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ABSTRACT OF THE DISSERTATION

Topics in Artificial Neural Networks: Causal Inference and Functional Derivative
Estimation

by

Ying Liu

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2022

Dr. Shujie Ma, Chairperson

Advances in computer science technologies have shed light on artificial neural net-

works (ANN). ANN shows its power and efficiency in various classification and regression

problems and is gaining more and more popularity in various fields. In this dissertation,

we investigate treatment effects estimation using fully connected shallow network, and ex-

plore sparse deep neural network regression and functional derivative estimation. The first

part of this dissertation provides a unified framework for efficient estimation of various

types of treatment effects (TE) in observational data with a diverging number of covariates

through a generalized optimization. We show that the number of confounders is allowed to

increase with the sample size, and further investigate how fast it can grow with the sample

size to ensure root-n consistency of the resulting TE estimator. Moreover, we establish

asymptotic normality and semiparametric efficiency of the TE estimator. The second part

of this dissertation proposes a penalized deep ReQU network estimator (PDRN) obtained

from empirical risk minimization framework. The proposed neural network bases on Jacobi

polynomial approximation on the hyperbolic cross/sparse grid and alleviates the ”curse

vi



of dimensionality”. Our PDRN estimator also provides smooth functional derivative esti-

mation. Our estimators are illustrated through simulation studies and multiple real data

examples.
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Chapter 1

Introduction

The rapid growth in the volume of data has brought new opportunities, as well as

tough challenges to data analysis. To study the unknown pattern between the predictors

and the target response variables, many technologies are developed and widely applied. For

instance, parametric models such as linear regression models are very convenient and easy

to interpret, however, in the sacrifice of flexibility. The mis-specified models will lead to

large bias and false conclusions. Classical nonparametric methods such as kernels or splines

are flexible for recovering unknown patterns, but they are not comfort with a large number

of predictor variables. In recent days, the advances in computer science technologies has

accelerated the emerge of new machine learning methods, as well as shed light on some

pre-existing methods like artificial neural networks (ANN).

ANN shows its power and efficiency in various classification and regression prob-

lems and is gaining more and more popularity in various fields such as computer vision,

image recognition, speech recognition and bioinformatics [4]. The theoretical properties of
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ANN have also been an increased focus. ANNs are universal approximators of a wide variety

of functions [122, 65, 35, 126, 15, 102] , so they are robust to mis-specification. It is shown

in [35] that their approximation rate to a smooth function can be smaller than n−1/4, where

n is the sample size, no matter how large the dimension of covariates is, indicating that

ANNs have the potential to overcome the “curse of dimensionality” that typically arises in

classical nonparametric estimation approaches. ANNs are shown to be particularly useful

for classification and prediction from large datasets [7]. A review on the basic set up of

ANN and estimation algorithm is given in Chapter 2.

Theoretical properties of ANN based estimators have also received increasing at-

tention, for instance, how to conduct causal inference using ANNs? Chapter 3 proposes

a new unified approach for efficient estimation of treatment effects using ANNs when the

number of covariates is allowed to increase with the sample size. We consider a general

optimization framework that includes the average, quantile and asymmetric least squares

treatment effects as special cases. Under this unified setup, we develop a generalized opti-

mization estimator for the treatment effect with the nuisance function estimated by neural

networks. We further establish the consistency and asymptotic normality of the proposed

estimator and show that it attains the semiparametric efficiency bound. The proposed

methods are illustrated via simulation studies and a real data application.

Though it is known that using only one hidden layer, ANN can provide an opti-

mal order of approximation for functions which satisfy certain smoothness conditions ([35],

[89]), it is also proved that deep ReLU networks have better approximation than shallow

ReLU networks [125]. In the meantime, sparse grids approximation is gaining more popu-
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larity as an approximation tool due to the rapid growth in the volume of high-dimensional

data. The connection between sparse grids and deep neural networks has been built in

[90] and [77]. While ANN is widely applied in regression problems, derivative estimation

has received less attention. Derivative estimation is essential in many situations including

comparing regression curves [97], analyzing significant trends [99] and identifying change

points in longitudinal data [107]. For certain nonparametric methods and machine learning

methods applied in regression problems, there is no analytical form solution to the estimated

regression function and considered as ”black boxes”, thus we can’t estimate the functional

derivatives. Chapter 4 proposes an ANN approach for both regression and functional deriva-

tive estimation. Our estimator of the target function is built upon a network architecture

of sparsely-connected deep neural networks with the rectified power unit (RePU) activation

function. The proposed methods are illustrated via simulation studies and two real data

applications.

Chapter 5 summarizes this dissertation with concluding remarks. The related

technical proofs are included in the Appendix.
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Chapter 2

Neural Networks, Estimation

Algorithm and High-dimensional

Regression

2.1 Neural Networks

The history of artificial neural network may date back to 1940 [88]. This machine

learning method, inspired by interactions among neurons within the brain, is gaining more

and more polarities due to the rapid advance in computation technologies. “An artificial

neural network consists of a collection of simulated neurons. Each neuron is a node which

is connected to other nodes via links that correspond to biological axon-synapse-dendrite

connections. Each link has a weight, which determines the strength of one node’s influence

on another [123]”. There are changing size of network and number of neurons, various type
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of“links (activation functions)”, as well as flexibility in the node connection structure and

in the mechanism of one node’s influence on another, resulting in multiple types of neural

networks, including feedforward neural network, convolutional neural network, recurrent

neural network and etc. First, we introduce the basic setup of feedforward neural network

which would be the main focus of this dissertation.

2.1.1 Basic Setup

The feedforward neural networks move in one direction from the input variables

of dimension d, through the hidden nodes, and to the ouput node. The feedforward neural

network with L hidden layers is given as

Φ(·) : Rd → RNL+1 ; Φ(x) = zL+1,

where Φ(x; η) is defined as z0 = x, zℓ = σ(Aℓzℓ−1 + bℓ) for ℓ = 1, ..., L, and zL+1 =

AL+1zL + bL, σ(·) is the activation function, and Aℓ are Nℓ ×Nℓ−1 matrices and bℓ ∈ RNℓ

withN0 = d andNℓ ∈ N for ℓ = 1, ..., L+1. Moreover, for any vector v = (v1, ..., vN )
⊤ ∈ RN ,

σ(v) = {σ(v1), ..., σ2(vN )}⊤.

2.1.2 Activation Functions

The choice of activation function is essential for neural networks since it has a

large impact on how data is transformed in each layer and further on the properties of

neural networks. Four types of activation function, which can be categorized as sigmoid-

like functions and rectified functions, are introduced in this section and there are more to

meet the need in different situation.

5



1. Sigmoid function: Since the range of sigmoid function is (0, 1), it is especially used for

models where we have to predict the probability as an output. The S-shaped function

is monotonic and differentiable, however it has the ”vanishing gradient” problem,

which means the gradient is almost zero when x is very large or very small. The

maximum value of the derivative of sigmoid is 0.25 and the minimum is 0, so that the

neural network is difficult to learn from data.

σ(x) =
1

1 + e−x
.

2. Tahn (hyperbolic tangent) function: it is very similar to sigmoid function as it is also

S-shaped with the range being (-1, 1). It is monotonic and differentiable but still

suffering from ”vanishing gradient”.

σ(x) =
e2x − 1

e2x + 1
.

3. ReLU (Rectified Linear Unit) function: It is rectified since it would be zero if x is

negative. The gradient would not vanish since it would always be 1 for positive x.

It is monotonic and differentiable except for x = 0. In Chapter 3 we will mainly use

ReLU as activation function.

σ(x) = xI(x ≥ 0).

4. ReQU (Rectified Quadratic Unit) function: Similar to ReLU, it is rectified since it

would be zero if x is negative. It is monotonic and differentiable everywhere. In

Chapter 4 we will build our neural network with ReQU function.

σ(x) = x2I(x ≥ 0).

6



ReQU also belongs to the family of RePU (Rectified Power Unit) functions, whose

degree of non-zero part is s ≥ 2.

σ(x) = xsI(x ≥ 0).

2.2 Estimation Algorithm

2.2.1 Parameter Initialization

The weight Aℓ and bias bℓ for ℓ = 1, ..., L + 1 of a neural network are estimated

through an optimization framework and a good choice of initial values of parameters is

necessary for efficient training. While a too-large initialization may result in too-large

gradient and the learning process would be unstable, a too-small initialization may result

in vanishing gradient and the learning process would be too slow. Here we introduce two

initialization methods.

1. Xavier Initialization [50]: the goal of Xavier Initialization is to initialize the weights

such that the variance of the activations are the same across every layer. This con-

stant variance helps prevent the gradient from exploding or vanishing. The Xavier

Initialization method is calculated as

Aℓ,ij ∼ N (0,
1

n[l−1]
),

where n[ℓ−1] is the number of nodes of layer ℓ − 1, 1 ≤ i ≤ Nℓ, 1 ≤ j ≤ Nℓ. Xavier

Initialization is widly used when the activation function is sigmoid function or tahn

function. The bias are initialized with zero.

7



2. He Initialization [58]: weights are initialized in the same way as the Xavier initializa-

tion except that variance is by multiplied by 2, and it is commonly used for rectifier,

for instance, ReLU function.

2.2.2 ADAM Algorithm

The weight Aℓ and bias bℓ for ℓ = 1, ..., L + 1 of a neural network are estimated

using first-order gradients based algorithm, here we introduce the widely used ADAM al-

gorithm [71]. Denote the vector of parameters of interest by θ and let f(θ) be a scalar

function that is differentiable with respect to the parameter θ. The detailed algorithm is

given in Algorithm 1.

2.3 High-dimensional Regression

The increasing volume of large-scale data has challenged the application of neural

networks. As the network grows bigger, the number of parameters involved also grows

rapidly, which results in over-fitting problem with small bias but large variance in the

estimate. One remedy for high-dimensional cases is to use penalized regression. Two

popular penalized regression methods are ridge [63] and lasso regression [112]. They both

shrink the parameters to zero. Another remedy is to reduce the dimensionality of the

original large-scale data, for instance, Principal Component Analysis (PCA) which preserve

most of the variability in the original data.

8



Algorithm 1 ADAM

Require: θini: Initial value for θ

Require: ϵ0: converge criterion

Require: α̃: step size with default value of 0.001

Require: β̃1: decay rate with default value of 0.9

Require: β̃2: decay rate with default value of 0.999

Require: ϵ̃: stabilizer with default value of 10−8

t← 0 (Initialize timestep)

m0 ← 0 (Initialize 1st moment vector)

v0 ← 0 (Initialize 2nd moment vector)

θ0 ← θini

while θt not converge do

t← t+ 1

gt ← ∇θft(θt−1) (Obtain gradient for θ at timestep t)

mt ← β̃1mt−1 + (1− β̃1)gt (Update biased first moment estimate)

vt ← β̃2vt−1 + (1− β̃2)gt ⊙ gt (Update biased second raw moment estimate))

m̂t ← mt/(1− β̃t1) (Compute bias-corrected first moment estimate)

v̂t ← vt/(1− β̃t2) (Compute bias-corrected second raw moment estimate)

∆(θt)← m̂t/(
√
v̂t + ϵ̃)

αt ← αt−1 − α̃∆(αt) (Update θ at timestep t)

end while

return θt

9



2.3.1 Penalizaed Regression

In a penalized regression setting, suppose we want to obtain the estimate for

parameter θ ∈ Rk through an optimizing problem:

L(θ) = f(θ) +
k∑
j=1

p(λ, θj),

where f(θ) is the loss function, p(λ, θj) is the penalty function and λ is the tuning parameter

controlling the strength of the penalty term. In ridge regression, the penalty function∑k
j=1 p(λ, θj) = λ

∑k
j=1 θ

2
j . As λ increases, the θj are moving toward zero, the bias in

the estimator increases but the variance decreases. Another type of penalty is the lasso

penalty, which penalizes the absolute value of θ:
∑k

j=1 p(λ, θj) = λ
∑k

j=1 |θj |. Different

with ridge penalty which will only cause θ to decrease but never be zero, lasso penalty can

shrink some θj to be exact zero. Thus lasso penalty is applied in the situation that we want

to perform variable selection. The penalty function
∑k

j=1 p(λ, θj) changes as to meet the

need of different situations. In Chapter 4 we use a ridge-like penalty term to control the

complexity of our estimator.

10



Chapter 3

Efficient Estimation of General

Treatment Effects Using Neural

Networks

3.1 Introduction

The estimation of causal effects is a primary goal of behavioral, social, economic

and biomedical sciences. Recent technological advances have created numerous large-scale

observational studies, which bring unprecedented opportunities for evaluating the treatment

effectiveness. Examples of such data include patient registries, electronic health records,

pharmacy and health insurance claims and user-generated social media platforms, all of

which are increasingly available in large volumes. The increase occurs not only in the

number of sample observations, but also in the number of variables measured for each
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subject. Moreover, the usage of a large number of covariates in casual inference is justified

to increase the plausibility of the no unmeasured confounding assumption.

A major difficulty in causal inference from observational studies is how to con-

trol the bias caused by the confounding variables that influence both the outcome and

treatment assignment. To overcome this difficulty, under the unconfounded treatment as-

signment condition [100], one often needs an intermediate estimate of unknown nuisance

functions that relate outcome and/or treatment to confounders [60, 62, 29, 3, 40, 55] . The

mis-specification of the parametric approaches can introduce serious bias into casual effect

estimation [69, 49], which is a big concern in the context of large-scale data. Although

the classical nonparametric methods such as kernels or splines are flexible for recovering

unknown functions, they suffer from the “curse of dimensionality” [16]. On the other hand,

the unconfounded treatment assignment requires that all observed confounders be included

in the analysis, as we often have no prior knowledge of which variables are important con-

founders. Thus, there is a pressing need to apply a data-driven method that can provide

effective protection against mis-specification bias as well as achieving dimension reduction.

Some proposals have made initial attempts to solve this problem using the sufficient dimen-

sion reduction [67, 82, 85]. This technique requires the dependence of treatment assignment

on confounders through a few linear combinations of them.

Thanks to the rapid development of scalable computing and optimization tech-

niques in recent years [71, 1], it becomes appealing to use artificial neural networks (ANNs)

to approximate the nuisance functions. Similar as splines, ANNs are also a class of approx-

imation bases, but they can contain multilayers. ANNs are universal approximators of a
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wide variety of functions [122, 65, 35, 126, 15, 102] , so they are robust to mis-specification.

It is shown in [35] that their approximation rate to a smooth function can be smaller than

n−1/4, where n is the sample size, no matter how large the dimension of covariates is, in-

dicating that ANNs have the potential to overcome the “curse of dimensionality” that

typically arises in classical nonparametric estimation approaches. ANNs are shown to be

particularly useful for classification and prediction from large datasets [7]. However, how do

we go one step further to conduct causal inference using ANNs? It needs careful thought,

and research on this topic is still in its infancy.

In this dissertation, we propose a new ANN-based estimator of general TEs. Our

TE estimator is directly obtained through optimizing a generalized objective function that

only involves the propensity score (PS) function [100], which is approximated by ANNs. As

a result, it can be naturally used to estimate general TEs, including the average, quantile

and asymmetric least squares TEs. Our estimation procedure enables us to easily adopt

a convenient weighted bootstrap procedure for conducting inference without the need of

estimating the asymptotic variance, which is nontrivial in general.

Theoretically, we derive a new convergence rate of the ANN estimator for the

nuisance function under mild conditions when the number of confounders is allowed to grow

with the sample size. It has been shown in the literature [12, 65, 35, 72] that when the target

function admits a Fourier representation with a bounded moment, its ANNs approximator

enjoys a fast approximation rate, making ANNs a promising tool to potentially break the

notorious “curse of dimensionality” in multivariate nonparametric regression. However, this

Fourier function class is less commonly used than the smoothness spaces such as Hölder and
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Sobolev spaces [109, 120, 66, 84] in the nonparametric regression literature. Moreover, it

is still unclear how the moment of the Fourier transform appeared in the approximation

error bounds depends on the data dimension. This moment is simply treated as a constant

in the existing works [12, 35, 72] as they consider fixed dimensions. In this dissertation,

we introduce a mixed Sobolev space. We show that when the target function belongs to

this mixed Sobolev space, it is also in the Fourier function class. We further derive an

upper bound for the moment of the Fourier transform, in terms of the data dimension.

Functions in this mixed Sobolev space need to be at least one order smoother in each

coordinate than those in the conventional Sobolev space, over which minimax optimal rates

for estimation have been established and no nonparametric estimator can avoid the “curse

of dimensionality” [102]. We build a connection between the Fourier function class used

for ANNs and a mixed Sobolev space. Neither this connection nor the upper bound of

the Fourier transform moment has not been investigated in the literature. We also show

that the conventional linear sieve approximators still have the dimensionality problem when

the targe function belongs to the mixed Sobolev space. Moreover, different from [35], our

ANNs class no longer requires the L1 norm constraint on the weights. This greatly facilitate

the computation of the ANNs estimates. Our new theoretical results play a crucial role in

helping researchers better understand the required conditions for ANNs and figure out how

exactly the convergence rate depends on the data dimension.

We develop asymptotic normality of our proposed TE estimator without the need

of assuming that the PS function is bounded below by a constant. This is a strong assump-

tion, especially in the settings with a large number of confounders, albeit still used in the
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literature, see for example [10]. We find that the number of the confounders is allowed to

grow with the sample size with a rate no greater than {log(n)}1/2 to ensure the desirable

asymptotic property of the ANNs-based TE estimator for conducting inference. Different

from the existing works [98, 30, 31, 3], our semiparametric inferential theory is built upon

the settings with diverging dimensions. To the best of our knowledge, our work is the

first one that considers a growing dimension of the covariates with respect to the sample

size for conducting casual inference when the nuisance function is approximated by ANNs

under mild smoothness conditions, and proposes a generalized optimization approach that

can estimate different types of TEs without estimating the efficient influence function in

the presence of a large number of covariates. While the development of credible inferen-

tial theories for the ANN-based estimator of TEs is essential to test the significance of the

treatment effects, it is also a daunting task because of the complex nonlinear structure of

the ANNs. It is worth noting that if our interest focuses on the average TE specifically, we

also propose an ANN-based estimator obtained from the outcome regression (OR) function.

This estimator can be more robust than the PS based estimator in case that the estimated

PS function has very small values. However, it is difficult to apply this OR based estimator

to other types of TEs such as quantile TEs. In the context of average TE, our proposed

PS and OR estimators have the same asymptotic distribution. To better illustrate our TE

estimation procedure, we focus on using the ANNs with one-hidden layer to construct the

TE estimator, and discuss the extension of our method to ANNs with multiple hidden layers

and its statistical properties in the online Supplemental Materials [33].
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It is worth mentioning that the doubly robust (DR)-based machine learning meth-

ods for estimation of TEs [20, 19, 36] have received considerable attention. One recent work

[46] proposed to estimate the average TEs using the DR method with the nuisance functions

approximated by neural networks, and provides a sound theoretical justification for their

method. They assume that the nuisance functions belong to the regular Hölder space, so

their proposed framework still requires the dimension be fixed. The DR estimators of TEs

are constructed based on efficient influence functions, so they arise naturally for pursuing

asymptotic normality, which are of critical importance for conducting casual inference [e.g.

115, 11, 26, 110, 116, 101, 28, 70, 111, 94]. The DR method is mainly applied for average TE

estimation because that estimation of the efficient influence functions for the average TE

is straightforward, but it can be complicated for other types of TEs, such as quantile TEs.

Moreover, random forests are another attractive machine learning tool that enjoys flexibility

for unknown function approximation, and have been applied by pioneer works [118, 9] for

causality analysis. They propose random forest estimators for conditional TEs localizing

around given values of confounders and their estimators enjoy local asymptotic normality,

while we focus on efficient estimation of population TEs. Moreover, it enjoys computational

convenience, especially in complicated settings such as quantile TEs, which is of essential

importance when the nuisance functions are trained by machine learning algorithms.

This chapter is organized as follows. Section 3.2 sets up the basic framework, Sec-

tion 3.4 describes the artificial neural networks, our proposed inverse probability weighting

estimator for TEs, and establishes the large sample properties of the proposed estimator,

Section 3.5 describes the outcome regression estimator for TEs, Section 3.6 reports the nu-

16



merical results of simulation studies, and Section 3.7 illustrates the proposed method using

a data example, followed by some concluding remarks in Section 3.8. All the technical

proofs are provided in the online Supplemental Materials [33].

3.2 Basic Framework

Let D denote a treatment variable taking value in D = {0, 1, ..., J}, where J ≥ 1 is

a positive integer. Let Y ∗(d) denote the potential outcome when the treatment statusD = d

is assigned. The probability density of Y ∗(d) exists, denoted by fY ∗(d), is continuously

differentiable. Let L(·) denote a nonnegative and strictly convex loss function satisfying

L(0) = 0 and L(v) ≥ 0 for all v ∈ R. The derivative of L(·), denoted by L′(·), exists

almost everywhere and non-constant. Let β∗ = (β∗0 , β
∗
1 , . . . , β

∗
J)

⊤ ∈ RJ+1 be the parameter

of interest which is uniquely identified through the following optimization problem:

β∗ := argmin
β

J∑
d=0

E [L (Y ∗(d)− βd)] , (3.1)

where β = (β0, β1, ..., βJ)
⊤ ∈ RJ+1. The formulation (3.1) permits the following important

already considered models and much more:

• L(v) = v2 and J = 1, then β∗0 = E[Y ∗(0)] and β∗1 = E[Y ∗(1)], and β∗1 − β∗0 is the

average treatment effects (ATE) studied by [54], [62] and [29]. When J ≥ 2, then

β∗d = E[Y ∗(d)] is the multi-valued treatment effects studied by [27].

• L(v) = v · {τ − 1(v ≤ 0)} for some τ ∈ (0, 1) and J = 1, then β∗0 = F−1
Y ∗(0)(τ) and

β∗1 = F−1
Y ∗(1)(τ), and β

∗
1 − β∗0 is the quantile treatment effects [QTE 47, 56].

• L(v) = v2 · |τ − 1(v ≤ 0)| is the asymmetric least square effects [124].
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The problem with (3.1) is that the potential outcomes (Y ∗(0), Y ∗(1), ..., Y ∗(J))

cannot all be observed. The observed outcome is denoted by Y := Y ∗(D) =
∑J+1

d=0 1(D =

d)Y ∗(d). One may attempt to solve the problem:

min
β

J∑
d=0

E [L (Y − βd)] .

However, due to the selection in treatment, the true value β∗ is not the solution of the above

problems. To address this problem, most literature imposes unconfoundedness condition

[100, 27]. This work considers high-dimensional confounders with p going to infinity as the

sample size increases. Specifically, we work with triangular array data {((Di,n,Xi,n, Yi,n), i =

1, ..., n), n = 1, 2, ...} defined on some common probability space (Ω,A,P). Each Xi,n is a

vector whose dimension pn may grow with n. For each given n, these vectors are independent

across i, but not necessarily identically distributed. The law Pn of {(Di,n,Xi,n, Yi,n), i =

1, ..., n} can change with n, though we do not make explicit use of Pn. Thus, all parameters

(including pn) that characterize the distribution of {(Di,n,Xi,n, Yi,n), i = 1, ..., n} are im-

plicitly indexed by the sample size n, but we omit the index n in what follows to simplify

notation. The following condition shall be maintained through this chapter:

Assumption 1. For each d ∈ D, Y ∗
i (d) ⊥ Di|Xi.

Under Assumption 1, the causal parameters β∗ can be identified by the minimizer

of the following optimization problem:

β∗ = argmin
β

J∑
d=0

E
[
1(Di = d)

π∗d(Xi)
L (Yi − βd)

]
, (3.2)

where π∗d(Xi) := P (Di = d|Xi) is the PS function which is unknown in practice.
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Based on (3.2), existing approaches rely on parametric or nonparametric esti-

mation of the PS function π∗d(·). Parametric methods suffer from model misspecification

problem, while conventional nonparametric methods, such as linear sieve or kernel regres-

sion, fail to work if the dimension of covariates p is large which is known as the curse of

dimensionality [78]. The goal of this chapter is to efficiently estimate β∗ under this general

framework when the dimension of covariates p is large, and it possibly increases as the

sample size n grows. We propose to estimate the PS function π∗d(·) using feedforward ANNs

with one hidden layer described below.

3.3 New Approximation Error Bounds for ANNs with Di-

verging Dimension

Feedforward ANNs are effective tools for solving the classification and prediction

problems for “big data”. The basic idea is to extract linear combinations of the inputs as

features, and then model the target as a nonlinear function of these features. This section

presents ANNs with one hidden layer and the related results which are used in this chapter.

Let X denote the support ofXi which is compact in Rp. Without loss of generality,

we assume X = [0, 1]p. Let FX be the cumulative distribution function (CDF) ofXi. Denote

the L2(dFX)-norm of any function f(x) by ∥f∥L2(dFX) :=
{∫

X |f(x)|
2dFX(x)

}1/2
.

[12], [65], [35], and [72] considered the target function belonging to the function

class Fp:

Fp :=
{
f : X → R : f(x) =

∫
Rp

exp
(
ia⊤x

)
f̃(a)da

}
, (3.3)
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where f̃(a) is the Fourier transform of f(x) defined by

f̃(a) :=
1

(2π)p

∫
Rp

exp
(
−ia⊤x

)
f(x)dx.

Fp contains a class of functions of p dimension that admit Fourier representations. The

input variables of functions in Fp have dimension p, which is allowed to grow to infinity as

the sample size n increases. We define the mth moment of the Fourier transform of f(x)

as vf,m :=
∫
Rp |a|m1

∣∣∣f̃(a)∣∣∣ da, where |a|1 :=
∑p

i=1 |ai|. It is worth noting that vf,m depends

on the dimension p, and its value can increase with p. In the nonparametric regression

literature, spaces with certain smoothness constraints such as Hölder and Sobolev spaces

are instead more commonly used [109, 120, 66, 84].

We consider the mixed Sobolev space Ws,δ0,∞(X ) for s, δ0 ≥ 0 defined by

Ws,δ0,∞(X ) :=
{
f : X → R : max

|δ|∞≤δ0
max
|α|1≤s

sup
x∈X

∣∣∣Dα+δf(x)
∣∣∣ ≤ 1

}
,

where α := (α1, ..., αp), δ := (δ1, ..., δp), |α|1 :=
∑p

j=1 αj , |δ|∞ := max{δ1, ..., δp}, and

Dα+δf(x) :=
∂|α+δ|1

∂α1+δ1x1 · · · ∂αp+δpxp
f(x).

We will build a connection between the function class Fmp given in (3.3) and a

mixed Sobolev space, and will establish an upper bound for vf,m in terms of the dimension

p in Theorem 1 in our online Supplemental Materials [33].

Consider to approximate a target function f ∈ Fp using the ANNs, belonging to

the class

G(ψ,B,r, p) =
{
g : g(x) = g0(x;γ0) +

B

r

r∑
j=1

γjψ(a
⊤
j x+ aj0), aj = (aj1, ..., ajp)

⊤ ∈ Rp,

∥aj∥2 ≤ 1, |aj0| ≤ 1, |γj | ≤ 1, j ∈ {1, ..., r}, B ∈ R+

}
, (3.4)
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where g0(x;γ0) is a parametric function indexed by an unknown parameter vector γ0, and

∥aj∥2 := {|aj1|2 + ... + |ajp|2}1/2. The structure of g0(x;γ0) depends on the type of the

activation function that is used. For example, if the ReLU activation function is used, then

g0(x;γ0) = γ00 + γ⊤01x, where γ0 := (γ00, γ
⊤
01)

⊤. G(ψ,B, r, p) is the collection of output

functions for neural networks with p-dimensional input feature x, a single hidden layer with

r hidden units and an activation function ψ, real-valued input-to-hidden unit weights (aj),

bias (aj0), and hidden-to-output weights (γj).

