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ABSTRACT 
 

Drug response is well documented to vary considerably among patient groups and 

populations, as well as within individual patients. Since drug prescribing is often based on 

population averages of drug response, many patients will not respond, and up to one-third may 

experience harmful toxicity. Genetics plays a large role in explaining the variability observed in 

response to different drugs and is an important factor driving precision medicine initiatives. 

Pharmacogenetic information can be useful in optimizing patient therapy, potentially reducing 

the cost of hospitalizations and treatment of adverse drug events. 

As part of the Kaiser Permanente Research Program on Genes, Environment, and Health 

(RPGEH), we analyzed 102,979 members of the Genetic Epidemiology Research on Adult 

Health and Aging (GERA) cohort with genetic information available, along with almost two 

decades of electronic health record (EHR) data, prescription records, and lifestyle survey results. 

In one of the largest, most ethnically diverse pharmacogene characterization studies to date, we 

assessed cohort metabolizer status phenotypes for 7 drug-gene interactions (DGIs) for which 

there is moderate to strong evidence suggesting the use of pharmacogenetic information to guide 

therapy. 89% of the cohort had at least one actionable allele for the 7 DGIs in this study, and we 

observed large variations among ethnicities. Additionally, 17,747 individuals had been 

prescribed a drug for which they had an actionable or high-risk metabolizer status phenotype. 

For these individuals, the availability of pharmacogenetic information at point-of-care may have 

potentially led to a more personalized drug or dosing regimen.  

Following this study, we assessed the utility of this resource for deriving two drug 

response phenotypes: weight gain induced by atypical antipsychotic use and major adverse 

cardiovascular events in clopiodgrel non-responders. Despite challenges in deriving phenotypes 
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from the EHR, we were able to extract phenotypes that reflected observed estimates from 

previously published studies. Using these phenotypes, we performed candidate gene and 

genome-wide association studies to identify genetic variants associated with response. 

Altogether, this dissertation demonstrates the potential utility and clinical impact of integrating 

genetic data with EHRs for pharmacogenetic application and discovery, and provides the 

foundation for future studies in precision medicine.  
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1 INTRODUCTION TO CLINICAL PHARMACOGENETICS 

1.1 Introduction 

Drug response can vary considerably due to numerous factors including genetics, 

ethnicity, gender, age, or disease status. While intrinsic and environmental factors may affect 

drug response, drug prescribing is often based on population averages, and in many cases, “one 

size” does not fit all. In fact, up to one-third of patients may experience harmful toxicity1, while 

another portion of patients may not respond at all to a drug.  

Since the coining of the term “pharmacogenetics” in the 1950s2, significant progress has 

been made in our understanding of how DNA sequence may influence response to various drugs. 

While research in this area continues at a fast pace, largely helped by advances in technology, 

translating this information into the clinic remains a challenge. Ultimately, researchers and 

clinicians are striving towards a future whereby before a patient undergoes drug therapy, their 

physician has immediate access to the patient’s genetic information, and can use it to choose the 

optimal drug and dosage to best benefit the patient.  

 The term “precision medicine” was recently coined to represent the idea of tailoring of 

medical treatment to the individual characteristics of each patient3. Numerous efforts, such as the 

national Precision Medicine Initiative launched by US President Barack Obama in 20154, 

recognize the need for a more comprehensive view of each patient when making treatment 

decisions. Key to precision medicine is the clinical implementation of pharmacogenomics, which 

faces numerous challenges, ranging from the development of a well-replicated knowledge base 

linking genetic variants to drug response, to clinical decision support systems that can 

incorporate genetic information and help guide treatment. This chapter will review progress that 

has been made in addressing the multiple barriers of widespread implementation of 
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pharmacogenomics in clinical practice, and will highlight key examples that have contributed to 

this field. 

1.2 Background 

1.2.1 History of Pharmacogenetics 

 Variation in response to drugs was observed as early as the early 1900s. In 1908, 

physiologist Sir Archibald Garrod described the notion of “chemical individuality,” noting that 

“every active drug is a poison, when taken in large enough doses; and in some subjects a dose 

which is innocuous to the majority of people has toxic effects, whereas others show exceptional 

tolerance of the same drug5.” Decades later, in the 1950s, significant progress was made in 

studying genetically determined variations in drug response, with the term “pharmacogenetics” 

being coined by Vogel in 19592.  

Early studies were based on clinical observations that patients showed a wide range of 

plasma or urinary drug concentrations, paired to observations that such variation was often 

inherited. Initial studies include observations of prolonged apnea after taking succinylcholine due 

to a deficiency in pseudocholinesterase6 (an autosomal recessive trait7), and a polymorphism in 

N-acetyltransferase-2 (NAT2) that causes deficient biotransformation of isoniazid, a treatment for 

tuberculosis, resulting in toxicity8,9. Studies of the antimalarial drug primaquine given in the 

South Pacific during World War II showed a higher rate of hemolytic anemia among African 

Americans with glucose-6 phosphate dehydrogenase (G6PD) deficiency10-12, hinting towards the 

role of ancestry in clinically observed traits.  

1.2.2 Mechanisms of Variability of Drug Concentration and Effect 

 In the 1970s, two independent pharmacokinetic studies of the antihypertensive drug 

debrisoquine13 and the antiarrhythmic sparteine14, observed that 5 to 10 percent of subjects 
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displayed low urinary concentration of the metabolite and higher plasma concentrations of the 

parent drug, along with exaggerated drug response. This effect was determined to be monogenic 

and inherited as an autosomal recessive trait15. It was later found that deficiency in the same 

cytochrome-P450 (CYP450) enzyme was responsible for the observations seen with both 

drugs16, and in 1988, the specific enzyme, CYP2D6, was cloned17. 

The CYP450 superfamily of enzymes are the most important enzymes for catalyzing 

phase I (e.g. oxidation, reduction, and hydrolysis) drug metabolism reactions18. Both phase I and 

phase II (conjugation reactions such as acetylation, glucoronidation, sulfation, and methylation) 

reactions generally convert drugs to metabolites that are more water-soluble and easier to 

excrete19. CYP2D6, one of the first CYP450 enzymes to be cloned, remains one of the most well 

studied genes involved in drug metabolism and is involved in the bioactivation of 20-25% of 

marketed drugs20. Variants in CYP450 genes that result in protein changes can generate a range 

of responses to substrates of each enzyme. Given the highly polymorphic nature of CYP2D6, a 

spectrum of drug responders, ranging from poor metabolizers (“PMs”, with low levels of 

metabolite formed compared to parent drug) to ultra-rapid metabolizers (“UMs”, who rapidly 

convert parent drug to metabolite) are observed for CYP2D6 substrates21. Variants in other, less 

polymorphic CYP450 genes, such as CYP2C9 and CYP2C19, may result in a less variable, yet 

still clinically relevant, range of responses. Notably, frequency rates of functionally-relevant 

CYP450 variants often vary greatly by ancestry, resulting in different rates of PMs in different 

populations. The US Food and Drug Administration (FDA) first approved a laboratory 

pharmacogenetic test in 2005: the AmpliChip® CYP450 Test (Roche Molecular Diagnostics, NJ, 

USA), which utilized Affymetrix (CA, USA) microarray technology to genotype CYP2D6 and 

CYP2C19 alleles22. Since then, commercially available pharmacogenetic tests have been 
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developed for the majority of the pharmacogenetic biomarkers that the FDA has included in 

labels for over 100 drugs23.  

Candidate gene pharmacogenetic studies also considered other mechanisms underlying 

variability in drug concentration and effect, such as variation in drug uptake, distribution, and 

elimination pathways, as well as drug targets. Research on the latter has led to significant 

developments in targeted therapy. Variants in membrane-bound efflux transporters, such as the 

ATP-binding cassette transporter family (ABCs) and organic anion transporters (OATs and 

OATPs), have also been shown to modulate responses to a variety of drugs24.  

1.2.3 Technology and Approaches 

Early pharmacogenetic studies mainly identified monogenic traits with relatively 

common genetic polymorphisms19. Since these studies, significant improvements in both cost 

and efficiency of genotyping and next-generation sequencing technologies, computing, and 

analysis methods have advanced our understanding of genetic variation influencing drug 

response. Most pharmacogenetic studies to date focused on the DNA sequence of candidate 

genes or pathways involved in drug response. The availability of tools that enable querying 

variants genome-wide allow for more unbiased approaches, contributing to the development of 

“pharmacogenomic” research. Additionally, new technologies allow for the investigation of 

variation beyond DNA sequence, enabling researchers to study differences in RNA expression, 

methylation sites, or the microbiome, for example. At the same time, genetic research has shifted 

focus towards characterization of more complex, polygenic traits, including common diseases 

and drug response.   
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1.2.4 Clinical Pharmacogenetics Examples 

 As technology improves, so too does the ability to both identify and validate key genes 

involved in drug response in clinical settings. Table 1.1 highlights well-studied clinical 

pharmacogenetic examples. Given the number of genetic studies investigating these examples in 

multiple populations, such drugs are most likely to be among the first candidates for 

implementation of personalized medicine in clinical practice. The Clinical Pharmacogenetics 

Implementation Consortium (CPIC) of the National Institute of Health’s Pharmacogenomics 

Research Network was created in part to provide guidance on clinical interpretation of genetic 

test results for certain gene/drug pairs based on peer-reviewed evidence in literature25. In 

addition to the drugs listed in Table 1.1, the FDA has amended drug labels for over 100 drugs to 

include information about genetic variants that may influence drug response23. Pharmacogenetic 

guidance may be particularly useful when administering high-risk drugs with narrow therapeutic 

indices (NTI) or only one major pathway of metabolism or elimination26. In such instances, 

variants leading to deficiencies in a single gene may significantly alter drug concentration and 

response. For NTI drugs, this may result in toxicity and adverse events. Such high-risk drugs are 

also more susceptible to drug-drug interactions, in which another administered drug may 

compete with the single metabolism or elimination pathway. Chapter 2 describes a 

characterization study of a panel of pharmacogenes that are included in several CPIC guidelines 

for utilizing genetics when prescribing certain drugs. 
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Table 1.1. Examples of drugs with genetic variants influencing clinical response 
 

Drug Gene(s) Clinical Effect Year Reference(s) 
6-mercaptopurine TPMT Decreased dose 

requirements 
1980 27 

codeine CYP2D6 Increased risk of 
toxicity in UMs, 

insufficient response 
in PMs 

1991 28 

warfarin CYP2C9, 
VKORC1 

Decreased dose 
requirements, possible 

increased risk for 
bleeding 

1994 29-31 

irinotican UGT1A1 Increased risk for 
adverse events 

1998 32 

abacavir HLA Skin reaction 2002 33,34 
carbamazepine HLA Skin reaction, Stevens-

Johnson Syndrome 
2004 35 

tamoxifen CYP2D6 Increased risk for 
relapse, poor outcomes 

in IMs and PMs 

2005 36,37 

simvastatin SLCO1B1 Increased risk for 
myopathy 

2008 38 

clopidogrel CYP2C19, 
ABCB1 

Decreased effect, 
increased risk for poor 

outcomes in PMs 

2009 39-41 

 
 Cancer and cardiovascular disease therapeutics have been particularly impacted by 

pharmacogenetic discoveries. Mercaptopurine, an immunosuppressant chemotherapy agent used 

to treat acute lymphoblastic leukemia and other neoplasias, is an early example pharmacogenetic 

testing in clinical practice19. Thiopurine S-methyltransferase (TPMT) was found to metabolize 

mercaptopurine27, and studies have observed that patients with a single common allele in TPMT 

(TPMT*3A allele) are at elevated risk for life-threatening myelosuppresion42. Irinotican, a 

topoisomerase 1 inhibitor used to treat colon and rectal cancers, is converted to its active 

metabolite by hydrolysis, which is then inactivated by UDP glucoronosyltransferase 1 family, 
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polypeptide A1 (UGT1A1)32. Deficiency in UGT1A1 due to genetic variants has been associated 

with irinotecan toxicity and excessive bilirubin43,44. Tamoxifen, widely used to treat estrogen 

receptor positive breast cancer, undergoes multiple pathways of metabolism by a number of 

different CYP450s45. CYP2D6 plays a major role in the formation of the potent metabolite 

endoxofin46, and PMs have been found to have an ineffective response to tamoxifen, resulting in 

relapse or poor outcomes36,37.  

In cardiovascular disease therapy, warfarin remains the most extensively studied 

pharmacogenetic example. Warfarin, a widely prescribed anticoagulant, has a dosing range that 

varies by a factor of 10- to 20-fold among patients47,48, with incorrect dosing leading to severe 

adverse events. So far, the International Warfarin Pharmacogenetics Consortium has analyzed 

the relationship between CYP2C9 and VKORC1 genotypes with warfarin dose in over 5000 

patients of various ancestries, and has created dosing algorithms that can be used clinically upon 

prescribing48. Clopidogrel, a cardiovascular drug that prevents platelet aggregation and the focus 

of chapter 4, is metabolized by multiple pharmacogenes, with drug response primarily influenced 

by CYP2C19 genotype49.  

1.2.5 Electronic Health Records and Biorepositories 

 While researchers continue contributing to a growing body of knowledge linking genetic 

variants to drug response, multiple barriers still exist for integrating such information into 

clinical practice. One major barrier is infrastructure to collect, store, and present 

pharmacogenetic information to clinicians. Setting up such infrastructure in countries such as the 

United States, with multiple disparate health care systems, will continue to remain a challenge. 

