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ABSTRACT 
This project hrther adapt and enhance the previous research of relevance to event-based 
Advanced Traveler Information Systems (ATIS) and implement the algorithms for traffic 
management in Anaheim. This study is also answering some basic questions in ATIS 
implementation associated with routing strategies, driver’s compliance and network 
performance. 
This research develops algorithms for static and dynamic optimal Changeable Message Signs 
(CMS). The optimized CMS schemes are based on performance evaluations using a traffic 
simulation-based evaluation model, DYNASMART (Dynamic Network Assignment 
Simulation Model for Advanced Road Telematics). Performance of ATIS depends on 
drivers’ compliance behavior, and the compliance issue is addressed in this research. This 
study develops a framework of driver’s compliance model, and incorporates it into the 
evaluation framework. The model includes inherent value of guidance system, and the value 
is analyzed via day-to-day update approach. 
A limited field test is implemented for the event traffic management. The implementation 
involves the Caltrans-UCI ATMS research testbed framework at the UCI Institute of 
Transportation Studies, as well as the physical hardware available for communication to the 
city of Anaheim. The analytical and heuristic algorithms proposed for use here include those 
for static and dynamic traffic simulation-assignment. The essential part of algorithmic 
research is to adapt the network optimization algorithms to generate traffic rerouting plans, 
which involve aggregation of network paths and their translation to a format usable for 
changeable message signs existing in Anaheim, as well as other event-based information 
supply hardware. 
Key words: Advanced Traveler Information Systems, Optimal Routing, Dynamic Traffic 
Assignment, Changeable Message Signs 
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CHAPTER 1: INTRODUCTION 

1.1 Project Description 

The Advanced Traveler Information System (ATIS) is considered as a promising technology 
to improve traffic condition by helping traveler to use efficiently existing transportation 
facilities. Unlike other components of advanced management systems, the effectiveness of 
traveler information technologies is determined primarily by the traveler’s awareness of the 
information, correct interpretation of the information, evaluation of its usehlness, and 
implementation of the recommended course of action. ATIS is now in transition moving from 
laboratory to real world thank to past studies in this field; however, there are several 
unanswered questions in ATIS routing, which this research attempts to answer. 

The main goal of the research is to develop a framework to generate optimal routing 
schemes. The framework is based on network optimization, heuristics and driver-behavior- 
based detailed simulation for both evaluation and information design. Algorithms to find 
routing messages for changeable message signs (CMS) are developed as a generalized 
problem. To find an optimal routing scheme, static network optimization and dynamic 
simulation approach are used. While finding optimized routing solution, this study 
incorporates driver compliance behavior into optimization framework. This study also 
investigates effects of information reliability, which is an inherent factor of information 
devices, via day-to-day evolution approach. 

Finally, the evaluated routing scheme for event traffic management is implemented in real 
world. The routing scheme is evaluated via off-line simulation tests prior to the real-world 
implementation, and performance of the implemented routing scheme is analyzed via on-line 
traffic data collection. Also drivers’ responses to CMS are surveyed to analyze drivers’ 
compliance behavior. 

1.2 Motivation and Purpose of Study 

This research is motivated by several fbndamental questions on optimal routing problems in 
ATIS. 

0 Is the traveler information always beneficial? 
0 Why may the information do harm? 
0 What is the importance of driver’s behavior in ATIS? 
0 Can system optimality be achieved in ATIS? 
0 What is the “best possible ” routing in ATIS? 

As noticed from the first three questions, traveler information may do harm when information 
is given to drivers without consideration of drivers’ response to it. Drivers’ over-reaction, for 
example, may result in worse conditions both at the individual level and the society level. The 
goal of ATIS is pursuing optimal state, whether user optimal or system optimal. However, it 
cannot be achieved just by giving information. Information should be well designed with 
consideration of drivers’ response. The answer for the fourth question needs more 
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investigation associated with drivers’ behavior because optimum at the society level is not 
sustainable due to inequity in the benefits to individual driver. The last question, which is 
regarding the “best” routing in ATIS, involves complex practical issues. To answer the 
question, a comprehensive design and evaluation framework needs to be developed based on 
the answers to the prior four questions. Analysis of routing with partial information supply, as 
in changeable message signs (CMS) is more challenging than routing with complete 
information supply as in map-based in-vehicle navigation systems (IVNS.) 

The main goal of this research is to develop a framework to generate routing strategy for 
drivers. The problems to be studied are: what information to provide, when, where, and what 
for. To achieve the main goal, objectives can be divided into four categories. 

0 to analyze driver’s response to various types of information 
0 to investigate routingpolicy in the context of information reliability 
0 to generate routing scheme for A TIS 
0 to construct a comprehensive ATIS design and evaluation framework. 

There are two purposes in analyzing driver’s response to various types of information. There 
have been numerous researches on driver’s response to information, but there are few usable 
behavior models capturing driver response to various types of information supplied by 
different information sources. So this research will develop a framework for driver behavior 
that can capture driver response to various types of information. The behavior framework 
will be incorporated into DYNASMART, which will be used in this research as a traffic 
simulation and ATIS evaluation tool. The other purpose is information design based on 
understanding of how drivers perceive information before responding to it. Guideline for 
information design can be addressed by understanding this behavior. 

Routing policy, whether to minimize total system cost (system optimum) or to minimize 
individual cost (user optimum,) is an issue in ATIS. It needs to be investigated whether 
system optimal routing schemes can be applied without deteriorating reliability of information 
that affects drivers’ compliance, because drivers can find better routes for themselves while 
drivers are guided based on system optimum. This makes the routing unsustainable over time, 
as the system could tend to revert to a user equilibrium state; however, in a dynamic system 
there is the possibility of routing based on the tolerances in the driver behavior under 
dynamics. If so, real optimal solution considering drivers’ compliance might be between these 
two different optimal points. More investigation is needed on this issue. 

Purpose of developing a method for optimal routing scheme is to find ultimate solution for 
implementation of ATIS to real world. This is an important part of this research. Routing 
schemes can be evaluated using the simulation model into which driver behavior model is 
incorporated. To find an optimal routing scheme, appropriate network optimization coupled 
with more accurate evaluation using dynamic simulation is proposed. Because of the dynamic 
characteristic of traffic flow over time, dynamic optimization is expected to be more correct, 
though computationally more intensive. Static assignment may be sufficient to derive a subset 
of routes in a quick manner for fbrther evaluation, however. Also an adaptive control strategy 
may need to be considered to reflect uncertainty. This is achieved in a rolling horizon type 
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real time implementation scheme in this proposed research. A comprehensive framework for 
ATIS design and evaluation is constructed by achieving the above three objectives. 

1.3 Overview of the Research Approach 

This research project seeking usable optimal routing schemes. In this research CMS routing is 
the main focus. It is not easy to give fi l l  route information to drivers using CMS. So routing 
using CMS can be used only for certain circumstances. Furthermore, information provided by 
CMS is very limited. All information should be generally transferred to drivers within at most 
3 lines of 18 characters. A solution of generalized CMS problem can be viewed as a similar 
problem as an IVNS routing in overall modeling purpose. However, each CMS or a series of 
CMS’s can be an independent system that has its own fhnction. From this point of view, 
unlike In-Vehicle Navigation Systems (IVNS) routing system, CMS routing is limited within 
possible routing area in general. A series of CMS’s may work for guidance in certain 
complex networks. Developing CMS guidance scheme is a much harder task than IVNS 
guidance due to limitations in providing information and uncertainty of driver’s route choice 
behavior after diverting from the decision point where CMS is located. Note that the 
frameworks made for partial information supply such as using CMS can, of course, be used 
for IVNS schemes that are often special case of the general partial information schemes. 

In real world implementation of CMS routing, several important factors should be taken into 
account. In order to provide comprehensively predicted information, which is considered 
driver’s reaction to the information, dynamic 0-D demand estimation and dynamic traffic 
assignment is essential. For the dynamic 0-D demand estimation and dynamic traffic 
assignment as consecutive works, rolling horizon approach is considered as a more realistic 
approach. Main problem in incorporating this dynamic approach into searching optimal 
routing solution is that it is very difficult to finish the DTA routine with consideration on 
driver’s response, especially in partial information case. Furthermore, routing schemes for 
CMS is much harder problem because routing is implemented only by limited information. 
Therefore, this research is trying to find optimal CMS message using static network flow 
optimization technique and dynamic traffic simulation model as an evaluation tool. 

Static network flow optimization is one way of achieving optimal flow pattern in the 
network. The main benefit from static assignments is that they are fast by orders of 
magnitude over the dynamic assignment algorithms which exists now, and thus are very 
attractive for real-time application. The disadvantage, on the other hand, is that they do not 
capture network congestion dynamics very well, due to the rather simple link travel-time 
functions used. The study attempts coordinating static and dynamic assignments in such a 
way that the computational benefits are gained from the static assignment while the 
inaccuracies from the results are minimized. 

1.4 Significance of Study 

Significance of this study can be summarized from three different points of view. The first 
significance is that this study constructs a comprehensive ATIS design and evaluation 
framework. Even though there have been many studies on ATIS, only a few studies 
investigated concrete routes or information to provide and comprehensive ATIS frameworks 
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are rare or nonexistent. In addition, this research will enable partial / restricted information 
supply systems such as CMS’s, which are widely deployed but are not effectively used, to be 
used as more active dynamic routing devices. The second significance is that this study treats 
the information system as a closed-loop control system by incorporating driver response to 
various types of information into a prediction model frame, so as to capture dynamic effects 
and make it possible to elaborate information to supply. The last, the most significant 
contribution is that this research is expected to play an important role in advancing ATIS to 
real world implementation. 
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CHAPTER 2: OPTIMIZED ROUTING SCHEME 

2.1 Routing in ATIS 

2.1.1 Information Source and Format 

There are various techniques for communicating with drivers. These techniques range from 
conventional regulatory, warning and information signs, road markings and roadside post 
delineators, through Changeable Message Signs (CMS) and Highway Advisory Radio 
(HAR), to In-Vehicle Navigation Systems (IVNS) which are being promoted as part of a 
comprehensive intelligent transport system (ITS). Characteristics of CMS and IVNS are 
discussed here. 

CMS differs from the conventional traffic signs in that they can be configured to show a 
range of different messages which vary according to current need. CMS has main uses: to 
issue instructions, to warn of dangers ahead, to give advice regarding routing or parking, or 
to give information on travel or delay of alternative routes for driver’s route selection. When 
not used for these purposes they may be used to provide general information or advice. 
However, over-use of these signs has led to their losing some degree of credibility. The 
potential for CMS to manage the demand for car parking and road space is being increasingly 
realized. Research has indicated that compliance with direction advice depends on the 
phrasing of the message, and that different categories of drivers respond to CMS in different 
ways. A major theme of current experiment with CMS is the production of semi- or full- 
automatic systems which will select and display a message which will result in the most likely 
degree or rerouting (Bell et al, 1997). CMS is considered as a information supplier to give 
information at a certain point, so high impacts on the network is expected only in the case of 
high compliance. So sometimes enough consideration of effects of information will be 
necessary. 

A number of different IVNS can be categorized. The main distinction is between systems 
with autonomous units, which carry all their intelligence around with them, and those with 
communicating units, which receive information about the current state of the road system by 
radio or other means. This is a rapidly growing field and a number of new systems are 
currently under development. There are two different ways of choosing routes in IVNS: one 
is with a system capable of performing route selection based on the individual driver’s 
requirements and preference, and the other is receiving guidance made from external systems. 
The former is likely to be more popular than the later. The potential benefits with the 
provision of in-vehicle information and guidance may be sufficient to persuade governments 
and road authorities to permit such systems to exist. The potential benefits to the community 
of IVNS to drivers include more efficient use of the available network capacity, and 
reductions in congestion and associated environmental effects. It is also pointed out that the 
benefit would be particularly impressive if IVNS were coordinated with congestion pricing 
and traffic signals. 

Information being given to travelers can be divided into two categories: one is prescriptive 
information, and the other is descriptive information. While prescriptive information gives 
direction or guidance only to drivers, descriptive information gives more detail information so 
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as for travelers to choose from given alternatives based on their preference. On the other 
hand, prescriptive information solely depends on the driver’s decision whether or not to 
follow. 
In ATIS design, driver’s compliance should be taken into account. Drivers’ preference 
between prescriptive and descriptive information is dependent on their characteristics and 
their given circumstances. Some may not want to receive prescriptive information because of 
their reluctance to follow others’ orders, while some prefer receiving decisive guidance. This 
preference may affect drivers’ compliance rate. 

2.1.2 Control Strategy and Types of Information 

Information influences driver’s route choice decision. So information can be viewed as a 
control variable. The information can be categorized into three based on the way of 
information generation. 

Instantaneous Information 
Simply Predicted Information 
Comprehensively Predicted Information 

Instantaneous information can be provided without firther prediction routine. In this system 
the information could be wrong when the informed drivers are actually experiencing because 
of dynamic of traffic. However, this system is expected to improve network condition by 
employing automatic control concept with feedback. 
As a more advanced type, simply predicted information system can be considered. 
Information is obtained from the simple prediction without considering informed driver’s 
route change. The information in this system may not be correct either since informed 
driver’s behavior is not considered although general dynamics of traffic can be captured. 
For better system that supplies more accurate information, consideration of driver’s response 
to information is essential. Information may result in unexpected traffic congestion due to 
driver’s over-reaction. In order to avoid this problem, a closed loop control system should 
be considered, that is comprehensively predicted information system. 

2.1.3 Dynamic Optimal Routing 

In order to find optimal routing paths for drivers equipped with IVNS, dynamic traffic 
assignment (DTA) is often applied. The common goal of DTA within the ITS framework is 
to re-distribute the traffic pattern such that delays incurred by congestion are minimized. 
There have been many studies on traffic assignment in the dynamic case by Friesz et a1 
(1989), Boyce et a1 (1991), Janson (1991), Ran (1993), and Jayakrishnan et a1 (1996.) In 
general, the different DTA methodologies developed so far can be classified into five 
approaches: (a) simulation-based, (b) optimal control, (c) optimization, (d) variational 
inequality, and (e) analytically embedded traffic model. The latter four approaches are also 
known as analytical models, because they possess the desired analytical properties to 
guarantee optimality. In contrast, the simulation-based approach is heuristic in nature and 
does not guarantee optimality. However, the simulation-based approach has been able to 
capture traffic conditions more realistically and has shown far superior in incorporating signal 
controls and detailed behavior models. 
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As an optimal routing via Changeable Message Signs (CMS), a CMS information and 
guidance system was developed based on automatic control concepts suggested by 
Papageogiou (1990). The automatic control strategy is based on simple decentralized 
feedback loops aiming at approximating a user optimal flow distribution. (Mammar et al, 
1996; Messmer, 1997) The main goal of decentralized feedback control is equalization of a 
cost criterion for each pair of alternative routes being addressed by a CMS at a diversion 
node. The approach relies on and responds to real measurements that reflect the 
consequences of all uncertain disturbances. Software architecture for the automatic control 
via CMS is shown in Figure 2.1. 
As a simulation approach, Mahmassani et a1 (1993) developed solution algorithms for user 
equilibrium and system optimum, and developed a multiple user classes solution algorithm 
which includes four user classes: user equilibrium (UE), system optimal (SO), boundedly 
rational (BR), and pre-specified route user class (PS). The algorithm is shown in Figure 2.2. 
In this algorithm UE and SO routing solutions are obtained using MSA (method of success 
average) and the simulation results from the current iteration provide the basis for a direction 
finding mechanism for the search process. In this approach drivers’ behavior is merely 
decided by the fraction of user class. The approach does not consider drivers’ behavior in 
finding paths except for the BR users. The percentage of drivers who follow the guidance is 
determined by driver’s behavior, hrther modifications are needed to use such a framework 
on an operational framework. 

Real Measurement Data 

+ 
L~nks  travel time calculation 

calculation 

for eachVMS 

Local restractions 

Global compatibility 

Quantization 

Ruiss 
Delay Display L 

Figure 2.1 Automatic Control Software Architecture (Mammar et al, 199 7) 
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Figure 2.2 Multiple user Classes Solution Algorithm (Mahmassani and et al, 1993) 
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2.2 Path-base Network Optimization Algorithm 

2.2.1 Introduction 

The standard traffic assignment problem is for finding traffic pattern in a transportation 
network with links of known travel cost fbnctions and known travel demand between the 
origin-destination pairs. It is an essential step in efficient planning and real-time applications 
in optimal routing, signal control, and traffic prediction in urban traffic networks. 
Assignment can be carried out for finding the flow patterns under user equilibrium (when no 
driver can unilaterally change routes to achieve better trip times) or under system optimal 
(when the total travel time cost in the system is minimum, usually under external control). 
Both cases are very important in urban traffic networks with ATIS (Advanced Traveler 
Information Systems) or ATMS (Advanced Traffic Management Systems) when the 
equilibrium or optimal flow patterns will have to be determined. As is well-known (Sheffi, 
1985), both kinds of assignment have been traditionally formulated as mathematical programs 
with nonlinear objective hnction with a set of linear constraints. 

Consider an urban traffic network represented as a graph G(N,A) where Nand A are the sets 
of nodes and links, respectively. R is the set of origin nodes and S is the set of destination 
nodes, with several nodes possibly appearing in both R and S. The user equilibrium traffic 
assignment problem can be stated as 

a t A  

subject to the following demand, non-negativity, and definitional constraints, 

.fbr" 2 0, V k E K,., , r E R, s E S 

where Z is the objective function, 
x, is the total flow on link a, 
ta(w) is a separable, flow-dependent link cost hnction which is continuously 
differentiable and convex, 
qr,r is the total traffic demand between r and s, fz is the flow on path k connecting between r and s, 
K,, is the set of paths with positive flow between r and s, and 
6:; is the path-link incidence matrix. 

The solution to the above mathematical program corresponds to the equilibrium conditions 
where no driver can unilaterally switch routes to improve hidher travel time. Note that to 
achieve a system optimal solution, a marginal link cost fimction is used instead in the 
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objective function. Hence, algorithms developed for the user equilibrium assignment are 
applicable to the system optimal assignment as well. 
The same problem or variations of it appear in the recently proposed dynamic assignment 
algorithms with time-varying demands, such as the bi-level algorithm of Janson (1995), the 
analytically embedded dynamic assignment of Jayakrishnan et al. (1995), and the 
instantaneous dynamic assignment algorithm of Ran et al. (1993). The effectiveness of the 
algorithms for solving this problem become even more critical when we consider performing 
real-time assignments for guidance, control or predictions in a network with ATIS/ATMS, 
when the assignments may have to be carried out many times (possibly as subproblems in 
dynamic assignment frameworks). This has been considered to be a difficult problem, as the 
computational intensity of current methods increases nonlinearly, making assignment-based 
frameworks impractical when network size increases beyond a few hundred nodes. However, 
the full benefits of ATIS/ATMS systems may not be achieved unless they operate in an 
integrated fashion over large networks, and thus effective methods need to be developed for 
large networks. Our research compares a faster algorithm, based on the Goldenstein-Levitin- 
Polyak gradient projection method (Bertsekas, 1976) with the conventionally used Frank- 
Wolfe Algorithm. 

