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Atroposelective hydroarylation of biaryl
phosphines directed by phosphorus centres

Zexian Li1,2,4, Minyan Wang 2,4, Youqing Yang1, Yong Liang2,
Xiangyang Chen 3, Yue Zhao 2, K. N. Houk 3 & Zhuangzhi Shi 1,2

Prized for their ability to generate chemical complexity rapidly, catalytic
carbon–hydrogen (C–H) activation and functionalization reactions have
enabled aparadigmshift in the standard logic of synthetic chemistry. Directing
group strategies have been used extensively in C–H activation reactions to
control regio- and enantioselectivity with transition metal catalysts. However,
current methods rely heavily on coordination with nitrogen and/or oxygen
atoms in molecules and have therefore been found to exhibit limited gen-
erality in asymmetric syntheses. Here, we report enantioselective C–H acti-
vation with unsaturated hydrocarbons directed by phosphorus centres to
rapidly construct libraries of axially chiral phosphines throughdynamic kinetic
resolution. High reactivity and enantioselectivity are derived from modular
assembly of an iridium catalyst with an endogenous phosphorus atom and an
exogenous chiral phosphorus ligand, as confirmed by detailed experimental
and computational studies. This reaction mode significantly expands the pool
of enantiomerically enriched functional phosphines, some of which have
shown excellent efficiency for asymmetric catalysis.

Generationof enantiopuremolecules thatoperate efficientlywith ideal
atom and step economy is a long-standing challenge in organic
synthesis1–3. Catalytic asymmetric C–Hactivation4–14 provides a reliable
solution to this challenging task. Since a complex molecule typically
contains multiple C–H bonds with comparable strengths and steric
environments, the most successful method for this transformation is
the use of a directing group15,16, either inherent or preinstalled in
organic molecules, to position the metal catalyst at a particular C–H
bond in a chiral environment (Fig. 1a)17–20. In this context, treatment of
chiral ligandswithmetal catalysts has proven to be extremely effective
when directed by aromatic nitrogen heterocycles21,22, carbonyl
groups23–25, and amino derivatives26,27. Compared to oxygen and
nitrogen atoms, phosphorus coordinates strongly with transition
metals and is therefore challenging to use as a director in catalytic C−H
activation28. Substantial progresshasbeenmade in ligandmodification
through phosphorus-directed C−H activation29–41. We have also

demonstrated the viability of using phosphorus directing groups for
the site-selective C−H functionalization of indoles at the benzene
core42,43. Despite these advances, asymmetric C−H activation directed
by a phosphorus center has not yet been overcome.

Chiral biaryl phosphines are a class of promising ligands and
organocatalysts and have become tremendously important in modern
organic chemistry44–47. Preparations of these molecules typically
require multistep syntheses, in which chiral auxiliaries and kinetic
resolution are used most often in practice48,49. Palladium-catalyzed
asymmetric C–C50–52 and C–P53,54 coupling of aryl (pseudo)halides have
been disclosed for the synthesis of axially chiral phosphines. More
recently, a series of catalytic asymmetric C–H activation strategies
have also been developed to build the biaryl phosphines (Fig. 1b)55–59.
However, the directing group in these methods is limited to O atom,
and additional step for reduction of the formed phosphine oxides is
needed. We reasoned that the development of a general strategy to
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enantioenriched phosphorus ligands through one-step syntheses
would likely have a broad impact on asymmetric catalysis. Herein, we
report that libraries of chiral biaryl phosphines can be generated by
C–H activation with high regio-, stereo- and enantioselectivity (Fig. 1c).
Chirality transfer occurs by combining a metal catalyst with a phos-
phorus directing group and a chiral phosphorus ligand. The main
challenges for this process include strong background reactions with
stoichiometric phosphines leading to racemization and formation of a
thermodynamically stable metal-ligand complex resulting in low con-
version. Therefore, the metal catalyst must distinguish between these
two different phosphorus atoms and form a high equilibrium popu-
lation of the required intermediates to achieve good outcome.

