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ABSTRACT
Background: Circulating individual SFAs in pregnant females
are critical for maternal and fetal health. However, research on
identifying their modifiable factors is limited.
Objectives: We aimed to examine the associations of total physical
activity (PA) and types of PA with circulating individual SFAs during
pregnancy in a multiracial/multiethnic cohort of pregnant females in
the United States.
Methods: The study included participants in a nested case–control
study (n = 321) from the Eunice Kennedy Shriver NICHD Fetal
Growth Studies–Singleton Cohort. Sampling weights were applied,
so the results represented the entire Fetal Growth Cohort. Plasma
phospholipid SFAs were measured at 4 visits [10–14 (visit 1),
15–26 (visit 2), 23–31 (visit 3), and 33–39 (visit 4) weeks of
gestation] throughout pregnancy. PA of the previous year at visit 1
and since the previous visit at the subsequent visits was assessed
using the validated Pregnancy PA Questionnaire. Time-specific and
longitudinal associations were examined using multivariable linear
and generalized estimating equation models.
Results: Total PA (metabolic equivalent of task-h/wk) was positively
associated with circulating heptadecanoic acid (17:0) at visit 1 (β
× 103: 0.07; 95% CI: 0.02, 0.11) and pentadecanoic acid (15:0)
at visit 3 (β × 103: 0.09; 95% CI: 0.03, 0.14) independent of
sociodemographic, reproductive, pregnancy, and dietary factors.
Across the 4 visits, the positive associations with total PA were
consistent for pentadecanoic acid (β × 103: 0.06; 95% CI: 0.02,
0.10) and heptadecanoic acid (β × 103: 0.10; 95% CI: 0.06, 0.14).
Out of the 4 PA types (i.e., sports/exercise, household/caregiving,
transportation, and occupational PA) considered, the magni-
tude of positive associations was the largest for sports/exercise
PA.
Conclusions: Our findings suggest that maternal PA is positively
associated with circulating pentadecanoic and heptadecanoic acids.

The findings warrant confirmation by future studies. This trial was
registered at clinicaltrials.gov as NCT00912132. Am J Clin Nutr
2022;116:1729–1737.

Keywords: saturated fatty acids, SFAs, physical activity, PA,
pregnant females, maternal exercise, pregnancy health, prospective
cohort

Introduction
Circulating SFAs have been recognized to play essential roles

in human health for >20 y (1–4). Emerging evidence suggests
that individual SFAs may have distinct functions and health
effects in the general population (5–10) and pregnant females
(11–14). For example, maternal circulating even-chain SFAs
[e.g., myristic acid (14:0) and palmitic acid (16:0)] have been
associated with increased risks of pregnancy-induced hyperten-
sion (11), dyslipidemia, and gestational diabetes mellitus (GDM)
(12). In contrast, odd-chain [e.g., pentadecanoic acid (15:0)
and heptadecanoic acid (17:0)] or very-long-chain SFAs [e.g.,
arachidic acid (20:0), behenic acid (22:0), and lignoceric acid
(24:0)] have been associated with decreased risks and a favorable
cardiometabolic biomarker risk profile (12).

The new findings for distinct health effects of circulating
individual SFAs on health indicate an urgent need for research
to identify the modifiable determinants of circulating individual
SFAs instead of total SFAs. This is particularly critical for
pregnant females because the fetus cannot synthesize fatty
acids efficiently (15). In addition, the importance of circulating
individual SFAs may vary by gestational age (16, 17). However,
research on modifiable determinants of circulating individual
SFAs for pregnant females is sparse.

Am J Clin Nutr 2022;116:1729–1737. Printed in USA. © The Author(s) 2022. Published by Oxford University Press on behalf of the American Society for
Nutrition. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1729
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Physical activity (PA), either acute or regular, plays an
essential role in lipid metabolism and is well known for its
influence on circulating concentrations of HDL, LDL, TG, and
total FFAs in both nonpregnant (18–21) and pregnant females
(22–24). For individual SFAs, PA has been associated with
circulating or skeletal muscle palmitic acid and stearic acid (18:0)
in a small observational study (25) and an interventional study
(26 ) in males. In pregnant females, a few studies, including
1 of our works, have reported the associations of PA with total
FFAs and individual unsaturated fatty acids such as linoleic
acid (18:2n–6) and γ -linolenic acid (18:3n–6) (24, 27–29).
However, the associations between PA and circulating individual
SFAs in pregnant females have not yet been investigated.
Because pregnancy is a period with dynamic changes in lipid
metabolism, including accumulation of maternal fat depots and
hyperlipidemia (30), the objective of the current study was
to examine the time-specific and longitudinal associations of
total and types of PA (i.e., sports/exercise, household/caregiving,
transportation, and occupational PA) with the total and individual
plasma phospholipid SFAs during pregnancy.

