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An Optimized Structure-Function 
Design Principle Underlies Efficient 
Signaling Dynamics in Neurons
Francesca Puppo1,3, Vivek George1,3 & Gabriel A. Silva1,2,3

Dynamic signaling on branching axons is critical for rapid and efficient communication between neurons 
in the brain. Efficient signaling in axon arbors depends on a trade-off between the time it takes action 
potentials to reach synaptic terminals (temporal cost) and the amount of cellular material associated 
with the wiring path length of the neuron’s morphology (material cost). However, where the balance 
between structural and dynamical considerations for achieving signaling efficiency is, and the design 
principle that neurons optimize to preserve this balance, is still elusive. In this work, we introduce a 
novel analysis that compares morphology and signaling dynamics in axonal networks to address this 
open problem. We show that in Basket cell neurons the design principle being optimized is the ratio 
between the refractory period of the membrane, and action potential latencies between the initial 
segment and the synaptic terminals. Our results suggest that the convoluted paths taken by axons 
reflect a design compensation by the neuron to slow down signaling latencies in order to optimize this 
ratio. Deviations in this ratio may result in a breakdown of signaling efficiency in the cell. These results 
pave the way to new approaches for investigating more complex neurophysiological phenomena that 
involve considerations of neuronal structure-function relationships.

The mechanisms underlying the successful integration and rapid transmission of information in the brain rely 
on interactions between structural and dynamical properties that begin at the level of the single neuron. The 
complexity of these interactions are reflected in the wide variability of axon arbor morphologies and dynamical 
states neurons can take on. A still unsolved fundamental question is what is the relationship between the mor-
phological design principles of individual branching axons and their role in optimizing action potential signaling 
in the neuron?

Neuronal morphologies are the outcome of complex developmental processes including axon growth, stabili-
zation of synaptic connections and axon pruning1–3. These processes are dependent on a multitude of local molec-
ular and cellular mechanisms and conditions4–6. Despite the stochastic nature of morphological development, as 
well as other biological, physical, and molecular constraints, evolutionarily neurons have achieved a degree of 
common computational efficiency. A growing list of experimental and computational results, including those we 
present in this paper, suggest that these developmental processes in neurons satisfy a set of specific optimization 
principles7–10.

Until recently, the prevailing dominant hypotheses has been that neurons are morphologically designed to 
optimize for the least amount of cellular material necessary. The logic was that the less amount of material that 
was used, the greater the conservation of energy and cellular resources. In particular, a number of studies have 
argued that wiring minimization principles that maximize the conservation of material underlie the morpho-
logical design of neurons and even the broader anatomical organization responsible for functional maps in the 
neocortex7,10–13, such as the intracortical wiring underlying functional maps in mammalian visual cortex10,14. 
However, more recent work has shown that neurons are not minimized for wiring length but instead are designed 
somewhere in between the two extremes of minimizing wiring costs versus maximizing action potential con-
duction velocities. They use more material than minimal construction costs would allow in order to increase 
conduction velocities that decrease temporal costs, but at the same time they do not signal as fast at they could if 
the wiring design was optimized strictly for speed, thereby offsetting the material cost9,15. Budd et al. have recently 
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examined the functional consequences and temporal cost of wiring minimization principles. Their results suggest 
that there exists a trade-off between the time it takes action potentials to reach synaptic terminals (temporal cost) 
and the amount of cellular material associated with the wiring path length of the neuron’s morphology (material 
cost)9. This can be interpreted as a need to balance the advantages to the organism of signaling and processing 
information as fast as possible, while keeping material and cellular costs within reason.

However, where this spatio-temporal trade-off lies and the design principles being optimized remain 
unknown. Identifying them is critical to ultimately understanding why neurons are designed the way they are, 
and the effect they may have on a neuron’s ability to represent and process information in the brain. This would 
also allow many other seemingly unrelated neurobiological results that involve considerations of neuronal 
structure-function relationships to be understood within this new context. As a result, completely disconnected 
results, models, and interpretations of data would have an underlying ‘constraint’ that nature necessitates they 
conform to. This would have a significant impact on our understanding of the brain as a system.

The work by Budd and colleagues suggested that the spatio-temporal trade-off observed in axon arbors con-
tributes to the maximization of temporal precision, or conversely, the minimization of temporal dispersion in 
neuronal circuits9. Here, we explored the functional role of axon morphologies in the propagation of action 
potentials. The result of our analysis suggests a new putative underlying optimization principle between tem-
poral and material costs in axon arbors. We investigated the signaling dynamics of action potentials in individ-
ual axonal branches using a model that computes a metric associated with the efficiency of signaling in spatial 
geometric networks. We have recently shown that optimal efficient signaling between connected node pairs in 
geometric networks is bounded by a ratio that approaches unity, between the signaling latency on the edge and 
the internal dynamics of the individual nodes16. We call this ratio the refraction ratio. It reflects a necessary bal-
ance between the internal dynamics of the participating nodes that make up the network, and the dynamics of 
signaling or information flow on the network. We have previously shown in numerical simulation experiments 
that a deviation of this principle can result in the complete breakdown of signaling dynamics17.

In this work, we propose the refraction ratio as a measure of signaling efficiency in axons, and we provide 
evidence that the design of axonal arborizations are constructed to optimize this ratio. We considered individual 
Basket cell neurons as geometric axon tree networks with nodes along axonal branching points. We then analyzed 
the signaling dynamics along individual axonal branches, where a branch is the entire axonal segment connect-
ing the axon initial segment to one of the axon’s terminals. Basket cell neurons optimize the ratio between the 
refractory period of the membrane and action potential conduction latencies. Given a signaling latency along the 
convoluted path resulting from the morphological geometry of an axon arbor, the ratio of the signaling latency to 
the membrane refractory period approaches a value of unity for each individual axonal branch. This reflects the 
theoretically predicted optimal ratio.

One interpretation of our results is that the convoluted paths taken by axons and axonal branches reflect a 
design compensation by the neuron to slow down signaling latencies in order to optimize the refraction ratio. 
Because the cell does not have direct control over the biophysics responsible for determining the length and 
changing character of the membrane refractory period, it uses axonal morphology (structure) to ensure that an 
optimized refraction ratio is almost always preserved by the time action potentials reach synaptic terminals. An 
optimized ratio reflects a balance between the temporal constraints associated with the biophysics of the mem-
brane, and the amount of time it takes action potentials (the signals) to travel down the axonal branch.

