
based method for initial action masking during RL training, yielding the initial policy π0.
Concurrently, we systematically collect state samples during π0 training, assembling dataset
D0 via offline collection as detailed in Section 4.3. Utilizing D0, we then train the neural
network-based action masking model f 0

θ , as depicted in Section 4.3. This model, f 0
θ , is sub-

sequently integrated into a new RL training cycle to derive an enhanced policy π1. This
cycle of training, data collection to form Di, and model updating to f i

θ is repeated, each
iteration aiming to embed the updated action masking model in the subsequent RL train-
ing phase. This iterative process continues until the RL policies cease to show significant
improvements, thereby optimally aligning the action masking model with the encountered
state distributions. The pseudo code of the proposed method is presented in Algorithm 2.

Algorithm 2 Iterative action masking model learning for RL training

Result: Best policy πi on testing.
Input: Initial policy π0 and dataset D0 obtained from RL training with heuristics-based

action masking.
11 Initialize D ← D0

12 Train action masking model f 0
θ with D

13 for i = 1 to N do
14 RL training with f i

θ to obtain policy πi

15 Collect dataset Di by uniformly sampling from πi training
16 Aggregate datasets: D ← D ∪Di

17 Train f i
θ with D

18 end
19 return best πi on testing

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 50

Pallet

boxes with
different sizes

robot

Figure 4.3: Visualization of our simulated palletization environment in MuJoCo [110]. Al-
though 80 boxes are displayed for illustrative purposes, the robot is programmed to perceive
and interact with only N boxes within the buffer area. The arrangement of the boxes is
randomized and unknown, shuffled anew for each RL episode.

4.4 Experimental Validations

In this section, we present a thorough quantitative analysis of our proposed approach.
Our evaluation is structured to address the following key questions: 1) Does the method
outlined in Section 4.3 successfully learn to identify the feasible subset of placements? 2)
Does the integration of the learned action masking model enhance the RL training process,
culminating in a superior policy? 3) Does the iterative action masking learning strategy
described in Section 4.3 contribute to further enhancements in the RL agent’s ultimate
performance?

Experimental Setup

To explore the task planning challenges associated with the palletization problem, we de-
veloped a simulated palletization task in MuJoCo [110], reflecting a realistic logistic scenario,
as depicted in Figure 4.3. This simulation environment features 80 boxes of 5 distinct sizes,

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 51

Pallet height map

CNN

Dimensions of N
upcoming boxes

…

(W
, L

, H
)

…

MLP

MLP

Combinatorial
task plan

Env
Execution

Feedback

Action Masking
Model

Figure 4.4: The policy network architecture adopted in our study. We use a CNN to encode
the height map and a MLP to encode the dimensions of forthcoming boxes. The resulting
embeddings are concatenated and serve as the input to the policy network. The action
masking model, if it exists, helps the policy network ignore infeasible actions during learning.

with dimensions (in inches) of 10×8×6, 9×6×4, 6×6×6, 6×4×4, 4×4×4. The pallet is
specified to have dimensions of 25× 25 inches, with a stipulation that the maximum height
of stacked boxes cannot exceed 25 inches. For our experiments, we applied a discretization
resolution of 1 inch to both the boxes and the pallet.

At each planning step, the task planner receives the current pallet configuration, rep-
resented as a height map, and the dimensions of N forthcoming boxes in the buffer, then
generates a task plan. This plan involves selecting one of the N boxes, orienting it as desired,
and placing it on the pallet, in accordance with the methodology described in Section 4.3.
To expedite the learning process, the actual ’pick-rotate-place’ actions by the robot are by-
passed; instead, the chosen box is immediately positioned at the planner’s determined goal
pose. To account for uncertainties inherent in physical execution, each box placement is sub-
jected to random translational noise on the xy plane δt ∼ N (0,0.05) and rotational noise
around the z-axis δr ∼ N (0, 5), measured in inches and degrees, respectively. The sequence
in which the 80 boxes are presented to the policy is randomized and unknown at the start
of each RL training episode, and the weights of the boxes are also randomized to further
enhance the simulation’s fidelity to real-world variability.

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 52

Implementation Details and Baselines

Our objective is to validate the efficacy of the learned action masking model within the
RL training framework. To this end, we implemented two baseline methodologies, NoMask
and HeuristicsMask, for comparison against our proposed LearnedMask method, detailed
in Section 4.3. The implementation specifics are outlined as follows:

NoMask In the NoMask approach, action masking is not applied during the RL training
process. Although this method can be utilized with various RL algorithms, we have chosen
to implement PPO [94] for all experiments conducted in this study. During the training,
the policy receives as input the discretized pallet height map alongside the dimensions of
N forthcoming boxes, subsequently generating a combinatorial task plan. To process this
information, a Convolutional Neural Network (CNN) is used to encode the 2D height map
into a vector, while a Multi-Layer Perceptron (MLP) encodes the dimensions of the incoming
boxes. These vectors are then concatenated and supplied to the policy as input. The
architecture of the policy is depicted in Figure 4.4 for further clarification.

HeuristicsMask The HeuristicsMask configuration is similar to NoMask, with the dis-
tinction of incorporating a heuristics-based action masking strategy during RL training.
Specifically, we employ the heuristic criteria outlined in Zhao et al. [134] to determine the
feasible subset ĝt at each timestep. According to these criteria, a placement location is
deemed feasible if it satisfies any of the following conditions: 1) more than 60% of the base
area of the box to be placed, along with all four of its bottom corners, receive support from
the boxes already on the pallet; 2) more than 80% of the base area and at least three of the
four bottom corners are supported; or 3) more than 95% of the base area is supported.

LearnedMask LearnedMask (Ours) also shares the same settings as NoMask, except that
our proposed learning-based action masking is performed during RL training, as described
in Section 4.3.

Experimental Results

In this section, we provide evaluation results under different experimental settings, aiming
to address the three questions posed at the outset of Section 6.4.

Learned Action Masking Model as Accurate Stability Predictor

A fundamental approach to assessing the effectiveness of the learned action masking
model involves evaluating the accuracy of its predictions. As outlined in Section 4.3, the ac-
tion masking model functions as an estimator, predicting the stability of specific placements
and essentially operates as a semantic segmentation model. Therefore, we employ the stan-
dard Intersection-over-Union (IoU) metric to gauge the action masking model’s performance

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 53

in stability prediction. The performance metrics for both our learned action masking model
and the heuristic-based action masking, as introduced in Section 4.4, are reported for com-
parison. The heuristic-based action masking achieves an IoU of 76.6%, whereas our learned
action masking attains an IoU of 89.2%, markedly surpassing the heuristic approach. This
result demonstrates that the learned action masking model can provide a more accurate ac-
tion space mask for policy sampling than the heuristic-based method, potentially enhancing
RL training outcomes.

RL Policy Performance Improvement with Learned Action Masking

Intuitively, a precisely calibrated action masking model can significantly reduce the explo-
ration space inherent in the original RL problem, thereby simplifying the optimization pro-
cess. To empirically verify this, we conducted experiments by comparing the policy efficacy
of our proposed LearnedMask model against two baselines: NoMask and HeuristicsMask, as
elaborated in Section 4.4. We adopted the space utilization as defined in Section 4.3 as the
reward. Figure 4.5 shows the performance of the three methods under the setting when the
buffer size N = 1 as training proceeds, across 5 random seeds. Observations reveal that both
LearnedMask and HeuristicsMask significantly surpass NoMask in performance, thereby af-
firming the hypothesis that optimization within the original action space of RL is inherently
challenging. Action masking thus serves to effectively narrow the problem domain, sub-
stantially enhancing policy performance. Moreover, LearnedMask not only converges more
rapidly but also achieves superior performance relative to HeuristicsMask, indicative of the
premise that a more precise action masking model correlates with improved policy learning.

In a bid to comprehensively assess policy performance across variable configurations, we
tabulated the average space utilization metrics for all three methods under varying buffer
sizes, specifically, N = 1, 3, 5. These results were derived from executing the corresponding
policy across 20 iterations and computing the mean reward from these episodes. Notably,
during these test episodes, the arriving order of the boxes is random and unknown to the
policy, identical to the training phase. The outcomes of this analysis are encapsulated in
Table 4.1. As depicted, LearnedPrune consistently outperforms HeuristicsPrune across all
experimental conditions, thereby evidencing the robustness of our algorithm. Additionally,
an increase in N correlates with an enhancement in policy performance, a logical deduction
considering the expanded decision-making vista afforded by a larger buffer. Nonetheless, in
practical applications, the feasible value of N is constrained by various factors, including the
limitations of the perception system and physical spatial constraints. Within the context of
most industrial palletization scenarios, a buffer size of N = 5 represents a pragmatic upper
limit.

Iterative Policy Improvements with Iterative Action Masking Learning

Here we aim to investigate if the iterative action masking learning algorithm in Section 4.3
can further improve the performance of RL policy over the iterations. Figure 4.6 delineates

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 54

Figure 4.5: Learning curve of the three methods when buffer size N = 1. Results are
averaged over 5 random seeds. Our method (LearnedMask) converges faster and achieves
better space utilization compared to the baseline methods.

Table 4.1: Average space utilization of the obtained policies under different buffer size N .

Buffer size N = 1 N = 3 N = 5

NoMask 38.8% 37.6% 38.1%
HeuristicsMask 69.4% 71.9% 72.7%
LearnedMask 72.1% 75.1% 76.2%

the relationship between policy performance and the number of iterations, denoted by T .
Specifically, T = 0 denotes the baseline scenario of RL training underpinned by heuristic
action masking, represented as HeuristicsMask, while T = 1 signifies the employment
of LearnedMask. Through empirical investigation, we observed a notable enhancement in
performance during the initial iterations (T = 2, 3), with improvements of 1.0% and 0.3%
over their immediate predecessors, respectively. However, the policy performance ”saturates”

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 55

Figure 4.6: The policy performance along with the number of iterations T . The first two
iterations (T = 2, 3) significantly improves the performance, while the incremental improve-
ment in performance begins to diminish in later iterations (T = 4, 5).

in subsequent iterations (T = 4, 5). We hypothesize that this phenomenon is attributed to
the substantial mitigation of the initial distribution misalignment issue within the first two
iterations (T = 2, 3), which directly contributes to the incremental improvements of the
derived policies. Consequently, beyond this point, the performance is no longer impeded by
the misalignment challenge, rendering additional iterations ineffectual in further elevating
the policy’s performance.

Real-World Deployment

We further tested our RL-based palletization task planner in a real-world physical system.
Due to limitations in space and hardware, it was not feasible to implement our algorithm
on an industrial-scale robot handling large boxes. Therefore, we utilized a Franka Panda

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 56

robotic arm as a prototype for our physical system setup, depicted in Figure 4.7(a). The
robot is equipped with a suction-type gripper for box manipulation and an Intel Realsense
RGB-D camera mounted in-hand for box detection and localization on the conveyor. Space
constraints restrict the camera’s perception to a single box at a time, resulting in an upcoming
box countN = 1. The boxes, showcased in Figure 4.7(b), come in 5 different sizes and contain
various items to simulate the diversity in weights found in real palletization tasks.

Our methodology involved training the task planner in a simulated environment tailored
to the physical system’s specifications regarding pallet and box dimensions. This trained
planner was then directly applied to the real-world setup. The robotic system demonstrated
proficiency by successfully stacking 35 boxes on the pallet, achieving a space utilization rate
of 72.0% in a single episode. The final pallet configuration, viewed from different angles,
is presented in Figure 4.8. The ability to stack 35 boxes while maintaining compactness
and stability showcases the effectiveness and robustness of our learned palletization planner
policy.

