
UC Berkeley
UC Berkeley Previously Published Works

Title
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses

Permalink
https://escholarship.org/uc/item/62b696v9

Journal
Neural Computation, 33(6)

ISSN
0899-7667

Authors
Frye, Charles G
Simon, James
Wadia, Neha S
et al.

Publication Date
2021-05-13

DOI
10.1162/neco_a_01388
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62b696v9
https://escholarship.org/uc/item/62b696v9#author
https://escholarship.org
http://www.cdlib.org/


Critical Point-Finding Methods Reveal Gradient-Flat Regions of 
Deep Network Losses

Charles G. Frye,
Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University 
of California, Berkeley, CA 94720, U.S.A.

James Simon,
Redwood Center for Theoretical Neuroscience and Department of Physics, University of 
California, Berkeley, CA 94720, U.S.A.

Neha S. Wadia,
Redwood Center for Theoretical Neuroscience and Biophysics Graduate Group, University of 
California, Berkeley, CA 94720, U.S.A.

Andrew Ligeralde,
Redwood Center for Theoretical Neuroscience and Biophysics Graduate Group, University of 
California, Berkeley, CA 94720, U.S.A.

Michael R. DeWeese,
Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, Department of 
Physics, and Biophysics Graduate Group, University of California, Berkeley, CA 94720, U.S.A.

Kristofer E. Bouchard
Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University 
of California, Berkeley, CA 94720, USA; and Biological Systems and Engineering Division and 
Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, U.S.A.

Abstract

Despite the fact that the loss functions of deep neural networks are highly nonconvex, gradient-

based optimization algorithms converge to approximately the same performance from many 

random initial points. One thread of work has focused on explaining this phenomenon by 

numerically characterizing the local curvature near critical points of the loss function, where 

the gradients are near zero. Such studies have reported that neural network losses enjoy a no-bad-

local-minima property, in disagreement with more recent theoretical results. We report here that 

the methods used to find these putative critical points suffer from a bad local minima problem of 

their own: they often converge to or pass through regions where the gradient norm has a stationary 

point. We call these gradient-flat regions, since they arise when the gradient is approximately 

in the kernel of the Hessian, such that the loss is locally approximately linear, or flat, in the 

direction of the gradient. We describe how the presence of these regions necessitates care in 

cfrye59@gmail.com .
M.D. and K.B. contributed equally to the work.

HHS Public Access
Author manuscript
Neural Comput. Author manuscript; available in PMC 2022 March 14.

Published in final edited form as:
Neural Comput. 2021 May 13; 33(6): 1469–1497. doi:10.1162/neco_a_01388.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both interpreting past results that claimed to find critical points of neural network losses and in 

designing second-order methods for optimizing neural networks.

1 Introduction

Large neural networks are surprisingly easy to optimize (Sun, 2019), despite the substantial 

nonconvexity of the loss as a function of the parameters (Goodfellow & Vinyals, 2014). 

In particular, it is usually found that changing the random initialization has no effect on 

performance, even though it can change the model learned by gradient-based optimization 

methods (Garipov, Izmailov, Podoprikhin, Vetrov, & Wilson, 2018). Understanding the 

cause of trainability from random initial conditions is critical for the development of new 

architectures and optimization methods, which must otherwise just hope to retain this 

favorable property based on heuristics.

One possible explanation for this phenomenon is based on the stationary points of gradient-

based optimization methods. These methods are stationary when the gradient of the loss 

function is 0, at the critical points of the loss. Critical points are classified by their Morse 

index, or the degree of local negative curvature (i.e., the relative number of dimensions in 

parameter space along which the curvature is negative). Since, among all critical points, 

gradient descent methods only converge to those points with index 0 (Lee, Simchowitz, 

Jordan, & Recht, 2016), which includes local minima, it has been argued that large neural 

networks are easy to train because their loss functions for many problems only have local 

minima at values of the loss close to or at the global optimum. This is known as the 

“no-bad-local-minima” property. Previous work (Dauphin et al., 2014; Pennington & Bahri, 

2017) has reported numerical evidence for a convex relationship between index and loss 

that supports the hypothesis that neural network loss functions have the no-bad-local-minima 

property: for low values of the loss, only low values of the index were observed, whereas for 

high values of the loss, only high values of the index were observed. However, more recent 

theoretical work has indicated that there are in fact bad local minima on neural network 

losses in almost all cases (Ding, Li, & Sun, 2019).