Nonetheless, investigators are looking into implementing pharmacogenetics within their own 

institutions, with many institutions sharing best practices and early results50-53. Adoption of 
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electronic health record (EHR) systems is a key first step in implementation, and as of 2014, 3 

out of 4 non-federal acute care hospitals (76%) have at least a basic EHR system in place, an 

eight-fold increase since 200854. Such systems allow for integration of clinical decision support 

rules based on a pharmacogenetic knowledge base. For example, when a physician orders a 

certain drug, a rule-based engine may cause an alert to pop-up, advising them to order a 

pharmacogenetic test first51.  

 While EHRs are key for implementation, they are also proving to be excellent tools for 

pharmacogenomic discovery and collection of drug response data. Phenotypes for the majority of 

published pharmacogenetic studies have largely been obtained from randomized clinical trials 

(RTCs)55. Data collection for such studies has been costly and time-consuming. EHRs rich in 

longitudinal medical data can potentially be used to quickly extract phenotypic information for 

use in pharmacogenetic studies, and may capture clinical covariates, pharmacy, and lab 

information not typically collected in RTCs. Chapters 3 and 4 describe examples of using this 

type of resource for deriving drug response phenotypes.  

While EHRs are a robust source of phenotypic information, biorepositories or biobanks 

of collected patient tissue samples may serve as a resource for genotypic information. Besides 

typical costs to maintain a biorepository, genotyping efforts and data generation, analysis, and 

integration are another challenge. Ethical issues of consent and dissemination of analysis 

findings are also a major concern, as are issues of educating both patients and physicians on 

interpretation of pharmacogenetic testing results56. Nonetheless, several institutions and 

consortia, such as the Electronic Medical Records and Genomics (eMERGE) Network57 and the 

Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH)58, have 
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confronted many of these hurdles, and made significant progress in integrating EHR systems 

with genetic data. 

1.3 Statement of Purpose 

In this study, we utilize data from the Genetic Epidemiology Research on Adult Health 

and Aging (GERA) cohort, part of the Kaiser Permanente RPGEH. The GERA cohort consists of 

102,979 Kaiser Permanente Northern California (KPNC) adult members that have undergone 

genome-wide genotyping using Affymetrix Axiom technology59,60. In addition to genetic data, 

this resource includes extensive pharmacy, lab, procedure, diagnosis, and lifestyle data for cohort 

members, derived from a comprehensive EHR system and patient surveys. A description of this 

resource has been previously described61 and is also available at dbGAP accession number 

phs000674.v1.p1. In this dissertation, we leverage these data to assess the impact of 

pharmacogenetic information on clinically observed drug response, as well as utilize EHR-

derived drug response phenotypes for genetic studies. 
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2 PHARMACOGENE CHARACTERIZTAION 

2.1 Introduction 

Incorporation of pharmacogenetic information into routine clinical practice, a necessary 

step of precision medicine efforts, faces many hurdles1,2. One such hurdle is the timely 

availability of accurate genetic information to clinicians when it is needed, at point of care. 

Generally, lab values, symptoms, or a certain diagnosis may spur physicians to order 

pharmacogenetic testing prior to prescribing a drug, but there can be significant delays in the 

return of actionable information2. Current approaches of obtaining such information can also be 

costly and impractical3. 

While genetic information can be useful for guiding personalized therapy, there are 

multiple challenges in translating genotypic data into clinically actionable information. For 

instance, researchers and clinicians use different nomenclatures to identify pharmacogenetic 

variants4. Genetic data in the form of single nucleotide polymorphisms are typically annotated 

with a dbSNP identifier in research studies. Pharmacogenetic information, which can be found in 

boxed warnings on the package insert of certain drugs, is often communicated to physicians in 

the form of star allele nomenclature4. This nomenclature system was initially created to annotate 

variants in cytochrome p450 enzymes5, but has been adopted for the annotation of other 

pharmacogenes. In this system, numbered alleles represent functional variants within a gene. Star 

allele status forms the basis of common pharmacogenetic metabolizer phenotypes, such as 

extensive metabolizers (EMs) who benefit from the standard recommended drug regimen, or 

poor metabolizers (PMs) who are unable to metabolize a drug and are thus at risk of adverse 

drug reactions or a lack of therapeutic effect. Translating between the two nomenclatures is a 
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non-trivial but necessary initial task6 that allows for characterization of pharmacogenes and an 

assessment of the frequency of drug gene interactions with implications for clinical use.  

The Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH) 

was created to enable research on genetic and environmental factors that affect health and 

disease by combining several data sources, including electronic health records (EHR) and 

genetic data derived from collected biospecimens. The Genetic Epidemiology Research on Adult 

Health and Aging (GERA) cohort includes over 100,000 adult members of Kaiser Permanente 

Northern California (KPNC) who are participants of RPGEH and have undergone genome-wide 

genotyping using Affymetrix Axiom technology, as previously described7. Given that the median 

age of cohort members was 64 years old at recruitment, and polypharmacy and drug use 

generally increase with age8, this resource presents the opportunity to quantify decades of drug 

response data in combination with genetic data in a large, diverse population. 

In this chapter we utilize a diverse, real-world dataset to assess the variability in drug 

response phenotypes across ethnicities and patient groups. This chapter highlights the ethnicity-

specific differences in frequency of clinically actionable pharmacogenes for 7 drug-gene 

interactions (DGIs). We utilized guidelines from the Clinical Pharmacogenetics Implementation 

Consortium (CPIC) 9 to determine which pharmacogenetic alleles to consider actionable. We 

also address clinical relevance by assessing retrospective medication exposure to 34 drugs with 

moderate to strong clinical evidence supporting the use of genetic information for prescribing, 

and tie exposure back to pharmacogene status for the 7 drugs in this study. This results in the 

largest, most diverse pharmacogene characterization study to date, highlighting the potential 

impact of preemptive genotyping, particularly among different ethnicities. 
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2.2 Results 

2.2.1 Study Population 

102,979 RPGEH members were successfully genotyped, representing the GERA cohort 

(Table 2.1). Eighty-one percent of cohort members are Non-Hispanic White, while 7.8%, 7.0%, 

3.3% are Asian, Latino, and African American, respectively. 0.74% was classified as other or 

uncertain. 58% of cohort members are female. Overall, at sample collection, cohort members had 

a median age of 64 years and 14.9 years of prescription records available as part of this resource. 

75% of the cohort had at least a decade of prescription records available. 

Table 2.1 GERA Cohort Demographics  

 All 
GERA 

White African 
American 

Latino Asian Other/ 
Uncertain 

Total (%) 102,979 83,513 
(81%) 

3,380 
(3.3%) 

7,246 
(7.0%) 

8,082 
(7.8%) 

758 
(0.073%) 

% Male 42 42 42 38 43 47 
Median Age 
at Sample 

Collection in 
years 

(interquartile 
range) 

64 (55-73) 65 (56-73) 62 (52-70) 58 (47-68) 59 (48-68) 64 (56-74) 

Median EHR 
Rx Exposure 
Time in years 
(interquartile 

range) 

14.9 
(10.7-
17.1) 

15.0 
(10.8-17.1) 

15.0 
(11.5-17.1) 

14.5 
(10.3-17.0) 

14.5 
(10.1-17.1) 

15.1 
(9.9-17.1) 

       
EHR Rx exposure time indicates length of prescription record available for cohort members. See 
Materials & Methods – Study Population.   
 
2.2.2 Pharmacogene Star Alleles 

Pharmacogenes of interest were selected according to CPIC guideline availability (Table 

2.2) with strong clinical evidence of genetic association, as well as presence of prescriptions in 

the GERA cohort, as described in Materials and Methods. 7 DGIs were chosen, with prescription 
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frequencies shown in Figure 2.1. Star allele frequencies for the pharmacogenes in the 7 DGIs 

were calculated for each ethnic group and are shown in Table 2.3. Observed star allele 

frequencies were generally comparable to published estimates, although reports are limited for 

some ethnicities 10.  

Table 2.2 Summary of actionable CPIC guidelines for selected drug-gene interactions 

Drug(s) Gene(s) Diplotype Metabolizer 
Phenotype Recommended Action 

clopidogrel CYP2C19 

*1/*2 IM 

Consider alternative 
antiplatelet agent (e.g. 
prasugrel, ticagrelor)11 

*1/*3 IM 
*2/*17 IM 
*2/*2 PM 
*2/*3 PM 
*3/*3 PM 

simvastatin SLCO1B1 

*1/*5 IM 
Consider a lower dose; if 
suboptimal efficacy, consider 
an alternative statin12 

*5/*5 PM 

Prescribe a lower dose or 
consider an alternative statin; 
consider routine CK 
surveillance12 

azathioprine TPMT 

1 nonfunctional 
allele (*2, *3A, 

*3B, *3C, or 
*4) 

IM 

Consider starting at 30-70% 
of target dose and titrate 
based on tolerance. Allow 2-
4 weeks to reach steady state 
after each dose adjustment13 

2 nonfunctional 
alleles (*2, 

*3A, *3B, *3C, 
or *4) 

PM 

Consider alternative agents. 
For azathioprine, start with 
drastically reduced doses 
(reduce daily dose by 10-fold 
and dose thrice weekly 
instead of daily) and adjust 
doses of azathioprine based 
on degree of 
myelosuppression and 
disease-specific guidelines. 
Allow 4-6 weeks to reach 
steady state after each dose 
adjustment13 

warfarin CYP2C9, 
VKORC1 

*1/*1, *2/*2 IM 3-4 mg/day (from 5-7 
mg/day standard dose)14 *1/*2, *1/*2 IM 
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*1/*2, *2/*2 IM 
*1/*3, *1/*1 IM 
*1/*3, *1/*2 IM 

*1/*3, *2/*2 PM 0.5-2 mg/day (from 5-7 
mg/day standard dose)14 

*2/*2, *1/*1 IM 3-4 mg/day (from 5-7 
mg/day standard dose)14 *2/*2, *1/*2 IM 

*2/*2, *2/*2 PM 0.5-2 mg/day (from 5-7 
mg/day standard dose)14 

*2/*3, *1/*1 IM 3-4 mg/day (from 5-7 
mg/day standard dose)14 

*2/*3, *1/*2 PM 
0.5-2 mg/day (from 5-7 
mg/day standard dose)14 *2/*3, *2/*2 PM 

*3/*3, any PM 

amitriptyline CYP2C19 

*1/*17 UM Consider alternative drug not 
metabolized by CYP2C19, or 
use TDM15 *17/*17 UM 

*2/*2 PM Consider a 50% reduction of 
recommended starting dose, 
use TDM15 

*2/*3 PM 
*3/*3 PM 

5-fluorouracil, 
capecitabine DPYD 

1 nonfunctional 
allele (*2A, 

*13, or 
rs67376798) 

IM 

Start with at least a 50% 
reduction in starting dose, 
followed by titration of dose 
based on toxicity or 
pharmacokinetic test (if 
available)16 

2 nonfunctional 
alleles (*2A, 

*13, or 
rs67376798) 

PM Select alternative drug16 

phenytoin CYP2C9 

1 nonfunctional 
allele (*2 or *3) EM 

Consider 25% dose reduction 
or alternate drug (if HLA-
B*15:02). Use TDM to guide 
dose adjustments17 

2 nonfunctional 
alleles (*2 or 

*3) 
IM 

Consider 50% dose reduction 
or alternate drug (if HLA-
B*15:02). Use TDM to guide 
dose adjustments17 

Table does not include metabolizer phenotypes and star alleles that do not warrant a change in 
therapy. All drug-gene pairs have moderate to strong clinical evidence in favor of changing 
prescribing based on genetic information9. A cohort member with a star allele diplotype listed in 
this table is considered to have an actionable phenotype for the relevant drug-gene pair. UM = 
ultra-rapid metabolizer, EM = extensive metabolizer, IM = intermediate metabolizer, PM = poor 
metabolizer, TDM = therapeutic drug monitoring.  
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Figure 2.1 Medication exposure by ethnicity 

 
Frequency of cohort members with at least one outpatient record prescription for each of the 
study drugs, colored by ethnicity. NHW = Non-Hispanic White, AFR = African American, LAT 
= Latino, ASN = Asian. 
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Table 2.3 Actionable star allele frequencies 

    
All 

GERA NHW AFR LAT ASN Other 

    102979 83513 3380 7246 8082 758 
CYP2C19               

*1/*2   
26819 
(26) 

20651 
(24.7) 

977 
(28.9) 

1570 
(21.7) 

3417 
(42.3) 

204 
(26.9) 

*2/*2   
2798 
(2.7) 

1814 
(2.2) 101 (3) 106 (1.5) 762 (9.4) 15 (2) 

*1/*3   998 (1) 28 (0) 12 (0.4) 21 (0.3) 933 
(11.5) 4 (0.5) 

*3/*3   14 (0) 0 (0) 0 (0) 0 (0) 14 (0.2) 0 (0) 
*2/*3   313 (0.3) 3 (0) 1 (0) 3 (0) 306 (3.8) 0 (0) 

*1/*17   
32615 
(31.7) 

28902 
(34.6) 

1156 
(34.2) 

1822 
(25.1) 501 (6.2) 234 

(30.9) 

*17/*17   
4807 
(4.7) 

4390 
(5.3) 181 (5.4) 177 (2.4) 27 (0.3) 32 (4.2) 

*2/*17   
5849 
(5.7) 

5118 
(6.1) 264 (7.8) 270 (3.7) 150 (1.9) 47 (6.2) 

SLCO1B1               

*1/*5   
25833 
(25.1) 

22022 
(26.4) 297 (8.8) 1580 

(21.8) 
1734 
(21.5) 

200 
(26.4) 

*5/*5   
2331 
(2.3) 

2038 
(2.4) 14 (0.4) 113 (1.6) 153 (1.9) 13 (1.7) 

TPMT               
*1/*2   472 (0.5) 441 (0.5) 0 (0) 25 (0.3) 5 (0.1) 1 (0.1) 
*2/*2   6 (0) 3 (0) 1 (0) 2 (0) 0 (0) 0 (0) 