Conveyer belt

5 different sizes (cm): 8x8x10, 8x8x6, 6x6x4 ,
4x4x6, 4x4x4

In-hand
camera

Franka Panda

Pallet (25*25cm)

Suction-type
gripper

(a) (b)

Figure 4.7: (a) Real-world experiment setup. (b) The boxes (of 5 different sizes) used in the
real-world experiment.

4.5 Conclusion

This study introduced a novel reinforcement learning-based approach for robotic palleti-
zation task planning, emphasizing the significance of iterative action masking learning to
manage and prune the action space effectively. Our methodology combines the precision
of supervised learning with the adaptive capabilities of reinforcement learning, showcasing

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 57

Figure 4.8: Final pallet configuration from different viewpoints. The resulting pallet is
compact and stable, demonstrating the effectiveness and robustness of the learned task
planner.

substantial improvements in both the efficiency and reliability of task planning for robotic
palletization. The experimental validations, both in simulated environments and real-world
deployments, have demonstrated the enhanced learning efficiency and operational perfor-
mance of our proposed method.

A major limitation of our current study is the lack of integration between the task plan-
ning phase and the generation of collision-free trajectories for robotic execution. Specifically,
our methodology does not account for the ease with which robots can execute the generated

CHAPTER 4. EFFICIENT REINFORCEMENT LEARNING OF TASK PLANNERS
FOR ROBOTIC PALLETIZATION 58

plans without encountering physical obstacles. Merging the task planning process with tra-
jectory planning to produce plans that are not only efficient but also physically feasible for
robots to execute without collision presents a promising avenue for future research.

59

Chapter 5

A Framework to Learn and Adapt
Primitive-Based Skills for Industrial
Insertion Tasks

5.1 Introduction

Reinforcement learning (RL) has been widely used to acquire robotic manipulation skills
in recent years [33, 48, 37]. However, training an agent to perform certain tasks using RL is
typically data-hungry and hard to generalize to novel tasks. This data-inefficiency problem
limits the adoption of RL on real robot systems, especially in real-world scenarios.

Motion primitives, due to their flexibility and reliability, serve as a popular skill represen-
tation in practical applications [45, 3, 113]. A motion primitive is characterized by a desired
trajectory generator and an exit condition. It is often realized by hybrid motion/force con-
trollers, such as a Cartesian space impedance controller. Taking moving until contact as
an example primitive, the robot compliantly moves towards the surface until the sensed
force exceeds a pre-defined threshold; a formal definition of motion primitives is deferred to
Section 5.3. Despite the light-weighted representation and wide generalizability of the prim-
itives, their parameters are often task-dependent, and the tuning requires domain expertise
and significant trial-and-error efforts [67].

Our work aims to develop a data-efficient framework to learn and generalize insertion
skills based on skill primitives. Recently, several research efforts have been devoted to learn-
ing primitives for manipulation tasks [64, 114]. However, most works treat primitives as a
mid-level controller and use RL to learn the sequence of primitives. While these methods
reduce the exploration space leveraging primitives, they still suffer from the inherent draw-
backs of RL: data inefficiency and lack of generalizability. To overcome data inefficiency
issue, [45] proposed to use a black-box optimizer to obtain the optimal primitive parame-
ters in a pre-defined range by minimizing the task completion time. This approach achieves
promising performance on the real robot and is shown to be more efficient than RL. However,

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 60

Figure 5.1: An overview of our proposed primitive learning and generalization framework.
Our framework learns a dense objective function from human demonstrations. It applies
black-box optimization (Bayesian Optimization (BO) in our experiments) to learn the prim-
itive parameters w.r.t. the learned objective function. When generalizing to unseen tasks,
we first select similar tasks from the task library based on the introduced similarity metric
and then obtain a transferable search space for the new task for BO.

we empirically observe that the parameter range needs to be narrowly set; otherwise, the
optimizer spends a long time exploring unpromising parameter choices. In addition, the ob-
jective (task completion time), though continuous, is a sparse reward, as it is only triggered
when the task succeeds. This prevents the optimizer from extracting information from failed
task execution trials, which requires a narrow parameter range to be carefully chosen.

Motivated from the above limitations, we propose a dense objective function that mea-
sures the likelihood of the induced execution trajectory sampled from the same distribution
as the successful task demonstrations. This model-based objective function provides dense
rewards even when a task execution trial fails, encouraging the optimizer to select parameters
inducing execution trajectories more similar to the successful demonstrations, thus navigat-
ing the parameter space more efficiently. Furthermore, we propose a generalization method
to adapt learned insertion skills to novel tasks via a task similarity metric, which alleviates
the problem of requiring domain expertise to carefully set parameter ranges for novel tasks.
In particular, socket (or hole) geometry information is extracted from the insertion tasks,
and the L1 distance between turning functions [7] of two hole shapes is used as the task
similarity metric. An overview of our learning and generalization framework is shown in
Figure 5.1. Extensive experiments on 8 different peg-hole and connector-socket insertion
tasks are conducted to compare our proposed method with baselines. We experimentally
demonstrate that our learning and generalization framework can effectively and efficiently
i) learn to acquire insertion skills with about 40 iterations (less than an hour) training on
a real robot and ii) generalize the learned insertion skills to unseen tasks with as few as 15
iterations (less than 15 minutes) on average.

The contributions of our work are summarized as follows:

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 61

1. We designed an insertion policy composed of learnable motion primitives leveraging
impedance control. Rather than using sparse objective functions, we propose to learn
a dense objective function from task demonstrations by modeling the execution tra-
jectories.

2. We put forward a transfer learning method that retrieves similar tasks from a task
library leveraging task meta information and adapts the previously learned parameters
to the novel task with few interactions.

3. We collected 8 insertion tasks with diverse geometry shapes and clearance. Experi-
mental results demonstrate that our method can acquire and adapt the insertion skills
at practically acceptable time cost, 1 hour and 15 minutes respectively, while achieving
a higher task success rate than baselines.

5.2 Related Work

Learning Robotic Assembly Skills

Robotic assembly tasks, e.g., peg insertion, have been studied for decades and are still one
of the most popular and challenging topics in the robotics community [67]. Recently, many
works have focused on developing learning algorithms for assembly tasks, among which deep
reinforcement learning (RL) methods gained the most attention. For example, [60] proposes
a self-supervised learning method to learn a neural representation from sensory input and
used the learned representation as the input of deep RL. [92] combines a simple P-controller
with a RL policy to reduce the exploration space of RL training. In [120], a reward learning
approach is proposed to learn rewards from the high dimensional sensor input, and the
reward is used to train a model-free RL policy. Nevertheless, these methods suffer from
data inefficiency when facing novel tasks. There are also some works that combine RL
and learning from demonstrations (LfD) to address the above issue [111, 18]. However, the
impractical amount of robot-environment interactions required by deep RL algorithms and
the domain expertise needed to adapt to different insertion tasks limit their adoption in
real-world, particularly industrial scenarios.

By contrast, motion primitives, implemented with hybrid motion/force or impedance
controllers, are often used for insertion tasks in practice. [45] makes the first attempt to learn
the primitive parameters via black-box optimizers, minimizing the task completion time.
This algorithm work effectively if primitive parameter ranges are narrowly set; otherwise,
due to the sparse reward choice, it takes a large amount of robot-environment interactions
for the optimizer to escape the parameter region leading to unsuccessful executions. In
comparison, we propose a model-based dense objective function learned from demonstration,
which guides the optimizer to explore more promising parameter regions earlier in training.

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 62

Generalizing Robotic Manipulation Skills to Unseen Tasks

Transferring the existing policies to novel tasks is extensively studied in the field of
robotic manipulation recently. It is especially important for RL based approaches, as most
RL algorithms consider to learn a task in simulation first and then transfer the policy to the
real world. One common approach is domain randomization, in which a variety of tasks are
trained in simulation in order to capture the task distribution [109, 81]. Meta RL has gained
significant attraction in recent years [85, 93], where the experience within a family of tasks
can be adapted to a new task in that family. However, for motion primitive learning methods,
often optimized with gradient-free parameter search methods [45, 113], there haven’t been
efforts to transfer such prior experience to similar tasks. To the best of our knowledge, our
work is the first attempt to encode the prior relevant experience and reduce the parameter
exploration space during primitive learning on a novel insertion task.

5.3 Our Method

In this section, we detail our primitive learning and generalization framework for insertion
tasks. Compared against traditional RL methods, our framework is more data-efficient and
interpretable. We deploy the proposed method on a wide range of peg-hole and connector-
socket insertion (peg-in-hole for short) tasks for illustration, and it can be generalized to
other manipulation tasks.

Cartesian Impedance Control and the State-Action Space

Impedance control is used to render the robot as a mass-spring-damping system following
the dynamics below,

M(ẍ− ẍd) +D(ẋ− ẋd) +K(x− xd) = −Fext, (5.1)

where M, D, K are the desired mass, damping, and stiffness matrices, and Fext denotes the
external wrench. ẍd, ẋd, xd are the desired Cartesian acceleration, velocity, and pose of the
end-effector, and ẍ, ẋ, x are the current values correspondingly. We assume a small velocity
in our tasks and set ẍ, ẋ to 0, thus arriving at this control law,

τ = J(q)TF,

F = −K(x− xd)−Dẋ+ g(q),
(5.2)

where τ is the control torque, F is the control wrench, J(q) is the Jacobian, and g(q) is the
gravity compensation force.

Throughout an insertion task, we would like to design a desired trajectory and a variable
impedance to guide the robot movement. In favor of stability and ease of learning, we use a
diagonal stiffness matrix K = Diag[Kx, Ky, Kz, Kroll, Kpitch, Kyaw], and, for simplicity, the
damping matrix D is scaled such that the system is critically damped.

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 63

Figure 5.2: An illustrative figure of the motion primitives designed for peg-in-hole tasks. We
show the start and the end states of the robot for each primitive.

In summary, our insertion policy output, at ∈ A, fed to the impedance controller defined
above, is composed of a desired end-effector pose xd and the diagonal elements of the stiffness
matrix k = {Kx, Ky, Kz, Kroll, Kpitch, Kyaw}. The input to the policy, st ∈ S, consists of end-
effector pose xt and the sensed wrench ft, and is extensible to more modalities such as RGB
and depth images.

Manipulation Policy with Motion Primitives

In this section, we provide a detailed design on our insertion policy, which entails a state
machine with state-dependent motion primitives. Each motion primitive Pm associated
with the m-th state defines a desired trajectory fθm(xenter, T), an exit condition checker
hθm(·) : S → {1, 0}, and a 6-dimensional stiffness vector km. θm contains all the learnable
parameters in the primitive Pm. xenter denotes the end-effector pose upon entering the m-th
state. T contains the task information such as the 6 DOF poses of the peg and the hole;
often, the hole pose defines the task frame of the motion primitives.

In the following, we formally describe the 4 motion primitives used in the peg-in-hole
tasks, as shown in Figure 5.2.

Free space alignment. The end-effector moves to an initial alignment pose.

fθ1 = u(xenter,xtarget)

hθ1(st) = I [||xt − xtarget||2 < σ]

k1 = kmax.

(5.3)

where I[·] is an indicator function mapping the evaluated condition to {0, 1}. u(·, ·) generates
a linearly interpolated motion profile from the first to the second pose provided. The target
end-effector pose xtarget is extracted from the task information T as xtarget = T base

hole ·T hole
peg ·T peg

ee ,
where T base

hole and T peg
ee denote the detected hole pose in robot base frame and the end-effector

pose in peg frame. T hole
peg is the desired peg pose in hole frame when the peg is above and

coarsely aligned with the hole. kmax denotes a 6-dimensional vector composed of the highest

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 64

stiffness values along each axis. σ is a pre-defined threshold to determine if the robot arrives
at the desired pose. No learnable parameters exist in this primtive. The parameters in this
1-st primitive involves θ1 = {Ø}.