2.2.2 Background Review 

User equilibrium and system optimal traffic assignment problems in urban networks under 
given origin-destination demand has conventionally been solved with the Frank-Wolfe 
optimization algorithm (Frank and Wolfe, 1956) which was originally developed to solve a 
quadratic mathematical programming problem. LeBlanc et al. (1 975) was one of the earliest 
researchers to apply this algorithm to solve the network equilibrium traffic assignment 
problem and made it popular to the transportation field. Its popularity is attributed to its 
modest memory requirements and simplicity of the algorithm. The required storage is just 
two vectors of link flow (i.e., current and auxiliary link flows) and a shortest path tree. It 
operates directly with link flows and the solutions are also presented in terms of link flows, 
thus enabling planners to make estimates of future traffic flows on roads based on the origin- 
destination demand matrices projected for the future, and path flows are not necessary for 
this. This allows the algorithm to be applied to large scale networks. In terms of the steps of 
the algorithm, it iterates between a shortest path problem to determine the search direction 
and a one-dimensional line search problem to find the optimal step size. Both steps can be 
solved efficiently, using Dijkstra’s algorithm (Dijkstra, 1959) for the shortest path problem 
and any single-parameter optimization algorithm such as Golden Section (without using 
derivatives) or Bisection Search (using derivatives) for the line search step. Other more 
efficient line search can also be used. 
Frank-Wolfe algorithm is known to have satisfactory convergence in the first few iterations 
and a poor rate of convergence for subsequent iterations. The reason for such extremely 
slow convergence is that the actual descent direction is primarily driven by the constraint 
corners which cause the search direction to slowly zigzag its way to the minimum. Over the 
years, various improvements were made to rectify the zigzagging effect by either adjusting 
the search direction (LeBlanc et al., 1985; Arezki and Van Vliet, 1990; Fukushima, 1984; 
Holloway, 1974; Hearn et al., 1985; Larsson and Patriksson, 1992) or the move size 
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(Weintraub et al., 1985). While these enhancements have improved the convergence 
somewhat, there has been a curious lack of exposure among transportation researchers to 
some of the recent advances in a very closely-related problem, namely the optimal flow 
assignment in computer communication networks (Bertsekas and Gallager, 1992). Gradient 
projection algorithms have been found to perform better than the Frank-Wolfe algorithm in 
such networks, which also have similar structure as traffic networks, with regard to 
connectivity. In the recent papers by Jayakrishnan et al. (1994) and Sun et  al. (1996), they 
demsontrate the feasibility of applying the gradient projection algorithm to the traffic 
networks of reasonable sizes. 

2.2.3 Gradient Projection (GP) Algorithm 

In this section, we discuss the implementation of the Goldstein-Levitin-Poljak gradient 
projection formulated by Bertsekas (1976). The algorithm operates directly in the path-flow 
domain. It does not find auxiliary solutions in the link-flow space that are at corner points of 
the linear constraint space as the Frank-Wolfe algorithm does. Instead, GP makes successive 
moves towards the direction of the minimum of a Newton approximation of a transformed 
objective fbnction which includes the demand conservation constraints. Thus, the feasible 
space for the gradient projection algorithm is defined only by the non-negativity constraints, 
as opposed to both non-negativity and demand conservation constraints in the case of the 
conventional traffic assignment formulation. A projection is made when the move results in 
an infeasible solution. The basic update step can be concisely expressed by the below 
iterative equation. 

f," (n + 1) = [f," (n) - a (n) D(n) Vz" (n)] + (2.5) 

where superscript n is the iteration counter, a(n) is the stepsize, Dfig is a diagonal, positive 
definite scaling matrix , VF(n) is the gradient of the transformed objective fbnction, and [ 1' 
denotes the projection of the argument onto the positive orthant of the independent variables 
f," (n).  

The rationale for moving the demand conservation constraints from the constraint to the 
objective fbnction is to make the projection simpler, because only the non-negativity 
constraints need to be ensured. This operation can be performed effkiently by setting the 
variable to zero if it becomes negative (i.e., max { 0, f }, taking maximum of the two values). 
To do that, f," (n) is partitioned into the shortest path flow f T s  (n) and the non-shortest path 

flows f,"(n) belonging to the path set K,. The demand conservation constraints can be 
removed from the constraint set by expressing f< (n) in terms of f," (n) . 

k,s 
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where k, denotes the shortest path from r to s. Substituting the shortest path flow fJ'(n) 
for each OD pair into the objective function, we obtain the new optimization problem of the 
form 

k,* 

min 
subject to f," 2 0, If k E KCs,  k f k,B, r E R,  s E S 

where .? is the new objective fimction and is the set of non-shortest path flows for all OD 
pairs. Analogous to the steepest descent method, a better solution in terms of improving the 
objective value can be obtained by moving in the negative gradient direction. The gradient of 
the transformed objective fknction is found with respect to the set of non-shortest paths, and 
a diagonal scaling of the gradient direction is found using the second derivatives of these 
independent variables. 

where 2 is the original objective hnction with all paths in the path set, including both the 
shortest and non-shortest paths. Each component of the gradient becomes the difference 
between the first derivative cost of a non-shortest path and the shortest path. Note that the 
first derivative of 2 with respect to any path is simply the sum of the link costs on that path 
calculated at the current flow pattern. 

(2.10) 

(2.11) 

The diagonals of the Hessian (second derivatives) of the transformed objective function is just 
a straightforward differentiation of the gradients. 

(2.12) 

where t : ( x , )  is the first derivative of the link cost (travel time) fhction evaluated at the 
current link flow solution. 

Observe that a small increase in the flow on a path k results in an equal amount of reduction 
of flow on the corresponding shortest path k,, and causes in no change in the flow on the 
common part of the two paths. Thus, the second derivatives are calculated using only links 
not common to k and kKy.  
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Let d: and drs be the first derivative costs of path k and the shortest path k, of OD pair 
km 

(r,s) given in equations (10) and ( 1  l ) ,  respectively, and sr be the second derivative cost 
given Eqn. (1  2), the iterative (flow update) equation given in ( 5 )  can be expressed as 

f,"(n + 1) = max (0, f,"(n) - - a(n)  [d;"(n) - dY ( n ) ] } ,  V k E&, k + e, Y E R, s E S (2.13) 
( n )  km 

where a(n) is a scalar stepsize modifier which may be chosen by different methods. A 
constant stepsize of 1 seems to work well with methods that employ automatic scaling based 
on second derivatives (Bertsekas and Gallager, 1992). Once all the non-shortest paths are 
updated, the flow on the shortest path is appropriately updated so that demand is conserved. 

From the discussion above, the gradient projection algorithm can be formalized as follows: 

Step 0: Initialization - Set x, (0) = 0, t ,  = ta[xa (O)],  V a , and iteration counter n = 1. 
Perform a one-OD-at-a-time all-or-nothing (AON) assignment for all origins (note that the 
shortest path tree is built for an origin but the flow updates are done at one-OD-at-a-time). 
This yields path flows f," (n), V k E K,, for all OD pairs (r,s) E (R,S) which form the initial 
path set K,, . Link flows x, (n), V a are readily available once the AON flow assignment for 
all the origins is complete. 
Step 1 : Update - Set t ,  (n) = to [x, (n)], V a ,  and update the first derivative costs d: (n) for 
all paths in K, . 
Step 2: Directionfrnding - Find the shortest path k, from each origin Y to each destination s 
based on t ,  (n) . If different from all the paths in the existing path set K,, add it to K,, and 
record d:":. If not, tag the shortest path among the paths in K,, as k,. 
Step 3:Move - Update path flows as follows: 

where SF (n) is the second derivative path cost and (n) is a scalar step size modifier, usually 
(n)  = a = 1 for all iterations. If the updated path flow is zero (i.e., assigning a zero flow 

value by the projection to ensure nonnegativity), then the path is no longer active and is 
dropped from the path set K,, . After all the path flows have been updated, the flow on the 
shortest path is readily determined from the conservation equation below: 

f f s ( n + l > = q , -  k ,  C f / ( n + l ) ,  V K ~ ~ , Y E X , ~ E S  
k E K, 
k # k, 

Assign flows onto the paths in K, to obtain the corresponding link flows x, (n  + l ) ,  V a .  
Step 4: Convergence test 
I f  the stopping criterion is met, then stop. Otherwise increment iteration counter n = n+l 
and go to Step 1 .  

In Step 3 ,  since sF(n) acts as an automatic scaling, a(n) can be chosen as a constant (a(n) = 

a, for all iteration n). It can be shown that given any starting set of path flows there exists an 
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- a > 0 such that if a E (0, a ] the sequence generated by this algorithm converges to the 
optimal (Bertsekas and Gallager, 1992). In Step 4, the stopping criterion used is the 
maximum percentage path length deviation, weighted by its path flow fraction, of all OD 
pairs and can be expressed as follows: 

(2.14) 

As gradient projection is a path-based algorithm, though not enumerating all possible paths 
connecting each origin-destination pair in the network, it requires storing the paths generated 
during the execution of the algorithm. Using a predecessor arc list to store the shortest path 
trees, the main memory requirements amount to N; * No * N storage locations where Ni is the 
number of iterations to reach convergence, No is the number of origins, and N is the number 
of nodes in the network. N and No are readily fixed by the network topology, but Ni depends 
on the performance of the algorithm. Hence, it is crucial that gradient projection can achieve 
fast convergence for it to be of practical use. The numerical results shown in the next section 
indeed show much faster convergence compared to the Frank-Wolfe algorithm. 

Unlike the gradient projection algorithm, the storage requirement for the Frank-Wolfe 
algorithm does not depend on its convergence speed since paths are not stored. At any one 
iteration, the algorithm just needs to maintain two columns of link flows and one shortest 
path tree. This allows the Frank-Wolfe algorithm to perform large scale networks (with 
many thousands of links) on most of the available computers which would not be possible 
with the path-based gradient projection algorithm even a few years back. However, the rapid 
improvement in the availability of computer storage in recent years makes it possible to 
revisit such algorithm that finds not only the link-flow solution but also the usehl path-flow 
solution, which are needed in many of the proposed ATMUATIS applications of assignment. 

2.2.4 Numerical Results 

The path-based gradient projection algorithm was coded in FORTRAN and the platform used 
for the numerical results was UNIX Sun Sparc 20 work station. Table 1 shows the numerical 
results of the well-known Sioux Falls network, taken from LeBlanc et al. (1975). This 
network consists of 24 nodes, 76 links, and 528 OD pairs with positive demands. The final 
objective value reported in (Larsson and Patriksson, 1992) is 42.3 136. The complete 
assignment results with timings at each iteration for the conventional Frank-Wolfe algorithm 
and the gradient projection algorithm are provided in Table 1. 
Both the Frank-Wolfe (FW) and gradient projection (GP) algorithms are initialized with zero 
flows on all links in the network, but the objective values of the first iteration are obtained 
differently. FW uses an all-at-once1 flow update while GP updates the flow pattern one-OD- 
at-a-time2. Our results show that GP converges several orders of magnitude faster than FW. 

1 The all-at-once flow update adjusts the total link-flow pattern after the traffic demands from all origins (or 
all OD pairs) have been assigned to the network. 
'The one-OD-at-a-time flow update revises the total link-flow pattern after the assignment of an OD pair 
before continuing to the next OD pair. 
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Typically, the 5th or 6th iteration in GP corresponds to the 100th iteration in FW. As the 
algorithm approaches the neighborhood of the optimal solution, FW performs extremely 
poor. As can be seen from the results, FW slowly zigzags its way toward the minimum 
solution. The objective value in the 9th iteration in GP is even better than the 1000th 
iteration in FW. In terms of computational times, GP is at least 10 times faster than FW. 
Though not reported here, we perform another test with FW starting at the same objective 
value in the first iteration using a one-OD-at-a-time flow update. Same convergence 
characteristics were observed. That is, the objective value of FW in the 100th iteration is in- 
between the objective values of GP in the 5th and 6th iterations, and the objective value of 
FW in the 1000th iteration is exactly the same as starting FW with the all-at-once flow 
update. Hence, the slow convergence of FW is not affected by the initial solution. 

Table 2.1 Computational Performance for the Sioux Falls Network 
Iteration Gradient Projection Frank-Wolfe 

# Time (sec) Objective Value Time (sec) Objective Value 
1 0.0689 57.9274 0.0564 167.2832 
2 

0.2474 42.3808 0.0884 5 1.8796 5 
0.2053 42.5276 0.0809 55.6344 4 
0.1582 42.9825 0.0732 59.1770 3 
0.1104 45.0029 0.0652 73.2656 

6 

0.4805 42.3 136 0.1334 44.7447 11 
0.4423 42.3 146 0.1260 45.2057 10 
0.4046 42.3 166 0.1186 45.6163 9 
0.3665 42.3202 0.1111 46.2040 8 
0.3275 42.3270 0.1035 47.2447 7 
0.2880 42.3419 0.0959 50.1956 

I 

12 0.5179 42.3 134 0.1407 44.305 1 
~. . ~ . -  

20 

7.3589 42.3181 1000 
3.7142 42.323 1 500 
1.5244 42.3384 200 
0.7896 42.3686 100 
0.4206 42.4501 50 
0.1996 43.0143 

We also tested the two algorithms on various sizes of randomly generated grid networks. 
These networks are grid only in terms of the connectivities of the links, with the link lengths 
being randomly distributed between specified limits. About 12.5 percent of the network 
nodes are randomly selected to be origins/destinations. The externally specified nodal traffic 
generation was distributed to various destinations based on 0-D distances, the results 
reported below are for demand levels that we considered were reasonable based on average 
and maximum arc v/c ratio at equilibrium. The assignments were carried out using the Bureau 
of Public Road (BPR) link cost fbnction, t = to( 1 + 0.15 (x/c)~), where t is the link travel time, 
t o  is the free-flow travel time, x is the flow and c is the link capacity. 
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Using equation (14) as the stopping criterion, the GP algorithm is terminated when the 
maximum of the violations does not exceed 1% (note that this stopping criterion also serves 
as a measure of the Wardrop’s equal travel time principle). Then using GP’s objective value 
as the basis for comparison, we find the corresponding iteration number in FW that gives 
approximately the same objective value. Table 2 reports the performance in terms of 
computational times and number of iterations for the two algorithms tested on various grid 
network sizes, ranging from 100 to 2500 nodes. In all cases, GP takes much less iterations 
and also significantly less computational times than FW to reach the same objective value. 
The objective value in the 10th iteration of GP is substantially better than the FW’s objective 
value in 100th iteration. The last row of Table 2 shows the computational time ratio of FW 
over GP. As network size increases, the ratio decreases but still maintains three to four times 
faster than the conventional FW algorithm. This suggests that running the GP algorithm in 
decomposed networks of smaller size (in the order of several hundred nodes) under a 
distributed framework can achieve significant benefits in computational times. 

Table 2.2 Computational Times (Number of Iterations) to Convergence for Various Grid 
Networks 

100 nodes 

97032 ODs 39800 ODs 12432 ODs 2450 ODs 132 ODs 
9800 arcs 6240 arcs 3480 arcs 1520 arcs 360 arcs 
2500 nodes 1600 nodes 900 nodes 400 nodes 

Frank-Wolfe 

1417.90 372.18 77.72 7.67 0.23 Gradient 
(80 1) (466) (846) (4 17) (1 000)” (FW) 
6449.26 1466.36 812.44 83.89 19.17 

Projection (GP) (6) (10) (14) 

GP 
* Maximum number of iterations is reached before obtaining the same obiective value as in 
(FW/GP) 

4.55 3.94 10.45 10.94 83.35 Ratio of cpu 
(20) (16) 

2.2.5 Findings 

From the discussion of the Gradient Projection (GP) algorithm and the comparative 
numerical results with the Frank-Wolfe (FW) algorithm, several benefits of using GP can be 
derived: 
(1) Much faster convergence (i.e., number of iterations and computational times) than 
conventional Frank-Wolfe algorithm. 
(2) The availability of path-flow solutions in addition to the link-flow solutions from the 
gradient projection algorithm. It is true that FW can also provide path-flow solutions if 
implemented with path storage, but it is not viable alternate unless the number of iterations 
required to reach convergence can be reduced considerably (Chen and Jayakrishnan, 1996). 
(3) Path-flow solutions, though not unique, are very usehl in optimal assignment and 
routing. 
(4) No explicit need to microcode each intersection (i.e., adding additional nodes and 
arcs) to obtain turning movements since the path-based solutions implicitly contain this 
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information. This is not possible with the link-based FW algorithm unless specific turning 
links are added which would increase the size of the network. 
(5) Path-based solutions open up interesting possibilities to planners in better analyzes of 
environmental impact, he1 consumption etc., based on path profiles of travel speeds. 

The main drawback of using a path-based algorithm in the past is the memory requirement, 
but this restriction has now been relaxed considerably by the recent advances made in the 
computer RAM technology. Furthermore, the real potential applications of GP for large 
scale networks are using a distributed processing framework which decomposes the network 
into several smaller networks with each being handled by its own processor. The amount of 
memory required for each sub-network in the distributed system is well within the capabilities 
of most ordinary computers. Taken these factors into consideration, it is important to 
reexamine the viability of the path-based gradient projection algorithm for the traffic 
assignment problem that was rejected in the past due to intensive memory requirement. 

2.3 Static Optimization for CMS Routing 

Static network flow optimization is one way of achieving optimal flow pattern in the 
network. The main benefit from static assignments is that they are fast by orders of 
magnitude over the dynamic assignment algorithms which exists now, and thus are very 
attractive for real-time application. The disadvantage, on the other hand, is that they do not 
capture network congestion dynamics very well, thanks to the rather simple link travel time 
hnctions used. This research project attempts coordinating static and dynamic assignments 
in such a way that the computational benefits are gained from the static assignment while the 
inaccuracies from the results are minimized. 

Even though optimal flow pattern is found from network flow optimization, the optimal flow 
pattern may not be achievable in CMS routing because of driver’s compliance problem. It is 
extremely difficult or almost impossible to split drivers to the optimal flow pattern found. 
Rather, selecting the closest CMS message among prepared message set would be more 
realistic method. Therefore, this research generalizes CMS messages and develops 
algorithms which are based on network optimization to select the best CMS routing scheme 
and corresponding messages. 

2.3.1 Classification and Generalization of CMS Messages 

CMS can display only limited information, so it is very hard for CMS to give full path 
information. A certain path should be explained with two streets at most, for example, 
“ANAHEIM STADIUM / EXIT BALL / AND TAKE STATE COLLEGE.” If names of 
streets are not well known, the advice is not conveyed to drivers except those who know well 
about the area. A route guidance message with descriptive information is expected to result 
in higher compliance. For example, “KATELLA CONGESTED / ANAHEIM STADIUM / 
EXIT BALL.” Intuitively, higher compliance rate is expected with proviso that drivers know 
how to go the stadium via Ball Road due to a word, “CONGESTED.” Intelligent word 
choice is required for better route guidance. Sometimes just minor compliance may be 
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needed. In this case the corresponding message can be “ANAHEIM STADIUM / 
ALTERNATIVE ROUTE AVAILABLE / EXIT BALL OR KATELLA,” while stronger 
words should be used for higher compliance. However, more empirical studies will be 
needed to control compliance rate. Processing CMS message requires manual work with 
some intelligence in the beginning. Once alternative routes are identified, then the CMS 
messages are stored in message library so that they can be used in need. 

CMS routing is based on prepared message sets, and so messages need to be pre-defined. 
Routing will be between these CMS alternative paths and routes are defined from feasible 
path sets in the network. Feasible path sets connecting a CMS to target destinations can be 
prefixed. A CMS message is composed of four arguments as follows. 

Destination Designation Argument (Optional) 
Sub-Path Argument 
Action / Description Argument 
Cause Argument (Optional) 

Two arguments, such as Sub-Path and Action/Description, are essential components of a 
message, while Destination Designator and Cause are optional components. Let’s consider a 
full message, “ARROWHEAD POND / USE BALL / KATELLA CONGESTED / DUE TO 
ACCIDNET.” The first argument specifies the destination, and the last argument explains 
cause of the delay. The second and third terms include Sub-Path are ActiodDescription 
information. BALL and KATELLA would be regarded as Sub-Path arguments, and USE 
and CONGESTED are Action / Description arguments to recommend whether to take or to 
avoid the route. 

0 

Path information is the most common argument in any message, so message searching is done 
by path information. Every CMS message C, has a prefixed sub-path set PC associated with 
it. PC is defined as 

where, PC = Sub-path set associated with CMS c 
pc@) = Sub-path associated with CMS c 
c = Identification number for a CMS 
k = Identification number of sub-path associated with the CMS message rn 

Each sub-path pc@) is a set of nodes (nl, n2, . . . ..., etc.) or links in the network. Each sub- 
pathPC@) normally has a literal name, such as “1-405” associated with a message, for the final 
translation purpose. Note that the same name of street can refer to different sub-paths for 
different messages if these messages apply to different CMS locations. At the same location, 
one literal name translates to one specific sub-path. 