The approximation error for a target function depends on the smoothness of the

approximand, the dimension of the covariates, and the type of approximation basis. We

first present the approximation results based on some popularly used neural networks, which

have been established in the existing literature:

• (Sigmoid type activation function) Suppose that the function f ∈ Fp, g0(x;γ0) ≡ 0,

the activation function ψ(·) is compactly supported, bounded, and uniformly Lipschitz

continuous. If B ≤ 2vf,1 < ∞, then [35] show that the L2(dFX)-approximation rate

of f based on ANN is

inf
g∈G(ψ,B,r,p)

{∫
X
|f(x)− g(x)|2dFX(x)

}1/2

≤ const× vf,1 · r−
1
2
− 1

p . (3.5)

The activation functions ψ includes the Heaviside, logistic, tanh, cosine squasher, and

other sigmoid functions [65], but does not include the ReLU and squared ReLU ridge

functions stated below.

• (ReLU activation function) Suppose that the function f ∈ Fp, g0(x;γ0) = γ00 + γ⊤01x

for γ0 = {γ00, γ01} ∈ R×Rp, and ψ(a⊤x+a0) = (a⊤x+a0)+. If B ≤ 2vf,2 <∞, then
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[72] show that the L2(dFX)-approximation rate based on ReLU ridge functions is

inf
g∈G(ψ,B,r,p)

{∫
X
|f(x)− g(x)|2dFX(x)

}1/2

≤ const× vf,2 · r−
1
2
− 1

p . (3.6)

• (Squared ReLU activation function) Suppose that the function f ∈ Fp, g0(x;γ0) =

γ00 + γ⊤01x + x⊤γ02 · x for γ0 = {γ00, γ01, γ02} ∈ R × Rp × Rp×p, and ψ(a⊤x + a0) =

(a⊤x+ a0)
2
+. If B ≤ 2vf,3 <∞, then [72] show that the L2(dFX)-approximation rate

based on squared ReLU ridge functions is

inf
g∈G(ψ,B,r,p)

{∫
X
|f(x)− g(x)|2dFX(x)

}1/2

≤ const× vf,3 · r−
1
2
− 1

p . (3.7)

If the target function f(x) is in a Fourier functional class with a bounded moment given in

(3.3), then (3.5), (3.6) and (3.7) show that the L2(dFX)-approximation rates of ANNs are

O(vf,m · r−1/2−1/p) = o(vf,m · r−1/2) for m = 1, 2, 3, in which r−1/2 no longer depends on

the dimension p. Thus, the resulting ANNs estimator can break the “curse of dimensional-

ity”that typically arises in nonparametric kernel and linear sieve estimation, see Appendix

A.1 for a detailed discussion.

3.4 Inverse Probability Weighted (IPW) Estimators

All three ANNs described in Section 3.3 can be applied to estimate the PS function

π∗d(x), and the resulting TE estimators have the same asymptotic properties based on the

three ANNs. For convenience of presentation, we use the ANNs given in Condition A

to present the theoretical results in this section. To facilitate our subsequent statistical

applications, we allow r = rn and B = Bn to depend on sample size n. We denote the
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resulting ANN sieve space as

Gn := G(ψ,Bn, rn, p).

Denote Ddi := 1(Di = d) for brevity. Let L(a) := exp(a)/(1 + exp(a)), for a ∈ R, be the

logistic function. The inverse logistic transform of the true PS is defined by

g∗d(x) := L−1 (π∗d(x)) = log {π∗d(x)/(1− π∗d(x))} ,

and it satisfies E[ℓd(Ddi,Xi; g
∗
d)] ≥ E[ℓd(Ddi,Xi; gd)] for all gd ∈ Gn, where

ℓd(Ddi,Xi; gd) :=Ddi logL (gd(Xi)) + {1−Ddi} log (1− L (gd(Xi)))

=Ddigd(Xi)− log [1 + exp(gd(Xi))] .

The directional derivative of ℓd(Ddi,Xi; gd) is given by

d

dπd
ℓd(Ddi,Xi; gd)[u] := lim

t→0

ℓd(Ddi,Xi; gd + t · u)− ℓd(Ddi,Xi; gd)

t

= {Ddi − L(gd(Xi))}u(Xi)

for u ∈ L2(dFX). To estimate g∗d, we consider the following ANN estimator in the space Gn.

Assumption 2. We assume the ANN estimator ĝd of g∗d satisfies

Ld,n(ĝd) ≥ sup
gd∈Gn

Ld,n(gd)−O(ϵ2n),

where

Ld,n(gd) :=
1

n

n∑
i=1

ℓd(Ddi,Xi; gd(·))

is the empirical criterion, and ϵn = o(n−1/2).
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The ANN estimator of g∗d depends on the sample size n. For notational simplicity,

we write it as ĝd. Assumption 2 states that the ANN estimator ĝd of g∗d does not need

to be the global maximizer of the objective function Ld,n(gd), which may not be obtained

in practice. It can be any local solutions satisfying the condition given in Assumption 2,

i.e., the values of the objective function evaluated at the local solutions and at the global

maximizer cannot be far away from each other, and their difference needs to satisfy the

order O(ϵ2n). This assumption is also imposed for sieve extreme estimation; see [105], [34]

and [35]. The estimator of π∗d is defined by π̂d := L(ĝd), then we use the empirical version

of (3.2) to construct the estimators of β∗, denoted by β̂ = (β̂0, ..., β̂J)
⊤ where

β̂d := argmin
β∈Θ

1

n

n∑
i=1

Ddi

π̂d(Xi)
L (Yi − β) , (3.8)

for every d ∈ D = {0, 1, ..., J}.

3.4.1 Large Sample Properties

Assumption 3. The dimension of Xi is denoted by p ∈ N and the number of hidden units

is denoted by rn ∈ N. They are allowed to grow to infinity as the sample size n increases,

with the rates

p ≤ C0 · (log n)
1
2 and C1 · n

p+1
2(p+2) ≤ rn ≤ C2 · n

1
2
−ν ,

where C1 and C2 are two positive constants, and

0 ≤ C0 <

√
1

4 logM
, C3 ·

log log n

log n
< ν <

1

2(p+ 2)
and

3

2
< C3 <∞.

The bound of the hidden-to-output weights, Bn, specified in (3.4) satisfies Bn ≤ 2vπ∗
d ,m

.
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Assumption 4. For every d ∈ D = {0, 1, ..., J}, g∗d(·) ∈ Wm,δ0,∞(X ), where m ≥ 1 and

δ0 > 1.

Assumption 3 allows the dimension of covariates goes to infinity as the sample

size grows, while it imposes restrictions on the growth rate of the dimension of covariates

and that of the number of hidden units to ensure that the L2(dFX)-convergence rate of

estimated PS attains oP (n
−1/4), which is needed to establish the

√
n-asymptotic normality

for the proposed TE estimator. For the ANNs given in (3.4), the coefficients γj no longer

have the ℓ1 constraint. Each of them only needs to be bounded. For the convenience of

theoretical investigation, we set the bound to be 1. Moreover, B = Bn depends on the

sample size n. Unlike the LASSO method that penalizes a large number of regression

coefficients yielding a sparse solution, the ANN estimation takes all explanatory variables

into account, and it is possible that all hidden-to-output weights are nonzero. Assumption

4 is a smoothness condition imposed on the PS functions.

The following result establishes the convergence rates of g∗d and π∗d. The proof of

Theorem 1 is presented in online Supplemental Materials [33].

Theorem 1. Suppose Assumptions 2-4 hold. Then

∥ĝd − g∗d∥L2(dFX) = OP

(
max

{
vπ∗

d ,m
· r

− 1
2
− 1

p
n ,

√
rn · p · log n

n

})
= oP

(
n−1/4

)
,

and

∥π̂d − π∗d∥L2(dFX) = OP

(
max

{
vπ∗

d ,m
· r

− 1
2
− 1

p
n ,

√
rn · p · log n

n

})
= oP

(
n−1/4

)
,

where the constants hiding inside Op and op do not depend on p and n.
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Theorem 1 shows that under a suitable smoothness condition, the M -estimates

based on ANNs with a single hidden layer circumvent the curse of dimensionality and

achieve a desirable rate for establishing the asymptotic normality of plug-in estimators [32].

[14] showed that their least squares estimator based on multilayer neural networks with a

smooth activation function can achieve the convergence rate of n−2s/(2s+d∗) (up to a log

factor), if the regression function satisfies a s-smooth generalized hierarchical interaction

model of order d∗, where d∗ is fixed. [102] established a similar rate for the ReLU activation

function. However, the target function class considered in [14] and [102] is different from

that used in our research. We refer to the online Supplemental Materials [33] for more

discussion for the extension of our results for multilayer neural networks .

Assumption 5. (i) Let Θ be a compact set of RJ+1 containing the true parameters β∗.

(ii) The propensity scores are uniformly bounded away from zero and one, i.e., there exist

a constant c such that 0 < c ≤ P (Di = d|Xi = x) for all x ∈ X and d ∈ {0, 1, ..., J}.

(iii) The function Ed(·, β∗d) := E[L′(Y ∗
i (d) − β∗d)|Xi = ·] is uniformly bounded and belongs

to Wm,δ0,∞(X ) for every d ∈ {0, 1, ..., J}.

Assumption 6. (Approximation error) Let g(gd, ϵn) := (1 − ϵn) · gd + ϵn · {u∗ + g∗d} be a

local alternative value around gd ∈ Gn, where u∗ ∈ Wm,δ0,∞(X ) denotes a perturbation. We

assume the following conditions hold:

sup
{gd∈Gn:∥gd−g∗d∥L2(dFX )≤δn}

∥ProjGn
g(gd, ϵn)− g(gd, ϵn)∥L2(dFX) = O

(
ϵ2n
δn

)
,

sup
{gd∈Gn:∥gd−g∗

d
∥
L2(dFX )

≤δn}

1

n

n∑
i=1

(
d

dπd
ℓd(Ddi,Xi; g

∗
d)[g(Xi; gd, ϵn)− ProjGn

g(Xi; gd, ϵn)]

)
= OP (ϵ

2
n),

where ProjGn
g(gd, ϵn) denotes the L2(dFX)-projection of g(gd, ϵn) on the ANN space Gn.
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Assumption 7. For every d ∈ D = {0, 1, ..., J},

1. the probability density of Y ∗(d), denoted by fY ∗(d)(y), is continuously differentiable.

2. the conditional probability density of Yi given Xi = x and Di = d, denoted by

fY |X,D(y|x, d), is continuously differentiable in y ∈ R.

3. the following integrals are finite

sup
β∈Θ

∫ ∣∣∣∣L′(y − β) ∂
∂y
fY ∗(d)(y)

∣∣∣∣ dy <∞ and sup
β∈Θ

∫ ∣∣∣∣L′(y − β) ∂
∂y
fY |D,X(y|d, x)

∣∣∣∣ dy <∞,
for almost all (d, x) ∈ D × X .

4. Hd := −∂βE[L′(Y ∗(d)− β∗d)] > 0.

Assumption 8.

1. There exists a finite positive constant C such that for any β ∈ Θ and any δ > 0 in a

neighborhood of zero,

E

[
sup

β̃:|β̃−β|<δ

{
L′(Y − β̃)− L′(Y − β)

}2
]
≤ const× δ.

2. E
[
supβ∈Θ |L′(Y − β)|2+δ

]
<∞ for some δ > 0.

Assumption 5 (i) is a standard condition for the parameter space. Assumption 5

(ii) is a strict overlap condition ensuring the existence of participants at all treatment levels,

which is commonly assumed in the literature. [42] discussed the applicability of the strict

overlap condition with high-dimensional covariates, and provided a variety of circumstances

under which this conditions hold. They also argued that the strict overlap condition may

not be necessary if other smoothness conditions are imposed on the potential outcomes, or
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it can be technically relaxed with some non-standard asymptotic analyses (e.g., [64, 86])

and the sacrifice of uniform inference on ATE. Assumption 5 (iii) is a smoothness condition

for approximation. The functions {π∗d(x), Ed(x, β∗d)}Jd=0 generally depend on the sample size

n. Assumption 6 is also imposed in [105] and [34], which controls the approximation error.

Assumption 7 imposes smoothness on data distributions which are needed for asymptotic

analysis and ensuring finite asymptotic variance. Assumption 8 concerns L2 continuity

and envelope conditions, which are needed for the applicability of the uniform law of large

numbers, establishing stochastic equicontinuity and weak convergence, see [91] and [6].

Again, they are satisfied by widely used loss functions such as L(v) = v2, L(v) = v{τ−1(v ≤

0)}, and L(v) = v2 · |τ − 1(v ≤ 0)| discussed in Section 3.2.

The following theorem shows the asymptotic distribution of the proposed estimator

β̂, whose proof is presented in online Supplemental Materials [33].

Theorem 2. Under Assumptions 1-8, for any d ∈ {0, 1, .., J}, we have β̂d
p−→ β∗d and

√
n(β̂d − β∗d) = H−1

d ·
1√
n

n∑
i=1

Sd(Yi, Ddi,Xi;β
∗
d) + oP (1), (3.9)

where Hd = −∂βE[L′(Y ∗(d)− β∗d)] and

Sd = Sd(Yi, Ddi,Xi;β
∗
d) :=

Ddi

π∗d(Xi)
L′{Yi − β∗d} −

{
Ddi − π∗d(Xi)

π∗d(Xi)

}
Ed(Xi, β

∗
d).

Consequently,

V −1/2 ·
√
n
{
β̂ − β∗

}
d−→ N

(
0, I(J+1)×(J+1)

)
,

where I(J+1)×(J+1) is the (J + 1) × (J + 1) identity matrix, V = H−1E[SS⊤]H−1, H =

Diag{H0, ...,HJ} and S = (S0, ..., SJ)
⊤.
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Based on the strict overlap condition and the integrability of the outcome, As-

sumption 5 (ii) and Assumption 8 (ii), we have that the asymptotic variance is finite,

which implies the proposed estimator β̂ is
√
n-consistency. In addition, when p is a fixed

number, [3] derive the efficient influence function (EIF) for the TE parameter β∗d , which

is {−∂βE[L′(Y ∗
i (d) − β∗d)]}−1Sd(Yi, Ddi,Xi;β

∗
d), hence the proposed estimator attains the

semiparametric efficiency bound.

The EIF can be applied to different loss functions. When EIF is given, the esti-

mator of β∗d can also be obtained by solving the estimated efficient score function [113]. For

example, when the loss function L(v) = v2 corresponding to ATE, the EIF of β∗d = E[Y ∗(d)]

is

Ddi

π∗d(Xi)
Yi −

{
Ddi

π∗d(Xi)
− 1

}
E[Yi|Ddi = 1,Xi]− β∗d . (3.10)

It involves the PS function π∗d(x) and the OR function E[Yi|Ddi = 1,Xi = x]. [36], [93]

and [46] estimate the two nuisance functions by state-of-the-art machine learning and deep

learning algorithms with a sample splitting strategy to circumvent over-fitting.

When the loss function L(v) = v · {τ −1(v ≤ 0)} corresponding to the τ th-quantile

TE, the specific form of EIF for β∗d = F−1
Y ∗(d)(τ) can also be derived fromH−1

d Sd(Yi, Ddi,Xi;β
∗
d).

As a result, its estimator can be obtained from solving the estimated efficient score equation

n∑
i=1

[
Ddi

π̂d(Xi)
{τ − 1(Yi ≤ β)} −

{
Ddi

π̂d(Xi)
− 1

}{
τ − Ê[1(Yi ≤ β)|Ddi = 1,Xi]

}]
= 0,

(3.11)

where π̂d(x) and Ê[1(Yi ≤ β)|Ddi = 1,Xi = x] are estimates of π∗d(x) and E[1(Yi ≤

β)|Ddi = 1,Xi = x], respectively. [19] propose to use Lasso regression to estimate these

two functions when they are assumed to have a generalized linear structure. The estimation
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of quantile TEs from (3.11) can be challenging when ANNs or other nonlinear machine

learning methods are employed to approximate E[1(Yi ≤ β)|Ddi = 1,Xi = x], as it involves

the unknown parameter β.

Different from the aforementioned estimators constructed based on the estimated

EIF, our TE estimators are directly obtained from optimizing an objective function which

only involves the ANN-based estimated PS function. This approach greatly facilitates the

computation of obtaining TE estimates and conducting causal inference. Computational

convenience is of critical importance when we have large-scale observational data and ANNs

approximation is involved.

3.4.2 Statistical Inference

This section presents two approaches to conduct statistical inference for β∗ in

practice. The first approach is based on the weighted bootstrap, the other one is based on

the asymptotic distribution given in Theorem 2 with an estimated asymptotic variance.

Weighted Bootstrap

For every d ∈ {0, 1, ..., J}, let {wd1, ..., wdn} be i.i.d. positive random weights that

are independent of data satisfying E[wdi] = 1 and V ar(wdi) = 1. The weighted bootstrap

estimator of the inverse logistic PS g∗d is defined by satisfying

L∗
d,n(ĝ

∗
d) ≥ sup

gd∈Gn

L∗
d,n(gd)−O(ϵ2n),
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where L∗
d,n(gd) := n−1

∑n
i=1wdiℓd(Ddi,Xi; gd(·)) is the empirical criterion, and ϵn = o(n−1/2).

The weighted bootstrap estimator of β∗d is defined by satisfying

β̂∗d = argmin
β∈Θ

1

n

n∑
i=1

wdiDdi

π̂∗d(Xi)
L (Yi − β) , d ∈ {0, 1, ..., J},

where π̂∗d := L(ĝ∗d).

Let β̂∗ := (β̂∗0 , ..., β̂
∗
J+1)

⊤. The following theorem justifies the validation of the

proposed bootstrap inference.

Theorem 3. Under Assumptions 1-8, for any d ∈ {0, 1, .., J}, then conditionally on the

data we have

V −1/2 ·
√
n
(
β̂∗ − β̂

)
d−→ N (0, I(J+1)×(J+1)).

The proof of Theorem 3 is obtained by mimicking the proof of Theorem 1 and

Theorem 2. The detailed proof can be found in the online Supplemental Materials [33].

Variance Estimation

This section studies the estimation of V in Theorem 2. Since the nonsmooth

loss function may invalidate the exchangeability between the expectation and derivative

operator, some care in the estimation of Hd is warranted. Using the tower property of

conditional expectation and Leibniz integration rule (see Appendix A.3), we rewrite Hd as:

Hd = −E
[

Ddi

π∗d(Xi)
L′(Yi − β∗d)

∂

∂y
log fY,X|D(Yi,Xi|d)

]
. (3.12)

The log density log fY,X|D(y, x|d) can be estimated via the widely used ANN extremum

estimator:

f̂Y,X|D(y, x|d) :=
exp (âd(y, x))∫

Y×X exp (âd(y, x)) dydx
,
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where âd ∈ G̃n approximately maximizes the following criterion function, which is similar

to Assumption 2:

L̃d,n (âd) ≥ sup
a∈G̃n

L̃d,n (a)−O(ϵ2n),

where

L̃d,n(a) :=
1

n

n∑
i=1

Ddi

[
a(Yi,Xi)− log

∫
Y×X

exp (a(y, x)) dydx

]
,

and G̃n is a neural network similar to Gn with input variable (x, y). Then Hd can be

estimated by

Ĥd := −
1

n

n∑
i=1

Ddi

π̂d(Xi)
L′(Yi − β̂d) ·

{
∂

∂y
âd(Yi,Xi)

}
. (3.13)

Under Assumption 1, Ed(x, β∗d) = E[L′(Yi − β∗d)|Xi = x,Di = d], hence Ed(x, β∗d)

can be estimated by using ANN extremum estimates:

Êd(·) =: arg min
g(·)∈Gn

1

n

n∑
i=1

Ddi

{
L′
(
Yi − β̂d

)
− g(Xi)

}2
. (3.14)

Therefore, the plug-in estimates of Sd(Yi, Ddi,Xi;β
∗
d) is

Ŝdi =
Ddi

π̂d(Xi)
L′{Yi − β̂d} −

{
Ddi − π̂d(Xi)

π̂d(Xi)

}
Êd(Xi). (3.15)

Finally, by (3.13) and (3.15), the asymptotic covariance matrix of the estimator is estimated

by

V̂ := Ĥ−1

{
1

n

n∑
i=1

ŜiŜ
⊤
i

}
(Ĥ⊤)−1.

where Ĥ = Diag{Ĥ0, ..., ĤJ} and Ŝi = (Ŝ0i, ..., ŜJi)
⊤. Since |β̂d − β∗d |

P−→ 0, π̂d(·)
L2(dFX)−−−−−→

π∗d(·) and Êd(·)
L2(dFX)−−−−−→ Ed(·, β∗d) for all d ∈ {0, 1, ..., J}. Based on these results, the consis-

tency of V̂ , i.e. V̂
p−→ V follows from standard arguments.
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The asymptotic normality of β̂ = (β̂0, β̂1, ..., β̂J)
⊤ established in Theorem 2 to-

gether with the consistency of V̂ provides a theoretical support for conducting statistical

inference of the TE parameter vector β∗ = (β∗0 , β
∗
1 , ...., β

∗
J)

⊤. For instance, based on these

results, we can construct a 100(1 − α)% confidence interval for each β∗d , d ∈ {0, 1, ..., J},

given by [
β̂d − n−1/2zα/2V̂

1/2
dd , β̂d + n−1/2zα/2V̂

1/2
dd

]
,

where V̂dd is the (d, d)-element of the estimated covariance matrix V̂ , and zα/2 is the 100(1−

α/2) percentile of the standard normal. We can also construct confidence intervals for a

contrast of β∗ for a comparison of different TE parameters. That is, for any given a∈ RJ+1,

a 100(1− α)% confidence interval for a⊤β∗ is given by

[
a⊤β̂ − n−1/2zα/2(a

⊤V̂ a)1/2, a⊤β̂ + n−1/2zα/2(a
⊤V̂ a)1/2

]
.

It is worth noting that estimation of the asymptotic variance is straightforward

for average TE, but it can be difficult for other types of TEs, such as quantile TEs. Thus,

the weighted bootstrap method is recommended for conducting inference of β∗, and it can

yield a more stable inferential result. Since our TE estimator is obtained by optimizing a

generalized objective function, it is very convenient to apply the weighted bootstrap in our

estimation procedure.
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3.5 Outcome regression estimation

Using Assumption 1 and the property of conditional expectation, we can rewrite

Equation (3.1) as follows:

β∗ = argmin
β

J∑
d=0

E [E[L(Y − βd)|X,D = d]] . (3.16)

Based on above expression, an alternative estimation strategy is to first estimate the con-

ditional expectation E[L(Y − βd)|X,D = d] (with βd being fixed), then estimate β∗ by

minimizing the empirical version of (3.16) with estimated E[L(Y −βd)|X,D = d]. However,

unlike the linear sieve estimation, there may not exist a closed form for ANN estimator

of E[L(Y − βd)|X,D = d], hence the outcome regression estimation for a general L(·)

is difficult to obtain. In this section, we consider a particular but important parameter

ATE which corresponds to L(v) = v2. In this case, β∗d = E[Y ∗(d)] = E[g∗d(X)], where

g∗d(X) := E[Y |X,D = d] is the the outcome regression function. We can estimate g∗d(X)

through neural networks:

ĝd(·) = arg min
g(·)∈Gn

1

2n

n∑
i=1

Ddi {Yi − g(Xi)}2 .

Then the outcome regression (OR) estimator of β∗d is defined to be

β̂ORd =
1

n

n∑
i=1

ĝd(Xi). (3.17)

Assumption 9. Let q(Y, β) := {L′(Y − β)− L′(Y − β∗d)}2,

1. there exist some finite positive constants C and γ such that for any β ∈ Θ and any

δ > 0 in a neighborhood of 0, E
[
sup

β̃:|β̃−β|<δ

{
q(Y, β̃)− q(Y, β)

}2
]
≤ C · δγ.

2. E
[
supβ∈Θ |q(Y, β)|2+δ

]
<∞ for some δ > 0.
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Theorem 4. Under Assumptions 1-9, for any d ∈ {0, 1, .., J}, we have that

√
n(β̂ORd − β∗d) =

1√
n

n∑
i=1

[
Ddi

π∗d(Xi)
Yi −

{
Ddi − π∗d(Xi)

π∗d(Xi)

}
· g∗d(Xi)− E[g∗d(Xi)]

]
+ oP (1).

Hence the estimator β̂OR attains the semiprametric efficiency bound of β∗ derived by [3].

The proof of Theorem 4 is presented in the online Supplemental Materials [33].

3.6 Simulation Studies

3.6.1 Background and Methods Used

In this section, we illustrate the finite sample performance of our proposed methods

via simulations in which we generate data from models in Section 3.6.2. Our proposed IPW

estimator can be applied to various types of treatment effects. We use ATE, ATT (average

treatment effects on the treated), QTE and QTT (quantile treatment effects on the treated)

for illustration of the performance of the IPW estimator. For QTE and QTT, we consider

the 25th (Q1), 50th (Q2) and 75th (Q3) percentiles. We also illustrate the performance of

the OR estimator for ATE and ATT. To obtain the IPW and OR estimators, we estimate

the PS and OR functions by using our proposed ANN method as well as five other popular

methods, including the generalized linear models (GLM), the generalized additive models

(GAM), the random forests (RF), the gradient boosted machines (GBM) and the deep

neural networks with three hidden layers (DNN). We make a comparison of the performance

of the resulting TE estimators with the nuisance functions estimated by the aforementioned

six methods. Moreover, we compare our IPW and OR estimators with the doubly robust

(DR) estimator [46] and the Oracle estimator for ATE. For the DR estimator, the IPW and
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OR functions are also approximated by ANNs. The Oracle estimator is constructed based

on the efficient influence function with the true PS and OR functions plugged in, see [54].

The Oracle estimators are infeasible in practice, but they are expected to perform the best

for estimation of ATE, and are served as a benchmark to compare with.

We use the Rectified Linear Unit (ReLU) as the activation function for both ANN

and DNN. We use cubic regression spline basis functions for GAM. We apply grid search

with 5-fold cross-validation to select hyperparameters for all methods, including the number

of neurons for ANN DNN, the number of trees and max depths of trees for RF and GBM,

and the learning rate for GBM. All the simulation studies are implemented in Python

3.9. The DNN, GLM, GAM, RF and GBM methods are implemented using the packages

tensorflow, statsmodel, pyGAM and scikit-learn, respectively.

3.6.2 Date Generating Process

We generate the treatment and outcome variables from a nonlinear model and a

linear model, respectively, given as follows.