Move until contact. The end-effector moves towards the hole until the peg is in contact
with the hole top surface.

fθ2 = u(xenter,xenter − [0 0 δ 0 0 0]T)

hθ2(st) = I[ft,z > η]

k2 = kmax.

(5.4)

δ is the desired displacement along z-axis in the task frame, ft,z is the sensed force along
z-axis at time t, and η is the exit force threshold. Therefore the parameters defining this
2-nd primitive consists of θ2 = {δ, η}.

Search. The robot searches for the location of the hole while keeping contact with the
hole until the peg and the hole are perfectly aligned. After empirical comparisons with
alternatives, including the commonly used spiral search, we choose the Lissajous curve as
the searching pattern, which gives the most reliable performance. While searching for the
translation alignment, the peg simultaneously rotates along the z-axis to address the yaw
orientation error. The roll and pitch orientation errors are expected to be corrected by the
robot being compliant to the environment with the learned stiffness.

fθ3(t) = xenter +

Asin(2πan1

T
t)

Bsin(2πbn1

T
t)

−γ
0
0

φsin(2π n2

T
t)

hθ3(st) = I[xenter,z − xt,z > ζ]

k3 = ksearch,

(5.5)

where a = 7, b = 6 are the Lissajous numbers selected and T is the cycle period in Lissajous
search, φ is the maximum tolerated yaw error of the estimated hole pose, set as 6 degree in our
experiments. The learnable parameters of this primitive are θ3 = {A,B, n1

T
, n2

T
, γ, ζ,ksearch}.

Insertion. The peg is inserted into the hole in a compliant manner.

fθ4 = u(xenter,xenter − [0 0 λ 0 0 0]T)

hθ3 = I[success condition]
k4 = kinsertion,

(5.6)

where the success condition is provided by the task information T , e.g., ||xt−xsuccess||2 < ϵ.
The primitive parameters to learn are θ4 = {λ,kinsertion}.

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 65

Learning Primitive Parameters

In this section, we illustrate how to learn the primitive parameters Θ = {θ1,θ2,θ3,θ4}.
The core idea is using a black-box optimizer to optimize a task-relevant objective function
J(·). While a similar idea has been explored in [45], the objective function used is simply
the measured task execution time. The major drawback of this objective function is that the
objective signal is sparse and can only be triggered when the task is successfully executed.
This makes the optimizer challenging to find a feasible region initially, especially when the
primitive parameter space is large. Motivated by this, we propose a dense objective function
that measures the likelihood of the induced execution trajectory being sampled from the
distribution of successful task demonstrations ED = {ξi}(i = 1, 2, ...,M). Assuming the
trajectroies are Markovian, a trajectory rollout ξ = [x0,x1, ...,xn−1] is modeled as:

p(ξ;Θ) = p(x0)
n−1∏
i=1

p(xi|xi−1). (5.7)

In order to learn p(xi|xi−1) from demonstrations, we first use a Guassian Mixture Model

(GMM) to model the joint probability as p(

[
xi

xi−1

]
) =

∑K
j=1 ϕjN (µj,Σj) , where

∑K
j=1 ϕj =

1, and K is the number of GMM clusters.

We further represent the Gaussian mean µj and variance Σj as: µj =

[
µ1

j

µ2
j

]
, Σj =[

Σ11
j Σ

12
j

Σ21
j Σ

22
j

]
. We can then derive the conditional probability p(xi|xi−1) =

∑K
j=1 ϕjN (µj,Σj),

where

µj = µ1
j +Σ12

j (Σ22
j)−1(xi−1 − µ2

j)

Σj = Σ11
j −Σ12

j (Σ22
j)−1Σ21

j .
(5.8)

Then, the objective function is designed as J(ξ) = log p(ξ;Θ) + B, where the first term
encourages exploring parameters inducing similar trajectories to the successful demonstration
traces, and the second term B denotes a sparse bonus reward if the task succeeds. We
use black-box optimizers to solve Θ∗ = argmax

Θ
J(Θ), and Bayesian Optimization (BO) is

selected in our work. Expected Improvement (EI) is used as the acquisition function, and we
run BO for N iterations. The learned parameter Θ∗ that achieves maximum J(Θ) during
N training iterations is selected as the optimal primitive configuration. Note that BO can
be seamlessly replaced by other black-box optimization methods and the optimizer choice is
not the focus of this work.

Task Generalization

In this section, we detail our method on how to leverage prior experience when adapting
to a novel insertion task, in particular, how to adapt previously learned peg-in-hole policies

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 66

Figure 5.3: Examples of two hole’s turning functions. Our task similarity metric is defined
as the L1 distance between the hole’s turning functions.

to different tasks with unseen hole shapes. Our adaptation procedure is composed of two
core steps: measuring task similarities and transferring similar task policies to the unseen
shape.

Measuring task similarity

Given an insertion skill library, i.e., a set of learned peg insertion policies for different
shapes,M = {π1(Θ1), π2(Θ2), ..., πn(Θn)} and an unseen shape, our goal is to first identify
which subset of the n tasks are most relevant to the new task. While there is a diverse range
of auxiliary task information that can be used to measure task similarity, here, we define the
task similarity as the similarity between the hole cross-section contours. This assumption is
based on the intuition that similar hole shapes would induce similar policies for insertion.
For example, the insertion policies for a square hole and a rectangle hole are likely to be
similar, and the optimal policy for a round hole might still work for a hexadecagon hole.
The similarity between a shape pair is measured by the L1 distance between the two shapes’
turning functions [7].

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 67

Turning functions are a commonly used representation in shape matching, which repre-
sents the angle between the counter-clockwise tangent and the x-axis as a function of the
travel distance along a normalized polygonal contour. Two example turning functions are
shown in Figure 5.3. After obtaining the shape distances of the unseen shape and each
shape in the task library, we choose the top L shapes that are closest to the unseen shape as
similar shapes. The policies of the similar shapes are then used as input for transfer learning
detailed below in Section 5.3.

Adapting to unseen shapes

Given a novel task, our goal is to efficiently adapt the already learned insertion policies
of the most similar shapes. We build upon BO with hyperparameter transfer [82]. Unlike
many works framing BO transfer learning as a multi-task learning problem, we attempt to
learn the search space of BO from similar task policies and apply it to learning for the new
task.

Specifically, let T = {T1, T2, ..., Tt} denote the task set of different hole shapes we selected
as described in Section 5.3, and F = {J1, J2, ..., Jt} denotes the corresponding objective
functions for each task. All the objective functions are initially defined on a common search
space X ⊆ R|Θ|, and it’s assumed that we already obtained the optimal policies for the t
tasks {π1(Θ

⋆
1), π2(Θ

⋆
2), ..., πt(Θ

⋆
t)}(Θ⋆

i ∈ X). Given an unseen task Tt+1, we aim to learn a
new search space X ⊆ X from the previous tasks to expedite the new task learning process.
We define the new search space as X = {Θ ∈ R|Θ||l ≤ Θ ≤ u}, where l,u are the lower and
upper bounds. It was proved in [82] that the new search space can be obtained by solving
the constrained optimization problem:

min
l,u

1

2
||u− l||22 such that for 1 ≤ i ≤ t, l ≤ Θ⋆

i ≤ u. (5.9)

The optimization problem has a closed-form solution:

l⋆ = min{Θ⋆
i }ti=1,u

⋆ = max{Θ⋆
i }ti=1. (5.10)

This new search space is then utilized for policy training of this unseen shape task, following
the procedure described in Section 5.3.

5.4 Experimental Results

We aim to investigate the effectiveness of our primitive learning and generalization
framework by answering two questions: 1) whether the dense objective function proposed in
Section 5.3 expedites the primitive learning process and improves policy performance, and 2)
whether the generalization algorithm described in Section 5.3 is effective when transferring to
an unseen shape. An insertion task library of 8 different peg-hole pairs is constructed, includ-
ing 6 representative 3D-printed geometry shapes (round, triangle, parallelogram, rectangle,

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 68

Figure 5.4: Two peg-hole pair instances (waterproof and parallelogram) used in our experi-
ments.

hexadecagon, ellipse) and two common industrial connectors (RJ45, waterproof). Examples
of the pegs and holes are shown in Figure 5.4.

Experimental Setup

As shown in Figure 5.1, our hardware setup consists of a 6-DoF FANUC Mate 200iD
robot and an ATI Mini45 Force/Torque sensor. The clearances for all 3D printed peg-hole
pairs are 1mm; the waterproof and RJ45 are unaltered off-the-shelf connectors. To mimic
the pose estimation error during industrial deployments, a uniform perturbation error of +/-
5mm in translation and +/- 6 degree in orientation is applied along each dimension. The
controller takes the policy output at 10 Hz and computes the torque command streamed to
the robot at 1000Hz. All the learnable parameters of the policy and their initial range are
listed in Table 5.1.

Two metrics are used to evaluate the effectiveness and efficiency of the approaches: 1)
the number of iterations the robot takes to accomplish the first successful insertion during
training (denoted as number of iterations), and 2) the success rate of the optimal policy after
a fixed number of iterations (denoted as success rate).

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 69

T
ab

le
5.
1:

L
ea
rn
ab

le
p
ar
am

et
er
s
an

d
co
rr
es
p
on

d
in
g
ra
n
ge

in
th
e
m
ot
io
n
p
ri
m
it
iv
es
.

M
ov
e
u
n
ti
l

co
n
ta
ct

S
ea
rc
h

In
se
rt
io
n

P
a
ra
m
et
er
s

δ(
m

)
η
(N

)
A

(m
)

B
(m

)
n
1
/
T

(s
−

1
)

n
2
/
T

(s
−

1
)

γ
(m

)
ζ
(m

)
k
s
e
a
r
c
h
(N

/
m

,N
m

/
r
a
d
)

λ
(m

)
k
in

s
e
r
ti
o
n
(N

/
m

,N
m

/
r
a
d
)

m
in

0
1

0
0

0
/
6
0

0
/
6
0

0
0

0
[6
×
1
]

0
0
[6
×
1
]

m
a
x

0
.1

1
0

0
.0
2

0
.0
2

2
/
1
0

2
0
/
1
0

0
.0
2

0
.0
2

[6
0
0
[3
×
1
] ,
4
0
3
×
1
]

0
.0
5

[6
0
0
[3
×
1
] ,
4
0
3
×
1
]

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 70

* *

Figure 5.5: Experimental results for primitive learning and generalization. Time: primi-
tive learning using task execution time as objective function, LfD: primitive learning using
learned objective function as described in Section 5.3, NoSim: primitive generalization with-
out measuring task similarities, Full: full generalization method as described in Section 5.3.
⋆ represents no successful trials is found during the learning process.

Learning Primitive Parameters

In this experiment, we would like to examine if the learned objective function expedites
the primitive learning process. Specifically, we applied our learned objective function from
demonstration (LfD) for primitive parameter optimization as described in Section 5.3, and
compare the results against primitive optimization by minimizing the measured task execu-
tion time (Time) [45]. When learning the objective function, we collected 10 demonstrations
for each insertion task. The demonstrations have 43.5 time steps on average across different
insertion tasks. The number of GMM clusters is set as K = 25.