Competitive Refractory Dynamics Model
We have recently described the construction and theoretical analysis of a framework derived from the canon-
ical neurophysiological principles of spatial and temporal summation that models the competing dynamics of 
incident signals into nodes along directed edges in a network16. We considered how temporal latencies produce 
offsets in the timing of the summation of incoming discrete events, and the ultimate activation of downstream 
nodes. Our approach involved the development of a competitive refractory framework. The framework models 
how the timing of different signals compete to ‘activate’ nodes they connect into. We use the term activation here 
to imply an appropriate reaction of that node to the signal it has received. For example, in the case of biological 
neurons it would be the generation of an action potential that propagates down the axon and axonal arboriza-
tions. In an abstract notion of a directed network, it is the generation of a discrete signaling event by the activated 
node for an excitatory input (or lack of activation for an inhibitory input) and a subsequent period of refractori-
ness. The interplay between temporal latencies of propagating discrete signaling events on the network relative to 
the internal dynamics of the individual nodes can have profound effects on the dynamics of the network17–20. In 
a geometric network temporal latencies are due to the relationship between signaling speeds (conduction veloc-
ities) and the geometry of the edges on the network (i.e. edge path lengths). The model also assumes that each 
node has associated with it a refractory period or refractory state. The refractory period is a value that reflects 
the internal state of the node in response to its activation by an upstream winning node (or set of nodes). It is a 
period of time during which the node is not capable of responding to other input signals from nodes that connect 
into it. In other words, it is refractory to such inputs. We did not assume anything about the internal model that 
produces this refractory state, which could include an internal processing time during which the node is making 
a decision about how to react.

The refraction ratio.  We refer the reader to16 for a full treatment of the derivations and theoretical analysis. 
We considered the geometrical construction of a network in the following sense. We assumed that signals or 
discrete information events (e.g. action potentials in biological neurons) propagate between nodes along directed 
edges at a finite speed or conduction velocity, resulting in a temporal delay or latency of the signal arriving at 
the downstream node. Imposing the existence of signaling latencies implies a network that can be mapped to 
a geometric construction, where individual nodes could be assigned a spatial position in space in ℝ3. Directed 
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edges connecting node pairs are allowed to have a convoluted path integral, i.e. a Jordan arc. There is no restric-
tion that edges have to be spatially minimizing straight line edges, geodesics. A signaling latency τij defines the 
ratio between the distance traveled on the edge relative to the speed of the propagating signal. For any set of con-
nected vertex pairs vivj, τij = dij/sij. We then define a refractory period for the vertex vj by Rj. This reflects the inter-
nal dynamics of vj once a signaling event activates it. For example, the amount of time the internal dynamics of vj 
requires to make a decision about an output in response to being activated, or some reset period during which it 
cannot respond to subsequent arriving input signals. We place no restrictions on the internal processes or time 
that contribute toward Rj. Once the winning node vj ‘activates’, it will become refractory for a period of time Rj. 
We can then compute at discrete times in parallel for every vertex in the network, i.e. every vj, which set of nodes 
that connects into vj causally activates it. We are able to achieve this by keeping track of the temporal interplay of 
propagating signaling events on the edges relative to the refractory states of the individual vertices.

A key consideration of this computation was establishing a relationship between Rj and τij for a vertex vj. We 
defined the refraction ratio between the refractory period Rj and a signaling latency τij associated with a discrete 
signaling event into vj coming from a vertex vi on the edge eij as

τ
∆ = =

⋅R R s
d (1)

ij
j

ij

j ij

ij

where Rj > 0. Our determination of which set of vi will successfully activate vj emerges from an analysis of this 
ratio for every vertex connected into vj.

Under realistic conditions, there is likely to be a temporal offset between when each vi signals and how far 
along vj is in its recovery from its refractory period due to a previous signaling event. Furthermore, each contrib-
uting vi is statistically independent from every other vi, so that the amount of temporal offset for each vi vertex sig-
naling vj will be different. In order to compute these offsets and keep track of the overall dynamics of the network, 
we index two different notions of time. We defined ti to be the moment at which vi initiates a signal along its edge 
eij towards vj. And an observation time To, which is the moment at which we observe or measure the state of the 
network. We can then compute temporal offsets by slightly expanding how we define the refractory period and 
signaling latency. For the refractory period, we let φj represent a temporal offset from Rj, such that at To.

φ φ= − ≤ ≤R R Rwhere 0 (2)j j j j j

We call Rj the effective refractory period. It reflects the amount of time remaining in the recovery from Rj at the 
observation time To.

Similarly, the times at which each vi vertex initiates a signaling event would not be expected to be all the same. 
At any given arbitrary observation time To a signal from any vi may be traveling part way along eij at a speed sij, 
effectively shortening τij. Or it may be delayed in signaling if vi signals some time after To, effectively lengthening 
τij. At To we need to take into account the degree of signaling progression for each vi along its edge. To accomplish 
this, we extend how we consider a signaling latency in the following way. First, we retain τij to represent the abso-
lute temporal delay (latency period) for a signal that travels on the edge eij for a vertex vi. Note that the initiation 
of the signaling event could come before, right at, or after the observation time To. We then considered a temporal 
offset for τij, an effective shortening or lengthening of τij relative to To as follows

τ τ δ δ= + ∈where, (3)ij ij ij ij

δij > 0 represents an effective delay or elongation beyond τij. In other words, it represents the vertex vi initiating 
a signal at some time after To. Values −τij < δij < 0 represent an effective shortening of τij. This would be the case 
when vi had initiated a signal that was traveling part way along the edge eij towards vj prior to To. When δij = 0 it 
implies that vi signals exactly at the moment the network is observed. And when δij = −τij it implies that the signal 
arrives at vj at the moment the network is observed. Values of δij < τij, which result in τ < 0ij , represent a signal 
arriving at vj prior to the observation time To.

In the general case then, we were then able to extend Equation 1 to reflect the effective refractory period and 
effective latency (relative to an observation time To) as

τ
Λ =

R

(4)
ij

j

ij

Efficient signaling using the refraction ratio.  We then defined a notion of optimized efficient signaling 
in the context of the competitive refractory dynamic framework and the refraction ratio. Given an effective refrac-
tory period Rj and effective latency τij along an edge eij, the condition for the winning vertex vi from the set of 
vertices that connect into vj that achieves activation of vj is dependent on the τ → +lim Rij j

 for τΛ = R /ij j ij. In other 
words, the first discrete signal that arrives at vj after it stops being refractory is the signal that results in its activa-
tion. Intuitively, efficient signaling in the context of the framework means that there should be a temporal match 
between the dynamics of signals traveling on edges relative to how quickly nodes can internally process signals. 
When a mismatch between these two considerations occurs, it can cause a break down in the signaling dynamics 
of the network. If signaling speeds sij are too fast, or equivalently, if the latencies τij are too short, compared to the 
refractory period of the node, the network will not be able to sustain recurrent activity17. If sij is too slow or the set 
of τij too long then the network will be inefficient in the sense that it has the potential for faster dynamic signaling 
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that is not being realized. Time, as a resource, is being wasted in such a network. In16 we formalized these con-
cepts by deriving upper and lower bounds for the refraction ratio between connected vertices vi and vj. We were 
able to show that, given a subgraph of the network as a set of nodes vi with directed edges into a node vj, the opti-
mal refraction ratio [Λij]opt is bounded by

φ δΛ = Λ =
τ → +

[ ] lim when and 0 [Upperbound]
(5a)ij opt

R
ij j ij

ij j

φΛ ⇒ Λ =
δ ϕ→− +

R[ ] lim when [Lowerbound]
(5b)

ij opt ij j j
ij j

where τij is the absolute signaling delay on the edge eij and Rj is the absolute refractory period for vj. Given these 
bounds, an optimized refraction ratio is such that

τ

Λ


 = → .

R
1

(5c)
ij opt

j

ij

We refer the reader to16 for the full derivation and proof.

