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Abstract
During recent years, the studyof long transients has been expanded in ecological theory
to account for shifts in long-term behavior of ecological systems. These long transients
may lead to regime shifts between alternative states that resemble the dynamics of
alternative stable states for a prolonged period of time. One dynamic that potentially
leads to long transients is the group defense of a resource in a consumer–resource
interaction. Furthermore, time lags in the population caused by discrete reproductive
pulses have the potential to produce long transients, either independently or in con-
junction to the transients caused by the group defense. In this work, we analyze the
potential for long transients in a model for a consumer–resource system in which the
resource exhibits group defense and reproduces in discrete reproductive pulses. This
system exhibits crawl-by transients near the extinction and carrying capacity states
of resource, and a transcritical bifurcation, under which a ghost limit cycle appears.
We estimate the transient time of our system from these transients using perturbation
theory. This work advances an understanding of how systems shift between alternate
states and their duration of staying in a given regime and what ecological dynamics
may lead to long transients.

Keywords Long transients · Consumer–resource

1 Introduction

One of the goals of mathematical modeling of ecological systems is to understand the
fate or long-term dynamics of such system. The main method to study such fate has
been through the analysis of the attractors in amodel (Ives andCarpenter 2007). Recent
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years have seen an increase in the interest of understanding non-attractor dynamics
(hereafter transients) of the models, especially those that resemble an attractor for a
long period of time (hereafter long transients) (Hastings et al. 2018). Long transients
have gained recognition as a theoretical tool to better describe population dynamics by
allowing the study of dynamics that occur in a more biologically relevant timeframe
(Morozov et al. 2020). In addition, an understanding of long transients can inform
conservation and natural resource management goals. For example, identifying that
a positively valued long-term behavior observed in nature is actually a long transient
and what causes it can guide management to prolong it (Francis et al. 2021).

Long transients often appear in the presence of a “small” (close to zero) parameter
in the model (Morozov et al. 2020). One of the main challenges of identifying long
transients is identifying such a small parameter, whichmay be a function of the biolog-
ically reasonable parameters, and thus may not be easily interpretable. For example,
in ghost attractors, this small parameter is the difference between a bifurcation param-
eter and its bifurcation value (Morozov et al. 2020). While varying the parameter past
such bifurcation leads to the destruction of an attractor, small differences the transient
dynamics will resemble the attractor. In crawl-by attractors, the small parameter is
determined by the degree to which the trajectory of the system is parallel to the sta-
ble manifold of a saddle node equilibrium at a given time (Morozov et al. 2020). In
this case the system will behave similarly to such a stable manifold for a prolonged
period of time before the unstable part of the trajectory leads to a change in the system
behavior.

One behavior that has been demonstrated to lead to long transients in consumer–
resource systems is group defense (Venturino and Petrovskii 2013). Group defense is
a behavior where a resource population reduces the risk of individuals being predated
by protecting each other. This behavior occurs in diverse animal taxa, which produce
early-warning signals to detect predators, as is the case of colonial spiders (Uetz et al.
2002), birds, (Robinson 1985), and mammals (Ebensperger and Wallem 2002). This
behavior also occurs in producers such as kelp, where high densities of kelp lead to an
increase in predators of kelp grazers, which induces cryptic behavior on such grazers
and thus reduces grazing intensity (Karatayev et al. 2021).

Group defense transients might also depend on lags in population growth caused by
discrete reproductive pulses. In some taxa that exhibit group defense, adult stages of
the population may reproduce in discrete, seasonal pulses, such as is the case of kelp
(Karatayev et al. 2021) or bees (Kastberger et al. 2008). This can provide individuals
to a population decades after stressful events which cause population declines, such as
competitive exclusion of pioneer species in tropical rain forests (Dalling and Brown
2009), or extreme weather events in phytoplankton (Ellegaard and Ribeiro 2018).