For each of the 8 peg-hole pairs, we run BO for 40 iterations. Within each iteration,
the current policy is executed twice with independently sampled hole poses. The average
objective of the two trials is used as the final objective value consumed by the BO step.
The optimal policy is selected as the policy at the BO step achieving the optimal objective
value, and evaluated by being executed 20 trials with independently sampled hole poses. As
shown in Figure 5.5, LfD outperforms Time on almost all the insertion tasks in both number
of iterations and success rate. In some tasks, e.g., parallelogram and RJ45, Time cannot
find proper parameters to achieve a single successful trial within 40 iterations, while LfD

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 71

successfully navigates through the parameter space and accomplishes successful trials for all
of the tasks. This validates the learned dense objective function, provides richer information
for primitive learning than sparse signals alone like task success and completion time.

To better illustrate the advantage of our learned objective function from demonstration,
we show a sample trajectory during training in Figure ??. The search trace thoroughly covers
the the hole area and the corresponding parameters should be a reasonable candidate for
the desired primitive configuration. However, the insertion did not succeed due to stochastic
noise, and the optimizer discourages exploring the search space around this candidate in
Time. By contrast, this candidate gets assigned a high objective value in LfD since its
induced trajectory has a likelihood evaluated by our learned model from demonstration.

Generalizing to Unseen Shapes

We now examine how our generalization method described in Section 5.3 performs when
transferring to unseen shapes. We consider the leave-one-out cross-validation setting, i.e.,
when presented 1 of the 8 tasks as the task of interest, the learning algorithm has access to
all interaction data during policy learning on the other 7 tasks. Two sets of experiments are
conducted. First, we apply the full method described in Section 5.3 (Full) to learn a reduced
search space using the L = 3 most similar tasks, within which the primitive parameters are
optimized.

Compared with LfD where parameters are optimized over the full space, Full reached a
comparable or better success rate, meanwhile achieved the first task completion with a lower
number of iterations. Second, we consider learning the search space without measuring the
task similarities (NoSim), i.e., the new search space is obtained using all the other tasks
instead of only the similar ones. As seen in Figure 5.5, Full outperforms NoSim consistently
on all insertion tasks, indicating the significance of finding similar tasks using the task
geometry information before learning the new search space. The similarity distances between
all insertion tasks are shown in Figure 5.6 to qualitatively demonstrate the effectiveness of
using the task geometry information. For example, given an unseen waterproof insertion task,
the triangle, rectangle, and parallelogram shapes are selected with the smallest similarity
distances. With such knowledge encoded, in Full, a narrower search space is obtained
compared to NoSim, thus leading to better performance by focusing the BO budgets in the
parameter subspace with a higher chance of task success.

5.5 Conclusion

We propose a data-efficient framework for learning and generalizing insertion skills with
motion primitives. Extensive experiments on 8 different peg-hole and connector-socket in-
sertion tasks are conducted to demonstrate the advantages of our method. The results show
that our framework enables a physical robot to learn peg-in-hole manipulation skills and to
adapt the learned skills to unseen tasks at low time cost.

CHAPTER 5. A FRAMEWORK TO LEARN AND ADAPT PRIMITIVE-BASED
SKILLS FOR INDUSTRIAL INSERTION TASKS 72

Figure 5.6: The similarity distances between all insertion tasks. Given a new task, we use
the obtained similarity distances to select similar tasks from the existing task library and
transfer the task knowledge, i.e., primitive parameters, to the new task.

One limitation of the proposed generalization method is that the skill transfer is only
beneficial across a narrow task family, e.g., peg-in-hole with different shapes. One future
direction is generalizing the skills across more diverse tasks [67, 101]. Besides, our current
framework assumes an already designed primitive sequence composing the manipulation
policy. Learning the primitive sequence from demonstration or self-supervisedly is another
path to explore.

73

Part III

Data-Efficient Policy Generalization

74

Chapter 6

Zero-Shot Policy Transfer with
Disentangled Task Representation

6.1 Introduction

Policy transfer has been a long-standing challenge in the robotics community. Reasoning
over existing task experiences and transferring knowledge to novel combinatorial tasks with
familiar elements is vital for human rapid learning and adaptation. For instance, the images
in Figure 6.1(a) can be abstracted as combinations of (digit, color), and humans can effort-
lessly imagine other unseen combinatorial images. In this work, we aim to enable similar
ability in the context of reinforcement learning (RL). Specifically, we consider the generaliza-
tion scenarios where tasks of interest can be described by a set of degrees of variation (DoVs)
and our goal is to achieve policy transfer across unseen compositional tasks, namely, tasks of
unseen combinations of existing DoVs. Considering the example depicted in Figure 6.1(b),
the robot policy is influenced not only by the goal that can be directly measured, but also
by other environment-related properties of the system, such as robot model, friction, control
gain, etc. When facing an unseen compositional task, e.g., (real, front) in Figure 6.1(b),
we aim to combine the knowledge obtained from other related tasks, e.g., (real, left), (sim1,
front), to directly get the policy for the new task.

The idea of policy transfer across novel task combinations of known DoVs is also explored
in [20], where the authors proposed a modular policy architecture to decompose the policy
into goal-specific and robot-specific modules and demonstrated zero-shot policy transfer to
unseen robot-goal combinations using existing modules. Specifically, the authors decompose
the observations into goal-related and robot-related observations, which are fed as input to
the corresponding neural network modules to output desired actions. However, this method
requires training an individual neural network based module for each possible value of DoV,
making it computationally expensive to scale up when certain DoV have many possible
values. For example, given 20 different possible goals and 10 different possible robots, this
method needs to train 30 different modules in total. Additionally, one implicit assumption

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 75

color

digit

(a)

goal

env

(b)

green

red

yellow

0 1 2

sim1

sim2

real

left front right

Figure 6.1: Illustration of unseen compositional tasks with existing degrees of variation. (a)
While (yellow, 1) image is unseen, both yellow and 1 are present in other images. (b) While
(real, front) is a novel task, both real and front are present in other tasks.

of [20] is that observation alone can capture the differences between tasks with different DoV
combinations. However, there exist certain scenarios where the available observations fail
to reflect the differences between tasks. For example, when learning an RL agent to push
objects of different weights using image as observation, the dynamics variations between
tasks are not captured by observation ot, but instead by observed transitions (ot, at, ot+1, rt).
Solely performing task decomposition w.r.t. the observation space limits the potential to be
applied in such scenarios.

In contrast, the key insight of our work is to achieve task decomposition from the per-
spective of task representation instead of policy architecture as in [20]. Specifically, we build
upon the framework of context-based meta-RL framework [27, 85, 135, 43, 142] which jointly
learns a latent task embedding from observed transitions and a policy conditioned on the
inferred task representation. The task decomposition is achieved by disentangling latent
task embedding as the concatenation of embeddings for each task DoV. For this purpose,
we develop a task disentanglement regularization objective for meta-training (Section 6.3).
The achieved disentanglement in the latent task space allows us to infer novel task represen-
tations without extra experiences by combining the existing representations of task DoVs in
the unseen tasks, thus achieving zero-shot policy generalization (Section 6.3).

To evaluate our approach, we extend three traditional meta-RL tasks to compositional
tasks composed of certain DoVs and test the generalization performance of our method on
the unseen compositional tasks. Experimental results indicate that the generalized poli-
cies obtained from our method in a zero-shot manner outperform other baselines. We also
demonstrate that our proposed approach can be seamlessly applied as a zero-shot sim-to-

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 76

real generalization method. We evaluate the sim-to-real algorithm on challenging real-world
tilted peg-in-hole tasks. Results demonstrate the effectiveness of our approach.

6.2 Related Work

RL Policy Generalization across Similar Tasks

Policy generalization has been a long-standing challenge in robotics community. While
RL [105] achieves promising results on robotic manipulation tasks [48, 60], the impedance
of deploying RL algorithms lies at the numerous data required during training. To this
end, many efforts have been devoted to generalizing the existing policies to similar tasks. A
common application of policy generalization is sim-to-real [136], where a policy is learned
in simulation and then transferred to the real world. This is usually achieved by domain
randomization, which randomizes the tasks with a wide task distribution in simulation and
assumes the real-world task is captured by this distribution [109, 81, 83]. Meta-RL ap-
proaches [85, 135, 142, 21, 25, 35, 141] offer another perspective of policy generalization
by learning to learn from a distribution of tasks, enabling the agent to quickly adapt to
novel tasks with limited explorations. Context-based meta-RL methods [85, 135], which
view meta-RL as task inference and learn a hidden task variable from collected experience,
have demonstrated the ability to adapt meta-policy to real-world manipulation tasks [135,
93]. However, those methods still require collecting online rollout data for task inference and
are therefore not zero-shot. Zero-shot policy transfer is particularly useful in circumstances
when online interactions are expensive; for example, the task objects are fragile such as the
thru-hole components in PCB assembly. In this work, we improve context-based meta-RL
methods for policy transfer in a zero-shot manner by considering the task decomposition in
the latent task representation.

Task Decomposition in Robotics

Task decomposition is widely investigated in the robotics field to ease the learning process
and reuse the knowledge from similar tasks. Most of the research efforts focus on decom-
posing long-horizon manipulation tasks temporally into several sub-tasks and learning a
sub-policy for each sub-task [5, 37, 42, 44, 57, 137]. The learned sub-policies can then be
re-arranged in a novel way to obtain the policy for unseen long-horizon tasks. There are
also some works that consider task decomposition from other perspectives. For example,
[78] performs task decomposition by leveraging the correspondence in the provided analogy
and decompose a task as a (action, object) tuple. [130] decomposes the task in the feature
space as principle and non-principle features. [19] reasons task decomposition from the
object-centric way. The task decomposition considered in our work is most similar to [20], in
which tasks are decomposed by a set of degrees of variation. By leveraging knowledge from
different tasks with common degrees of variation, we aim to directly obtain policies for novel

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 77

combinatorial tasks with existing degrees of variation. However, unlike [20] that performs
task decomposition through a modular policy architecture, we achieve task decomposition
in the context of meta-RL by disentangling the latent task representation.

6.3 Our Proposed Approach

In this section, we first give a brief review of prior works on context-based meta-RL
algorithms in Section 6.3. This provides the background to formalize our problem setup in
Section 6.3. Afterwards, we describe our method in two parts: how to enable task decompo-
sition in the latent task representation during training in Section 6.3, and zero-shot policy
generalization leveraging the achieved decomposition in Section 6.3.

Preliminary: Context-based Meta-RL

Meta-RL typically assumes a distribution of tasks p(T). Each task T is modeled as an
independent Markov decision process (MDP), M ≡ (S,A,P , R), where S corresponds to
the state space, A corresponds to the action space, P denotes the transition probability,
and R represents the real-valued reward. Meta-RL algorithms learn the task-conditioning
policy from training tasks sampled from p(T), and adapt the learned policy to new tasks.
Specifically, we focus on one perspective of meta-RL, i.e. context-based meta-RL, which
views meta-learning as task inference [85, 135]. These methods, with an encoder qϕ, map
each task Ti into a task embedding zi based on the past experience on this task, e.g. context
ci = {(st, at, s

′
t, rt)}t=1...N [85]. The policy πθ is conditioned on the task embedding so that

it can be adapted to different tasks, i.e.,

a ∼ πθ(·|s, zi), where zi ∼ qϕ(·|ci). (6.1)

While our method is agnostic to the specific context-based meta-RL algorithms, in our
implementation, we build on the framework of probabilistic embeddings for actor-critic RL
(PEARL) [85], which optimizes the objective,

ETi
[
Ezi∼qϕ(zi|ci) [R(Ti, zi) + βDKL (qϕ (zi | ci) ∥p(zi))]

]
, (6.2)

where R(Ti, zi) denotes the addition of actor and critic objectives as defined in [85]. We refer
the readers [85] for more technical details.