Model 1 (nonlinear model) :

logit{E(Di|Xi)} = 0.5(X∗
i1X

∗
i2 − 0.7sin((X∗

i3 +X∗
i4)(X

∗
i5 − 0.2))− 0.1),

E(Yi(1)|Xi) = E(Yi|Xi, Di = 1) = 0.3(X∗
i1 − 0.9)2 + 0.1(X∗

i2 − 0.5)2

− 0.6X∗
i2X

∗
i3 + sin(−1.7(X∗

i1 +X∗
i3 − 1.1) +X∗

i4X
∗
i5) + 1,

E(Yi(0)|Xi) = E(Yi|Xi, Di = 0) = 0.64(X∗
i1 − 0.9)2 + 0.16(X∗

i2 + 0.2)2

− 0.6X∗
i2X

∗
i3 + sin(−1.7(X∗

i1 +X∗
i3 − 1.1) +X∗

i4X
∗
i5)− 1;
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Model 2 (linear model) :

logit{E(Di|Xi)} = 0.1(X∗
i1 +X∗

i2 − 2X∗
i3 + 3X∗

i4 − 3X∗
i5),

E(Yi(1)|Xi) = E(Yi|Xi, Di = 1) = 4X∗
i1 + 3X∗

i2 −X∗
i3 − 5X∗

i4 + 7X∗
i5 + 1,

E(Yi(0)|Xi) = E(Yi|Xi, Di = 0) = 4X∗
i1 + 3X∗

i2 −X∗
i3 − 5X∗

i4 + 7X∗
i5 − 1,

where X∗
ij′ =

5
p

∑pj′/5
j=p(j′−1)/5+1Xij for 1 ≤ j′ ≤ 5, 1 ≤ i ≤ n, and Yi(d) = E(Yi(d) | Xi) + ϵi,

d = {0, 1}, ϵi
i.i.d.∼ N (0, 1) for 1 ≤ i ≤ n.

The confounders Xij are generated from Xij = 2(F (Zij) − 0.5), where Zi =

(Zi1, ..., Zip)
⊤ i.i.d.∼ N (0,Σ), Σ = {σkk′}, σkk′ = 0.2|k−k

′| for 1 ≤ k, k′ ≤ p, and F (·) is the

cumulative distribution function of standard normal distribution for 1 ≤ i ≤ n, 1 ≤ j ≤ p.

We partition the confounders into 5 subgroups, and X∗
ij′ is the average of the p/5 con-

founders in the j’-th subgroup for j′ = 1, ..., 5, so that every confounder is included in our

models. We consider p = 5, 10 and n = 1000, 2000, 5000. All simulation results are based

on 400 realizations.

We also consider a simulation setting with p = 100 and n = 2000 for the nonlinear

model (Model 1) to illustrate the performance of our proposed methods. The confounders

are generated in the same way as described above except that Zi
i.i.d.∼ N (0,Σ), Σ = {σkk′},

σkk′ = 0.2m(|k−k′|) for 1 ≤ k, k′ ≤ 100, where m(x) = x−5⌊x/5⌋, and ⌊a⌋ denotes the largest

integer no greater than a.
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3.6.3 Treatment Effect Estimators

Treatment effects are estimated in two steps. First, we obtain the estimates of PS

function and OR function from optimizing these two functions, d ∈ {0, 1}:

π̂d(·) := arg max
πd(·)∈Gn

1

n

n∑
i=1

ℓd(Ddi, Xi;πd(·)),

ĝd(·) = arg min
g(·)∈Gn

1

2n

n∑
i=1

Ddi {Yi − g(Xi)}2 .

Set the loss function L(v) = v2, we can obtain the IPW and OR estimators of

treatment effect:

β̂IPWd =
1

n

n∑
i=1

DdiYi/π̂d(Xi)
1
n

∑n
i=1

Ddi
π̂d(Xi)

, (3.18)

β̂ORd =
1

n

n∑
i=1

ĝd(Xi). (3.19)

The IPW and OR estimators of treatment effect for treatment group d′ = 1 are:

β̂IPWd,d′ =
1

n

n∑
i=1

Ddiπ̂d′(Xi)Yi/π̂d(Xi)
1
n

∑n
i=1Ddiπ̂d′(Xi)/π̂d(Xi)

, (3.20)

β̂ORd,d′ =
1

n

n∑
i=1

Dd′i
1
n

∑n
i=1Dd′i

ĝd(Xi). (3.21)

Next we obtain the ATE and ATT, denoted by ηIPW and ηOR for IPW and OR

estimators of ATE, and ηIPWtreated and η
OR
treated for IPW and OR estimators of ATT, respectively:

η̂IPW = β̂IPW1 − β̂IPW0 , (3.22)

η̂OR = β̂OR1 − β̂OR0 , (3.23)

η̂IPWtreated = β̂IPW1,1 − β̂IPW0,1 , (3.24)

η̂ORtreated = β̂OR1,1 − β̂OR0,1 . (3.25)
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Set the loss function L(v) = ρτ (Yi− q) = v · {τ − I(v ≤ 0)} for some τ ∈ (0, 1), we

can obtain the treatment effect from the minimization problem, d ∈ {0, 1}:

β̂τd = argmin
q

1

n

n∑
i=1

Ddi

π̂d(Xi))
ρτ (Yi − q). (3.26)

We solve this minimization problem using linear programming. Similarly the treat-

ment effect for the treatment group d′ = 1 is obtained from the minimization problem:

β̂τd,d′ = argmin
q

1

n

n∑
i=1

Ddi

π̂d(Xi))

π̂d′(Xi)
1
n

∑n
i=1Dd′i

ρτ (Yi − q). (3.27)

For each τ ∈ (0, 1), we obtain the QTE and QTT, denoted by ητ and ητtreated for

QTE and QTT, respectively:

η̂τ = β̂τ1 − β̂τ0 , (3.28)

η̂τtreated = β̂τ1,1 − β̂τ0,1. (3.29)

3.6.4 Estimation Algorithms

Let γ0 = (γ01, ..., γ0p)
⊤, aj = (aj1, ..., ajp)

⊤, α = (a10, a11, ..., ajk, ...arnp), γ =

(γ00, γ01, ..., γ0p, γ1, ..., γrn), and

f(x;α,γ) = γ⊤0 x+ γ00 +

rn∑
j=1

γjψ(a
⊤
j x+ aj0).
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The ANN estimators of PS and OR functions can be obtained through solving the

following optimization problem:

(α̂, γ̂) := argmin
α,γ

L(α,γ;X,Y ,Dd),

where

L(α,γ;X,Y ,Dd) = −
1

n

n∑
i=1

[
Ddi log(

exp(f(Xi;α,γ))

1 + exp(f(Xi;α,γ))
)

+ (1−Ddi) log(
1

1 + exp(f(Xi;α,γ))
)
]
,

L(α,γ;X,Y ,Dd) =
1

2n

n∑
i=1

Ddi {Yi − f(Xi;α,γ)}2 ,

for PS and OR functions, respectively, and X = (X⊤
1 , ..., X

⊤
n )

⊤, Y = (Y1, ..., Yn)
⊤, Dd =

(Dd1, ..., Ddn)
⊤.

These two optimization problems are solved using ADAM method ([71]) with

modification, see Algorithm 2. We apply the ADAM method to update α. For the update

in γ, we solve for generalized linear models with covariates being X̃i = (1, X⊤
i , ψ(a

⊤
1 Xi +

a10), ..., ψ(a
⊤
j Xi + aj0), ..., ψ(a

⊤
rnXi + arn0))

⊤, and outcomes being Ddi and Yi for PS and

OR functions, respectively. The number of hidden units is selected through 5-fold cross

validation. The starting values are generated using HE initialization method ([59]).

3.6.5 Variance Estimation

The variance of our estimators are estimated using the asymptotic estimators in

Section 3.4.2 as well as using weighted bootstrapping method. We use variance estimators

in [54] for ATE and ATT, and variance estimators in [47] for QTE and QTT.
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Algorithm 2

Require: αini: Initial value for α

Require: ϵ0: converge criterion

Require: α̃: step size with default value of 0.001

Require: β̃1: decay rate with default value of 0.9

Require: β̃2: decay rate with default value of 0.999

Require: ϵ̃: stabilizer with default value of 10−8

t← 0 (Initialize timestep)

m0 ← 0

v0 ← 0

α0 ← αini

while ∥αt+1 −αt∥ < ϵ0 do

t← t+ 1

γt ← argminγ L(α,γ;X,Y ,Dd) (Update γ from GLM estimates)

gt ← ∇αL(α,γ;X,Y ,Dd) (Obtain gradient for α at timestep t)

mt ← β̃1mt−1 + (1− β̃1)gt

vt ← β̃2vt−1 + (1− β̃2)gt ⊙ gt

m̂t ← mt/(1− β̃t1)

v̂t ← vt/(1− β̃t2)

∆(αt)← m̂t/(
√
v̂t + ϵ̃)

αt ← αt−1 − α̃∆(αt) (Update α at timestep t)

end while
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The variance estimator for ATE and ATT are:

V̂ =
1

n

n∑
i=1

[
D1i(Yi − ĝ1(Xi)

π̂1(Xi)
− D0i(Yi − ĝ0(Xi)

π̂0(Xi)
+ ĝ1(Xi)− ĝ0(Xi)− η̂

]2

,

V̂ =
1

n

n∑
i=1

{
π̂1(Xi)

n−1
∑n

i=1 π̂1(Xi)

[
D1i(Yi − ĝ1(Xi)

π̂1(Xi)
− D0i(Yi − ĝ0(Xi)

π̂0(Xi)
+ ĝ1(Xi)− ĝ0(Xi)− η̂treated

]}2

,

where

η̂ =
1

n

n∑
i=1

[
D1i(Yi − ĝ1(Xi)

π̂1(Xi)
− D0i(Yi − ĝ0(Xi)

π̂0(Xi)
+ ĝ1(Xi)− ĝ0(Xi)

]
,

η̂treated =
1

n

n∑
i=1

{
π̂1(Xi)

n−1
∑n

i=1 π̂1(Xi)

[
D1i(Yi − ĝ1(Xi)

π̂1(Xi)
− D0i(Yi − ĝ0(Xi)

π̂0(Xi)
+ ĝ1(Xi)− ĝ0(Xi)

]}
.

The variance estimator of QTE for τ ∈ (0, 1) is V̂τ = 1
n

∑n
i=1(ϕ̂τ,i + α̂τ,i)

2, where

ϕ̂τ,i =
D1iĝ1,τ (Xi)

π̂1(Xi)
− D0iĝ0,τ (Xi)

π̂0(Xi)
,

α̂τ,i = −Ê
[
D1ĝ1,τ (X)

π̂1(X)
− D0ĝ0,τ (X)

π̂0(X)

∣∣∣∣X = Xi

]
· (Di − π̂1(Xi)),

ĝd,τ (Xi) = −
1{Y ≤ q̂τd} − τ

f̂d(q̂
τ
d)

, (d = 0, 1).

Here, f̂d is the estimator of the density of the potential outcome Y (d):

f̂d(y) =
1

n

n∑
i=1

Ddi

π̂d(Xi)
Khh,d(Yi − y)

where Khd,d(·) = h−1
d Kd(·/h

−1
d ), Kd(·) is a kernel function and h−1

d is a bandwidth for

d = 0, 1. Here we choose the Gaussian kernel, and bandwidth is determined by rule of

thumb.

Next, α̂τ,i involves estimating an unknown conditional expectation, we propose

estimating it using ANN for our proposed estimator, and we estimate this unknown expec-

tation using corresponding methods for other estimators (e.g. use GLM to estimate this

expectation for GLM estimator).
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Similarly, the variance estimator of QTT is V̂τ = 1
n

∑n
i=1(ϕ̂τ,i + α̂τ,i)

2, where

ϕ̂τ,i =
D1iĝ1,τ (Xi)

π̂1(Xi)
− D0iĝ0,τ (Xi)

π̂0(Xi)
,

α̂τ,i = −Ê
[
D1ĝ1,τ (X)

π̂1(X)
− D0ĝ0,τ (X)

π̂0(X)

∣∣∣∣X = Xi

]
· (Di − π̂1(Xi)),

ĝd,τ (Xi) = −
1{Y ≤ q̂τd,d′} − τ

f̂d,d′(q̂
τ
d,d′)

, (d = 0, 1, d′ = 1),

where

f̂d,d′(y) =
1

n

n∑
i=1

Ddi

π̂d(Xi)
·

π̂′d(Xi)

n−1
∑n

i=1 π̂
′
d(Xi)

Khh,d(Yi − y), (d = 0, 1, d′ = 1).

For the weighted bootstrapping method, we sample Wi, i = 1, ..., n as n i.i.d.

positive random weights, satisfying E(Wi) = 1 and V ar(Wi) = v0 < ∞ and independent

of (β̂d, π̂d(·)). Here we generate Wi from the exponential distribution with mean parameter

being 1.

The weighted IPW estimator of treatment effect can be estimated in two steps.

First we will obtain weighted estimates of propensity score function from maximizing the

weighted log-likelihood, d ∈ {0, 1}:

π̂d(·) = arg max
πd(·)∈Gn

1

n

n∑
i=1

Wiℓd(Ddi, Xi;πd(·)). (3.30)

Next the weighted estimator of β̂′d is obtained from

β̂′
IPW

d =
1

n

n∑
i=1

WiDdiYi/π̂d(Xi)
1
n

∑n
i=1

WiDdi
π̂d(Xi)

. (3.31)
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The weighted OR estimator of treatment effect can also be obtained from similar

procedures. First we obtain weighted estimates of outcome function from minimizing the

weighted loss function , d ∈ {0, 1}, then we obtain the weighted estimator of β̂′d:

ĝd(·) = arg min
g(·)∈Gn

1

2n

n∑
i=1

WiDdi {Yi − g(Xi)}2 . (3.32)

β̂′
OR

d =
1

n

n∑
i=1

Wiĝd(Xi)
1
n

∑n
i=1Wi

. (3.33)

The weighted quantile estimator uses the weighted estimates of propensity score

and is obtained from minimizing the weighted function:

β̂′
τ

d = argmin
q

1

n

n∑
i=1

Wi
Ddi

π̂d(Xi))
ρτ (Yi − q). (3.34)

Similarly the treatment effects on the treated are

β̂′
IPW

d,d′ =
1

n

n∑
i=1

WiDdiπ̂d′(Xi)Yi/π̂d(Xi)
1
n

∑n
i=1WiDdiπ̂d′(Xi)/π̂d(Xi)

, (3.35)

β̂′
OR

d,d′ =
1

n

n∑
i=1

WiDd′i
1
n

∑n
i=1WiDd′i

ĝd(Xi), (3.36)

β̂′
τ

d,d′ = argmin
q

1

n

n∑
i=1

Wi
Ddiπ̂d′(Xi)

π̂d(Xi)
ρτ (Yi − q). (3.37)

Finally, we obtain the weighted estimators of ATE and ATT and the weighted

estimators of QTE and QTT:

η̂′
IPW

= β̂′IPW

1 − β̂′IPW

0 , (3.38)

η̂′
OR

= β̂′OR

1 − β̂′OR

0 , (3.39)

η̂′
IPW

treated = β̂′IPW

1,1 − β̂′IPW

0,1 , (3.40)

η̂′
OR

treated = β̂′OR

1,1 − β̂′OR

0,1 , (3.41)

η̂′
τ
= β̂′τ

1 − β̂′τ
0 , (3.42)

η̂′
τ

treated = β̂′τ
1,1 − β̂′τ

0,1. (3.43)
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For our simulation study, each time we generate a vector of positive random weights

W = (W1, ...,Wn)
⊤ and obtain corresponding weighted estimators of all types of TE. With

the procedure repeated Nb times, we can estimate the variance of all types of TE from the

bootstrapping estimators. Here we set Nb as 400.

3.6.6 Simulation Results

To compare the performance of different methods for estimating the TEs, we report

the following statistics: the absolute value of bias (bias), the empirical standard deviation

(emp sd), the average value of the estimated standard deviations based on the asymptotic

formula (est sd) and obtained from the weighted bootstrapping (est sd boot), and the em-

pirical coverage rates of the 95% confidence intervals based on the estimated asymptotic

standard deviations (cover rate) and the weighted bootstrapping method (cover rate boot).

The 95% confidence intervals based on bootstrapping are obtained from the 2.5th percentile

and 97.5th percentile of the weighted bootstrapping estimates.

Tables 3.1 - 3.2 report the numerical results for different estimators of ATE for

Model 1 with p = 5, 10, respectively. We see that as n increases, the empirical coverage

rates (cover rate and cover rate boot) based on our proposed ANN-based IPW and OR

estimates become closer to the nominal level 95%. The biases are close to zero, and the

values of emp sd, est sd and est sd boot decrease as n increases. These results corroborate

our asymptotic theories. We observe that our ANN-based IPW and OR estimators have

comparable performance to the DR and the Oracle estimators when estimating ATE. The

proposed ANN-based OR estimator slightly outperforms the ANN-based IPW and DR

estimators in the sense that it has the smallest emp sd value. It is possible that the estimated
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PS functions have a few values close to zero. This can affect the emp sd value of the IPW

estimate for ATE. The DR estimator which is constructed based on the estimates of both

IPW and OR functions has larger emp sd values than the OR estimator, but it yields

smaller emp sd values than the IPW estimator. Our numerical results suggest that the

proposed ANN-based OR estimator is preferred for the estimation of ATE. However, in

practice it can be difficult to construct OR and DR estimators for other types of TEs, such

as quantile TEs. Then the proposed ANN-based IPW estimator becomes a more appealing

tool. Moreover, our numerical results given in Tables 3.3 - 3.4 show that the performance of

the ANN-based IPW estimators for quantile TEs is less influenced by the small values of the

estimated PS functions because of the robustness of the quantile objective functions. For

our proposed ANN-based IPW and OR estimators, it is convenient to apply the proposed

weighted bootstrap procedure for conducting inference. We find that the empirical coverage

rates of 95% confidence intervals obtained from the weighted bootstrapping are closer to

the nominal level than those obtained from the estimated asymptotic standard deviations.

Next, we compare the performance of different machine learning (ML) methods for

estimation of ATE. We see that the GLM and GAM methods yield large estimation biases

due to the model misspecification problem. Our numerical results show that the proposed

ANN method outperforms the other two ML methods, RF and GBM, for estimation of TEs.

The empirical coverage rates based on the ANN method are closer to the nominal level in all

cases than the rates obtained from RF and GBM. It is worth noting that our ANN-based

TE estimators enjoy the properties of root-n consistency and semiparametric efficiency.

In general, our numerical results corroborate those theoretical properties. Moreover, for
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RF and GBM, the OR estimator also performs better than the IPW estimator for ATE

estimation. The empirical coverage rates of the 95% confidence intervals obtained from the

weighted bootstrapping are improved compared to the rates obtained from the estimated

asymptotic standard deviation. The DNN method has comparable performance to the ANN

method.

In contrast, the GLM and GAM estimates have much smaller coverage rates be-

cause of the large biases. This implies that when the PS and OR functions are nonlinear,

the estimates from GLM and GAM can be very biased and inefficient due to the model

mis-specification. The RF and GBM estimates perform reasonably well for OR estimator.

However, both methods don’t correctly estimate the PS function, resulting in large bias in

IPW estimator. We also observe that the estimated asymptotic standard deviations of the

RF and GBM estimates are quite small, resulting in very small coverage rates (cover rate),

however the standard deviations estimated from bootstrapping are more reasonable and the

coverage rates (cover rate boot) are closer to nominal 95%. The DNN estimate is compa-

rable to ANN estimate for both the IPW and OR estimators. The DR estimate performs

as good as ANN estimate of the OR estimator for most cases, and slightly worse than the

latter in cases with small n, this is because DR estimate is an combination of IPW and OR

estimator, and its variance is inflated by IPW estimator. In summary, the ANN estimates of

the IPW and OR estimators perform well in estimating ATE, and the ANN estimate of OR

estimator outperforms other methods, especially when n is 1000. Our proposed method

outperforms other machine learning methods because our method has reliable statistical

asymptotic theory support. Although the OR estimator has superior performance com-

47



pared to that of IPW estimator, we can’t apply OR estimator for other type of TE such as

QTE. It is also difficult to construct an influence function based estimate of QTE, thus we

can’t obtain DR and Oracle estimates of QTE. However, our proposed method can still be

applied to estimating QTE from the estimated PS function, and such estimation is robust,

QTE would be resistant to the instability of weights.

Tables 3.3 - 3.4 show the numerical results of different methods for estimation of

QTEs for Model 1 with p = 5, 10, respectively. It is difficult to construct OR and DR

estimators for QTEs, so we only report the results for the IPW estimators, which are very

convenient to be obtained in this context. The PS functions are estimated by different ML

methods, and the numerical results of the resulting IPW estimates are summarized in Tables

3.3 - 3.4. In general, we observe similar patterns of numerical performance of different

methods as shown in Table 3.1 - 3.2. It is worth noting that the proposed ANN-based

IPW method has very stable performance for estimation of QTEs. The resulting emp sd

values are not influenced by possibly small values of the estimated PS functions because of

the robustness nature of the quantile objective function. Moreover, in the QTE settings,

estimation of the asymptotic standard deviations can involve a complicated procedure, and

several approximations are needed. As a result, the estimation is not guaranteed to perform

well. Figure 3.1 shows the boxplots of the estimated asymptotic standard deviations of QTE

(Q1) for Model 1 with p = 5, 10, n = 1000. We see that the estimated values are large

for some simulation replicates. In contrast, the estimated standard deviations obtained

from the weighed bootstrapping have more reliable performance. In complex TE settings

such as QTEs, the proposed weighted bootstrap method that avoids the estimation of the
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asymptotic variance provides a robust way to conduct statistical inference, and thus it is

recommended in practice. It is convenient to apply the weighted bootstrap method in our

proposed TE estimation procedure, as the TE estimators are obtained from optimizing

a general objective function. We also apply different ML methods to estimate the PS

function. The numerical results show that the ANN and DNN methods have comparable

performance, and they still outperform other methods for estimation and inference of QTEs

in all simulation settings.

The ANN and DNN estimates outperform other estimates, the bias are close to

zero, and coverage rates (cover rate and cover rate boot) are closer to the nominal 95%

as n increases. We also observe that the est sd values are quite large when sample when

n is 1000, while the est sd boot values are comparable with the emp sd values, indicating

bootstrapping provides a reliable estimate of standard deviations for QTE. In summary,

ANN estimate performs well in estimating QTE.

Estimating standard deviation of QTE from asymptotic formula is more challeng-

ing than that of ATE, the former requires correct estimation of marginal density of the

potential outcomes and an unknown conditional expectation term which also relies on cor-

rect estimation of PS function. Figure 3.1 shows the boxplot of the standard deviation

estimator of QTE of Q1 for Model 1 with p = 10, n = 1000. There are some outliers that

are quite large, resulting in an inaccurate estimate of the variance. In summary, bootstrap-

ping provides a robust way to estimate the standard deviation, especially when n is small.

However, we can’t apply bootstrapping for DR estimate which shows another limitation of

this method.
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Figure 3.1: Boxplots of the estimated asymptotic standard deviations of QTE(Q1) for Model
1, n = 1000.

The numerical results of different methods for ATTs and QTTs for Model 1 are

presented in Tables 3.5 - 3.8. It is shown that the numerical results of different methods

for estimating ATTs and QTTs have similar patterns as those given in Tables 3.1 - 3.4 for

ATEs and QTEs.

All numerical results of different methods for ATTs and QTTs for Model 2 are

presented in Tables 3.9 - 3.16. In Model 2, both PS and OR functions are generated from

linear models, so the GLM and GAM methods no longer have the model misspecification

problem, and GLM is expected to have the best performance. However, we can see from

Tables 3.9 - 3.16 that the ANN and DNN methods have comparable performance to GLM

for estimation of TEs in all cases. It is worth noting that our proposed method can also be

applied to the estimation of asymmetric least squares TEs and other types of TEs, and it

has similar patterns of numerical performance as the estimation of ATEs and QTEs. The

numerical results are not presented due to space limitations.

At last, we evaluate the performance of our proposed TE estimators in the set-

tings with p = 100 and n = 2000. In this scenario, the number of confounders is very
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large compared to the sample size, and it does not satisfy the order requirement given in

Assumption 4. Note that when dealing with high-dimensional covariates, one often assumes

a parametric structure on the regression model and imposes a sparsity condition such that

a small number of covariates are useful for the prediction [20, 19]. The sparsity assumption

and the parametric structure are not required in our setting. For the purpose of dimen-

sionality reduction, we apply Principal Component Analysis (PCA) to extract the leading

principal components that can explain the variance by at least 90% of the covariates matrix,

and use them to estimate the PS and OR functions via ANNs. For comparison, we also

use the original covariates matrix without PCA to fit the nuisance models via ANNs. The

resulting TE estimators with and without the PCA procedure are called ANN-PCA and

ANN, respectively. Table 3.17 - 3.18 report the summary statistics of the ANN-based TE

estimators for ATE, ATT, QTE and QTT for Model 1 with p = 100 and n = 2000 , based

on 400 simulation realizations. For QTE and QTT, we only report the estimated standard

deviations and empirical coverage rates from the weighted bootstrapping, as it is difficult to

estimate the asymptotic standard deviations in the quantile settings. The ATE and ATT

are estimated by the IPW, OR and DR methods, respectively, while the QTE and QTT

are only estimated by the IPW method.

From Table 3.17, we see that the empirical coverage rates obtained from all of the

three methods are smaller than the nominal level 0.95, and the values of bias and emp sd

are larger than those values given in Tables 3.1 - 3.2 for p = 5, 10. The ANN-PCA method

performs better, although its empirical coverage rates still cannot reach the nominal level.