The validity of the numerical results depends on the validity of the critical point-finding 

algorithms, and the second-order critical point-finding algorithms used in Dauphin et al. 

(2014) and Pennington and Bahri (2017) are not in fact guaranteed to find critical points in 

the case where the Hessian is singular. In this case, the second-order information used by 

these critical point-finding methods becomes unreliable.

Neural network loss Hessians are typically highly singular (Sagun, Evci, Guney, Dauphin, 

& Bottou, 2017), and poor behavior of Newton-type critical point-finding methods has 

been reported in the neural network case (Coetzee & Stonick, 1997), casting doubt on the 

completeness and accuracy of the results in Dauphin et al. (2014) and Pennington and Bahri 

(2017). Frye, Wadia, DeWeese, and Bouchard (2019) verified that second-order methods can 

in fact find high-quality approximate critical points for linear neural networks, for which the 

analytical form of the critical points is known (Baldi & Hornik, 1989), providing ground 

truth. In particular, the two-phase convergence pattern predicted by the classical analysis 

of Newton methods (Nocedal & Wright, 2006) is evident: a linear phase followed a short, 

Frye et al. Page 2

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



local superlinear phase (see Figure 1A). The superlinear convergence is visible in the “cliffs” 

in the blue traces in Figure 1A, where the convergence rate suddenly improves. With a 

sufficiently strict cutoff on the gradient norms, the correct loss-index relationship obtained 

analytically (see Figure 1B, gray points) is shared by the points obtained numerically (see 

Figure 1B, light blue points). With an insufficiently strict cutoff, the loss-index relationship 

implied by the observed points is far from the truth (see Figure 1B, dark red points)

Unfortunately, good performance on linear networks does not guarantee good performance 

on nonlinear networks. When applied to a nonlinear network, even with the same data, the 

behavior of these Newton methods changes dramatically for the worse (see Figure 1C). No 

runs exhibit superlinear convergence, and the gradient norms at termination are many orders 

of magnitude larger. These are not the signatures of a method converging to a critical point, 

even though gradient norms are sometimes still under the thresholds reported in Pennington 

and Bahri (2017) and Frye et al. (2019) (no threshold reported in Dauphin et al. (2014)). 

This makes it difficult to determine whether the putative loss-index relationship measured 

from these critical points (see Figure 1D) accurately reflects the loss-index relationship at 

the true critical points of the loss function.

In this article, we identify a major cause of this failure for second-order critical point-

finding methods: gradient-flat regions, where the gradient is approximately in the kernel 

of the Hessian. In these regions, the loss function is locally approximately linear along the 

direction of the gradient, whether or not the gradient is itself small, as would be the case 

near a true critical point. After introducing critical point finding methods in section 2.1, we 

define gradient flatness in section 2.2 and explain in section 2.3, with a low-dimensional 

example, why it is problematic for second-order methods: gradient-flat points can be “bad 

local minima” for the problem of finding critical points. We further define a numerical index 

of approximate gradient flatness, r, based on the size of the residual of the least-squares 

Newton solution. We then provide evidence that gradient-flat regions are encountered when 

applying the Newton-MR algorithm1 to a deep neural network loss (see sections 3 and 

A.5). Furthermore, we show that though gradient-flat regions need not contain actual critical 

points, the loss-index relationship looks strikingly similar to that reported in Dauphin et al. 