Problem Formulation

Our goal is to achieve zero-shot policy transfer across unseen compositional tasks. We
define compositional task as the task equipped with a predefined set of degrees of variation
(DoVs) [20]. Loosely speaking, a task DoV describes one varied aspect of the task. For
example, in Fig. 6.1(b), there are two DoVs describing the tasks, i.e. environment and goal,

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 78

A

B

C

D

1 2 3 4 5 6

Figure 6.2: Illustration of the targeted policy generalization setting in our work. We assume
the tasks of interest can be described as combinations of degrees of variation (DoV). Given
experience from training task set Ttrain (blue), we aim to generalize across tasks (in red)
whose DoV combinations are unseen but each DoV label is present in Ttrain.

and the DoV goal has three unique values, i.e. left (red trajectory), front (blue trajectory),
and right (yellow trajectory). Formally, considering the task distribution p(T), each Ti is
equipped with a unique combination Ci of M task DoVs as Ci = (yi1, . . . , y

i
M), where yij is the

label of the j-th DoV of task Ti. The M DoVs are problem-dependent and identical for all
the tasks Ti in the task set T, while each DoV can have different labels and the task DoV
combination Ci for each task Ti is unique. We assume the DoV labels, Ci, of each task Ti in T
are given. Our problem setting aims at generalization across tasks whose DoV combinations
are unseen but the DoV labels are present in training tasks Ttrain, as illustrated in Figure 6.2.

Task Decomposition via Latent Task Embedding Disentanglement

In this section, we describe how we achieve task decomposition w.r.t. task DoV com-
binations in the context of meta-reinforcement learning (Meta-RL). Figure 6.3 illustrates
our framework. The key insight is to achieve task decomposition by enforcing the disen-
tanglement of the latent task representation in [85] during meta-training. While traditional
meta-RL algorithms learn the task embedding zi with a single encoder qϕ as Eq. 6.1, we
replace it with M separate DoV encoders qϕ1 , qϕ2 , . . . , qϕM

, where qϕj
(z

yj
i |ci) learns the DoV

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 79

𝒛!

𝒛!
"! 𝑝 𝒛#$%&'#

"!EMA

ℒ!"#"

𝑞$!
DoV
Encoder

DoV robot

Compositional Tasks

𝑞$"DoV
Encoder

DoV goal

⋯ ⋯

𝒯!

⋯

𝜋% 𝐚 𝐬, 𝐳)

𝑄%(𝐬, 𝐚, 𝐳)

𝒛!
"" 𝑝 𝒛#$%&'#

""EMA

ℒ!"#"

𝒩(#𝝁!
"! , #𝚺!

"!)

𝒩(#𝝁#
"" , #𝚺#

"")

Figure 6.3: We achieve task decomposition via disentanglement in the latent task space. The
disentanglement is achieved by encoding different task DoVs with individual DoV encoders
and enforcing identical task DoVs across different tasks have similar embeddings.

embedding for the j-th DoV of task Ti. The task embedding is obtained by concatenat-
ing all M DoV embeddings as zi = [zy1i , . . . , zyMi], and the policy πθ is conditioned on the
disentangled task embedding:

a ∼ πθ(·|s, zi) where zi = [zy1i , . . . , zyMi]

z
yj
i ∼ qϕj

(·|ci), j = 1, 2, . . . ,M.
(6.3)

For different tasks Tu, Tv sharing the same label in the j-th DoV, i.e., yuj = yvj = yj, their
corresponding DoV embedding should be regularized to follow an identical probability distri-
bution. One naive way to implement this principle is to bring close the corresponding DoV
embedding of different tasks with shared DoV labels within the sampled data batch. How-
ever, we found empirically that this strategy is easily prone to the affection of noise, making
the training process unstable. To this end, we introduce a target distribution p(z

yj
target) for

the j-th task DoV with yj label, and minimize the Kullback–Leibler (KL) divergence be-
tween qϕj

(z
yj
i |ci) and p(z

yj
target). Inspired by [106, 32], Exponential Moving Average (EMA)

is incorporated into our training scheme to update this target distribution during training,
achieving robustness against outliers during training. For each DoV label yj of the j-th
DoV, we maintain an individual target distribution p(z

yj
target). Following PEARL [85], our

DoV embedding is modeled as Gaussian distribution. So we maintain the EMA for both the
mean µ̄

yj
j and variance Σ̄

yj
j of p(z

yj
target). This task disentanglement regularization is written

as follows for each task Ti, where λ is a hyper-parameter to balance different loss items.

Li
dis = λ

M∑
j=1

DKL(qϕj
(z

yj
i |ci)||p(z

yj
target))

p(z
yj
target) = N (µ̄

yj
j , Σ̄

yj
j)

(6.4)

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 80

where qϕj
(z

yj
i |ci) = N (µ

yj
i ,Σ

yj
i) is the current prediction for task Ti. µ̄

yj
j and Σ̄

yj
j are updated

in each training step t with EMA:

µ̄
yj ,t
j ← τ · µ̄yj ,t−1

j + (1− τ) · µyj
i

Σ̄
yj ,t
j ← τ · Σ̄yj ,t−1

j + (1− τ) ·Σyj
i ,

(6.5)

where τ = 0.99 in our implementation. The task disentanglement regularization is applied
during meta-training, as summarized in Algorithm 3, where red lines highlight the differences
compared with PEARL.

Algorithm 3 Our meta-training procedure. Differences with PEARL are highlighted in
red.

Require: Batches of compositional training tasks {Ti}i=1...T with corresponding task DoV
combinations {Ci}i=1...T , learning rate α1

1: Init. replay buffer Bi for each training task
2: while not done do
3: for each task Ti do
4: Initialize context ci = {}
5: for k = 1, ..., K do
6: Sample z

yj
i ∼ qϕj

(·|ci), j = 1, . . . ,M
7: Concatenate task embedding zi = [zy1i , . . . , zyMi]
8: Gather data from πθ(a|s, zi) and add to Bi and update ci = {(sl, al, s

′
l, rl)}l:1...N ∼

Bi
9: end for
10: end for
11: for step in training steps do
12: for each Ti do
13: Sample context batch ci ∼ Sc(Bi) and RL batch bi ∼ Bi
14: Sample z

yj
i ∼ qϕj

(·|ci), j = 1, . . . ,M
15: Concatenate task embedding zi = [zy1i , . . . , zyMi]
16: Compute Li

actor,Li
critic ,Li

KL same as PEARL
17: Li

dis = λ
∑M

j=1DKL(qϕ(z
yj
i |ci)||p(z

yj
target)), where p(z

yj
target) = N (µ̄

yj
j , Σ̄

yj
i)

18: µ̄
yj ,t
j ← τ · µ̄yj ,t−1

j + (1− τ) · µyj
i

19: Σ̄
yj ,t
j ← τ · Σ̄yj ,t−1

j + (1− τ) ·Σyj
i

20: end for
21: ϕj ← ϕj − α1∇ϕj

∑
i (Li

critic + Li
KL + Li

dis) , j = 1, . . . ,M
22: Update θπ, θQ same as PEARL
23: end for
24: end while

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 81

Zero-Shot Policy Generalization through Task Decomposition

When generalizing policies to novel tasks, traditional meta-RL algorithms usually requires
adequate explorations on the new tasks. However, exploration can be costly in some scenar-
ios, e.g., the task objects are fragile such as the thru-hole components in PCB assembly. In
contrast, we can achieve zero-shot policy generalization leveraging the task decomposition
obtained from Section 6.3. We identify two scenarios of zero-shot policy generalization as
follows.

S1 Test tasks are defined by combinations of DoV labels already seen in training tasks
Ttrain. In this case, we directly concatenate the EMA {zyjtarget}Mj=1 of the corresponding
DoV embeddings obtained from training as the test task representation. The meta-policy
conditioned on the concatenated task representation is used as the generalized policy for the
new task.

S2 Test tasks have DoV label that does not exist in the training tasks Ttrain, denoted as,
yj = y∗. Similar to PEARL meta-test, our method first collects context in one single task Ttest
with the unseen DoV label and acquires the latent task representation ztest. Empirically, this
process takes around 10 episodes to obtain a descent ztest. Then the embedding of the DoV
label, z

yj
test, is inferred as the corresponding dimensions extracted from ztest. After obtaining

the embedding of this unseen DoV label, we repeat the steps in S1 to achieve generalization
across other test tasks with yj = y∗. While our method does require collecting experiences
from one single task in test task set, the generalization across other test tasks is still zero-
shot. As demonstrated in Section 6.4, this can be readily used as a sim-to-real generalization
method. For instance, we meta-train a policy to complete 10 similar manipulation tasks IN
different simulation environments. When generalizing to the real world, our method only
requires interacting with the real environment on one single task, and is able to generalize
to the other 9 tasks in a zero-shot fashion.

6.4 Experimental Results

In the experiments, we aim to investigate the following questions. 1) Does our method
described in Section 6.3 effectively disentangle the learned task representation? 2) How does
the disentanglement affect the model training for compositional tasks? 3) Can our method
achieve zero-shot policy generalization across novel tasks through task decomposition?

Simulation Experiments

Compositional Task Setup. To study the targeted policy transfer problem in this work,
we build three set of simulated compositional tasks shown in Figure 6.4. Each set of com-
positional tasks has two task degrees of variation (DoVs), i.e., goal and physics. For (a)

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 82

(c) Tilted-peg-in-hole-comp(a) Cheetah-vel-comp (b) Ant-goal-comp

Different
Physics

.....

Figure 6.4: Three set of compositional tasks for algorithm evaluation. (a) Cheetah-vel-comp
with varying goal velocities and physics. (b) Ant-goal-comp with varying goal positions and
physics. (c) Tilted-peg-in-hole-comp with varying hole tilting directions and physics.

Cheetah-vel-comp and (b) Ant-goal-comp, we extend the traditional Cheetah-vel and Ant-
goal from [25] by randomizing some physical parameters, i.e., body mass, body inertia, damp-
ing and friction. Specifically, we randomly sample 20 different sets of physical parameters
and 20 different goal velocities for Cheetah-vel-comp, leading to 400 compositional tasks in
total. Thus each task has a unique (physics, goal) DoV combination. Similarly for Ant-
goal-comp, 15 different groups of physical parameters and 15 different goal 2D locations are
randomly sampled. In (c) Tilted-peg-in-hole-comp, we create challenging tilted peg-in-hole
tasks based on robosuite [139]. The tasks are performed using a 7-Degree-of-Freedom (DoF)
KUKA LBR IIWA robot with operation space control [54]. We adopt a square peg-hole task
with 0.5mm clearance and tilted the hole surface plane 5◦ towards different directions. Tilted
peg-in-hole tasks are prone to jamming issues during execution, thus posing more challenges
to robust policy learning. The observation space is 6-dimensional end-effector pose and the
actions are the desired end-effector poses. The compositional tasks are composed of 4 differ-
ent hole tilting directions towards ±x and ±y axis separately as well as 20 different sets of
physical parameters (i.e. friction between peg and hole, damping and controller step size).

Training Tasks Selection. The training task set Ttrain is a subset of the whole compo-
sitional task set T. When selecting Ttrain, we randomly select tasks in T with probability
α ∈ (0, 1), while ensuring each task DoV label in T appear at least once in Ttrain. For
example, in Figure 6.2, the 15 tasks in blue are selected for training (α = 0.625). In the
implementation, we use α = 0.5, which is discussed in Section 6.4. Other tasks in T are set
aside as novel test tasks, i.e. Ttest = T\Ttrain.