*1/*3A   7165 (7) 6359 
(7.6) 102 (3) 555 (7.7) 88 (1.1) 61 (8) 

*3A/*3A   162 (0.2) 145 (0.2) 3 (0.1) 12 (0.2) 0 (0) 2 (0.3) 

*1/*3B   7183 (7) 6374 
(7.6) 104 (3.1) 556 (7.7) 88 (1.1) 61 (8) 

*3B/*3B   162 (0.2) 145 (0.2) 3 (0.1) 12 (0.2) 0 (0) 2 (0.3) 

*1/*3C   8222 (8) 6908 
(8.3) 321 (9.5) 655 (9) 268 (3.3) 70 (9.2) 

*3C/*3C   207 (0.2) 180 (0.2) 7 (0.2) 14 (0.2) 4 (0) 2 (0.3) 
*2/*3A   27 (0) 26 (0) 0 (0) 1 (0) 0 (0) 0 (0) 
*2/*3B   27 (0) 26 (0) 0 (0) 1 (0) 0 (0) 0 (0) 
*2/*3C   30 (0) 28 (0) 0 (0) 1 (0) 1 (0) 0 (0) 

*3A/*3B   0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
*3A/*3C   0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
*3B/*3C   5 (0) 4 (0) 0 (0) 1 (0) 0 (0) 0 (0) 
CYP2C9 VKORC1             
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*1/*2 - 
20826 
(20.2) 

18995 
(22.7) 236 (7) 1260 

(17.4) 173 (2.1) 162 
(21.4) 

*2/*2 - 
1584 
(1.5) 

1490 
(1.8) 6 (0.2) 73 (1) 5 (0.1) 10 (1.3) 

*1/*2 *1/*2 
9855 
(9.6) 

9005 
(10.8) 57 (1.7) 638 (8.8) 76 (0.9) 79 (10.4) 

*1/*2 *2/*2 
3265 
(3.2) 

2963 
(3.5) 14 (0.4) 222 (3.1) 42 (0.5) 24 (3.2) 

*2/*2 *1/*2 752 (0.7) 710 (0.9) 1 (0) 36 (0.5) 1 (0) 4 (0.5) 
*2/*2 *2/*2 244 (0.2) 237 (0.3) 0 (0) 7 (0.1) 0 (0) 0 (0) 

*1/*3 - 
12214 
(11.9) 

10743 
(12.9) 122 (3.6) 713 (9.8) 549 (6.8) 87 (11.5) 

*3/*3 - 334 (0.3) 310 (0.4) 0 (0) 12 (0.2) 12 (0.1) 0 (0) 

*1/*3 *1/*2 
5728 
(5.6) 

5136 
(6.2) 39 (1.2) 371 (5.1) 147 (1.8) 35 (4.6) 

*1/*3 *2/*2 2072 (2) 1619 
(1.9) 6 (0.2) 121 (1.7) 314 (3.9) 12 (1.6) 

*3/*3 *1/*2 158 (0.2) 148 (0.2) 0 (0) 6 (0.1) 4 (0) 0 (0) 
*3/*3 *2/*2 53 (0.1) 51 (0.1) 0 (0) 0 (0) 2 (0) 0 (0) 

*2/*3 - 
1609 
(1.6) 

1493 
(1.8) 4 (0.1) 93 (1.3) 12 (0.1) 7 (0.9) 

*2/*3 *1/*2 762 (0.7) 711 (0.9) 2 (0.1) 43 (0.6) 4 (0) 2 (0.3) 
*2/*3 *2/*2 257 (0.2) 233 (0.3) 1 (0) 20 (0.3) 2 (0) 1 (0.1) 

- *1/*2 
46328 
(45) 

39539 
(47.3) 

807 
(23.9) 

3568 
(49.2) 

2046 
(25.3) 

368 
(48.5) 

- *2/*2 
19756 
(19.2) 

12719 
(15.2) 76 (2.2) 1358 

(18.7) 
5484 
(67.9) 

119 
(15.7) 

DPYD               
*1/*2A   221 (0.2) 205 (0.2) 4 (0.1) 11 (0.2) 0 (0) 1 (0.1) 

*2A/*2A   1 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
*1/ 

rs67376798   
787 (0.8) 720 (0.9) 12 (0.4) 35 (0.5) 11 (0.1) 9 (1.2) 

rs67376798/
rs67376798   

14 (0) 12 (0) 0 (0) 2 (0) 0 (0) 0 (0) 

*2A/ 
rs67376798   

2 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Frequency, by ethnicity, of relevant star allele diplotypes for the 7 drug-gene interactions in this 
study. Only star alleles with CPIC guidelines are included, as these are used to establish 
metabolizer phenotypes. NHW = Non-Hispanic White, AFR = African American, LAT = Latino, 
ASN = Asian. 
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2.2.3 Metabolizer Status and Clinical Relevance 

Based on star allele diplotypes and CPIC guidelines, we assigned each cohort member a 

metabolizer status for the 7 DGIs. We considered a metabolizer status to be actionable for a DGI 

if it warranted a change in dose or therapy based on guidelines. For example, individuals with 

one or more of the CYP2C19 *2 or *3 alleles were considered intermediate or poor metabolizers 

of clopidogrel, with guidelines suggesting alternate therapy for the 35.7% (N=36,784) of the 

GERA cohort with these phenotypes. Poor metabolizers, typically with more than one 

nonfunctional or reduced functional allele, constitute a subset of those with actionable 

metabolizer status. For most drugs, actionable allele frequencies were highly variable among 

ethnicities, as shown in Figure 2.2. For 6 of the 7 DGIs, one-versus-all chi-squared tests show 

that counts of metabolizer status phenotypes vary significantly by ethnicity (adjusted P < 0.01 for 

all groups). For 5-fluorouracil and capecetabine, African American (χ2(2, N=8081) = 9.8, 

adjusted P = 0.04) and Latino (χ2(2, N=7246) = 10.1, adjusted P = 0.03) metabolizer status 

counts did not vary significantly from other ethnicities.  

We found that overall, 89% of GERA patients (90% of White, 76% African American, 

81% Latino, 93% Asian, 88% Other/Uncertain) had at least one actionable allele across these 7 

DGIs, while 13% of GERA were categorized as high-risk poor responders (14% of White, 9.2% 

African American, 8.1% Latino, 16% Asian, and 11% Other/Uncertain). 53% of GERA cohort 

members had actionable alleles in 2 or more pharmacogenes.  
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Figure 2.2 Metabolizer status frequency by ethnicity 

 
For each drug-gene interaction, plot shows frequency of cohort members, by ethnicity, who 
should receive standard therapy, or have actionable or high-risk phentoypes that warrant a 
change in dose or switch to an alternate medication. ALL = All GERA cohort members, NHW = 
Non-Hispanic White, AFR = African American, LAT = Latino, ASN = Asian. 
 

To assess the clinical relevance of pharmacogenetic information, we analyzed outpatient 

pharmacy records for the 7 study drugs by ethnicity (Figure 2.1). Additionally, pharmacy records 

for 27 other drugs with moderate to strong CPIC evidence for pharmacogenetic-based 

prescribing were assessed (Table 2.4). 66% of the cohort had at least one valid prescription for 

an associated drug (68% of White individuals, 66% of African Americans, 62% of Latinos, 51% 

of Asians, and 72% of Others). 57% of those exposed to a CPIC drug had valid prescriptions for 
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two or more associated drugs (representing 37% of GERA), highlighting the potential impact of 

pharmacogenetic information in older subjects with a higher likelihood of polypharmacy (Figure 

2.3). 

Table 2.4 Drugs with level A CPIC guidelines for medication exposure review 

Gene Drug 
Pharmacogenetic 

Information on FDA 
Label 

HLA-B abacavir Genetic testing 
recommended 

HLA-B allopurinol   
CYP2C19 amitriptyline   
CYP2D6 amitriptyline Actionable PGx 

TPMT azathioprine Genetic testing 
recommended 

IFNL3 boceprevir Informative PGx 
DPYD capecitabine Actionable PGx 

HLA-B carbamazepine Genetic testing 
required 

CYP2C19 citalopram Actionable PGx 

CYP2C19 clopidogrel Genetic testing 
recommended 

CYP2D6 codeine Actionable PGx 
CYP2D6 desipramine Actionable PGx 
CYP2D6 doxepin Actionable PGx 
CYP2C19 doxepin   
CYP2C19 escitalopram   

DPYD fluorouracil Actionable PGx 
CYP2D6 fluvoxamine Informative PGx 
CYP2C19 imipramine   
CYP2D6 imipramine Actionable PGx 

TPMT mercaptopurine Genetic testing 
recommended 

CYP2D6 nortriptyline Actionable PGx 
CYP2D6 oxycodone   
CYP2D6 paroxetine Informative PGx 
IFNL3 peginterferon alfa-2b Actionable PGx 
IFNL3 peginterferon alfa-2a   
HLA-B phenytoin Actionable PGx 

CYP2C9 phenytoin   
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G6PD rasburicase Genetic testing 
required 

IFNL3 ribavirin   
SLCO1B1 simvastatin   
CYP3A5 tacrolimus   
CYP3A5 tacrolimus   
CYP2D6 tamoxifen   
IFNL3 telaprevir Actionable PGx 
TPMT thioguanine Actionable PGx 

CYP2D6 tramadol Actionable PGx 
CYP2C19 trimipramine   
CYP2D6 trimipramine Actionable PGx 
CYP2C19 voriconazole Informative PGx 
CYP2C9 warfarin Actionable PGx 
VKORC1 warfarin Actionable PGx 

 
Figure 2.3 Histogram of number of CPIC drugs prescribed per cohort member 

 

Count of CPIC Level A Drugs prescribed per cohort member. Count based on observation of at 
least one outpatient prescription for a CPIC drug listed in Table 2.4. 
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We found that 47% of the GERA cohort had been exposed to at least one of the seven 

drugs in this study. In total, 17,747 individuals (17% of GERA) had been prescribed at least one 

study drug for which they had an actionable metabolizer phenotype based on pharmacogenetics. 

Table 2.5 shows the number of subjects who had prescriptions for drugs in the 7 DGIs as well as 

actionable or high-risk metabolizer status phenotypes. This represents 18.3% of White 

individuals, 10% of African Americans, 13% of Latinos, 12% of Asians, and 18% of Others 

(Table 2.6). Table 2.7 highlights the subset of the of the cohort (4.3%) that had received drugs 

for which they were poor metabolizers. Overall, 17,747 individuals (17% of GERA) may have 

been given an incorrect dose or medication, whose treatment may have benefitted from 

availability of pharmacogenetic information. 

Table 2.5 Medication exposure of cohort members with actionable or high-risk phenotypes !
 

Gene Drug Total 
Patients Who 

Received 
Drug 

% Received 
Drug with 
Actionable 
Phenotype 

% Received 
Drug with 
High-Risk 
Phenotype 

SLCO1B1 simvastatin 31,096 28% 2.3% 
CYP2C9/VKORC1 warfarin 12,863 32% 4.0% 

CYP2C19 clopidogrel 6,647 59% 7.4% 
DPYD 5-fluorouracil or 

capecitabine 
9,153 1.1% 0.011% 

CYP2C19 amitriptyline 7,323 41%* 38% 
TPMT azathioprine 627 8.3% 0.32% 

CYP2C9 phenytoin** 566 29% 2.8% 
 
Counts of cohort members with at least one outpatient prescription for study drugs. For each 
drug-gene interaction, table lists total number of cohort members who were prescribed the drug 
and have actionable or high-risk phenotypes based on their star allele status for the given gene. 
Actionable phenotype frequencies are inclusive of high-risk phenotype frequencies. *For 
amitriptyline, both PMs and UMs are considered actionable phenotypes requiring a change in 
dose or alternate therapy. Amitriptyline is not considered efficacious in ultra-rapid metabolizers, 
who were classified as high-risk. PMs were considered to have actionable phenotypes for 
amitriptyline. **For phenytoin, reported phenotype frequencies are independent of HLA-
B*15:02 status, which also plays a role in phenytoin response.!
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Table 2.6 Actionable phenotypes among cohort members with medication exposure, by ethnicity 
   Ethnicity 

(% of Total Exposed by Ethnicity) 
Drug Total 

Exposed 
Total 

Exposed 
with 

Actionable 
Phenotype 

(% of 
Exposed) 

White African 
American 

Latino Asian Other/ 
Uncertain 

clopidogrel 6647 3944 (59%) 3373 
(60%) 

128 
(64%) 

157 
(45%) 

245 
(67%) 

41 
(63%) 

simvastatin 31096 8552 (28%) 7418 
(29%) 

94 
(8%) 

491 
(23%) 

481 
(22%) 

68 
(28%) 

warfarin 12863 4148 (32%) 3637 
(32%) 

19 
(5%) 

161 
(32%) 

300 
(68%) 

31 
(26%) 

azathioprine 627 52 (8.3%) 46 
(9%) 

2 
(9%) 

2 
(5%) 

2 (5%) 0 
 

amitriptyline 7323 2993 (41%) 2581 
(42%) 

137 
(47%) 

180 
(32%) 

75 
(24%) 

20 
(27%) 

 
capecitabine 440 6 (1.4%) 6 

(2%) 
0 0 0 0 

5-fluorouracil 8713 93 (1.1%) 92 
(1%) 

0 1 
(1%) 

0 0 

phenytoin 566 162 (29%) 152 
(32%) 

3 
(10%) 

6 
(16%) 

1 
(5%) 

0 

 
 
Table 2.7 High-risk phenotypes among cohort members with medication exposure, by ethnicity 

   Ethnicity 
(% of Total Exposed by Ethnicity) 