(2014) and Pennington and Bahri (2017), suggesting that these previous studies may have 

found gradient-flat regions, not critical points. Finally, we note the implications of gradient-

flatness for the design of second-order methods for use in optimizing neural networks: in 

the presence of gradient-flatness, approximate second-order methods, like K-FAC (Martens 

& Grosse, 2015) and Adam (Kingma & Ba, 2014) may be preferable to exact second-order 

methods even without taking computational cost into account.

2 Gradient-Flat Points Are Stationary Points for Second-Order Methods

In this section, we first define critical points and second-order critical point-finding methods 

for the benefit of readers less familiar with these concepts. Then we introduce and define 

gradient-flat points and explain why they are problematic for second-order critical point-

finding methods, with the help of a low-dimensional example to build intuition. In numerical 

1The code used in our experiments is available at https://github.com/charlesfrye/autocrit.

Frye et al. Page 3

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/charlesfrye/autocrit


settings and in high dimensions, approximately gradient-flat points are also important, and 

so we define a quantitative index of gradient-flatness based on the residual norm of the 

Newton update. Connected sets of these numerically gradient-flat points are gradient-flat 

regions, which cause trouble for second-order critical point-finding methods.

2.1 Second-Order Critical Point-Finding Methods Rely on the Hessian Matrix.

Critical points are of interest because they are points where the first-order approximation of 

a function f at a point2x + δ based on the local information at x,

f(x + δ) ≈ f(x) + ∇f(x)Tδ, (2.1)

is constant, indicating that they are the stationary points of first-order optimization 

algorithms like gradient descent and its accelerated variants. By “stationary point,” we mean 

a point at which the proposed updates of an iterative algorithm are zero.

In searching for critical points, it is common to use a linear approximation to the behavior of 

the gradient at a point x + p given the local information at a point x:

∇f(x + p) ≈ ∇f(x) + ∇2f(x)p . (2.2)

Because these methods rely on a quadratic approximation of the original function f, 
represented by the Hessian matrix of second partial derivatives, we call them second-order 
critical point-finding methods.

The approximation on the right-hand side is constant whenever p is an element of ker ∇2 

f(x), where ker M is notation for the kernel of a matrix M—the subspace that M maps to 0. 

When ∇2 f(x) is nonsingular, this is only satisfied when p is 0, so if we can define an update 

rule such that p = 0 iff ∇ f(x) = 0, then, for nonsingular Hessians, we can be sure that our 

method is stationary only at critical points.

In a Newton-type method, we achieve this by selecting our step by solving for the zeroes of 

this linear approximation, that is, the Newton system,

0 = ∇f(x) + ∇2f(x)p,

which has solution

p = − ∇2f(x)+∇f(x),

where the matrix M+ is the Moore-Penrose pseudoinverse of the matrix M, obtained by 

performing the singular value decomposition, inverting the nonzero singular values, and 

recomposing the SVD matrices in reverse order. The Newton update p is zero iff ∇ f(x) is 0 

2Note that for a neural network loss function, the variable we take the gradient with respect to, here x, is the vector of parameters, θ, 
not the data, which is often denoted with an x.

Frye et al. Page 4

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a nonsingular Hessian, for which the pseudoinverse is simply the inverse. For a singular 

Hessian, the update p is zero iff ∇ f(x) is in the kernel of the pseudoinverse. Note that if 

the Hessian is constant as a function of x, the linear model of the gradient is exact and this 

algorithm converges in a single step.

Within the vicinity of a critical point, this algorithm converges extremely quickly (Nocedal 

& Wright, 2006), but the guarantee of convergence is strictly local. Practical Newton 

methods in both convex optimization (Boyd & Vandenberghe, 2004) and nonlinear equation 

solving (Nocedal & Wright, 2006; Izmailov & Solodov, 2014) often compare multiple 

possible choices of p and select the best one according to a “merit function” applied to the 

gradients, which has a global minimum for each critical point. Such algorithms have broader 

guarantees of global convergence. A common choice for merit function is the squared norm,

g(x) = 1
2‖∇f(x)‖2 .