It is expected that these ANN-based methods do not perform well, as the order assumption
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on the dimension p does not hold anymore. As a result, the ANN-based estimators of the

nuisance functions are yielding deteriorated performance, and those estimates further affect

the estimation of ATE and ATT. The formula of est sd involves the estimates of both OR

and PS functions, so it is not surprising that its value is also affected. However, from Table

3.18, we see that the IPW method has a better and more stable performance for estimation

of QTE and QTT for p = 100, the empirical coverage rates for QTE are quite close to 95%

since the QTE estimators are more robust to the estimate of the nuisance function.
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IPW OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0008 0.0584 0.0594 0.0523 0.0562 0.0015 0.0010 0.0586 0.0574 0.0151 0.0144 0.0012 0.0026 0.0006

emp sd 0.0758 0.0907 0.0924 0.0830 0.0844 0.0789 0.0713 0.0906 0.0930 0.0769 0.0828 0.0726 0.0752 0.0668

est sd 0.0701 0.0923 0.0903 0.0511 0.0483 0.0715 0.0701 0.0923 0.0903 0.0511 0.0483 0.0715 0.0701 0.0686

cover rate 0.9275 0.9025 0.8750 0.6700 0.6400 0.9250 0.9425 0.9050 0.8900 0.8000 0.7450 0.9425 0.9325 0.9600

est sd boot 0.0771 0.0901 0.0922 0.0821 0.0853 0.0791 0.0751 0.0902 0.0924 0.0773 0.0841 0.0737

cover rate boot 0.9375 0.8850 0.0888 0.9025 0.8950 0.9375 0.9475 0.8875 0.8875 0.9275 0.9350 0.9500

n=2000

bias 0.0031 0.0648 0.0635 0.0535 0.0427 0.0028 0.0040 0.0650 0.0633 0.0156 0.0171 0.0010 0.0057 0.0050

emp sd 0.0524 0.0684 0.0675 0.0620 0.0634 0.0563 0.0499 0.0685 0.0677 0.0564 0.0575 0.0502 0.0523 0.0498

est sd 0.0488 0.0652 0.0637 0.0371 0.0370 0.0508 0.0488 0.0652 0.0637 0.0371 0.0370 0.0508 0.0493 0.0485

cover rate 0.9375 0.8175 0.8100 0.6250 0.6500 0.9175 0.9425 0.8175 0.8050 0.7875 0.7575 0.9475 0.9425 0.9425

est sd boot 0.0573 0.0679 0.0665 0.0612 0.0645 0.0599 0.0493 0.0685 0.0697 0.0563 0.0572 0.0505

cover rate boot 0.9475 0.8225 0.8350 0.8375 0.8550 0.9350 0.9475 0.8250 0.8175 0.9150 0.9025 0.9475

n=5000

bias 0.0001 0.0558 0.0545 0.0407 0.0225 0.0002 0.0003 0.0558 0.0545 0.0043 0.0073 0.0003 0.0009 0.0010

emp sd 0.0334 0.0397 0.0390 0.0362 0.0376 0.0335 0.0312 0.0397 0.0389 0.0324 0.0327 0.0305 0.0322 0.0309

est sd 0.0309 0.0413 0.0403 0.0244 0.0258 0.0307 0.0309 0.0413 0.0403 0.0244 0.0258 0.0307 0.0306 0.0307

cover rate 0.9350 0.7350 0.7175 0.5700 0.7400 0.9250 0.9475 0.7375 0.7150 0.8500 0.8450 0.9525 0.9400 0.9600

est sd boot 0.0331 0.0402 0.0401 0.0355 0.0365 0.0337 0.0308 0.0399 0.0402 0.0327 0.0331 0.0305

cover rate boot 0.9475 0.7350 0.7225 0.7850 0.8725 0.9475 0.9575 0.7350 0.7250 0.9325 0.9250 0.9525

Table 3.1: The summary statistics of the estimated ATEs for Model 1 with p=5
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IPW OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0010 0.0635 0.0655 0.0574 0.0536 0.0010 0.0064 0.0637 0.0640 0.0264 0.0279 0.0037 0. 0073 0.0077

emp sd 0.0855 0.0900 0.1127 0.0887 0.0915 0.0859 0.0793 0.0901 0.1041 0.0825 0.0832 0.0785 0.0823 0.0666

est sd 0.0789 0.0943 0.0982 0.0547 0.0512 0.0784 0.0789 0.0943 0.0982 0.0547 0.0512 0.0784 0.0789 0.0695

cover rate 0.9250 0.9075 0.8675 0.6725 0.6500 0.9275 0.9400 0.9075 0.8800 0.7775 0.7375 0.9450 0.9325 0.9550

est sd boot 0.0884 0.0923 0.1089 0.0893 0.0921 0.0864 0.0798 0.0913 0.0965 0.0833 0.0856 0.0778

cover rate boot 0.9350 0.8950 0.8825 0.8925 0.8950 0.9375 0.9475 0.8950 0.8650 0.9150 0.9125 0.9450

n=2000

bias 0.0034 0.0659 0.0661 0.0584 0.0462 0.0032 0.0001 0.0660 0.0675 0.0227 0.0266 0.0009 0.0012 0.0050

emp sd 0.0597 0.0660 0.0692 0.0634 0.0629 0.0657 0.0543 0.0661 0.0683 0.0588 0.0590 0.0519 0.0558 0.0501

est sd 0.0532 0.0668 0.0667 0.0397 0.0382 0.0539 0.0532 0.0668 0.0667 0.0397 0.0382 0.0539 0.0530 0.0492

cover rate 0.9250 0.8275 0.8225 0.6050 0.6400 0.9250 0.9400 0.8250 0.8275 0.7825 0.7475 0.9650 0.9400 0.9500

est sd boot 0.0604 0.0668 0.0687 0.0624 0.0628 0.0649 0.0560 0.0664 0.0679 0.0590 0.0595 0.0530

cover rate boot 0.9475 0.8250 0.8250 0.8125 0.8375 0.9425 0.9500 0.8275 0.8350 0.9025 0.8875 0.9525

n=5000

bias 0.0015 0.0679 0.0670 0.0565 0.0362 0.0012 0.0001 0.0679 0.0670 0.0158 0.0177 0.0009 0. 0017 0.0020

emp sd 0.0363 0.0439 0.0439 0.0416 0.0419 0.0357 0.0332 0.0440 0.0439 0.0376 0.0376 0.0319 0.0345 0.0319

est sd 0.0322 0.0422 0.0418 0.0258 0.0267 0.0319 0.0322 0.0422 0.0418 0.0258 0.0267 0.0319 0.0323 0.0311

cover rate 0.9275 0.6100 0.5975 0.4225 0.6150 0.9250 0.9425 0.6125 0.6000 0.7875 0.7700 0.9500 0.9475 0.9550

est sd boot 0.0368 0.0441 0.0443 0.0420 0.0423 0.0349 0.0333 0.0440 0.0442 0.0376 0.0378 0.0323

cover rate boot 0.9475 0.6550 0.6475 0.6575 0.7875 0.9450 0.9525 0.6250 0.6175 0.8275 0.8150 0.9525

Table 3.2: The summary statistics of the estimated ATEs for Model 1 with p=10
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0045 0.0601 0.0589 0.0630 0.0684 0.0036 0.0012 0.0534 0.0574 0.0507 0.0539 0.0025 0.0098 0.0363 0.0407 0.0286 0.0302 0.0067

emp sd 0.1266 0.1358 0.1418 0.1274 0.1301 0.1235 0.1075 0.1116 0.1166 0.1055 0.1074 0.1099 0.1196 0.1151 0.1201 0.1121 0.1130 0.1206

est sd 0.1414 0.1403 0.1596 0.1398 0.1405 0.1404 0.1238 0.1240 0.1447 0.1241 0.1249 0.1222 0.1251 0.1232 0.1412 0.1237 0.1247 0.1243

cover rate 0.9500 0.9275 0.9375 0.9350 0.9250 0.9525 0.9675 0.9550 0.9500 0.9675 0.9650 0.9575 0.9600 0.9650 0.9650 0.9650 0.9625 0.9625

est sd boot 0.1259 0.1378 0.1432 0.1275 0.1305 0.1278 0.1091 0.1154 0.1171 0.1087 0.1072 0.1093 0.1231 0.1131 0.1241 0.1172 0.1187 0.1236

cover rate boot 0.9350 0.9225 0.9300 0.9275 0.9175 0.9375 0.9600 0.9500 0.9475 0.9500 0.9475 0.9500 0.9575 0.9450 0.9500 0.9575 0.9550 0.9600

n=2000

bias 0.0126 0.0794 0.0760 0.0731 0.0746 0.0096 0.0004 0.0547 0.0523 0.0454 0.0467 0.0014 0.0056 0.0494 0.0506 0.0372 0.0369 0.0043

emp sd 0.0928 0.1029 0.1012 0.0944 0.0944 0.0954 0.0819 0.0883 0.0884 0.0828 0.0844 0.0831 0.0852 0.0872 0.0888 0.0848 0.0860 0.0864

est sd 0.0900 0.0986 0.0976 0.0984 0.0989 0.0933 0.0791 0.0870 0.0872 0.0871 0.0875 0.0804 0.0814 0.0860 0.0871 0.0862 0.0867 0.0824

cover rate 0.9275 0.8550 0.8650 0.8900 0.8775 0.9375 0.9350 0.9050 0.9050 0.9300 0.9225 0.9325 0.9550 0.9100 0.9175 0.9425 0.9350 0.9375

est sd boot 0.0911 0.1014 0.1023 0.0954 0.0968 0.0961 0.0811 0.0889 0.0892 0.0857 0.0853 0.0842 0.0841 0.0872 0.0891 0.0857 0.0871 0.0858

cover rate boot 0.9350 0.8575 0.8825 0.8750 0.8650 0.9450 0.9425 0.9100 0.9025 0.9125 0.9200 0.9500 0.9375 0.9150 0.9200 0.9375 0.9350 0.9450

n=5000

bias 0.0034 0.0594 0.0560 0.0456 0.0255 0.0029 0.0033 0.0489 0.0478 0.0367 0.0188 0.0036 0.0026 0.0454 0.0460 0.0320 0.0176 0.0014

emp sd 0.0560 0.0600 0.0591 0.0555 0.0559 0.0570 0.0514 0.0545 0.0539 0.0520 0.0522 0.0517 0.0494 0.0513 0.0508 0.0497 0.0503 0.0490

est sd 0.0558 0.0624 0.0607 0.0624 0.0639 0.0531 0.0493 0.0546 0.0537 0.0546 0.0557 0.0510 0.0508 0.0542 0.0540 0.0542 0.0551 0.0513

cover rate 0.9575 0.8625 0.8600 0.9125 0.9575 0.9575 0.9400 0.8675 0.8675 0.9200 0.9525 0.9475 0.9625 0.8900 0.8850 0.9300 0.9575 0.9675

est sd boot 0.0560 0.0614 0.0603 0.0576 0.0578 0.0560 0.0509 0.0553 0.5420 0.0534 0.0539 0.0509 0.5010 0.0517 0.0515 0.0508 0.0512 0.5010

cover rate boot 0.9575 0.8575 0.8550 0.8825 0.9325 0.9575 0.9500 0.8725 0.8725 0.9075 0.9500 0.9500 0.9600 0.8575 0.8550 0.9200 0.9325 0.9625

Table 3.3: The summary statistics of the estimated QTEs by the IPW method for Model 1
with p=5
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0019 0.0717 0.0750 0.0700 0.0696 0.0023 0.0047 0.0544 0.0541 0.0507 0.0472 0.0033 0.0030 0.0488 0.0476 0.0394 0.0367 0.0036

emp sd 0.1585 0.1345 0.1634 0.1325 0.1364 0.1592 0.1437 0.1195 0.1485 0.1179 0.1206 0.1437 0.1332 0.1185 0.1529 0.1193 0.1208 0.1331

est sd 0.2530 0.1444 0.4770 0.1442 0.1487 0.2630 0.2639 0.1269 0.4708 0.1269 0.1312 0.2684 0.2034 0.1253 0.4458 0.1255 0.1294 0.2109

cover rate 0.9675 0.9200 0.9950 0.9350 0.9375 0.9675 0.9425 0.9450 1.0000 0.9475 0.9525 0.9450 0.9575 0.9325 1.0000 0.9350 0.9500 0.9575

est sd boot 0.1623 0.1345 0.1552 0.1376 0.1425 0.1687 0.1523 0.1231 0.1253 0.1198 0.1225 0.1523 0.1376 0.1203 0.1623 0.1198 0.1256 0.1392

cover rate boot 0.9325 0.9150 0.9125 0.9300 0.9250 0.9350 0.9350 0.9350 0.9375 0.9400 0.9475 0.9500 0.9325 0.9225 0.9375 0.9000 0.9225 0.9350

n=2000

bias 0.0030 0.0663 0.0678 0.0632 0.0535 0.0023 0.0015 0.0576 0.0580 0.0529 0.0421 0.0005 0.0105 0.0613 0.0620 0.0527 0.0426 0.0087

emp sd 0.1070 0.1040 0.1083 0.1008 0.1016 0.1109 0.0937 0.0902 0.0943 0.0874 0.0872 0.0954 0.0873 0.0855 0.0890 0.0833 0.0830 0.0923

est sd 0.1057 0.1021 0.1149 0.1019 0.1052 0.1134 0.0919 0.0889 0.1026 0.0889 0.0917 0.0939 0.0913 0.0878 0.1001 0.0878 0.0904 0.0919

cover rate 0.9425 0.8775 0.8850 0.8900 0.9150 0.9475 0.9200 0.8900 0.9175 0.9100 0.9250 0.9350 0.9425 0.9125 0.9325 0.9275 0.9400 0.9525

est sd boot 0.1072 0.1043 0.1097 0.1011 0.1045 0.1122 0.0932 0.0901 0.0994 0.0883 0.0892 0.0952 0.0885 0.0861 0.0923 0.0869 0.0873 0.0925

cover rate boot 0.9450 0.8800 0.8000 0.8900 0.9125 0.9450 0.9325 0.8975 0.9150 0.9100 0.9175 0.9450 0.9375 0.9050 0.9125 0.9250 0.9275 0.9575

n=5000

bias 0.0065 0.0774 0.0764 0.0696 0.0472 0.0055 0.0046 0.0637 0.0633 0.0547 0.0356 0.0051 0.0021 0.0537 0.0535 0.0433 0.0273 0.0031

emp sd 0.0657 0.0682 0.0680 0.0650 0.0656 0.0634 0.0568 0.0580 0.0584 0.0560 0.0567 0.0532 0.0554 0.0555 0.0562 0.0549 0.0563 0.0531

est sd 0.0629 0.0644 0.0638 0.0644 0.0659 0.0615 0.0537 0.0556 0.0555 0.0556 0.0568 0.0531 0.0542 0.0550 0.0551 0.0549 0.0560 0.0522

cover rate 0.9275 0.7675 0.7725 0.8025 0.8875 0.9275 0.9350 0.7800 0.7725 0.8225 0.9075 0.9450 0.9375 0.8375 0.8300 0.8650 0.9250 0.9375

est sd boot 0.0655 0.0686 0.0678 0.0648 0.0658 0.0635 0.0565 0.0577 0.0579 0.0552 0.0571 0.0545 0.0548 0.0561 0.0568 0.0552 0.0561 0.0528

cover rate boot 0.9325 0.7825 0.7875 0.8125 0.8875 0.9450 0.9475 0.7900 0.7850 0.8200 0.9100 0.9525 0.9400 0.8500 0.8525 0.8675 0.9275 0.9425

Table 3.4: The summary statistics of the estimated QTEs by the IPW method for Model 1
with p=10

56



PS OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0002 0.0720 0.0767 0.0982 0.1182 0.0034 0.0009 0.0725 0.0700 0.0188 0.0198 0.0012 0.0045 0.0009

emp sd 0.0905 0.0912 0.1024 0.0814 0.0877 0.0873 0.0813 0.0910 0.1018 0.0818 0.0975 0.0809 0.0826 0.0723

est sd 0.0804 0.0933 0.1021 0.0632 0.0677 0.0799 0.0804 0.0933 0.1021 0.0632 0.0677 0.0799 0.0804 0.0733

cover rate 0.9225 0.8850 0.8875 0.6025 0.5400 0.9250 0.9500 0.8875 0.8875 0.8700 0.8375 0.9500 0.9400 0.9500

est sd boot 0.0899 0.0921 0.1025 0.0816 0.0884 0.0865 0.0815 0.0925 0.1025 0.0825 0.0945 0.0805

cover rate boot 0.9350 0.8825 0.8850 0.8875 0.8650 0.9325 0.9525 0.8850 0.8875 0.9325 0.9050 0.9500

n=2000

bias 0.0066 0.0778 0.0802 0.0893 0.0969 0.0078 0.0052 0.0783 0.0797 0.0177 0.0220 0.0024 0.0036 0.0050

emp sd 0.0581 0.0687 0.0705 0.0614 0.0634 0.0677 0.0585 0.0685 0.0704 0.0585 0.0642 0.0574 0.0576 0.0518

est sd 0.0549 0.0657 0.0684 0.0458 0.0473 0.0552 0.0549 0.0657 0.0684 0.0458 0.0473 0.0552 0.0542 0.0518

cover rate 0.9275 0.7850 0.7725 0.5175 0.4800 0.9050 0.9400 0.7850 0.7800 0.8475 0.8275 0.9450 0.9375 0.9525

est sd boot 0.0653 0.0679 0.0694 0.0609 0.0643 0.0667 0.0582 0.0674 0.0693 0.0599 0.0631 0.0593

cover rate boot 0.9325 0.7950 0.7800 0.6875 0.6775 0.9300 0.9475 0.7900 0.7825 0.9025 0.8575 0.9475

n=5000

bias 0.0004 0.0689 0.0712 0.0666 0.0405 0.0010 0.0012 0.0691 0.0711 0.0066 0.0092 0.0003 0.0017 0.0010

emp sd 0.0356 0.0398 0.0404 0.0366 0.0415 0.0357 0.0353 0.0398 0.0402 0.0349 0.0366 0.0357 0.0365 0.0339

est sd 0.0339 0.0415 0.0417 0.0302 0.0328 0.0341 0.0339 0.0415 0.0417 0.0302 0.0328 0.0341 0.0334 0.0328

cover rate 0.9250 0.6225 0.6125 0.4250 0.7175 0.9225 0.9350 0.6150 0.6050 0.9225 0.8850 0.9450 0.9350 0.9350

est sd boot 0.0359 0.0399 0.0403 0.0360 0.0376 0.0365 0.0348 0.0405 0.0406 0.0353 0.0369 0.0351

cover rate boot 0.9375 0.6075 0.6050 0.5875 0.8050 0.9375 0.9450 0.6075 0.6000 0.9325 0.9200 0.9475

Table 3.5: The summary statistics of the estimated ATTs for Model 1 with p=5
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PS OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0003 0.0805 0.0920 0.0922 0.0954 0.0006 0.0105 0.0812 0.0847 0.0350 0.0380 0.0620 0. 0111 0.0085

emp sd 0.1062 0.0903 0.1437 0.0897 0.1086 0.1033 0.0931 0.0905 0.1271 0.0825 0.0904 0.0928 0.0989 0.0723

est sd 0.0936 0.0961 0.1220 0.0681 0.0759 0.0931 0.0936 0.0961 0.1220 0.0681 0.0759 0.0931 0.0936 0.0750

cover rate 0.9050 0.8875 0.8350 0.6725 0.6525 0.9100 0.9425 0.8825 0.8725 0.8525 0.8750 0.9525 0.9275 0.9600

est sd boot 0.1056 0.0954 0.1332 0.0912 0.1034 0.1073 0.0933 0.0955 0.1251 0.0833 0.0899 0.0933

cover rate boot 0.9350 0.8850 0.8450 0.8650 0.8475 0.9375 0.9475 0.8825 0.8750 0.9125 0.9075 0.9575

n=2000

bias 0.0025 0.0833 0.0856 0.0891 0.0745 0.0024 0.0008 0.0836 0.0878 0.0283 0.0332 0.0010 0.0016 0.0073

emp sd 0.0693 0.0667 0.0767 0.0628 0.0688 0.0701 0.0627 0.0668 0.0751 0.0602 0.0632 0.0631 0.0661 0.0546

est sd 0.0620 0.0676 0.0754 0.0497 0.0544 0.0635 0.0620 0.0676 0.0754 0.0497 0.0544 0.0635 0.0616 0.0531

cover rate 0.9175 0.7650 0.7675 0.5575 0.6650 0.9050 0.9350 0.7650 0.7850 0.8550 0.8725 0.9425 0.9325 0.9375

est sd boot 0.0701 0.0668 0.0769 0.0634 0.0692 0.0702 0.0622 0.0675 0.0755 0.0609 0.0644 0.0632

cover rate boot 0.9425 0.7700 0.7775 0.6650 0.0733 0.9250 0.9475 0.7625 0.7850 0.8925 0.9075 0.9450

n=5000

bias 0.0013 0.0853 0.0863 0.0814 0.0538 0.0004 0.0030 0.0854 0.0861 0.0194 0.0224 0.0002 0. 004 0.0028

emp sd 0.0398 0.0442 0.0460 0.0415 0.0449 0.0403 0.0372 0.0443 0.0458 0.0377 0.0390 0.0362 0.0369 0.0343

est sd 0.0364 0.0425 0.0442 0.0323 0.0353 0.0361 0.0364 0.0425 0.0442 0.0323 0.0353 0.0361 0.0361 0.0336

cover rate 0.9200 0.4575 0.5000 0.3150 0.6200 0.9200 0.9475 0.4500 0.5000 0.8650 0.8475 0.9625 0.9425 0.9600

est sd boot 0.0414 0.0441 0.0445 0.0423 0.0432 0.0414 0.0371 0.0442 0.0453 0.0365 0.0378 0.0366

cover rate boot 0.9475 0.4600 0.4575 0.4850 0.7925 0.9475 0.9525 0.4675 0.5125 0.8875 0.8650 0.9650

Table 3.6: The summary statistics of the estimated ATTs for Model 1 with p=10
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0074 0.0751 0.0794 0.1311 0.1623 0.0056 0.0019 0.0644 0.0686 0.0973 0.1151 0.0024 0.0093 0.0445 0.0513 0.0502 0.0610 0.0076

emp sd 0.1503 0.1360 0.1527 0.1289 0.1372 0.1515 0.1203 0.1124 0.1295 0.1048 0.1116 0.1241 0.1293 0.1162 0.1306 0.1116 0.1199 0.1299

est sd 0.1660 0.1409 0.1638 0.1334 0.1352 0.1679 0.1517 0.1245 0.1481 0.1199 0.1218 0.1567 0.1360 0.1238 0.1447 0.1204 0.1227 0.1378

cover rate 0.9550 0.9050 0.9125 0.8350 0.7625 0.9525 0.9650 0.9425 0.9475 0.9150 0.8575 0.9600 0.9375 0.9575 0.9550 0.9425 0.9350 0.9400

est sd boot 0.1576 0.1367 0.1578 0.1298 0.1385 0.1592 0.1272 0.1176 0.1337 0.1067 0.1134 0.1281 0.1205 0.1182 0.1376 0.1134 0.1231 0.1285

cover rate boot 0.9475 0.8850 0.8950 0.8225 0.7850 0.9500 0.9450 0.9375 0.9325 0.8975 0.8350 0.9450 0.9250 0.9475 0.9375 0.9350 0.9400 0.9375

n=2000

bias 0.0111 0.0949 0.0960 0.1258 0.1388 0.0113 0.0006 0.0657 0.0669 0.0824 0.0918 0.0014 0.0059 0.0575 0.0614 0.0565 0.0594 0.0044

emp sd 0.1002 0.1027 0.1066 0.0941 0.0966 0.1032 0.0905 0.0890 0.0923 0.0831 0.0875 0.0921 0.0885 0.0864 0.0914 0.0841 0.0867 0.0893

est sd 0.0974 0.0988 0.1013 0.0955 0.0968 0.0987 0.0842 0.0872 0.0902 0.0849 0.0859 0.0903 0.0844 0.0862 0.0898 0.0843 0.0855 0.0856

cover rate 0.9375 0.8225 0.8400 0.7425 0.6925 0.9300 0.9225 0.8800 0.8600 0.8275 0.8150 0.9425 0.9425 0.9000 0.9100 0.8925 0.8800 0.9375

est sd boot 0.1009 0.1028 0.1050 0.0951 0.0970 0.1019 0.0912 0.0889 0.0915 0.0838 0.0869 0.0917 0.0854 0.0865 0.0914 0.0845 0.0859 0.0869

cover rate boot 0.9400 0.8350 0.8525 0.7550 0.7050 0.9375 0.9350 0.8950 0.8850 0.8350 0.8225 0.9450 0.9400 0.9025 0.9175 0.9000 0.8925 0.9450

n=5000

bias 0.0046 0.0749 0.0749 0.0826 0.0516 0.0036 0.0029 0.0601 0.0616 0.0621 0.0377 0.0025 0.0016 0.0526 0.0564 0.0455 0.0269 0.0027

emp sd 0.0623 0.0601 0.0611 0.0564 0.0610 0.0630 0.0553 0.0547 0.0553 0.0524 0.0555 0.0561 0.0523 0.0513 0.0521 0.0501 0.0538 0.0531

est sd 0.0578 0.0625 0.0618 0.0615 0.0658 0.0590 0.0499 0.0546 0.0546 0.0538 0.0567 0.0502 0.0510 0.0543 0.0549 0.0534 0.0556 0.0521

cover rate 0.9250 0.8000 0.7875 0.7625 0.8925 0.9175 0.9275 0.8125 0.7900 0.8000 0.9050 0.9250 0.9450 0.8600 0.8500 0.8800 0.9250 0.9425

est sd boot 0.0608 0.0605 0.0609 0.0584 0.0602 0.0614 0.0544 0.0545 0.0547 0.0533 0.0573 0.0557 0.0519 0.0529 0.0533 0.0516 0.0548 0.0528

cover rate boot 0.9375 0.7850 0.7775 0.7350 0.8525 0.9275 0.9375 0.8125 0.7925 0.7975 0.9125 0.9425 0.9475 0.8500 0.8425 0.8725 0.9225 0.9475

Table 3.7: The summary statistics of the estimated QTTs by the IPW method for Model 1
with p=5
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0061 0.0871 0.1015 0.1230 0.1359 0.0081 0.0098 0.0659 0.0732 0.0815 0.0907 0.0046 0.0022 0.0621 0.0701 0.0594 0.0572 0.0027

emp sd 0.2019 0.1370 0.2086 0.1362 0.1684 0.2025 0.1749 0.1200 0.1860 0.1210 0.1435 0.1799 0.1549 0.1181 0.1800 0.1211 0.1369 0.1555

est sd 0.3678 0.1458 0.4513 0.1355 0.1481 0.3421 0.3018 0.1281 0.4455 0.1209 0.1317 0.2975 0.2504 0.1264 0.4221 0.1209 0.1309 0.2321

cover rate 0.9600 0.9150 0.9750 0.8475 0.8175 0.9575 0.9425 0.9225 0.9975 0.8875 0.8475 0.9450 0.9675 0.9275 0.9925 0.9075 0.9175 0.9575

est sd boot 0.2165 0.1399 0.2353 0.1366 0.1702 0.2065 0.1842 0.1256 0.1932 0.1232 0.1452 0.1820 0.1634 0.1203 0.2010 0.1232 0.1379 0.1655

cover rate boot 0.9300 0.9250 0.9425 0.8575 0.8475 0.9250 0.9350 0.9175 0.9525 0.8950 0.8550 0.9400 0.9425 0.9225 0.9475 0.9150 0.9275 0.9500

n=2000

bias 0.0022 0.0853 0.0900 0.1090 0.1021 0.0024 0.0011 0.0711 0.0737 0.0830 0.0715 0.0023 0.0090 0.0733 0.0783 0.0692 0.0562 0.0047

emp sd 0.1229 0.1054 0.1200 0.1005 0.1105 0.1321 0.1066 0.0911 0.1031 0.0868 0.0942 0.1086 0.0948 0.0852 0.0971 0.0840 0.0907 0.0963

est sd 0.1264 0.1026 0.1189 0.0974 0.1070 0.1361 0.1089 0.0894 0.1053 0.0857 0.0931 0.1093 0.1009 0.0882 0.1026 0.0853 0.0917 0.1024

cover rate 0.9475 0.8325 0.8500 0.7825 0.8200 0.9500 0.9350 0.8725 0.8700 0.8500 0.8725 0.9375 0.9650 0.8925 0.8975 0.8850 0.9225 0.9650

est sd boot 0.1225 0.1049 0.1199 0.0998 0.1112 0.1325 0.1072 0.9070 0.1053 0.0871 0.0942 0.1082 0.0996 0.0863 0.0971 0.0852 0.0911 0.0978

cover rate boot 0.9450 0.8350 0.8500 0.7900 0.8325 0.9475 0.9300 0.8750 0.8725 0.8550 0.8800 0.9400 0.9525 0.8900 0.8950 0.8850 0.9200 0.9575

n=5000

bias 0.0061 0.0966 0.0980 0.1047 0.7330 0.0042 0.0019 0.0770 0.0776 0.0771 0.0520 0.0032 0.0004 0.0654 0.0661 0.0567 0.0352 0.0012

emp sd 0.0731 0.0682 0.0705 0.0643 0.0695 0.0727 0.0615 0.0586 0.0604 0.0555 0.0600 0.0595 0.0578 0.0557 0.0574 0.0547 0.0582 0.0571

est sd 0.0654 0.0646 0.0660 0.0628 0.0676 0.0714 0.0555 0.0558 0.0572 0.0544 0.0577 0.0565 0.0552 0.0551 0.0567 0.0539 0.0564 0.0564

cover rate 0.9075 0.6575 0.6600 0.6000 0.7825 0.9375 0.9225 0.6850 0.7050 0.6975 0.8475 0.9325 0.9375 0.7850 0.7850 0.8100 0.9000 0.9475

est sd boot 0.0725 0.0681 0.0699 0.0639 0.0682 0.0715 0.0592 0.0572 0.0598 0.0558 0.0594 0.0592 0.0572 0.0561 0.0569 0.0554 0.0577 0.0562

cover rate boot 0.9125 0.6700 0.6675 0.6875 0.7900 0.9325 0.9350 0.6925 0.7125 0.7000 0.8575 0.9400 0.9425 0.7900 0.7925 0.8225 0.9075 0.9425