In this paper we characterize the long transients in a consumer–resource with both
group defense and reproductive pulses. We first construct the model that describes
a consumer–resource interaction where the resource exhibits group defense and has
discrete reproductive pulses. Then, to illustrate the long transients present in thismodel,
we identify a small parameter that describes each of the transients (crawl-by and ghost
attractor), and we use this parameter to calculate the time the system remains in this
long transient (hereafter transient time). Finding approximations for these parameters
and transient times provides biological insight into how these long transients may
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arise in natural systems with the modeled dynamics. We conclude this paper with a
discussion of these results and their biological implications.

2 Model

In this section we construct a consumer–resource model with group defense and dis-
crete reproductive pulses. We previously explored a spatial, non-smooth version of
this model to understand spread of kelp being grazed by urchins (Arroyo-Esquivel
et al. 2021). We consider the dynamics of adult consumer P and adult resource N
densities through time. Adults of population i = P, N experience a natural mortal-
ity at a rate di . In addition, consider that consumers consume resource following a
unimodal Type IV Holling functional response that represents group defense with a
decline in consumption at high resource densities (Andrews 1968). We let γN be the
attack rate of the consumer, and themaximum per-capita resource consumption occurs
when N = 1√

σN
.

Reproduction and recruitment of juvenile stages occur at discrete points in time.We
model this recruitment as an impulsive differential equation. Let t = m be the periods
at which the offspring recruit to the population. The number of consumer recruits is
proportional to the amount of resource consumed at time t = m with proportionality
constant γP . Resource produce a per-capita number R of recruits. We assume that
R > 1 − exp(−dN ) in order to have a self-replenishing resource in the absence of
consumers. For predation, a fraction of those offspring survive consumption with a
probability following an exponential distribution with mean 1

γS
. Resource offspring

also survive intracompetition from adults with carrying capacity proportional to 1
β
.

Then, given P−
m+1 as the density of consumers before the pulse and P+

m+1 its density
after the pulse (with analogous notation for resource, N−

m+1 and N+
m+1), the dynam-

ics of the adult consumer and resource populations satisfy the following system of
impulsive differential equations:

dP

dt
= −dP P,

dN

dt
= − γN PN

1 + σN N 2 − dN N ,

P+
m+1 = P−

m+1 + γP
P−
m+1N

−
m+1

1 + σN N
−2
m+1

,

N+
m+1 = N−

m+1 + R
exp

(−γS P
−
m+1

)

1 + βN−
m+1

N−
m+1.

(1)

We next transform Model 1 into a discrete-time model. We can rewrite the contin-
uous part of the Model 1 as
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1

P

dP

dt
= −dP ,

1

N

dN

dt
= − γN P

1 + σN N 2 − dN .

(2)

Following the derivation of Cui et al. (2016), we discretize System 2 as

Pm+1 = Pm exp(−dP ),

Nm+1 = Nm exp(−dN ) exp

(
−γN exp(−dP )Pm

1 + σN N 2
m

)
.

(3)

By taking δP = exp(−dP ), δN = exp(−dN ) and using P−
m+1 = Pm and N−

m+1 =
Nm as described in System 1, we arrive the following discrete-time model:

Pm+1 = δP Pm + γP
PmNm

1 + σN N 2
m

,

Nm+1 = δN Nm exp

(
− γN δP Pm
1 + σN N 2

m

)

+ R
exp (−γS Pm)

1 + βNm
Nm .

(4)

To simplify our analysis, we will study a nondimensional version of the model.
For each m, let pm = γS Pm, nm = βNm . Then, if γp = γP/β, γn = γN δP/γS, σ =
σN/β2, our nondimensional version of the model is

pm+1 = δp pm + γp
pmnm

1 + σn2m
,

nm+1 = δnnm exp

(
− γn pm
1 + σn2m

)
+ Rnm

exp (−pm)

1 + nm
.

(5)

Note that we have also changed the indices of δi and ki in order to preserve clarity.