Methods

Study population and design

The study participants were selected from the Eunice
Kennedy Shriver NICHD Fetal Growth Studies–Singleton Co-
hort (NCT00912132), a multicenter, multiracial/multiethnic,
prospective cohort for low-risk, singleton pregnant females
(31). Between 2009 and 2013, 2802 racially/ethnically diverse
pregnant females aged 18–40 y without hypertension, dia-
betes, renal/autoimmune disease, psychiatric disorder, cancer, or
HIV/AIDS were enrolled during early pregnancy from 12 clinical
sites across the United States.

The current study utilized data from 321 pregnant females
who had individual plasma phospholipid SFAs quantified in a
nested GDM case–control study (GDM cases: n = 104, controls:

Supported by Eunice Kennedy Shriver NICHD intramural funding
including American Recovery and Reinvestment Act funding via contract
numbers HHSN275200800013C, HHSN275200800002I, HHSN27500006,
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n = 214). This study was approved by the institutional review
boards of all participating sites, with all participants submitting a
written informed consent.

PA

PA was scheduled to be assessed at 8–13, 16–22, 24–29,
and 34–37 weeks of gestation, but the actual time windows
were 10–14 (visit 1), 15–26 (visit 2), 23–31 (visit 3), and 33–
39 (visit 4) weeks of gestation. PA was assessed using the
validated Pregnancy PA Questionnaire (PPAQ) (32), which was
also validated in females with obesity and GDM (33, 34). PA
of the previous year was assessed at visit 1, and PA since
the previous visit was assessed at the subsequent visits. Time
spent in each activity (h/wk) was multiplied by the associated
intensity [in metabolic equivalent of tasks (METs)] to derive the
weekly energy expenditure. Activities of light intensity and above
(METs ≥1.5) were summed to calculate total PA (MET-h/wk)
(32, 35). PA by types (i.e., sports/exercise, household/caregiving,
transportation, and occupational PA) was also calculated using an
established method (32).

Plasma phospholipid SFAs

Blood samples were collected at each visit without within-
participant overlaps. Biomarkers were measured among all GDM
cases (n = 107) at all visits, all controls (n = 214) at visits
1 and 2, and only half of the controls (n = 107) at visits 3
and 4 to gain cost efficiency. To account for this study design,
sampling weights were derived for pregnant females at visits 1
and 2 and visits 3 and 4 separately. For the nonfasting samples,
the mean ± SD hours since the last meal were 3.7 ± 3.9 h at visit
1, 3.2 ± 4.0 h at visit 3, and 2.9 ± 3.7 h at visit 4. For the fasting
sample at visit 2, the mean ± SD hours since the last meal were
11.8 ± 3.5 h. Plasma phospholipid SFAs were measured via a
Hewlett Packard 5890 GC system with flame ionization detection
and a previously published extraction method (36). The plasma
phospholipid fraction includes mainly phosphatidylcholine and
phosphatidylethanolamine, and a small amount of sphingomyelin
and lysolecithin (or lysophosphatidylcholine). Individual plasma
phospholipid SFAs were measured as proportions of plasma
total phospholipid fatty acids. With relative levels >0.05%,
individual plasma phospholipid SFAs consist of even-chain
myristic acid, palmitic acid, stearic acid, arachidic acid, behenic
acid, and lignoceric acid, as well as odd-chain pentadecanoic
acid and heptadecanoic acid. During pregnancy, palmitic acid
and behenic acid had a positive trajectory, whereas pentadecanoic
acid, heptadecanoic acid, stearic acid, and lignoceric acid had a
negative trajectory (37). Myristic acid and arachidic acid stayed
stable (37).