ActiorDescription arguments by sub-path can be selected based on network optimization 
results. In order to generalize CMS messages the argument explaining traffic information or 
suggestion can be interpreted as a format of value of information through the perception 
model which will be discussed later. For instance, a message, “CONGESTION AHEAD / 
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TAKE ROUTE AAA,” will be projected to driver’s perception as “AAA will be 10 minutes 
faster than current road.” The relative value of information (VOI) is + 10 for the current 
route. This projection to the relative value of information is also a core part of the routing 
algorithm. Also messages can be sorted by the order of relative value of information, so that 
the message can be searched later. CMS messages are completed by adding or ignoring 
optional arguments, such as destination designator and cause terms. 

In fact, most CMS messages, except special messages, can be grouped into three types as 
follows: 

Single Descriptive Message Type 
Prescriptive Route Guidance Type 
Route Guidance with Descriptive Type 

The single descriptive message type is the most simplified one with one sub-path argument. 
An “AVOID Path-A” type message is a representative form of this type. In this case 
selection of alternative route can vary depending upon driver’s knowledge on network and 
preference. The message, “KATELLA CONGESTED” is an example of this type. Drivers 
would seek alternative routes, and decisions will be made after comparison between Katella 
and their alternative routes. The level of avoidance would be different by the literal 
expression. 

The prescriptive route guidance type is represented by a “TAKE Path-A” type. This type 
explicitly or implicitly includes a Destination Designation Argument, so a “(TO GO 
Destination-D) TAKE Path-A” type would be a more general form. A message, 
“ARROWHEAD POND / EXIT BALL” is an typical example of this type. In this case 
drivers just make their decision whether to follow or not. Of course, alternative routes 
suggesting could be multiple like a message, “STARDIUM / EXIT BALL / OR KATLLA.” 

A little more complicated message is one that includes both descriptive and prescriptive 
messages. A “TAKE Path-A I AVIOD Path-B7 type is the representative form. Reducing 
driver’s misperception with more detail and supportive information, this message can achieve 
better performance. For example, the message, “USE BALL / KATELLA CONGESTED’’ 
will help reducing traffic on Katella by guiding drivers to take Ball. 

Messages could become clear by adding optional arguments. For instance, the message 
“STADIUM / USE BALL / KATELLA CONGESTED / DUE TO ACCIDENT” will be 
better for understanding the network condition. However, it should be noted that a long 
message might lessen driver’s understanding the meaning of the message. 

2.3.2 Interaction between Information Provider and Drivers 

Informatiodguidance is helping drivers to find better routes by supplying current network 
condition. Figure 2.3 depicts interaction between information provider and drivers. 
Informatiodguidance affects driver’s perception of travel time (cost) on alternative routes, 
and drivers select their best alternative routes based on their judgment. For predictive route 
guidance system, the information provider (TMC) should be able to predict driver’s reaction 
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to information they provided. So the system can be interpreted as a game between 
information provider and drivers. 

c Information Message , Control Strategy . Prediction 

erceived Travel Tim 

1 
I Route Choice 

Information 
Provider 

Traffic Flow 

1 Drivers 

Figure 2.3 Interaction between Information Provider and Drivers 

There are two decision variables in this game. One is a set of path flows as a result of driver’s 
route choice behavior, and the other is a set of path travel time information (or a set of link 
travel times since path travel times are obtained by summing link travel times) as a result of 
information provider’s control strategy. The information providers will set the control 
variables (information) to achieve their objective. The object can be expressed a 
mathematical form. Therefore, the problem of information provider side can be expressed as 
a mathematical minimization problem, 

where a is a vector of information affecting driver’s perception on travel time, and x*(a) is a 
vector of traffic flows fixed by a traffic assignment problem which is a mathematical 
formulation of driver’s route choice problem. The vector a is regarded as control strategy 
using information. Based on the information vector a fixed by the above problem, traffic 
flow patterns are obtained by solving the traffic assignment problem. The traffic assignment 
problem representing driver’s route choice behavior can also be expressed as a minimization 
problem, 

min ~ , ( a * ,  x (a*)  ) 
Under the assumption of error free prediction (information provider side) and 100% 
compliance (driver side) even though there are always stochasticities in reality, the system is 
determined depending on the control strategy. In the case that objectives of two players, 
both system manager and drivers, are identical, the problem becomes a monopoly game 
which can be solved at the same time. That is, if drivers behave as user equilibrium manner 
and he system manager provides travel time information resulting user optimal state, the 

20 



solution can be obtained by solving a user equilibrium traffic assignment problem. However, 
the system manager is more interested in minimizing total system costs, this problem is 
explained as a Stackelberg game between the information provider and drivers. Therefore, a 
solution of optimal routing can be obtained by understanding interrelationship between 
information provider and drivers. Especially understanding driver’s response is a key 
component of information strategy in transportation. Driver’s response to information is 
fbrther discussed in Section 3 . 1 .  

2.3.3 Optimization for CMS Routing and Message Generation 

While considering on-line implementation of the informatiodguidance strategy, a fast 
computational algorithm is required because informatiodguidance needs to be updated as 
often as possible. Detailed simulation- evaluation cannot be accomplished for more than a 
few information message options, and the combinations involved with the message argument 
need to be handled in a fast manner. Paths found from even static assignment can be 
considered as possible routes to be used in the dynamic case, as long as more detailed 
evaluation is done on these paths. This section introduces a simple optimization algorithm 
for CMS routing in the view of Stackelberg game between the information provider and 
drivers. 

Here the algorithm is based on the assumption that drivers’ objective is to minimize their 
travel costs (time) with full knowledge on network condition (user equilibrium assumption) 
while the objective of information provider is to minimize total system cost (system optimal 
assumption). Another assumption is that driver’s knowledge on traffic condition can be 
changed by information provided via CMS. A guidance indicator is introduced as a value 
indicating whether or not to encourage to take the path. If we are seeking indicators for all 
paths, the solutions can be obtained by comparing system optimal path costs with user 
equilibrium path costs. However, the problem is solved by evaluation of sub-paths 
represented by CMS messages since a CMS message cannot deliver all paths’ information. 
The indication value is found when minimizing total system cost regardless guidance indicator 
while demand is assigned under user equilibrium behavior with path costs multiplied by 
guidance indicator. Then the problem can be expressed as a bi-level structure problem, 

( U P )  minimization of total system cost 

(LP) path-based UE problem with path costs multiplied by guidance indicators 

The formulation of upper level problem is the system optimal assignment problem, while the 
lower level problem can be solved by using path based user equilibrium assignment, that is 
GP explained in section 2.2. The main objective of the problem is to find optimal guidance 
indicators which are constrained by traffic flow pattern. The flow pattern is decided by 
driver’s user equilibrium behavior also constrained by guidance indicators. Therefore, the 
optimal guidance can be obtained by solving this bi-level problem. 

21 



CMS message is displayed at a certain location, so for a single CMS the problem becomes a 
single-origin multiple-destination problem. While assuming that only informed drivers change 
their routes, the optimal solution can be obtained by solving the single origin problem. The 
solution algorithm for optimal CMS routing can be formalized as follows: 

Step 0. Pre-assignment 

Step 1 .  Find sub-demand associated with CMS, and freeze background traffic 

Step 2. Input a sub-path to test 

Step 3 .  Find the optimal guidance indication value minimizing total cost by line search 

3.0 Initialize indicator value 

3 .1  User equilibrium assignment 

3.2 Calculate total cost 

3.3  Stop if satisfling stopping criteria, otherwise repeat line search 

Step 4. List sub-path, indicator, and total cost by descending order of total cost if no more 
sub-path, otherwise go to step 2. 

The algorithm evaluates guidance indicators of alternative sub-paths associate with CMS, and 
total system costs corresponding to each indicator value. If a indicator associate with a sub- 
path is grater than 1.0, it implies that the sub-path should be avoided. The value of an 
indicator lower than 1.0 implies taking the sub-path is beneficial. Finally, a path resulting 
minimum system cost with a certain indicator value means that the path has the highest 
potential to minimize total system costs among others when guided to be taken or avoided 
the path as much as the indicator shows. However, it should be noted that the algorithm 
developed here is still under investigation and will be hrther developed 

In order to generate the optimal CMS message using the optimization results, there should be 
a step to translate optimized results into CMS message. Messages are generalized by their 
arguments as shown in section 2.3.1. Since each sub-path is defined by its literal name, the 
sub-path argument can be found directly from the sub-path. Actioddescription arguments 
can be determined using guidance indicators. So basic required arguments can be decided 
through this translation stage. The detailed method is shown through an example in section 
2.3.4. 

2.3.4 An Example of Optimized CMS Routing 

This section shows a simple example of optimized CMS routing and message generation. An 
imaginary network has been built for this example. It contains an event place and a CMS on 
the freeway crossing the area as shown in Figure 2.4. It is assumed that there is heavy traffic 
heading to the event place. Six sub-paths associated with the CMS are selected to examine. 
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Figure 2.4 Test Network 

Table 2.3 Result of Optimization for CMS Routing 
Sub-Path 

Guide to take 0.00 294,928 12 + 18 

Guide to take 0.00 199,579 14 3 26 

Guide to avoid 1.16 204,928 11 3 16 

Guide to avoid 2.01 199,579 13 j 24 

Meaning Indicator Value Total System Cost 

3 + 4  I 199,579 I 0.00 I Guide to take I 
Table 2.3 shows optimization results for these six sub-paths. Among six sub-paths, three 
sub-paths are expected potentially to show better performance when guided as indicator 
values. The indicator value for the sub-path 13 j 2 4  is evaluated as 2.01, which implies that 
the system will be better off when drivers perceive the travel cost of the sub-path as 2.01 
times higher than they will actually experience. That is, the sub-path 13 3 2 4  should be 
guided to be avoided. On the contrary, sub-paths, 1 4 3 2 6  and 3 3 4  , should be guided to be 
taken more since whose indicator values are 0.0. In fact, the sub-paths, 1 4 3 2 6  and 3 3 4 ,  
are essentially same in this case because these two are associated with the CMS and the event 
place, but the sub-path 1 4 3 2 6  would be more clear designation. 

The next step is to translate the optimized results into a CMS message. As shown in Figure 
2.5, three facts found from the optimization results can be translated into a CMS message. 
The first message is destination specific argument which is optional. The second and third 
messages are consisted of an actioddescription argument and a sub-path argument. The 
actioddescription argument is directly determined from the indicator value, and sub-path 
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argument is obtained from the prepared literal name of the sub-path. The CMS message 
generated from the optimized results can be used in real world without fbrther processing. 

Go Go Event Place 

Take sub-path 14+26 

Avoid sub-path 13 *24 

Result of Optimization 

ARENA 

USE AAA STREET 

CONGESTION ON BBB S . I 
CMS message 

Figure 2.5 Translation of Optimized Results into CMS message 

2.4 Dynamic CMS Routing 

Even though the static optimization solution in previous section can be applied to the 
generation of CMS message during a time period, it cannot respond to the changes in traffic 
condition unless it is repeated within a short time period. To meet need of ATIS, the message 
should be dynamically changed every time interval. Dynamic information or dynamic network 
optimization solution can be obtained from dynamic traffic assignment (DTA). As addressed 
in section 2.1.3, DTA can be classified into two groups: analytical model and simulation- 
based model while analytical models can be classified into several categories. In this study, a 
simulation-based approach is used for dynamic CMS routing. 

This study uses DYNASMART (Dynamic Network Assignment Simulation Model for 
Advanced Road Telematics) as a dynamic assignment-simulation tool. Using DYNASMART 
capability, dynamic CMS routing schemes are developed. The method is based on the optimal 
message selection approach. That is, an optimal message is chosen out of a set of prepared 
messages. We adopt user optimal principle as a CMS routing objective, and seek dynamic 
optimal routing schemes for both instantaneous and predictive cases. 

2.4.1 Simulation Tool and Fundamental Aspects 

The simulation-assignment model, DYNASMART (Dynamic Network Assignment 
Simulation Model for Advanced Road Telematics) was developed specially for studying the 
effectiveness of alternative information supply strategies as well as alternative 
informatiodcontrol system configurations for urban traffic networks with ATIS and/or 
ATMS. This simulation program models, in an integrated fashion, the three main 
components of such systems: (1) the response of drivers to the informatiodcontrol, (2) the 
nature of the traffic flow that results from driver responses and applied network control and 
( 3 )  the dynamics of the route in the network (in terms of the changing travel times on them) 
which affect the driver and control system decision. The traffic movement is based on 
macroscopic speed-concentration relationship, even though individual vehicle (or platoon) 
positions are kept track of, and the route or link choice decisions of the vehicles are modeled 
individually. This approach is based on the belief that driver route-choice decisions and 
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collective delays at the nodes are more significant in capturing the effectiveness of the 
guidance systems rather than the microscopic details of the traffic in the links. 

The traffic simulation approach in DYNASMART has elements from both macroscopic and 
microscopic models which have been developed in the past. DYNASMART moves the 
vehicles individually according to the prevailing speed and keeps track of their position. The 
speed-density relationship currently used is a modified version of the well-known 
Greenshield’s equation. There is no simulation of lane changing maneuvers or car following. 
These approaches are essential to keep the computations manageable, especially in the case 
of reasonably large networks, which is where DYNASMART can be effectively applied to 
study information strategies. 

The driver behavior modeling is currently based on simple threshold mechanism, where the 
routes are switched only if alternative routes are sufficiently better. There is also the 
capability of overriding driver choice and modeling the compulsory routing of vehicles to 
routes prescribed by a central controller. DYNAMSART guides drivers to routes selected 
from a set of k-shortest paths. This is under the assumption that in the future, the Traffic 
Operation Center (TOC) controllers will have to provide ‘reasonable sets’ of paths to the 
drivers while routing them. 

The traffic generation is based on the specified dynamic zone-to-zone demand matrix. 
Vehicles are generated on links and each vehicle’s destination is probabilistically determined 
based on the demand data. At the time of generation, each vehicle is randomly tagged to be 
equipped for information or otherwise, based on the specified fraction of equipped drivers. 
An initial path is assigned to each driver. This could be from among the k-shortest paths 
stored after the load-up period or equilibrium paths reducing the capacity (in terms of 
effective lane miles) on specified links by a specified fractions. Any number of such incidents 
can be simulated by specifling the starting and end times and capacity reduction factors for 
each incident. When the effective lane-miles is reduced for a link during the simulation, the 
calculated densities increase instantly. If they increase to more than the maximum allowed 
density, the vehicles are moved at jam speed, till the density falls below the maximum. 

DYNASMART provides the ability to explicitly model an array of control elements. The 
major element for surface streets is signal control, which includes pre-timed control and 
actuated control. Ramp metering and changeable message signs (CMS) are the major 
controls for the freeway system. The detailed modeling of intersections and freeway, the 
inflow-outflow constraints at nodedintersections, detectors, freeway ramp signals, left-turn 
etc., can be found elsewhere (Jayakrishnan et al, 1993; Mahmassani et al, 1992). 

It is important to recognize that the attractiveness of alternative paths constantly change in 
networks with ATMWATIS, due to the dynamics introduced by the driver decisions on 
which routes to drive on. Two different aspects need to be modeled: 1) the route shown 
periodically by the controller of ATIS and 2) the routes that drivers perceive they are driving 
on or are selecting from. The former is stored as predecessor trees which are frequently 
updated based on link travel times, and the latter stored as node-lists associated with each 
driver. In addition to the above, DYNASMART also provides the option of storing 
externally specified paths which are independent of current traffic conditions, mainly for 
modeling the driver selection of initial paths, which for instance could be externally- 
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determined dynamic equilibrium paths between 0 - D  pair. Also k-short paths (shortest, 2nd 
best, 3rd best etc.) are found and stored at specified intervals from all the nodes to all the 
destinations (which effectively simulated a Traffic Control Center’s path-sets. The used can 
speci@ the intervals at which paths are updated at the Traffic Operation Center (TOC) 

DYNASMART has so far been implemented and timed on two different computer platforms: 
the CRAY-YMF supercomputer and the SUN SPARC workstation. Simulation of up to 
75000 vehicles in the networks of up to 2000 links with 10 paths from each node to each 
destination centroid can be achieved on these platforms faster than real-time. As the code is 
written in standard portable FORTRAN 77, it runs on other platforms such as the IBM PC as 
well, with the size of the problem determined by the available RAM storage. The program 
capabilities include: 

Macroscopic modeling of traffic flow dynamics such as congestion formation and 
shock wave propagation. Tracking of location of individual drivers. 

Modeling of different traffic control strategies (freeways, surface streets, signalized 
intersection, ramp entry/exit etc.) 

Modeling of prescriptive /compulsory guidance as well as non-prescriptive guidance 
with trip time information on alternative routes. 

Modeling of various aspects of the controller such as infrequent updates of network 
route information database. 

Modeling of individual drivers’ response to information in the case of descriptive 
guidance based on a set of paths rather than a single shortest path. Random 
assignment of driver behavioral characteristics. Flexibility to incorporate alternative 
behavioral rules. 

Modeling of capacity-reducing incidents at any time, anywhere in the network. 

Modeling of cases with only a fraction of the vehicles equipped for information. 

Capacity to carry out simulations based on externally specified dynamic equilibrium 
paths for drivers not equipped to receive information. 

Several levels of output statistics for the system, for individual drivers as well as for 
groups of drivers (equipped drivers, unequipped drivers, drivers on certain 0-D pairs 
etc.). Statistics include average trip time, distances, average speeds and a variety of 
routes switching statistics. 

The capabilities described above makes this program the ideal candidate for evaluating the 
ATIS routing schemes resulting from the algorithmic components of this research. 

2.4.2 Dynamic Optimal Route Guidance 

Route guidance systems can be classified into several classes in terms of their algorithmic 
structures. Their algorithmic structures are decided by adopting one of types from each of 
three categories such as: 
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user optimal vs. system optimal 
instantaneous vs. predictive 
open-loop vs. closed-loop system 

The first category is based on objective applied, user optimal principle or system optimal 
principle. The difference between these two objectives has been controversially discussed and 
experimented in many studies. A controversial argument is whether the system optimal 
objective can be used in route guidance since the routes produced from the system objective 
are not best from users’ point of view. This brings a compliance issue that seems to be one of 
important factors for the success of ATIS. 

The second category is whether or not to predict. In general, the predictive algorithms, if 
accurate, are known to perform better than instantaneous algorithms. In dynamic system, the 
dynamics traffic assignment (DTA) is regarded as a tool predicting hture network condition. 
In a narrow sense, DTA is a way of assigning vehicles onto network under time variant 
system, as oppose to the conventional static assignment. However, DTA often means a traffic 
estimation and prediction system to meet the information needs of the various ITS 
subsystems. DTA in a broad sense consists of several components, such as (1) network 
monitoring systems, (2) route choice behavioral models, (3) traffic flow models, and (4) 
traffic information and control systems. The network monitoring systems include not only 
measuring network condition but also estimating O/D demand. Pure part of DTA is the 
capability of predicting hture network conditions, which includes modeling route choice 
behavior (demand side) and traffic flow modeling (supply sides). While demand side models 
find path flow patterns, supply side models move vehicles link to link. Prediction systems for 
both demand and supply side respond to traffic information and control systems. Traffic 
information and control systems are inputs affecting vehicles’ movement; however, they 
could also be products of DTA to be applied to real world obtained from DTA’s estimation 
or prediction. Success of the predictive algorithms is dependent on accuracy of all these 
components. If one of them fails maintaining admissible level of accuracy, the algorithms 
might show too poor performance to use. 