Refraction ratio analysis in axon arbors.  In this paper, we considered the morphological structure 
of individual Basket cell neurons as geometric networks, and carried out an analysis of the refraction ratio for 
individual axonal branches given experimentally determined morphologies and computed values of conduction 
velocities and refractory periods. Specifically, we considered a path consisting of the soma of a neuron and its 
axon and axonal arborizations. We first mapped the axon arbor network into a tree-graph consisting of a root 
vertex defined at the axon’s initial segment, and terminal vertices at each synaptic terminal (see Methods section). 
We then evaluated the signaling efficiency at synaptic terminals by computing the refraction ratio at each terminal 
vertex as a function of the geometry (morphology) of the respective axonal branches. We use the term ‘branch’ to 
refer to the sequence of axonal segments connecting the root vertex, i.e. the first vertex at the soma, to a specific 
terminal vertex at one of the axon's synaptic terminals.

The refraction ratio is a point property, in the sense that it is computed at a specific node in the network. We 
computed the ratio for a known set of defined nodes corresponding to specific axonal segments along the length 
of a branch, culminating at the terminal synaptic node. Computing the ratio depends on knowledge or estimation 
of the conduction velocity of the action potential and the refractory period for the node under consideration. 
The refractory period or refractory state of individual nodes along specific points in the arbor graph reflect the 
refractory period of the membrane at the corresponding points along the axon (see the Methods section for full 
details regarding the estimation of the refractory period). The refraction ratio along the defined node points of 
the branching path that connects the root vertex to the synaptic terminal vertex is a property of that branch. It 
depends on the time of propagation of an action potential along that branch (which is a function of the morphol-
ogy and conduction velocity). Within this context, the refraction ratio determines a gating effect at each node: 
in setting the rate at which each action potential can be transmitted along an axonal branch, and as a result when 
synaptic signaling occurs, it dictates the frequency at which each neuron fires.

Results
Graph-Based Model of Geometric Axon Arbor Networks.  We carried out our analysis of the refrac-
tion ratio in geometric tree networks of morphologically reconstructed axonal arbors. In order to compare our 
results with those of Budd and colleagues15, we choose to analyze Basket cell neurons. Specifically, we considered 
anatomical and morphological data from detailed three-dimensional (3D) reconstructions of complete single 
neuron axonal arbors of 57 basket cells from the rat neocortex21–23. This resulted in a data set consisting of 11,575 
independent axonal branches. The morphology of one of the basket cells we analyzed is shown in Fig. 1A.

We used a graph-based modeling approach to map the geometric connectivity of the axon arbor structures. 
The vertices in the graph reflect sampling points in the original morphological reconstruction of the neurons, and 
are associated with a physical position in three dimensional space (see NeuroMorpho.Org22,23). Figure 1B shows 
a graphical representation of the axon tree network: the root vertex vR corresponds to the initial vertex at the axon 
initial segment where the axon begins at the base of the cell body (soma); branching points along the axons were 
labeled as branching or bifurcation vertices vB; synaptic terminals were defined as fixed end terminal vertices vT. 
We use the term ‘branch’ to refer to the axonal segment connecting the root vertex, i.e. the first vertex at the soma, 
to a specific terminal vertex at one of the axon’s synaptic terminals. Vertices in between these two end point ver-
tices reflect axonal segments along the way, defined by the original morphological sampling frequency of the data 
in the NeuroMorpho database. We call these elementary vertices ve,n. We equivalently use the term ‘branch’ or 
‘branching path’ in some instances in the paper. Within a specific neuron, every branch shares a common subset 
of vertices, specifically, the vertices for the segments that make up the axon itself from the soma up to where the 
axonal arborization branches off into individual synaptic branches. A full branching path then, is composed of 
this common axonal subset plus the unique arborization branch that ends at its respective synaptic terminal. 
Mathematically, we summarize a specific branch as p v v( , )R Ts

. For example, in Fig. 1B, a branch is the sequence of 
axonal segments that connects vR to the terminal vertex vT1

. A second branch is represented by the sequence 
of axonal segments that connects vR to the terminal vertex vT2

. In other words, a branching path p v v( , )R Ts
 is 

the path through which an action potential that is generated at the soma propagates to reach a specific synaptic 
terminal.
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Figure 1C shows the adjacency matrix encoding all the edges for the network graph representation of the 
neuron. A pair of vertices (vi, vj) in the graph are connected by a directed geometric edge eij that reflects the mor-
phological geometry of the axonal segment linking both vertices. Each edge is associated with a length parameter 
associated with the convoluted length of the axonal segment in the arbor, computed as the path integral of the 
corresponding curve. Additional details about network construction, as well as the description of the edge path 
length integral calculation can be found in the Methods.

Figure 1D plots the three dimensional graph of the axon network. For clarity, this particular plot only shows 
the root vertex vR and synaptic terminals vT. The plot shows the length minimized network, where the distance 
from root vertex to terminals is the shortest straight line path calculated as the Euclidean distance. The figure 
highlights the difference between the geodesic (shortest) path distance in the minimized network, relative to the 
actual morphological paths of the axon arbor (Fig. 1A). Panel E in Fig. 1 shows the biograph of the same axonal 
network. We observed similar single neuron reconstructions for all the cells in our data set.

Signaling Dynamics in Axon Arbor Networks.  We characterized the signaling dynamics on individual 
axonal arbors by estimating the conduction velocities (signaling speeds) of action potentials, and computing the 
propagation delays (signaling latencies) for each branch. The axonal branches were defined by fixing the principal 
vertex vR and each terminal vertex vTs

 in the axon graph for all branching paths p v v( , )R Ts
 (the subscript s indexes 

specific vertices - see Methods). Axon conduction velocity is a function of the biophysical and morphological 
properties of the membrane and axon; it varies with axon thickness, branching, ion channel density and variety, 
and myelination24. We assumed that the neurons we analyzed here were unmyelinated, inferred from their small 
average diameter (mean 0.63 μm) from direct measurements25 and theoretical studies26,27 (see the Methods for a 
detailed justification and calculations). We then derived the conduction velocity sij between any two vertices vi 

Figure 1.  Deriving axonal network tree graphs from morphological reconstructions. (A) Representative three 
dimensional morphological reconstruction of one of the Basket cells in our data set from rat neocortex. 
Dendritic arbors are in green, axonal arbors in black [data from http://neuromorpho.org/21–23]. (B) Graph-
based model of the geometric network of an axon and its arborizations. Vertices in the graph are labeled as 
follows: root vertex vR is located at the initial segment of the axon at the soma; branching vertices vB 
corresponding to branch points along the axons; terminal vertices vT were synaptic terminals of the axon 
arborizations. Vertices between branch points reflect measurement points in the original reconstruction, and 
are denoted as ve,n, with e identifying the edge and n the specific axonal point within that edge. The computation 
of the convoluted geometric distance between the root vertex vR and a selected terminal vertex vTs

 was 
determined by the sum of all edge distances between ve,n pairs forming the total path that connected the two 
vertices. The total distance approximates well the edge path length integral (see the Methods) of the tortuous 
path connecting the axon initial segment to a synaptic terminal in a real neuron (see panel A). (C) Reduced 
adjacency matrix mapping the connectivity between branching points along the axon tree of the neuron 
visualized in A. (D) Three dimensional graph of the same axon arbor mapped onto a minimized length network 
where only root vertex and terminal vertices are considered. The units are microns, as indicated. Metric 
distances are Euclidean distances from the root vertex at the center of the figure (common point for each 
branch) to the axonal terminals. The actual terminals are the green points in the figure. The 3D positions of root 
and terminal vertices (X, Y, Z coordinate values) were obtained from the 3D morphological reconstruction in 
the NeuroMorpho database. Visually, Euclidean distances are represented by the blue lines connecting the root 
to the terminal vertices. (E) Biograph of the reduced network of the axon arbor in A, described by the adjacency 
matrix in C. Each labeled box in the graph stands for an identification number of the reported vertex. Root 
vertex in yellow, branching vertices in green, and terminal vertices in red.

http://neuromorpho.org/
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and vj as a function of the axonal diameter D according to the relationship in28. We estimated an average conduc-
tion velocity for each individual axonal branch separately as described in detail in the Methods.