Covariates

Data on sociodemographic, anthropometric, reproductive,
and lifestyle factors, pregnancy characteristics, and pregnancy
complications were obtained from structured questionnaires or
extracted from medical records. Covariates were preselected
potential confounders, including age (y), race/ethnicity (i.e.,
Asian/Pacific Islander, Hispanic, non-Hispanic black, non-
Hispanic white), education (i.e., high school or less, Associate,
Bachelor’s or higher), married/living with a partner (i.e., yes,

https://academic.oup.com/ajcn/
mailto:obgzc@nus.edu.sg
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TABLE 1 Weighted characteristics of pregnant females in the NICHD Fetal Growth Studies–Singleton Cohort1

Weighted characteristics n = 321

Sociodemographic, anthropometric, reproductive, and lifestyle factors at visit 1
Age, y 28.2 ± 0.3
Race/ethnicity

Asian/Pacific Islander 78 (18.5%)
Hispanic 123 (27.2%)
Non-Hispanic black 45 (23.3%)
Non-Hispanic white 75 (31.0%)

Prepregnancy BMI, kg/m2 25.7 ± 0.3
Prepregnancy BMI status (kg/m2)

Normal (<25.0) 156 (51.7%)
Overweight (25.0–29.9) 99 (33.1%)
Obese (>30.0) 66 (15.2%)

Born in the United States 182 (68.5%)
Education

High school or less 148 (45.5%)
Associate 50 (14.7%)
Bachelor’s or higher 123 (39.8%)

Insurance
Medicaid, other 108 (35.4%)
Private or managed care 211 (64.6%)

Married/living with a partner 259 (72.9%)
Nulliparity 144 (51.1%)
Smoked 6 mo prepregnancy 5 (0.7%)
Consumed alcoholic beverages 3 mo prepregnancy 198 (63.7%)
Dietary intakes2 (n = 191)

Total energy, kcal/d 2176.0 ± 70.0
AHEI 44.1 ± 0.7

Pregnancy characteristics and pregnancy complications
Gestational weight gain at delivery, kg 12.3 ± 17.8
Institute of Medicine gestational weight gain category at delivery

Inadequate 96 (31.1%)
Adequate 100 (28.6%)
Excessive 125 (40.3%)

Gestational hypertension 7 (1.3%)
Pre-eclampsia 11 (2.2%)
Gestational diabetes mellitus 107 (3.9%)

1Values are n (weighted percentage) for categoric variables and weighted mean ± weighted SE for continuous variables. Sampling weights were applied
to represent the entire NICHD Fetal Growth Studies–Singleton Cohort. AHEI, Alternative Healthy Eating Index.

2Dietary intakes were available among 198 females who completed the FFQs at visit 1; 7 females with implausible total energy intake (i.e., <600 or
>6000 kcal/d) were excluded.

no), nulliparity (i.e., yes, no), prepregnancy BMI (in kg/m2),
and the Alternative Healthy Eating Index (AHEI). Race/ethnicity
groups were self-identified at visit 1. The prepregnancy BMI was
calculated using height measured and self-reported prepregnancy
weight at visit 1. Habitual dietary intakes for the last 3 mo were
measured via a validated FFQ at visit 1 and via the validated
Automated Self-Administered 24-Hour dietary recall (ASA24)
at the subsequent visits (38–40). The AHEI excluding alcohol
was derived based on a validated method (41). Higher AHEI was
associated with lower risks of major chronic diseases such as
diabetes, cardiovascular diseases, and cancers (41). The AHEI
was used as an indicator for overall dietary quality and as a
potential confounder in the analyses.

Statistical analyses

Because females with GDM were overrepresented in the
nested case–control study, sampling weights were derived and

applied to all analyses to ensure the study results represented
the entire NICHD Fetal Growth Studies–Singleton Cohort (42).
In the weighted sample, 4% of pregnant females had GDM,
whereas in the unweighted sample, 33% of them had GDM.
At each visit, multiple comparisons were addressed using
the conservative Bonferroni correction method to avoid false-
positive findings. Overall statistical significance was defined
as P value < 0.05. After the Bonferroni correction, statistical
significance was defined as P value < 0.006 [0.05/9 (total SFA
and 8 individual SFAs)]. All regression models were adjusted
for the preselected potential confounders, including age (y),
race/ethnicity, education, marital status, nulliparity, prepregnancy
BMI, and the AHEI. All analyses were conducted using SAS
software, version 9.4 (SAS Institute).