The third category is whether or not to adopt closed-loop feedback system. The opposite 
meaning of the closed-loop system is the open-loop system. The closed-loop feedback 
control system feeds gaps between prediction and observation back into the system, as 
opposed to the open-loop system. There is strong need of using closed-loop feedback system 
in dynamic systems where various disturbances exist like dynamic traffk control systems. 
There are also different types of feedback control systems depending on the ways of 
regulating control variable associated with disturbances, such as bang-bang system, 
proportional (P) feedback, proportional-integral (PI) feedback, and proportional-integral- 
derivative (PID) feedback. Despite presence of different types of feedback algorithms, only 
the bang-bang system can be applied to CMS routing since it is not possible to split traffic 
into certain rates via CMS. 

When the second and third categories are considered, three optimal routing approaches exist 
as follows. 

Simple feedback approach: instantaneous travel time based feedback system 

Predictive approach: predicted travel time based open-loop system 
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Predictive feedback approach: predicted travel time based feedback system 

Simple Feedback Amroach 

The simple feedback approach seeks optimal routes based on instantaneous travel time at 
every instant. The control interval is dependent on capability of data processing. Main 
drawback of the system is that the optimal routes may not be real optimal when reviewed 
after trip. However, this approach does not require any other input other than link travel 
times. Measurement errors in network monitoring system are the only source of disturbance. 
Other disturbances including drivers’ compliance rate are reflected to network condition. 
Also this approach can be applied independently without conflict with others where multiple 
CMS’ exist. That is, advantage of this approach is not only simple and easy to implement but 
also robustness in application. 

Real world represented by a simulation process ....... . .. .. ..... . . . ........... . . ..... ... . .............. .. .. . . ... ......... . . . ................... . . .. .............. . .. . .. . ............... .. . . ............... ... . . . ....... ..... .. .. ..... . ..... . . .. ..... . ,,. .. . .... , .. .. . ..... . .. . . , . 

En-route Vehicle 
Diversion Movement 

I Demand Network Network ’ : ’ Condition - Performance 
4 I 

C W T )  Best Path Estimation 
Selection of Path Costs Network 

Figure 2.6 Simple Feedback Approach 

As shown in Figure. The simple feedback approach seeks an instantaneous user optimal CMS 
message at the instant out of predefined messages. When multiple target destinations exist, 
the CMS message giving highest benefit is chose. If multiple target destinations exist and 
there are paths dominantly used under non-incident situation, define these paths as primary 
paths for the selection of most beneficial path under the multiple target destination cases. This 
approach reflects a decentralized feedback loop control scheme without need of prediction. 
The approach responds to real measurements so as to equalize costs of alternative routes. A 
heuristic algorithm of the approach is as follows: 

Step 1. Construct a sub-network associated with the CMS. 
Step 2.  Define target destinations associated with the CMS. Construct a set of paths 

connecting CMS to target destinations. Define primary paths associated with their 
target destination if exist. 

Step 3. Estimate path costs by summing instantaneous link travel times at the instant. 
Step 4. If there is only one target destination, select the minimum cost path as an optimal and 

go to Step 6. Otherwise, find the first bast path and the second best among paths with 
a same target destination. If the first best path is not a primary path, the second best 
has to be best one out of primary paths. 

Step 5 .  Calculate travel time difference between the first base path and the second best. 
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Step 6. Find a target destination whose travel time difference is greatest, and select the 

Step 7. Display a message associated with the optimal path. Go to step 3 for next time step 
minimum cost path associated with the destination as an optimal. 

Predictive Approach 

The predictive approach is to optimize the network under the assumption of full knowledge. 
Unlike instantaneous feedback approach, this approach provides real user optimal paths. In 
this approach there is no feed back routine, so that this approach is classified as an open-loop 
system that relies on perfect prediction capability. This approach assumes that all prediction 
components are perfect. In fact, any imperfection of the approach may worsen the system. In 
reality, there exist errors in every components, such as O D  demand prediction, route choice 
model, compliance prediction, are network flow model. Therefore, this approach is hard to be 
applied in real-life that is full of stochastic nature though this approach is attractive from 
theoretical point of view. 

Real world represented by a simulation process ........ .. ...... . .,.. ....................... ........... .. . , .. .. .... .................. . . . ... ..... ......... ... . . . .... ........... ..... ......... ... ... . ...... ............... . , . .. ....... ... .. . . . . . . . .... 

Demand En-route Vehicle Network Network 
Diversion Movement Condition Performance 

A 

CMS(T) Selection of 
Best Path 

k U  Calculation 

Prediction 

Figure 2.7 Predictive Approach 

This approach is usually used for off-line cases like most analytical DTA models. For the on- 
line application of the approach, a rolling horizon framework has been proposed (Peeta et al., 
1995). The solution of the approach is obtained through an iterative method. Control 
variables are CMS messages in optimal CMS routing. The algorithm iterates until a set of 
optimal CMS messages is found. The set of CMS messages is a sequence of CMS messages 
over time. While a discrete DTA seeks a fraction of path flow for a given origin-destination 
pair during the discrete time interval, this algorithm seeks an optimal path for a given origin- 
destination pair as a representation of CMS message for the time interval (or a CMS phase). 
Real optimal would be a split between multiple paths for a CMS phase, but it cannot be 
achieved with CMS. That is, the CMS routing problem is an integer problem and 
ineffectiveness is unavoidable. However, such ineffectiveness is not a problem when 
messages are updated with very small time interval because the need is reflected immediately. 
The ineffectiveness exists only when time step is long to accommodate the need of message 
change. This is defined as a time-lag effect in a discrete system. 
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In the predictive approach, it should be noted that changes of past events affect state of 
present and future. Therefore, this approach essentially fixes one solution after another in 
order of time. That is, total number of iterations would be total number of CMS phases in the 
worst case when the best message alternates every time step. However, advantages of the 
approach are that 1) the heuristic guarantees convergence in terms of needs of CMS message 
change and 2) there is no need to re-run time steps whose CMS were fixed. 

This predictive approach can be used for both user optimal and system optimal by applying 
average cost for user optimal and marginal cost for system optimal. Similarly the proposed 
heuristic can be used for both cases. In dynamic case, it is almost impossible to find true 
marginal cost due to time-dependency, so that quasi-marginal costs are calculated and used 
for marginal cost routing (Peea and Mahmassani, 1995). 

The general iterative heuristic algorithm for the predictive approach is as follows: 

Step 0. Initialization 
Step 0.1 Set iteration number i = 0. Run a simulation without CMS information, and 

then store time dependent link travel times and turn movement delays. 
Step 0.2 Find a best CMS message, Mi,l, for CMS c at time step 1 based on the time 

dependent network costs, and set the fixed time step, $,I, equals 1. 
Step 0.3 Find initial set of CMS messages, for CMS c at time step t based on 

the assumption that Mi = Mi,l , Vc E C, t E T . 
Step 1. Simulation 

Run a simulation with a set of CMS message, , and store time dependent link 
travel times and turn movement delays 

Calculate experienced path costs and find a new set of best CMS messages, Ad::;, for 
CMS c at time step 6, based on link travel times and turn movement delays. 

Update new messages, for time step &+I,  and set M::' = Mi:;,, , 
b'c E C, t E [tf,, i + 1, T ]  . Find number of time steps, s, lasting same message as Mi:; +, , 
and update new fixed time steps, step $,,+I = t f j  + s. 

Stop if the fixed time step reaches the total number of time steps (&+, = 7 ) ;  
otherwise, set i = i + 1 and go to step 1. 

Step 2. Selection of best messages 

Step 3. Selection of messages 

Step 4. Stopping Criteria 

As noticed, the approach fixes time by time. Therefore, the algorithm can directly applied to 
real-time case by providing the predicted optimal message for the instant. This is a version of 
rolling horizon approach in a sense that the message for next time period is determined based 
on the prediction for the time period that the demand for next time arrives at the target 
destination. The algorithm for the rolling horizon version of predictive approach is as follows: 
Step 1. Do a simulation for next time period [t, t+At] based on the assumption that current 

CMS message lasts during the period, and store time dependent network costs. 
Step 2. Calculate CMS path costs based on predicted time dependent network costs. 
Step 3. Select the best CMS message associated with the best path. 
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Step 4. Display the message for At and go to Step 1. 

The method is a valid when At is short to maintain optimal condition; however, a set of 
multiple messages for At is needed if At is too long to keep optimal condition. For this case, a 
set of message can be found by using the regular predictive algorithm instead of step2 and 3 
in the rolling horizon approach. 

Predictive Feedback Amroach 

The predictive feedback approach is similar to the rolling horizon version of predictive 
approach in the sense that it seeks an optimal solution for demand during a time interval via 
iterative method. However, unlike the predictive approach, this predictive feedback approach 
optimizes parameters of each model components. This approach brings a lot of issues with 
respect to on-line model calibration and interaction between model components. Main issue 
of the approach is how to reflect stochastic nature of the system into the prediction model. 
Some model parameters may need on-line adjustment while some of them can be adjusted 
later. Difficulty of the adjustments arises from the fact that the observed errors are mixture of 
each model components’ errors. Basically aim of the approach is to minimize the gap 
between simulation model and real world. 

Real world represented by a simulation process 

~ Demand 
En-mute Network Network Vehicle ’ 
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’ aversion 
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..... 

Consistency 
Check 

Predictive CMS generation routine 

Figure 2.8 Predictive Feedback Approach 

Consistency check and 
parameter update 

Based on the assumption that the traffic flow model embedded in the simulation model is 
considerably accurate, three demand side issues, such as O D  demand, path flow, and en- 
route compliance behavior, are remaining tasks. O D  demand or path flow pattern can be 
estimated based on observed traffic variables on network, which must be one of the hardest 
problems in DTA implementation. Associated with CMS routing, there is another disturbance 
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factor, driver’s compliance behavior. Compliance rates are usually assumed to be known in 
predictive approach; however, admittedly there could be large gaps between the assumed 
compliance rates and actual observed ones. These disturbances need to be adjusted because 
of two reasons. They are (1) to maintain simulation variables consistent with the real 
observed ones, ( 2 )  to minimize prediction error occurring due to compliance assumption. 
These need to done for the real-world application of predictive approach. However, the 
routine checking consistency and updating model parameters are out of this research scope to 
be hrther studied. 

2.4.3 Examples of Dynamic Optimal CMS Routing 

This section shows examples of dynamic optimal CMS routing. Two different routing 
approaches, a simple feedback approach and a predictive approach, are tested, and four 
different update intervals, such as 0.1, 1, and 3 minute, are used in order to examine time lag 
effects in dynamic route guidance. 0.1 minute update system is included to find theoretical 
optimal condition rather than a practical point of view. In this example, a 100% compliance 
rate is assumed. 

A test network used in this section is same as one used for static optimized CMS routing. 
Heavy event demand is assumed as before. Three alternatives are predefined as shown in 
Figure 2.9. The first path is a primary route most often used while the second and third paths 
are alternatives to avoid congestion either on free exit or main entrance of event place. 

Figure 2.9 Test Network and Alternative 
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(a) Feedback Approach 
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(b) Predictive - Average Cost Routing 
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(c) Predictive - Marginal Cost Routing 

Figure 2.10 Dynamic Optimal CMS Guidance Scheme 
* 0 indicates alternative 1, 1 indicates alternative 2 
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The dynamic optimal route guidance for CMS has found using algorithms addressed in 
previous section. Even though three alternatives are considered in the CMS, only alternative 
one and two are used. Hence, the CMS guidance is a bang-bang system in terms of control 
strategy. Since a 100% compliance rate is assumed, the optimal route tends to alternate every 
short time interval. The shorter update interval is used, the more often the optimal route 
switches. The dynamic optimal route guidance for the CMS is shown in Figure 2.10. The 
optimal guidance solutions found from the feedback approach shows similar pattern as ones 
from predictive approach. It may be because the distance from CMS to target destination is 
not long enough to show difference between approaches. 

Distinct performance difference was revealed with respect to update time interval as shown in 
Table 2.4. Expectedly, CMS routing with shorter update interval performed better. It is 
because of time-lag effect induced from inability of optimal guidance during the time interval. 
The case of 0. l-minute update was selected as a benchmark. Compared other cases with the 
benchmark case, average time costs increase by 5 - 12%. 

In the feedback approach, optimal routes are selected based on instantaneous travel time at 
the instant while the predictive approach is based on experienced travel time. Therefore, the 
optimal routes found from the feedback approach do not necessarily optimal when the routes 
are evaluated after trip. As shown in Table 2.4, the predictive approach with average cost 
routing performed better in general. However, there is little difference between two 
approaches in the case of long update time interval like 3-minute update. That is because 
advantage was lessened due to time lag-effect. It should be noted that the time lag-effect here 
might be exaggerated due to short length from CMS to destination. In the larger network 
case, it is expected that the benefit would be even greater for the predictive approach. 

We also test a marginal cost routing as a predictive approach. However, performance is not 
better than that of average cost routing due to lack of ability in calculating true marginal costs 
in the dynamic system and in reflecting marginal cost effects in the heuristic approach. 

Table 2.4 Performance Comparison of Dynamic CMS Routing 

Approach 
Update Interval (minute) 

0.1 3.0 1 .o Indices 

Avg. Cost (Event Traffic), min 

Avg. System Cost, min 

6.89 

7.23 6.92 6.57 

8.07 7.35 

Feedback (1 .OO) 

(1.23) (1.15) (1.00) 

(1.10) (1.05) (1 .OO) 

(1.17) (1.07) 

Predictive Avg. Cost (Event Traffic), min 6.54 8.07 7.52 

(averane cost 

Predictive 
(marginal cost 

routing) 

* Values in ( ) 

(1 .OO) 

Avg. Cost (Event Traffic), min 6.93 
(1 .OO) 

Avg. System Cost, min 

indicate relative values with respect tl 

6.69 
(1 .OO) 

-t + I 
D the case of 0.1 update interval 
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In predictive approach, an iterative method is used, so here we compare convergence 
performance with respect to update interval. In order to evaluate convergence, a value 
representing level of equilibrium between alternatives is used as a measure of effectiveness. 
The equilibration index value is calculated as follows. 

where A = a set of alternatives associated with a CMS 
T = total number of time steps 
tt,,r = travel time of alternative a at time step t 
tto,t = travel time of optimal route at time step t 

As shown in Table 2.5, a shorter update interval requires more number of iteration. To reach 
a converged solution, the 0. l-minute update requires almost 20 times iterations than 3-minute 
update because it considers 30 times more detail in terms of time step use. When the shorter 
time interval is applied, the larger and more frequent oscillations are observed during early 
iteration as shown in Figure 2.11. However, the case with shorter update interval results in 
much better equilibrium state. The equilibration index for predictive average cost routing 
with 3-minute update shows more than 6 times higher than that of 0.1- minute update. 

Table 2.5 Convergence Comparison 

Approach Indices Update Interval (minute) 
0.1 3.0 1 .o 

Feedback Equilibration Index Value* 3.84 7.10 
(relative value) ** I (::;:) I (2.43) I (4.49) 

Number of Iterations 13 37 249 
Predictive 

routing) 

(507) (486) (474) (Total simulation time steps)*** 

(6.28) (2.60) (1 .OO) (relative value) ** 
7.10 2.94 1.13 Equilibration Index Value 