Drug Total 
Exposed 

Total 
Exposed 

with High-
Risk 

Phenotype 
(% of 

Exposed) 

White African 
American 

Latino Asian Other/ 
Uncertain 

clopidogrel 6647 496 (7.4%) 413 
(7%) 

12 
(6%) 

14 
(4%) 

55 
(15%) 

2 
(3%) 

simvastatin 31096 717 (2.3%) 633 
(2%) 

5 
(0.44%) 

35 
(2%) 

41 
(2%) 

3 
(1%) 

warfarin 12863 518 (4.0%) 487 
(4%) 

0 14 
(3%) 

14 
(3%) 

3 
(3%) 

azathioprine 627 2 (0.32%) 2 0 0 0 0 
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(0.4%) 
amitriptyline 7323 2798 (38%) 2448 

(40%) 
130 

(44%) 
172 

(30%) 
29 

(9%) 
19 

(25%) 
capecitabine 440 0 0 0 0 0 0 

5-
fluorouracil 

8713 1 (0.011%) 1 
(0.01%) 

0 0 0 0 

phenytoin 566 16 (2.8%) 14 
(3%) 

0 2 
(5%) 

0 0 

 
2.3 Materials & Methods 

2.3.1 Study Population 

Participants in this study are members of the Kaiser Permanente RPGEH GERA cohort 

(N=102,979). A detailed description of the GERA cohort has been previously published7 and can 

also be found in dbGAP phs000674.v1.p1. At the time of enrollment, GERA members were 

adult members of Kaiser Permanente Medical Care Plan, Northern California Region with high-

density genotype data linked to Kaiser Permanente electronic health data.  EHR data included 

diagnoses, laboratory, procedure, and pharmacy utilization records for all members, as well as 

survey data on lifestyle and environmental factors based on residence information. Prescription 

data availability for the GERA cohort began in January 1, 1995. Pharmacy records were queried 

up to and including December 31, 2014. Thus the maximum medication exposure time with data 

available for an individual in the cohort who has continuously been a KPNC member since prior 

to 1995 would be 20 years. RPGEH enrollment was voluntary and all members broadly 

consented to use of their data for research on health and disease. The study was reviewed and 

approved by the UCSF Committee on Human Research, as well as the Kaiser Permanente 

Institutional Review Board. 

2.3.2 Genotyping and Ancestry 

Genotyping was performed using four custom Affymetrix Axiom arrays created for the 

four major race-ethnicity groups in the cohort: African Americans, East Asians, Latinos, and 
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Non-Hispanic Whites18,19. Arrays included 674-893k SNPs, depending on the array18,19. Arrays 

were designed to maximize genome-wide coverage of low frequency and common variants in 

each group. Self-reported race/ethnicity was generally used to assign subjects to arrays, and used 

to define ethnicities in this study. Genotyping was performed by the Genomics Core Facility of 

the Institute for Human Genetics at UCSF using standard and enhanced Affymetrix Gene Titan 

Axiom protocols7. Further details about race/ethnicity assignment, principal components 

analysis, genotyping, and quality control procedures have been previously published7,20. 

2.3.3 Pharmacogene Selection and Actionability 

An initial list of relevant pharmacogenes was compiled from the PharmaADME.org Core 

List21, PharmGKB Very Important Genes22, and the FDA Table of Pharmacogenomic 

Biomarkers in Drug Labels23. The list included drug-metabolizing enzymes, transporters, and 

some target genes and receptors. Drugs associated with genes with Level A CPIC guidelines24,25 

and outpatient pharmacy prescriptions for at least 500 GERA cohort members were selected for 

further review in this analysis. For the 7 selected DGIs, high quality, phased genotype data was 

also available for all star alleles with CPIC guidelines within the gene of interest. 

Actionability was determined by the presence of moderate to strong clinical evidence that 

supports the use of genetic information to change prescribing of an affected drug, as determined 

by CPIC9. In this study, we consider a pharmacogenetic phenotype to be actionable if it warrants 

a change in prescribing: either a change in dose or an alternate therapy.  

2.3.4 Genotype Imputation 

After genotyping quality control, SNPs with overall call rates <90% were removed prior 

to imputation. Imputation was performed separately for each array by pre-phasing the genotypes 

with SHAPEIT v2.r72726, including cryptic-related first-degree relatives modeled to aid in 
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phasing. Variants were then imputed from the 1000 Genomes Project27 as a cosmopolitan 

reference panel with IMPUTE2 v2.3.028,29. The estimated quality control r2 metric from Impute2 

showed a high estimate of correlation of the imputed genotype to the true genotype30 for all 

SNPs with CPIC guidelines in this analysis (r2 > 0.8 for majority of SNPs, shown in Table 2.8). 

For pharmacogenes of interest, phased, imputed genotype probabilities for all SNPs associated 

with documented star alleles were extracted for use in this analysis. 

Table 2.8 Imputation r2 for study SNPs by array 

Gene SNP Star 
Alelle(s) EUR  AFR LAT ASN 

CYP2C19 rs4244285 *2 1.00 1.00 1.00 1.00 
CYP2C19 rs4986893 *3 0.98 1.00 0.99 1.00 
CYP2C19 rs12248560 *17 0.97 0.99 0.98 0.99 
CYP2C9 rs1799853 *2 1.00 1.00 1.00 0.98 
CYP2C9 rs1057910 *3 1.00 1.00 1.00 1.00 
DPYD rs3918290 *2A 0.67 0.67 0.64 0.46 

DPYD rs67376798 rs67376798 0.85 0.80 0.88 0.52 

SLCO1B1 rs4149056 *5, *15, 
*17 1.00 1.00 1.00 1.00 

TPMT rs1800462 *2 0.97 1.00 0.56 1.00 
TPMT rs1800460 *3A, *3B 0.97 0.89 0.94 0.76 
TPMT rs1142345 *3A, *3C 1.00 1.00 1.00 0.99 

VKORC1 rs9923231 *2 1.00 1.00 1.00 0.99 
 

2.3.5 Translation Table Lookup 

Multiple pharmacogenetic resources were consulted in order to construct translation 

tables for each gene, including the Human Cytochrome P450 Allele Nomenclature Database31, 

PharmGKB32, and individual CPIC guidelines for each DGI. Binary translation tables were 

constructed to indicate the presence or absence of specific SNP alleles in a relevant star 

haplotype (Table 2.9). NCBI’s dbSNP33 was used to create allele-based tables, which were 
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consulted in the process of assigning star diplotypes to each cohort member based on their 

phased genotype data for the relevant SNPs (Figure 2.4). 

Figure 2.4 Workflow diagram.  

Translation tables were compiled for 7 DGIs from various pharmacogenetic resources and 
dbSNP (see Materials & Methods). Tables were then used to convert phased genotype data into 
star allele diplotypes, which can be used for metabolizer status phenotype assignment. 
 

Translation tables were created to aid conversion of dbSNP rs identifiers to haplotype-

based star alleles. Tables were compiled using the Human Cytochrome P450 Allele 

Nomenclature Database5, PharmGKB32, and specific CPIC guidelines to indicate the presence or 

absence of an rs identified SNP allele in the star allele haplotype (Table 2.9). DbSNP build 141 

was used to identify specific reference and alternate alleles. The compiled translation tables were 

referenced to convert phased genotype data into star allele diplotypes for each sample. All 

analyses were performed using R version 3.0.234. 
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 Note that while many actionable star alleles represent reduced gene function, not all star 

alleles result in the same metabolizer phenotype for all associated drugs. In our case, CPIC 

guidelines suggest that individuals heterozygous for CYP2C19*2 or *3 (i.e. one copy) are poor 

metabolizers of clopidogrel. If they should need antiplatelet therapy, CPIC guidelines 

recommend alternative drugs, such as prasugrel and ticagrelor. While these cohort members are 

considered poor metabolizers for clopidogrel, they are also considered to be extensive 

metabolizers of amitriptyline, which warrants standard therapy for this drug. While CYP2C19 is 

a known metabolizer of amitryptyline, only those with 2 copies of these reduced function alleles 

(*2 or *3) are considered to be poor metabolizers of amitryptyline. 

Based on star allele diplotypes and CPIC guidelines, we assigned each cohort member a 

metabolizer status for the 7 DGIs. We considered a metabolizer status to be actionable for a DGI 

if it warranted a change in dose or therapy based on guidelines. For example, individuals with 

one or more of the CYP2C19 *2 or *3 alleles were considered intermediate or poor metabolizers 

of clopidogrel, with guidelines suggesting alternate therapy for the GERA cohort members with 

these phenotypes. Poor metabolizers, typically with more than one nonfunctional or reduced 

function allele, constitute a (more severe) subset of those with actionable metabolizer status.  

2.3.6 Pharmacy Data 

Complete pharmacy records began in 1995 and include coded entries for all outpatient 

and inpatient prescriptions.  For the selected pharmacogenes, 7 associated drugs were selected 

for pharmacy record review, based on frequency among GERA cohort members and CPIC Level 

A evidence for the drug-gene pair, suggesting that genetic information should be used to change 

prescribing of the affected drug9,25: CYP2C19 (clopidogrel, amitriptyline, citalopram), CYP2C9 

(phenytoin) and VKORC1 (warfarin), SLCO1B1 (simvastatin), TPMT (azathioprine), and 
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DPYD (capecitabine, 5-fluorouracil). Outpatient pharmacy records in the KPNC research 

database were queried. For each drug, the generic label name included the drug of interest as an 

active ingredient. Pharmacy records were filtered to include only those picked up (not returned-

to-stock) by GERA cohort members.  

2.4 Discussion 

The GERA cohort represents one of the largest genetic datasets linked to a real-world, 

observational EHR resource with two decades of pharmacy information in a single healthcare 

network. While genetic data in our study were not generated under Clinical Laboratory 

Improvement Amendments (CLIA)-approved protocols, and thus cannot be clinically used to 

change prescribing for patients, they allowed us to perform a preliminary assessment of the 

utility of pharmacogenetic testing in an actual healthcare setting. If DNA were broadly available, 

it would be possible to preemptively genotype patients for known drug-gene pairs before these 

drugs are administered2. Alternatively, patients in race-ethnicity groups known to have increased 

frequency of genetic variants conferring risk of adverse drug responses, as well as those in age or 

diagnostic groups likely to be prescribed drugs known to interact with these genes, could be 

preemptively genotyped using a pharmacogenetic test panel spanning multiple genetic variants. 

Theoretically, for those most likely to be impacted by pharmacogenetic information, data would 

be available in the EHR at the time a prescription is written by a physician. Thus, a major 

motivation of this study was to determine the frequency of genetic variation and interactions with 

medications that carry potential clinical consequences in terms of drug response and adverse 

events in a large, diverse population in a clinical context. This understanding is vital to 

translating findings into clinically relevant actions, such as making pharmacogenetic testing 

available, and changing prescribing patterns and dosing to optimize drug therapy. For many 
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well-studied drugs, this genetic information can be utilized to predict how patients will respond 

before they are prescribed a drug35. Physicians can then consider alternate therapies or dosing for 

non-responders, which may avoid adverse outcomes36. 

In this study, we found that 89% of the 102,979 adult cohort members in GERA had 

pharmacogenetic alleles that could influence a treatment decision for 7 different drugs. While 

this number is relatively large, those with actionable or high-risk phenotypes that were actually 

given at least one of the relevant drugs, while they were members of KPNC, was approximately 

17% of the cohort. Given the median age of the cohort (64 years), these estimates are likely an 

underestimate of lifetime medication exposure in this population, since many younger 

individuals in the cohort are less likely to have prescriptions for several of the drugs in this study 

but may in the future. Based on the observed data, this 17% represents the minimum impact that 

preemptive pharmacogenetic genotyping may have in this population for leading to actionable 

therapy changes. Further investigation is necessary to fully address the benefits of 

pharmacogenetic information, especially in different age groups. Additionally, quantifying the 

cost of any adverse drug events or hospitalizations in this subset of 17,747 people may show that 

preemptive genotyping for pharmacogenetic application is worth the cost of implementation. 

Collecting additional data on diagnosis prevalence for the diseases these drugs are used to treat, 

as well as information about alternative treatments, are also important factors in assessing cost-

benefit of preemptive genotyping.  

Our study also highlights the potential of this resource for pharmacogenetic discovery, 

particularly in ethnically diverse populations. Many traditional pharmacogenetic studies were 

based on randomized clinical trials (RCTs) studying treatment effect in rigorously defined 

populations37. While such studies employ high quality data collection and quality control 
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measures, the studies can be costly both in time and money, may have limited follow-up periods, 

and may exclude several patient populations. For instance, many pharmacogenetic studies have 

not included minority populations in their analyses. The GERA cohort, which includes thousands 

of non-Caucasian individuals, allowed us to perform a preliminary assessment of variability 

among multiple ethnic groups in pharmacogenetic variants of known significance. Following up 

on this assessment with phenotype data derived from the EHR may help us to better understand 

how genetics influence drug response in understudied populations. Additionally, since impact of 

ethnicity may not be known for many drugs until the postmarketing stage38, this resource may be 

of particular use in pharmacovigilance studies. Since the data has already been collected, the 

EHR also represents a reusable resource for extracting various phenotypes, with potentially 

longer follow-up periods, than can be accomplished in RCTs. 