We obtained an average conduction velocity of 0.39 ± 0.16 m/s (Fig. 2 in Methods). Current estimates of mean 
intracortical axonal conduction velocity in adult cat visual cortex vary in the range 0.1–0.6 m/s29–31 with similar 
values reported for horizontal axonal connections in rat neocortex (0.3–0.5 m/s)25,32,33. It is important to note 
that the accuracy of axonal diameter values are dependent on the resolution of the imaging techniques used in21. 
Fractions of microns are not easily or reliably measurable by optical microscopy. This uncertainty on the variabil-
ity of the diameter data was accounted for in our analysis by computing average conduction velocities.

To estimate the signaling latency τij on an edge eij, we divided the path length |eij| between vertices vi to vj by a 
conduction velocity sij. The labels vi and vj indicate any vertex pair with vi connecting into vj regardless of the type 
of vertex (i.e. vR, vT or ve,n). We then computed the total propagation delay along an axonal branching path 
p v v( , )R Ts

 as the sum of all temporal delays for each individually computed segment (see Methods).

Refractory Dynamics in Basket Cell Axon Arborizations.  We next independently computed the 
refractory period Rj at the positions on the membrane corresponding to vertices vj for every axonal segment 
in the tree network of all 57 neurons. Accurate experimental measurements of sub-type specific axonal mem-
brane refractory periods are difficult to find in the literature. In general, refractory periods are defined as a range 
of values for whole neurons and almost always without regard for differences along different axonal segments. 
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Figure 2.  Basket cell neurons display optimized refraction ratios. (A) Distribution of the refraction ratio for 
all branches forming the axon arbor for a single neuron, i.e., for all paths p(vR, vT) connecting the root vertex at 
the initial segment vR to the synaptic terminals vT. The inset shows an example of one axonal branch path from 
this cell. The refraction ratio was computed independently for each axonal branch for all branches of the axon 
tree. The x-axes represents values of the computed refraction ratio, while the y-axes shows the number or count 
of individual axonal branches. (B) Distribution of the refraction ratio for the full data set of 57 basket cells. The 
refraction ratio axis is on a logarithmic scale. All axonal branches (11,575) from all the neurons are statistically 
independent variables, and the value of the refraction ratio corresponding to each of them was used to build the 
distribution. (C) The peak of the distribution shown in B occurred at 0.56, while the median had a value of 0.92. 
The median value of all medians computed for each of the 57 neurons in the data set had a value of 0.91 (see the 
discussion in the main text). Inset: histogram of the median values of the refraction ratio distribution computed 
for each of the 57 neurons. The computed mean of the median ratio distribution had a value of 1.01 with 49 
neurons (86 % of the entire data set) within one standard deviation, 1.01 ± 0.61 (μ ± 1σ). (D) Distribution of 
the refraction ratio for the entire data set (same data shown in panel B) but with x-axis extending out to the 
full range of values in order to show the few outliers (indicated by the red arrows). Inset: zoomed in view of the 
main plot out to a refraction ratio of 60 which captures the range over which most of the outliers were found. 
Note how the branch count steeply decreases from the peak. The distribution of refraction ratio values, the 
number and width of each bin, was obtained by dividing the full range of the computed refraction ratio by the 
smallest value of the ratio in order to obtain reasonable bin sizes (see Methods).
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Textbook values of the absolute refractory period are typically reported to range between 0.8–1 ms34. The relative 
refractory period typically lasts up to 5 ms. A few studies have investigated the details of the refractory period in 
the context of specific morphological and biophysical measurements35–38. This has allowed other investigators 
to study the role of axonal refractoriness on the signaling dynamics and information processing along individ-
ual axon branches, in response to extracellular activation39,40. However, although it is known that membrane 
refractoriness can change along the length of the axon and its axonal branches, there is limited empirical data 
available41. Recent work by Hu and colleagues on the biophysical and dynamical properties of Basket cells, the 
same class of neurons we investigated here, allowed us to estimate changes in the refractory period along axon 
arbors25. These authors showed that Basket cells display a supercritical density of sodium ion (Na+) channels 
with a specific density profile along the axonal tree, responsible for high reliability fast propagation in nonmyeli-
nated small axons. Additionally, analysis of Na+ channel gating kinetics and voltage-dependence of activation and 
inactivation revealed that the inactivation time constant was 2.4-fold faster for axonal versus somatic Na+ chan-
nels. Based on these observations, we estimated individual values of the refractory period Rj at axonal branching 
points as a function of the distance from the soma. We computed variations in the membrane refractory period 
using a derived function inferred from actual measurements of channel density variations in these neurons25 (see 
Supporting Information).

Basket Cells Axon Branches Approach Near Optimal Values of the Refraction Ratio.  The refrac-
tion ratio is defined as the numerical ratio between the refractory state Rj of a vertex vj, and the temporal propa-
gation delay (signaling latency) τij of a signal traveling from a vertex vi that connects into vj

16. We calculated the 
refraction ratio for each of the 11,575 axonal branch paths p(vR, vT) from root vertex vR to terminal vertices vT 
independently for the entire data set. To compute the ratio, we used the path length, and calculated τij and Rj val-
ues. Figure 2A, shows the distribution of the ratio for all branches of the axon arbor of one representative Basket 
cell from our data set. There is a clear clustering of the ratio near unity for the axonal branches of this neuron. The 
histogram for the distribution of refraction ratios across the entire data set for all the axonal branches is shown in 
Fig. 2B. There is a narrow peak in the distribution centered near unity. Figure 2C shows a highly magnified view 
highlighting the peak of the histogram in panel B. Approximately 76% (8, 795) of the total 11,575 branches had 
computed refraction ratios within the range of 0.25–1.75, with a median value of 0.92 for the entire distribution.