Table 3.8: The summary statistics of the estimated QTTs by the IPW method for Model 1
with p=10
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PS OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0043 0.0207 0.0214 0.2254 0.1886 0.0037 0.0203 0.0194 0.0195 0.0499 0.0385 0.0189 0.0200 0.0190

emp sd 0.1676 0.1182 0.1424 0.1933 0.1839 0.1701 0.1235 0.1185 0.1204 0.1367 0.1345 0.1227 0.1219 0.1190

est sd 0.1207 0.1203 0.1205 0.1198 0.1178 0.1213 0.1207 0.1203 0.1205 0.1198 0.1178 0.1213 0.1208 0.1203

cover rate 0.9225 0.9525 0.9000 0.4950 0.5700 0.9200 0.9475 0.9525 0.9525 0.8850 0.8850 0.9475 0.9500 0.9575

est sd boot 0.1702 0.1189 0.1398 0.1821 0.1671 0.1702 0.1223 0.1193 0.1209 0.1351 0.1331 0.1231

cover rate boot 0.9375 0.9500 0.9250 0.5425 0.6850 0.9300 0.9500 0.9500 0.9550 0.9150 0.9325 0.9525

n=2000

bias 0.0069 0.0072 0.0094 0.1674 0.0574 0.0054 0.0073 0.0073 0.0072 0.0210 0.0169 0.0021 0.0070 0.0074

emp sd 0.0910 0.0828 0.0881 0.1183 0.0936 0.0923 0.0838 0.0829 0.0834 0.0914 0.0905 0.0845 0.0838 0.0828

est sd 0.0851 0.0852 0.0852 0.0833 0.0832 0.0854 0.0851 0.0852 0.0852 0.0833 0.0832 0.0854 0.0851 0.0851

cover rate 0.9250 0.9550 0.9425 0.4875 0.8550 0.9225 0.9500 0.9550 0.9550 0.9150 0.9200 0.9500 0.9475 0.9550

est sd boot 0.0878 0.0833 0.0871 0.1007 0.0927 0.0921 0.0841 0.0834 0.0841 0.0921 0.0911 0.0844

cover rate boot 0.9375 0.9550 0.9475 0.5650 0.9275 0.9425 0.9500 0.9550 0.9500 0.9275 0.9425 0.9475

n=5000

bias 0.0007 0.0001 0.0004 0.1105 0.0399 0.0005 0.0008 0.0001 0.0002 0.0008 0.0050 0.0003 0.0013 0.0001

emp sd 0.0560 0.0532 0.0542 0.0661 0.0607 0.0566 0.0529 0.0527 0.0528 0.0567 0.0570 0.0525 0.0536 0.0526

est sd 0.0538 0.0539 0.0539 0.0519 0.0527 0.0536 0.0538 0.0539 0.0539 0.0519 0.0527 0.0536 0.0538 0.0538

cover rate 0.9450 0.9500 0.9450 0.4400 0.8350 0.9425 0.9525 0.9525 0.9550 0.9275 0.9300 0.9525 0.9450 0.9500

est sd boot 0.0554 0.0535 0.0542 0.0646 0.0603 0.0554 0.0523 0.0528 0.0528 0.0587 0.0567 0.0523

cover rate boot 0.9475 0.9500 0.9475 0.5850 0.8850 0.9475 0.9500 0.9500 0.9525 0.9450 0.9475 0.9500

Table 3.9: The summary statistics of the estimated ATEs for Model 2 with p=5
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PS OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0107 0.0004 0.0067 0.3506 0.1334 0.0980 0.0013 0.0020 0.0049 0.1367 0.0679 0.0045 0.0073 0.0020

emp sd 0.1582 0.1285 0.2410 0.2218 0.1641 0.1632 0.1323 0.1265 0.1283 0.1832 0.1635 0.1330 0.1382 0.1262

est sd 0.1359 0.1293 0.1317 0.1427 0.1369 0.1360 0.1359 0.1293 0.1317 0.1427 0.1369 0.1360 0.1357 0.1293

cover rate 0.9275 0.9575 0.7225 0.3700 0.7675 0.9250 0.9525 0.9550 0.9525 0.7650 0.8850 0.9525 0.9500 0.9500

est sd boot 0.1543 0.1290 0.2214 0.2098 0.1680 0.1653 0.1339 0.1200 0.1287 0.1627 0.1662 0.1342

cover rate boot 0.9450 0.9575 0.8475 0.4475 0.8025 0.9475 0.9525 0.9575 0.9500 0.7875 0.9200 0.9525

n=2000

bias 0.0043 0.0018 0.0017 0.2885 0.1060 0.0062 0.0031 0.0014 0.0018 0.1005 0.0385 0.0047 0.0027 0.0016

emp sd 0.1081 0.0945 0.1127 0.1454 0.1164 0.9980 0.0937 0.0924 0.0938 0.1237 0.1126 0.0939 0.0962 0.0922

est sd 0.0923 0.0916 0.0919 0.0997 0.0943 0.0921 0.0923 0.0916 0.0919 0.0997 0.0943 0.0921 0.0925 0.0916

cover rate 0.9225 0.9400 0.9000 0.2650 0.7550 0.9200 0.9475 0.9475 0.9350 0.7950 0.8975 0.9450 0.9475 0.9500

est sd boot 0.1089 0.9530 0.1098 0.1380 0.1241 0.1004 0.0940 0.0925 0.9420 0.1194 0.1200 0.0944

cover rate boot 0.9450 0.9500 0.9350 0.4550 0.8350 0.9375 0.9500 0.9500 0.9475 0.8225 0.9175 0.9500

n=5000

bias 0.0054 0.0022 0.0017 0.2172 0.0780 0.0035 0.0024 0.0025 0.0023 0.0718 0.0236 0.0031 0.0023 0.0026

emp sd 0.0672 0.0523 0.0550 0.0730 0.0685 0.0633 0.0527 0.0519 0.0521 0.0650 0.0594 0.0519 0.0543 0.0518

est sd 0.0581 0.0580 0.0580 0.0622 0.0591 0.0584 0.0581 0.0580 0.0580 0.0622 0.0591 0.0584 0.0581 0.0580

cover rate 0.9350 0.9625 0.9575 0.1000 0.7300 0.9450 0.9650 0.9625 0.9625 0.7800 0.9325 0.9650 0.9650 0.9650

est sd boot 0.0681 0.0531 0.0561 0.0744 0.0648 0.0645 0.0534 0.0533 0.0548 0.0681 0.0601 0.0526

cover rate boot 0.9525 0.9625 0.9575 0.1150 0.7850 0.9550 0.9625 0.9625 0.9625 0.7925 0.9450 0.9625

Table 3.10: The summary statistics of the estimated ATEs for Model 2 with p=10
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0098 0.0046 0.0104 0.2192 0.1814 0.0113 0.0075 0.0211 0.0242 0.2209 0.1772 0.0046 0.0175 0.0174 0.0262 0.2362 0.1955 0.0099

emp sd 0.3349 0.3357 0.3618 0.3462 0.3479 0.3531 0.3236 0.3031 0.3299 0.3180 0.3255 0.3481 0.5221 0.3401 0.3609 0.3504 0.3496 0.4981

est sd 0.4023 0.3315 0.4511 0.3507 0.3680 0.3988 0.6874 0.2882 0.4017 0.3124 0.3304 0.7012 0.3824 0.3366 0.4260 0.3535 0.3729 0.4221

cover rate 0.9525 0.9475 0.9775 0.9100 0.9400 0.9500 0.9500 0.9300 0.9550 0.8850 0.9150 0.9600 0.9550 0.9450 0.9650 0.9075 0.9300 0.9500

est sd boot 0.3476 0.3375 0.3981 0.3510 0.3441 0.3476 0.3541 0.3012 0.3412 0.3155 0.3301 0.3522 0.4781 0.3398 0.3812 0.3511 0.3501 0.4911

cover rate boot 0.9500 0.9500 0.9475 0.9100 0.9325 0.9500 0.9475 0.9425 0.9450 0.8950 0.9150 0.9475 0.9550 0.9475 0.9550 0.9050 0.9375 0.9575

n=2000

bias 0.0015 0.0096 0.0185 0.1638 0.0651 0.0033 0.0188 0.0103 0.0141 0.1719 0.0649 0.0580 0.0028 0.0103 0.0080 0.1587 0.0361 0.0034

emp sd 0.2033 0.2179 0.2230 0.2146 0.2247 0.2041 0.1922 0.1914 0.2038 0.2091 0.2011 0.1923 0.2292 0.2443 0.2535 0.2395 0.2496 0.2176

est sd 0.2028 0.2339 0.2402 0.2408 0.2350 0.2029 0.1961 0.2021 0.2114 0.2108 0.2030 0.1977 0.2032 0.2374 0.2441 0.2427 0.2385 0.2032

cover rate 0.9350 0.9675 0.9675 0.9200 0.9525 0.9350 0.9600 0.9650 0.9600 0.8775 0.9450 0.9600 0.9250 0.9600 0.9425 0.9025 0.9375 0.9275

est sd boot 0.2051 0.2241 0.2287 0.2371 0.2231 0.2055 0.1951 0.1921 0.2056 0.2099 0.2009 0.1971 0.2213 0.2447 0.2511 0.2471 0.2418 0.2183

cover rate boot 0.9400 0.9600 0.9600 0.9125 0.9500 0.9425 0.9575 0.9625 0.9575 0.8750 0.9450 0.9575 0.9450 0.9550 0.9500 0.9150 0.9400 0.9450

n=5000

bias 0.0065 0.0074 0.0084 0.1096 0.0497 0.0077 0.0079 0.0046 0.0036 0.1032 0.0376 0.0042 0.0069 0.0082 0.0069 0.1086 0.0330 0.0078

emp sd 0.1426 0.1516 0.1497 0.1372 0.1492 0.1431 0.1216 0.1273 0.1274 0.1284 0.1299 0.1247 0.1501 0.1602 0.1587 0.1519 0.1629 0.1421

est sd 0.1226 0.1475 0.1472 0.1489 0.1478 0.1214 0.1158 0.1269 0.1281 0.1288 0.1271 0.1152 0.1229 0.1493 0.1489 0.1500 0.1495 0.1273

cover rate 0.9250 0.9400 0.9500 0.9175 0.9400 0.9250 0.9375 0.9600 0.9500 0.8750 0.9300 0.9350 0.8975 0.9325 0.9350 0.8925 0.9175 0.9125

est sd boot 0.1399 0.1498 0.1489 0.1405 0.1489 0.1402 0.1201 0.1266 0.1251 0.1289 0.1240 0.1221 0.1479 0.1576 0.1551 0.1513 0.1631 0.1401

cover rate boot 0.9450 0.9425 0.9500 0.9050 0.9450 0.9425 0.9425 0.9525 0.9450 0.8750 0.9275 0.9450 0.9325 0.9400 0.9475 0.8950 0.9200 0.9350

Table 3.11: The summary statistics of the estimated QTEs by the IPW method for Model
2 with p=5
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0153 0.0263 0.0011 0.3586 0.1531 0.0143 0.0055 0.0052 0.0216 0.3419 0.1266 0.0055 0.0141 0.0063 0.0196 0.3714 0.1319 0.0183

emp sd 0.4930 0.3731 0.4678 0.3979 0.3882 0.5320 0.4603 0.2955 0.4150 0.3514 0.3194 0.4980 0.5110 0.3733 0.5267 0.4044 0.3845 0.5980

est sd 0.6360 0.3657 1.9238 0.3921 0.3707 0.7050 0.6659 0.3171 1.6744 0.3495 0.3217 0.7053 0.6370 0.3726 1.4469 0.3940 0.3758 0.6510

cover rate 0.9700 0.9275 1.0000 0.8600 0.9175 0.9800 0.9750 0.9625 0.9975 0.8275 0.9300 0.9775 0.9675 0.9475 1.0000 0.8375 0.9300 0.9600

est sd boot 0.4860 0.3886 0.5360 0.4098 0.3900 0.5060 0.4805 0.3098 0.5629 0.3671 0.3276 0.4990 0.4980 0.3778 0.5873 0.4173 0.3905 0.5348

cover rate boot 0.9650 0.9300 0.9750 0.8625 0.9225 0.9700 0.9625 0.9625 0.9800 0.8350 0.9350 0.9600 0.9475 0.9475 0.9875 0.8475 0.9350 0.9500

n=2000

bias 0.0150 0.0201 0.0295 0.3091 0.1360 0.0134 0.0085 0.0145 0.0161 0.2804 0.0988 0.0090 0.0081 0.0109 0.0208 0.2954 0.0997 0.0087

emp sd 0.2879 0.2640 0.2887 0.2713 0.2664 0.2907 0.2445 0.2103 0.2293 0.2276 0.2169 0.2543 0.2905 0.2510 0.2732 0.2754 0.2586 0.2967

est sd 0.3547 0.2576 0.3387 0.2680 0.2592 0.3854 0.3502 0.2220 0.2963 0.2346 0.2234 0.3704 0.3704 0.2620 0.3245 0.2695 0.2629 0.3905

cover rate 0.9525 0.9500 0.9575 0.7650 0.9100 0.9625 0.9625 0.9625 0.9750 0.7875 0.9350 0.9600 0.9400 0.9650 0.9675 0.7950 0.9325 0.9425

est sd boot 0.2973 0.2643 0.2856 0.2675 0.2670 0.2976 0.2476 0.2114 0.2371 0.2306 0.2200 0.2598 0.3024 0.2534 0.2981 0.2785 0.2606 0.3024

cover rate boot 0.9450 0.9525 0.9500 0.7700 0.9125 0.9500 0.9600 0.9600 0.9425 0.7850 0.9325 0.9575 0.9425 0.9600 0.9350 0.8050 0.9300 0.9425

n=5000

bias 0.0001 0.0013 0.0033 0.2033 0.0707 0.0014 0.0056 0.0077 0.0076 0.2109 0.0713 0.0042 0.0109 0.0123 0.0117 0.2357 0.0933 0.0063

emp sd 0.1686 0.1625 0.1639 0.1552 0.1638 0.1578 0.1532 0.1302 0.1349 0.1380 0.1367 0.1548 0.1777 0.1719 0.1789 0.1726 0.1801 0.1689

est sd 0.1442 0.1617 0.1641 0.1640 0.1620 0.1389 0.1473 0.1396 0.1436 0.1424 0.1398 0.1424 0.1537 0.1646 0.1668 0.1655 0.1646 0.1523

cover rate 0.9050 0.9575 0.9600 0.7600 0.9000 0.9100 0.9625 0.9725 0.9625 0.7000 0.9100 0.9650 0.8950 0.9450 0.9300 0.6925 0.8750 0.9125

est sd boot 0.1671 0.1635 0.1644 0.1598 0.1660 0.1582 0.1533 0.1300 0.1350 0.1389 0.1389 0.1539 0.1780 0.1720 0.1684 0.1703 0.1793 0.1682

cover rate boot 0.9225 0.9575 0.9600 0.7550 0.9125 0.9250 0.9650 0.9700 0.9600 0.6950 0.9225 0.9675 0.9325 0.9475 0.9325 0.7150 0.9025 0.9450

Table 3.12: The summary statistics of the estimated QTEs by the IPW method for Model
2 with p=10
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PS OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0184 0.0029 0.0018 0.1538 0.0628 0.0134 0.0033 0.0017 0.0003 0.1098 0.0642 0.0045 0.0044 0.0023

emp sd 0.2037 0.1776 0.3042 0.2421 0.2083 0.2137 0.1781 0.1681 0.1724 0.2277 0.2207 0.1809 0.1823 0.1690

est sd 0.1855 0.1731 0.1809 0.1778 0.1834 0.1905 0.1855 0.1731 0.1809 0.1778 0.1834 0.1905 0.1836 0.1725

cover rate 0.9125 0.9350 0.7575 0.7800 0.9025 0.9125 0.9450 0.9500 0.9575 0.8050 0.9000 0.9450 0.9475 0.9550

est sd boot 0.2098 0.1790 0.2265 0.1991 0.2043 0.2135 0.1809 0.1708 0.1780 0.2131 0.2290 0.1832

cover rate boot 0.9300 0.9375 0.8250 0.8075 0.9100 0.9350 0.9525 0.9500 0.9525 0.8450 0.9150 0.9500

n=2000

bias 0.0063 0.0007 0.0001 0.1227 0.0558 0.0099 0.0015 0.0009 0.0010 0.0969 0.0462 0.0027 0.0065 0.0010

emp sd 0.1361 0.1249 0.1492 0.1673 0.1366 0.1362 0.1229 0.1194 0.1220 0.1557 0.1503 0.1242 0.1287 0.1190

est sd 0.1244 0.1228 0.1249 0.1261 0.1283 0.1205 0.1244 0.1228 0.1249 0.1261 0.1283 0.1205 0.1244 0.1225

cover rate 0.9000 0.9400 0.9125 0.7525 0.9125 0.8950 0.9550 0.9550 0.9625 0.8325 0.8875 0.9425 0.9475 0.9575

est sd boot 0.1389 0.1255 0.1387 0.1570 0.1381 0.1335 0.1236 0.1205 0.1274 0.1472 0.1532 0.1239

cover rate boot 0.9350 0.9450 0.9225 0.8475 0.9275 0.9325 0.9550 0.9550 0.9650 0.8850 0.9225 0.9475

n=5000

bias 0.0019 0.0011 0.0026 0.0931 0.0369 0.0014 0.0006 0.0010 0.0006 0.0744 0.0257 0.0003 0.0010 0.0011

emp sd 0.0866 0.0710 0.0778 0.0923 0.0803 0.0897 0.0710 0.0697 0.0700 0.0876 0.0824 0.0716 0.0713 0.0694

est sd 0.0780 0.0776 0.0780 0.0794 0.0809 0.0785 0.0780 0.0776 0.0780 0.0794 0.0809 0.0785 0.0782 0.0775

cover rate 0.9325 0.9675 0.9525 0.7475 0.9275 0.9450 0.9700 0.9700 0.9700 0.8200 0.9250 0.9675 0.9700 0.9700

est sd boot 0.0851 0.0723 0.0793 0.0914 0.0815 0.0891 0.0750 0.0707 0.0711 0.0869 0.0841 0.0722

cover rate boot 0.9575 0.9650 0.9650 0.7850 0.9300 0.9550 0.9700 0.9675 0.9675 0.8575 0.9325 0.9650

Table 3.13: The summary statistics of the estimated ATTs for Model 2 with p=5
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PS OR
DR Oracle

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0107 0.0004 0.0067 0.3506 0.1334 0.0980 0.0013 0.0020 0.0049 0.1367 0.0679 0.0045 0.0073 0.0020

emp sd 0.1582 0.1285 0.2410 0.2218 0.1641 0.1632 0.1323 0.1265 0.1283 0.1832 0.1635 0.1330 0.1382 0.1262

est sd 0.1359 0.1293 0.1317 0.1427 0.1369 0.1360 0.1359 0.1293 0.1317 0.1427 0.1369 0.1360 0.1357 0.1293

cover rate 0.9275 0.9575 0.7225 0.3700 0.7675 0.9250 0.9525 0.9550 0.9525 0.7650 0.8850 0.9525 0.9500 0.9500

est sd boot 0.1543 0.1290 0.2214 0.2098 0.1680 0.1653 0.1339 0.1200 0.1287 0.1627 0.1662 0.1342

cover rate boot 0.9450 0.9575 0.8475 0.4475 0.8025 0.9475 0.9525 0.9575 0.9500 0.7875 0.9200 0.9525

n=2000

bias 0.0043 0.0018 0.0017 0.2885 0.1060 0.0062 0.0031 0.0014 0.0018 0.1005 0.0385 0.0047 0.0027 0.0016

emp sd 0.1081 0.0945 0.1127 0.1454 0.1164 0.9980 0.0937 0.0924 0.0938 0.1237 0.1126 0.0939 0.0962 0.0922

est sd 0.0923 0.0916 0.0919 0.0997 0.0943 0.0921 0.0923 0.0916 0.0919 0.0997 0.0943 0.0921 0.0925 0.0916

cover rate 0.9225 0.9400 0.9000 0.2650 0.7550 0.9200 0.9475 0.9475 0.9350 0.7950 0.8975 0.9450 0.9475 0.9500

est sd boot 0.1089 0.9530 0.1098 0.1380 0.1241 0.1004 0.0940 0.0925 0.9420 0.1194 0.1200 0.0944

cover rate boot 0.9450 0.9500 0.9350 0.4550 0.8350 0.9375 0.9500 0.9500 0.9475 0.8225 0.9175 0.9500

n=5000

bias 0.0054 0.0022 0.0017 0.2172 0.0780 0.0035 0.0024 0.0025 0.0023 0.0718 0.0236 0.0031 0.0023 0.0026

emp sd 0.0672 0.0523 0.0550 0.0730 0.0685 0.0633 0.0527 0.0519 0.0521 0.0650 0.0594 0.0519 0.0543 0.0518

est sd 0.0581 0.0580 0.0580 0.0622 0.0591 0.0584 0.0581 0.0580 0.0580 0.0622 0.0591 0.0584 0.0581 0.0580

cover rate 0.9350 0.9625 0.9575 0.1000 0.7300 0.9450 0.9650 0.9625 0.9625 0.7800 0.9325 0.9650 0.9650 0.9650

est sd boot 0.0681 0.0531 0.0561 0.0744 0.0648 0.0645 0.0534 0.0533 0.0548 0.0681 0.0601 0.0526

cover rate boot 0.9525 0.9625 0.9575 0.1150 0.7850 0.9550 0.9625 0.9625 0.9625 0.7925 0.9450 0.9625

Table 3.14: The summary statistics of the estimated ATTs for Model 2 with p=10
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0118 0.0085 0.0052 0.1674 0.1446 0.0068 0.0119 0.0093 0.0274 0.0916 0.0478 0.0112 0.0170 0.0045 0.0297 0.0051 0.0463 0.0167

emp sd 0.3751 0.3662 0.4243 0.3725 0.3939 0.3751 0.3429 0.3248 0.3628 0.3519 0.3806 0.3522 0.3784 0.3618 0.3859 0.3697 0.3927 0.4612

est sd 0.3867 0.3513 0.4605 0.3985 0.4366 0.3867 0.3441 0.2939 0.3992 0.3503 0.3858 0.3551 0.4489 0.3260 0.4126 0.3807 0.4136 0.4531

cover rate 0.9300 0.9475 0.9625 0.9550 0.9650 0.9300 0.9325 0.9200 0.9475 0.9450 0.9600 0.9325 0.9400 0.9150 0.9600 0.9675 0.9600 0.9500

est sd boot 0.3812 0.3687 0.4431 0.3778 0.4011 0.3812 0.3445 0.3341 0.3891 0.3581 0.3812 0.3432 0.3912 0.3412 0.3992 0.3771 0.4005 0.4782

cover rate boot 0.9350 0.9500 0.9575 0.9475 0.9575 0.9350 0.9375 0.9350 0.9450 0.9525 0.0958 0.9300 0.9375 0.9250 0.9575 0.9600 0.9550 0.9575

n=2000

bias 0.0005 0.0080 0.0183 0.1430 0.0460 0.0012 0.0148 0.0091 0.0049 0.0673 0.0305 0.0088 0.0092 0.0219 0.0188 0.0267 0.0050 0.0087

emp sd 0.2342 0.2427 0.2540 0.2500 0.2476 0.2384 0.2194 0.2134 0.2298 0.2304 0.2173 0.2214 0.2387 0.2445 0.2610 0.2574 0.2499 0.2276

est sd 0.2399 0.2476 0.2567 0.2666 0.2509 0.2399 0.2031 0.2055 0.2171 0.2273 0.2091 0.2034 0.2088 0.2293 0.2388 0.2513 0.2340 0.2123

cover rate 0.9275 0.9575 0.9550 0.9375 0.9500 0.9350 0.9225 0.9425 0.9450 0.9400 0.9400 0.9325 0.9000 0.9400 0.9425 0.9425 0.9450 0.9100

est sd boot 0.2411 0.2489 0.2578 0.2561 0.2476 0.2411 0.2131 0.2116 0.2309 0.2256 0.2181 0.2197 0.2289 0.2490 0.2541 0.2512 0.2471 0.2301

cover rate boot 0.9300 0.9600 0.9550 0.9350 0.9450 0.9375 0.9350 0.9475 0.9500 0.9375 0.9425 0.9350 0.9250 0.9525 0.9500 0.9425 0.9500 0.9275

n=5000

bias 0.0053 0.0082 0.0103 0.0952 0.0324 0.0024 0.0112 0.0086 0.0077 0.0312 0.0123 0.0112 0.0060 0.0085 0.0084 0.0085 0.0089 0.0056

emp sd 0.1607 0.1662 0.1685 0.1629 0.1665 0.1656 0.1345 0.1377 0.1372 0.1474 0.1406 0.1402 0.1575 0.1573 0.1609 0.1575 0.1613 0.1602

est sd 0.1300 0.1562 0.1570 0.1613 0.1568 0.1302 0.1176 0.1288 0.1309 0.1347 0.1297 0.1171 0.1224 0.1438 0.1443 0.1497 0.1451 0.1301

cover rate 0.8950 0.9350 0.9400 0.9100 0.9325 0.8875 0.9150 0.9350 0.9425 0.9300 0.9150 0.9125 0.8725 0.9350 0.9400 0.9400 0.9350 0.8750

est sd boot 0.1567 0.1602 0.1659 0.1645 0.1623 0.1567 0.1298 0.1279 0.1321 0.1421 0.1305 0.1305 0.1442 0.1522 0.1611 0.1598 0.1613 0.1536

cover rate boot 0.9325 0.9425 0.9500 0.9150 0.9425 0.9325 0.9275 0.9350 0.9450 0.9345 0.9200 0.9250 0.9250 0.9425 0.9450 0.9500 0.9450 0.9175

Table 3.15: The summary statistics of the estimated QTTs by the IPW method for Model