Results
Reaction design
We started our project by identifying a class of biaryl phosphines for
asymmetric C–H activation with unsaturated hydrocarbons, which
would enable access to atropisomers through dynamic kinetic
resolution60,61. Phosphine 1a fulfils this criterion and exhibits a barrier
of 22.0 kcal/mol for atropisomer interconversion and a sufficiently
high rotational barrier for formation of olefination product 3aa
(~45 kcal/mol) from alkyne 2a (Table 1). When the reaction was con-
ductedwith [Ir(cod)Cl]2 (5.0mol%) as a catalyst and chiral diene L162 as
a ligand in toluene at 70 °C under a N2 atmosphere, the desired pro-
duct 3aa was formed in racemic with 33% yield (entry 1). The reaction
was then investigated by using the iridium catalyst with a variety of
chiral ligands to obtain the enantioselectivity. The use of Carreira
ligand L2 led to product 3aa in 79% yield with 51% ee (entry 3). Chan-
ging the ligand to the chiral spiro phosphoramidite L3 provided
superior resultswith alkyne 2a, delivering product3aa in 82%yield and
97%ee (entry3).Here the absolute stereochemistry of product3aawas
determined by X-ray crystallographic analysis. Loading the BINOL-

derived phosphoramidite L3 bearing an NMe2 motif decreased the
enantioselectivity to 66% (entry 4). However, treatment of a TADDOL-
derived ligand L5 in the system became very sluggish, leading to
product 3aa only in trace amounts (entry 5). Other solvents, such as
THF and DCM gavemuch lower enantioselectivities and yields (entries
6-7). Conducting the reaction at 90 °C further improved the yield of
3aa to 88% yield but with a reduced enantioselectivity (entry 8). Low
efficiency was observed by conducting the reaction at room tem-
perature (entry 9). It is noteworthy that other iridium sources like
[Ir(coe)2Cl]2 also maintained an acceptable enantioselectivity (entry
10), but other transitionmetals such as [Rh(cod)Cl]2 gave a remarkably
reduced ee value (entry 11) and Pd(OAc)2 completely failed (entry 12).
Decreasing the [Ir(cod)Cl]2 loading to 2.5mol% led to a substantial
decrease in the yield (entry 13), and a control experiment revealed that
the reaction did not proceed without the metal catalyst (entry 14).

Scope of the methodology
With the optimal reaction conditions in hand, we evaluated the scope
of two components in this reaction (Fig. 2). The scope of phosphines 1
was first examined with alkyne 2a. Phosphines with electron-donating
groups, including methyl (1b-e), phenyl (1f) and ether (1g-i) sub-
stituents at the P-phenyl ring or naphthalene ring, all delivered excel-
lent enantioselectivities for both hydroarylation reactions. Electron-
withdrawing substituents, such as F (1j-k), Cl (1l-m) andCF3 (1n-o), also
worked well. Given the steric requirements of ligands, we further
surveyed reactants with in creasingly bulky backbones. Phosphines
bearing 1,2-dihydroacenaphthyl (1p), phenanthrenyl (1q), pyrenyl (1r)
and a 1,2’-binaphthalenyl (1s) motif did not noticeably affect the
reaction efficiency and enantioselectivity for either set of reaction
conditions.Wewere pleased to find that heteroaryl-based phosphines,
such as quinolone (1t) and dibenzo[b,d]furan (1u) were very well tol-
erated in enantioselective olefination. The reaction of alkyne 2awithN-

Fig. 1 | Background and discovery. a Pioneering examples of catalytic enantio-
selective C–H activation assisted by various directing groups. b State-of-the-art
methods for catalytic asymmetric synthesis of chiral biaryl phosphines by