The value of the refraction ratio for the median of the medians across all 57 neurons had a computed value of 
0.91 (inset in Fig. 2C). To compute the median of the medians we took the median value of the refraction ratio for 
each of the 57 basket cells computed independently from their respective distributions as shown for the represent-
ative neuron in panel A, and then obtained the median value of all the individual medians across the entire pop-
ulation. Our rationale for computing the median of the medians was that it provides a normalization against the 
varying total number of terminal vertices (synapses) across our sample population of 57 neurons. The median of 
the entire distribution pools all the ratios equally for all computed axonal branches across the whole population, 
but it does not take into account that different neurons contribute different numbers of ratios to the distribution 
because they have more (or less) number of axonal branches. This means that neurons that have more branches 
will have a greater effect on the value of the median of the population, and if they happen to have a dispropor-
tionately greater number of outlier ratio values these outliers will skew the value of the median. By computing the 
median of each cell independently, and then identifying the median of the population of median values, each of 
the 57 neurons have equal weight or effect on the median of the medians, regardless of the total number of termi-
nal vertices they may have. It effectively filters out or normalizes a disproportionate effect contributed by outlier 
ratio values. Interestingly, the correspondence of the median of the entire population versus the median of the 
medians was almost identical (0.92 versus 0.91), adding further weight to the validity of the results.

In addition to the median values being near the theoretically predicted optimal, the distribution of the pop-
ulation of the medians, the degree of clustering near the peak, is equally significant. Because each median was 
computed independently for each neuron, the population of median values can be treated as its own data set. Of 
the 57 neurons, 49 of them (86 %) had ratios falling within one standard deviation, within the range 1.01 ± 0.61 
(μ ± 1σ). Nearly the entire sampled population, 56 out of 57 neurons, had median values of their ratios falling 
within two standard deviations, in the range 1.01 ± 1.22 (μ ± 2σ) for the positive values of the ratio (since nega-
tive values have no meaning).

Importantly however, we note that some axonal branches did deviate significantly from an optimized refrac-
tion ratio, in one case extending out to an extreme value of 1600; see the outliers in Fig. 2B and D. This lends sup-
port for the sensitivity of the refraction ratio as a metric of signaling efficiency in neurons. We discuss the possible 
functional implications of such outliers in the Discussion below.

Morphological Regulation of Signaling Latencies.  In order to investigate how the different parameters 
that define the refraction ratio affected the computed values for our data, we looked more closely at what param-
eters were having the greatest effect on the axonal branches of one representative neuron. Figure 3A shows a 
stylized axon arbor and schematically exemplifies observed signaling pathways in our neuron graph model. An 
action potential is generated at the axon initial segment (vR, yellow circle) and propagates to individual synaptic 
vertices (terminal vertices vT, black circles) along the respective branching paths p v v( , )R Ts

 of the arbor. Two 
example branching paths are illustrated in the figure (blue and orange lines), which share the first two bifurcation 
points (red circles) and corresponding edges. Figure 3B shows the refraction ratios for all the branching paths 
p v v( , )R Ts

 of an individual cell ordered by decreasing edge path length (Methods). Similar to the results above, the 
plot shows how a large subset of the terminal vertices in this neuron fall within a range of 1 ± 0.5 (red horizontal 
bar in Fig. 3B). The value of the ratio is sensitive to and inversely related to the path length from the root vertex at 
the soma to the terminal vertices (Fig. 3C). Figure 3D shows the signaling latencies from the root vertex to the 
terminal vertices for all paths in the arbor. Signaling latencies are sensitive to |eij|, which are determined by the 
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axon’s morphology. These results are in agreement with numerical simulations of intracortical axon arbors which 
suggest that the path length is the main determinant of signaling latency15. Axonal branches longer than ~500 μm 
in this neuron were almost always capable of achieving an optimal ratio despite significant differences in morpho-
logical path lengths and signal latencies. We observed similar results in other individual neurons we looked at.

Figure 3E shows the relationship between the mean diameter measured as a function of position along indi-
vidual branches of the axonal arbor, while Fig. 3F shows the scatter plot of the conduction velocity from the soma 
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Figure 3.  Effect of axonal morphological branch path lengths and conduction velocities on computed 
refraction ratios. (A) Stylized axon arbor of a neuron. Yellow circle: root vertex at the axon initial segment; red 
circles: bifurcation vertices; black circles: terminal vertices at the axon’s synaptic terminals. A branching path 
p v v( , )R Ts

 is defined as the axon segment connecting the root vertex vR to a specific terminal vertex vTs
. The two 

example branching paths in the figure (blue and orange lines) share the first two bifurcation points and 
corresponding edges. An action potential is generated at the axon initial segment and propagates from the soma 
to each synaptic vertices throughout the individual branching paths of the arbor. (B) Refraction ratios 
computed for all branches of the axonal tree of one representative basket cell. Each circle represents one 
individual path p v v( , )R Ts

. Data points within the red band are ratios within a range of 0.5 to 1.5, indicating 
branches that fell near an optimal value of unity. (C) Path lengths associated with the axon morphologies 
responsible for the convoluted edges connecting the root vertex at the initial segment (vR) to the synaptic 
terminals (vT). Each bar represents a different synaptic terminal (branch) of the axon tree. (D) Propagation 
delays (latencies) for the same cell. (E) Mean axonal diameter for each branch. The mean diameter for a given 
branch was calculated as the mean for all measured diameter points for each branch. (F) Signaling speeds 
(conduction velocities) for each branch in this neuron. Although branch path lengths varied significantly, 
conduction velocities for most branches were within a range of 0.3–0.5 m/s. The data for panels A-D on the  
x-axes were ordered by path length from shortest to longest.



www.nature.com/scientificreports/

9SCiENtifiC REPOrtS |  (2018) 8:10460  | DOI:10.1038/s41598-018-28527-2

to its synaptic terminal along individual axonal branches. In contrast to the effect of the morphology (path length) 
there is comparatively little variability in the diameter, even though it is a key contributor to the conduction 
velocity. This is reflected in the computed constant conduction velocity across all branches of the neuron. We also 
showed that the convergence towards an optimal ratio occurs quickly, within a few branching orders from the 
soma (see the Supplementary Information).