2 with p=5
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Q1 Q2 Q3

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN

n=1000

bias 0.0072 0.0029 0.0042 0.2291 0.0772 0.0109 0.0508 0.0146 0.0313 0.1348 0.0501 0.0443 0.0125 0.0188 0.0158 0.0932 0.0597 0.0143

emp sd 0.6496 0.4152 0.5834 0.4378 0.4260 0.7649 0.6306 0.3256 0.4781 0.3725 0.3483 0.6896 0.5388 0.3874 0.5469 0.4051 0.4045 0.5788

est sd 0.8153 0.3965 1.8390 0.4587 0.4094 0.9054 0.8247 0.3262 1.5928 0.4008 0.3414 0.8643 0.6777 0.3577 1.3671 0.4341 0.3742 0.7009

cover rate 0.9575 0.9400 0.9900 0.9275 0.9350 0.9650 0.9650 0.9450 0.9950 0.9425 0.9225 0.9675 0.9525 0.9425 0.9900 0.9600 0.9500 0.9625

est sd boot 0.6874 0.4215 0.5911 0.4430 0.4361 0.7751 0.6813 0.3327 0.6513 0.3888 0.3611 0.7013 0.5823 0.3851 0.5821 0.4275 0.3998 0.5961

cover rate boot 0.9500 0.9450 0.9850 0.9250 0.9400 0.9550 0.9600 0.9550 0.9775 0.9400 0.9350 0.9650 0.9500 0.9525 0.9800 0.9475 0.9550 0.9525

n=2000

bias 0.0267 0.0200 0.0199 0.2048 0.0834 0.0289 0.0083 0.0122 0.0190 0.1109 0.0443 0.0153 0.0085 0.0030 0.0109 0.0628 0.0393 0.0082

emp sd 0.3074 0.2794 0.3069 0.2874 0.2804 0.3154 0.2827 0.2372 0.2666 0.2587 0.2403 0.2809 0.2957 0.2635 0.2887 0.2814 0.2702 0.3075

est sd 0.3391 0.2780 0.3515 0.3035 0.2814 0.3489 0.3102 0.2272 0.2975 0.2584 0.2322 0.3074 0.2972 0.2507 0.3127 0.2837 0.2572 0.3019

cover rate 0.9450 0.9550 0.9700 0.9200 0.9475 0.9425 0.9600 0.9500 0.9525 0.9325 0.9400 0.9575 0.9575 0.9575 0.9475 0.9450 0.9350 0.9475

est sd boot 0.3110 0.2799 0.3087 0.2975 0.2785 0.3165 0.2904 0.2389 0.2705 0.2598 0.2337 0.3003 0.3010 0.2511 0.3098 0.2950 0.2681 0.3029

cover rate boot 0.9425 0.9550 0.9600 0.9150 0.9400 0.9400 0.9525 0.9525 0.9475 0.9300 0.9400 0.9550 0.9575 0.9575 0.9450 0.9450 0.9375 0.9550

n=5000

bias 0.0101 0.0085 0.0087 0.1227 0.0279 0.0087 0.0022 0.0020 0.0062 0.0910 0.0397 0.0053 0.0155 0.0156 0.0202 0.0641 0.0509 0.0093

emp sd 0.1850 0.1773 0.1832 0.1702 0.1781 0.1920 0.1622 0.1462 0.1529 0.1588 0.1496 0.1625 0.1774 0.1730 0.1839 0.1794 0.1793 0.1731

est sd 0.1707 0.1738 0.1784 0.1800 0.1740 0.1736 0.1468 0.1424 0.1484 0.1509 0.1433 0.1534 0.1463 0.1572 0.1617 0.1667 0.1590 0.1592

cover rate 0.8825 0.9500 0.9375 0.9150 0.9250 0.8850 0.9125 0.9425 0.9450 0.8950 0.9275 0.9250 0.8700 0.9250 0.9175 0.9125 0.9125 0.8850

est sd boot 0.1884 0.1778 0.1853 0.1794 0.1799 0.1904 0.1587 0.1478 0.1503 0.1589 0.1487 0.1624 0.1647 0.1789 0.1800 0.1821 0.1740 0.1672

cover rate boot 0.9250 0.9525 0.9400 0.9150 0.9275 0.9225 0.9375 0.9450 0.9475 0.8925 0.9275 0.9400 0.9125 0.9300 0.9225 0.9175 0.9200 0.9150

Table 3.16: The summary statistics of the estimated QTTs by the IPW method for Model
2 with p=10

68



ATE ATT

ANN ANN-PCA ANN ANN - PCA

IPW

bias 0.0687 0.0715 0.1516 0.1323

emp sd 0.1464 0.1084 0.2025 0.1534

est sd 0.0613 0.0697 0.0561 0.0807

cover rate 0.5450 0.6925 0.3050 0.4825

est sd boot 0.1512 0.1121 0.1782 0.1423

cover rate boot 0.5725 0.7050 0.5425 0.6875

OR

bias 0.0554 0.0672 0.0682 0.1092

emp sd 0.1279 0.1035 0.1824 0.1478

est sd 0.0613 0.0697 0.0561 0.0807

cover rate 0.6050 0.7225 0.4675 0.6175

est sd boot 0.1321 0.1093 0.1625 0.1372

cover rate boot 0.6225 0.7850 0.7850 0.7425

DR

bias 0.0599 0.0710 0.0685 0.1103

emp sd 0.1303 0.1076 0.1892 0.1492

est sd 0.0618 0.0693 0.0572 0.0821

cover rate 0.5975 0.7175 0.4650 0.6200

Table 3.17: The summary statistics of the estimated ATEs and ATTs for Model 1 with
p=100 and n=2000
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QTE QTT

ANN ANN-PCA ANN ANN - PCA

Q1 bias 0.0394 0.0500 0.1205 0.1007

emp sd 0.1775 0.1374 0.2496 0.1907

est sd boot 0.1657 0.1423 0.2756 0.2305

cover rate boot 0.9425 0.9475 0.8450 0.8750

Q2 bias 0.0081 0.0139 0.0561 0.0626

emp sd 0.1446 0.1174 0.1910 0.1480

est sd boot 0.1423 0.1231 0.1832 0.1325

cover rate boot 0.9500 0.9525 0.9050 0.9075

Q3 bias 0.0121 0.0057 0.0238 0.0366

emp sd 0.1280 0.1074 0.1696 0.1310

est sd boot 0.1267 0.1123 0.1778 0.1442

cover rate boot 0.9600 0.9650 0.9650 0.9525

Table 3.18: The summary statistics of the estimated QTEs and QTTs by the IPW method
for Model 1 with p=100 and n=2000.
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3.7 Application

In this section, we apply the proposed methods to the data from the National

Health and Nutrition Examination Survey (NHANES) to investigate the causal effect of

smoking on body mass index (BMI). The collected data consist of 6647 subjects, including

3359 smokers and 3288 nonsmokers. The confounding variables include four continuous

variables: age, family poverty income ratio (Family PIR), systolic blood pressure (SBP),

and diastolic blood pressure (DBP); six binary variables: gender, marital status, education,

alcohol use, vigorous activity over past 30 days (PHSVIG), and moderate activity over

past 30 days (PHSMOD). Table 3.19 presents the group comparisons of all confounding

variables in the full dataset. Mean and standard deviation (SD) are presented for con-

tinuous variables, while the count and percentage (%) of observations for each group are

presented for categorical variables. Standardized difference(Std. Dif.) is calculated as

(x̄ns− x̄s)/
√
s2ns/nns + s2s/ns for continuous variables, and (pns−ps)/

√
pq/nns + pq/ns for

categorical variables, where x̄, s2 and p denote sample mean, sample variance and sample

proportion, and the subscripts ns and s refer to nonsmokers and smokers respectively, and

p, q are the overall proportions. The last column shows the p-value of group comparison

for each covariate. We notice that smoking group and nonsmoking group differ greatly in

their group characteristics. A naive comparison of the sample mean between smoking and

nonsmoking groups will lead to a biased estimation of the smoking effects on BMI.

We apply our proposed ANN methods to estimate the PS and OR functions, re-

spectively. We estimate ATE by the proposed IPW and OR methods, and estimate QTE

by the IPW method only. The number of neurons are selected using grid search with 5-fold

71



Covariates Non-smoker (Nns=3288) Smoker (Nns=3359) Std. Dif. p-value

Gender 1 = Male 1404 (41.8%) 2019 (61.41%) -15.99 <0.001

0 = Female 1955 (58.2%) 1269 (38.59%)

Age Mean(SD) 48.97 (19) 51.73 (17.57) -6.14 <0.001

Marital 1 = Yes 1989 (59.21%) 1867 (56.78%) 2.01 0.0446

0 = No 1370 (40.79%) 1421 (43.22%)

Education 1 = College or above 1626 (48.41%) 1297 (39.45%) 7.36 <0.001

0 = Less than college 1733 (51.59%) 1991 (60.55%)

Family PIR Mean(SD) 2.79 (1.63) 2.57 (1.6) 5.62 <0.001

Alcohol 1 = Yes 1897 (56.48%) 2708 (82.36%) -22.87 <0.001

0 = No 1462 (43.52%) 580 (17.64%)

PHSVIG 1 = Yes 1102 (32.81%) 908 (27.62%) 4.61 <0.001

0 = No 2257 (67.19%) 2380 (72.38%)

PHSMOD 1 = Yes 1491 (44.39%) 1376 (41.85%) 2.09 0.0366

0 = No 1868 (55.61%) 1912 (58.15%)

SBP Mean(SD) 126.42 (21.04) 126.63 (19.98) -0.43 0.6684

DBP Mean(SD) 72.1 (13.56) 71.61 (14.1) 1.44 0.15

Table 3.19: Group comparisons

cross-validation. Table 3.20 reports the estimates of ATE and QTE, the estimated stan-

dard deviations based on the asymptotic formula (est sd) and obtained from the weighted

bootstrapping (est sd boot), and the corresponding z-values and p-values for testing ATE

and QTE. The negative values of the estimates indicate that smoking has adverse effects on

BMI. From the numerical results based on the estimated asymptotic standard deviations,

we see that the p-values of testing ATE are 0.073 and 0.058 by the IPW and OR methods,

respectively. We also notice that the p-value for testing QTE at the 25% quantile is very

small, which is 0.005. However, the p-value increases to 0.071 at the 50% quantile (median),

and further to 0.436 at the 75% quantile. This indicates that smoking has a more promi-

nent effect on the population with smaller BMI, and its effect diminishes as BMI increases;

i.e., the effect of smoking becomes less significant as the value of BMI becomes larger.
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ATE QTE

IPW OR Q1 Q2 Q3

estimate -0.224 -0.241 -0.400 -0.269 -0.040

est sd 0.154 0.154 0.157 0.184 0.247

z-value -1.454 -1.564 -2.547 -1.467 -0.162

p-value 0.073 0.058 0.005 0.071 0.436

est sd boot 0.162 0.149 0.156 0.187 0.254

z-value boot -1.383 -1.617 -2.564 -1.443 -0.157

p-value boot 0.083 0.053 0.005 0.074 0.437

Table 3.20: The estimates and standard errors of ATE and QTE.

This interesting pattern cannot be reflected from ATE. We can draw the same inferential

conclusions as above when the weighted bootstrap method is applied.

We also examine the relationship between BMI and two continuous confounding

variables, age and family poverty income ratio (Family PIR). Figure 3.2 depicts the esti-

mated conditional mean functions (OR functions) τ1(·) and τ0(·) versus the two continuous

variables for the smoking and nonsmoking groups, and for males and females, respectively.

For each comparison, all the other confounding variables are fixed as constants: the con-

tinuous variables take the values of their means while the categorical variables are kept as

married, college or above, drinks alcohol, no vigorous activity and no moderate activity.

It is interesting to notice that for the same age or Family PIR, the estimated conditional

mean in the smoking group is smaller than that in the nonsmoking group for both male and

female, and the estimated conditional mean in the male group is also smaller than that in

the female group for both smoker and nonsmoker. We can clearly see nonlinear relationships
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Figure 3.2: The plots of τ1(·) and τ0(·) versus two continuous variables for the smoking and
nonsmoking groups, and for males and females, respectively, where the blue solid curves
represent nonsmoking group and red dashed line represent smoking group.

between age and BMI as well as between Family PIR and BMI. Age is positively associ-

ated with BMI when it is less than 50, and the association between age and BMI becomes

more negative as people get older. We also see that the smoking effects on BMI are very

different between the male group and female group. Smoking has more significant effect on

BMI for male than for female at the same age. In the male group, the BMI decreases as

family income increases until it reaches the poverty threshold, and then the BMI increases

with family income for smokers. For nonsmokers, it shows a relatively flatter trend. In the

female group, the BMI keeps decreasing as family income increases for both smokers and

nonsmokers.
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3.8 Discussion

In this chapter, we provide a unified framework for efficient estimation of various

types of TEs in observational data with a diverging number of covariates. The framework

can be applied to the settings with binary or multi-valued treatment variables, and it in-

cludes the average, quantile and asymmetric least squares TEs as special cases. We propose

to estimate the TEs through a generalized optimization. The resulting TE estimator only

involves the estimate of one nuisance function, which is approximated by ANNs with one

hidden layer. In contrast, for other existing related works that use machine learning, they

construct the TE estimator based on its efficient influence function, so that the estimator

can have desirable theoretical properties for conducting causal inference. However, this

method loses generalizations as one has to work out the influence function first for each

type of TE. Other than ATE, estimation of the influence function for different types of

TEs can be a difficult undertaking. Moreover, since our TE estimator is obtained directly

through a generalized optimization, it is convenient to apply a weighted bootstrap method

for conducting inference without the need of estimating the asymptotic variance. Theo-

retically, we show that the number of confounders is allowed to increase with the sample

size, and further investigate how fast it can grow with the sample size to ensure root-n

consistency of the resulting TE estimator, when the nuisance function is approximated by

ANNs with one hidden layer. Moreover, we establish asymptotic normality and semipara-

metric efficiency of the TE estimator. These statistical properties are essential for inferring

causations. Practically, we illustrate the proposed method through simulation studies and

a real data example. The numerical studies support our theoretical findings.
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We have shown that the ANNs with one hidden layer can circumvent the “curse

of dimensionality” and the resulting TE estimators enjoy root-n consistency under the

condition that the target function is in a mixed Sobolev space. Our new results advance the

understanding of the required conditions and the statistical properties for ANNs in causal

inference, and lay a theoretical foundation to demonstrate that ANNs are promising tools for

causality analysis when the dimension is allowed to diverge, whereas most existing works

on ANNs estimation still assume the dimension to be fixed. In the online Supplemental

Materials [33], we discuss the extension of our proposed method for TE estimation when

the nuisance function is approximated by fully-connected ANNs with multiple hidden layers

and its statistical properties. We show that when the target function belongs to the regular

Sobolev space [125], the fully-connected deep ANNs has the desirable statistical properties

for TE estimation in the data setting with a fixed number of covariates, whereas it enjoys

narrower width than the single hidden layer ANNs when its depth grows with the sample

size. The investigation of the deep ANNs in the scenarios with a diverging dimension is

beyond the scope of this dissertation and can be a future research topic. We can also consider

sparse deep ANNs to overcome the dimensionality issue of the fully-connected ones, and

will investigate the statistical properties and the required conditions such as the function

space in which the target function needs to belong in this framework. These interesting yet

challenging technical problems deserve further studies. Moreover, the proposed method can

be extended to causal analysis with continuous treatment variables and with longitudinal

data designs. Thorough investigations are needed to develop the computational algorithms

and establish the theoretical properties of the resulting estimators in these settings.
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Chapter 4

Sparse Deep Neural Networks

Regression and Functional

Derivative Estimation

4.1 Introduction

In recent years, deep neural networks with multiple hidden layers have been shown

to be powerful and effective for approximating multivariate functions, and have been suc-

cessfully applied to many fields [61, 73, 51]. However, there is not enough studies for the

theoretical properties of deep neural networks. It is known that using only one hidden

layer, ANN can provide an optimal order of approximation for functions which satisfy cer-

tain smoothness conditions [35, 89]. A common choice of activation function in neural

networks is ReLU function, and ReLU has been shown to have computational advantage
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over the sigmoid functions used mainly in shallow networks [39]. [125] proved that deep

ReLU networks have better approximation than shallow ReLU networks. One difficulty in

analyzing deep neural networks is fully connected deep neural networks suffer from “curse

of dimensionality”. As the need of analyzing high-dimensional data is growing, sparse grids

approximation is gaining more popularity as an approximation tool [52, 25, 104]. An up-

per bound of sparse deep ReLU network approximation error of high-dimensional functions

with bounded mixed derivatives is obtained in [90]. The connection between sparse grids

and deep neural networks has also extended to neural network with other type activation

function. [77] shows that deep neural networks using Rectified Power Units (RePUs), as

activation functions have better approximation property for smooth functions than those

using ReLUs. Following these research, in this dissertation we propose estimating target

function upon a network architecture of sparsely-connected deep neural networks with the

Rectified Quadratic Unit (ReQU) activation function, through an empirical risk minimiza-

tion framework and apply regularization to prevent possible over-fitting.

Another good property of ReQU networks is that we can obtain functional deriva-

tives for our estimates. While ANN is widely applied in regression problems, derivative

estimation has received less attention. Derivative estimation is essential in many situations

including comparing regression curves [97], analyzing significant trends [99] and identifying

change points in longitudinal data [107]. Though we can obtain functional derivatives di-

rectly from parametric linear models, such models are suffering from model mis-specification

and result in large bias in the derivatives, especially when the underlying function struc-

ture is complicated. For certain nonparametric methods and machine learning methods
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applied in regression problems, there is no analytical form solution to the estimated re-

gression function and considered as ”black boxes”, thus we can’t estimate the functional

derivatives. Though we can’t obtain the functional derivatives directly from such regression

model, we can still use some other methods to estimate the derivatives. For instance, local

polynomial regression method in [44], b-spline regression in [83]. There are also some new

approaches using machine learning methods, such as Boosted Smooth Transition Regression

Trees (BooST) for estimating partial effect [48], weighted difference quotients for nonpara-

metric derivative estimation [80]. However, it would be ideal if we could obtain functional

derivatives. Our proposed method is a remedy to smooth functional derivative estimation

since the estimators are all represented by smooth functions.

This chapter is organized as follows. Section 4.2 provides the basic setup. Sec-

tion 4.3.1 discusses approximation of the target function by the ReQU networks. Section

4.4 introduces the sparse deep ReQU network estimator obtained from empirical risk min-

imization. Section 4.5 reports results from simulation studies, and Section 4.6 illustrates

the proposed method through real data applications. Some concluding remarks are given

in Section 4.7.

4.2 Basic Setup

Notations: Denote ||a||p = (
∑m

i=1 |ai|p)1/p as the Lp-norm of a vector a, and

a= (a1, . . . , am)
⊤, |a|∞ = maxi=1,...,m |ai|. For two vectors a = (a1, . . . , am)

⊤ and b =

(b1, . . . , bm)
⊤, denote a · b =

∑m
i=1 aibi. Moreover, for any arithmetic operations involving

vectors, they are performed element-by-element. For any two values a and b, denote a ∨
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b = max(a, b). For two sequences of positive numbers an and bn, an ≪ bn means that

b−1
n an = o(1), an ≲ bn means that there exists a constant C ∈ (0,∞) such that an ≤ Cbn,

and an ≍ bn means that there exist constants C,C ′ ∈ (0,∞) such that an ≤ Cbn and

bn ≤ C ′an. Let |A| be the cardinality of a set A. Denote by R (or N) the set of all real

numbers (or positive integers), and let N0 = {0} ∪ N.

We consider the generalized regression problem. Let Y ∈ Y ⊂R be a real-valued

response variable and X= (X1, . . . , Xd)
⊤ be d-dimensional independent variables with val-

ues in a compact support X ⊂Rd . Without loss of generality, we let X = (−1, 1)d. Let

( X⊤
i , Yi)

⊤, i = 1, ..., n be i.i.d. samples drawn from the distribution of (X⊤, Y )⊤.

let µ : X × R → [0, 1] be a Borel probability measure of (X⊤, Y )⊤ . For every

x ∈ X , let µ(y|x) be the conditional (w.r.t. x) probability measure of Y . Let µX be the

marginal probability measure of X. Let L2ω (X ) = {f : X → R, f is Lebesgue measurable

on X d and ||f ||L2
ω
<∞}, where ||f ||L2

ω
= (
∫

x∈X f (x)
2 ω (x) dµX(x))

1/2 is the weighted L2

norm with the weighting function ω (·). Denote ||f ||∞ = supx∈X d |f (x) |. For the weighted

L2 norm, we write rBL2
ω
= {f ∈ L2ω (X ): ||f ||L2

ω
≤ r}.

Define g0 : X → R by

g0(x) =

∫
Y
ydµ(y|x).

The function g0 is the regression function or the conditional mean function of the response

Y given X = x. Our goal is to estimate the unknown function g0 (x) using deep neural

networks from the observed data.

The partial derivatives of f with mult-index k = (k1, ..., kd)
⊤ ∈ Nd is given as

Dkf =
∂|k|1f

∂xk11 · · · ∂x
kd
d

,
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where N = {0, 1, 2, ..., } and |k|1 =
∑d

j=1 kj . Denote ||f ||k,∞ = supx∈X |Dkf (x) |. We will

also obtain the partial derivatives of g0 (x).

4.3 Approximation of the Target Function

4.3.1 Jacobi Polynomial Approximation

Jacobi polynomials

We will first discuss the Jacobi polynomials for d = 1 and will extend them to the

multivariate case with d > 1. The Jacobi polynomials can be used to approximate a smooth

function and its derivatives. Let ωα,β (x) = (1− x)α(1 + x)β be the Jacobi weight function

over (−1, 1). Note that
∫ 1
−1 ω

α,β (x) dx < ∞ for any α, β > −1. We assume α, β ≥ 0

throughout the chapter. The one-dimensional Jacobi polynomials, denoted by Jα,βr (x), are

the eigenfunctions of the Sturm-Liouville problem [104]:

− 1

ωα,β (x)
∂x

(
ωα+1,β+1 (x) ∂xJ

α,β
r (x)

)
= λα,βr Jα,βr (x) ,

with the corresponding eigenvalues λα,βr = r(r+α+β+1). The family of normalized Jacobi

polynomials forms orthogonal system in L2
ωα,β (X ) such that

∫ 1

−1
Jα,βr (x) Jα,βr′ (x)ωα,β (x) dx = δrr′ , (4.1)

where δrr′ = 1 if r = r′ and δrr′ = 0 otherwise. It is given in [103] that the normalized

Jacobi polynomials have the function form given as

Jα,βr (x) =
∑r

k=0
ark(x− 1)k, (4.2)
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where ark are constants given in [103]. Moreover,

∂xJ
α,β
r (x) =

√
λα,βr Jα+1,β+1

r−1 (x) , for r ≥ 1 (4.3)

so that the derivatives ∂xJ
α,β
r (x) := ∂Jα,β

r (x)
∂x are also orthogonal with respect to the weight

ωα+1,β+1 (x) such that

∫ 1

−1
∂xJ

α,β
r (x) ∂xJ

α,β
r′ (x)ωα+1,β+1 (x) dx

=

∫ 1

−1

√
λα,βr Jα+1,β+1

r−1 (x)

√
λα,βr′ J

α+1,β+1
r′−1 (x)ωα+1,β+1 (x) dx

=

√
λα,βr

√
λα,βr′ δrr′ . (4.4)

Next, for x ∈ X d, we define the d-dimensional tensor Jacobi polynomial and Jacobi

weight function as

Jα,β
r (x) =

∏d

j=1
J
αj ,βj
rj (xj) ,ω

α,β (x) =
∏d

j=1
ωαj ,βj (xj)

where r = (r1, ..., rd)
⊤, α = (α1, ..., αd)

⊤, β = (β1, ..., βd)
⊤, and αj , βj > −1 for all 1 ≤ j ≤

d. From (4.2), we have

Jα,β
r (x) =

∏d

j=1

∑rj

kj=0
a
rj
kj
(xj − 1)kj =

∑r1,...,rd

k1,...,kd=0

{∏d

j=1
a
rj
kj
(xj − 1)kj

}
.

Then Equation (4.1) leads to

∫
X
Jα,β
r (x)Jα,β

r′ (x)ω α,β (x) dx = δrr′ ,

where δrr′ =
∏d
j=1 δrjr′j and δrr′ = 1 if r = r′, δrr′ = 0 otherwise. For any 1 ≤ j ≤ d,

let ∂xjJ
α,β
r (x) := ∂Jα,β

r (x)
∂x . Denote ω̃ α,β (x) =

∏
j′ ̸=j ω

αj′ ,βj′
(
xj′
)
ωαj+1,βj+1 (xj). Then

(4.1) and (4.4) imply that for 1 ≤ j ≤ d,

∫
X
∂xjJ

α,β
r (x) ∂xjJ

α,β
r′ (x) ω̃ α,β (x) dx =

√
λ
αj ,βj
rj

√
λ
αj ,βj
r′j

δrr′ .
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For any function g ∈ L2
ω α,β (X ), it can be written as

g (x) =
∑

r≥0
η̃α,βr Jα,β

r (x) , where η̃α,βr =

∫
X
g (x)Jα,β

r (x)ω α,β (x) dx.

For each J
αj ,βj
rj (xj) , 1 ≤ j ≤ d, its derivative with respect to xj can be represented

as

∂
kj
x J

αj ,βj
rj (xj) = d

αj ,βj
rj ,kj

J
αj+kj ,βj+kj
rj−kj (xj) . (4.5)

where d
αj ,βj
rj ,kj

=
Γ(rj+kj+αj+βj+1)

2kj (rj+αj+βj+1)
is a constant ([103]). There exists an internal relation

between the Jacobi polynomials and their derivatives. For the d-dimensional tensor Jacobi

polynomial, is partial derivative with mult-index k = (k1, ..., kd)
⊤ ∈ Nd is

DkJα,β
r (x) =

∂|k|1Jα,β
r (x)

∂xk11 · · · ∂x
kd
d

=
d∏
j=1

d
αj ,βj
rj ,kj

J
αj+kj ,βj+kj
rj−kj (xj) . (4.6)

Jacobi Approximation on the Sparse Grid

Let Υm ⊂ Nd0 be an index set that will be specified later. We introduce the Jacobi

polynomial space:

V α,β
m := span{Jα,β

r : r ∈ Υm}.

Let g̃α,β (x) be the projection of the function g ∈ L2
ω α,β (X ) onto the space V α,β

m , and it

satisfies ∫
X
(g̃α,β (x)− g (x))ω α,β (x) dx = 0

for all v (x) ∈ V α,β
m , so g̃α,β (x) can be written as

g̃α,β (x) =
∑

r∈Υm

η̃α,βr Jα,β
r (x) .

If we consider the d-dimensional Jacobi polynomial space on the full grid with the

index set ΥF
m = {r ∈ Nd0 : |a|∞ ≤ m}. In this case, the cardinality of the Jacobi space
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V α,β
m is |V α,β

m | = (m + 1)d , which increases with d quickly. For the purpose of dimension

reduction, we consider the space on the hyperbolic cross index set:

Υm,v = {r ∈ Nd0 : 1 ≤ |r|mix|r|−ν∞ ≤ m1−v},−∞ ≤ v < 1, (4.7)

where |r|mix =
∏d
j=1max{1, rj} and |r|∞ = max{rj , 1 ≤ j ≤ d}. When 0 < v < 1, there is

a trade-off between m and |r|∞ resulting in a dimensionality reduction. The corresponding

Jacobi polynomial space is

V α,β
m,v := span{Jα,β

r : r ∈ Υm,v}.