In gradient norm minimization (McIver & Komornicki, 1972), another second-order critical 

point-finding method, we optimize this merit function directly. The gradients of this method 

are

∇g(x) = ∇2f(x)∇f(x),

and so it is also a second-order critical point-finding method.

As with Newton methods, in the invertible case, the updates are zero iff ∇ f(x) is 0. In the 

singular case, the updates are zero if the gradient is in the Hessian’s kernel. Because this 

method is framed as the minimization of a scalar function, it is compatible with first-order 

optimization methods, which are more commonly implemented and better supported in 

neural network libraries.

2.2 At Gradient-Flat Points, the Gradient Lies in the Hessian’s Kernel.

Second-order critical point-finding methods, by the preceding argument, can guarantee 

convergence to critical points when the Hessian is nowhere singular. However, neural 

network Hessians are generally singular, especially in the overparameterized case (Sagun 

et al., 2017; Ghorbani, Krishnan, & Xiao, 2019), meaning the kernel is nontrivial, and 

so neither class of methods can guarantee convergence to critical points. In this case, 

Newton’s method can diverge, oscillate, or behave chaotically (Griewank & Osborne, 1983). 

The addition of merit function–based upgrades can remove these behaviors, but it cannot 

guarantee convergence to critical points (Powell, 1970; Griewank & Osborne, 1983). The 

gradient norm minimization method, reinvented for use on neural network loss functions in 

Pennington and Bahri (2017), was previously proposed and this flaw pointed out twice in 

the field of chemical physics: once in the 1970s—proposed (McIver & Komornicki, 1972) 

and critiqued (Cerjan & Miller, 1981) and again in the 2000s—proposed simultaneously 

(Angelani, Leonardo, Ruocco, Scala, & Sciortino, 2000; Broderix, Bhattacharya, Cavagna, 

Zippelius, & Giardina, 2000) and critiqued (Doye & Wales, 2002).

Frye et al. Page 5

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



What are the stationary points, besides critical points, for these two method classes in the 

case of singular Hessians? It would seem at first that they are different: for gradient norm 

minimization, when the gradient is in the Hessian’s kernel; for Newton-type methods, when 

the gradient is in the Hessian’s pseudoinverse’s kernel. In fact, however, these conditions 

are identical due to the Hessian’s symmetry,3 and so both algorithms share a broad class of 

stationary points.

These stationary points have been identified previously, but nomenclature is not standard. 

Doye and Wales, studying gradient norm minimization, call them nonstationary points 
(Doye & Wales, 2002), since they are nonstationary with respect to the function f, while 

Byrd et al., studying Newton methods, call them stationary points (Byrd, Marazzi, & 

Nocedal, 2004), since they are stationary with respect to the merit function g. To avoid 

confusion between these incommensurate conventions or with the stationary points of the 

function f, we call a point where the gradient lies in the kernel of the Hessian a gradient-flat 
point. This name was chosen because a function is flat when its Hessian is 0, meaning 

every direction is in the kernel, and so it is locally flat around a point in a given direction 

whenever that direction is in the kernel of the Hessian at that point. Note that because 0 ∈ 
ker for all matrices, every critical point is also a gradient-flat point, but the reverse is not 

true. When we wish to explicitly refer to gradient-flat points that are not critical points, we 

will call them strict gradient-flat points. At a strict gradient-flat point, the function is, along 

the direction of the gradient, locally linear up to second order.

An alternative view of gradient-flat points is based on the squared gradient norm merit 

function. All gradient-flat points are stationary points of the gradient norm, which may in 

principle be local minima, maxima, or saddles, while the global minima of the gradient 

norm are critical points. When they are local minima of the gradient norm, they can be 

targets of convergence for methods that use first-order approximations of the gradient map, 

as in gradient norm minimization and Newton-type methods. Strict gradient-flat points, then, 

can be “bad local minima” of the gradient norm, and therefore prevent the convergence of 

second-order root-finding methods to critical points, just as bad local minima of the loss 

function can prevent convergence of first-order optimization methods to global optima.