(average cost 

Number of Iterations 26 209 
~~~ ~~~ 

15 
Predictive 

routing) 

(502) (501) (473) ( T O ~ ~ I  simulation time steps) 

(4.23) (1.67) (1 .OO) (relative value) ** 
11.25 4.44 2.66 Equilibration Index Value 

(marginal cost 

L 

I I I I 

* A 0.1 minute of time interval is used for the calculation of equilibrium index value. 
** Values in ( ) indicate relative values with respect to the case of 0.1 update interval. 
* * * Total number of simulation time steps required to clean total demand. 
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Figure 2.11 Convergence of Predictive Model 

2.5 Summary and Conclusion 

In this chapter, various optimized CMS routing approaches have been introduced. We have 
been discussed on limitation of each approach and other factors affecting performance of 
routing scheme, such as time-lag effect and predictability. Performance comparison of these 
methods has also been provided. 

The first method, a static path-based network optimization technique, is a fastest and simplest 
approach to be applied for event traffic management. Static assignment models are 
theoretically robust and stable; however, they are unrealistic for short-term analysis since they 
cannot capture traffic dynamics. In case of scheduled events where overall traffic condition 
including 0-D demand could be predicted to some extend, the static optimized solution could 
be applied, at least as an early stage of CMS application, though it cannot reflect traffic 
variations induced from stochastic nature of traffic demand and network flow. 

Dynamic optimal routings have great benefit compared to static routing. Especially for the 
incident traffic management, the feedback approach is an effective way to improve traffic 
condition by directly reflecting traffic dynamics into traffic rerouting strategies. However, the 
feedback approach relies on instantaneous traffic information that is not necessarily optimal 
when reviewed after trip. That is, this approach may result in misleading drivers in some 
cases especially when there are drastic changes in traffic condition in near future. Therefore, 
this approach would be an effect way for short-trip traffic management where only minor 
changes in traffic condition is expected while traveling on the area. 

The predictive approach must be attractive in the sense that the route guidance reflects hture 
traffic condition. This chapter has shown two different objective routings, an average cost 
routing and a marginal cost routing. The average cost routing aims at accomplishing user 
optimal network condition, while the marginal cost routing aims at system optimum. 
However, there is limitation in achieving the true system optimal with the heuristic approach 
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introduced here. It is because of lack of ability in calculating true marginal costs in dynamic 
system and in reflecting marginal cost effects in proposed heuristic approach. More research 
is needed to apply the system optimal routing. 

An issue of this approach is predictability of the network condition. Even though this 
approach is expected to give greatest benefit theoretically, this approach may cause an absurd 
situation when applied with inaccurate prediction. That is, power of the prediction model is 
the core of the approach. One way of powering the predictability is to incorporate the 
feedback approach into the predictive approach. The predictive feedback approach is based 
on on-line prediction models that updates previous prediction errors and parameters for next 
prediction. Overall framework of the approach has been addressed, but detailed algorithms 
and applications are out of this study scope. 
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CHAPTER 3: MODELING OF DRIVER’S COMPLIANCE 
BEHAVIOR 

The candidate CMS messages need to be evaluated within the simulation framework prior to 
real-world implementation. The evaluation framework is based on a traffic assignment- 
simulation model, DYNASMART (Dynamic Network Assignment Simulation Model for 
Advanced Road Telematics). The simulation-assignment model, DYNASMART was 
developed specially for studying the effectiveness of alternative information supply strategies 
as well as alternative informatiodcontrol system configurations for urban traffic networks 
with Advanced Traffic Management and Information Systems (ATMIS). For the completion 
of the evaluation simulation model, a tool analyzing driver’s compliance behavior model 
needs to be incorporated. This chapter investigates driver’s response to information, and a 
model framework is introduced. 

3.1 Review on Route Choice Behavior Models 

Most operational models of network scale route choice are based on the assumption that 
drivers are seeking to minimize a simple objective finction such as travel time. Modelers’ 
main efforts have been directed towards adequate representation of aggregate equilibrium 
processes at work in the network rather than towards realistic representation of the dynamics 
of individual behavior or potential for influencing that behavior. A somewhat detailed 
discussion of previous research is provided here as this is an important aspect of proposed 
work and much will be borrowed from these models in this research. 
Early research focused on predicting aggregate route or mode choice pattern based on utility 
and probabilistic choice models. This was followed by studies on distinct aspects of trip 
making, such as departure time or route choice. As work progressed, system performance, 
habitual travel patterns, dynamic and day-to-day adjustment, the impacts of real time 
information, and other related issues were brought to center of attention. 
A simple boundedly rational path switching rule could be that users switch from current path 
at a decision point if travel times savings on an alternative route exceed a threshold value 
(Mahmassani and Jayakrishnan, 199 1). Its mathematical model is as follows: 

A TU A TU A TU 

1 if Tmjk(u) - Tmjk(u) * > max (Lp. Tmjk(u) 5,) 
PPb)  = { 

( 0 otherwise 
where P,(m) is a binary indicator variables equal to 1 when user p switched from the current 
path to the best alternate path (from node m to the destination), and 0 if the current path is 

maintained; and Tmj,(,, and Tmjk(,)* are respectively the trip times on the current and best 
paths from node m to the destination is the relative indifference threshold (or band), and is 
an absolute minimum travel time improvement needed for a switch. 
Various types of data collection methods have been used to investigate driver’s behavior 
under travel information. These methods are route choice survey (Khattak et al., 1992; 
Hatcher and Mahmassani, 1992), interactive computer simulation games (Bonsall and Parry, 
1990; Karge and Mark, 1991; Adler, 1993; Liu, 1997), route choice simulation and modeling 
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(Mahmassani and Chen, 1991; Lotan and Kousopoulos, 1992), and state preference approach 
(Haselkorn et al, 1991; Wardman et al, 1996; Abdel-Aty et al, 1997) Research on driver’s 
behavior can be categorized to be focused in day-to-day evolution, travel time variation and 
reliability, en-route diversion, and response to CMS information. 
Day-to-day dynamics of commuter decision are found in models of departure time and route 
choice, daily switching decision, and learning rules. A framework for day-to-day adjustment 
is developed by Hu and Mahmassani (1997), based on pre-trip behavior model calibrated by 
Small (1982), and Hendrickson and Plank (1984.) Vahghn et a1 (1 996) calibrated a 
multinomial route choice model under ATIS. Expected time and delay, and habit strength 
which are updated day-to-day are used as variables in their model. Abdel-Aty, Kitamura, and 
Jovanis (1997) investigated the effects of travel time variation on route choice using stated 
preference data. 

There have been many studies on en-route diversion behavior. Khattak et a1 (1991) found 
that diversion behavior is influenced by the source of information, expected length of delay, 
regular travel time on the usual route, number of alternative routes used recently, anticipated 
congestion level, self-evaluation statement about risk behavior (personality), and stated 
preference about diverting. Polydoropoulou et a1 (1992) included perceptions and attitude, 
actual travel condition, and en-route information for selection of a new route in their model. 
Polydoropoulou et a1 (1994, 1996) explored how travelers deal with unexpected congestion 
and how they might respond to alternate types of ATIS, such as qualitative, quantitative, 
prescriptive, and predictive information. Six major categories of variables are included in their 
combined RP and SP model: 1) Travel time, 2) Expected delay, 3) Congestion on alternative 
route, 4) Knowledge of travel times, 5 )  Trip direction, 6 )  Cause of delay, and 7) Information 
sources. Adler and McNally (1994) divided en-route diversion into two models: primary 
diversion and secondary diversion (see Table 3.1). The models were calibrated using data 
collected from the interactive computer simulator named FASTCAR. 

Wardman, Bonsall, and Shirs (1996) calibrated driver’s response to various CMS displays 
using stated preference data. Their finding is that value of delay is greater than travel time 
with the ratios varying between 1.30 and 1.70, and the value of time of delay is quite sensitive 
to the amount of delay time with increasing sensitivity as delay time increases. Table 3.2 
shows overall model for driver’s response to CMS. 
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Table 3.1 Model of Diversion Behavior (Adler and McNally, 1994) 
Independent Variables 

1.80 (2.26) 3.49 (3.50) Familiaritv with alternative street 
-2.30 (-2.85) -3.86 (-3.70) Familiarity with current street 

-1.55 (-3.19) Previous trip on current street 
-2.30 (-2.28) Ratio of actual to expected link speed 

-0.0088 (-3.71) Actual link speed 
-1.41 (-1.00) 5.45 (3.76) Model constant 

Secondary Diversion Primary Diversion 

Road type current street 

0.50 (1.81) CMS 
4.34 (4.25) -1.57 (-2.23) Road type alternative street 

-3.44 (-3.46) 

Number of previous diversion 

85.71 88.372 Percent correctly predicted 
161 129 Number of observations 

113.26 110.82 Likelihood test 
-54.96 -33.83 Log likelihood at convergence 
-111.59 -89.42 Initial log likelihood 

0.16 (3.37) Distance to destination 
1.12 (4.58) 

Rho squared 0.6217 0.5057 

Table 3.2 Driver’s resuonse to CMS Wardman et al. 1996) 
Variable 

Road-Mins 
Cong-Mins 

Acc-Mins 

None-Mins 
Road-Likely 

CoeR I Incremental 
-0.041 I 

-0.03 6 
-0.595 

Variable 
Coi&Long 
Acc-Long 

None-Long 

Clear 
Vis-Q 

Coeff 
-2.450 
-3.337 

-2.623 

0.815 
-0.043 

Cong-Likely 

- 1.470 RSC(A57) -2.732 Road-Long 
-1.328 RSC(A580) -0.83 5 None-Likely 
-1.489 RSC(M56) -2.100 Acc-Likely 
-0.068 Time -1.876 

O2 0.217 

Age<3 5 
0.0 129 
Freq<6 
0.0145 
Unreliable 
CMS 
-0.0133 
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3.2 Modeling Approach 

3.2.1 Two Step Approach 

This research will be based on a generalized two-part behavior model: one is the Perception 
Model (PA), and the other is the Decision Model (DM). The first step is to transfer various 
type of information to driver’s perception, and this model is named as “perception model”. 
The perception model has to be capable of dealing with various types of ATIS information 
and reliability of information earned from drivers’ previous experience. The second part, the 
decision model, is to decide whether or not to divert using driver’s perception and other 
factors on current route and alternative route. While the second decision model can be more 
generally used, the perception model has facility specific characteristic varying by each 
information source. 

Information 
urce, type, cont 

I 
Perception M ode1 

\ I I I 

I ............................. ..I....._....,._..... ....... ......... 

Figure 3.1 A General Structure of En-route Diversion Model 

In the perception model, the most important factors are reliability of information and relative 
value of information by type and content. The reliability of information is an important factor 
influencing driver’s compliance; however, it is not easy to determine how the reliability can 
be measured and how it will be reflected in the driver’s perception. In order to measure the 
reliability of information, day-to-day update approach is necessary because reliability is a 
product from past experience. Questions on reliability will be discussed more with the other 
issue, such as routing policy and reliability. Another major factor, the relative value of 
information by type and content, possibly does not vary based on the information source, 
since factors specific to information sources are screened by the reliability variables. The 
concept of relative value of information is very similar to that of value of time. For instance, 
what is the relative value of delay with respect to the travel time if the value of travel time 
information is 1.0? It may be greater than 1.0 in driver’s perception. More interestingly, 
what is the value of the information in a message that says “Take Route A”? A driver may 
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think that he can save 10 minutes if he take route A, which implies that the relative value of 
the information is 10 minutes according to the driver’s perception. This is an intermediate 
process transferring various types of information to driver’s perceptive value. 

The second part, the decision model, is more general. This model also may have two-step 
effects: one is driver’s needs of diversion (for instance, level of congestion on current route), 
and the other is the perceived relative value of current route or alternative route. In order to 
reflect the drivers’ heterogeneity in the model, each driver’s characteristic can be 
incorporated, such as socio-demographic information characteristics and network knowledge. 
However, variables to be used in the model will be limited ones that can be reasonably 
generated in simulation framework since the purpose of en-route diversion model is to 
predict its effects in a simulation model framework. 

This research is intended to construct overall framework for information design and ATIS 
evaluation. Even though models need to be calibrated and validated for real application, 
developing a model framework itself is also meaningfbl. Furthermore, data acquisition is not 
possible currently because such ATIS infrastructure is not available yet. 

3.2.2 Reliability Issue in Behavior Modeling 

Credibility of information in driver’s mind is a product learned from the process of experience 
and post evaluation of information. Drivers will have better experience from reliable 
information, which results in better evaluation. From the evaluation, they will accumulate 
their credibility on the system. That is, reliability of information is an important factor directly 
affects driver’s compliance behavior. There are many factors affecting to reliability of 
information devices. Most of them result from the capability of information devices, such as 
accuracy of traffic monitoring system, capability of relaying information timely, future 
prediction capability, etc. Besides them, there is another factor associated with system 
manager’s objective. 

While the capability of information devices can be easily understood, the routing object 
involves somewhat complicated nature. System managers want to optimize the total system; 
however, it is questionable if the system optimality can be obtained through the ATIS. It is 
because the objective to minimize the total system cost is not necessarily same as drivers’ 
objective. ATIS is regarded as a soft control tool from a traffic manager’s point of view due 
to the lack of enforcement. That is, the routing objective is another factor influencing driver’s 
credibility. These credibility factors are accumulated from long-term experience. In modeler’s 
perspective, such credibility can be investigated via day-to-day update approach as shown 
Figure 3.X. Issues on routing policy and day-to-day dynamics of driver’s credibility are more 
investigated in Chapter 5 and Chapter 6. 

Following is a simple example of interaction between routing policy and driver’s behavior. 
This example compares user costs and system costs with respect to routing policies. 
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Figure 3.2 Framework for day-to-day credibility update 

Simple examDle in static case 

Network condition associated with driver behavior or route guidance strategies can be 
classified as three categories: user equilibrium (UE), system optimal (SO), and stochastic user 
optimal (SUE). The system optimal assumption is a goal to pursue, but not one that results 
from actual drivers’ behavior. A problem in SO is that certain amount of drivers should take 
high cost routes for minimizing the overall cost for the whole system. The user equilibrium 
condition is reached only when no traveler can improve his travel time by unilaterally 
changing routes. The assumption is that each driver chooses the minimum travel time route 
with full information, and all drivers are identical in their behavior. Relaxing the assumptions 
in UE, SUE takes drivers’ perception error into account, and the drivers are assumed to 
change their routes based on their perceived travel costs. 

To investigate routing policy, let us assume that a single O D  pair with two independent 
routes A and B is given, and that the driver behavior is solely dependent on travel time. 
When drivers’ perception error is Gumbel distributed, the route selection can be determined 
by binary logit model. Let us consider an information scenario where the drivers’ actual 
travel times are the same as informed by the system. That is, to maintain information 
reliability, predicted travel time information will be provided. We can find the solution 
assuming that driver behavior (a logit type model in this case) is known. This is a fixed-point 
problem. 
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Table 3.3 Simple network for comparison 
Link A Network Link B 

~~ 

Free speedtravel time (min) 

Link Capacity (veh/min) 

Total Demand (veh/min) 

Link performance hnction 

Route choice model 

Utility hnction 

12 10 I 1 1  Link A n  Link B 

t = tO * (1 + 0.15 (V/C)4} I I  
U(i) = - 0.15 * travel time(i) 

UE, SO, and SUE 
20.0 

E 
i= 

15.0 
m c 

10.0 

- -Avg Cost (A) -‘Av;%% rbTw- - - - - - Mag Cost (A) 

Mag Cost (e) - - - Per Time (A) - - Per Time (B) 

Figure 3.3 User Equilibrium, System Optimal, and Stochastic User Equilibrium 

In this simple example case, the predicted travel time information can be obtained by iterative 
calculation. Eventually this information is same solution as stochastic user equilibrium 
assignment result. Figure 3.2 shows a comparison between user equilibrium (UE), system 
optimal (SO), and stochastic user equilibrium (SUE) for this example. The information will 
be reliable only when it is based on prediction with consideration on drivers’ behavior. If 
other travel time information, such as based on SO or UE, is given to drivers, the information 
will be always different from actual travel time, and will cause decreasing information 
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reliability. We can control the demand split between two routes using travel time 
information, but drivers will recognize that the information is wrong from their experience 
when any times other than SUE travel times are provided. On the other hand, reliability of 
the information will increase when travel time information satisfjring stochastic user 
equilibrium is provided, and the system will approach to user equilibrium state with a 
decrease of drivers’ perception error. In this two route example, total cost corresponding to 
the SUE split happens to be between SO and UE, but it can be anywhere. 

3.3 Model Framework for Driver’s En-route Diversion 

This section introduces a model framework to capture driver’s compliance behavior. The 
model is based on the conceptual framework addressed previous section. The model includes 
basic variables affecting driver’s decision associated with CMS. The model framework is a 
logit-type model that assumes Gumbel distibution for the error components. In the model, 
three different types of variables are taken into consideration as follows: 

Driver’s knowledge on network 
Representing current traffic condition 
Inherent value of CMS 

In this model, travel times or detailed traffic conditions on alternative routes are not included 
to avoid modeling additional processes for expected travel times. CMS are considered as 
devices providing prescriptive route guidance rather than descriptive information. In the 
sense, drivers make their decisions depending on their evaluation of information source. That 
is, the evaluation is an inherent factor in driver’s mind, affecting their compliance. This 
inherent variable is a compound of strength of message and reliability. The message, 
“ACCIDENT AHEAD / HEAVY CONGESTION” will be stronger than the simple message, 
“DELAY POSSIBLE’. That is, there exists relative strength of message, and the strength is 
represented by a inherent variable with reliability of information. This inherent factor for the 
information source for a driver is obtained from the driver’s long-term experience. From 
modeler’s point of view, the value can be captured via day-to-day update approach. 

There are also other factors affected by driver’s characteristics. One of important driver’s 
characteristics associated with en-route diversion behavior is driver’s knowledge on network. 
Many researchers have pointed out this as an important factor affecting driver’s en-route 
decision. That is, drivers familiar with network may switch their route more often than those 
who are not familiar. Drivers unfamiliar with an area tend to stick on their initial route due to 
fear of losing their ways. Current traffic condition is also another factor affecting driver’s en- 
route decision. Usually driver’s needs to divert increases in heavy traffic condition, especially 
those who are familiar with the area or those who are late for their schedule. As a 
representative variable for current traffic condition, a ratio of current speed with respect to 
free flow speed is used in the model. 

Of course, there are more factors affecting driver’s en-route decision. The model framework 
proposed here is a binary logit model, deciding whether or not to divert. The probability that 
a driver, n, follows the guidance from CMS, c, at the link, a, is expressed as equation (3.1). 
Table 3.4 shows an example of the model including parameters and possible range of 
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variables. Figure 3.3 shows changes of compliance rates interacting with changes of other 
variables. The values in the table are an example for demonstration purpose, so the model 
parameters need to be calibrated for the application of real world. 

1 
exp(a+p.LOF, + y.LOC, +S.CMS,) 

P(n) = 

where, LOF,, = Level of network familiarity for driver n 
LOC, = Level of congestion on link a represented by speed / free speed. 
CMS, = Reliability value for CMS c 

Table 3.4 Example of En-route Diversion Model for CMS 
Level of Congestion 

Variables Reliability Value Constant 
Familiarity Level 

Parameters -5.6 5 -0.5 1.8 

Possible Range 

of Variable 
1 1 - 5  0.0 - 1.0 0.0 - 1.0 

3.4 Dynamic Changes in Compliance Model 

In chapter 2, various CMS route guidance approaches have been introduced and algorithms 
were tested based on 100% compliance assumption. This section incorporates the proposed 
en-route diversion model framework into DYNASMART simulation program. A system 
reliability value of 1 .O is used instead of 100% compliance, so as for the simulation model to 
reflect dynamic en-route diversion decision. That is, current traffic condition and individual 