Baselines. We compare our method against two baselines, PEARL [85] and SAC [38].
PEARL directly learns the task embedding from training tasks without exploiting the in-
herent task combinatorial structure. During generalization, i.e., meta-test, PEARL requires
extra explorations on each test task, so it is not a zero-shot approach. The SAC agent is

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 83

(a) Cheetah-vel-comp (b) Ant-goal-comp (c) Tilted-peg-in-hole-comp

Figure 6.5: Average return on test tasks during the training period. Our method and PEARL
apply the same meta-test strategy, where the first two trajectories are aggregated into the
context for task inference.

trained with all the training tasks together where a training task is randomly sampled in
each episode. This can be viewed as a variant of domain randomization. The learned SAC
policy is directly applied to test tasks. It is worth noting that [20] can not be directly applied
as a baseline because solely decomposing tasks w.r.t. observations in the three tasks fail to
capture the dynamics differences, as discussed in Section 6.1.

Effect on Training. Figure 6.5 shows the performance of the learned policies on Ttest as
training proceeds, across 5 random seeds. Our method achieves comparable meta-test results
compared to PEARL, indicating that the enforced regularization in latent task representation
(Section 6.3) does not deteriorate the learning process of meta-RL. It is worth noting that
the aim of our proposed method is to improve the performance of zero-shot policy transfer
across test tasks, instead of meta-test where the experience of the test tasks is given.

Zero-Shot Evaluation. The evaluation is conducted for the two scenarios S1 and S2
(Section 6.3) respectively. In S1, Ttest = T\Ttrain is used as the test tasks. While in
S2, we first sample task attributes that do not exist in T and the test tasks are set as
the combinations of the unseen attributes and other seen attributes, e.g., (unseen physics,
seen goal), (unseen goal, seen physics). For each unseen attribute, we allow the agent to
collect transitions with 8 episodes on one single task with the unknown attribute to infer
the unknown attribute representation, as described in Section 6.3. The experimental results
across 5 random seeds are shown in Figure 6.6. We compare our zero-shot performance
(Zero-shot (ours)) with multiple baselines: 1) SAC: A single model is trained on all training
tasks with SAC [37]. 2) Prior (PEARL): The same N (0, 1) prior distribution is applied to
all the task embeddings zi of PEARL model [85]. 3) Meta-test (PEARL): We apply the

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 84

same meta-test for PEARL as in [85]. To ensure enough contexts on the test task, the first 8
trajectories are aggregated into the context. 4) Meta-test (ours): The same meta-test with
PEARL is applied to the model trained with our method. It is worth mentioning that only
1) and 2) can achieve zero-shot generalization on novel tasks, while 3) and 4) require extra
exploration. As shown in Figure 6.6, our zero-shot generalization significantly outperforms
the two zero-shot baselines, SAC and Prior (PEARL). Interestingly, it is also superior to the
two meta-test baselines, although our generalization does not explore on the test task. We
hypothesize that the reason is our method benefits from the EMA embedding z

yj
target used to

compose the embedding zu of the novel task, serving as a temporal ensemble of information
accumulated during training. In contrast, purely collecting context from a single test task
may suffer from its inherent bias and easily get trapped in the local optimum.

(a) Cheetah-vel-comp (b) Ant-goal-comp (c) Tilted-peg-in-hole-comp (d) Sim-to-real

SAC Prior (PEARL) Meta-test (PEARL)* Meta-test (ours) * Zero-shot (ours)

Figure 6.6: Evaluation results of policy generalization on test tasks (∗ not a zero-shot
method). Our zero-shot generalization significantly outperforms the two toher zero-shot
baselines, i.e., SAC and Prior (PEARL), indicating the effectiveness of our proposed method.

goal goalphysics

(a) PEARL (b) Ours

physics

Figure 6.7: Visualization of latent task embedding of our method compared to PEARL. The
embeddings of tasks with identical goal or physics labels are in the same color.

Visualization of Latent Embedding. To investigate if the proposed method in Sec-
tion 6.3 effectively disentangle the encodings in latent space, Figure 6.7 visualizes sampled

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 85

test task representations output by our method and PEARL on Cheetah-vel-comp. The em-
beddings of test tasks with same goal or physics are in the same color. All the embeddings
are reduced to 2-d with PCA [2] for visualization. It is observed that our method can dis-
tinguish different labels of each attribute better than PEARL. Different goals are distinctly
separable by our method. For different physics, despite their effect being indirect, similar
physics parameters still tend to induce closer embeddings.

Real Experiments

As described in Section 6.3, our method can be applied as a sim-to-real algorithm, by
treating real-world tasks as tasks with unseen physics attribute. We evaluate the method
on a real-world 6-DoF FANUC Mate 200iD robot with the similar setup as Tilted-peg-in-
hole-comp in Section 6.4, as shown in Figure 6.8. The evaluation of real world is identical
to the evaluation of S2 in simulation (Section 6.4), where, after meta-training in simulation,
the meta-policy collects context for one held-out task to infer the real-world physics embed-
ding. The obtained physics embedding is combined with other goal embeddings learned from
simulation to generalize across the other three tasks in the real world. Each task is used
as the held-out task once for thorough evaluation. When evaluating the generalized policy,
the evaluated task is executed for 30 trials with 3 different random seeds (10 trials for each
random seed). The results are reported in Figure 6.6(d). Our generalized policy achieves a
success rate of 73.3% over different unseen tasks.

Ablation Studies

In this section, we ablate our methods from two perspectives: the sparsity ratio (α) of
training tasks (Section. 6.4) and the effect of Exponential Moving Average (EMA) (Sec-
tion. 6.3).

Sparsity of Training Tasks. In our previous experiments, we sample 50% of composi-
tional tasks (i.e. α = 0.5, see Section 6.4 (b) for details) for training, so that each task DoV
label would appear multiple times during training. To examine the limit of our method, we
try to reduce the number of training tasks, i.e. α = 0.2 or 0.1, on Cheetah-vel-comp. In this
case, each task DoV label would appear only 4 or 2 times on average among training tasks.
Our zero-shot generalization performance is visualized in Figure 6.9a. Despite the perfor-
mance decrease with fewer training tasks, our approach still notably outperforms the Prior
even with the fewest training tasks (α = 0.1). This indicates our method learns meaningful
disentangled DoV embeddings even with sparse training tasks.

Effect of EMA. To justify the role of Exponential Moving Average (EMA) in our training
and zero-shot generalization, we consider the following alternative strategies: 1) training
w/o EMA: Equivalently, we set τ = 0 in Eq. 6.5. In this case, the task DoV embedding is

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 86

(a) (b)

Figure 6.8: The Tiled-peg-in-hole-comp task setup in the real world. (a) Real-world setup
with a FANUC LR Mate 200iD robot. (b) 5◦ tilted hole for experiment.

(a) Training Task Sparsity (b) Effect of EMA

Figure 6.9: Results of ablation studies on (a) the sparsity ratio (α) of training tasks and (b)
the effect of Exponential Moving Average (EMA).

regularized by the training task with the same DoV label sampled in the last training batch.
2) zero-shot generalization w/o EMA: We try another strategy to get the corresponding DoV
embeddings for an unseen task Tu instead of using EMA in S1 of Section 6.3. The average

CHAPTER 6. ZERO-SHOT POLICY TRANSFER WITH DISENTANGLED TASK
REPRESENTATION 87

DoV embeddings from training tasks with the same task DoV label with Tu is adopted
instead, i.e. z

yj
u = mean

(
{zyjv |Tv ∈ Ttrain, y

u
j = yvj }

)
. The results are shown in Figure 6.9b.

Training without EMA fails because of the large noise in the regularization of the DoV
embeddings. EMA “smoothes out” the noise, serving as a temporal ensemble of context
accumulated during training. In addition, it provides unbiased DoV embeddings for zero-
shot generalization, as indicated by the generalization performance gap with and without
EMA.

6.5 Conclusion

In this chapter, we propose a meta-RL algorithm to achieve zero-shot policy generaliza-
tion across unseen compositional tasks. Our method learns disentangled task representation
by encoding each task DoV separately. The DoV embeddings obtained from training tasks
enable zero-shot policy generalization on test tasks by composing the task embeddings of
novel tasks. Our approach achieves significantly superior performance on simulation tasks
and can be seamlessly applied to sim-to-real generalization.

One major limitation of the current work is the restriction to discrete set of task com-
binations. Achieving zero-shot generalization over continuous attribute values would be an
interesting direction to explore.

88

Chapter 7

Concluding Remarks and Suggested
Future Works

This dissertation focuses on improving data efficiency in learning algorithms for industrial
robotic systems, facilitating their application in industrial settings. We explore methodolo-
gies on three important and interconnected components of robot learning systems: reward
learning, policy learning, and policy generalization. Specifically in Part I, Chapter 2-3 dis-
cuss the algorithmic designs for data-efficient reward learning from two different aspects, i.e.,
inverse reinforcement learning (Chapter 2) and representation learning (Chapter 3). Chapter
2 builds on maximum entropy inverse reinforcement learning (IRL) and explicitly leverages
the prior knowledge on efficiently generating feasible long-horizon driving trajectory samples
to develop an algorithm that extracts reward function of human drivers. In Chapter 3, we
learn to embed multi-modal sensory input to a structured latent space and derive reward
signals from the latent embedding for contact-rich manipulation tasks.

Part II then explore data-efficient policy learning algorithms. Chapter 4 presents a novel
data-efficient reinforcement learning (RL) approach for task planning in robotic palletization
systems. It addresses the challenge of a vast action space, which hinders the application of
standard RL methods, by using supervised learning to iteratively refine and manage the
action space. This method speeds up the learning process and enhances the efficiency and
reliability of task planning in robotic palletization. Chapter 5 instead focuses on a learn-
ing from demonstrations (LfD) approach that is based on motion primitives (MP). Unlike
RL, this MP-based method leverages task-specific priors for increased sample efficiency. It
is crafted to quickly learn and adjust MP-based insertion skills from demonstrations, us-
ing black-box function optimization to fine-tune parameters based on previous experiences.
Human demonstrations provide a rich source of rewards, enabling precise parameter learning.

Finally, Part III investigates data-efficient policy generalization across different environ-
ments. Chapter 6 presents a novel zero-shot policy generalization algorithm for reinforcement
learning (RL) agents, designed to apply learned policies to new, unseen tasks. Focusing on
compositional tasks—new combinations of known task elements—the chapter introduces a
meta-RL algorithm using disentangled task representations. This strategy enables agents to

CHAPTER 7. CONCLUDING REMARKS AND SUGGESTED FUTURE WORKS 89

generalize policies to novel tasks without the need for further exploration by inferring task
characteristics from their disentangled representations.

Our studies in this dissertation covers multiple industrial robotics settings, including
autonomous driving, robotic palleting, robotic assembly, etc. While we believe the contribu-
tions made in this dissertation further the development of data-efficient algorithms for robot
learning, thereby enhancing the widespread deployment of industrial robotic systems, there
are still numerous open questions that remain to be addressed. In the remainder of this
chapter, we will outline potential avenues for future research.

Representation-based reward learning algorithm for non-monotonic tasks

In Chapter 3, we introduce a representation learning method to derive reward signals from
multi-modal sensory input for contact-rich manipulation tasks. This method presupposes
that tasks are monotonic, meaning task progression in the observation space is consistently
forward. While this assumption is valid for various assembly tasks characterized by clear
start and end states, it does not apply universally, such as in ping-pong, where similar
states may indicate different stages of task progression. To broaden the applicability of our
approach, further research could explore reward learning methods tailored specifically to
non-monotonic tasks.