Note that Newton methods cannot be demonstrated to converge only to gradient-flat points 

(Powell, 1970). Furthermore, Newton convergence can be substantially slowed when even a 

small fraction of the gradient is in the kernel (Griewank & Osborne, 1983). Below we will 

see that while a Newton method applied to a neural network loss sometimes converges to 

and almost always encounters strict gradient-flat points, the final iterate is not always either 

a strict gradient-flat point or a critical point.

2.3 Convergence to Gradient-Flat Points Occurs in a Low-Dimensional Quartic Example.

The difficulties that gradient-flat points pose for Newton methods can be demonstrated with 

a polynomial example in two dimensions, plotted in Figure 2A. Below, we will characterize 

the strict gradient-flat (orange) and critical (blue) points of this function (see Figure 2A). 

3Indeed, the kernel of the pseudoinverse is equal to the kernel of transpose, as can be seen from the singular value decomposition, and 
the Hessian is equal to its transpose because it is symmetric. See Strang (1993).

Frye et al. Page 6

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then we will observe the behavior of a practical Newton method applied to it (see Figures 

2B and 2C) and note similarities to the results in Figure 1. We will use this simple, 

low-dimensional example to demonstrate principles useful for understanding the results of 

applying second-order critical point-finding methods to more complex, higher-dimensional 

neural network losses.

As our model function, we choose

f(x, y) = 0.25x4 − 3x2 + 9x + 0.9y4 + 5y2 + 40 . (2.3)

It is plotted in Figure 2A, central panel. This quartic function has two affine subspaces of 

points with nontrivial Hessian kernel, defined by [± 2, y]. The kernel points along the x 
direction and so is orthogonal to this affine subspace at every point. As a function of y, f 
is convex, with one-dimensional minimizers at y = 0. The strict gradient-flat points occur at 

the intersections of these two sets: one strict gradient-flat point at [ 2, 0], which is a local 

minimum of the gradient norm, and one at [− 2, 0], which is a saddle of the same (see 

Figure 2A, orange points, all panels). In the vicinity of these points, the gradient is, to first 

order, constant along the x-axis, and so the function is locally linear or flat. These points 

are gradient-flat, but neither is a critical point of f. The only critical point is located at the 

minimum of the polynomial, at [−3, 0] (see Figure 2A, blue point, all panels), which is also 

a global minimum of the gradient norm. The affine subspace that passes through [− 2, 0] 

divides the space into two basins of attraction, loosely defined, for second-order methods: 

one with initial x-coordinate x0 < − 2, for the critical point of f and the other for the strict 

gradient-flat point. Note that the vector field in the central panel shows update directions for 

the pure Newton method, which can behave extremely poorly in the vicinity of singularities 

(Powell, 1970; Griewank & Osborne, 1983), often oscillating and converging very slowly or 

diverging.

Practical Newton methods use techniques like damping and line search to improve behavior 

(Izmailov & Solodov, 2014). To determine how a practical Newton method behaves on 

this function, we focus on the case of Newton-MR (Roosta, Liu, Xu, & Mahoney, 2018), 

which uses the MR-QLP (Choi, Paige, & Saunders, 2011) solver4 to compute the Newton 

update and backtracking line search with the squared gradient norm merit function to select 

the step size. Pseudocode for this algorithm is provided in section A.3. This method was 

found to perform better than a damped Newton method and gradient norm minimization 

on finding the critical points of a linear autoencoder in Frye et al. (2019). These numerical 

and computational advantages of Newton-MR do not change the attraction of the method to 

gradient-flat points.5 Results are qualitatively similar for damped Newton methods with a 

squared gradient norm merit function.