Despite the potential research and clinical impact of such a resource, numerous additional 

hurdles prevent widespread implementation of preemptive pharmacogenetic genotyping. At the 

sample level, collection of genetic information or extraction from biobanked samples must be 

performed under CLIA-approved protocols in order to be utilized in clinic. While the RPGEH 

genetic data was generated for research purposes, the 7 drug-gene pairs assessed in this study 

represent genes for which commercially-available pharmacogenetic tests currently exist. Once 

genetic data is generated, conversion to clinically-relevant star allele nomenclature must be 

performed. While our study utilized currently published translation tables and literature to 

perform this task, such resources should not be considered static. With the adoption of next-

generation sequencing technologies, future studies may reveal less common functional variants 

of clinical significance to drug response38. Translation resources and knowledge bases must be 

maintained to reflect current clinical evidence. From a technology standpoint, presenting 
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pharmacogenetic information at point-of-care is a non-trivial task that incorporates clinical 

decision support (CDS) updates, as well as physician education regarding the impact of genetic 

information on prescribing decisions39-41. Some institutions have successfully implemented 

pharmacogenetic CDS for certain drug-gene pairs and have highlighted detailed technical and 

institutional challenges associated with this task3,35,42,43. At an institutional level, cost-benefit 

analyses must be performed to fully quantify the costs associated with preemptive 

pharmacogenetic genotyping36,44, including sample collection, genotyping and data storage, 

reimbursement, infrastructure changes or development, maintenance of translational resources 

and prescribing guidelines, as well as prescriber training and education39,41,45. 

Independent of implementation hurdles, the real-world application of such a resource 

highlights further challenges. For a large health care system such as KPNC, investing in 

preemptive pharmacogenetic genotyping may be more impactful in the long-term compared to 

smaller, more segregated health networks. For our study, our cohort had a median of 14.9 years 

of pharmacy records available for drugs with CPIC guidelines, suggesting that early genotyping 

of patients may be worth the upfront costs if most members stay in-network long enough for 

pharmacogenetic information to be utilized. For other health networks, questions of data 

ownership may arise, as information derived in one system may not be portable to another 

system. As patient-centered initiatives grow, patients may wish to own their data, especially 

pharmacogenetic information that may be relevant to them at a future date.   
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3 EHR-DERIVED DRUG RESPONSE: WEIGHT GAIN AND ATYPICAL 
ANTIPSYCHOTICS 
 
3.1 Introduction 

This chapter explores the utility of electronic health records (EHRs) for deriving a drug 

response phenotype using prescription data and commonly measured weight values. Second-

generation antipsychotics, also referred to as atypical antipsychotics (AAPs), are commonly used 

to treat schizophrenia, bipolar disorder, acute mania, and other psychiatric conditions. The 

mechanism of action for this class of drug varies, but primarily involves dopamine receptor 

binding, as well as binding to one or more serotonin receptors. While AAPs are generally 

associated with fewer extrapyramidal side effects than first-generation antipsychotics, this drug 

class has been associated with substantial weight gain1. AAP-induced weight gain (AIWG), 

while perhaps less severe than other adverse drug events, is the leading cause for non-

compliance among patients who take AAPs2. While increased weight has been associated with 

improved efficacy3, this side effect may also increase risk for other metabolic or cardiovascular 

disorders. 

 The amount of weight gain differs substantially by AAP. For instance, Clozaril 

(clozapine) and Zyprexa (olanzapine) both pose a higher risk of weight gain than Abilify 

(aripiprazole) or Geodone (ziprasidone)2. Other factors associated with weight gain include 

lower baseline weight, whether or not the patient has previously taken an AAP, dose and therapy 

duration4, and gender5. 

 Additional studies have assessed genetic factors underlying AIWG. The majority of such 

studies were based on candidate genes involved in neurological response or metabolic 

phenotypes. These include HTR2C and MC4R from the serotenergic and melanocortin receptor 

pathways, respectively, as well as the leptin gene LEP and obesity-related genes such as FTO6. 
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Early genetic studies that assessed AAP safety and efficacy were based on data from the Clinical 

Antipsychotic Trials of Intervention Effectiveness (CATIE) study, a blinded study that evaluated 

five AAPs: olanzapine, quetiapine, risperidone, perphenazine, and ziprasidone7. 756 CATIE 

subjects with genetic information were analyzed in a candidate gene study of treatment response, 

AIWG, and other response phenotypes8. Another study used a candidate gene approach to assess 

AIWG in other clinical populations9. Genome-wide association studies (GWAS) of AIWG have 

been less common. One GWAS of metabolic phenotypes in CATIE subjects identified SNPs in a 

small number of metabolism-related genes that were significantly associated, although many 

more of their top SNPs fell in intergenic regions10. In another GWAS of 139 AAP-naïve 

pediatric patients being treated with aripiprazole, quetiapine, or risperidone, SNPs near MC4R, 

which has previously been associated with BMI and obesity, were found to be associated with 

AIWG11. However, this finding may be AAP-specific, as it was not as strongly replicated in a 

study of clozapine-treated patients12.  

While previous studies have shown some genetic signal underlying AIWG, they have 

been limited to candidate gene studies and small population sizes. Large-scale GWAS may 

provide further insight into other variants associated with this phenotype. Electronic health 

records (EHRs) provide a means for capturing this side effect in a clinical setting across a larger 

and broader range of patients, especially since weight is commonly measured during patient 

visits. In this study, we use EHR data for GERA cohort members as a novel way of quantifying 

AIWG. We use the extracted phenotype and related covariates to perform a GWAS of BMI 

changes induced by AAP use.  
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3.2 Results 

3.2.1 AAP Prescriptions 

3309 Non-Hispanic White cohort members in GERA had at least one outpatient 

prescription for an AAP, prior to phenotype filtering by BMI values. Quetiapine was the most 

commonly prescribed AAP in the GERA cohort (N=1793), followed by risperidone (N=1240), 

olanzapine (N=1160), aripiprazole (N=800), ziprasidone (N=246), and clozapine (N=39). Less 

than 10 people were prescribed paliperidone or iloperidone. The average consecutive dose 

observed was 2-3 months. 65% of patients were observed to be on a single AAP, while 35% had 

records of 2 or more AAPs.  

3.2.2 Subject Demographics 

Of the 3309 with outpatient AAP prescriptions, 823 subjects remained after phenotype 

selection criteria regarding prescriptions and BMI, as described in Materials & Methods, and 

make up the cohort for this chapter. Cohort demographics and treatment characteristics are 

described in Table 3.1. All subjects had at least one prescription for the five AAPs assessed in 

this study, regardless of underlying diagnosis. Overall, the mean age at time of first prescription 

was 64 years old (s.d. 16 years). All study subjects self-identified as Non-Hispanic White, and 

were run on the European genotyping array. 

3.2.3 Phenotype 

For each study subject, prescription records and BMI measurements were ordered 

according to a medication timeline, as shown in Figure 3.1. The number of BMI measurements 

was highly variable among subjects, with mean of 13.2 baseline measurements (s.d. 12.7) 

available prior to AAP therapy, and 2.5 (s.d. 2.3) BMI measurements available during the dosage 

period. 3 year median baseline BMI did not vary significantly between patients who ultimately 
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lost weight and gained weight, t(780) = 0.19, P = 0.85. However, median BMI during AAP 

therapy was higher in patients who ultimately gained weight compared to those who lost weight, 

as expected (t(734) = 7.1, P < 0.001). Patients who gained weight had a median BMI during 

therapy of 27.8, while patients who lost weight had a median of 25.1. 

Table 3.1 Cohort demographics, treatment characteristics, and covariates. 
 

 
Mean SD 

Age at 
Prescription 

(years) 
63.7 15.8 

Baseline BMI 
Measurements 13.2 12.7 

BMI 
Measurements 
During AAP 

2.5 2.3 

 N Percentage 
Total 823 -- 
Male 273 33.2% 

AAP Naïve 500 60.8% 
AAP: quetiapine 457 55.5% 

AAP: 
aripiprazole 152 18.5% 

AAP: 
risperidone 117 14.2% 

AAP: olanzapine 95 11.5% 
AAP: clozapine 2 0.243% 
Type 2 Diabetic 128 15.5% 

Smoker 390 47.4% 
Description of 823 Non-Hispanic White cohort members analyzed in this study. BMI 
measurements refer to the count of BMI data points available per patient during the time period 
assessed. AAP counts are for the first available AAP with BMI measurements available. That is, 
if a patient received a different AAP but did not have BMI measurements taken during that 
dosage period, the patient was labeled not AAP naïve and only the AAP with BMI measurements 
was recorded.  
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Figure 3.1 Phenotype timeline schematic. 

 
Baseline BMI for each subject was calculated as the median BMI measurement in the 3 years 
prior to the AAP dosage start date. A) For AAP naïve patients, BMI measurements were 
available during their first AAP dosage period. The median of these measurements represents the 
patient’s BMI during AAP therapy. B) Patients who had previously received an AAP but were 
lacking BMI measurements during that first dosage period were considered not AAP naïve. For 
these patients, BMI during AAP therapy was calculated as the median BMI value for the first 
AAP dosage period in which BMI measurements were available. Change in BMI for A) and B) 
was calculated by subtracting the median baseline BMI from the median BMI during AAP 
therapy. 
 

Change in BMI was assessed using the two phenotype definitions described in Materials 

& Methods. Figure 3.2 shows a histogram of the change in BMI (mean -0.12, s.d. 2.5). 382 

subjects (46%) showed an increase in BMI, with a mean increase of 1.45 BMI units. 441 (54%) 

showed a decrease in BMI, with a mean decrease of 1.52 BMI units. Figure 3.3 shows the 

difference in BMI between the baseline and treatment measurement periods for each subject. 

Median baseline BMI was highly correlated with median BMI during the dosage period for each 

subject, r(821) = 0.93, P < 0.001, as shown in Figure 3.4. 99 subjects showed an increase of over 
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7% baseline BMI, a cutoff often used to define AIWG in clinical studies. 129 lost over 7% 

baseline BMI.   

 Table 3.2 highlights the percentage of people who shifted to a different weight category 

when they were on AAP treatment. We observed that 15% of those who started with a normal 

BMI (18.5-24.9 BMI) prior to AAP therapy gained enough weight to be classified as overweight 

or obese while they were on treatment. Conversely, 17% of those who started with an overweight 

or obese BMI shifted to a lower BMI classification while they were on treatment. 

 We observed that females were more likely to gain weight than males (mean 0.03 BMI 

versus -0.49 BMI), t(503) = 3.0, P < 0.01. Additionally, patients with Type 2 Diabetes lost more 

weight than those without the disease (-0.69 BMI versus -0.04 BMI), t(162) = -1.1, P < 0.01. 

Smoking status did not have a significant effect on change in BMI, t (816)= 0.35, P = 0.73. 

Figure 3.5 shows a correlation matrix plot of BMI phenotypes and other numerical covariates. 

Table 3.2 Shift in weight category from baseline while on AAP treatment. 
 

 Underweight 
on AAP 

Normal on 
AAP 

Overweight on 
AAP 

Obese on AAP 

Underweight 
(< 18.5) 

9 
(75%) 

3 
(25%) 

0 
(0%) 

0 
(0%) 

Normal 
(18.5-24.9) 

10 
(3.4%) 

239 
(81%) 

42 
(14%) 

3 
(1%) 

Overweight 
(25-29.9) 

0 
(0%) 

59 
(20%) 

209 
(71%) 

26 
(8.9%) 

Obese 
(>30) 

0 
(0%) 

1 
(0.45%) 

28 
(13%) 

195 
(87%) 
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Figure 3.2 Change in BMI histogram. 

 
 
 
Figure 3.3 BMI differences between baseline and treatment measurement periods. 

 
Each vertical line represents the BMI range of a single subject over both baseline and treatment 
measurement periods. Circles represent a subject’s median BMI during AAP treatment, while 
triangles represent their median baseline BMI. Subjects who lost weight while on an AAP are 
shown in blue, while those who gained weight are shown in red.  
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Figure 3.4 Median baseline BMI versus median BMI during AAP treatment. 

 
3.2.4 GWAS 

 The two extracted phenotypes, change in BMI and greater than 7% increase in BMI, were 

used as outcome values for two GWAS spanning 567,096 SNPs after genotype quality control 

steps. Cohort characterization and covariates for the 823 subjects are shown in Table 3.1. GWAS 

of the greater than 7% increase from baseline BMI dichotomous phenotype did not yield 

significant results at P < 5*10-8 significance cutoff.  
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Figure 3.5 Correlation matrix plot of change in BMI, baseline BMI, BMI during treatment, daily 
AAP dose, and age. 

 
Correlation plot of BMI phenotypes and other numerical covariates. Values represent Pearson’s 
correlation coefficients, ranging from -1 (red) to 1 (blue). Significant correlations after multiple 
testing correction are indicated as follows: * P < 0.05, ** P < 0.01, *** P < 0.001. 
 

GWAS of the change in BMI phenotype yielded one significant SNP (rs80167927) in an 

intergenic region of chromosome 2 with a p-value of 1.05*10-8 and beta of -2.0. A Q-Q plot and 

Manhattan plot of the change in BMI phenotype is shown in Figure 3.6, while Figure 3.7 shows 

similar figures for the greater than 7% increase from baseline BMI phenotype. A list of the top 

associated SNPs (P < 10-5) for the change in BMI GWAS is shown in Table 3.3.  3 SNPs 

(rs11202805, rs12356091, and rs7083493) are in strong linkage disequilibrium  (D’=1) with 

rs6586145, a missense variant in the gastric lipase gene LIPF.  
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Figure 3.6 GWAS results for change in BMI phenotype. 

 
A) Q-Q plot of change in BMI with 95% confidence intervals. The distribution has a genomic 
inflation factor λGC of 0.98. B) Manhattan plot for GWAS of change in BMI. Red dots indicate a 
candidate SNP for obesity or BMI, as reported in the NHGRI GWAS catalog. Green dots 
indicate SNPs within 1 MB of a candidate SNP.  
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Figure 3.7 GWAS results for greater than 7% increase in baseline BMI phenotype. 