Unweighted n (weighted percentage) for categoric variables
and weighted mean ± SE for continuous variables were
described for sociodemographic, anthropometric, reproductive,
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TABLE 2 PA and plasma phospholipid SFAs at visit 1 of pregnant females
in the NICHD Fetal Growth Studies—Singleton Cohort1

n = 321

Total PA, MET-h/wk 325.5 ± 170.9
Household/caregiving PA 125.1 ± 80.7
Occupational PA 117.6 ± 111.0
Transportation PA 33.5 ± 31.7
Sports/exercise PA 14.1 ± 14.3
Other PA 35.4 ± 22.5

Total SFAs, % of plasma total phospholipid
fatty acids

42.7% ± 1.9%

Odd-chain SFAs
Pentadecanoic acid (15:0) 0.2% ± 0.1%
Heptadecanoic acid (17:0) 0.4% ± 0.1%

Even-chain SFAs
Myristic acid (14:0) 0.3% ± 0.1%
Palmitic acid (16:0) 27.2% ± 1.6%
Stearic acid (18:0) 12.8% ± 1.2%
Arachidic acid (20:0) 0.3% ± 0.1%
Behenic acid (22:0) 0.8% ± 0.3%
Lignoceric acid (24:0) 0.6% ± 0.2%

1Values are weighted means ± SEs. Sampling weights were applied to
represent the entire NICHD Fetal Growth Studies–Singleton Cohort. Visit 1
measured PA of the previous year. MET, metabolic equivalent of task; PA,
physical activity.

and lifestyle factors at visit 1. Pregnancy characteristics and com-
plications, including gestational weight gain, gestational hyper-
tension, pre-eclampsia, and GDM, were described. Unweighted
n (%) for categoric variables and unweighted mean ± SD for
continuous variables were described and compared between
females with and without GDM. PA and plasma phospholipid
SFA profiles at visit 1 were also described.

For the primary analyses, time-specific associations of total
PA with total and individual plasma phospholipid SFAs were
examined separately at each visit using weighted multivariable
linear models with robust variance estimation to illustrate the
associations at different time points during pregnancy (i.e.,
PA of the previous year with SFAs at visit 1, PA since the
previous visit with SFAs at the subsequent visits). When the
direction of associations at different visits was the same, weighted
generalized estimating equation (GEE) models with unstructured
correlation structures and robust variance estimation were per-
formed to improve statistical power. Associations of types of PA
(i.e., sports/exercise, household/caregiving, transportation, and
occupational PA) with total and individual plasma phospholipid
SFAs were also examined.

Several sensitivity analyses were performed to examine the
robustness of the study results. First, gestational weight gains
were in addition adjusted in the models. Second, hours since
the last meal for blood collections were in addition adjusted
in the models. Third, carbohydrate and SFA intakes were in
addition adjusted in the models. Fourth, total fatty acid intakes
were in addition adjusted in the models. Fifth, missing values
for the AHEI (30%) were imputed using the multiple imputation
method (means at each visit were used in the primary analyses).
In addition, associations between maternal complications and PA
were examined. Finally, models were performed among females
without GDM at visit 3 and visit 4.

Results

Participants’ characteristics

The study participants (Supplemental Figure 1) had a
mean ± SE age of 28.2 ± 0.3 y at visit 1 and were
racially/ethnically diverse: 18.5% Asian or Pacific Islander,
27.2% Hispanic, 23.3% non-Hispanic black, and 31.0% non-
Hispanic white. Among all participants, 48.3% were overweight
or obese (prepregnancy BMI ≥ 25.0) (Table 1). For females
with GDM, the mean ± SD age was 30.5 ± 5.7 y at visit 1,
and 66.4% were overweight or obese prepregnancy. Compared
with females without GDM, females with GDM were more
likely to be overweight or obese prepregnancy, have smoked
in the 6 mo prepregnancy, have lower AHEI scores, and have
pre-eclampsia, but they were less likely to have Bachelor’s or
higher degrees. Among females with GDM, 61.2% received
lifestyle consulting, 11.2% received insulin, 16.8% received oral
medications (i.e., Metformin or Glyburide) as treatment, and
26.2% received unknown treatment (Supplemental Table 1).