Table 4.2 provides the number of basis functions for the Jacobi polynomial space

with sparse grids. We see that the number of basis functions for the space with sparse grids

(0 < v < 1) is dramatically reduced compared to the space with full grids (v = −∞). As v

increases, the dimensionality reduction effect is stronger.

4.3.2 Approximation of Polynomial Functions by Deep ReQU Networks

In this Chapter, we consider deep neural networks using rectified quadratic unites

(ReQUs). The ReQU function is defined as

σ2(x) = x2I(x ≥ 0),

where I(x ≥ 0) is the indicator function such that I(x ≥ 0) = 1 if x ≥ 0 and I(x ≥ 0) = 0

otherwise. Below we introduce a feedforward ReQU network structure. The feedforward

neural networks move in one direction from the input variables of dimension d, through the

hidden nodes, and to the ouput node. Then, the feedforward ReQU network with L hidden

84



v N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8

−∞

d=1 2 3 4 5 6 7 8 9

d=2 4 9 16 25 36 49 64 81

d=3 8 27 64 125 216 343 512 729

d=4 16 81 256 625 1296 2401 4096 6561

d=5 32 243 1024 3125 7776 16807 32768 59049

d=6 64 729 4096 15625 46656 117649 262144 531441

d=7 128 2187 16384 78125 279936 823543 2097152 4782969

d=8 256 6561 65536 390625 1679616 5764801 16777216 43046721

d=9 512 19683 262144 1953125 10077696 40353607 134217728 387420489

d=10 1024 59049 1048576 9765625 60466176 282475249 1073741824 3486784401

0.3

d=1 2 3 4 5 6 7 8 9

d=2 4 8 12 16 20 25 29 33

d=3 8 20 32 44 56 74 86 98

d=4 16 48 80 112 144 200 232 264

d=5 32 112 192 272 352 512 592 672

d=6 64 256 448 640 832 1264 1456 1648

d=7 128 576 1024 1472 1920 3040 3488 3936

d=8 256 1280 2304 3328 4352 7168 8192 9216

d=9 512 2816 5120 7424 9728 16640 18944 21248

d=10 1024 6144 11264 16384 21504 38144 43264 48384

0.5

d=1 2 3 4 5 6 7 8 9

d=2 4 8 12 16 20 24 28 33

d=3 8 20 32 44 56 68 80 98

d=4 16 48 80 112 144 176 208 264

d=5 32 112 192 272 352 432 512 672

d=6 64 256 448 640 832 1024 1216 1648

d=7 128 576 1024 1472 1920 2368 2816 3936

d=8 256 1280 2304 3328 4352 5376 6400 9216

d=9 512 2816 5120 7424 9728 12032 14336 21248

d=10 1024 6144 11264 16384 21504 26624 31744 48384

0.7

d=1 2 3 4 5 6 7 8 9

d=2 4 8 12 16 20 24 28 32

d=3 8 20 32 44 56 68 80 92

d=4 16 48 80 112 144 176 208 240

d=5 32 112 192 272 352 432 512 592

d=6 64 256 448 640 832 1024 1216 1408

d=7 128 576 1024 1472 1920 2368 2816 3264

d=8 256 1280 2304 3328 4352 5376 6400 7424

d=9 512 2816 5120 7424 9728 12032 14336 16640

d=10 1024 6144 11264 16384 21504 26624 31744 36864

Table 4.2: The number of basis functions for the space with different v.
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layers is given as

Φ(·; η) : Rd → RNL+1 ; Φ(x; η) = zL+1,

where Φ(x; η) is defined as z0 = x, zℓ = σ2(Aℓzℓ−1 + bℓ) for ℓ = 1, ..., L, and zL+1 =

AL+1zL+bL, whereAℓ areNℓ×Nℓ−1 matrices and bℓ ∈ RNℓ withN0 = d andNℓ ∈ N for ℓ =

1, ..., L+1. Moreover, for any vector v = (v1, ..., vN )
⊤ ∈ RN , σ2(v) = {σ2(v1), ..., σ2(vN )}⊤.

Following [77], we measure the NN complexity by using three quantities: the number of

hidden layers (depth of the network) L, the number of nodes
∑L

ℓ=1Nℓ, and the number of

nonzero weights, which is also the number of nonzeros in {(Aℓ, bℓ), ℓ = 1, ..., L+1}, denoted

as #Φ =
∑L+1

ℓ=1 (#Aℓ +#bℓ).

Let fr(x) be an arbitrary multivariate polynomial function of degree r on Rd,

which can be written as

fr(x) =
∑r

j1+···+jd=0
aj1···jdx

j1
1 · · · x

jd
d , (4.8)

where aj1···jd ∈ R. [77] shows that fr(x) can be exactly represented by a ReQU network

with specified structure.

Proposition 5. For fr(x) given in (4.8), it can be represented exactly by a ReQU network

with d ⌊log2 r⌋+d hidden layers, and the number of nodes and the number of nonzero weights

are bounded by O
(
Cr+dd

)
.

Since Jacobi polynomials belongs to fr(x), next we will show the approximation

of Jacobi polynomial functions by deep ReQU networks. First we rewrite Jα,β
r (x) as

Jα,β
r (x) =

∏d

j=1

∑rj

lj=0
a
rj
lj
(xj − 1)lj

=
∑rd

ld=0
ardld · · ·

(∑r2

l2=0
ar2l2

(∑r1

l1=0
ar1l1 (x1 − 1)l1

)
(x2 − 1)l2

)
· · · (xd − 1)ld .
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To approximate Jα,β
r (x), we can first approximate a∗x1 =

∑r1
l1=0 a

r1
l1
(x1 − 1)l1 us-

ing an univariate ReQU network, then treat a∗x1 as an network input and approximate∑r2
l2=0 a

r2
l2

(
a∗x1
)
(x2 − 1)l2 using a bi-variate ReQU network. We continue this network con-

struction until we include all the variables. Next we introduce the detailed ReQU network

construction process for a∗x1 .

Denote the ReQU network by Φ1(x1) = zL1 , where we define z0 = x1 − 1, z1 =

σ2(A1z0 + b1), zl = σ2(Alzl−1 + bl) for l = 2, ..., L1 − 1 and zL1 = AL1zL1−1 + bL. Here

L1 is determined by the degree of the target Jacobi polynomial. Let L1 = ⌊log2(r1)⌋ + 2,

where ⌊a⌋ denotes the biggest integer which is not bigger than a.

Denote m(z0) =
∑r1

l=0 a
r1
l z

l
0 and we have a∗x1 = m(z0). We first extend m(z0) to

include monomials up to degree 2L1−1 − 1 by zero padding,

m(z0) :=

r1∑
l=0

ar1l z
l
0 +

2L1−1−1∑
l=r1+1

0zl0 =
2L1−1−1∑
l=0

ãr1l z
l
0, ã

r1
l =

{ar1l , 0 ≤ l ≤ r1

0, r1 + 1 ≤ l ≤ 2L1−1 − 1

.

If r1 = 0, m(z0) would be a constant. There would be slight difference for the ReQU

neural network construction for r1 = 1(L1 = 2), r1 = 2, 3(L1 = 3), and r1 > 3(L1 > 3).

Several parameters would be shared by every layer: β1, w1, γ1 ∈ R4, β2, w2 ∈ R2. Let

ar121 = (ãr11 , ã
r1
3 , ..., ã

r1
2L1−1−1

)⊤ ∈ R2L1−2
, ar122 = (ãr10 , ã

r1
2 , ..., ã

r1
2L1−1−2

)⊤ ∈ R2L1−2
and ãr1 =

(ãr10 , ã
r1
1 , ..., ã

r1
2L1−1−1

)⊤ ∈ R2L1 , we also treat ar121, a
r1
22 as parameters in the following neural

network construction.

1. L1 = 2, there would be two layers

(a) Layer 1: z1 = σ2(A1z0 + b1), where A1 = w1, b1 = γ1.

(b) Layer 2 (output layer): z2 = A20z1 + b20, where A20 = ar121β
⊤
1 and b20 = ar122.
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2. L1 = 3, there would be three layers:

(a) Layer 1: z1 = σ2(A1z0 + b1), where A1 = (w⊤
1 , w

⊤
2 )

⊤, b1 = (γ⊤1 ,0)
⊤ ∈ R8.

(b) Layer 2: z2 = σ2(A2z1 + b2), where A2 = A21A20, b2 = A21b20 + b21 and

A21 =

w1 0 0

0 w1 γ1

 , b21 = (γ⊤1 ,0)
⊤ ∈ R8,

A20 =

a21β⊤1 0

0 β⊤2

 , b20 = (ar122
⊤, 0)⊤ ∈ R3.

(c) Layer 3 (output layer): z3 = A30z2, where A30 = (β⊤1 , β
⊤
1 )

⊤ ∈ R8.

3. L1 > 3, the first layer and output layer are of same structure as in the case L1 = 3,

but more hidden layers:

(a) Layer 1: z1 = σ2(A1z0 + b1), where A1 = (w⊤
1 , w

⊤
2 )

⊤, b1 = (γ⊤1 ,0)
⊤.

(b) Layer 2: z2 = σ2(A2z1 + b2), where A2 = A21A20, b2 = A21b20 + b21 and

A21 =



w1 0 0

0 w1 γ1

w1 0 0

0 w1 γ1

...

w1 0 0

0 w1 γ1

1



∈ R(8×2L1−3+1)×(2L1−2+1),

b21 = (γ⊤1 ,0, γ
⊤
1 ,0, ..., γ

⊤
1 ,0)

⊤ ∈ R(8×2L1−3+1)×1,
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A20 =

ar121β⊤1 0

0 β⊤2

 , b20 = (ar122
⊤, 0)⊤ ∈ R2L1−2+1.

(c) (If L1 > 4) Layer k for 3 ≤ k ≤ L1 − 2: zk = σ2(Akzk−1 + bk), where Ak =

Ak1Ak0, bk = bk1 and

Ak1 =



w1 0 0

0 w1 γ1

w1 0 0

0 w1 γ1

...

w1 0 0

0 w1 γ1

1



∈ R(8×2L1−k−1+1)×(2L1−k+1),

bk1 = (γ⊤1 ,0, γ
⊤
1 ,0, ..., γ

⊤
1 ,0)

⊤,

Ak0 =

I2L1−k ⊗ (β⊤1 , β
⊤
1 )

⊤ 0

0 1

 ∈ R(2L1−k+1)×(8×2L1−k+1).

where I2L1−k is the identity matrix in R2L1−k
and ⊗ stands for Kronecker product.

(d) Layer L1−1: zL1−1 = σ2(AL1−1zL1−2+bL1−1), where AL1−1 = AL1−1,1AL1−1,0,

bL1−1 = bL1−1,1 and

AL1−1,1 =

w1 0 0

0 w1 γ1

 , bL1−1,1 = (γ⊤1 ,0)
⊤ ∈ R8,

AL1−1,0 =

I2 ⊗ (β⊤1 , β
⊤
1 )

⊤ 0

0 1

 .
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(e) Layer L1 (output layer): zL1 = AL1,0zL1−1, where

AL1,0 = (β⊤1 , β
⊤
1 )

⊤.

When realizing
∑r2

l2=0 a
r2
l2
a∗x1(x2 − 1)l2 , since a∗x1 is network input instead of pa-

rameters, we need to modify the neural network construction for the first and the second

layer. Let L2 = ⌊log2(r2)⌋ + 2. Denote the ReQU network by Φ2(zL1 , x2) = zL2 , where

we modify the the nodes of the first layer as z0 = (zL1 , x2)
⊤. Again, there would be slight

difference for the ReQU neural network construction for r2 = 1(L2 = 2), r2 = 2, 3(L2 = 3),

and r2 > 3(L2 > 3). Similarly we have ar221 = (ãr21 , ã
r2
3 , ..., ã

r2
2L1−1−1

)⊤ ∈ R2L1−2
, ar222 =

(ãr20 , ã
r2
2 , ..., ã

r1
2L1−1−2

)⊤ ∈ R2L1−2
and ãr2 = (ãr20 , ã

r2
1 , ..., ã

r2
2L1−1−1

)⊤ ∈ R2L2 , we also treat

ar221, a
r2
22 as parameters in the following neural network construction.

1. L2 = 2:

(a) Layer 1: z1 = σ2(A1z0 + b1), where A1 =

w1 0

w1 γ1

, b1 = (γ⊤1 ,0)
⊤ ∈ R8.

(b) Layer 2: (output layer): z2 = A20z1, where A20 = (ar222β
⊤
1 , a

r2
21β

⊤
1 ).

2. L2 = 3:

(a) Layer 1: z1 = σ2(A1z0 + b1), where A1 =


w1 0

w1 γ1

0 w2

, b1 = (γ⊤1 ,0)
⊤ ∈ R10.

(b) Layer 2: z2 = σ2(A2z1 + b2), where A2 = A21A20, b2 = b21 and

A21 =

w1 0 0

0 w1 γ1

 , b21 = (γ⊤1 ,0)
⊤ ∈ R8, A20 =

ar222β⊤1 ar221β
⊤
1 0

0 0 β⊤2

 .
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(c) Layer 3 (output layer): have same structure as the layer 3 in a∗x1 when L1 = 3.

3. L2 > 3:

(a) Layer 1: z1 = σ2(A1z0 + b1), where A1 =


w1 0

w1 γ1

0 w2

, b1 = (γ⊤1 ,0)
⊤ ∈ R10.

(b) Layer 2: z2 = σ2(A2z1 + b2), where A2 = A21A20, b2 = b21 and

A21 =



w1 0 0

0 w1 γ1

w1 0 0

0 w1 γ1

...

w1 0 0

0 w1 γ1

1



∈ R(8×2L2−3+1)×(2L2−2+1),

b21 = (γ⊤1 ,0, γ
⊤
1 ,0, ..., γ

⊤
1 ,0)

⊤ ∈ R(8×2L2−3+1)×1,

A20 =

ar222β⊤1 ar221β
⊤
1 0

0 0 β⊤2

 .
(c) Layer 3 and further: have same structure as the corresponding layers in a∗x1 when

L1 > 3.

We notice that x2 is included in the overall network only after certain number

of layers, we can keep a record of input x2 in each layer using multiple idX(·) operations,

such that x1 and x2 can start from the same layer. Repeat the same process as we include
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x2 for x3, ... xd. After we have included all variables, we will obtain a ReQU network

Φr
d(x) = Φr

d(x1, x2, ..., xd). When β1, β2, w1, w2, γ1 take specific values as given in [77],

ãr = {ãrj , 1 ≤ j ≤ d} take specific values as given in [103], Φr
d(x) can exactly represent

Jα,β
r (x).

The last step is to assemble all such ReQU networks to complete our final ReQU

network,

Φd(x) =
∑

r∈Υm,v

ηrΦ
r
d(x), (4.9)

where ηr ∈ R, r ∈ Υm,v.

4.4 Deep ReQU Network Estimator

Define the ReQU network class as

F = {f : X → R, f(x) =
∑

r∈Υm,v

ηrΦ
r
d(x;β1, β2, w1, w2, γ1, ã

r), ||f ||∞ ≤ B}. (4.10)

For αj , βj ≥ 0, 1 = ωαj ,βj (0) ≤ supxj∈[−1,1] |ωαj ,βj (xj) | ≤ b̃ for some constant b̃ ∈ [1,∞).

Note that when αj , βj = 0, supxj∈[−1,1] |ωαj ,βj (xj) | = 1, so b̃ = 1. Then

supx∈X |ω α,β (x) | ≤ b̃d. (4.11)

Moreover,
∫ 1
−1 ω

αj ,βj (xj) dxj ≤ b for some constant b ∈ (0, 2b̃] and thus
∫
X ω α,β (x) dx ≤

bd. Then for any f ∈ F ,

∫
X
f(x)2ω α,β (x) dx ≤ B2

∫
X
ω α,β (x) dx ≤ B2bd. (4.12)

Let

f0 = argmin
f∈F

∫
X×Y

ω α,β (x) (f(x)− y)2dµ(x, y). (4.13)
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The function f0 can be written as f0 (x) =
∑

r∈Υm
η0rJ

α,β
r (x) = η0⊤Jα,β (x), where

η0 = {η0r, r ∈ Υm}⊤. We obtain the penalized deep ReQU network (PDRN) estimator f̂ of

the true regression function g0 from minimizing the following emipirical risk:

f̂ = argmin
f∈F
{n−1

n∑
i=1

ω α,β (Xi) (f(Xi)− Yi)2 + λ||f ||2Ψ}, (4.14)

where ||f ||2Ψ = η⊤η and λ > 0 is a tuning parameter for the L2 penalty.

There are three tuning parameters: m, v and λ and we select them through 5-

fold cross validation. Let θ be the vector of parameters collecting all parameters including

β1, β2, w1, w2, γ1, ã
r for r ∈ Υm,v. We apply the ADAM method to update all the parame-

ters.

Denote the parameter estimates by η̂ = {η̂r, r ∈ Υm,v}, β̂1, β̂2, ŵ1, ŵ2, γ̂1 and

ˆ̃a = {ˆ̃ar, r ∈ Υm,v}, we have

f̂(x) =
∑

r∈Υm,v

η̂rΦ̂
r
d(x) = η̂⊤Φ̂d(x), (4.15)

where Φ̂d(x) = {Φ̂r
d(x), r ∈ Υm,v} = {Φr

d(x; β̂1, β̂2, ŵ1, ŵ2, γ̂1, ˆ̃a
r), r ∈ Υm,v}.

The functional derivatives estimates of f(x) are obtained directly from f̂(x). The

partial derivatives of f̂(x) with mult-index k = (k1, ..., kd)
⊤ ∈ Nd is given as

Dkf̂(x) =
∂|k|1 f̂(x)

∂xk11 · · · ∂x
kd
d

=
∂|k|1{

∑
r∈Υm,v

η̂rΦ̂
r
d(x)}

∂xk11 · · · ∂x
kd
d

=
∑

r∈Υm,v

η̂r
∂|k|1Φ̂r

d(x)

∂xk11 · · · ∂x
kd
d

.

To obtain Dkf̂(x) we only need
∂|k|1 Φ̂r

d(x)

∂x
k1
1 ···∂xkdd

for r ∈ Υm,v. Similar to the partial

derivatives of d-dimensional Jacobi polynomial in Equation 4.6. We estimate the partial
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Algorithm 3 ADAM

Require: θini: Initial value for θ

Require: ϵ0: converge criterion

Require: α̃: step size with default value of 0.001

Require: β̃1: decay rate with default value of 0.9

Require: β̃2: decay rate with default value of 0.999

Require: ϵ̃: stabilizer with default value of 10−8

t← 0 (Initialize timestep)

m0 ← 0 (Initialize 1st moment vector)

v0 ← 0 (Initialize 2nd moment vector)

θ0 ← θini

while θt not converge do

t← t+ 1

gt ← ∇θft(θt−1) (Obtain gradient for θ at timestep t)

mt ← β̃1mt−1 + (1− β̃1)gt (Update biased first moment estimate)

vt ← β̃2vt−1 + (1− β̃2)gt ⊙ gt (Update biased second raw moment estimate))

m̂t ← mt/(1− β̃t1) (Compute bias-corrected first moment estimate)

v̂t ← vt/(1− β̃t2) (Compute bias-corrected second raw moment estimate)

∆(θt)← m̂t/(
√
v̂t + ϵ̃)

αt ← αt−1 − α̃∆(αt) (Update θ at timestep t)

end while

return θt
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derivatives of Φ̂r
d(x) from

DkΦ̂r
d(x) =

∂|k|1Φ̂r
d(x)

∂xk11 · · · ∂x
kd
d

=
d∏
j=1

drj ,kj Φ̂
∗rj−kj
j (xj), (4.16)

where k = (k1, k2, ..., kd), drj ,kj =
rj !

2kj (rj−kj)!
and Φ̂∗rj−kj

j (xj) is obtained from Φ̂
rj−kj
j (xj)

by changing the coefficients â
rj−kj
lj

for 1 ≤ lj ≤ rj − kj to â
rj
lj
/â

rj−kj
lj

for 1 ≤ lj ≤ rj − kj .

4.5 Simulation Studies

4.5.1 Methods Used

In this section, we conduct simulation studies to assess the finite-sample perfor-

mance of the proposed methods. We estimate the target function using our proposed PRDN

method as well as five other popular methods, including the fully-connected feedforward

neural networks (FNN), the linear models (LM), the generalized additive models (GAM),

the gradient boosted machines (GBM) and the random forests (RF).

We use the Rectified Linear Unit (ReLU) as the activation function for FNN. We

use cubic regression spline basis functions for GAM. We apply grid search with 5-fold cross-

validation to select hyperparameters for all methods, including the number of hidden layers

and the number of neurons in each layer for FNN, the number of trees and max depths of

trees for RF and GBM, and the learning rate for GBM. All the simulation studies are im-

plemented in Python 3.9.9. The FNN, LM, GAM and RF/GBM methods are implemented

using the packages tensorflow, statsmodel, pygam and scikit-learn, respectively.
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4.5.2 Date Generating Process

For illustration of the methods, we generate data from the following nonlinear

model:

E(Yi|Xi) = (0.5(Xi1 + 0.6) + 0.8(Xi2 − 0.3) +Xi4)
3 + (0.5(−Xi3 + 1))3

− 4 sin(0.8Xi1 + 1) + 0.4e1.2(−Xi3+0.5)

+ 4

(
0.2 log(| 1

cos(0.5(Xi4 − 0.6))
|) + 6 arctan(0.5(Xi5 − 0.3))− 3.1Xi5 + 1

)(
1.8

Xi3 − 1.8
+ 2

)
.

where Yi = E(Yi | Xi) + ϵi and ϵi are independently generated from the standard normal

distribution for 1 ≤ i ≤ n. Xi = (Xi1, Xi2, ..., Xi5), and the confounders Xij are gener-

ated from Xij = 2(F (Zij) − 0.5), where Zi = (Zi1, ..., Zip)
⊤ i.i.d.∼ N (0,Σ), Σ = {σkk′},

σkk′ = 0.5|k−k
′| for 1 ≤ k, k′ ≤ 5, and F (·) is the cumulative distribution function of stan-

dard normal distribution for 1 ≤ i ≤ n, 1 ≤ j ≤ p. We consider n = 2000, 5000. For each

setting, we run 200 replications.

This model is inspired from Airfoil Self-Noise data in Section 4.6. Figure 4.1

compares the mean response versus each covariate, partial derivative versus each covariate

from the simulation model to those from estimated model of Airfoil Self-Noise data. The

partial derivatives are the first partial derivatives with respect to each covariate. Both the

mean response and the derivatives are plotted against each covariate while other covariates

fixed at their mean values. We can see the simulation model has reproduced the nonlinear

trends in both the mean response and the derivatives.
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(a) Covariate 1 (b) Covariate 2

(c) Covariate 3 (d) Covariate 4

(e) Covariate 5

Figure 4.1: Mean response and partial derivatives from simulation model and Airfoil self-
noise data for all 5 variables. For each subplot, the two top plots are from simulation model
and the bottom plots are from Airfoil self-noise data. The solid lines are the mean response
and the dashed line are the partial derivatives.
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4.5.3 Simulation Results

To evaluate the estimation accuracy of the proposed mean response estimates and

derivative estimates, we report the following three metrics, average squared bias (bias2),

average variance and average mean squared error (mse) :

average bias2 =
1

n

n∑
i=1

{ 1

nrep

nrep∑
j=1

f̂j(x
∗
i )− f(x∗i )}2,

average variance =
1

n

n∑
i=1

{ 1

nrep

nrep∑
j=1

f̂j(x
∗
i )

2 − (
1

nrep

nrep∑
j=1

f̂j(x
∗
i ))

2},

average mse =
1

n

n∑
i=1

1

nrep

nrep∑
j=1

{f̂j(x∗i )− f(x∗i )}2.

where f̂j(·) is the estimated function from the j-th replicate and f(·) is the target mean

response function. We evaluate the estimated function based on the same set of the co-

variates xi for all methods, which are generated in the same way as the covariates in each

replicate.

For our simulation model with d = 5, table 4.3 reports the three evaluation met-

rics of the six methods for estimation of mean response obtained based on 200 simulation

replications. Our proposed PRDN method has the lowest MSE values for both n = 2000

and n = 5000 settings. As n increases, the squared bias value and variance decrease. Com-

pared to FNN estimates, while the squared bias values are close, the variance of PRDN

estimates is smaller since PRDN method has less parameters to estimate due to its sparse

structure. The GBM and RF estimates have inferior performance than the neural network

based estimates. LM and GAM estimates have large bias due to model mis-specification.

Figure 4.2 and Figure 4.3 show the mean response curves and functional derivative

curves from the estimated model and the true model while all other covariates are hold at
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n=2000 n=5000

PRDN FNN LM GAM GBM RF PRDN FNN LM GAM GBM RF

bias2 0.0200 0.0215 1.9403 1.3139 0.0625 0.1269 0.0072 0.0076 1.9398 1.3134 0.0408 0.0800

var 0.0548 0.0598 0.0087 0.1292 0.1668 0.1420 0.0234 0.0293 0.0033 0.0493 0.0945 0.0981

mse 0.0748 0.0813 1.9491 1.4431 0.2293 0.2689 0.0306 0.0371 1.9430 1.3627 0.1354 0.1781

Table 4.3: The average bias2, variance and mse of the six methods for estimation of mean
response obtained based on 200 simulation replications.

n=2000 n=5000

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

mean response

bias2 0.0129 0.0144 0.0047 0.0147 0.0019 0.0039 0.0058 0.0024 0.0064 0.0009

var 0.0072 0.0076 0.0074 0.0084 0.0074 0.0037 0.0042 0.0038 0.0039 0.0035

mse 0.0201 0.0220 0.0121 0.0231 0.0093 0.0076 0.0099 0.0063 0.0103 0.0044

partial derivative

bias2 0.0521 0.0226 0.0394 0.1060 0.0143 0.0129 0.0076 0.0248 0.0300 0.0112

var 0.0437 0.0536 0.0475 0.0487 0.0395 0.0204 0.0253 0.0224 0.0269 0.0228

mse 0.0958 0.0762 0.0868 0.1548 0.0538 0.0333 0.0329 0.0472 0.0570 0.0340

Table 4.4: The average bias2, variance and mse of the PRDN estimates of mean response
and functional derivative.

their mean values, for n = 2000 and n = 5000, respectively. The derivatives are first order

partial derivative with respect to each covariate. The light grey dashed lines are estimated

from 200 replications and they have covered the red solid line, which is evaluated from

the true model, which shows our estimates have captured the patterns in the relationships

between each covariate and mean response. As n increases, the coverage band is narrower

and reproduce the trend with a higher accuracy. The average squared bias (bias2), average

variance and average mean squared error (mse) are reported in Table 4.4.
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Figure 4.2: Mean response curves and functional derivative curves from estimated model
and true model for all 5 variables (from top to bottom: Covariate 1 to Covariate 5). For
each subplot, the left plot is the mean response and the right plot is the partial derivative.
The red solid lines are from the true model and the grey dashed line(shade) are from the
estimated models of all 200 replicates. n = 2000.
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Figure 4.3: Mean response curves and functional derivative curves from estimated model
and true model for all 5 variables (from top to bottom: Covariate 1 to Covariate 5). For
each subplot, the left plot is the mean response and the right plot is the partial derivative.
The red solid lines are from the true model and the grey dashed line(shade) are from the
estimated models of all 200 replicates. n = 5000.
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4.6 Real Applications

In this section, we illustrate our proposed method by using two datasets with

continuous response variables (Abalone data and Airfoil Self-Noise data). Each dataset is

randomly split into 80% training data and 20% test data. The training data is used to

fit the model, whereas the test data is used to examine the prediction accuracy. Then,

we compare our PDRN with five methods, including fully-connected feedforward neural

networks (FNN), the linear models (LM), the generalized additive models (GAM), the

gradient boosted machines (GBM) and the random forests (RF). For all methods, the

tuning parameters are selected by 5-fold cross validations based on a grid search, and the

software packages used are the same as simulation studies, see Section 4.5.1.