 
A) Q-Q plot of greater than 7% increase in baseline BMI phenotype with 95% confidence 
intervals. The distribution has a genomic inflation factor λGC of 1.1. B) Manhattan plot for 
GWAS of greater than 7% increase in baseline BMI, colored by chromosome. 
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Using both phenotypes, we then performed a post-hoc candidate SNP assessment using a 

list of 73 SNPs from 43 genes identified from literature as being associated with BMI, obesity, or 

AAP drug response. Results of these SNPs for the change in BMI phenotype are colored in red in 

the Manhattan plot in Figure 3.6B, with green indicating SNPs within a 1 Mb region surrounding 

each candidate SNP. However, none of these SNPs were statistically significant following 

multiple testing correction for either phenotype. Candidate SNPs with unadjusted p-values < 

0.05 for either phenotype are reported in Table 3.4. 

Table 3.4 Post-hoc candidate SNP analysis results. 
 

SNP Chr Beta / Odds 
Ratio 

p-
value 

Gene Location Association Phenotype 

rs6787891 3 0.56 0.015 RARB intron BMI Change in 
BMI 

rs1927702 9 0.26 0.018   BMI Change in 
BMI 

rs7474896 10 -0.37 0.030   Obesity  Change in 
BMI 

rs10458787 10 1.73 0.049   BMI  >7% 
Change in 

BMI 
rs12419692 11 0.52 0.030   LD with 

BMI SNP 
>7% 

Change in 
BMI 

Results of post-hoc candidate SNP analysis. While no SNP was statistically significant after 
multiple testing correction, SNPs with unadjusted p-value < 0.05 are shown here. Candidate 
SNPs were derived from NHGRI GWAS Catalog SNPs for obesity or BMI phenotypes as listed 
in “Association” column. “Phenotype” column refers to the GWAS phenotype where the result 
was derived.  
 
3.3 Materials & Methods 

3.3.1 Study Population 

Subjects in this study are part of the Kaiser Permanente Research Program on Genes, 

Environment and Health (RPGEH) Genetic Epidemiology Research on Adult Health and Aging 

(GERA, N=102,979) cohort. A detailed description of the GERA cohort has been previously 
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described in Chapter 2.3.1. For sample homogeneity, this study was restricted to cohort members 

who self-identified as Non-Hispanic Whites and were run on the European genotyping array. 

3.3.2 Genotype Data 

As described in Chapter 2.3.2, Genotyping for the GERA cohort was performed using 

four custom Affymetrix Axiom arrays created for the four major race-ethnicity groups in the 

cohort: African Americans (AFR), East Asians (EAS), Latinos (LAT), and Non-Hispanic Whites 

(EUR)14,15. For this study, only Non-Hispanic White individuals run on the EUR arrays were 

included. Principal components analysis was performed using Eigenstrat17 to assess population 

substructure in the study samples. The first three principal components explained most variation 

and were used in the GWAS to characterize genetic ancestry. 

3.3.3 Prescription Data 

Drug identifiers were obtained from dispensed outpatient pharmacy records for all drugs 

with an active ingredient matching “quetiapine”, “aripiprazole”, “olanzapine”, “clozapine”, 

“risperidone”, “ziprasidone”, “paliperidone”, or “iloperidone” in the generic label name, and 

drug class “antipsychotics”. Records were filtered to only include those dispensed and not 

returned to stock. Prescription records were available in 1995, and were queried up to and 

including January 1, 2012. Daily doses were calculated as dose multiplied by frequency per day. 

Any prescriptions with unknown frequency or total duration less than 30 days were removed. If 

there was a gap of less than 28 days between the end of one prescription and the start of another, 

the two were combined to be one single prescription.  

3.3.4 Phenotype 

For all GERA members with at least one valid prescription record for an AAP, weight 

data was extracted from Vitals tables in the EHR system. Weight records varied in format, 
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generally showing weight in pounds or kg at time of appointment, or in BMI. If weight was not 

recorded in BMI format, it was calculated as weight (kg) / height (m)2 using the closest available 

height measurement. Subjects were excluded if BMI measurements could not be calculated due 

to lack of height data.  

BMI measurements were filtered to exclude any measurements taken during pregnancy 

or emergency room visits. Subjects that had undergone gastric bypass procedures were removed 

from the cohort. Any ambiguous BMI entries (e.g. “BMI < 18.0”) or erroneous entries with BMI 

less than 10 or greater than 100 were removed. For BMI measurements that were recorded as 

ranges (e.g. “24-24.9”), mean values were calculated. Figure 3.8 shows an overview of the data 

collection and cleaning process. 

Change in BMI phenotypes were calculated according to the schematic in Figure 3.1. We 

identified the first AAP prescription where a BMI measurement was taken during the dose 

duration. The subject was identified as AAP naïve if the first dose with a BMI measurement 

available was the subject’s first time receiving an AAP. They were identified as not AAP naïve if 

this was not the case, that is, if they received an earlier AAP prescription but no BMI 

measurements were taken during that dosage period. A baseline BMI was calculated by taking 

the median BMI measurement over the 3 years prior to the first AAP prescription. A BMI 

measurement was calculated to represent the subject’s BMI while on the AAP by taking the 

median BMI over all measurements recorded during the dosage period. A change in BMI was 

calculated as the difference between the BMI measurement during AAP use and the baseline 

BMI. We also calculated an additional phenotype to identify subjects who gained or lost greater 

than 7% of their baseline BMI. 
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Figure 3.8 Phenotype calculation workflow diagram.  

 
Covariates for GWAS included age at the first AAP dose with BMI data available, sex, 

genetic ancestry principal components, mean baseline BMI, duration of first dose with BMI data 

available, daily dose for first AAP dose, whether the subject was AAP naïve, type 2 diabetes 

status, smoking status, and AAP name.  

3.3.5 Analysis 

Data cleaning, processing, and phenotype extraction and analysis was performed in R 

version 2.1518. Genome-wide association analyses were performed in PLINK v1.0819 using a 

linear regression additive model for the change in BMI phenotype, or a logistic regression 

additive model for greater than 7% increase from baseline BMI phenotype. Linkage 

disequilibrium analysis was performed using SNAP20. Follow-up candidate SNPs assessment 
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was performed for SNPs associated with obesity or BMI phenotypes in the NHGRI GWAS 

Catalog21. 

3.4 Discussion 

 This study presents the largest analysis to date of clinically observed AIWG, a phenotype 

that is typically difficult and costly to measure. Using data extracted from an EHR, we observed 

similar frequencies of this side effect as has been reported in clinical datasets and controlled 

trials22-24. While only one SNP reached genome-wide statistical significance for association with 

change in BMI, we found a number of modestly associated SNPs that have not been previously 

reported and may warrant further investigation.  

 The top associated SNP in our analysis of change in BMI was rs80167927, an intergenic 

SNP on chromosome 2. This variant has a 5% minor allele frequency in 1000 Genomes, and 

appeared in 26 patients who lost weight while on AAP and 12 patients who gained weight. 

Further assessment of this SNP did not yield significant biological findings, as it is not located 

near a gene related to the phenotype, nor is it in a regulatory region25. 

 While other SNPs failed to reach genome-wide statistical significance in this analysis, a 

few modestly associated SNPs (P < 10-5) were found in genes that may be related to weight loss. 

3 SNPs (rs11202805, rs12356091, and rs7083493) were in strong linkage disequilibrium with a 

missense variant in LIPF, which encodes gastric lipase, a protein involved in the digestion of 

dietary triglycerides in the gastrointestinal tract. The minor alleles of these 3 SNPs were present 

in more subjects that had lost BMI (10%, 11%, and 12%, respectively, of those who lost weight), 

with beta values ranging from -0.9 to -0.8, suggesting implications in weight loss. One of the 

three SNPs, rs12356091, is located in an intron of LIPK, which plays a role in keratinocyte 

differentiation in epidermal layers. A post-hoc analysis of candidate SNPs from BMI- and AAP-
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related pathways did not reveal significant findings after adjusting for multiple testing. Notably, 

variants in candidate genes like HTR2C and MC4R that have previously been reported as 

associated with AIWG did not replicate in this study.  

 There were major challenges in capturing drug response data from this resource. For one, 

patient compliance, which is likely to decrease if the patient perceives that the drug is causing 

them to gain weight, is difficult to capture from EHR data. As a proxy, we looked at factors like 

whether a prescription was being consistently picked up (not returned to stock), and if the patient 

had at least one visit with a physician during the time they were on the AAP. Additionally, we 

observed a great deal of variability in phenotype, timing, and number of measurements among 

subjects. Weight was reported in various formats and may have been recorded using varying 

tools. For example, a manual scale may be more prone to measurement error than a digital one, 

and some healthcare providers may adjust for clothing weight while others do not, although such 

variability may be reduced with multiple measurements. There also may have been a number of 

clinical factors that we did not adjust for, such as comorbidities and drug interactions. 

 One major limitation of this study was restriction of subjects by ethnicity. To attempt to 

replicate findings associated with AIWG in the literature, we sought to assemble the largest, 

most homogeneous cohort that was representative of cohorts in those studies. This included Non-

Hispanic Whites, which made up the majority of the GERA cohort. To increase sample size, a 

follow-up study may include a meta-analysis of all AAP users with BMI information, regardless 

of ethnicity.  

 Additionally, our analysis was inclusive of all AAPs. As a drug class, more subjects in 

our cohort lost weight while on AAPs than gained it. This may have been due to the proportion 

of drugs with different risks for weight gain. For example, olanzapine and clozapine, the AAPs 
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with the highest risk of weight gain2, were only taken by 12% of the cohort. Also, our analysis 

did not adjust for indication. The genetic variants associated with response to AAPs may differ in 

schizophrenic patients compared to patients with bipolar disorder, for example. We also 

observed that some AAPs were often prescribed at a much lower dose than used for psychiatric 

disorders, and may have been used off-label for indications such as insomnia, which is difficult 

to capture from EHR data. A stratified analysis or a study restricted to a single indication may 

yield more significant results.  

While 65% of our cohort had only been prescribed a single AAP, the remaining 35% may 

be of interest for a follow-up study to assess the impacts of switching AAPs. AIWG is reported 

to occur within 6 months of starting therapy26, and may be inversely correlated with treatment 

efficacy24. By extending the follow-up period and collecting more data on treatment response, 

this resource may be useful for studying the long-term effects of AAPs. Additionally, including 

more data on other metabolic phenotypes, such as lipid or blood glucose levels, will help form a 

better picture of the overall effects of AAP use and potentially yield novel genetic findings.  
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4 EHR-DERIVED DRUG RESPONSE: CLOPIDOGREL AND MAJOR ADVERSE 
CARDIOVASCULAR EVENTS 
 
4.1 Introduction 
 
 Clopidogrel, the focus of this chapter, is a widely prescribed antiplatelet drug used to 

reduce ischemic complications in a number of patients with coronary artery disease. Clopidogrel 

is a thienopyridine used to treat unstable angina and ST-segment elevation myocardial infarction 

(MI), as well as stroke or established peripheral arterial disease. For those undergoing 

percutaneous coronary intervention (PCI), clopidogrel plus aspirin remain standard of care. With 

the expiration of the Plavix patent in 2012 and the FDA approval of generic manufacturing1, 

clopidogrel will continue to be a widely prescribed antiplatelet therapy. An estimated 20-50% of 

patients that do not respond to clopidogrel2-4 (depending on non-responsiveness definition) may 

experience a severe event, such as recurrent myocardial infarction, bleeding, neutropenia, or 

gastrointestinal problems. Thus quantifying and predicting clopidogrel response has been a major 

focus for the pharmacogenomics research community.  

 One primary cause of variability in clopidogrel response is deficiencies in genes related 

to metabolic activation of clopidogrel. Clopidogrel is a prodrug, with numerous CYP450 

enzymes involved in its conversion to the active metabolite, including CYP2C19, CYP1A2, 

CYP2B6, and CYP3A4/55,6. Only 15% of clopidogrel gets converted to its active metabolite; the 

rest being excreted7. The active metabolite then irreversibly binds to the P2Y12 receptor of 

platelets, blocking ADP-binding and reducing platelet activation and subsequent aggregation.  

While earlier studies considered variants in clopidogrel’s target P2Y128-10, variation in 

clopidogrel response could not be consistently explained until the mid-2000s, when studies 

began focusing on metabolism of clopidogrel. Candidate gene studies focused on the CYP450 

genes involved in clopidogrel bioactivation, with many key studies appearing in 2009 tying 
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variants in CYP2C19 with increased risk of cardiovascular events following stent placement and 

clopidogrel therapy2,11,12. One genome-wide association study (GWAS) of clopidogrel response 

was performed on a cohort of healthy Amish subjects, also identifying CYP2C19 as the locus 

that explains the most variation in response13. Various ongoing studies seek to understand 

clopidogrel response in larger and more diverse populations of patients. 

Defining clopidogrel non-responsiveness is non-trivial, with different definitions making 

comparisons between studies difficult3. While clopidogrel platelet aggregation tests provide a 

direct measure of clopidogrel response, the test itself is time-sensitive, as it must be performed, 

with results returned, prior to a PCI procedure. A cutoff of laboratory values of platelet 

aggregation can then be used to define clopidogrel responsiveness. Alternatively, a proxy 

phenotype can be used, such as hard outcomes of major cardiovascular events during or 

following therapy. In addition to differences in drug response definition, study populations vary, 

either in terms of ethnicity or prior disease or treatment status, making replication efforts 

difficult. Nevertheless, in 2010, the FDA recognized that variants in CYP2C19 appear to be the 

primary genetic factor influencing clopidogrel non-responsiveness, changing the drug label to 

include a Boxed Warning14. In 2011, the Clinical Pharmacogenetics Implementation Consortium 

(CPIC) published guidelines on CYP2C19 genotype-directed antiplatelet therapy based on 

available literature, providing suggestions for which patients to test and how to clinically act on 

genotyping results4.  