3 Analysis and Results

In this section we characterize the dynamics of Model 5 and its potential for long
transient dynamics. We identify two different classes of long transients, a crawl-by
transient around the extinction of resource and another around the carrying capac-
ity of the resource, and a ghost consumer–resource cycle. To illustrate the transients
identified and test the accuracy of our analytical approximations, we also characterize
all transients numerically by iterating the logarithm of Model 5 in Julia, where the
used, fixed parameters and initial conditions are specified as relevant to each analysis
below. Based on preliminary numerical simulations in double-precision floating-point
numbers, we find that iterating the logarithm of Model 5 instead of the original
model prevents numerical instabilities potentially occurring at long-transients near
zero by reducing the range of the derivative near zero. The source code for these
simulations can be found in https://github.com/jarroyoe/characterizing-transients.
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We analytically derive approximations for the transient time of the crawl-by tran-
sients using perturbation theory, while we numerically analyze the ghost attractor
transient time by regressing the transient time using a power law, which we describe
further in Section 3.b.

Before we characterize these long transients, we first analyze the equilibria of
the model. This model has up to four biologically relevant fixed points: a resource-
only carrying capacity equilibrium (0, n∗), an unstable extinction equilibrium (0, 0),
and two possible unstable coexistence saddle equilibria (p∨∧, n∨∧). We assume that
the carrying capacity of resource is greater than the density at which consumption
growth is its highest, i.e., n∗ > 1/

√
σ , such that group defense is relevant to resource

populations below carrying capacity. Under this condition, the equilibria (0, n∗) and
(p∧, n∧) go through a transcritical bifurcation at

γ ∗
p = (1 − δp)

1 + σn∗2

n∗ . (6)

In this case, the equilibria (0, n∗) is stable for γp < γ ∗
p and unstable for γp > γ ∗

p ,
and the equilibrium (p∧, n∧) is unstable for γp < γ ∗

p and is not in the first quadrant
(i.e., R2+) for γp > γ ∗

p . See Appendix A for the expressions of these equilibria and
their stability. This analysis allows us to better understand the nature of the transients
we have identified.

3.1 Crawl-by Transients

Although the coextinction equilibrium is a saddle in the n-direction (which implies
that n will stay above 0), System 5 can resemble a systemwhere the resource is extinct
for a long period of time when consumer density is high (Fig. 1). This is an example of
a long crawl-by transient.We determine how prevalent this behavior is in the following
theorem, proven in Appendix B.

Theorem 1 Let ε � 1. If p0 is of order ε−1 and n0 of order 1, then System 5 goes
through a crawl-by transient at the extinction of resource n = 0. Recovery of resource
will begin after a time of approximately

M = O

(
log(ε)

log(δp)

)
. (7)

In Fig. 2 we show that Eq. 7 is a reasonably close estimator of the observed point
of recovery, especially for large values of the initial consumer density p0, where the
consumer density is an order of magnitude higher than the initial resource density n0.
We will show in the following theorem that the long-term dynamics shown in Fig. 1
did not depend on the initial conditions of the model.

Theorem 2 System 5 has a compact, connected global attractor in the first quadrant
M = {(p, n) ∈ R

2 : p ≥ 0, n ≥ 0}.
See Appendix C for the proof of this theorem. Theorem 2 implies that, when

γp < γ ∗
p , System 5 will go towards carrying capacity of resource and extinction
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Fig. 1 Time series in logarithmic scale of a consumers pm and b resource nm following System 5 for 200
time steps (m). In this figure, p0 = 10, n0 = 1, δp = 0.9, γp = 1, σ = 2.67, δn = 0.8, γn = 1, R = 2.

of consumers. On the other hand, when γp > γ ∗
p , there are no stable fixed points

in the first quadrant. Thus, Theorem 2 implies the existence of a nonlinear attractor,
which we can describe based on numerical observations, as shown in Fig. 3.