Perturbations of Morphological Path Lengths Resulted in Deviations of Optimal Ratios.  We 
then investigated the effect that changing the axonal path lengths has on the ability of the neuron to compensate 
for longer latencies in order to preserve a near optimized refraction ratio at synaptic terminals. We compared 
ratios for the actual geometric morphology of a representative neuron (Fig. 4A, left) to a length-minimized ver-
sion of the same cell (Fig. 4A, right) constructed by measuring the Euclidean (shortest) distance between the root 
vertex at the soma and terminal vertices at the synaptic terminals (cf. Fig. 1D). Figure 4B shows the distribution of 
lengths (distance of terminal vertex from the root vertex) for all branches in the tree network for this neuron and 
the distribution of signaling latencies, respectively. Figure 4C shows the refraction ratios for all paths between the 
soma and synaptic terminals of the same Basket cell calculated for the two different configurations of the network. 
As would be expected, for the length minimized network all branches have signaling ratios that deviate signifi-
cantly from optimality. Figure 4D shows the refraction ratio for the entire 57 neurons and all individual axonal 
branches computed for length minimized tree networks. The population median of the medians of the ratios 
increased from 0.92 to 2.8. Mechanistically, this is due to poor temporal matching between signaling latencies and 
refractory recovery times at the synaptic terminals. The path length minimized networks still preserve the relative 
order of the axonal branches organized by lengths, in the sense that longer branches relative to shorter branches in 
the morphologically accurate geometric networks will still be longer in the shortest path networks. But the entire 
distribution of the ratios is skewed.
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Figure 4.  Effect of axonal branch path length on the refraction ratio. (A) As a control, we re-computed the 
refraction ratio for the entire data set with axonal branch path lengths that reflected the shortest Euclidean 
distance between the root vertex and terminal synaptic vertices. Left: The geometric tree network for one 
representative neuron where each edge connecting the root vertex to the terminal synaptic vertices were 
associated with the geometric convoluted path length (see the Methods). Right: the path length minimized 
tree network for the same neuron, where the length of the edges connecting the vertices were defined by 
the shortest Euclidean distance. (B) (Top) Path length computation in the geometric network (yellow bars) 
superimposed on the path length minimized network (red bars) for one of the 57 axon arbors. Each bar in the 
diagram identifies a different axonal branch. (Bottom) Signaling latencies derived for the geometric network 
(green bars) and the minimized network (blue bars) for the same axon tree. (C) Computed refraction ratios 
for the geometric network versus the minimized network for the same cell as in (B and C). The height of each 
of the black bars stands for the refraction ratio calculated as a function of the convoluted geometric path of an 
individual branch of the axon. (D) Histogram showing the global distribution of refraction ratios computed for 
all 11,575 branches of 57 neurons in our data set when mapped into a length-minimized network. The median 
value of all the medians computed for length minimized networks for all the neurons was centered at 2.8, 
indicating a deviation from optimality of the refraction ratio as a result of the perturbed path lengths associated 
with ignoring the geometry of the axonal morphologies.
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Discussion
In this work we investigated the relationship between axonal morphology, membrane refractory period, and 
action potential conduction velocities through an analysis of computed refraction ratios. This analysis allowed 
us to understand how the interplay between structure and dynamics achieves signaling efficiency in Basket cell 
neurons. Presumably, either directly or as a consequence of other processes, neurons are optimizing the refraction 
ratio as a design target.

Of the total 11,575 axon branches we computed refraction ratios for, 76% had a ratio within a range 0.25–1.75. 
86% of the neurons had median ratio values within one standard deviation of the median of the population (0.91); 
a value that approaches the theoretically predicted maximal efficiency. This suggests that while an optimal refrac-
tion ratio at synaptic terminals is a local property associated with individual axonal arborizations, it is highly 
conserved across the entire population of sampled neurons.

In some cases, we also showed that some axonal branches did deviate significantly from an optimized refrac-
tion ratio (Fig. 2D). Some amount of variability is to be expected from any analysis of empirically measured 
experimental data. However, we note that the number of outliers was very small. An interesting question is 
whether these reflect ‘noise’ in the data set, essentially true (random) outlier events, or if they instead perhaps 
exhibit such extreme refraction ratios for a physiological reason. For example, one possibility is that these outliers 
reflect axonal branches that are designed to filter specific signals at a subset of synaptic terminals. The presence 
of such outliers also serve the purpose of validating the sensitivity of the refraction ratio in capturing a mismatch 
between refractory states and signaling latencies within physiologically plausible bounds.

The analysis also suggests that morphological regulation of signaling latencies exerts the greatest control on 
the refraction ratio. The data in Fig. 3 indicates that the shortest branches are not able to preserve an optimal ratio. 
This is because the latencies are too short and not able to match the refractory period at such short distances from 
the soma. One interpretation is that these branches are outliers relative to the rest of the dataset. This is statisti-
cally reasonable if we consider the variability of the experimental parameters. Incomplete development of axon 
arbors or incomplete pruning associated with the young age of the rat from which our data were derived (10–15 
days postnatal) could possibly account for the discrepancies in the refraction ratio values. However, axons can 
also make synaptic contacts at short distances for physiologically functional purposes. Taking this into consid-
eration, these outliers could be possibly serving a physiological role. One possibility is that branches that display 
non-optimality of the refraction ratio could be playing a different function in the dynamics of the cell, such as the 
propagation and transmission of signals at lower or higher frequencies. Such a possibility for a functional role of 
non-optimal ratios is further supported by the fact that seemingly outlier refraction ratios showed similar trends 
in several neurons. In contrast to the effect of the morphology, there was less variability in the average diameter 
computed for different branches, even though it is a key contributor to conduction velocity. This is reflected in the 
computed constant conduction velocities across all branches of the neuron. Conduction velocities and membrane 
refractory periods are the direct result of membrane biophysics; more specifically, the permeability and channel 
kinetics of sodium and potassium ion channel populations and the inactivation kinetics of sodium channels, 
respectively. These are biophysical properties that a neuron does not have control over in a sense. They represent 
generic cellular and molecular properties that the neuron cannot change. An intriguing interpretation of our 
results is that neurons may take advantage of the morphological geometry of individual axonal branches in order 
to manipulate signaling latencies to match the refractory periods at the terminal vertices (synapses). This would 
represent a mechanism or ‘design criteria’ to optimize signaling transmission in the cell.

We also tested the hypothesis that Basket cell axon arbors are not minimized for either wiring length or con-
duction velocity latencies15. By wire minimizing the axonal morphology, we were able to show that axonal path 
length is used to compensate for longer latencies in order to preserve a near optimized refraction ratio at synaptic 
terminals (Fig. 4). More significant deviations in the refraction ratios will occur when additional effects to axon 
path lengths and conduction velocities are considered, such as a reduction of the arbor diameter or randomly 
generated arbor graphs, as some authors have modeled13,42–44. In fact, shortest distance wiring path lengths like we 
computed here reflect the most conservative changes possible, and are therefore the least disruptive to the com-
putation of the refraction ratios. This makes the surprising precision of the refraction ratio results near optimality 
for the morphologically accurate data even more significant.

Subsequent work should explore if an optimized refraction ratio holds for other types of neurons. We are also 
beginning to investigate experimentally if this principle holds in individual neurons where morphological recon-
structions and detailed empirically measured values of conduction velocities and refractory periods across differ-
ent segments are obtained in the same cell. Recent advancements in the development of novel electrophysiology 
techniques able to provide signal detection with high spatio-temporal resolution45,46 will greatly benifit this type 
of analysis by reducing the number of assumptions, such as computing rather than measuring refractory periods 
and conduction velocities that contribute to signaling latencies. Finally, beyond establishing the refraction ratio 
as the design principle being optimized by neurons are questions about the physiological purpose of preserving 
an optimized ratio. Presumably neurons are exerting this level of dynamic precision for important neurophysio-
logical reasons that require further investigation. One example could be temporal precision at synaptic terminals 
and its consequences on signaling integration. This has been previously suggested as one reason why neurons are 
neither optimized for wiring length or signaling speeds15.

Methods
Axon Database.  We used anatomical and morphological data from detailed three-dimensional (3D) recon-
structions of complete axonal arbors of Basket cells from the rat neocortex21. Data were obtained from the online 
digital database NeuroMorpho.Org23. The neurons in our dataset were chosen based on the availability of high 
accuracy measurements of axon thickness or diameter throughout the whole arbor structure. More specifically, 
the data in the NeuroMorph database is comprised of spatial reconstructions and measurements along the axonal 
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arbor, with an identification number for each sample point, a three dimensional location (xi, yi, zi), and the diam-
eter Di of the axon at that point. The database also contains indices indicating the physical connectivity between 
sample points along the arbors, thus providing all the relationships to construct the axonal tree. Different neurons 
have differing degrees with respect to the completeness of this information. Because of our analysis necessitated 
high detailed reconstructions we randomly selected Basket cell neurons that had the most complete information 
available.