4MR-QLP, short for MINRES-QLP, is a Krylov subspace method akin to conjugate gradient but specialized to the symmetric, 
indefinite, and ill-conditioned case, which makes it well suited to this problem and to neural network losses.
5Assumption 4 of the convergence proof for Newton-MR in Roosta et al. (2018), the gradient-hessian nullspace property, is effectively 
a statement that the function has no gradient-flat points. Precisely: their constant ν tends to the boundary value of 0 as the function 
approaches gradient-flatness; this causes the convergence time to increase without bound.

Frye et al. Page 7

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The results of applying Newton-MR to equation 2.3 are shown in Figure 2B. The gradient-

flat point is attracting for some trajectories (orange), while the critical point is attracting for 

others (blue). For trajectories that approach the strict gradient-flat point, the gradient norm 

does not converge to 0 but converges to a nonzero value near 10 (orange trajectories; see 

Figure 2B, bottom panel). This value is typically several orders of magnitude lower than the 

initial point, and so would appear to be close to 0 on a linear scale that includes the gradient 

norm of the initial point. Since log-scaling of loss functions is uncommon in machine 

learning, as losses do not always have minima at 0, second-order methods approaching 

gradient-flat points can appear to converge to critical points if typical methods for visually 

assessing convergence are used.

Two interesting and atypical behaviors are worth noting. First, the trajectories tend to 

oscillate in the vicinity of the gradient-flat point and converge more slowly (see Figure 2B, 

central panel, orange lines). Updates from points close to the affine subspace where the 

Hessian has a kernel, and so have an approximate kernel themselves, sometimes jump to 

points where the Hessian does not have an approximate kernel. This suggests that when 

converging toward a gradient-flat point, the degree of flatness will change iteration by 

iteration. Second, some trajectories begin in the nominal basin of attraction of the gradient-

flat point but converge to the critical point (see Figure 2B, central panel, blue points with 

x-coordinate > − 2). This is because the combination of backtracking line search and 

large proposed step sizes means that occasionally, very large steps can be taken, based on 

nonlocal features of the function. Indeed, backtracking line search is a limited form of global 

optimization, and the ability of line searches to change convergence behaviors predicted 

from local properties on nonconvex problems is known (Nocedal & Wright, 2006). Since 

the backtracking line search is based on the gradient norm, the basin of attraction for the 

true critical point, which has a lower gradient norm than the gradient-flat point, is much 

enlarged relative to that for the gradient-flat point. This suggests that Newton methods using 

the gradient norm merit function will be biased toward finding gradient-flat points that also 

have low gradient norm.

2.4 Approximate Gradient-Flat Points and Gradient-Flat Regions.

Analytical arguments focus on exactly gradient-flat points, where the Hessian has an exact 

kernel and the gradient is entirely within it. In numerical settings, it is almost certain no 

matrix will have an exact kernel due to finite precision. For the same reason, the computed 

gradient vector will generically not lie entirely within the exact or approximate kernel. 

However, numerical implementations of second-order methods will struggle even when 

there is no exact kernel or when the gradient is only partly in it, and so a numerical index of 

flatness is required. This is analogous to the requirement to specify a tolerance for the norm 

of the gradient when deciding whether to consider a point an approximate critical point or 

not.

Calculating an index of gradient-flatness would seem to require additional computation on 

top of the application of the critical point-finding algorithm. Instead, we quantify the degree 

of gradient-flatness of a point by means of the relative residual norm (r) and the relative 

co-kernel residual norm (rH) for the Newton update direction p, two quantities that are 

Frye et al. Page 8

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculated in the normal process of iteratively computing a Newton update using a minimum 

residual solver like MR-QLP (Paige & Strakos, 2002). The residual norm r is used to detect 

convergence on nonsingular systems, while the co-kernel residual norm rH is used to detect 

convergence on singular systems. In the absence of numerical issues, one or the other will be 

small once the solver terminates (Choi et al., 2011, sec 2.4). See section A.4 for definitions.