O-directed C−H activation. c Enantioselective P(III)-directed C−H activation
enabled by chiral phosphorus ligands.
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aryl pyrrole-based phosphine 1v delivered the desired product 3va in
69% yield and 96% ee, showing the same absolute configuration as the
biaryl substrates. In addition, variations in the aryl substituents (1w) at
the phosphorus atom with different electronic properties, were well
tolerated under reaction conditions. Furthermore, a thiophenl-
containing ligand 1x also proved to be highly efficient. We then
explored the scope for alkynes 2 with the developed conditions.
Increasing the steric hindrance in the internal alkynes (2b-d) with ethyl
to isobutyl groups maintained the high enantioselectivities but resul-
ted in a gradual decrease in the reaction yield. Nonsymmetric alkynes,
such as prop-1-yn-1-ylbenzene (2e), led to enantioenriched product
3ae in a highly regioselective manner, albeit with diminished yield. In
addition, the employment of a terminal alkyne 2f as a substrate com-
pletely failed to undergo C–H activation in the current system.

Hydroarylation of biaryl phosphines with olefins was then stu-
died in the transformation (Fig. 3). Initially, the different ligands and
reaction parameters were evaluated with phosphine 1a and olefin 4a
(Fig. 3a). We found that the selection of the BINOL-derived phos-
phoramidite L4 under 150 °C for 48 h could give the desired product
5aa (with ~44.8 kcal/mol rotational barrier) in 77% yield and 91% ee.
The absolute configuration of this product was confirmed by X-ray
diffraction, and the stereochemistry of other products was assigned
by analogy to this crystal. Using the same substrates as in Fig. 2, we

next evaluated the reaction efficiency with alkene 4a (Fig. 3b). A
wide range of biaryl phosphines that incorporate electron-neutral
(1b-e), electron-donating (1f-i) and electron-withdrawing (1j-o)
substituents, were readily tolerated with alkene 4a to produce the
related products 5ba-oa in modest to good yields and with excellent
levels of enantioselectivities. Moreover, the use of polycyclic phos-
phine 1p-s and heterocycle-containing phosphines 1t-u did not
interfere with productive atroposelective hydroarylation. However,
the pyrrole-based phosphine 1v only delivered the desired product
5va in trace amounts at the current reaction conditions. Phosphines
1w-x with different substituents at the P atom were also compatible
with this reaction. In addition to alkene 4a, we found that steric
hindrance of the acrylate (4b-d) had a minimal impact on the reac-
tion outcome, but styrene (4e) was not compatible with this C–H
activation process. Finally, one example highlights the kinetic
resolution of racemic 1,1’-binaphthalenyl phosphine 1y by asym-
metric hydroarylation of alkene 4a (Fig. 3c). Chiral product 5ya was
formed in 93% ee, and the remaining starting material 1y exhibited
an excellent selectivity factor (S = 99).

Synthetic applications
To emphasize the practicality of our chemistry, we chose some chiral
products, including 3aa, 5aa and 5ya, with different steric and