driver’s network knowledge are involved in their decision making process as well as 
information system reliability. Dynamic changes in driver compliance rate are demonstrated in 
Figure 3.5. The example shows driver’s compliance rate with respect to the CMS from 
guidance predictive model with 1 -minut update. 
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Figure 3.4 Driver's Compliance Model 
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Figure 3.5 Dynamic Changes in Driver Compliance Rate 
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3.5 Summary and Conclusion 

In this chapter a model framework has been introduced for driver’s en-route diversion 
behavior. The model framework includes three factors, such as individual driver’s 
characteristics, driver’s needs of diversion, and inherent reliability value of information 
devices. In order to account for these factors, the model includes three major variables: 
driver’s knowledge on network, current traffic condition, and inherent value of CMS. 
Impacts of variables to driver’s decision has illustrated and discussed. The model here gives 
better explanation on driver’s diversion behavior by reflecting network conditions and 
driver’s characteristics. This study has emphasized on the reliability of information as a major 
factor influencing driver’s decision. More analyses on the reliability issue will be shown in 
Chapter 5 and Chapter 6. The model proposed here is incorporated into DYNASMART, a 
simulation program for ATIS evaluation. 
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CHAPTER 4: REAL-WORLD ATIS IMPLEMENTATION IN 
ANAHEIM 

The methodology proposed here is based on developing routing plans for variety of special- 
event conditions in the Anaheim network, especially based on traffic from to the four main 
traffic generators/attractions in Anaheim, namely, 1) the Anaheim Stadium, 2 )  Arrowhead 
Pond Arena, 3) Disneyland, and 4) the Anaheim Convention center. Candidate ATIS 
strategies, such as CMS and HAR messages, are studied in the Advanced Testbed lab prior to 
the real implementation, so that a subset of strategies are developed for selection during real- 
time operation. This means that modeling framework in the Advanced Testbed needs to be 
augmented using models of traveler response to ATIS information, as well as their modeling. 
The field tests mainly focus on availability of data and driver’s reaction to the new CMS 
message. This chapter reports overall field test results and addresses limitation of CMS 
routing implementation revealed from field tests. 

4.1 Site Description 

4.1.1 General Description 

The site for field test is the City of Anaheim in Orange County, California. Portions of seven 
additional Orange County cities are partially included in the site, including Fullerton, 
Placentia, Orange, Santa Ana, Garden Grove, Stanton, and Buena Park. The area extends 
9.3 miles east-to-west and 6.5 miles north-to-south, covering a total land of approximately 60 
square miles. 

As the large number of municipalities suggest, the area is a highly developed urbadsuburban 
region in which neighboring cities blend seamlessly into one another. This pattern of land 
use, combined with a high standard of living and the virtual absence of rapid mass transit 
systems, has resulted in the use of single-occupancy automobile for virtually all modes of 
personal transportation. This essentially complete dependence on the automobile had greatly 
taxed the already-extensive regional roadway system (Haboian and Mortazavi, 1990). 

In addition to the daily recurring background traffic, Anaheim also contains four generators 
of special-event traffic; (1) the Anaheim Angels Stadium, ( 2 )  the Arrowhead Pond Arena, (3) 
the Anaheim Convention Center, and (4) the Disney theme park. All four of these facilities 
contribute an additional burden on the roadway system as large numbers of drivers, many of 
whom are unfamiliar with the local area and with the patterns of recurring traffic congestion, 
enter the system at a few closely-spaced points during short time spans. Therefore, the 
potential achievable benefits of applying ITS to the alleviation of special-event generated 
congestion is of unique interest. 

For the purpose of this research, the special-event traffic generated by Arrowhead Pond is 
chosen. Various events are held at the Arrowhead Pond. Especially during the winter season 
the Arrowhead Pond almost constantly attracts about 17,000 audience a game as the Might 
Ducks’ home arena. 

49 



4.1.2 Transportation System and Information Facilities 

The transportation system in the area consists of a well-developed arterial grid system 
integrated with an extensive freeway system. The freeway system is composed of both 
federal and state routes. The study area itself is bounded on the north by Orangethorpe 
Avenue, on the east by State Route 55 (the Costa Mesa Freeway), on the south by State 
Route 22 (the Garden Grove Freeway), and on the east by State Route 39 (Beach 
Boulevard). The area is bisected diagonally from the northwest corner to the southeast 
corner by Interstate 5 (the Santa Ana Freeway) and the area also includes State Route 91 (the 
Riverside Freeway) and State Route 57 (the Orange Freeway). Thus a total of five freeways 
are contained within the study area. 

The arena is located at an easily accessible location of Orange County, east of the 57 
(Orange) freeway on highly-traveled Katella Avenue, where more than 35,000 motorists pass 
by daily. For easy access and egress from the site, five major freeways (57, 22, 5 ,  91, and 55)  
are located within a five-mile radius. 

There are 6 CMS’s on freeways which are used for route guidance finding freeway exits to 
go event places. Three CMS’s among many CMS’s in this area is used related to the Angels 
Stadium and Arrowhead Pond Arena. Also static signboard guiding to these sport facilities 
are located along the surface roads connecting from freeways to the facilities. 

4.2 Description of First Field Test 

4.2.1 Current Route Information for Event Traffic 

Two CMS’s on freeway 57 are used for guiding event traffic to Arrowhead Pond: one for the 
northbound traffic, and the other for the southbound traffic. Usually CMS messages are 
displayed from two hours before game start for inbound traffic. Messages currently used are 
shown in Figure 4.1. 

EXIT KATELLA AVE. EXIT BALL ROAD 

North Bound 57 at Champman South Bound 57 at Wagner 

Figure 4.1 Current CMS messages for Arrowhead Pond Traffic 

Purpose of current information system is to guide drivers unfamiliar with the area. Major 
approaches currently used are as shown Figure 4.2. Audience from south area is using 
Douglas entrance on Katella Avenue via freeway 57, while audience from north area is using 
Cerritos entrance or Phoenix Club entrance via Ball Road. Those who are from west area are 
using Douglas entrance via Katella Avenue. Therefore, traffic is concentrated on the Douglas 
Road entrance, and severe traffic congestion is recurrent at the intersections, freeway 57 
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north bound exit and Douglas on Katella during event traffic hour. The entrance intersection 
is so close to the freeway 57 that it causes queue on the freeway 57 north bound. 

\ 

4.2.2 New Routing Scheme for Event Traffic 

As shown previous section, routing problem in this event area is apparently how to reduce 
vehicles concentrating on Douglas entrance on Katella Avenue. As a new routing scheme, it 
was suggested to guide traffic from south area to take Ball Road instead of exiting to Katella 
Avenue. So both CMS on freeway 57 are guiding vehicles to take Ball Road as shown figure 
4.3. However, high compliance rate is not expected, since the Douglas entrance is much 
closer than Phoenix Club or Cerritos entrance, Also in order to prevent queue development 
on Ball Road due to traffic heading to Phoenix Club entrance, an arrow message on Ball 
Road has changed to the direction of Cerritos entrance. New routing scheme is shown in 
Figure 4.4. 
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EXIT BALL ROAD EXIT BALL ROAD 

Northbound 57 at Champman Southbound 57 at Wagner 

Figure 4.3 New CMS messages for Arrowhead Pond Traffic 

The messages are turned on from two hours before the game starts. As a matter of fact, if 
the new message on north bound freeway 57 is turned on only when the Katella Avenue is 
congested, better performance is expected. As main purpose of the test is to observe driver’s 
compliance behavior and to investigate data collection methods, the new messages were 
turned on from 5:30 p.m. that is two hours before the game starts to 7:30 p.m. without 
alteration of message during 2 hours. 

4.3 Off-line Simulation Study 

L 

I Ball Road 

Figure 4.4 New Routing Scheme for Event Traffic 
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4.3.1 Data for Simulation Study 

The network covering the study area consists of 480 nodes, 1060 links, and 42 zones. Of 
these 42 zones, 15 zones are internal surface zones, 19 zones are external surface zones, 7 
zones are external freeway zones, and 4 zones are for special-event facilities. The network 
data has modified for better explanation of Angels Stadium and Arrowhead Pond area. 
Anaheim area network is shown in figure 4.5. 

Dynamic 0 -D trip table for Anaheim area was created using COMEST 0-D matrix 
estimation program that accompanies the CONTRAM assignment program. In addition to 
the 0 -D demand, event traffic for Arrowhead Pond Arena is added. Daily attendance is 
almost constantly 17,000 people a game according to the statistics, so we assumed that 5,000 
vehicles are gathering to the area. Unlike static O D  demand, time varying demand requires 
departure time pattern. Even if we know arrival time pattern of event traffic, additional work 
is required to estimate departure time pattern from every origin. We assumed that arrival 
pattern to the stadium is skewed Gammar distributed. Then travel time from origin zone to 
stadium was examined from static assignment. Time varying demand for this test is 
discretized with 5-minute interval, and departure time was determined according to these 
travel times. However, initially estimated departure pattern could not replicate the arrival 
pattern and travel times as we assumed because of delay on links and its interaction. M e r  
several times modification based travel times obtained from dynamic simulation, time varying 
demand for in-bound traffic has been prepared. 

Figure 4.5 Anaheim Transportation Network 
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4.3.2 Simulation Results 

In this study, multiple simulations are performed based on various fixed compliance rates. So 
average travel time, average delay, and average distance traveled are evaluated according to 
changes of compliance rate. In reality, the compliance rate may vary depending on the traffic 
condition. That is, under more severe congestion, higher compliance rate is expected. 
However, in this simulation study, we assumed that the compliance rate is independent from 
the traffic condition. Also it is assumed that no vehicle are equipped IVNS receiving real 
time information. 

As a base case, total 104,042 vehicles were simulated for 100 minutes, and total number of 
56,933 vehicles, which generated during 60 minutes after finishing 15 minutes warm-up 
period, are taken into account for statistics. Overall performance of simulation result for the 
base case is as shown in Table 4.1. Total travel time for all the vehicles tagged for statistics 
and average travel time per vehicle is measured as 17,225 hours and 18.153 minutes 
respectively. Average distance traveled per vehicle is measured as 9.56 miles. Table 4.2 
shows distribution of travel time from origin to destination. Under the current congestion 
level, it is measured that 1 1.5% of vehicles travel loner than 30 minutes. 

Tu Ile 4.1 Overall Performance of Simulation (Base Case) 

Travel Time Distance Delay 

Total 544,4 10 miles 2,042 hours 18,225 hours 

Average 7.73 miles 2.15 minutes 18.15 minutes 

Table 4.2 Distribution of Travel Time 

Time 
30.0 27.0 24.0 21.0 18.0 15.0 12.0 9.0 6.0 3.0 Range 

30.0- 27.0- 24.0- 21.0- 18.0- 15.0- 12.0- 9.0- 6.0- 3.0- 0.0- 

Yo 11.5 4.0 4.8 8.0 11.7 13.7 17.8 15.2 9.2 4.0 0.2 

Arrival pattern to the Arrowhead Pond within the simulation framework shows a Gammar 
distribution type as shown in Figure 4.6. Approximately 60% of event vehicles are 
concentrated on the 20-minute duration right before game start. 
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Figure 4.6 Arrival Pattern to the Arena 

In new CMS routing case, network performance varies depending on the driver's compliance 
rate to the message. Figure 4.7 shows density changes between two alternative streets 
guided by the CMS. In case of current information system, Katella Avenue reaches almost 
jam density while the alternative route, Ball Road, remains at low density. When 40% of 
compliance is assumed, density on Katella Avenue drops to lower than half. When 100% of 
compliance is assumed, levels of density on Ball Road becomes higher than Katella Avenue, 
but the difference between two is tiny. In addition, the comparison of densities between two 
alternative streets shows that CMS guidance is effective only during peak 30 minutes. 

As noticed from the Figure 4.7, the new routing scheme is expected to show good 
performance by reducing congestion on Katella Avenue. However, travel distance of the 
route suggested by new CMS is longer than current one, and delay at a short stretch may not 
affect to the overall travel time. Table 4.3, Figure 4.8, and Figure 4.9 show average travel 
time and average travel distance for all traffic and event traffic by compliance rate. As 
expected, the higher compliance rate is, the longer travel distance is. It is because CMS 
guides drivers to avoid congested area by taking a detour. Being considered travel time for 
all vehicles as overall network performance measure, network condition is optimal around at 
a compliance rate of 40%; however, it results in longer travel time for event traffic. It is 
compliance rate of 40% that shows best result for event traffic. In all case except the case of 
100% compliance rate, network condition improves and shows satisfactory result for both 
overall and event traffic case. 

With the assumption of 40% compliance, the simulation results estimate 2% of travel time 
saving for event traffic although travel distance increases by 2.5% thanks to new CMS 
routing scheme. For all vehicles, travel time is estimated to decrease by 1%. In this 
simulation, it is assumed that CMS message is turned on during whole simulation period. 
When CMS is turned on only during event peak period, the benefit for event traffic is 
estimated to be 2.6 % of travel time saving. That is, it tells that dynamic routing is more 
beneficial and necessary. 
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Figure 4.7 Density Comparison of Two Alternative Streets by Compliance Rate 
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Figure 4.8 Changes in Average Travel Time by Compliance Rate 
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Figure 4.9 Changes in Average Travel Distance by Compliance Rate 

Direct benefit of CMS routing is obtained fiom re-routed event traffic. Expected travel time 
saving for this traffic varies from -4.4% to 18.7% depending on compliance assumption as 
shown in Figure 4.10 and Table 4.3. In the 100% compliance assumption, negative benefit is 
expected due to the over-reaction problem. From this analysis, two important factors are 
revealed. First, compliance rate is the most important factor affecting overall performance of 
CMS routing. Second, dynamic route guidance is needed not only to achieve better 
performance but also to prevent overreaction problem. 
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Figure 4.10 Travel Time Saving for the Traffic Guided by CMS 
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4.4 First Field Test in Anaheim 

Three event days were selected: November 12th and January 21'' as current message cases 
(Before Study), and March 1 lth for new message case (After Study). The new messages 
addressed in section 4.2.2 were displayed for two hours on March 1 lth. 

In order to monitor changes in traffic flow pattern due to the new CMS message, traffic 
counts and occupancy data on the freeway 57 were collected from the Caltrans-UCI ATMS 
research Testbed database system. Speed data are calculated from the traffic counts and 
occupancy data based on vehicle length assumption (20ft). Overall traffic volume for after- 
case was approximately 10% higher than that of before-cases as shown in Figure 4.1 1. 

Effects of the event on traffk pattern were witnessed from 18:50 which is 40 minutes before 
game start, and traffic pattern return to normal at 19:40. During this event period, influence 
of new CMS routing on traffic pattern was also observed. It is presumed that delays on the 
Katella Avenue and the Freeway 57 were reduced thank to the new CMS route guidance 
compared with current CMS routing even though it is not possible to measure overall 
performance of new CMS routing due to lack of traffic data on surface streets. 

- Before - - After - 
Figure 4.1 I Traffic Volume on Freeway 57 During Event Period (I 9:OO-19:30) 
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Table 4.4 Comparison of Freeway Traffic Condition 
Katella Ball (Main) 

Time 1 Before After Changes (%) 
Intervad VOI occ Speed Vol Occ Speed( Vol Occ Speed 

18:OO - 18:15 I 1536 0.29 27.11 1628 0.23 33.4 6.0 -19.5 24.5 
18:15 - 18130 

1546 0.18 40.3 18:30 - 18:45 
1478 0.26 30.8 

909 0.07 63.8 19145 - 20:OO 
1100 0.08 62.2 19130 - 19145 
1282 0.10 58.5 19:15 - 19130 
1370 0.10 58.7 19:OO - 19:15 
1503 0.1 1 57.9 18:45 - 19:OO 

Total 10722 

1634 
1563 
1619 
1548 
1376 
1183 
1045 

1 1596 

0.25 31.4 10.6 -4.1 2.0 
0.26 30.5 1.1 45.3 -24.4 
0.24 32.4 

13.0 68.0 -20.2 0.16 46.9 
7.8 128.3 -44.1 

15.0 13.4 -1.8 0.08 62.6 
7.6 11.7 0.0 0.09 62.2 
7.4 4.9 1.5 0.10 59.4 

8.2 

Ball Lincoln (Main) 
Time Changes (“A) After Before 

Interval! VOI occ Speed Vol Occ Speed Vol Occ Speed 
18:OO - 18:15 I 1758 0.43 18.4 1749 0.42 20.4 -0.5 -1.7 8.5 
18115 - 18:30 
18:30 - 18145 
18145 - 19:OO 
19:OO - 19:15 
19:15 - 19:30 
19130 - 19145 

1746 0.41 20.7 1750 0.42 0.2 2.0 -6.6 
1794 0.39 22. 1 1740 0.42 -3.0 8.6 -16.1 

1752 0.25 38. 1908 0.27 36. 8.9 8.0 -6.1 
1675 0.21 43. 1660 0.24 39.6 -0.9 13.9 -9.5 

1732 0.28 32.7 1784 0.39 22. 3.0 41.8 -31.8 

1435 0.19 43.0 1448 0.18 45.6 0.9 -7.6 6.1 
19:45 - 20:OO 1 1202 0.16 47.4 1418 0.22 41.01 18.0 41.8 -13.6 

Total I 13094 I 13457 2.8 

Exit to Katella (North Bound) 
Time Changes (“A) After Before 

Interval Vol Occ Speed Vol Occ Speed Vol Occ Speed 
18:OO - 18115 

4.4 13.1 -0.6 130 0.04 67.0 125 0.04 67.4 19145 - 20100 
38.7 112.3 -30.1 274 0.19 37.6 198 0.09 53.8 19130 - 19:45 

-10.0 8.4 -4.9 342 0.27 26.1 380 0.25 27.4 19115 - 19130 
-1.5 -3.8 -0.3 383 0.25 28.2 389 0.26 28.3 19100 - 19:15 
10.0 -4.7 -1.4 379 0.16 40.3 345 0.17 40.9 18145 - 19100 
12.7 11.1 -5.1 325 0.10 50.8 289 0.09 53.6 18:30 - 18:45 
19.0 23.1 -5.9 301 0.10 49.9 253 0.08 53.0 18115 - 18:30 
0.8 -5.6 3.2 303 0.09 52.1 301 0.10 50.5 

Total 7.0 2437 2278 

Exit to Ball (North Bound) 
Time Changes (%) After Before 

Interval Vol Occ Speed Vol Occ Speed Vol Occ Speeq 
18:OO - 18115 
18:15 - 18:30 
18130 - 18145 
18145 - 19:OO 
19:OO - 19:15 
19:15 - 19130 
19:30 - 19145 

192 0.07 53.2 164 0.05 56.7 -14.4 -23.7 6.5 
166 0.06 53. 161 0.05 52. -2.7 -9.1 -1.0 
207 0.06 55. 1 ;;\ 0.06 53.1 -23.0 0.0 -2.9 
210 0.07 59. 233 0.08 53.1 11.0 22.4 -10.7 
225 0.06 62.9 0.10 54. 50.1 66.7 -13.5 
218 0.06 62. 0.14 45.1 15.4 133.3 -27.6 
149 0.05 62.7 0.05 60.7 8.4 10.1 -3.2 

19:45 - 20:OO I 90 0.03 69.11 114 0.04 68.01 26.7 33.3 -1.6 
Total 8.7 1580 1454 
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Even though it is not possible to estimate exact compliance rate because of the daily variation 
in traffic condition, rough estimation can be made by adjusting traffic volumes based on 
fraction between the alternative exits, Katella and Ball. It is estimated that about 13% of 
drivers among those who used Katella Avenue before diverted to Ball Road thanks to new 
CMS guidance during 30 minutes before game start. 

Table 4.5 Comvarison o f  Traffic Volume between Alternative Exits 
Time Total') T 

Interval 
18100 - 18:15 
18:15 - 18130 
18:30 - 18:45 
18145 - 19:OO 
19:OO - 19:15 
19:15 - 19:30 
19:30 - 19145 

Volume 
492 
41 9 
495 
555 
614 
598 
346 

19:45 - 20:OO I 21 5 
19:OO - 19:30 1227 

Before % 
301 61.1 
253 60.5 
289 58.3 
345 62.1 
389 63.4 
380 63.6 
198 57.1 
125 58.0 
769 62.7 

Exit 
Katella 
After') % 

319 64.9 
273 65.2 
332 67.1 
343 61.9 
326 53.2 
345 57.7 
218 63.0 
114 53.3 
671 54.7 

I Exit 
Ball 

20 
44 
-1 

-63 
-35 
20 

166 39.5 
207 41.7 
210 37.9 
225 36.6 
218 36.4 
149 42.9 

146 34.8 
163 32.9 
211 38.1 

253 42.3 
128 37.0 

287 46.8 

-10 
540 44.0 442 36.0 -98 
100 46.7 90 42.0 

Total volume is sum of exit volume both Katella and Ball. 
Volume for after case is adjusted based on before-case volume 

Change 
-1 9 
-20 
-44 

1 
63 
35 
-20 
10 
98 

The CMS message guiding vehicles to take Ball Road instead of Katella Avenue was turned 
on from 18:OO; Figure 4.14 shows, however, that distinct changes in traffic counts between 
before and after case actually began from 18:55 when congestion due to event occurs. Even 
though overall network performance was not compared in this field study, it is concluded that 
the route guidance with CMS was very effective during the event period in this Anaheim field 
study. 
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Figure 4.14 Changes in Volume at Alternative Exit Ramps 

4.5 Second Field Test 

We observed importance of driver compliance from the first field test. The performance of 
the information system is dependent on the fraction of complied drivers. Therefore, we focus 
on observing driver’s compliance behavior in the second field test. The purpose of the test is 
to observe driver’s response to CMS information as well effects of information. 

4.5.1 Description of Event and Routing Scheme 

In the second test, the event was held at the Edison International Field (home stadium of 
Anaheim Angels). The stadium is located next to the Arrowhead Pond Area, event place of 
the first field test. Total stadium area is 140 acres, and the stadium can accommodate 45,050 
people with a parking capacity of 15,000 vehicles. The event on the test day (September 22, 
1998) is a baseball game of Anaheim against Texas. 

On the event day, all five CMS’ around the stadium are turned on for 45 minutes from 6:20 
p.m. to 7:05 p.m. Usually two CMS’ on freeway 57 were used to guide freeway exits to the 
stadium indicating the closest exit to the stadium, which have induced left turn movements. 
Unlike ordinary messages, the new routing scheme aimed to avoid left turns at the 
intersections. The routing scheme was discussed and decided at the event meeting where 
related agencies are participating, such as City, Caltrans, police department, and event facility 
management agencies. CMS messages displayed for the test are shown in Table 4.6, and 
overall routing scheme for the event traffic is shown in Figure 4.15. 

Table 4.6 CMS messages for the 2“d Test 
Location Message 

EDISON FIELD 

ORANGEWOOD 
EDISON FIELD 

KATELLA 
EDISON FIELD 

CMS 3 SR-22 WB at Tustin USE FWY 57 N 
EXIT KATELLA 
EDISON FIELD 
USE ST. COLLEGE 
EDISON FIELD 

CMS 5 1-5 NB at 17 St. USE FWY 57 N 
EXIT KATELLA 

CMS 1 EXIT SR-57 SB at Wagner 

CMS 2 EXIT SR-57 NB at Chapman 

CMS 4 SR-22 EB at Harbor 
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Katella 

1 
Figure 4.15 Routing Scheme of the 2”d Test 

4.5.2 Data Collection and Survey Results 

In the second test, one of the main purposes is to observe drivers’ responses to the CMS. The 