When γp > γ ∗
p , the resource population is able to reach a maximum density of

carrying capacity and stay there for a prolonged period of time (Fig. 3). However, after
the consumer reaches a high enough density, the resource population collapses and
passes through a transient extinction phase. This cycle repeats itself through time, but
at each repetition, the amplitude of consumer density varies. We hypothetize that this
variation in amplitude is caused by the system having a long periodicity. In addition,
increasing γp increases the period between each oscillation. This is consistent with
the implication from Theorem 1 that a higher consumer density causes the resource
to stay around the extinction equilibrium for a longer period of time.
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Fig. 2 Observed resource recovery time (circles) and estimated recovery time using Eq. 29 (solid line) in
System 5 as a function of initial consumer density p0. In this figure, δp = 0.9, γp = 1, σ = 2.67, δn =
0.8, γn = 1, R = 2.

Fig. 3 Time series of consumers pm (a and c) and resource nm b and d following System 5 for 5000
time steps (m). In this figure, p0 = 10, n0 = 1, δp = 0.9, σ = 2.67, δn = 0.8, γn = 1, R = 2, and the
consumer conversion intensity γp = 3 (a and b) and γp = 8 (c and d).

Figure 3 also shows that the system can stay around the resource-only equilibrium
for a prolonged time. We approximate this time in the following theorem, proven in
Appendix D.

Theorem 3 Let γp > γ ∗
p , where γ ∗

p is defined by Eq 6 and let
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Fig. 4 Observed escape time of consumer extinction (circles) and estimated recovery time using Equ 45
(solid line) in System 5 as a function of initial consumer density p0. In this figure, δp = 0.9, γp = 1, σ =
2.67, δn = 0.8, γn = 1, R = 2.

λ1 = δp + γp
n∗

1 + σn∗2 . (8)

Then, if (p0, n0) = (ε, n∗ − ε) for 0 < ε � 1, System 5 goes a crawl-by transient
at the resource-only equilibrium n = n∗. resource will start decaying after a time of
approximately

M = O

(
log

( 1
ε

)

log(λ1)

)

. (9)

In Fig. 4 we show that this expression is a reasonably close approximation of the
time it takes for the consumer to escape extinction across a wide range of orders of
magnitude for the initial consumer density.

3.2 Ghost Attractors

Theorem 2 ensures that, when γp < γ ∗
p , System 5 will converge to the stable equilib-

rium (0, n∗). However, when γ ∗
p − γp � 1, this convergence can take a significantly

longer time, as can be seen in Fig. 5. Before the system reaches the equilibrium,
the dynamics resemble pseudo-oscillations similar to those observed in Fig. 3 when
γp > γ ∗

p .
Given limitations of available analytical tools for exact derivation of limit cycles

in discrete-time models, we approximate the time spent in the ghost attractor τ by
considering a power law for the time spent in a limit cycle (Medeiros et al. 2017):

τ(γp) = A(γ ∗
p − γp)

−B . (10)

Whenever nM > n∧ and pM < p∧, System 5 shows that nk+1 > nk and pk+1 < pk
for all k > M . Therefore, we identify the time the system escapes the ghost attractor
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Fig. 5 Time series of a consumers pm and b resource nm following System 5 for 10000 time steps. In this
figure we consider p0 = 10, n0 = 1, δp = 0.9, γp = 0.9912γ ∗

p , σ = 2.67, δn = 0.8, γn = 1, R = 2.
Although we know that the system will converge to the equilibrium point, this convergence takes over 5000
time steps.

as τ = min{M : nM > n∧, pM < p∧}. Figure 6 shows that this approximation using
the power law provides a reasonable approximation.

4 Discussion

In this work we have identified two types of long transients, crawl-by transients and
ghost attractors, that can appear in a consumer–resource system with group defense
with discrete reproductive pulses. Our long-term dynamics are qualitatively different
from those found in Cui et al. (2016), where they identified a variety of bifurcations
and chaotic dynamics. The key differences between the twomodels are that, while that
of Cui et al. (2016) models reproduction as a continuous process and integrates the
density-dependent growth for a casewith overcompensation in discrete time, ourmodel
considers reproduction as a discrete event and has a saturating density-dependent
function. The model in Cui et al. (2016) is a discrete-time model similar to the Ricker

123



102 Page 10 of 19 J. Arroyo-Esquivel et al.

Fig. 6 Approximation of transient time (τ ) following Eq. 10, where ε = γ ∗
p − γp . In this figure, p0 =

10, n0 = 1, δp = 0.9, σ = 2.67, δn = 0.8, γn = 1, R = 2.

model, where increased reproduction rates lead to unstable dynamics (Ricker 1954).
When modeling reproduction as a discrete process with saturating (Beverton–Holt
style) density dependence rather than overcompensation, our analysis did not suggest
that increased reproduction numbers leads to instabilities in our model.