4.6.1 Abalone Data

The abalone dataset is available at the UCI Machine Learning Repository ([41]),

which contains 4177 observations and 9 attributes. The attributes are: Sex (male, fe-

male and infant), Length (longest shell measurement), Diameter (perpendicular to length),

Height (with meat in shell), Whole weight (whole abalone), Shucked weight (weight of meat),

Viscera weight (gut weight after bleeding), Shell weight (after being dried) and Rings (+1.5

gives the age in years). The goal is to predict the age of abalone based on these physical

measurements. Since the age depends on the Rings, we take the Rings as the response

variable. Since Length and Diameter are highly correlated with the correlation coefficient

0.9868 and infant has no gender, we delete Length and Sex and we use the only six covari-

ates, Diameter, Height, Whole weight, Shucked weight, Viscera weight and Shell weight, in
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PRDN FNN GLM GAM GBM RF

MSPE 4.1023 4.1084 4.3910 4.3262 4.2419 4.2317

Table 4.5: The mean squared prediction error (MSPE) from the six different methods for
the abalone data.

our analysis. In the dataset, there are two observations with zero value for Height, and two

other observations are outliers, so we delete these four observations and use the remaining

4173 observations in our analysis.

In order to evaluate our method we report the mean squared prediction error

(MSPE), which is defined as 1
n

∑
(ŷi − yi)2, where n is the test sample size, ŷi and yi are

the estimated mean response and its observation value. Table 4.5 reports the MSPE values

in the test data for six different methods. We can see our proposed PRDN estimate is

comparable to FNN estimate and has the smallest MSPE compared to other methods.

Figure 4.4 depicts the fitted mean response curves (solid lines) and functional par-

tial derivative curves (dashed lines) of the response Rings versus each of the four covariates

obtained from our PDRN method, while other covariates are fixed at their mean values. We

can see nonlinear trends exist in all plots, especially for Diameter and Whole weight. For

Whole weight, the Rings seems to be increasing steadily as the Whole weight is increasing,

but the functional derivative curve has a pattern that first rise then fall, which shows a

changing speed of the increase in Rings. For Height, Whole weight and Shell weight, the

fitted values of Rings are increasing as the covariate value increases. However, from the

functional derivative curves we can see different patterns. The rate of increase of Rings

keeps decreasing as Height is increasing, similar pattern can be found in the plots for Shell
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PRDN FNN GLM GAM GBM RF

MSPE 0.1627 0.1623 0.4931 0.4123 0.3614 0.2739

Table 4.6: The mean squared prediction error (MSPE) from the six different methods for
the airfoil data.

weight, however the rate of increase of Rings speeds up for a while that goes down after a

certain point as the Whole weight increase. The function derivative curves show us more

insights in understanding the relationship between the Rings and all the six covariates.

4.6.2 Airfoil Self-Noise Data

The abalone dataset is available at the UCI Machine Learning Repository ([41]),

which contains 1503 observations and 5 attributes. The attributes are Frequency, in Hertzs;

Angle of attack, in degrees; Chord length, in meters; Free-stream velocity, in meters per

second; Suction side displacement thickness, in meters. The goal is to predict scaled sound

pressure level, in decibels. Since each unit of measurement of covariate is different with the

other, the original range of covariates are quite different, we standardize each covariate.

Table 4.6 reports the mean squared prediction error (MSPE) values in the test

data for six different methods. We can see our proposed PRDN estimate is comparable to

FNN estimate and has the smallest MSPE compared to other methods.

Figure 4.5 depicts the fitted mean response curves (solid lines) and functional

partial derivative curves (dashed lines) of the response sound pressure level versus each of

the five covariates obtained from our PDRN method, while other covariates are fixed at

their mean values. Clear nonlinear trend exist in every plot and interestingly, each plot, for
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Figure 4.4: Mean response and functional derivatives against each covariate for Abalone
data (from top to bottom: Diameter, Height, Whole weight, Shucked weight, Viscera weight,
Shell weight). For each subplot, the left plot (solid line) is the mean response and the right
plot (dashed line) is the partial derivative.
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both mean response and function derivative, has a ”turning point”. Except for Frequency,

the turning point in functional derivatives, very close to the origin, result in the flat middle

of mean response curves.

4.7 Discussion

In this chapter, we propose estimating target function upon a network architecture

of sparsely-connected deep neural networks with the Rectified Quadratic Unit (ReQU) acti-

vation function, through an empirical risk minimization framework and apply regularization

to prevent possible over-fitting. Our proposed neural network bases on Jacobi polynomial

approximation on the hyperbolic cross/sparse grid. Our framework can be applied to both

regression and function derivative estimation. Our proposed method is a remedy to smooth

functional derivative estimation since the estimators are all represented by smooth func-

tions. Practically, we illustrate the proposed method through simulation studies and two

real data applications. In general, our proposed method provides a reliable solution for

mitigating the curse of dimensionality for modern large-scale data analysis. As a future

work, we will investigate the statistical properties of our estimator.
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Figure 4.5: Mean response and functional derivatives against each covariate for airfoil data
(from top to bottom: Frequency, Angle of attack, Chord length, Free-stream velocity, Suc-
tion side displacement thickness). For each subplot, the left plot (solid line) is the mean
response and the right plot (dashed line) is the partial derivative.
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Chapter 5

Conclusions

In this dissertation, we mainly illustrate artificial neural network techniques ap-

plied in causal inference (Chapter 3) and sparse deep neural network regression and func-

tional derivative estimation (Chapter 4).

In Chapter 3, we provide a unified framework for efficient estimation of various

types of TEs in observational data with a diverging number of covariates through a gener-

alized optimization. The resulting TE estimator only involves the estimate of one nuisance

function, which is approximated by fully connected ANNs with one hidden layer. Theo-

retically, we show that the number of confounders is allowed to increase with the sample

size, and further investigate how fast it can grow with the sample size to ensure root-n

consistency of the resulting TE estimator. Moreover, we establish asymptotic normality

and semiparametric efficiency of the TE estimator. We have shown that the ANNs with

one hidden layer can circumvent the “curse of dimensionality” and the resulting TE esti-

mators enjoy root-n consistency under the condition that the target function is in a mixed
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Sobolev space. Our new results advance the understanding of the required conditions and

the statistical properties for ANNs in causal inference, and lay a theoretical foundation

to demonstrate that ANNs are promising tools for causality analysis when the dimension

is allowed to diverge, whereas most existing works on ANNs estimation still assume the

dimension to be fixed. Practically, we illustrate the proposed method through simulation

studies and a real data example. The numerical studies support our theoretical findings.

In Chapter 4, we focus on sparse deep neural network regression and functional

derivative estimation. We propose a penalized deep ReQU network estimator (PDRN)

obtained from empirical risk minimization framework. The proposed neural network bases

on Jacobi polynomial approximation on the hyperbolic cross/sparse grid and alleviates the

”curse of dimensionality”. Our estimator provides a remedy to smooth functional derivative

estimation. Practically, we illustrate the proposed method through simulation studies and

two real data examples.
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Appendix A

Supplementary Materials for
Chapter 3

A.1 Polynomial Approximation and Curse of Dimensionality

We consider to approximate a target function f(·) ∈ Wm,δ0,∞(X ) using polynomial
series. Denote s0 := m+ δ0. Since f(·) ∈ Wm,δ0,∞(X ), the partial derivatives of f(x) up to
s0-times are uniformly bounded, i.e. sup|α|1≤s0 supx∈X |D

αf(x)| ≤ 1. By [81], there exist
polynomials Pn1,...,np(x), of degree ni in xi, for which

sup
x∈X
|f(x)− Pn1,...,np(x)| ≤ Cp ·

p∑
i=1

1

ns0i
,

where Cp is a constant depending on p.
Consider a K-dimensional polynomial sieve {uK(x)} of the form:

u1(x) = 1, u2(x) = (1, x1)
⊤, . . . , up+1(x) = (1, x1, ..., xp)

⊤, up+2(x) = (1, x1, ..., xp, x
2
1)

⊤, ....

To ensure all degrees of (x1, ..., xp) get up to s0, we require K = (s0 + 1)p. Then

inf
λK∈RK

sup
x∈X
|f(x)− λ⊤KuK(x)| ≤ Cp · p ·K− s0

p .

Since X is compact, which implies that the L2(dFX) approximation error is also of O(Cp ·p ·
K

− s0
p ). In comparison with the approximation rates using ANN, (3.5), the approximation

based on the polynomial sieve suffers from the curse of dimensionality.

A.2 Proof of the Asymptotic Distribution of the Proposed
TE Estimator

We first prove β̂d
p−→ β∗d for any d ∈ {0, 1, ..., J}. Because β̂d (resp. β∗d) is a

minimizer of n−1
∑n

i=1DdiL (Yi − βd) /π̂d(Xi) (resp. E [DdiL (Yi − β) /π∗d(Xi)]), from the
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theory of M -estimation [117, Theorem 5.7], if the following uniform convergence holds:

sup
β∈Θ

∣∣∣∣∣ 1n
n∑
i=1

Ddi

π̂d(Xi)
L (Yi − β)− E

[
Ddi

π∗d(Xi)
L (Yi − β)

]∣∣∣∣∣ p−→ 0.

then β̂d
p−→ β∗d . We start to verify above condition. Using the triangular inequality, we have

sup
β∈Θ

∣∣∣∣∣ 1n
n∑
i=1

Ddi

π̂d(Xi)
L (Yi − β)− E

[
Ddi

π∗d(Xi)
L (Yi − β)

]∣∣∣∣∣
≤ sup
β∈Θ

∣∣∣∣∣ 1n
n∑
i=1

Ddi

π̂d(Xi)π∗d(Xi)
{π̂d(Xi)− π∗d(Xi)}L (Yi − β)

∣∣∣∣∣ (A.1)

+ sup
β∈Θ

∣∣∣∣∣ 1N
N∑
i=1

Ddi

π∗d(Xi)
L (Yi − β)− E

[
Ddi

π∗d(Xi)
L (Y − β)

]∣∣∣∣∣ . (A.2)

We first show (A.1) is of oP (1). By Theorem 1, Cauchy-Scharwz’ inequality, and Assump-
tions 5 and 8, we have

|(A.1)| ≤Op(1) ·

{
1

n

n∑
i=1

{π̂d(Xi)− π∗d(Xi)}2
}1/2

· sup
β∈Θ

{
1

n

n∑
i=1

L (Yi − β)2
}1/2

≤oP (1) ·

{
sup
β∈Θ

E
[
L (Y − β)2

]
+ oP (1)

}1/2

= oP (1),

where the first inequality holds because π̂d(x) is uniformly bounded away from 0 and 1 with

probability approaching to 1 since π̂d(x)
p−→ π∗d(x) uniformly in x ∈ X and 0 < c ≤ π∗d(x) by

Assumption 5. To show (A.2) is of oP (1), by [91, Lemma 2.4], it is sufficient to verify the
following conditions holds true:

1. Θ is compact;

2. L′(Yi − β) is continuous in β with probability one;

3. E
[
supβ∈Θ |L(Y − β)|

]
<∞;

which are imposed in Assumptions 4 and 8. Hence, β̂d
P−→ β∗d holds.

Next, we establish the asymptotic normality for
√
n{β̂d − β∗d}. Since the loss

function L(·) may not be smooth (e.g. L(v) = v{τ − 1(v ≤ 0)} in quantile regression),
the Delta method for deriving the large sample property is not applicable in our case. To
circumvent this problem, we apply the nearness of arg mins argument. Define

Gd,n(β, π̂d) :=
1

n

n∑
i=1

Ddi

π̂d(Xi)
L(Yi − β). (A.3)
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By definition

β̂d = argmin
β∈Θ

Gd,n(β, π̂d) = argmin
β∈Θ

1

n

n∑
i=1

Ddi

π̂d(Xi)
L(Yi − β), (A.4)

then

β̂d =argmin
β∈Θ

n {Gd,n(β, π̂d)−Gd,n(β
∗
d , π̂d)} = argmin

β∈Θ

n∑
i=1

Ddi

π̂d(Xi)
{L(Yi − β)− L(Yi − β∗

d)}

=argmin
β∈Θ

n∑
i=1

Ddi

π̂d(Xi)
[−L′(Yi − β∗

d)(β − β∗
d) + {L(Yi − β)− L(Yi − β∗

d) + L′(Yi − β∗
d)(β − β∗

d)}] .

By using change of variables and defining the following functions:

ûd :=
√
n(β̂d − β∗d), u :=

√
n(β − β∗d),

Rd(Yi, u) := L
(
Yi −

{
β∗d +

u√
n

})
− L(Yi − β∗d) + L′(Yi − β∗d) ·

u√
n
,

Qd,n(u, π̂d) :=

n∑
i=1

Ddi

π̂d(Xi)

[
−L′(Yi − β∗d) ·

u√
n
+Rd(Yi, u)

]
.

Then we get

ûd = argmin
u
Qd,n(u, π̂d).

Next, we define the following quadratic function

Q̃d,n(u) :=
u√
n

n∑
i=1

[
− Ddi

π∗
d(Xi)

L′(Yi − β∗
d) +

(
Ddi

π∗
d(Xi)

− 1

)
Ed(Xi, β

∗
d)

]
− ∂βE[L′(Y ∗

i (d)− β∗
d)] ·

u2

2
,

which does not depend on π̂d, and its minimizer is defined by

ũd := argmin
u
Q̃d,n(u, π̂d).

Since Q̃d,n(u) strictly convex and ∂βE[L′(Y ∗
i (d)− β∗d)] > 0, then the minimizer ũd is equal

to

ũd =
1√
n

n∑
i=1

Sd(Yi, Ddi,Xi;β
∗
d),

where

Sd(Yi, Ddi,Xi;β
∗
d) := H−1

d ·
[

Ddi

π∗d(Xi)
L′(Yi − β∗d)−

(
Ddi

π∗d(Xi)
− 1

)
Ed(Xi, β

∗
d)

]
is the influence function of β∗d and Hd := −∂βE[L′(Y ∗

i (d)− β∗d)].
We complete the proof via the following steps:
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• Step I: showing Q̃d,n(u)−Qd,n(u, π̂d) = op(1) for every fixed u;

• Step II: showing |ûd − ũd| = oP (1);

• Step III: obtaining the desired result√
n{β̂d − β∗d} = ũd + {ûd − ũd} = n−1/2

∑n
i=1 Sd(Yi, Ddi,Xi;β

∗
d) + oP (1).

We begin to establish Step I by showing that Q̃d,n(u) is a quadratic approximation to the
objective function Qd,n(u, π̂d). We write the absolute value of the difference as follows:∣∣∣Q̃d,n(u)−Qd,n(u, π̂d)∣∣∣

=

∣∣∣∣ u√n
n∑
i=1

[
Ddi

π̂d(Xi)
L′(Yi − β∗d)−

Ddi

π∗d(Xi)
L′(Yi − β∗d) +

(
Ddi

π∗d(Xi)
− 1

)
Ed(Xi, β

∗
d)

]

−
n∑
i=1

Ddi

π̂d(Xi)
Rd(Yi, u) + ∂βE[L′(Y ∗

i (d)− β∗d)] ·
u2

2

∣∣∣∣
≤ |ξ1,n(u, π̂d)|+ |ξ2,n(u, π̂d)| ,

where

ξ1,n(u, π̂d) :=
u√
n

n∑
i=1

[
Ddi

π̂d(Xi)
L′(Yi − β∗

d)−
Ddi

π∗
d(Xi)

L′(Yi − β∗
d) +

(
Ddi

π∗
d(Xi)

− 1

)
Ed(Xi, β

∗
d)

]
,

ξ2,n(u, π̂d) :=

n∑
i=1

Ddi

π̂d(Xi)
Rd(Yi, u)− ∂βE[L′(Y ∗

i (d)− β∗
d)] ·

u2

2
.

Then Step I holds if we prove that for every u,

ξ1,n(u, π̂d) = oP (1), (A.5)

ξ2,n(u, π̂d) = oP (1). (A.6)

We begin to establish (A.5). By Taylor’s expansion, we have

ξ1,n(u, π̂d) =−
u√
n

n∑
i=1

Ddi

{π∗
d(Xi)}2

L′ (Yi − β∗
d) {π̂d(Xi)− π∗

d(Xi)}

+
u√
n

n∑
i=1

Ddi

{π̃d(Xi)}3
L′ (Yi − β∗

d) {π̂d(Xi)− π∗
d(Xi)}2

+
u√
n

n∑
i=1

(
Ddi

π∗
d(Xi)

− 1

)
Ed(Xi, β

∗
d)

=− u · µn

(
Ddi

{π∗
d(Xi)}2

L′ (Yi − β∗
d) {π̂d(Xi)− π∗

d(Xi)}
)

(A.7)

+
u√
n

n∑
i=1

Ddi

{π̃d(Xi)}3
L′ (Yi − β∗

d) {π̂d(Xi)− π∗
d(Xi)}2 (A.8)

+
u√
n

n∑
i=1

(
Ddi

π∗
d(Xi)

− 1

)
Ed(Xi, β

∗
d)− u ·

√
n · E

[
Ed(Xi, β

∗
d)

π∗
d(Xi)

{π̂d(Xi)− π∗
d(Xi)}

]
(A.9)
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where π̃d(Xi) is between π̂d(Xi) is π
∗
d(Xi). For (A.7), similar to the proof of Lemma 1 in

the online Supplementay Materials [33] and using Assumption 5 (ii), we have that (A.7) is
of oP (1).

For (A.8), by Theorem 1, we have

|(A.8)| =

∣∣∣∣∣ u√n
n∑
i=1

Ddi

{π̃d(Xi)}3
L′ (Yi − β) {π̂d(Xi)− π∗d(Xi)}2

∣∣∣∣∣
≤OP (

√
n) · u

n

n∑
i=1

|L′(Yi − β∗d)| · {π̂d(Xi)− π∗d(Xi)}2

=OP (
√
n) · u · E

[
|L′(Yi − β∗d)| · {π̂d(Xi)− π∗d(Xi)}2

]
· {1 + oP (1)}

≤OP (
√
n) · u · sup

x∈X
E[|L′(Y − β∗d)||X = x] · E

[
{π̂d(Xi)− π∗d(Xi)}2

]
· {1 + oP (1)}

=OP (
√
n) · u ·O(1) · oP (n−1/2) ·OP (1) = oP (1).

For the term (A.9), we have

(A.9) =
u√
n

n∑
i=1

(
Ddi

π∗
d(Xi)

− 1

)
Ed(Xi, β

∗
d)− u ·

√
n · E

[
Ed(Xi, β

∗
d)

π∗
d(Xi)

{L (ĝd(Xi))− L (g∗d(Xi))}
]

=
u√
n

n∑
i=1

(
Ddi

π∗
d(Xi)

− 1

)
Ed(Xi, β

∗
d)− u ·

√
n · E

[
Ed(Xi, β

∗
d)

π∗
d(Xi)

L′ (g∗d(Xi)) {ĝd(Xi)− g∗d(Xi)}
]

(A.10)

− u

2
·
√
n · E

[
Ed(Xi, β

∗
d)

π∗
d(Xi)

L′′ (g̃d(Xi)) {ĝd(Xi)− g∗d(Xi)}2
]
, (A.11)

where g̃d is between ĝd and g∗d. We have that (A.10) is of oP (1) by Lemma 2 in the online
Supplementay Materials [33] and the fact L′ (g∗d(Xi)) = L (g∗d(Xi)) (1 − L (g∗d(Xi))) =
π∗d(Xi)(1− π∗d(Xi)). For the term (A.11), we have

|(A.11)| ≤ |u|
2

·
√
n · E

[
Ed(Xi, β

∗
d)

π∗
d(Xi)

L (g̃d(Xi)) (1− L (g̃d(Xi))) · |1− 2L (g̃d(Xi)) | · {ĝd(Xi)− g∗d(Xi)}2
]

≤|u| ·O(1) ·
√
n · E[{ĝd(Xi)− g∗d(Xi)}2] = oP (1),

where the second inequality holds by Assumption 5 and the last equality holds by Lemma S.2
in the online Supplementay Materials [33]. Combining the results for (A.10) and (A.11), we
obtain that (A.9) is of oP (1). Combining the results for (A.7), (A.8), and (A.9), we obtain
(A.5).
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Next, we prove (A.6). Note that

|ξ2,n(u, π̂d)| =

∣∣∣∣∣
n∑
i=1

Ddi

π̂d(Xi)
Rd(Yi, u)− ∂βE[L′(Y ∗

i (d)− β∗d)] ·
u2

2

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

DdiRd(Yi, u)
π̂d(Xi)− π∗d(Xi)

π̂d(Xi)π∗d(Xi)

∣∣∣∣∣ (A.12)

+

∣∣∣∣∣
n∑
i=1

Ddi

π∗d(Xi)
Rd(Yi, u)− n · E

[
Ddi

π∗d(Xi)
Rd(Yi, u)

]∣∣∣∣∣ (A.13)

+

∣∣∣∣n · E [ Ddi

π∗d(Xi)
Rd(Yi, u)

]
− ∂βE[L′(Y ∗

i (d)− β∗d)] ·
u2

2

∣∣∣∣ . (A.14)

For (A.12), we have∣∣∣∣∣
n∑
i=1

DdiRd(Yi, u)
π̂d(Xi)− π∗d(Xi)

π̂d(Xi)π∗d(Xi)

∣∣∣∣∣
≤n ·

√√√√ 1

n

n∑
i=1

∣∣∣∣ DdiRd(Yi, u)

π̂d(Xi)π∗d(Xi)

∣∣∣∣2 ·
√√√√ 1

n

n∑
i=1

∣∣π̂d(Xi)− π∗d(Xi)
∣∣2

=n ·

√
E
[
DdiRd(Yi, u)2

π∗d(Xi)4

]
·
√

E
[∣∣π̂d(Xi)− π∗d(Xi)

∣∣2] · {1 + oP (1)}

≤n ·O(1) ·
√

E [Rd(Y
∗
i (d), u)

2] ·
√

E
[∣∣π̂d(Xi)− π∗d(Xi)

∣∣2] · {1 + oP (1)}

=n ·O(1) ·O

(
|u|3/2

n3/4

)
· oP (n−1/4) · {1 + oP (1)} = |u|3/2 · oP (1),

where the second inequality holds by assumption that π∗d(x) is uniformly bounded away from
zero, the second equality holds because of Lemma 2 in the online Supplementay Materials
[33], the first and second moments Rd(Y

∗
i (d), u) given by

E [Rd(Y
∗
i (d), u)] =E

[
L
(
Y ∗(d)−

{
β∗
d +

u√
n

})]
− E [L(Y ∗(d)− β∗

d)] + E[L′(Y ∗(d)− β∗
d)] ·

u√
n

=
u2

2n
· ∂βE

[
L′
(
Y ∗(d)−

{
β∗
d +

u∗√
n

})]
where u∗ is between 0 and u, and

E
[
Rd(Y

∗
i (d), u)

2
]

=E

[{
L
(
Y ∗
i (d)−

{
β∗d +

u√
n

})
− L(Y ∗

i (d)− β∗d) + L′(Y ∗
i (d)− β∗d) ·

u√
n

}2
]

=E

[{
−L′

(
Y ∗
i (d)−

{
β∗d +

ũ√
n

})
· u√

n
+ L′(Y ∗

i (d)− β∗d) ·
u√
n

}2
]

≤const× |u|√
n

u2

n
≤ const× |u|

3

n3/2
,
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where u is between 0 and u, and the first inequality holds by Assumption 8 (i).
For (A.13), by computing its second moment and using Chebyshev’s inequality,

we have

(A.13) = OP

(
√
n ·O

(
|u|3/2

n3/4

))
= OP (n

−1/4 · |u|3/2) = oP (|u|3/2).

For (A.14), we have

(A.14) =

∣∣∣∣n · E [ Ddi

π∗d(Xi)
Rd(Yi, u)

]
− ∂βE[L′(Y ∗

i (d)− β∗d)] ·
u2

2

∣∣∣∣
=

∣∣∣∣n · E [Rd(Y
∗
i (d), u)]− ∂βE[L′(Y ∗

i (d)− β∗d)] ·
u2

2

∣∣∣∣
=

∣∣∣∣u22 · ∂βE
[
L′
(
Y ∗(d)−

{
β∗d +

u∗√
n

})]
− ∂βE[L′(Y ∗

i (d)− β∗d)] ·
u2

2

∣∣∣∣
=o(u2).

Therefore, we obtain (A.6). So for fixed u,

Q̃d,n(u)−Qd,n(u, π̂d) = oP (1). (A.15)

To establish Step II, with (A.15), by using the same argument of proving Lemma
A.5 in the supplemental material of [47], we can obtain |ûd − ũd| = oP (1). Finally, we can
conclude our desired result in Step III:

√
n{β̂d − β∗d} = ũ+ {û− ũ} = 1√

n

n∑
i=1

Sd(Yi, Ddi,Xi;β
∗
d) + oP (1).

A.3 Proof of Equation (3.12) for Variance Estimation

Using the tower property of conditional expectation, we rewrite Hd as:

Hd =− ∂βE
[

Ddi

π∗d(Xi)
· E
[
L′(Yi − β)|Ddi,Xi

]] ∣∣∣∣∣
β=β∗

d

=− E
[

Ddi

π∗d(Xi)
· ∂βE

[
L′(Yi − β)|Ddi,Xi

] ∣∣∣
β=β∗

d

]
.
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Applying Leibniz integration rule, we obtain

∂βE
[
L′(Yi − β)|Di = d,Xi = x

] ∣∣∣
β=β∗

d

=∂β

[∫
R
L′(y − β)fY |D,X(y|d, x)dy

] ∣∣∣∣∣
β=β∗

d

=∂β

[∫
R
L′(z)fY |D,X(z + β|d, x)dz

] ∣∣∣
β=β∗

d

(use z = y − β))

=

∫
R
L′(z) · ∂

∂y
fY |D,X(z + β∗d |d, x)dz

=

∫
R
L′(y − β∗d) ·

∂

∂y
fY |D,X(y|d, x)dy

=

∫
R
L′(y − β∗d) ·

∂
∂yfY |D,X(y|d, x)
fY |D,X(y|d, x)

fY |D,X(y|d, x)dy

=

∫
R
L′(y − β∗d) ·

∂
∂yfY,X|D(y, x|d)
fY,X|D(y, x|d)

fY |D,X(y|d, x)dy

=E

[
L′(Y − β∗d)

∂
∂yfY,X|D(Yi,Xi|d)
fY,X|D(Yi, Xi,n|d)

∣∣∣∣Di = d,Xi = x

]
,

and consequently

Hd = −E
[

Ddi

π∗d(Xi)
L′(Yi − β∗d)

∂

∂y
log fY,X|D(Yi,Xi|d)

]
.
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