Integrating tasking planning and trajectory planning for better robotic
palletization task planner

In Chapter 4, we present a reinforcement learning (RL)-based task planner specifically
designed for robotic palletization tasks. While being effective, the current task planner only
considers generating task plans that maximize the packing utility of the pallet and does not
consider the ease with which a trajectory planner can generate collision-free trajectories.
Given that robotic palletization systems often operate in cluttered environments, planning
collision-free trajectories becomes a significant challenge. Integrating task planning with
trajectory planning within the RL-based task planner’s algorithmic framework presents a
promising avenue for creating a more practical and efficient solution for industrial applica-
tions.

Developing a generic framework that segments, recognizes and learns motion
primitives from human demonstrations

Chapter 5 introduces a framework designed to learn the parameters of motion primitives
for industrial insertion tasks. For broader applicability across various industrial manipulation
tasks, future research could focus on creating a comprehensive framework capable of: i)
temporally segmenting any human demonstration into distinct segments, each representing
a single primitive; ii) identifying the type of primitive within each segment; and iii) learning
the specific parameters of each primitive demonstrated.

90

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine
learning. ACM. 2004, p. 1.

[2] Hervé Abdi and Lynne J Williams. “Principal component analysis”. In: Wiley inter-
disciplinary reviews: computational statistics 2.4 (2010), pp. 433–459.

[3] Benjamin Alt et al. “Robot Program Parameter Inference via Differentiable Shadow
Program Inversion”. In: arXiv preprint arXiv:2103.14452 (2021).

[4] Dario Amodei et al. “Concrete Problems in AI Safety”. In: CoRR abs/1606.06565
(2016). arXiv: 1606.06565. url: http://arxiv.org/abs/1606.06565.

[5] Jacob Andreas, Dan Klein, and Sergey Levine. “Modular multitask reinforcement
learning with policy sketches”. In: (2017), pp. 166–175.

[6] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[7] Esther M Arkin et al. An efficiently computable metric for comparing polygonal shapes.
Tech. rep. CORNELL UNIV ITHACA NY, 1991.

[8] Christopher G Atkeson and Stefan Schaal. “Robot learning from demonstration”. In:
ICML. Vol. 97. Citeseer. 1997, pp. 12–20.

[9] J Andrew Bagnell, Nathan Ratliff, and Martin Zinkevich. “Maximum margin plan-
ning”. In: Proceedings of the International Conference on Machine Learning (ICML).
Citeseer. 2006.

[10] Christopher Berner et al. “Dota 2 with large scale deep reinforcement learning”. In:
arXiv preprint arXiv:1912.06680 (2019).

[11] Andreea Bobu et al. “LESS is More: Rethinking Probabilistic Models of Human
Behavior”. In: arXiv preprint arXiv:2001.04465 (2020).

[12] Wendelin Böhmer et al. “Autonomous learning of state representations for control:
An emerging field aims to autonomously learn state representations for reinforce-
ment learning agents from their real-world sensor observations”. In: KI-Künstliche
Intelligenz 29.4 (2015), pp. 353–362.

BIBLIOGRAPHY 91

[13] Serkan Cabi et al. “Scaling data-driven robotics with reward sketching and batch
reinforcement learning”. In: arXiv (2019), arXiv–1909.

[14] Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. “Constrained iterative lqr for
on-road autonomous driving motion planning”. In: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE. 2017, pp. 1–7.

[15] Liang-Chieh Chen et al. “Semantic image segmentation with deep convolutional nets
and fully connected CRFs”. In: arXiv preprint arXiv:1412.7062 (2014).

[16] Sonia Chernova and Andrea L Thomaz. “Robot learning from human teachers”. In:
Synthesis Lectures on Artificial Intelligence and Machine Learning 8.3 (2014), pp. 1–
121.

[17] Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. “TS2PACK: A two-level
tabu search for the three-dimensional bin packing problem”. In: European Journal of
Operational Research 195.3 (2009), pp. 744–760.

[18] Todor Davchev et al. “Residual Learning from Demonstration: Adapting Dynamic
Movement Primitives for Contact-rich Insertion Tasks”. In: arXiv e-prints (2020),
arXiv–2008.

[19] Coline Devin et al. “Compositional plan vectors”. In: Advances in Neural Information
Processing Systems 32 (2019).

[20] Coline Devin et al. “Learning modular neural network policies for multi-task and
multi-robot transfer”. In: (2017), pp. 2169–2176.

[21] Yan Duan et al. “Rl2: Fast reinforcement learning via slow reinforcement learning”.
In: arXiv preprint arXiv:1611.02779 (2016).

[22] Gabriel Dulac-Arnold et al. “Deep reinforcement learning in large discrete action
spaces”. In: arXiv preprint arXiv:1512.07679 (2015).

[23] Oluf Faroe, David Pisinger, and Martin Zachariasen. “Guided local search for the
three-dimensional bin-packing problem”. In: Informs journal on computing 15.3 (2003),
pp. 267–283.

[24] Nima Fazeli et al. “See, feel, act: Hierarchical learning for complex manipulation skills
with multisensory fusion”. In: Science Robotics 4.26 (2019).

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for
fast adaptation of deep networks”. In: (2017), pp. 1126–1135.

[26] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep inverse
optimal control via policy optimization”. In: International Conference on Machine
Learning. 2016, pp. 49–58.

[27] Chelsea Finn, Kelvin Xu, and Sergey Levine. “Probabilistic model-agnostic meta-
learning”. In: Advances in neural information processing systems 31 (2018).

BIBLIOGRAPHY 92

[28] Carlos Florensa et al. “Reverse curriculum generation for reinforcement learning”. In:
arXiv preprint arXiv:1707.05300 (2017).

[29] Justin Fu, Katie Luo, and Sergey Levine. “Learning robust rewards with adversarial
inverse reinforcement learning”. In: arXiv preprint arXiv:1710.11248 (2017).

[30] Justin Fu et al. “Variational inverse control with events: A general framework for data-
driven reward definition”. In: Advances in Neural Information Processing Systems.
2018, pp. 8538–8547.

[31] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680.

[32] Jean-Bastien Grill et al. “Bootstrap your own latent-a new approach to self-supervised
learning”. In: Advances in Neural Information Processing Systems 33 (2020).

[33] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates”. In: 2017 IEEE international conference on robotics and
automation (ICRA). IEEE. 2017, pp. 3389–3396.

[34] Tianyu Gu et al. “Tunable and stable real-time trajectory planning for urban au-
tonomous driving”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2015, pp. 250–256.

[35] Abhishek Gupta et al. “Meta-reinforcement learning of structured exploration strate-
gies”. In: Advances in neural information processing systems 31 (2018).

[36] Chi Trung Ha et al. “An online packing heuristic for the three-dimensional container
loading problem in dynamic environments and the Physical Internet”. In: Applications
of Evolutionary Computation: 20th European Conference, EvoApplications 2017, Am-
sterdam, The Netherlands, April 19-21, 2017, Proceedings, Part II 20. Springer. 2017,
pp. 140–155.

[37] Tuomas Haarnoja et al. “Composable deep reinforcement learning for robotic ma-
nipulation”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 6244–6251.

[38] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor”. In: International Conference on Ma-
chine Learning. 2018, pp. 1861–1870.

[39] Dylan Hadfield-Menell et al. “Inverse reward design”. In: Advances in neural infor-
mation processing systems. 2017, pp. 6765–6774.

[40] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In:
Advances in neural information processing systems. 2016, pp. 4565–4573.

[41] Ruizhen Hu et al. “TAP-Net: transport-and-pack using reinforcement learning”. In:
ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–15.

[42] De-An Huang et al. “Neural task graphs: Generalizing to unseen tasks from a single
video demonstration”. In: (2019), pp. 8565–8574.

BIBLIOGRAPHY 93

[43] Jan Humplik et al. “Meta reinforcement learning as task inference”. In: arXiv preprint
arXiv:1905.06424 (2019).

[44] Yiding Jiang et al. “Language as an abstraction for hierarchical deep reinforcement
learning”. In: Advances in Neural Information Processing Systems 32 (2019).

[45] Lars Johannsmeier, Malkin Gerchow, and Sami Haddadin. “A framework for robot
manipulation: Skill formalism, meta learning and adaptive control”. In: 2019 Inter-
national Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 5844–
5850.

[46] Mrinal Kalakrishnan et al. “Learning force control policies for compliant manipula-
tion”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE. 2011, pp. 4639–4644.

[47] Mrinal Kalakrishnan et al. “Learning objective functions for manipulation”. In: 2013
IEEE International Conference on Robotics and Automation. IEEE. 2013, pp. 1331–
1336.

[48] Dmitry Kalashnikov et al. “Scalable deep reinforcement learning for vision-based
robotic manipulation”. In: Conference on Robot Learning. 2018, pp. 651–673.

[49] Rudolf Emil Kalman. “When is a linear control system optimal?” In: Journal of Basic
Engineering (Mar. 1964).

[50] Kyungdaw Kang, Ilkyeong Moon, and Hongfeng Wang. “A hybrid genetic algorithm
with a new packing strategy for the three-dimensional bin packing problem”. In:
Applied Mathematics and Computation 219.3 (2012), pp. 1287–1299.

[51] Daniel Kappler et al. “Data-Driven Online Decision Making for Autonomous Manip-
ulation.” In: Robotics: Science and Systems. 2015.

[52] Korhan Karabulut and Mustafa Murat İnceoğlu. “A hybrid genetic algorithm for
packing in 3D with deepest bottom left with fill method”. In: International Conference
on Advances in Information Systems. Springer. 2004, pp. 441–450.

[53] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal mo-
tion planning”. In: The International Journal of Robotics Research 30.7 (June 2011),
pp. 846–894.

[54] Oussama Khatib. “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation”. In: IEEE Journal on Robotics and
Automation 3.1 (1987), pp. 43–53.

[55] Kenneth Kimble et al. “Benchmarking Protocols for Evaluating Small Parts Robotic
Assembly Systems”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 883–
889.

[56] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

BIBLIOGRAPHY 94

[57] Thomas Kipf et al. “Compile: Compositional imitation learning and execution”. In:
(2019), pp. 3418–3428.

[58] Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research 32.11 (2013), pp. 1238–
1274.

[59] Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. “Learning driving styles for
autonomous vehicles from demonstration”. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2015, pp. 2641–2646.

[60] Michelle A Lee et al. “Making sense of vision and touch: Self-supervised learning of
multimodal representations for contact-rich tasks”. In: 2019 International Conference
on Robotics and Automation (ICRA). IEEE. 2019, pp. 8943–8950.

[61] Sergey Levine and Vladlen Koltun. “Continuous inverse optimal control with locally
optimal examples”. In: Proceedings of the 29th International Coference on Interna-
tional Conference on Machine Learning. 2012, pp. 475–482.

[62] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Jour-
nal of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[63] Kun Li, Mrinal Rath, and Joel W Burdick. “Inverse reinforcement learning via func-
tion approximation for clinical motion analysis”. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2018, pp. 610–617.

[64] Tingguang Li et al. “Learning hierarchical control for robust in-hand manipulation”.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 8855–8862.

[65] Weiwei Li and Emanuel Todorov. “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” In: ICINCO (1). 2004, pp. 222–229.

[66] Zhaoting Li et al. “Adaptive sampling-based motion planning with a non- conserva-
tively defensive strategy for autonomous driving”. In: The 21st IFAC World Congress.
2020.

[67] Wenzhao Lian et al. “Benchmarking Off-The-Shelf Solutions to Robotic Assembly
Tasks”. In: arXiv preprint arXiv:2103.05140 (2021).

[68] Jacky Liang et al. “GPU-accelerated robotic simulation for distributed reinforcement
learning”. In: arXiv preprint arXiv:1810.05762 (2018).