Table 1 | Optimization of the reaction conditions.a

Entry Cat [M] (mol%) L* (mol%) Solvent T (°C) Ee of 3aa (%)b Yield of 3aa (%)c

1 [Ir(cod)Cl]2 (5) L1 (11) Toluene 70 0 33

2 [Ir(cod)Cl]2 (5) L2 (11) Toluene 70 51 79

3 [Ir(cod)Cl]2 (5) L3 (11) Toluene 70 97 82

4 [Ir(cod)Cl]2 (5) L4 (11) Toluene 70 −66 76

5 [Ir(cod)Cl]2 (5) L5 (11) Toluene 70 – <5

6 [Ir(cod)Cl]2 (5) L3 (11) THF 70 71 44

7 [Ir(cod)Cl]2 (5) L3 (11) DCM 70 83 23

8 [Ir(cod)Cl]2 (5) L3 (11) Toluene 90 93 88

9 [Ir(cod)Cl]2 (5) L3 (11) Toluene rt 99 11

10 [Ir(coe)2Cl]2 (5) L3 (11) Toluene 70 77 77

11 [Rh(cod)Cl]2 (5) L3 (11) Toluene 70 12 70

12 Pd(OAc)2 (5) L3 (11) Toluene 70 – 0

13 [Ir(cod)Cl]2 (2.5) L3 (5.5) Toluene 70 98 15

14 – L3 (11) Toluene 70 – 0

THF tetrahydrofuran, DCM dichloromethane.
aReaction conditions: cat [M] (2.5–5mol%), L* (5.5–11mol%), 1a (0.2mmol), 2a (1.0mmol) in 2mL of dry solvent at 70 °C for 72h under argon.
bEnantiomeric excess (ee) was determined by chiral HPLC analysis.
cIsolated yield.
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electronic properties, to generate a ligand library and tested them for
asymmetric catalysis. In the first example (Fig. 4a), use of 3aa as a
ligand in the rhodium-catalyzed arylationof isatin6withboronic acid 7
afforded alcohol 8 with good yield and high ee (91%, 93% ee); these
were much higher than those obtained using the original MeO-MOP

ligand (72%, 75% ee)63. In the second case (Fig. 4b), compound 5aa
showed high reactivity for palladium-catalyzed asymmetric allylic
alkylation64 with substrate 9 and dimethyl malonate (10), which
afforded the desired product 11 in 93% yield and with 92% ee. In the
third example (Fig. 4c), phosphine 5ya was used as a ligand for
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palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl halide 12
with boronic acid 13 to form atropisomeric biaryl 14 in 80% yield and
with 93% ee50,51. These in situ-modified chiral ligands have proven
valuable in accelerating the optimization of asymmetric catalysis.

Discussion
We next performed several experiments to investigate this asym-
metric C–H activation. Reacting 1.0 equiv. of L3 with a stoichio-
metric quantity of [Ir(cod)Cl]2 yielded complex 15, as confirmed by
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X-ray analysis (Fig. 5a). Using 15 as the catalyst for hydroarylation of
alkyne 2a with phosphine 1a yielded compound 3aa with good
efficiency, and addition of a catalytic quantity of 3aa to the system as
a ligand led to low enantioselectivity (Fig. 5b). These results showed
that the formed products did not serve as ligands. Furthermore, a
clear linear effect for the reaction of 1a and 2b indicated that only
one chiral ligand could coordinate to the Ir center (see the Supple-
mentary Information for details). A series of deuterium labeling
experiments were then performed (Fig. 5c). The reaction of phos-
phine d-1a with alkyne 2a resulted in 47% deuterium incorporation
at the olefinic position of product 3aa. Further addition of 10 equiv.
of D2O to the system dramatically improved the level of deuterium
incorporation (85% D), suggesting considerable H/D exchange
occurred between the trace water in the solvent and the reaction
intermediates. In addition, KIE experiments (kH/kD = 2.03) indicated
that C−H bond cleavage was the rate-determining step in the reac-
tion (Fig. 5d).65

The asymmetric C–H activation involves a key intermediate INT1-
L3 in which the Ir center coordinates with two phosphorus atoms in
the ligand and substrate (Ir/L3/1a = 1/1/1). The high equilibrium popu-
lation of this species can be illustrated by analysis of the frontier
molecular orbitals (Fig. 6). The main contribution to the unoccupied
molecular orbital (LUMO+2) of the intermediate Ir-monomer came
from the Ir 5d orbital, which serves as an electronic acceptor for the
phosphorus lone pair. The energy difference between Ir-monomer
and the phosphorus-occupied molecular orbital (HOMO-1) of 1a was
1.9 eV less than that of the LUMO+2-HOMO-4 gap between Ir-
monomer and the chiral ligand L3 (10.6 eV vs. 12.5 eV), suggesting
that strong σ donation makes the electron-rich phosphine 1a more
likely to coordinate with Ir-monomer. Then, the η4-cod ligand dis-
sociates to provide vacancies around the Ir center (INT1-L3-pre) to
facilitate the coordination of chiral ligand. The Ir 5d occupied mole-
cular orbital (LUMO)of INT1-L3-pre is thermodynamically favorable to
interact with the phosphine 3d unoccupied molecular orbital (HOMO)
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of L3 than with another phosphine ligand 1a (11.3 eV vs. 13.2 eV). This
outcome indicates that the second coordinationwith L3mainly occurs
via π-back bonding, thus stabilizing the formation of intermediate
INT1-L3.