In this chapter we utilize electronic health records (EHR) from the Kaiser Permanente 

Research Program on Genes, Environment, and Health (RPGEH) to examine clopiodgrel 

response in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. We 
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utilize CYP2C19 metabolizer status phenotypes generated in Chapter 2 to assess the impact of 

clinically actionable pharmacogenetic information on this drug response phenotype. 

4.2 Results 
 
4.2.1 Cohort Description 

6617 GERA cohort members had at least one outpatient prescription of clopidogrel. Of 

these, 1723 had a record of MI followed by a clopidogrel prescription within 30 days of the MI. 

745 cohort members had a record of a PCI procedure with a drug-eluting stent, followed by a 

clopiodgrel prescription within 30 days of the procedure. 358 had an MI followed by a PCI 

procedure, along with a clopidogrel prescription within 30 days. 2110 individuals total had either 

or both initial events.  

Records of major adverse cardiovascular events (MACE) were obtained for these 

individuals. 419 had evidence of MACE within the 730 days following the first clopidogrel 

prescription after the initial event, and are considered non-responders of clopidogrel in this 

study. 435 individuals had MACE occur after 730 days, and were excluded from the analysis. 

1256 responders total did not have any record of MACE following the first clopidogrel 

prescription. A description of the cohort of 1675 individuals included in the analysis is shown in 

Table 4.1. 

4.2.2 Phenotype 

For the 419 non-responders, time to MACE in days was calculated and is shown in 

Figure 4.1. For 73% of non-responders (N=305), MACE occurred within 30 days of the initial 

clopiodgrel prescription. 94% of non-responders (N=392) had MACE occur within 1 year. 

MACE occurrence differed significantly by initial event (χ2(2) = 10.3, P < 0.01). A greater 

percentage of those who had MI only as an initial event experienced MACE (27%), compared to 
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those who only had PCI but no MACE (19%), or those who had MI followed by PCI (23%). A 

significantly greater percentage of females (29%) experienced MACE compared to males (24%) 

(χ2 (1) = 4.5, P < 0.05). MACE occurrence did not vary significantly by CYP2C19 metabolizer 

status (χ2(2) = 3.7, P = 0.16), CYP2C19 diplotype (χ2(4) = 4.7, P = 0.32; exclusive of 

CYP2C19*3 haplotypes due to low sample size), smoking status (χ2(1) = 0.33, P = 0.56), or race 

(χ2(4) = 2.1, P = 0.73). Time to MACE was not significantly correlated with age at initial event 

(r = 0.05, P = 0.31).  

Table 4.1 Cohort description 

 N Percentage 
Total 1675 -- 
Male 1178 70.33% 

Non-Hispanic White 1426 85.13% 
African American 38 2.24% 

Asian 100 5.97% 
Latino 101 6.03% 

Other/Uncertain 10 0.60% 
Smoker 881 52.60% 

Initial event: MI only 1090 65.07% 
Initial event: PCI only 305 18.21% 

Initial event: MI, then PCI 280 16.72% 

MACE occurrence within 
30 days 305 18.21% 

MACE occurrence within 
365 days 392 23.40% 

MACE occurrence within 
730 days 419 25.01% 

 Mean SD 
Age at Initial Event 

(years) 70.4 9.9 

Clopiodgrel Exposure 
(days, up to 730 days) 246 222 

Description of the 1675 cohort members in this study. Smoking status is defined as self-reported 
current or former smoker in lifestyle surveys conducted by the RPGEH. Clopidogrel exposure 
indicates the cumulative number of days that each subject had a valid clopiodgrel prescription, 
regardless of whether MACE occurred, in the 730 day period following the first clopidogrel 
prescription after the initial event. 
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Figure 4.1 Histogram of time to MACE for clopidogrel non-responders 

 

A Cox regression analysis was performed based on time to MACE, with a time-

dependent covariate of cumulative clopidogrel exposure. The assumption of proportionality of 

hazards was valid for this model, with global χ2(11) = 0.45, P=1. We found that those who had 

only an initial MI (HR = 2.48, 95% CI=2.36-2.61, P<0.001) experienced significantly more 

MACE than those who had a PCI only or both a PCI and MI. African Americans experienced 

significantly more MACE than any other ethnicity (HR = 2.42, CI = 2.16-2.71, P<0.001). 

Smokers had a slightly greater probability of MACE than non-smokers (HR = 1.25, 95% CI = 

1.22-1.28, P<0.001). Kaplan-Meier curves stratified by initial event, ethnicity, and CYP2C19 

metabolizer status are shown in Figure 4.2 to 4.4. 
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Figure 4.2 Kaplan-Meier curve stratified by initial event 

 

Figure 4.3 Kaplan-Meier curve stratified by ethnicity 
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Figure 4.4 Kaplan-Meier curve stratified by CYP2C19 metabolizer status 

 

Unexpectedly, CYP2C19 metabolizer status was not predictive of MACE in the cohort. 

In fact, high-risk poor metabolizers were significantly less likely to have MACE within 730 days 

(HR =0.48, 95% CI = 0.43-0.53, P<0.001), as shown in Figure 4.4. However, this observation 

may be due to the low number of poor metabolizers with MACE events. Of the 7 poor 

metabolizers with MACE, 6 had MACE occur within 33 days or less (one poor metabolizer did 

not have MACE occur until 321 days). To further assess the impact of metabolizer status, we 

performed a separate analysis based on those non-responders who had MACE occur within 30 

days (N = 305). In this case, high-risk poor metabolizers were significantly more likely to 

experience MACE within the first 30 days (HR = 3.13, 95% CI = 2.16-4.54, P < 0.001). Figure 

4.5 shows a Kaplan-Meier curve of MACE within the first 30 days, stratified by metabolizer 

status. 
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Figure 4.5 Kaplan-Meier curve of non-responders within first 30 days, stratified by CYP2C19 

metabolizer status 

 

4.3 Materials & Methods 

4.3.1 Study Population 
 

Subjects in this study represent a subset of the RPGEH GERA cohort. A detailed 

description of the GERA cohort has been previously published15 and is included in the Materials 

& Methods sections of the previous chapters, as well as at dbGAP, accession number 

phs000674.v1.p1. At the time of enrollment, GERA members were adult members of Kaiser 

Permanente Medical Care Plan, Northern California Region with high-density genotype data 

linked to Kaiser Permanente EHR. For this chapter, only GERA members with evidence of MI 

or PCI, as well as at least one outpatient clopidogrel prescription within 30 days of the MI or PCI 

(as described in 4.3.2 Phenotype) were included in the cohort for this study. 
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4.3.2 Phenotype 

We first identified all GERA members with at least one outpatient clopidogrel 

prescription. Cloidogrel records were extracted from dispensed outpatient pharmacy records for 

all drugs with an active ingredient matching “clopidogrel” in the generic label name, and drug 

class matching “platelet aggregation inhibitors”. Records were filtered to only include those 

dispensed and not returned to stock. Prescription records for clopidogrel were available starting 

in 1997, and were queried up to and including January 1, 2012.  

We obtained records of PCI procedures with a drug-eluting stent for all GERA members, 

as well as any records of MI diagnosis. An ICD-9 code of “92980” or “92981”, or CPT code of 

“C1874”, “C1875”, “C1876”, or “C1977” was used to define a PCI procedure. An ICD-9 code of 

“410”, which includes all subcodes (e.g. “410.1”), was used to identify MI events. Any PCI or 

MI event records from the emergency department were excluded, as we wanted to capture initial 

events that resulted in hospitalizations and verified as principal diagnoses. 

Only GERA members with an MI, PCI, or both, as well as evidence of at least one 

clopidogrel prescription within 30 days of the initial event were kept for further analysis .To 

identify non-responders, we obtained all MACE records for the cohort. All events must have 

taken place within 730 days of the first clopidogrel prescription following the initial event. All 

events records from the emergency department were excluded. MACE ICD-9 and CPT codes 

observed in the GERA cohort are listed in Table 4.2 and include codes for MI, coronary artery 

bypass grafting, angioplasty, stroke, and a range of other cardiac-related diagnoses. For a cleaner 

response phenotype, we excluded from analysis individuals with evidence of MACE after 730 

days following the first clopiodgrel prescription. A schematic of the phenotype is shown in 

Figure 4.5. 
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 A multivariate Cox regression analysis of time to MACE was performed with a time-

dependent covariate of cumulative clopidogrel exposure and Efron approximation, adjusting for 

CYP2C19 metabolizer status, ethnicity, age at initial event, smoking status, sex, and type of 

initial event. Exposure and time to MACE were calculated for up to 730 following the first 

clopidogrel prescription after the initial event. We calculated days to MACE starting from the 

date of the first clopidogrel prescription following the initial MI or PCI event. Cumulative 

clopidogrel exposure in days was calculated beginning at the first clopidogrel prescription after 

the initial MI or PCI event, and ending at either a MACE event or 730 days for responders. 

CYP2C19 metabolizer status was assigned based on CYP2C19 star allele diplotypes derived in 

Chapter 2, according to CPIC guidelines as shown in Table 4.3. Data cleaning, processing, 

phenotype extraction, and all analyses were performed in R version 3.0.216.  

Table 4.2 Diagnosis and procedure codes used to define MACE events 

MACE ICD-9 Code CPT Code 
Myocardial Infarction 410* -- 

Coronary Artery 
Bypass Grafting -- 

33533, 33522, 33521, 
33519, 33517, 33534, 
33518, 33523, 33510, 
33536, 33535, 33513, 

33511, 33514, 33516, 33512 

Angioplasty -- 92982, 92984, 92995, 
92996 

Stroke 

436, 437.9, 435.9, 434.90, 437.7, 
433.10, 435.0, 430, 437.1, 437.3, 
433.30, 433.11, 434.91, 434.01, 
437.4, 433.90, 437.0, 431, 437.8, 

432.9, 434.11, 432.1, 433.80, 
433.20, 435.2, 435.3 

-- 

Other (includes 
Unstable Angina, 
Congestive Heart 
Failure, Malignant 

Dysrhythmia) 

428.0, 427.9, 427.31, 427.1, 
426.7, 426.11, 426.2, 427.32, 

426.51, 427.69, 427.89, 427.61, 
427.41, 427.0, 427.81, 428.1, 

426.4, 427.5, 426.3, 426.0, 428.9, 
428.20, 428.42, 428.30, 426.53, 
426.10, 426.52, 427.60, 428.22, 
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428.33, 428.32, 428.21, 428.23, 
428.43, 426.82, 427.42, 428.41, 
426.6, 428.31, 426.9, 426.13, 
427.2, 428.40, 426.12, 426.54, 
428, 411.1, 411.89, 411, 411.81 

 

Figure 4.6 Phenotype schematic 

 

Table 4.3 Clopidogrel CYP2C19 metabolizer status by star allele diplotype 

Star Alelle 
Diplotype 

Metabolizer 
Phenotype Recommended Action 

Metabolizer Status 
Phenotype 

*1/*1 EM 
Standard dosing of 

clopidogrel17 Standard Therapy *1/*17 UM 
*17/*17 UM 

*1/*2 IM 

Consider alternative 
antiplatelet agent (e.g. 
prasugrel, ticagrelor) 17 

Actionable *1/*3 IM 
*2/*17 IM 
*2/*2 PM 

Actionable (High-Risk) *2/*3 PM 
*3/*3 PM 

Metabolizer status phenotypes defined by CPIC guidelines and star allele diplotypes. EM = 
extensive metabolizer, UM = ultra-rapid metabolizer, IM = intermediate metabolizer, PM = poor 
metabolizer. Star allele translation is discussed in greater detail in Chapter 2.  
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4.3.3 Genotype Data 
 
 This chapter leverages genotype information previously generated for the Pharmacogene 

Characterization study presented in Chapter 2. Genotyping methods are described in 2.3 

Materials & Methods. Briefly, GERA cohort members were genotyped on four custom 

Affymetrix Axiom arrays created to capture genome-wide variation in the four major race-

ethnicity groups in the cohort: African Americans, East Asians, Latinos, and Non-Hispanic 

Whites18,19. Arrays included 674-893k SNPs, depending on the array18,19. Ethnicity assignment 

was largely based on self-report. Using CPIC guidelines and public pharmacogenetic databases, 

genotype data was converted to star allele nomenclature, and diplotypes were obtained for all 

cohort members. CYP2C19 star allele diplotypes for the study cohort were derived as described 

in Chapter 2 and are utilized in this chapter, along with corresponding metabolizer status 

phenotypes, as shown in Table 4.3. 

4.4 Discussion 
 
 This study presents analysis results of a drug response phenotype derived solely from 

EHR data. Using recurrent MACE as an indirect measure for clopidogrel non-responsiveness, we 

observed a non-responder frequency of 25%, which is on the lower end of what has been 

reported in literature2-4. However, we did not see significant differences in MACE occurrence 

based on CYP2C19 star allele diplotype in a one or two year follow-up period. While many 

studies have reported this as a strong genetic association, differences in phenotype definition 

may play a large role in determining the effect size. One meta-analysis of 15 studies of 

clopiodgrel response reported a lack of substantial or consistent genetic association20. 

 In designing phenotypes derived from an EHR, there are several decisions to make in 

terms of cutoff values, follow-up periods, and inclusion and exclusion criteria that will affect the 
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final sample size. For example, increasing the follow-up period from 1 to 2 years increased the 

number of non-responders in our cohort. We also initially assessed factors such as whether an 

active prescription was observed within 30 days of MACE (31% of non-responders met this 

criterion), but found that such filters may be too stringent. We expected to observe a higher rate 

of cumulative clopiodgrel exposure, especially for patients who had undergone PCI for which 1 

year of clopidogrel and aspirin is recommended as standard of care. However, based on 

outpatient prescription records, we only observed that 59% of patients with stents had over 300 

days of clopidogrel. Defining phenotypes is a substantial challenge when utilizing the EHR for 

pharmacogenetic research.  