In addition, discrete reproduction events are one of themain reasons we see the long
transients analyzed in this model. The crawl-by transient observed at high consumer
densities (Theorem 1) is caused by a sudden crash in the adults of the resource popula-
tion, which is followed by a slow crash of the consumer population due to its inability
to find enough resource for self-replacement. Although the adult resource population
is almost nonexistent, the few remaining individuals eventually lead to an increase the
resource population when the consumer population becomes small enough.

The other reason long transients appear in this model is due to the self-replacement
of consumers depending on the ability of resource to defend themselves. The Type IV
Holling functional response produces a bifurcation on the proportionality constant γp

at the value γ ∗
p given by Eq. 6. This constant can be associated with the conversion

capability of consumers, i.e., the amount of energy invested in reproduction activities.
When the conversion capability of consumers is too small (γp < γ ∗

p ), group defense of
resource will prevent self-replacement of consumers at high resource densities, which
will lead to collapse of consumers. When this conversion capability is high enough,
self-replacement can be satisfied, and the consumer–resource cycles of Fig. 3 will
occur. These cycles and their condition for existence resemble those found in other
models where a mechanism of group defense of resource is considered (Ajraldi et al.
2011; Venturino 2011; Venturino and Petrovskii 2013).

In the case where the system presents consumer–resource cycles, the resource-
dominated phase will include a crawl-by transient when the conversion capability is
close to this bifurcation value (Theorem 3). This will follow by a crash of the resource
population, where the consumer-dominated phase appears and presents the crawl-by
transient previously described. This behavior presents an alternative perspective to the
concept of alternate stable states (Beisner et al. 2003), where the different “alternative
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stable states” constitute long transients, which may resemble stable states during a
long period of time, which then transition into the other phase and stay in a different
long transient. In reality, stochasticity may render this juvenile survival when rare
impossible or accelerate consumer death, which may lead the model to a stable state
in a shorter period of time (Reimer et al. 2021).

When the conversion capability of consumers is smaller than the critical value γ ∗
p

but close to it, these quasiperiodic orbits do not disappear completely and stay as
ghost attractors. This ghost attractor stays until the resource density surpasses a given
threshold (the equilibrium value n∧) and the system enters the basin of attraction
of the resource-only equilibrium. The emergence of this ghost attractor is caused by
group defense, because in its absence (σ = 0), the unstable equilibria that cause the
quasiperiodic orbits (p∨∧, n∨∧) do not exist. In their absence, resource population
density will consistently increase and the consumer density decrease.

The estimation of the transient time of the ghost attractor shows one of the limita-
tions of our analysis, as the theory to study limit cycles in discrete-time systems is not
developed enough to precisely analyze the transient time of this ghost attractor. Given
the seasonality of the reproduction and recruitment for many organisms (Arreguin-
Sanchez 1992; Cameron 1986; Russell et al. 1977; Wallace 1985), a continuous-time
model may not properly reflect the biological dynamics we are interested in. Despite
this challenge, the expression for the transient time found for transient limit cycles
in continuous-time systems in Medeiros et al. (2017) is a reasonably accurate fit in
our model. The transient times of the ghost attractor found in our work are similar to
those found in the predator–prey model with group defense of Venturino and Petro-
vskii (2013). However, our biological mechanisms differ, as their transients could be
attributed to search time of prey from the predators through space, a feature not explic-
itly modeled in our work. In contrast, the length of the ghost attractor in our model can
be attributed to the length of the crawl-by transients that are part of the cycle itself,
which are periods of low population growth for either the consumer or the resource.