Axon Graph Description.  Graph-model of axon arbors.  We used a graph theoretic approach to describe 
the three dimensional connectivity of single axons. A schematic description of the graph model is shown in Fig. 5. 
An axon arbor is naturally modeled as a tree-graph. We used the term axon ‘branch’ or ‘branching path’ to refer 
to the axonal segment connecting the axon initial segment to one of the axon’s synaptic terminals. In a 
graph-based model, a ‘branch’ is composed of multiple axonal segments stringed together by a set of edge con-
nected vertices. For the purposes of our analysis, we needed to distinguish between three classes of vertices and 
their corresponding edges. For each individual neuron in our dataset, vertices and edges were defined based on 
specific axonal landmarks. These were the initial axonal segment, axonal branching points or bifurcations, and 
synaptic terminals. These features mapped to a root vertex vR, branching or bifurcation vertices vBk

 (k = 1, …, Q 
− 1 with Q − 1 total number of branching vertices in the selected branch), and terminal vertices vTs

 (s = 1, …, W, 
with W total number of synaptic terminals, or branches, in a given neuron), respectively. The vertex pair consist-
ing of the root vertex vR and a synaptic terminal vertex vTs

 connected by the edge eR V, Ts
 defined a branching path. 

We equivalently used the label p v v( , )R Ts
 to indicate a specific branching path. Successive bifurcation vertices, i.e 

one branching point and the next branching point in an axonal arborization, are given by vB i( )k
 and 

+
vBk i( 1)

, along 
with their edges +eB i B i, 1k k

, the segment of the axon that connects two bifurcation points. Vertices in between the 
root and terminal vertex reflect axonal segments along the way, defined by the original morphological sampling 
frequency of the data in the NeuroMorpho database. We called these elementary vertices. Elementary vertices 
correspond to neither a branching vertex, a terminal vertex, nor the root vertex. The elementary vertices located 
in between bifurcation vertices of the same axonal branch are labeled ve,n where e = 1, ..., Q (Q is the total number 
of edges in a branch), and n = 1, ..., N − 1 (N − 1 is the total number of nodes along the eth edge). Edges that con-
nect successive elementary vertices ve,n(i) and ve,n(i+1) were labeled 

+
ev v,e n i e n i, ( ) , ( 1)

. Note that eR V, Ts
 and 

+
eB B,k i k i( ) ( 1)

 are 
composed from subsets of elementary edges 

+
ev v,e n i e n i, ( ) , ( 1)

.

Adjacency matrix.  From the structural data we built an adjacency matrix that encoded information about the 
connectivity of the network. The adjacency matrix was organized such that each element represents a connection 
(graph edge) between an input vertex (row) and an output vertex (column). The axon and axon arborizations 
are represented by tree-network graphs. The associated adjacency matrix describes the composite hierarchical 
organization of the tree, where a common axonal segment (‘parent segment’, identified by all elements on the 
diagonally-shaped line in the connectivity matrix) gives rise to a number of daughter axonal branchlets.

For the purpose of our analysis we chose to reduce the full adjacency matrix (containing nodes from the sets 
vR, vB, vT, and ve,n) to an adjacency matrix containing vertices from the sets vR, vB, and vT. It is this reduced matrix 
that we used in our analysis. This reduced adjacency matrix was created for three reasons. First, branching points 
define the variable paths of action potentials (signals) transmission through the axon. Second, in the more gen-
eral case of myelinated axons, bifurcation points typically corresponds to unmyeliated locations where a node of 
Ranvier is present and thus where the signal propagates down the axon by saltatory conduction. This agrees with 
the methodology of our analysis which focuses on pairs of defined vertices that have an active role in neural sign-
aling. Finally, synaptic terminals define the different paths of signaling in the axonal arbor and are thus necessary 
for comparisons between selected branches in the tree. And synaptic terminals represent active areas of the axon 
where synaptic transmission to one or multiple post-synaptic neurons occurs.

Deriving the Path Lengths of Axons and Axonal Arborization Branches.  As described, pairs of 
vertices (vi, vj) in the graph were connected by a directed geometric edge ei,j. Each vertex in the graph was associ-
ated with a physical position in three dimensional space, and each edge followed a convoluted geometric path in 
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Figure 5.  Graph-based model of the geometric network of an axon arbor.
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space determined by the actual physical morphology. Given an edge ei,j, the convoluted distance, i.e. the physical 
distance di j,  of the edge between any two vertices vi and vj can be defined by the path integral di j,  from vi to vj. To 
compute it, we took into account all segments forming a particular edge, and then calculated the sum of all 
Euclidean distances between pairs of nodes for a given segment. For example, to calculate the convoluted distance 
(path integral) dB B,k w

 from branching vertex vBk
 to branching vertex vBw

, we approximated the length by:

∑=d d
(6)B B

N
n n, ,k w m q

where dn n,m q
 is the Euclidean distance 






= − + − + −





( )( ) ( )d x x y y z zn n n n n n n n,

2 2 2

m q m q m q m q
 computed 

between pairs of nodes (v v,e n e n, ,m q
), and N is the number of sub-edges en n,m q

 forming eB B,k w
.

The tortuous path connecting the root vertex vR to a selected synaptic terminal vTs
 was the sum of all convo-

luted distances dB B,k w
:

∑= d d
(7)

R T
Q

B B, ,s k w

where Q indicates the total number of edges eB B,k w
 that compose the selected path p v v( , )R Ts

 in the axonal tree. For 
example, for the neuron represented by the graph in Fig. 5 (path highlighted in red), the total distance between 
the root vertex and the synaptic vertex vT3

 was computed by summing up all distances of the edges eB B,k w
 between 

the branching vertices along that path, which in turn were obtained by the sum of all distances of the multiple 
sub-edges en n,m q

 they were composed of.

Calculations of Signaling Parameters.  Axon conduction velocity is a function of several biophysical 
and morphological properties, including axon thickness, branching, ion channel density and variety, and mye-
lination24. Considering the predominant role that axon thickness and degree of myelination have in defining 
the conduction velocity of action potential in mammalian axons47, in this work we derived estimated values of 
conduction velocity based on only these two structural factors. For our data, we assumed that the arbors of all 
our basket cell neurons were unmyelinated based on morphological empirical results and geometrically-based 
models from the literature25–27. While it is generally agreed that the conduction velocity of myelinated axons 
increases linearly with increasing diameter37,48,49, the situation for non-myelinated axons is less definitive. 
Theoretical arguments and empirical measurements on large invertebrate axons suggest that the conduction 
velocity of non-myelinated axons is proportional to the square root of the axonal cross-sectional diameter27. 
However, other results seem to suggest that such a square-root relationship at least in invertebrates oversimplifies 
the situation50,51. In the vertebrate nervous system however very fine non-myelinated axons were found to support 
a linear relationship28.