most direct way to observe drivers’ responses is to do a one-to-one interview. We surveyed 
drivers’ responses to the CMS at the entrances of the stadium. Figure 4.16 shows overall 
procedure of interview. 

Figure 4.17 shows distribution of drivers by access roads. According to the survey, more than 
50% of attendee use either Orangewood or Katella Exit on SR-57. This tendency for drivers 
to use closest exit to the destination reveals drivers’ freeway use preference. An interesting 
observation of the survey is that only half of drivers remember the CMS route guidance 
information. The survey reveals that a 58% of drivers recognizes presence of CMS and an 86 
% of drivers remembers the guidance messages out of drivers who recognized the presence 
of CMS. That is, approximately only half of all attendee recognized CMS as a source of 
traffic information. This implies that CMS re-routing has not been a useful source of 
information at least from driver’s point of view. Though this is a little disappointing number, 
the rate tends to increase as the event start time closes by. That is, this reveals driver’s 
behavior seeking information and switching their routes in case of heavier congestion. 
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CMS Field Test Questionnaire 

I’m a researcher at UCI. This is a University of California research survey on driving 
to the stadium. (Did you drive to come here?) Would you please answer 5 - 6 
questions for a minute? It will only take a minute before you get to the gate. 

Yes 
Which freeway did you use to get here? 
5, 57, or 22 

(North bound or South bound) 

Did not use freeway. 

Where did you get off, Which exit? 
(Katella, Orangewood, Ball, St.College) 1 So, which street did you use? 

+ 
Did you see any lighted exit message 
near here? . No 

Do you remember the message? 

I 

Yes 

Was it a different exit than your normal 
one? 

I I 

-7- Did you follow the message or not? 

( What time did you 
arrive here? ) 

Thank you for 
answering 
questions. 

Figure 4.16 Field Survey Questionnaire 

66 



Table 4.7 Number of Vehicles by Access Road 

22 
15 N/A N/A 14 N/A 1 I EB 
17 N/A N/A 16 N/A 1 

( W E 3  2 N/A N/A 2 N/A 0 
Surface 63 26 11 12 5 9 

st. c 

Surface street 
and other 69 (25.6%) 

I 
P 

Number of Vehicle in Sample (Ratio) 

B all ..:::::::.. 9 3 .3 % ..... ..... ..... ...... ...... 

Figure 4.1 7 Fraction of Number of Vehicles by Approach 
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Table 4.8 Resvonse to CMS bv Exits (Freewav 57 users) 
Number of Drivers 

CMS Rem Conf Com Div Tot CMS Rem Conf Comp 
Ratio (%) 

Total 

64 86 20 100 11 45 29 25 5 5 Orange 
36 80 75 33 7 14 5 4 3 1 Katella 
57 85 28 75 10 60 34 29 8 6 NB Total 
58 86 51 46 12 151 88 76 39 18 

Ball 1 0 0 0 0 0 -  - - 0 
SB Total 91 54 47 31 12 59 87 66 39 13 

Katella 
66 89 82 7 3 29 19 17 14 1 Orange 
62 84 50 85 22 50 31 26 13 11 

Ball 8 4 4 4 0 50 100 100 0 0 
Other 4 0 0 0 0 0 -  - - 0 

Ratio of CMS: percentage of drivers watching CMS among all drivers passing CMS 
Ratio of Rem : percentage of drivers remembering message among drivers watching CMS 
Ratio of C o d  : percentage of drivers whose routes are different from the route the CMS suggests among 

Ratio of Comp : percentage of drivers complying CMS message among drivers whose route are different 

Ratio of Div : percentage of drivers who divert from their routes to one that the CMS suggests among all 

those who remember CMS message 

from the route the CMS suggests 

drivers heading to the stadium 

It was surveyed that 46% of drivers complied out of drivers whose original routes were 
different from the one suggested by CMS. When classifiing those who ignored presence of 
CMS as non-complied drivers, the actual compliance rate is estimated about 20%. Overall 
diversion rate is estimated about 12% when considered all drivers. Though high compliance 
rate is not expected, this compliance rate is enough to improve traffic condition as we 
analyzed before. In fact, very high compliance rate may just cause congestion at the 
alternative routes. 

Table 4.9 Response to CMS by Arrival Time (Freeway 57 users) 
Number of Drivers Ratio (%) 

Tot CMS Rem Conf Comp CMS Rem Conf Com Div 
Total 

72 92 50 33 11 18 13 12 6 2 6:45 7:OO 
57 100 33 75 14 21 12 12 4 3 6:30 6:45 
74 92 57 54 21 34 25 23 13 7 6:15 6:30 
56 93 69 44 16 25 14 13 9 4 6:OO 6:15 
48 70 71 20 5 21 10 7 5 1 5:45 6:OO 

25 0 0 29 57 24 7 4 1 0 - 5:45 
58 86 51 46 12 151 88 76 39 18 

7100 - 88 71 20 100 13 8 7 5 1 1 
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4.6 Summary and Conclusion 

We implemented two field tests. The first test was to observe performance of CMS routing, 
and the second test was to survey drivers’ responses to CMS routing. Large gap was found 
between laboratory research level and practical implementation level through two field tests. 

Dynamic optimal routing schemes can be found and applied within laboratory; however, there 
were many obstacles in applying these approaches. Technically, there is no direct connection 
between traffic monitoring systems and CMS information systems. It is partly due to low 
reliability of current traffic monitoring systems. Even though loop detectors are installed both 
freeways and surface streets, it is not possible to measure correct travel times through data 
from loop detectors. There are also institutional issues. Traffic management agencies are 
reluctant directly providing alternative guidance due to the lack of confidence on their 
decision. This is not only due to unreliable monitoring systems but also due to responsibility 
that they have to take when they mislead drivers. 

In the first field test, we monitored traffic condition on both freeways and surface streets. We 
could compare traffic conditions via data from exit ramps. However, reliable traffic 
measurements were not obtained for performance evaluation. It is mainly because of difficulty 
in monitoring traffic condition on surface streets. Even tough detectors are available on 
surface streets, their data are usually used for signal control and lost. In fact, there is strong 
development need for a network-wide traffic monitoring system on surface streets. 

In the second test, drivers’ responses were surveyed. Even for the event traffic management, 
the CMS’ were not very usefbl in terms of drivers’ recognition and compliance. Out of all 
event traffic, only 50% drivers recognized presence of CMS information. This result reflects 
low drivers’ expectancy of CMS information. That is, drivers do not expect much benefit 
from CMS. Their expectations are results of their experience and evaluation. When CMS 
provide the more reliable and beneficial information, the higher drivers’ expectation would be 
expected. 
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CHAPTER 5: PARAMETRIC EVALUATION FRAMEWORK WITH 
ENDOGENOUS DRIVER COMPLIANCE 

5.1 Introduction 

Research evaluating the effect of ATIS takes a multiple user class traffic assignment approach 
(Kanafani et al., 1991; Ben-Akiva et al., 1991; Van Vuren et al, 1991; Peeta et al., 1995). 
For the evaluation of ATIS, the crucial part is modeling route choice behavior for both 
guided and unguided drivers. Previous research using static analysis methods have used user 
equilibrium (UE), system optimal (SO), and stochastic user equilibrium (SUE) traffic 
assignment for this problem. In most studies, guided drivers are modeled to use the UE 
routes or the SO routes and the route guidance strategies are assumed to be available to 
achieve SO or UE driving pattern. Kanafani and Al-Deek (1 991) estimated the benefits of 
ATIS by comparing costs of UE and SO. Peeta and Mahmassani (1995) classified drivers into 
classes, and used a dynamic traffic assignment framework to study drivers under three 
different types of guidance information-- instantaneous, UE, and SO. Ben-Akiva et al. (1 99 1) 
and Koutsopoulos and Lotan (1990) employed a mixed UE and SUE traffic assignment in 
which the guided drivers follow the UE routes while unguided drivers follow the SUE routes. 

Though in static analysis of ATIS the above two basic routing objectives (UE and SO) have 
been considered, many studies argued that ATIS should not be viewed as a way of achieving 
a system optimum (Arnott et al., 1991; Hall, 1993). It is mainly because drivers will not trust 
the information systems if they recognize that they have been guided to use longer routes 
than other drivers. However, no research has shown how much the SO routes deteriorate 
overall performance due to reduced compliance to the guidance. 

Most previous studies focused on the evaluation of ATIS benefits. One of the most important 
findings in these studies is that higher market penetration might lead to overreaction and 
lower performance (Mahmassani and Jayakrishnan, 199 1; Arnott et al., 199 1; Ben-Akiva et 
al., 1991). Even though drivers’ compliance is the most important factor in ATIS evaluation, 
most studies have investigated the benefits of ATIS by various levels of market penetration 
with 100% compliance assumption. Emmerink et al. (1994) first showed a framework for 
analyzing market penetration and AI-Deek et al. (1 998) developed an evaluation framework 
by combining a probabilistic route diversion model and a system performance model. 
Recently Yang (1998) treated the market penetration of ATIS as an endogenous variable. He 
proposed a convex programming model and an algorithm to solve a mixed behavior 
equilibrium problem with endogenous market penetration that is determined by a continuous 
increasing fhct ion of the information benefit. 

This study evaluates two different route guidance objectives (UE and SO) by employing 
driver’s compliance model with varied level of unguided drivers’ perception error and market 
penetration. We formulate the problem as a general parametric nonlinear programming 
problem. Traffic pattern and performance of route guidance system are obtained by solving 
the mixed equilibrium problem while demands by user class are fixed by the endogenously 
equilibrated compliance rates. The logit-type compliance model is based on drivers’ travel 
time savings. The problem seeks “~ustainable’~ compliance rates under given perception error 
for unguided drivers and given market penetration. Using such compliance rates, two route 
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guidance objectives are evaluated. This study takes both guided drivers’ travel time savings 
from the drivers’ point of view and the total system cost from the system manager’s point of 
view into consideration as measures of effectiveness (MOE) of ATIS. In fact, these two 
MOE’s should be considered while evaluating the success of ATIS. Under endogenous 
compliance, UE route guidance can be expected to show higher rates than SO route 
guidance. However, it is not certain which route guidance state will show higher total system 
cost saving. Even though SO route guidance aims at minimizing the total system cost, SO 
route guidance may or may not show lower total system cost than UE route guidance due to 
deterioration of driver’s compliance. In total system costs, the performance of SO and UE 
route guidance compared to current traffic condition represented as a SUE state is interesting 
to examine. This paper develops a framework for such analysis. 

This chapter is outlined as follows. The next section explains about problem formulations and 
solution procedure including a driver’s compliance model and a mixed equilibrium assignment 
model. Section 5.3 depicts the numerical experiments, and this approach is extended to 
dynamic case in Section 5.4. Finally Section 5 . 5  presents conclusion and future research. 

5.2 Formulation and Solution Algorithm 

The compliance problem is an intrinsic problem in evaluating route guidance strategies. It 
shares many common features with the endogenous market penetration problem with multiple 
equilibrium behaviors formulated by Yang (1989). Here we develop a similar framework to 
study the compliance issue in routing. 

5.2.1 Performance of ATIS and Driver’s Compliance 

While Yang (1998) endogenously calculated market penetration via travel time saving, all 
equipped drivers were assumed to follow the guided route, thus ignoring the compliance 
issue. Here we assume the market penetration for ATIS to be known and treat compliance 
rate (i.e., decision to follow the advice or not) as a fbnction of expected travel time saving. 
From driver’s point of view, the expected travel time saving represents the quality of 
information. That is, if drivers are equipped, their compliance can be expressed as a hnction 
of travel time saving over the unguided case. 

The problem is formulated in a similar manner to (Yang, 1998). The mixed demand is 
regarded as a vector of parameters and the mixed equilibrium traffic assignment problem is 
written as a general parametric nonlinear program problem as follows: 

minmize Z(q, q) ( 5 4  

subject to 

X 

q = 4 * P ( A ( x ) ) . m  (5.2) 

q=q-q (5.3) 

where 
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q = guided demand 
q = unguided demand 
q = total demand 
x = link traffic flow pattern 
m = market penetration 
A(.) = guided driver's travel time saving over unguided 
p(.) = driver's complaince function 
Z(.) = objective function for traffic assignment 

- 

5.2.2 Compliance Model and Demand Split 

A schematic of the classification of user classes is proposed in Figure 5.1. In this paper, the 
split between guided and unguided drivers is obtained directly by analyzing driver's 
compliance behavior given market penetration. That is, the fraction of guided drivers is 

Drivers 

Equipped Drivers 
Drivers 

Complied Drivers Not Complied Drivers 

I 
Guided Drivers 
(UE I SO) 

Unguided Drivers 
(SUE) 

Figure 5.1 Classification of User Classes 

obtained from the endogenous compliance rates and given market penetration. This study 
further classifies the equipped drivers into two groups: one is complied (guided), the other is 
not complied (unguided). Of course, the unequipped drivers fall in the unguided group. The 
number of guided drivers is modeled as a fknction of expected benefit (travel time saving) in 
this study. That is, the compliance rate is endogenously determined by the travel time 
difference between guided and unguided drivers. A logistic fknction is used for the model to 
reflect other factors affecting driver's compliance b e h a ~ i o r . ~  Given market penetration for 
ATIS, the number of guided drivers is determined as follows: 

Other functional forms are possible, but we chose the 
simple function as in standard discrete choice models. 
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where, a, p= parameters which are common for all 0-D pair 
q, = guided demand from origin r ER to destination SES 
Y,,= total demand from origin r to destination s 
A, = travel time saving for guided demand from origin r to destination s 
m = market penetration 

1.00 

d 
Y 0.75 

w 

2 0.50 

a 
.- - 

0.25 5 

0.00 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

Travel Time 8 adng 

+Compliance Rate -Time Saving 

Figure 5.2 Driver Compliance Model and Sustainable Point 

This type of compliance model also leaves out other factors such as inequities between route 
travel times experienced by drivers being guided under SO. This is a rather strong 
assumption. More complicated compliance models to handle any inaccuracy from this are 
possible, but the complication from such models were deemed outside the scope of this 
paper. 

Figure 5.2 shows a logistic curve representing drivers’ compliance rate with respect to travel 
time saving and a time saving curve with respect to compliance rate. The travel time saving is 
obtained from a mixed equilibrium assignment. While the compliance curve regarded as a 
demand function, the time saving curve is regarded as a supply curve. Therefore, there exists 
an equilibrium point between two curves. The equilibrium point is called here a sustainable 
compliance rate that is determined endogenously. 

5.2.3 Mixed Behavior Equilibrium Traffic Assignment Problem 

Readers familiar with the mixed equilibrium formulation and solution techniques may skip this 
section. The formulation discussed here is solved in the inner iterations of the solution 
procedure in the next section. The thrust of the paper is not on mixed assignment, but rather 
in incorporating it in a framework with endogenous compliance, which is handled in the outer 
iterations of the solution procedure. 

We assume that unguided drivers make routing decisions based on perceived variables and 
hence their route choice behavior is assumed to result in stochastic user equilibrium. Guided 
drivers’ travel pattern is according to user equilibrium (UE) or system optimum (SO) 
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depending on the applied routing scheme. Therefore, the assignment problem is a mixture of 
either UE or SO with SUE. 

Mixed behavior equilibrium formulations can be found in several previous studies (Harker, 
1988; Hicks, 1992; Yang 1998). For the case of user equilibrium route guidance (UERG) 
where UE behavior and SUE behavior are mixed in the network, Yang (1988) formulated an 
optimization problem for the problem as: 

(UE + SUE) 

where t ,  = travel time on link a 
8 = parameter of driver's perception 
f,"'= flow on route k connecting r to s for the guided drivers 
j: = flow on route k connecting r to s for the unguided drivers 
xa = flow on link a 
62 = 1 if the route k between r and s uses the link a, or 0 otherwise. 

Unlike the mixed behavior equilibrium model for the UERG case, the equivalent optimization 
formulation for the mixed SO and SUE case (system optimal route guidance, SORG) cannot 
be obtained due to the nonseparablility of the cost fbnction. Instead, a variational inequality 
approach is employed (Harker, 1988; Hicks, 1992). Harker (1988) showed a single 
variational inequality (VI) formulation for a mixed behavior network equilibrium problem 
(UE + SO). By replacing UE behavior with SUE, the VI formulation can be employed for the 
SORG case as follows: 

(SUE + SO) 

c" (X*). (x" - X"*) +Pyx*). ( X g  - xg*> 2 0 
or 

C[c,"(x,.),c,"(x,.)]T .[(x,";x,")-(x,"*;x:*)] 2 0 
a c A  

where x," = the link flow of guided drivers on link a 
x," = the link flow of unguided drivers on link a 

(5.11) 

(5.12) 

74 



x: = the optimal link flow of the problem 
c," = the perceived travel cost for unguided drivers 
c," = the marginal travel cost for guided drivers 

Both the above formulations fit the class of formulations for which diagonalizations have 
been found applicable. For the UE/SUE problem, Yang (1998) used a diagonalization type 
algorithm with convex combinations. We employ this solution algorithm for SO/SUE also. 
While we have not established convergence of this algorithm to the SO/SUE state due to the 
lack of an equivalent mathematical program for the VI formulation, we have found that the 
solutions obtained were indeed in SO/SUE by evaluating the marginal costs across used paths 
at convergence. The algorithm forms the inner iterations in the solution procedure given next. 

5.2.4 Solution Procedure 

The procedure for solution is classified into two routines. The outer routine is to find 
equilibrated compliance rate and corresponding demand by user class-- guided and unguided. 
The outer routine iterates until achieving equilibrated compliance rates. The inner routine is 
to solve a mixed equilibrium traffic assignment problem. In inner routine traffic flows are 
updated by using method of average success (MSA). Figure 5.3 depicts overall procedure of 
the solution algorithm. 

Outer Iteration: ComDliance uDdate and demand determination. 

Step 0: Initialization. 
Set iteration number i = 0. 
Set an initial value of compliance rate, &), 'dr E R, s E S , and determine demand for 
both guided and unguided. 

( I )  
qj:) = qrs .p, .m , V r  E R, s ES 

4;: = qrs - q,, , Y r  E R, s E s (i) 

Step 1 : Mixed equilibrium traffic assignment. 
Obtain average travel times ?::), c!:) , 'dr E R, s E S for both guided and unguided by 
performing traffic assignment algorithm. 

Update compliance rate and demand for both guided and unguided using guided 
driver's travel time saving A(:; . 

Step 2:  Update demand. 

Step 3 : Convergence check. 
Stop if convergence is achieved, otherwise set i = i + 1 and go to Step 1. 
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Inner Iteration: Mixed UE (SO) and SUE equilibrium assignment algorithm 

Step 0: Initialization. 
Set iteration number i = 0. 
Generate a set of link flows x!), U E A  by performing all-or-nothing assignment for q 

and a stochastic network loading for + based on a set of initial free-flow time t," . 

Update link cost t f )  = t ,  (x!)), a E A . 

Find auxiliary link flow pattern yf), a E A by performing all-or-nothing assignment 
for q , based on the current set of (marginal) link flow time tf)(z!)), a E A and a 
stochastic network loading for q based on the current set of link travel time 

Step 1: Update. 

Step 2: Direction finding. 

t f ) ,  a E A . 

Step 3: Move. 

Step 4: Convergence check. 
Find the new flow pattern by setting x!+') = x!) + cd')(y!) - x!)), a E A . 

Stop if convergence is achieved, otherwise set i = i + 1 and go to Step 1. 

Initial compliance rate 
Determine demand for both 

guided and unguided 

1 
Guided Demand 

I 
(UE / SO) 1 

4 4 Update link travel time 

(average / marginal) travel 

Update link travel time 

I I Stochastic Letwork 
Loading 

I 
I 

I Update link flow 

N o - e - N o  Converged? 

-=-No No Converged? 

Update Demand 

1 

Figure 5.3 Solution Procedure 
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5.3 Numerical Examples 

5.3.1 Test Network 

We use a simple network with 12 nodes and 17 links as shown in Figure 4 for the simple test. 
The BPR (Bureau of Public Road) link performance fbnction is used as shown in equation 
(13), and network input data including free-flow travel time ( t," ) and link capacity ( ca ) are 
shown in Table 1. Here we assume that there is only one commodity connecting origin 1 to 
destination 12, and total demand is 1500. The parameters for the compliance model (equation 
4) are assumed to be a= 1.75 and /?= -0.50. 

t, =t:.{1+0.15.(xa /c,)'}, a E A  (5.13) 

20 11000 23 I 500 17 I500 

18 I1500 22 I 500 16 I500 19 1500 

14 I1000 

24 I800 19 11000 26 I 500 20 1500 

7 I 800 17 I800  

( Free-Flow Travel Time I Capacity ) 

Figure 5.4 Test Network 

5.3.2 Comparison of Total System Costs 

First, we compare total system costs of three route choice behavior models. This analysis is 
not yet the mixed equilibrium case but with single driver groups (SUE, UE and SO). Total 
system cost of the stochastic user equilibrium behavior model is varied depending on level of 
drivers' perception error (0 in equation 5) while UE and SO are independent from the 
perception error. Here smaller values mean higher perception error; so the SUE model with 
very large B value is equivalent to the UE behavior model. As shown Figure 5, the system 
cost of the SUE approaches that of U E .  The figure also shows that the total system cost from 
UE routing could be higher than that of unguided traffic (SUE) when unguided drivers' 
perception error is smaller than certain level. From this comparison, we learn that the UERG 
may lead higher system cost, which the system manager does not want. This implies that 
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route guidance for users may not be an effective way of improving the total system for some 
cases, especially when driver's perception error is small. That is, we get a conclusion, which 
is not surprising, that an important factor affecting the benefit from information is the level of 
the unguided drivers' perception error. It is, however, not easy to measure 8 from a practical 
point of view. 

86 ! , , , , , , , , , , , , , , , , , , , , 