In conclusion, we show how long transients can appear in predator–prey systems
with group defense and discrete recruitment pulses. A possible extension of this model
is to explicitly consider the dynamics of the juvenile stages through a continuous-time
model, which could give a more accurate approximation of the transient times found
in this paper. Amulti-stagemodel would also allow exploration of the effect of relative
adult versus juvenile vulnerability to consumption on the transient dynamics.
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Appendix: A Fixed points of System 5 and their stability

The fixed points of System 5 (p, n) satisfy the equations

p = δp p + γp
pn

1 + σn2

n = δnn exp

(
− γn p

1 + σn2

)
+ Rn

exp(−p)

1 + n
.

If p = 0, then the second equation gives us two solutions for n, n = 0 and

n∗ = R

1 − δn
− 1. (11)

If p 	= 0, then the first equation has two solutions for n given by

n∨∧ = γp

2(1 − δp)σ

(

1 ±
√

1 − 4σ(1 − δp)2

γ 2
p

)

(12)

where n∨ corresponds to the solution with a − sign and n∧ to the solution with a +
sign. These solutions are positive whenever γp ≥ 2

√
σ(1−δp). In such case, plugging

n∨∧ into the second equation provides us with the following expression:

δn exp

(
− γn p

1 + σn±2

)
+ R

1 + n∨∧ exp(−p) = 1.

Then there is an unique value p∨∧ that solves the trascendental equation

p∨∧ = log

⎛

⎝ R

(1 + n∨∧)
(
1 − δn exp

(
− γn p∨∧

1+σn±2

))

⎞

⎠ . (13)

This equation in p has an unique solution as the function

f (p) = p − log

⎛

⎝ R

(1 + n∨∧)
(
1 − δn exp

(
− γn p

1+σn±2

))

⎞

⎠ (14)

is monotonic for p and satisfies lim p→−∞ f (p) < 0 and limp→∞ f (p) > 0. For it
to be biologically relevant, we also require limp→0 f (p) < 0, which will occur when
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R > (1 − δn)(1 + n∨∧) (15)

or, after reorganizing the terms, n∨∧ < n∗.
The Jacobian of the system J is the following:

J (p, n) =
⎛

⎝
δp + γp

n
1+σn2

γp p
1−σn2

(1+σn2)2

− δnγnn
1+σn2

exp
(
− γn p

1+σn2

)
− Rn exp(−p)

1+n δn exp
(
− γn p

1+σn2

) (
1 + 2σγn pn2

(1+σn2)2

)
+ R exp(−p)

(1+n)2

⎞

⎠ .

(16)

From here, the extinction equilibrium satisfies

J (0, 0) =
(

δp 0
0 δn + R

)
(17)

which has eigenvalues δp < 1 and δn + R > 1. Therefore the extinction equilibrium
is a saddle. For the resource-only equilibrium, the upper right term of the Jacobian
matrix equals 0 whenever p = 0. Therefore J (0, n∗) is a triangular matrix, with the
eigenvalues being the diagonal terms

λ1 = δp + γp
n∗

1 + σn∗2 , (18)

λ2 = δn + (1 − δn)
2

R
. (19)

Because R > 1− δn , 0 < λ2 < 1. λ1, on the other hand, λ1 will produce a change
in stability when

γp = γ ∗
p = (1 − δp)

1 + σn∗2

n∗ . (20)

In this case, the equilibrium is stablewheneverγp < γ ∗
p and a saddlewhenγp > γ ∗

p .

Because n∗ > 1/
√
2σ , plugging γp = γ ∗

p in Eq. 12, we have that n∗ = n∧. Based on
the conditions for (p∧, n∧) to be biologically reasonable, this implies that at γp = γ ∗

p ,
the system goes through a transcritical bifurcation, where the carrying capacity (0, n∗)
changes stability.