Based on the aforementioned results, the energy profile for the
reaction between phosphine 1a and alkyne 2a is shown in Fig. 7a66–70.
Biaryl atropisomers could easily undergo interconversion and the axial
chirality of 1a leads to the formationof twoenantiomers INT1-L3-R and
INT1-L3-S, where INT1-L3-R was set as the relative zero point of Gibbs
free energy. The two enantiomers INT1-L3 undergo C–H activation,
generating the iridiumcomplex INT2-L3 through a reversible oxidative
addition. Subsequent reductive elimination of H–Cl via transition state
TS3-L3 reversibly generates intermediate INT3-L3, and this process is
predominantly a H/D exchange with trace water in the solvent. As a
competing pathway, insertion of alkyne 2a into the Ir–Hbond of INT2-
L3-R leads to INT4-L3-R viaTS4-L3-Rwith a relative free energybarrier
of 30.7 kcal·mol−1, which is comparable in energy to the transition state
TS3-L3, but 2.5 kcal·mol−1 lower than that for the formation of INT4-L3-
S (30.7 vs 33.2 kcal·mol−1, Fig. 7b). The irreversible alkyne insertion has
the highest activation energy in the catalytic cycle and is therefore
proposed to be the rate-determining and enantio-determining step, in
accordance with the results of KIE experiments. The stereochemical
model can be further visualized by steric maps around the Ir catalyst
using SambVca 2.1 tool (Fig. 7c). The geometries of TS4-L3-R and TS4-
L3-S are octahedron, where Ir–Cl bond is defined as Z axis and chiral
ligand L3 is located in SE quadrant of the stericmap. In both transition
state TS4-L3s, C–H bond adjacent to the Ir–C bond towards to the

direction of Ir–Cl bond and interacts with nitrogen atomof L3by weak
hydrogen bond, resulting L3 appears vertically more extended in
favored transition state TS4-L3-R and horizontally more extended in
disfavored TS4-L3-S. The horizontal extension increases the repulsion
interaction between methyl group of alkyne and phenyl ring of L3,
resulting the energy barrier ofTS4-L3-S is significantly higher than that
ofTS4-L3-R. The dominant intermediate INT4-L3-R further undergoes
reductive elimination through transition state TS5-L3-R with an acti-
vation free energy of 13.8 kcal·mol−1 to form the INT5A-L3-R complex.
Finally, ligand exchange between INT5A-L3-R and phosphine 1a
releases product 3aa and regenerate INT1-L3 to complete the cataly-
tic cycle.

In summary, we have demonstrated an enantioselective catalytic
strategy for phosphorus-directed C–H activation enabled by chiral
phosphorus ligands with iridium catalysts. This method represents an
effective approach formodular syntheses of chiral phosphorus ligands
via one-step transformations with widely available parent ligands,
which considerably expands the toolbox of reactions available to
synthetic chemists. Furthermore, the results of this study constitute a
proof of principle for asymmetric C–H activations in more general
molecules,whichmay furnish solutions for the remaining limitations in
this field.

Methods
Due to slight variations in the experimental protocols for theprocesses
presented herein, we refer the reader to the Supplementary Informa-
tion for experimental details.
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Data availability
Crystallographic data for the structures of 3aa, 3va, 5aa and 15
reported in this paper have been deposited at the Cambridge
Crystallographic Data Center under deposition numbers CCDC
2169735, 2169736, 2169737 and 2169738. Copies of the data can be
obtained free of charge via www.ccdc.cam.ac.uk/getstructures. All
other data supporting the findings of the study, including experi-
mental procedures and compound characterization, are available
within the paper and its Supplementary Information, or from the
corresponding author upon request. Coordinates of the optimized
structures are provided in the source data file. Source data are
provided with this paper.
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