In this chapter, we sought to capture the clinical effect of clopidogrel on platelet 

aggregation, while still maintaining a relatively large sample size and data that reflected real-

world observations. Certain findings, such as our analysis based on metabolizer status 

phenotype, warrant further investigation. For example, we found that those with high-risk poor 

metabolizer phenotypes actually had a lower rate of MACE compared to those with standard or 

actionable metabolizer phenotypes, within the 2-year follow up period. While unexpected, 

further analysis of the first 30 days revealed that poor metabolizers were much more likely to 

experience MACE (HR = 3.13) shortly after discharge. While this association was significant, 

there were only 7 poor metabolizer individuals who experienced MACE (only 3% of the total 

cohort are poor metabolizers, or 1.7% of all non-responders), and 6 out of those 7 experienced 

MACE within 33 days. We still did not observe a significant difference between actionable and 

standard metabolizers within this 30-day period, or within the total 730-day follow-up period. At 

a larger scale, these findings suggest that metabolizer status phenotype may be an important 
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factor to consider when trying to predict or reduce 30-day hospital readmission rates in this 

patient population. 

While this chapter provides a foundation for future analyses of this phenotype, several 

clinical covariates were not included and may be important to consider. These include estimated 

glomular filtration rate and systolic blood pressure, comorbidities like hypertension, diabetes, or 

hyperlipidemias, as well as concomitant medications like statins, beta-blockers, and proton pump 

inhibitors, some of which are known to interact with CYP2C19. While the genetic information in 

this study was restricted to CYP2C19, the only gene with clinical pharmacogenetic guidelines 

available for clopidogrel, further analysis may include a genome-wide assessment of other 

genetic variants. As reported in Chapter 2, Asians have a larger proportion of poor metabolizers 

compared to other ethnic groups, but only represented 6% of this cohort. Further study of 

clopidogrel response in this ethnic group, perhaps in a larger replication cohort, may yield results 

of clinical relevance. 

Although CPIC guidelines suggest alternate antiplatelet therapies for those with 

actionable or high-risk metabolizer phenotypes, we observed less than 10 prescriptions for 

prasugrel or ticagrelor. While these numbers may have increased since 2012, the data available 

suggests that genetic information may be of limited utility for this cohort. Further analysis is 

necessary to determine whether these alternative therapies, which are more costly and may have 

higher risks of bleeding events, are ultimately worth the cost of genotyping and pharmacogenetic 

integration into the EHR. The observed prescription rates may be due to institutional prescribing 

guidelines favoring use of clopidogrel. Additional research into the costs associated with MACE, 

or generally, any adverse drug event associated with drug response, is also necessary to 

understand the impact of genetic information on the healthcare system as a whole.  



! 82 

4.5 References 
 
1. O'Riordan, M. So long, Plavix, what a ride! Clopidogrel patent expires. 

http://www.theheart.org/article/1400065.do (2012). 

2. Mega, J., Close, S., Wiviott, S. & Shen, L. Cytochrome P-450 Polymorphisms and 

Response to Clopidogrel. N Engl J Med 360, 354–362 (2009). 

3. Snoep, J. D. et al. Clopidogrel Nonresponsiveness In Patients Undergoing Percutaneous 

Coronary Intervention With Stenting: A Systematic Review And Meta-Analysis. Am 

Heart J 154, 221–231 (2007). 

4. Scott, S. A. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for 

Cytochrome P450-2C19 (CYP2C19) Genotype and Clopidogrel Therapy. Clin Pharmacol 

Ther 90, 328–332 (2011). 

5. Momary, K. M., Dorsch, M. P. & Bates, E. R. Genetic Causes Of Clopidogrel 

Nonresponsiveness: Which Ones Really Count? Pharmacotherapy 30, 265–274 (2012). 

6. Fefer, P. & Matetzky, S. The Genetic Basis Of Platelet Responsiveness To Clopidogrel. A 

Critical Review Of The Literature. Thromb Haemost 106, 203–210 (2011). 

7. Beitelshees, A. L., Horenstein, R. B., Vesely, M. R., Mehra, M. R. & Shuldiner, A. R. 

Pharmacogenetics And Clopidogrel Response In Patients Undergoing Percutaneous 

Coronary Interventions. Clin Pharmacol Ther 89, 455–459 (2011). 

8. Angiolillo, D. J. et al. Lack Of Association Between The P2Y12 Receptor Gene 

Polymorphism And Platelet Response To Clopidogrel In Patients With Coronary Artery 

Disease. Thromb Res Suppl 116, 491–497 (2005). 

9. Smith, S. M. et al. Common Sequence Variations In The P2Y12 And CYP3A5 Genes Do 

Not Explain The Variability In The Inhibitory Effects Of Clopidogrel Therapy. Platelets 



! 83 

17, 250–258 (2006). 

10. Lev, E. I. et al. Genetic Polymorphisms Of The Platelet Receptors P2Y12, P2Y1 And GP 

Iiia And Response To Aspirin And Clopidogrel. Thromb Res 119, 355-360 (2007). 

11. Simon, T. et al. Genetic Determinants of Response to Clopidogrel and Cardiovascular 

Events. N Engl J Med 360, 363–375 (2009). 

12. Collet, J.-P. et al. Cytochrome P450 2C19 Polymorphism In Young Patients Treated With 

Clopidogrel After Myocardial Infarction: A Cohort Study. Lancet 373, 309–317 (2009). 

13. Shuldiner, A. R. et al. Association of Cytochrome P450 2C19 Genotype With the 

Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy JAMA 302, 849–857 

(2009). 

14. U.S. Food and Drug Administration. FDA Drug Safety Communication: Reduced 

Effectiveness Of Plavix (Clopidogrel) In Patients Who Are Poor Metabolizers Of The 

Drug. 

http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandPr

oviders/ucm203888.htm (2010). 

15. Kvale, M. N. et al. Genotyping Informatics and Quality Control for 100,000 Subjects in 

the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics 

200, 1051–1060 (2015). 

16. R Core Team. R: A Language And Environment For Statistical Computing. R Foundation 

For Statistical Computing. http://www.r-project.org/ (2015). 

17. Scott, S. A. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for 

CYP2C19 Genotype and Clopidogrel Therapy: 2013 Update. Clin Pharmacol Ther 94, 

317–323 (2013). 



! 84 

18. Hoffmann, T. J. et al. Design And Coverage Of High Throughput Genotyping Arrays 

Optimized For Individuals Of East Asian, African American, And Latino Race/Ethnicity 

Using Imputation And A Novel Hybrid SNP Selection Algorithm. Genomics 98, 422–430 

(2011). 

19. Hoffmann, T. J. et al. Next Generation Genome-Wide Association Tool: Design And 

Coverage Of A High-Throughput European-Optimized SNP Array. Genomics 98, 79–89 

(2011). 

20. Bauer, T. et al. Impact Of CYP2C19 Variant Genotypes On Clinical Efficacy Of 

Antiplatelet Treatment With Clopidogrel: Systematic Review And Meta-Analysis. BMJ 

343, d4588–d4588 (2011). 

 



! 85  

5 CONCLUSION 

This work focused on the potential impact of combining genetic information with 

electronic health records (EHRs). The rapidly decreasing costs of genotyping and sequencing 

technology, combined with the increasing rate of adoption of EHR systems, allow for an 

unprecedented opportunity to assess the impact of genetics in a clinical context. This work, based 

on a cohort of over 100,000 individuals, provides a foundation for larger precision medicine 

studies. In this dissertation, we show the utility of genetic information in the context of drug 

prescribing. Even for a small number of drugs, this information can potentially affect thousands 

of individuals in our cohort. If we broaden our scope to include disease risk and more complex 

phenotypes, the impact of genetic information in the EHR will likely magnify.  

 As addressed in this dissertation, there are multiple challenges in integrating genetic data 

into the EHR, at multiple levels. For one, data collection is a non-trivial task that must meet 

several regulatory requirements, especially if the data are to be used clinically. Once collected, 

several informatics challenges exist, including storage of the data in a secure data warehouse, 

data standards, and ability to connect to an institution’s EHR system1. As addressed in Chapter 2, 

nomenclature differences require conversion of genetic data into a clinically meaningful format. 

Beyond this, guidelines and clinical decision support (CDS) tools are necessary to translate this 

information into knowledge or recommendations. Such guidelines may vary by institution and 

should be continuously reviewed as pharmacogenetic evidence grows2. This is especially 

important as the field shifts towards next-generation sequencing technologies that may identify a 

large number of genetic variants of unknown clinical significance in patients.  

At a broader level, physician education and medical school training regarding the role of 

genetics in medicine is a necessary step for wide-scale adoption of pharmacogenetics3-5. 
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Additionally, reimbursement presents a major challenge for both payers and providers. If a 

healthcare system experiences high patient churn, the upfront costs of capturing genetic data may 

not be worth the implementation. Additionally, once data is generated, questions of ownership, 

privacy, and security may arise, especially as healthcare systems move towards improving 

patients’ access to their own clinical data.  

 Despite these hurdles, integrating genetic information into the EHR has the potential to 

greatly impact clinical practice at point of care, particularly in the case of drug prescribing. 

Traditional implementation of pharmacogenetics involves ordering a lab test, assaying individual 

or panels of variants at a time, then waiting for results to be returned. Such practice can be costly 

and inefficient6,7 and requires DNA to be collected near the time of ordering. Returned results 

may not be in a format amenable to long-term storage, and thus may not be incorporated into the 

EHR for future use1. With EHR systems linked to biorepositories that have generated genotypic 

information, it may be possible to preemptively genotype patients for known drug-gene pairs 

before these drugs are administered8,9. Theoretically, preemptive genotyping for many well-

studied drugs makes it possible to predict how patients will respond before they are prescribed a 

drug10. Then, upon making a treatment decision, a physician can reference a patient’s 

pharmacogenetic information in the context of their current clinical state, at point-of-care. Using 

pharmacogenetic information and CDS, physicians may then consider alternate therapies or 

dosing for non-responders, which can help to avoid “trial-and-error” therapy, adverse outcomes, 

and hospitalizations with high healthcare costs. 

 As discussed in Chapters 3 and 4, EHRs can be powerful tools for extracting clinically 

observed phenotypes for pharmacogenetic research. However, while assessing two drug response 

phenotypes, we encountered several challenges. One of the largest challenges was determining 
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the appropriate phenotype definition. For certain phenotypes, such as disease state or 

physiological properties that are well-captured by lab values, defining phenotypes from the EHR 

can be relatively straightforward. For other phenotypes like drug response or time-dependent 

complex phenotypes, determining a phenotype from EHR data can be more difficult. For drug 

response phenotypes, clinical trials and literature were the most useful starting points for putting 

together a phenotype definition. However, clinical trials have rigorously defined data points to 

collect, which may not be available in EHR data, since the latter is largely made up of 

administrative ICD-9-based billing codes for diagnoses and procedures11. Additionally, EHR 

data can be sparse, especially for younger, healthy individuals who do not have many doctor 

visits. The data available may not be a direct reflection of the biology we wish to capture; 

instead, signs and symptoms that present clinically may be used as an indirect representation of 

the actual phenotype, as was done in Chapter 4 for clopidogrel response (rather than the more 

direct measure of in vitro platelet aggregation). In designing phenotypes based on EHR data, we 

found that it is crucial to review collected data and proposed phenotyping algorithms with 

physician experts for ongoing feedback and improvement.  

While an EHR system can be a rich resource for collecting clinically observed 

phenotypes, we found that there are certain factors that are difficult to capture, especially in 

regards to drug response. Medication compliance is a major issue, especially for drugs like the 

atypical antipsychotics (AAPs) discussed in Chapter 3. While we are able to tell that a drug 

prescription is picked up, there is no record of whether the patients are actually taking the 

medication correctly. Additionally, for certain drugs or drug classes, it is difficult to capture 

exactly why a drug was prescribed. For example, we found that for certain AAPs, the prescribed 

dosage was much lower than expected for patients with a psychiatric condition. Upon consulting 
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with psychiatrists, we found that many were prescribed a lower dose for insomnia, an off-label 

use of the drug that was not considered in the original phenotyping algorithm. 

Given these challenges, replicating phenotypes in other institutions with EHRs may be a 

difficult task, but would help facilitate a broader assessment of diverse patient populations and 

increase power for studying phenotypes such as drug response. Resources for sharing 

phenotyping algorithms have been set up12, highlighting the increasing use of EHR systems for 

deriving phenotypes for research use. Data standards and vocabularies for describing clinical 

data are key to such algorithms. For prospective collection of data for phenotyping purposes, 

standards, vocabularies, and ontologies need to be better incorporated into EHR systems to map 

incoming patient data to relevant phenotypic concepts. Natural language processing tools and 

machine learning algorithms can be used to better capture clinical context, improve sensitivity 

and specificity of phenotypes, and identify distinct patient groups. On the front end, EHR 

systems need to be minimally disruptive, providing tailored guidance and alerts only when they 

are most likely to be utilized, with user interfaces that facilitate capture of information. 

Despite these challenges, we were able to utilize EHR data to extract meaningful 

phenotypes that reflected rates shown in literature for two drug response phenotypes. Using the 

genetic data available for the GERA cohort, we were able to quantify variability among 

ethnicities in key pharmacogenes, which largely reflected reported frequencies for well-studied 

populations with frequency information available. By combining these resources, we found that 

the majority of the GERA cohort has genetic variants that may impact drug prescribing, 

highlighting the potential utility of genetic information in clinical practice. 
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