In our data, the diameter of the axons we studied were comparable to the fine non-myelinated axons in28. 
Therefore, we assumed a linear relationship between axonal diameter and conduction velocity (signaling speed) of 
non-myelinated axons. Hoffmeister et al. experimentally derived the linear relationship s = 0.24 * C between the 
circumference C of non-myelinated fibers and their signaling speed s. Our data had axonal segments expressed 
as diameters, not circumference. We therefore wrote the equivalent relationship: s = KD with K = 0.24 * pi = 0.75, 
where s is signaling speed, D is the axon diameter, K is a constant, and the relationship between circumference 
and diameter is C = 2 * pi * D. The same relationship has been used in other recent work to investigate the 
volume-latency trade-off in neocortical axons52.

We used this relationship to estimate the signaling speed sij between vertex pairs vi and vj:

= .s D0 75 (8)ij

where D is the (constant) diameter of the axonal segment connecting vi and vj. If vi and vj are consecutive meas-
urement sample vertices between branching points, ve,n, D was typically constant because Di ~ Dj due to the sam-
pling resolution of the original data. If vi and vj corresponded to two consecutive branching points, D was 
calculated as the arithmetic mean of the diameters of all sample points between successive vertices vBk i( )

 and 

+
vBk i( 1)

. Considering that sampling points along individual edges of the axon were characterized by small diameter 
changes, the average represented a good approximation of the diameter of that particular axonal segment.

Neurons in our dataset had computed conduction velocity values of 0.39 ± 0.17 m/s (μ ± σ, with μ being 
the mean computed on the raw distribution of conduction velocities from all 11,575 axonal branches, and σ the 
standard deviation of their distribution). The histogram in Fig. 6 shows the distribution of signaling speeds inde-
pendently computed for all branches of the entire data set of 57 basket cells. We also considered the distributions 
of conduction velocities for individual neurons in order to better characterize the behavior of single cells. For each 
neuron we computed the mean value of the conduction velocities of all axonal branches. We then calculated the 
mean value of the 57 computed means, obtaining a mean value of all means of 0.38 m/s.

The signaling latency or propagation delay τij of action potentials (signals) traveling between vertices vi and 
vj were calculated as:

τ =
d
s (9)

ij
ij

ij
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where dij is the distance measured between vertex i and vertex j as described in the previous section. Because our 
analysis is highly sensitive to the convoluted path length between vertices, the calculation of signaling speed and 
propagation delay depended on the kind of vertices that are considered in the arbor graph. For pairs of consecu-
tive vertices ve,n belonging to individual edges between branching vertices, the distance was calculated using the 
Euclidean distance between them, and the dynamic parameters, conduction velocity and signaling latency, were 
obtained according to Eqs 10 and 11. On the other hand, for vertices corresponding to branching points or syn-
aptic terminals of the arbors, the dynamics was computed slightly differently taking into consideration that any of 
these convoluted edges can be decomposed into multiple sub-edges of uniform diameter and conduction velocity. 
More specifically, for each branch of the axon arbor, that is the path connecting the root vertex vR to a synaptic 
terminal vTs

, we calculated the total propagation delay as the sum of all piecewise propagation delays obtained for 
all edges eB B,k w

 forming that branch:

∑τ τ=
(10)

R T
Q

B B, ,s k w

with Q being the total number of edges connecting the initial segment to a synaptic terminal. In turn, each edge 
in the branch can be decomposed into multiple sub-edges en n,m q

 along which the signal propagates with a tempo-
ral latency defined as:

∑τ τ=
(11)B B

N
e n n, , ,k w m q

where N is the total number of sub-edges en n,m q
 in eB B,k w

. We then used the information about axonal path lengths 
and latencies to compute the signaling speed. By doing this we avoided averaging different diameters in the cho-
sen path for the calculation of a mean signaling speed. We instead considered multiple conduction velocities 
obtained for short segments between consecutive edges in the path that had a constant diameter D. We then used 
the resulting combination of propagation delays for estimating the signaling speed between the axon initial seg-
ment and its synaptic terminals. This more accurately reflects the true values of action potential propagation 
speeds.

Estimation of the Refractory Period.  The refractory period was estimated along the entire length of 
the axon, from the soma (root vertex) to each synaptic terminal (synaptic vertex). Since each path from root 
vertex to a terminal vertex was defined as a branching path, it is equivalent to saying that the refractory period 
was estimated for all axonal sampling points (i.e. nodes) along each specific branch, as a function of the distance 
between root and terminal vertex. We estimated the refractory period from empirical measurements reported in 
the literature25. More specifically, we approximated the decreasing refractory period from soma to synaptic ter-
minals with a curve whose descending slope was inferred from actual measurements of channel density variation 
and membrane inactivation properties25. We set a lower bound to 1 ms, which is about the absolute lower limit 
for any neuron due to fundamental limitations associated with the kinetics of Na+ channels. The maximum value 
for Rj was set to 2.5 ms, which we justify by three specific arguments: first, 2.5 ms represents a reasonable value as 
the average of the generally accepted range (0–5 ms) associated with neocortical neurons53–56; second, work on 
demyelinated axons and the supercritical Na+ channel density proposed in25 implies that higher values would 
not be physically appropriate; finally, a change of refractory period from 1 ms to 2.5 ms is in agreement with the 
2.4-fold increase of activation time for Na+ channels suggested by the experiments in25. A detailed explanation 
about the rationale for computation of a local refractory period for each vertex in the axon graph is reported in 
the online Supporting Information.

Computation and Statistics of the Refraction Ratio.  We considered the refraction ratio16 between all 
pairs vertex pairs (v v,R Ts

): the root and terminal vertices in the network, the first vertex corresponding to the 
initial axon segment and the second to any synaptic terminal at the end of an axonal arborization. The value of the 
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Figure 6.  Global distribution of the signaling speeds independently computed for all branches of the 57 
basket cells. Signaling speeds of individual axon branches range from 0.15 to 1.49 m/s (mean 0.39 m/s, median 
0.33 m/s).
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refraction ratio was obtained by computing the numerical ratio between the refractory period of any terminal 
vertex vTs

 and the propagation delay signaling latency along the axonal branching path p v v( , )R Ts
 connecting the 

root vertex to the terminal vertex. The refraction ratio was computed independently for all reconstructed axon 
arbor graphs across each of the 57 basket cell neurons in our dataset. This resulted in 11,575 statistically inde-
pendent refraction ratio values.

Histograms were used to collect, visualize, and analyze the data. At the single neuron level, each histogram 
described the distribution of the computed refraction ratio for all pairs of root and terminal vertices in the ana-
lyzed axon arbor (c.f. Fig. 2A). The value of bin within the distribution (the height of individual plotted bars) 
reflected the number of branches associated with refraction ratio value falling within a the specific range for the 
interval defined for that particular bin. For each basket cell we independently (from other neurons) computed the 
median value of the distribution.

To visualize and compute the statistics on the entire dataset, we constructed a histogram for the raw distribu-
tion of refraction ratio values computed for the 11,575 axonal branching paths from each of the 57 neurons (c.f. 
Fig. 2B). To normalize against varying numbers of terminal vertices across our sample population of 57 neurons, 
we computed the median value of the median population (see the main text above) (c.f. Fig. 2C).
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