The mean ± SE total PA was 325.5 ± 170.9 MET-h/wk
at visit 1. By PA types, the mean ± SE household/caregiving
PA was 125.1 ± 80.7, occupational PA was 117.6 ± 111.0,
transportation PA was 33.5 ± 31.7, and sports/exercise PA was
14.1 ± 14.3 MET-h/wk. Total PA and types of PA decreased
during pregnancy. Plasma phospholipid SFAs accounted for
(mean ± SE) 42.7% ± 1.9% of the plasma total phospholipid
fatty acids at visit 1. Among individual plasma phospholipid
SFAs, even-chain palmitic acid was the most abundant, followed
by even-chain stearic acid. The proportions of individual plasma
phospholipids did not change much during pregnancy (Table 2).

Time-specific and longitudinal associations of PA with
plasma phospholipid SFAs

Positive associations between total PA and plasma total
phospholipid SFAs were found at visit 3 (β × 103: 3.07;
95% CI: 1.53, 4.61; P < 0.001) and visit 4 (β × 103:
2.29; 95% CI: 0.74, 3.84; P = 0.004), after adjusting for
age, race/ethnicity, education, married/living with a partner,
nulliparity, prepregnancy BMI, and the AHEI, and correction
of multiple testing. When individual plasma phospholipid SFAs
were examined, total PA was only positively associated with
heptadecanoic acid at visit 1 (β × 103: 0.07; 95% CI: 0.02,
0.11; P = 0.005) and pentadecanoic acid at visit 3 (β ×
103: 0.09; 95% CI: 0.03, 0.14; P = 0.002) after adjusting for
the preselected covariates and correction of multiple testing
(Table 3). In the sensitivity analyses, most findings stayed robust
(Supplemental Tables 2–5). The longitudinal associations of
total PA with pentadecanoic acid (β × 103: 0.06; 95% CI:
0.02, 0.10; P < 0.001) and heptadecanoic acid (β × 103: 0.10;
95% CI: 0.06, 0.14; P < 0.001) estimated using GEE models
were consistent with the time-specific positive associations after
adjusting for the preselected covariates and correction of multiple
testing.

When further examining PA by types (i.e., sports/exercise,
transportation, caregiving/household, and occupational PA) using
GEE models, the positive association of PA and pentadecanoic
acid was observed only for household/caregiving PA (β × 103:
0.13; 95% CI: 0.04, 0.22; P = 0.005). The positive association
of PA and heptadecanoic acid was observed for sports/exercise
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PA (β × 103: 0.65; 95% CI: 0.19, 1.11; P = 0.005) and
occupational PA (β × 103: 0.13; 95% CI: 0.06, 0.20; P < 0.001).
No associations were found for transportation PA after adjusting
for the preselected covariates and correction of multiple testing
(Table 4).

Discussion
In this prospective and longitudinal study with PA and plasma

phospholipid SFAs measured at 4 visits across pregnancy, we
observed positive associations of total PA (MET-h/wk) with
the plasma phospholipids pentadecanoic acid and heptadecanoic
acid, independent of sociodemographic, reproductive, pregnancy,
and dietary factors. The positive associations of total PA with the
plasma phospholipids pentadecanoic acid and heptadecanoic acid
were likely related to sports/exercise PA. The findings are con-
sistent with our hypothesis that PA, particularly sports/exercise
PA, is a modifiable determinant of circulating individual SFAs.
Given that odd-chain pentadecanoic acid and heptadecanoic acid
have been linked with a lower risk of GDM and beneficial
effects on insulin and lipid homeostasis (12), SFAs could play
a role in explaining the potential beneficial effects of PA on
cardiometabolic health in pregnant females.