The trascendental equation that describes p∨∧ renders it impossible to analyze them
directly. However, a numerical exploration in Fig. A.6 shows that these equilibria are
unstable for γp < γ ∗

p and (p∧, n∧) becomes stable for γp > γ ∗
p . Combining this result

with the condition for the equilibrium point (p∧, n∧) to be biologically relevant (Eq.
15), we find that when γp > γ ∗

p , there are no stable fixed points in the first quadrant
(i.e., R2+).

This transcritical bifurcation occurs with almost any combination of parameters in
our region of interest. To show this, we perform a similar analysis as those in Khan
et al. (2016);Murakami (2007).When γp = γ ∗

p , we can rewrite our system in diagonal
form and centered around the origin by making the change of variables:
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Fig. 7 Numerical values of different equilibria for n and their stability aswe vary γp in our region of interest.
The red points correspond to unstable equilibria, whereas the blue points correspond to stable equilibria. In
this figure, δp = 0.9, σ = 2.67, δn = 0.8, γn = 1, R = 2.

xm = λ2 − 1

n∗
(
1 − δn + δnγn

1+σn∗2
) pm (21)

ym = pm + nm − n∗ (22)

provided that
(
1 − δn + δnγn

1+σn∗2
)

	= 0. Otherwise, we let xm = pm, ym = nm − n∗.
In both cases, this lets use write our System 5 as

(
xm+1
ym+1

)
=

(
1 0
0 λ2

)(
xm
ym

)
+ h.o.t. (23)

We can expand this system to include the parameter as a dynamical factor with
eigenvalue 1 asμm ≡ γp−γ ∗

p . The central limit theoremgives us that ym = h(xm, μm)

for some function h = O((xm + μm)2). Because xm is a multiple of pm , its dynamics
follow the same trend and can be approximated up to O((xm + μm)3) as:

xm+1 = f (xm, μm) = xm+γ ∗
p (1 − σn∗2)
(1 + σn∗2)2

x2m+σn∗2(n∗ − γ ∗
p )

(1 + n∗2)2
xμm+O((xm+μm)3)

(24)
Equation A.14 satisfies that fx (0, 0) = 1, fμ(0, 0) = 0, fxx (0, 0) 	= 0 Because

we assume that n∗ > 1/
√

σ , and fxμ(0, 0) 	= 0 except when n∗ = γ ∗
p . Plugging this

value Eq. 6, we get that the condition n∗ = γ ∗
p holds only when n∗ =

√
1−δp
σδp

.
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Therefore, whenever n∗ 	=
√

1−δp
σδp

, the system goes through a transcritical bifurca-

tion between (0, n∗) and (p∧, n∧) as γp passes through γ ∗
p .

Appendix: B Proof of Theorem 1

If p0 = O(ε−1), plugging O(ε−1) into the formula for n1 gives us that n1 = o(ε).
Plugging o(ε) into the formula for p2 gives us that:

p2 = δp p1 + o(ε). (25)

In addition, if nm = o(ε), the equation for nm+1 satisfies:

nm+1

nm
= O (δn exp (−γn pm) + R exp(−pm)) . (26)

While pm = O(ε−1), this expression will satisfy nm+1/nm < 1. We can thus
assume that the expression

pm+1 = δp pm + o(ε) (27)

is satisfied until pm+1 = O(1). Therefore, when pm = O(ε−1), the consumer popu-
lation time evolution can be approximately solved as

pm = δmp

ε
+ o(ε). (28)

This expression stops working when pm = O(1), and thus resource will start a
recovery afterwards. We can estimate the order of magnitude of such m by plugging
pm = 1 above. Solving for m gives us that

m = log(ε)

log(δp)
(29)

which is the expression that proves the theorem.