Q? Q? Q?. Q? Q? Q? $ Q? Q? Q? \? 

Parameter 

Figure 5.5 Comparison of Total System Cost 
Parameter (9 is unguided drivers' perception error 
(higher Bmeans smaller perception error). 

5.3.3 Performance of ATIS and Driver's Compliance Behavior 

Secondly, we investigate the user travel time and total system cost by varying fractions of 
guided drivers and different levels of perception error. In this test, 100% market penetration 
is assumed, so the fiaction of guided drivers is same as the compliance rate. Figure 5.6 shows 
changes of user travel time and total system cost. This investigation expands the results from 
the previous section by introducing a compliance curve into the analysis. Note that we select 
three value of 8 (0.1, 0.15, and 0.3) which are essentially values at and on both sides of 
where the SUE curve intersects the UE line in Figure 5.5. 

Guided drivers' travel time savings over uneuided drivers (upper figure in Fimre 5.6) 

First, consider the curves excluding the superposed compliance line. Guided drivers' travel 
time savings are decreasing as their fractions increase except for the case of SORG with SUE 
perception error parameter 8= 0.3 (i.e., base-case drivers know network conditions well) as 
shown in the upper figure. When the driver's perception error is higher, the larger user travel 
time saving is obtained as expected. It is found that the level of driver perception error is the 
dominant factor affecting the guided drivers' travel time saving. 
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Interestingly, guided drivers' travel time saving for SORG with perception parameter of 0.3 
reveals that drivers need to sacrifice substantial amount of individual travel time to improve 
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+so (0.1) 

+UE (0.15) 
+SO (0.15) 
-x- UE (0.3) 
+SO (0.3) 
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+so (0.1) 
+UE (0.15) 
-M- SO (0.15) 

+ UE (0.3) 

Complied Drivers 

Figure 5.6 Cost Comparison by Fraction of Guided Drivers. 
* The values in the brackets represent level of driver's perception error (e). A smaller value means 
higher perception error. 

the total system especially at low compliance rates. The amount of individual drivers' 
sacrifice decreases as compliance rate increases since more drivers share the burden for the 
total system. 

Total svstem costs (lower figure in Figure 5.6) 
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The lower figure shows changes of total system costs. As expected, SORG with 100% 
compliance results in the lowest total system cost. In all SORG cases, total system costs are 
decreasing as fraction of guided drivers increases regardless of levels of driver’s perception 
error. In the cases of UERG, however, total system costs increase from when guided drivers 
are more than certain amount even though guided travel times are reduced. Especially for the 
case of 6 = 0.3, the total system cost increases as guided drivers increase. This result shows 
that the UERG may result in increase of total system cost, thus showing that the results in 
figure 5 for higher 8 hold for various fraction of guided traffic as well. That is, if the 
unguided drivers are well-versed with the network, higher guided fractions may only make it 
worse. 

Endogenously determined compliance rate 

Next we take driver’s compliance behavior into consideration using the superposed 
compliance curve. An endogenous compliance rate can be found as follows. There is only one 
compliance rate satisfying the guided travel time saving shown for each of the six curves in 
Figure 5.6 (top). The fractions of guided drivers (or compliance rate at 100% market 
penetration) are determined by the six points where the compliance curve intersects the other 
six curves. Other points on the six curves cannot be achieved under the endogenous 
compliance framework. The total system costs corresponding to the compliance rates are 
found from the corresponding six points in the lower graph. 

Interestingly, this experiment shows that SORG can result in lower total system cost when 
the compliance rate is endogenously found. The driver’s compliance rate of SORG is lower 
than that of UERG, but not as low as we expected. This result conflicts with the general 
consensus that the information should not be used for achieving system optimum. Instead, 
this result shows that SORG may in some cases be used for lower total system cost, though it 
will still be under low compliance rates. 

Here we get three points for SO and three for UE (for the three 8 values). It is easy to 
compute a continuous set of points for each case for a full range of 8 values which give the 
complete set of cost values for “sustainable” compliance rates. This technique of 
endogenously finding compliance rates based on a compliance curve is a significant part of 
the analysis framework that we propose. Other forms of the compliance curve may be used if 
such curves are calibrated with real data, and the framework still applies. 

5.3.4 Performance Comparison under Endogenously Determined Compliance Rate 

While the previous two sections analyzed the problem by fixing the market penetration and 
compliance rates at first and then superposed the compliance rates endogenously to find 
sustainable compliance rates, the next task is to include market penetration also into the 
framework. That is, the guided traffic fraction is now the fraction of equzpped drivers who 
complied. Sustainable compliance rates can be formed in the same manner as above for 
various market penetrations. 

Figure 7 compares guided travel time savings for the selected network under UERG and 
SORG states with sustainable compliance. As shown in the Figure 7-a, the UERG always 
gives positive travel time saving, showing highest benefit at the low market penetration and 
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higher perception error (smaller 0). The SORG shows negative values in guided travel time 
saving when 0 is greater than 0.3 - 0.4 as in Figure 7-b. This is the case where guided drivers 
sacrifice for the system benefit. Note that the number of such drivers is very low, which 
would be clear from examining the compliance rates corresponding to these cases. We have 
leR out those results here. 

0% Market 
15% Penetration 

30% 

Travel Time 8 0% 45% 
Guided Driver$ io.ooh 

Saving 6.0% 

0 
Parameter 

Parameter 

(a) User Equilibrium Route 
Guidance 

wb Market 
15% Penetration 

Gulded Drlverd 

Saving 
Travel Tlme 5.0% 10.G%-15.0% 

Parameter 

(b) System Optimal Route 

Figure 5.7 Comparison of Guided Drivers ’ Travel Time Saving at the Sustainable 
Compliance Rate 
*The right side figure shows contour map of the left-side 3 dimensional graph 

Figure 5.8 shows a comparison of total system cost saving. In contrast to the comparison of 
guided travel time saving, UERG results in negative values in total system cost saving when 
the level of perception error is higher than 0.2 while SORG shows positive saving. Unlike 
guided travel time saving, the total system cost saving increases as the market penetration 
increases. 

It is possible to look further using this framework into measures such as percentage 
differences between SORG and UERG travel time saving, etc, for various levels of market 
penetration and SUE perception errors. We leave out such analysis, as the network used is 
just an illustrative one, and the results may not be generalizable anyway. 
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Figure 5.8 Comparison of Total System Cost Saving at the Sustainable Compliance Rate 
*The right side figure shows contour map of the left-side 3 dimensioal graph 

5.3.5 Performance Comparison on general urban 
network 

Previous section has compared performance between 
UERG and SORG at the sustainable compliance rates, 
but the simple grid type network with a single origin- 
destination (0-D) demand cannot represent general 
urban network. This section compares performance 
using more general network with multiple 0-D 
demand. We test a Sioux Falls network as a general 
urban network example. The Sioux Falls network 
shown in Figure 5.9 includes 24 nodes, 76 arcs, and 
196 0-D pairs. 

First sustainable compliance rates are evaluated with 
respect to market penetration and unguided drivers' 
perception error. As shown left side in Figure 5.10, 

especially at high perception error (small 0) and high 
market penetration. With respect to total system costs, 

UERG results in higher compliance rates than SORG, 

Figure 5.9 Sioux Falls network 
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the UERG shows better performance than SORG as well. This result implies that the 
performance of SORG is worse than that of UERG due to the characteristics of SORG 
lowering compliance rates. While SORG showed better performance (lower system costs) in 
many cases when analyzed with the simple grid network example, the general network 
example clearly shows better performance of SORG. Even though it is not possible to make 
a general conclusion that the UERG performs better than the SORG, it seems that UERG 
more like to perform better and attractive to drivers. 

Compliance Rate Total System Cost 
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Figure 5.10 Performance Comparison (Sioux Falls Network) 
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5.4 Extension of Endogenous Compliance Model to Dynamic Systems 

5.4.1 Overview 

In previous sections we developed a parametric evaluation framework of route guidance 
systems with endogenously determined driver compliance. This framework is extended to 
dynamic route guidance systems in this chapter. While the previous chapter emphasized on 
the evaluation of route guidance objectives, this chapter emphasizes more on characteristics 
of information devices from long-term evaluation perspective. 

Since the system evaluation here is based on long-term effect, the characteristics of 
information devices are dealt from a standpoint of system reliability that directly affects 
driver’s compliance behavior. There are many factors affecting to system reliability, such as 
accuracy of traffic monitoring system, capability of relaying information timely, future 
prediction capability, etc. Of course, the route guidance objective is one of them as addressed 
in previous chapter. Influence of these factors is analyzed at the system level by modeling 
driver’s credibility dynamics. 

In this section, driver’s credibility dynamics is modeled using a similar framework as in static 
cases. The modeling approach is same in a sense that drivers are classified into two user 
classes (complied and non-complied) based on their previous experience and the split is 
determined endogenously. This day-to-day update approach shows how drivers react to the 
information reliability and provides overall performance at the sustainable state. 

5.4.2 Evaluation Framework 

In this dynamic approach, DYNASMART is used as a dynamic traffic assignment-simulation 
tool. Overall feature of DYNASMART is addressed in section 2.4.1. DYNASMART uses a 
dynamic stochastic assignment in selecting initial routes for unguided drivers by taking 
drivers’ level of network familiarity into account. Therefore, overall structure becomes a 
multiple user class problem when portions of drivers are guided by route guidance devices. 
Unlike the previous mixed equilibrium assignment where guided drivers are assumed to 
follow UE or SO pattern without other considerations on information devices, the dynamic 
system explicitly take information devices’ characteristics into account. That is, this 
evaluation framework reflects detailed characteristics of information devices that affect to the 
information reliability. As final results of dynamic traffic assignment with an 
informatiodroute guidance device, not only network performance but also drivers’ post trip 
evaluation is of interest. 

The drivers’ post evaluation of their trips associated with route guidance systems is reflected 
to drivers’ credibility that influences their next decisions. Credibility can be an endogenous 
variable within a day-to-day dynamics framework. This study investigates how to measure 
and update the credibility of information with driver behavior analysis. Figure 5.1 1 shows the 
overall framework for drivers’ credibility update associated with day-to-day dynamics under 
the ATIS. The framework is designed for the case of CMS-based route guidance system. 
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Figure 5.11 Evaluation framework with endogenous compliance behavior 
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Figure 5.12 Day-to-day dynamics of driver’s compliance behavior 

In Figure 5.1 1 the upper part represents drivers’ day-to-day credibility update behavior. This 
routine evaluates drivers’ credibility from drivers’ point of view. We classifl four groups of 
drivers with respect to their compliance and satisfaction as shown in Figure 5.12. Those who 
have are satisfied with their decisions will stick to their decisions, while the unsatisfied will 
change their decisions next time. The evaluation result is represented by a system-level 
compliance rate calculated as: 
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CS(i) + NU(i) 
TD(i) 

CPL(z + 1) = (5.14) 

where, CPL(i) =Evaluated compliance rate for day i 

CS(i) =Number of drivers satisfied when complied on day i 

NU(i) =Number of drivers unsatisfied when not complied on day i 

TD(i) = Total number of drivers who made decisions on day i 

Drivers’ satisfaction is determined by their post evaluation. Drivers are classified into the 
satisfied if their travel times are not certain percentage (say, 10%) longer than the optimal 
ones; otherwise, they are classified into the unsatisfied. The percentage reflects indifference 
band as in the boundedly rational behavioral model (Mahmassani and Jayakrishnan, 1991). In 
this study, the system level compliance rate is updated day-to-day using method of successive 
average (MSA) in order to ensure convergence of the system as in Equation (5.15). 

UCPL(i + 1) = a .  UCPL(i) + (1 - a) .  CPL(i -+ 1) (5.15) 

where, UCPL(i) = Updated system-level compliance rate for day i 

cPt(i> =Evaluated compliance rate for day i 

The compliance update is repeated until it produces the stabilized system level compliance 
rate. The stabilized compliance rate reflects overall reliability of the information device. The 
higher stabilized UCPL implies the more reliable informatiodguidance system. That is, the 
UCPL represents inherent value of the information device affecting to drivers’ compliance 
rate. Overall performance of a system should be evaluated at the sustainable point only since 
others may be invalid conditions or interim products. 

Even though UCPL is assumed directly to be a compliance rate for next day, UCPL can also 
be regarded as an inherent value of the system reliability that is one of variables used in the 
en-route diversion model as in Chapter 3 .  In this case, the UCPL will be a representative 
value representing inherent characteristics of the guidance system. Of course, the actual 
compliance rates in the case are products of the compliance model rather than direct results 
of the UCPL. 

5.5 Numerical Example 

In this example, we use the same network used for the test of dynamic optimal CMS routing 
in Chapter 2 to keep consistency of analyses. In this example, we compare overall 
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performances and obtained sustainable compliance rates between static CMS, feedback CMS 
and predictive CMS for both average cost routing and marginal cost routing. 

The first example is to directly update drivers’ compliance rate day to day. Table 5.1 shows 
overall comparison of routing methods. The case of 100% assumption is compared as a 
benchmark. Expectedly, the predictive average cost routing method results in highest 
compliance rate when same update interval is applied. While feedback approach results in 
62% of sustainable compliance rate, the predictive average cost routing is expected to result 
in 92% of compliance rate. It is because the route guidance method is best from drivers’ 
perspective. 

Average cost of the total system 
Level of equilibrium representing travel time deviation between alternative routes 
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In the second example, we incorporate drivers’ compliance model represented by Equation 
5.16 as addressed in Chapter 3 .  Our main interest in the model is reliability value of CMS 
which is treated as an inherent value for the CMS. Unlike previous example, the value of 
reliability is updated day to day. 

1 
exp(l.8 - 0.5. LOF, + 5 .  LOC, - 5.6. CMSc) 

P(n) = (5.16) 

where, LOF, = Level of network familiarity for driver n 
LOCO = Level of congestion on link a represented by speed / free speed. 
CMSC = Reliability value for CMS c 

In this case, the value of reliability is updated here, and the compliance rate is obtained as a 
result of the compliance model. Even though the value of reliability is used as a variable in the 
compliance model, the value is updated exactly same as previous case. That is, the value 
represents drivers’ satisfaction. 

The sustainable value of reliability is converged to a point through drivers’ day-to-day 
equilibration procedure as shown in Figure 5.14. Similarly as sustainable compliance rates in 
previous example, the values of reliability are best for the predictive average cost routing and 
worst for the static routing. Also the predictive average cost routing shows best in overall 
performance as shown in Table 5.2. 

Average cost for vehicles receiving CMS information 
Average cost of the total system 
Level of equilibrium representing travel time deviation between alternative routes 
Compliance rate 
Sustainable value of reliability 
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4.6 Summary and Conclusion 

This study has developed a framework to parametrically evaluate traffic networks under 
various converged states: the user equilibrium route guidance (UERG) and the system 
optimal route guidance (SORG), both with unguided traffic in stochastic user equilibrium 
(SUE) state. The framework explicitly models sustainable compliance by drivers. It is capable 
of evaluating in what condition ATIS performs well and which route guidance state performs 
better as the market penetration increases. 

Unlike previous studies that evaluated ATIS based on externally assumed number of guided 
drivers with perfect compliance, this study has taken drivers’ compliance behavior into 
consideration by treating it as an endogenous variable. The route guidance system provides 
prescriptive information, and drivers make their decisions whether or not to follow the route 
guidance based on travel time savings over unguided travel. This paper has defined the 
problem as a general parametric nonlinear programming problem by using a logit-type model 
for compliance behavior. For the traffic assignments under route guidance, we have used two 
mixed equilibrium traffic assignments: one for UERG and the other for SORG. 

This paper has pointed out that unguided drivers’ perception error is an important factor 
affecting the performance of the route guidance system; however, it is not easy to observe 
such perception errors under recurrent congestion. In fact, understanding current traffic 
condition is a key for the better route guidance system. One of findings from this study is that 
high market penetration may decrease relative user benefits, but it does not deteriorate the 
total system due to drivers’ compliance behavior. In comparison of route guidance strategies, 
it seems that UERG performs better in general network and attractive to drivers though 
results in this paper cannot be viewed as general ones. It is mainly because they are drawn 
from limited examples and the results will be different under different compliance models. 
Therefore, hrther investigations with the different networks and compliance models are 
needed to draw generalized conclusions. 
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This research has also extended the approach to the dynamic CMS routing case. We 
compared four CMS routing methods, such as static routing, feedback routing, predictive 
average cost routing, and predictive marginal cost routing. In their comparison, information 
update interval is incorporated to see its effect on overall performance. As general results, the 
predictive average cost routing, expectedly, showed best performance and routing with 
shorter update interval performed better. This analysis also reveals that update interval in 
dynamic route guidance system is as important as route guidance strategy. 
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CHAPTER 6: CONCLUSION AND FURTHER RESEARCH 

This research project has developed a comprehensive ATIS evaluation framework. This 
evaluation framework is utilized in setting up optimized routing strategies and generating 
concrete information that can be directly to drivers for optimal routing. In this research CMS 
routing is main concern, and the routing scheme for event traffic has been implemented in real 
world. This research is expected to play an important role in advancing ATIS to real world 
implementation by completing major components which are still under development. 

For on-line real time implementation of optimal routing strategies faster algorithm to find 
optimal routing scheme is required. This research has proposed several algorithmic 
approaches, such as static approach, dynamic feedback approach, and dynamic predictive 
approach. The dynamic approach includes both average cost routing and marginal cost 
routing. 

The main benefit from static assignments is that they are fast by orders of magnitude over the 
dynamic assignment algorithms which exists now, and thus are very attractive for real-time 
application. The disadvantage, on the other hand, is that they do not capture network 
congestion dynamics very well, but to the rather simple link travel time functions used. 
Therefore, in this research dynamic approaches are developed based on dynamic simulation 
tool, DYNASMART (Dynamic Network Assignment Simulation Model for Advance Road 
Telematics) that is also used for ATIS evaluation. Driver’s behavior model was incorporated 
into the DYNASMART in order to reflect more drivers’ heterogeneity and traffic condition 
variations. 

Even though dynamic CMS routing can be found in the laboratory level, there are many 
obstacles in real world implementation. One of the reasons is low capability of network 
monitoring system in current loop detector systems. Therefore, a static CMS routing for 
event traffic management was implemented. As a real world implementation, a set of new 
CMS messages, tested and evaluated via off-line simulation, was actually operated during 
event traffic hours. According to traffic data, it was witnessed that the new CMS message 
induced changes in traffic pattern. Rough estimation of compliance rate was 13%, which is 
not high but enough to improve traffic condition, though exact compliance rate could be 
estimated via drivers’ behavior survey. This field test showed that CMS routing can be used a 
usehl tool for event traffic management. The second test was conducted to observe drivers’ 
responses which directly affect performance of CMS routing. 

In this research a parametric evaluation framework for ATIS was developed to evaluate 
ATIS without relying on assumed fixed rate of compliance. In the model, the drivers’ 
compliance rates are determined endogenously. Various routing strategies both static and 
dynamic case were tested and evaluated. The model framework is expected to be a usehl 
tool for long-term analysis of ATIS as well as guideline for future ATIS design with respect 
to routing strategy to apply and system reliability. 
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