[69] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2015, pp. 3431–3440.

[70] Silvano Martello, David Pisinger, and Daniele Vigo. “The three-dimensional bin pack-
ing problem”. In: Operations research 48.2 (2000), pp. 256–267.

BIBLIOGRAPHY 95

[71] Roberto Mart́ın-Mart́ın et al. “Variable Impedance Control in End-Effector Space: An
Action Space for Reinforcement Learning in Contact-Rich Tasks”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019,
pp. 1010–1017.

[72] Oier Mees et al. Adversarial Skill Networks: Unsupervised Robot Skill Learning from
Video. 2020. arXiv: 1910.09430 [cs.CV].

[73] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: nature 518.7540 (2015), pp. 529–533.

[74] Oskar Morgenstern and John Von Neumann. Theory of games and economic behavior.
Princeton university press, 1953.

[75] Katharina Muelling et al. “Learning strategies in table tennis using inverse reinforce-
ment learning”. In: Biological cybernetics 108.5 (2014), pp. 603–619.

[76] Maximilian Naumann* et al. “On the Suitability of Cost Functions for Explaining
and Imitating Human Driving Behavior”. In: 2020 IEEE International Conference
on Robotics and Automation (ICRA). 2020.

[77] Andrew Y Ng, Stuart J Russell, et al. “Algorithms for inverse reinforcement learning.”
In: Icml. Vol. 1. 2000, p. 2.

[78] Junhyuk Oh et al. “Zero-shot task generalization with multi-task deep reinforcement
learning”. In: (2017), pp. 2661–2670.

[79] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In: arXiv
preprint arXiv:1609.03499 (2016).

[80] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Trans-
actions on knowledge and data engineering 22.10 (2009), pp. 1345–1359.

[81] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics random-
ization”. In: 2018 IEEE international conference on robotics and automation (ICRA).
IEEE. 2018, pp. 3803–3810.

[82] Valerio Perrone et al. “Learning search spaces for bayesian optimization: Another view
of hyperparameter transfer learning”. In: arXiv preprint arXiv:1909.12552 (2019).

[83] Lerrel Pinto et al. “Asymmetric actor critic for image-based robot learning”. In: arXiv
preprint arXiv:1710.06542 (2017).

[84] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[85] Kate Rakelly et al. “Efficient off-policy meta-reinforcement learning via probabilistic
context variables”. In: International conference on machine learning. PMLR. 2019,
pp. 5331–5340.

[86] Deepak Ramachandran and Eyal Amir. “Bayesian Inverse Reinforcement Learning.”
In: IJCAI. Vol. 7. 2007, pp. 2586–2591.

BIBLIOGRAPHY 96

[87] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[88] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation learn-
ing and structured prediction to no-regret online learning”. In: Proceedings of the four-
teenth international conference on artificial intelligence and statistics. 2011, pp. 627–
635.

[89] Stéphane Ross et al. “Online planning algorithms for POMDPs”. In: Journal of Ar-
tificial Intelligence Research 32 (2008), pp. 663–704.

[90] Dorsa Sadigh et al. “Planning for cars that coordinate with people: leveraging effects
on human actions for planning and active information gathering over human internal
state”. In: Autonomous Robots 42.7 (2018), pp. 1405–1426.

[91] Tim Salimans et al. “Improved techniques for training gans”. In: Advances in neural
information processing systems. 2016, pp. 2234–2242.

[92] Gerrit Schoettler et al. “Deep reinforcement learning for industrial insertion tasks
with visual inputs and natural rewards”. In: arXiv preprint arXiv:1906.05841 (2019).

[93] Gerrit Schoettler et al. “Meta-Reinforcement Learning for Robotic Industrial Insertion
Tasks”. In: arXiv preprint arXiv:2004.14404 (2020).

[94] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[95] Dexter RR Scobee and S Shankar Sastry. “Maximum Likelihood Constraint Infer-
ence for Inverse Reinforcement Learning”. In: International Conference on Learning
Representations. 2019.

[96] Pierre Sermanet et al. “Time-contrastive networks: Self-supervised learning from
video”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2018, pp. 1134–1141.

[97] Burr Settles. Active learning literature survey. Tech. rep. University of Wisconsin-
Madison Department of Computer Sciences, 2009.

[98] Daniel Shapiro and Ross Shachter. “User-agent value alignment”. In: Proc. of The
18th Nat. Conf. on Artif. Intell. AAAI. 2002.

[99] Avi Singh et al. “End-to-end robotic reinforcement learning without reward engineer-
ing”. In: arXiv preprint arXiv:1904.07854 (2019).

[100] Satinder Singh, Richard L Lewis, and Andrew G Barto. “Where do rewards come
from”. In: Proceedings of the annual conference of the cognitive science society. Cog-
nitive Science Society. 2009, pp. 2601–2606.

[101] Francisco Suárez-Ruiz and Quang-Cuong Pham. “A framework for fine robotic as-
sembly”. In: 2016 IEEE international conference on robotics and automation (ICRA).
IEEE. 2016, pp. 421–426.

BIBLIOGRAPHY 97

[102] Liting Sun et al. “Courteous autonomous cars”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 663–670.

[103] Liting. Sun, Wei. Zhan, and Masayoshi. Tomizuka. “Probabilistic Prediction of Inter-
active Driving Behavior via Hierarchical Inverse Reinforcement Learning”. In: 2018
21st International Conference on Intelligent Transportation Systems (ITSC). Nov.
2018, pp. 2111–2117.

[104] Jaeyong Sung, J Kenneth Salisbury, and Ashutosh Saxena. “Learning to represent
haptic feedback for partially-observable tasks”. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2017, pp. 2802–2809.

[105] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[106] Antti Tarvainen and Harri Valpola. “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results”. In: Ad-
vances in neural information processing systems 30 (2017).

[107] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning
domains: A survey.” In: Journal of Machine Learning Research 10.7 (2009).

[108] Stephen Tian et al. “Manipulation by feel: Touch-based control with deep predictive
models”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 818–824.

[109] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: 2017 IEEE/RSJ international conference on intel-
ligent robots and systems (IROS). IEEE. 2017, pp. 23–30.

[110] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: 2012 IEEE/RSJ international conference on intelligent robots and
systems. IEEE. 2012, pp. 5026–5033.

[111] Mel Vecerik et al. “Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards”. In: arXiv preprint arXiv:1707.08817 (2017).

[112] Oriol Vinyals et al. “Starcraft ii: A new challenge for reinforcement learning”. In:
arXiv preprint arXiv:1708.04782 (2017).

[113] Florian Voigt, Lars Johannsmeier, and Sami Haddadin. “Multi-Level Structure vs.
End-to-End-Learning in High-Performance Tactile Robotic Manipulation”. In: Con-
ference on Robot Learning. PMLR. 2020.

[114] Nghia Vuong, Hung Pham, and Quang-Cuong Pham. “Learning Sequences of Ma-
nipulation Primitives for Robotic Assembly”. In: arXiv preprint arXiv:2011.00778
(2020).

[115] Fan Wang and Kris Hauser. “Robot packing with known items and nondeterministic
arrival order”. In: IEEE Transactions on Automation Science and Engineering 18.4
(2020), pp. 1901–1915.

BIBLIOGRAPHY 98

[116] Fan Wang and Kris Hauser. “Stable bin packing of non-convex 3D objects with a
robot manipulator”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 8698–8704.

[117] Ruohan Wang et al. “Random expert distillation: Imitation learning via expert policy
support estimation”. In: arXiv preprint arXiv:1905.06750 (2019).

[118] Zheng Wu et al. “Efficient Reinforcement Learning of Task Planners for Robotic
Palletization through Iterative Action Masking Learning”. In: CoRR abs/2404.04772
(2024). arXiv: 2404.04772. url: http://arxiv.org/abs/2404.04772.

[119] Zheng Wu et al. “Efficient sampling-based maximum entropy inverse reinforcement
learning with application to autonomous driving”. In: IEEE Robotics and Automation
Letters 5.4 (2020), pp. 5355–5362.

[120] Zheng Wu et al. “Learning Dense Rewards for Contact-Rich Manipulation Tasks”.
In: arXiv preprint arXiv:2011.08458 (2020).

[121] Zheng Wu et al. “Learning dense rewards for contact-rich manipulation tasks”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2021, pp. 6214–6221.

[122] Zheng Wu et al. “Prim-lafd: A framework to learn and adapt primitive-based skills
from demonstrations for insertion tasks”. In: IFAC-PapersOnLine 56.2 (2023).

[123] Zheng Wu et al. “Zero-shot policy transfer with disentangled task representation of
meta-reinforcement learning”. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2023, pp. 7169–7175.

[124] Deheng Ye et al. “Mastering complex control in moba games with deep reinforcement
learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34.
04. 2020, pp. 6672–6679.

[125] Changxi You et al. “Advanced planning for autonomous vehicles using reinforcement
learning and deep inverse reinforcement learning”. In: Robotics and Autonomous Sys-
tems 114 (2019), pp. 1–18.

[126] Kevin Zakka et al. “Form2fit: Learning shape priors for generalizable assembly from
disassembly”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2020, pp. 9404–9410.

[127] Wei Zhan et al. “A non-conservatively defensive strategy for urban autonomous driv-
ing”. In: 2016 IEEE 19th International Conference on Intelligent Transportation Sys-
tems (ITSC). IEEE. 2016, pp. 459–464.

[128] Wei Zhan et al. “Constructing a highly interactive vehicle motion dataset”. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2019, pp. 6415–6420.

BIBLIOGRAPHY 99

[129] Wei Zhan et al. “INTERACTION Dataset: An INTERnational, Adversarial and Co-
operative moTION Dataset in Interactive Driving Scenarios with Semantic Maps”.
In: arXiv preprint arXiv:1910.03088 (2019).

[130] Chi Zhang, Hao Zhang, and Lynne E Parker. “Feature space decomposition for effec-
tive robot adaptation”. In: (2015), pp. 441–448.

[131] Jingwei Zhang, Bin Zi, and Xiaoyu Ge. “Attend2pack: Bin packing through deep
reinforcement learning with attention”. In: arXiv preprint arXiv:2107.04333 (2021).

[132] Hang Zhao, Yang Yu, and Kai Xu. “Learning efficient online 3D bin packing on pack-
ing configuration trees”. In: International Conference on Learning Representations.
2021.

[133] Hang Zhao et al. “Learning practically feasible policies for online 3D bin packing”.
In: Science China Information Sciences 65.1 (2022), p. 112105.

[134] Hang Zhao et al. “Online 3D bin packing with constrained deep reinforcement learn-
ing”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 1.
2021, pp. 741–749.

[135] Tony Z Zhao et al. “Meld: Meta-reinforcement learning from images via latent state
models”. In: arXiv preprint arXiv:2010.13957 (2020).

[136] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey”. In: (2020), pp. 737–744.

[137] Allan Zhou et al. “Policy Architectures for Compositional Generalization in Control”.
In: arXiv preprint arXiv:2203.05960 (2022).

[138] Yuke Zhu et al. “Reinforcement and imitation learning for diverse visuomotor skills”.
In: arXiv preprint arXiv:1802.09564 (2018).

[139] Yuke Zhu et al. “robosuite: A Modular Simulation Framework and Benchmark for
Robot Learning”. In: (2020).

[140] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In: Aaai.
Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

[141] Luisa Zintgraf et al. “Fast context adaptation via meta-learning”. In: (2019), pp. 7693–
7702.

[142] Luisa Zintgraf et al. “Varibad: A very good method for bayes-adaptive deep rl via
meta-learning”. In: arXiv preprint arXiv:1910.08348 (2019).