Appendix: C Proof of Theorem 2

To show the existence of this theorem, we use Theorem 2.9 ofMagal and Zhao (2005).
To do this, we consider the first quadrant M as a metric subspace of R2 with metric
d(x, y) = ‖x − y‖2 induced by the Euclidean norm. Let T : M → M be given by

T

(
p
n

)
=

⎛

⎝
p

(
δp + γpn

1+σn2

)

n
(
δn exp

(
− γn p

1+σn2

)
+ R exp(−p)

1+n

)

⎞

⎠ . (30)

We show that T is a point dissipative, compact map on M . Because M is a subspace
of R2, compactedness is trivial. A map is point dissipative if there is a bounded set
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B0 ⊂ M such that B0 attracts each point in M . To show T is point dissipative, we find
such bounded set B0.

Let
f p(n) = δp + γpn

1 + σn2
,

fn(p, n) = δn exp

(
− γn p

1 + σn2

)
+ R exp(−p)

1 + n
.

(31)

Note that fn < 1 whenever n > n∗, where n∗ is given by Equation 11. This
implies that n is attracted by the set [0, n∗]. Without loss of generality, we assume that
n ∈ [0, n∗]. Suppose that p > p∗, where p∗ is

p∗ = max

(
1 + σn∗2

γn
, 1

)
= 1

ε
. (32)

A similar argument to that of the proof for Theorem 1 shows that in this case,
the consumer population will satisfy p = O(1) in time ln(ε)/ln(δp). In particular,
p < p∗ after a period of time. In addition, if p < p∗ but T p > p∗, f p satisfies:

f p(n) ≤ δp + γp

2
√

σ
(33)

for any n. This implies that T p ≤
(
δp + γp

2
√

σ

)
p∗. Let τ be the period of time such

that T τ
(
δp + γp

2
√

σ

)
p∗ < p∗. Therefore p is attracted by the set [0, (δp + γp

2
√

σ
)τ p∗].

Then, the bounded rectangle

B0 :=
[
0,

(
δp + γp

2
√

σ

)τ

p∗
]

× [0, n∗] (34)

is an attracting set in M . Therefore, T is a point dissipative map.
Therefore, Theorem 2.9 of Magal and Zhao (2005) implies that there is a compact

global attractor inM . Finally, becauseM is locally connected, Theorem4.5 ofGobbino
and Sardella (1997) implies that the global attractor is connected, which completes
the proof.

Appendix: D Proof of Theorem 3

Let xm = pm, ym = n∗ − nm . Because ‖(xm, ym)‖ = O(ε), System 5 can be approx-
imated by the linearized system:

(
xm+1
ym+1

)
∼ J (0, n∗)

(
xm
ym

)
, (35)

where the Jacobian J (0, n∗) is described by Eq. 16. The calculations of Appendix
A show that the Jacobian J (0, n∗) is a lower triangular matrix, with eigenvalues

λ1 = δp + γ
n∗

1 + σn∗2 . (36)
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λ2 = δn + (1 − δn)
2

R
(37)

and eigenvectors

v1 =
(
u
1

)
, v2 =

(
0
1

)
(38)

where

u = λ2 − λ1

n∗
(
1 − δn + δnγn

1+σn∗2
) . (39)

This system has for solution the expression
(
xm
ym

)
= aλm1 v1 + bλm2 v2, (40)

where a, b are constants. If we let m = 0, then we can solve the linear system
(

ε

ε

)
=

(
u 0
1 1

) (
a
b

)
, (41)

which has solutions

(
a
b

)
=

( 1
u 0

− 1
u 1

) (
ε

ε

)
. (42)

In particular, this gives us that a = ε
u . Because γp > γ ∗

p , then λ1 > 1, and λ2 < 1.
Therefore, for big m, System 40 can be approximated as

(
xm
ym

)
∼ aλm1 v1 = ελm1

u

(
u
1

)
. (43)

Thus, System5will stay near the resource-only equilibriumas long as‖(xm , ym)‖ =
O(ε). In particular, the Systemwill escape the saddle pointwhen xm = O(1). Plugging
in xm = 1 into the approximated solution lets us find M that solves the equation

1 = ελM
1 . (44)

This has for solution

M = log
( 1

ε

)

log(λ1)
(45)

which is the expression that proves the theorem.
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