The overall positive associations between total and types
of PA and individual plasma phospholipid SFAs during preg-
nancy are biologically possible. PA has been well recog-
nized for regulating lipid metabolism in both nonpregnant
and pregnant females (24, 43–47). In human experiments
using stable isotope tracer, plasma phospholipid fatty acid
concentrations usually decrease at the beginning of exercise
owing to enhanced clearance by skeletal muscle (48). Then,
circulating fatty acids gradually increase owing to acceler-
ated lipolysis (49). No previous studies have examined the
associations of PA with circulating individual SFAs during
pregnancy. In a randomized controlled trial of an aerobic
exercise intervention (i.e., a maximum of 5 sessions of 40-
min aerobic exercise at 20–35 weeks of gestation) among
84 pregnant females in New Zealand, circulating total FFA
at 35 weeks of gestation was lower in the intervention
group than in the control group (28). However, this study
did not measure the circulating individual fatty acids as
relative proportions, and thus the results cannot be directly
compared with the current study. The associations of PA
with individual circulating fatty acids as relative proportions
are likely different from the associations with total FFAs
(50–53).

Habitual PA may stimulate the lipolysis of particular fatty
acids at different time windows during pregnancy, which may
be driven by specific requirements of the fetus. It is well
documented that the fetus requires more fatty acids for its
development during mid-to-late pregnancy (54–58). However,
the exact biological mechanisms for the positive associations
of total PA and types of PA with the plasma phospholipids
pentadecanoic acid and heptadecanoic acid may be complicated.
Some studies have suggested that circulating pentadecanoic
acid and heptadecanoic acid are associated with lower risks
of diabetes (59–62) and cardiovascular diseases (6, 63–65) in
the general population. Among pregnant females, circulating
pentadecanoic acid and heptadecanoic acid were inversely
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associated with GDM risk in the Fetal Growth Studies–Singleton
Cohort (12). In addition, pentadecanoic acid was positively
correlated with circulating HDL, whereas heptadecanoic acid
was negatively correlated with circulating HOMA-IR, glucose,
insulin, C-peptide, leptin, and triglycerides, and positively
correlated with adiponectin and HDL (12). Thus, circulating
pentadecanoic acid and heptadecanoic acid may have beneficial
impacts on insulin and lipid homeostasis. It is unclear whether
the observed positive associations of PA with circulating
pentadecanoic acid and heptadecanoic acid could play a role
in explaining the potential benefits of PA on cardiometabolic
health.

The magnitude of the positive associations with plasma
phospholipid SFAs was the most considerable for sports/exercise
PA, although it only accounted for a small proportion of total
PA. Compared with other PA types, sports/exercise PA had
beneficial effects on lipid metabolism, probably due to its
intensity and duration (45, 66–68). When designing potential
interventions for PA, the influence of PA types may need to be
considered.

The current study has several unique strengths. First, this
prospective study was based on longitudinal data of 8 individual
plasma phospholipid SFAs at 4 visits throughout pregnancy. It
allowed the analysis of temporal associations between PA and
plasma phospholipid individual SFAs at various time windows
during pregnancy. Second, this study included geographically and
racially/ethnically diverse pregnant females in the United States,
increasing the generalizability of the findings. Finally, potential
confounders, including detailed dietary intakes at multiple time
points, were collected and adjusted for in the analyses.

A few potential limitations of this study are worth point-
ing out. First, this study was observational by design. Al-
though we have carefully controlled for potential confounders,
residual confounding cannot be completely ruled out. Sec-
ond, PA was self-reported using the PPAQ. Regardless, the
PPAQ had robust reproducibility and modest validity against
accelerometer data among pregnant females (32), aligning
with other standard PA questionnaires (69, 70). In addi-
tion, fasting blood samples were only available at visit 2.
However, previous studies, including work from us, have
shown that plasma phospholipid fatty acid concentrations
are not sensitive to fasting status (27, 71). In the cur-
rent study, additional adjustment for hours since the last
meal at each visit did not change the main findings, as
shown in the sensitivity analysis. Lastly, the semiquantita-
tive dietary intake FFQ was used at visit 1, whereas the
quantitative ASA24 was used at the subsequent visits to
derive the AHEI. Nevertheless, the FFQ and ASA24 have
been used to derive the AHEI in epidemiologic studies
(40, 72).

In conclusion, in the current study in racially/ethnically diverse
pregnant females, total PA was positively associated with the
plasma phospholipids pentadecanoic acid and heptadecanoic
acid. Such associations are likely related to sports/exercise PA.
These findings suggest that PA, particularly sports/exercise PA,
may be a lifestyle factor that could be modified to optimize the
plasma phospholipid SFA profile during pregnancy.
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