Both r and rH compare the magnitude of the Newton system residual Hp − g to the 

magnitude of g, where H and g are the current Hessian and gradient. When r is at its 

minimal value of 0, the residual is 0 and the Newton update is a perfect solution to the 

Newton system, Hp = g. If r is close to its maximal value of 1, then the residual is large 

relative to the gradient and p is a poor solution to the Newton system. If at the same time the 

value of rH is small, the gap between Hp and −g is almost entirely in the kernel of H, which 

can occur only when g is itself almost entirely in the kernel of H. Therefore, the combination 

of a high value of r and a low value of rH at a point indicates that the gradient is largely 

(but not necessarily entirely) in the kernel; we call such a point an approximate gradient-flat 
point.

There are multiple reasonable numerical indices of flatness besides the definition above. For 

example, the Hessian-gradient regularity condition in Roosta et al. (2018), which is used 

to prove convergence of Newton-MR, would suggest creating a basis for the approximate 

kernel of the Hessian and projecting the gradient onto it. Alternatively, one could compute 

the Rayleigh quotient of the gradient with respect to the Hessian. Our method has the 

advantage of being computed as part of the Newton-MR algorithm. It furthermore avoids 

diagonalizing the Hessian or the specification of an arbitrary eigenvalue cutoff and relies on 

numerically stable techniques (Choi et al., 2011). The Rayleigh quotient can be computed 

with only one Hessian-vector product, plus several vector-vector products, so it might be a 

superior choice for larger problems where computing a high-quality inexact Newton step is 

computationally infeasible.

We summarize the different classes of points under consideration in terms of the squared 

norm of the gradient at the point, ∥g∥2, and the residual norms r and rH in Table 1. We set 

εc to 1e-8, which is sufficient for approximate critical points to have the same loss and index 

as exact critical points for a linear neural network (Frye et al., 2019). We set the values of εr 

and εg to 0.1 and 5e-4, meaning that we consider a point approximately gradient-flat when 

the value of rH is below 5e-4 while the value of r is above 0.9. We emphasize that numerical 

issues for second-order critical point-finding methods can arise even when the degree of 

gradient-flatness is small.

Under this relaxed definition of gradient-flatness, there will be a neighborhood of 

approximate gradient-flat points around a strict, exact gradient-flat point for functions with 

Lipschitz-smooth gradients and Hessians. Furthermore, there might be connected sets of 

non-null Lebesgue measure that all satisfy the approximate gradient-flatness condition but 

none of which satisfy the exact gradient-flatness condition. We call both of these gradient-
flat regions.

Frye et al. Page 9

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 Gradient-Flat Regions Are Common on Deep Network Losses

To determine whether gradient-flat regions are responsible for the poor behavior of Newton 

methods on deep neural network (DNN) losses demonstrated in Figure 1, we applied 

Newton-MR to the loss of a small, two-hidden-layer, fully connected autoencoder trained on 

10k MNIST images downsized to 4 × 4, similar to the downsized data sets in Dauphin et 

al. (2014) and Pennington and Bahri (2017). We found similar results on a fully connected 

classifier trained on the same MNIST images via the cross-entropy loss (see section A.5) 

and another classifier trained on a very small subset of 50 randomly labeled MNIST images, 

as in (Zhang, Bengio, Hardt, Recht, & Vinyals, 2016, see section A.6). We focused on 

Newton-MR because we found that a damped Newton method like that in Dauphin et 

al. (2014) performed poorly, as reported for the XOR problem in Coetzee and Stonick 

(1997), and furthermore that there was insufficient detail to replicate (Dauphin et al., 2014) 

exactly. We denote the network losses by L and the parameters by θ. See section A.1 for 

details on the networks and data set and section A.2 for details on the critical point-finding 

experiments.

Gradient norms observed in these experiments appear in Figure 3A. We found that after 500 

iterations, 14% of runs terminated with squared gradient norm below the cutoff in Frye et 

al. (2019) and so found approximate critical points (blue). Twice as many runs terminated 

above that cutoff but terminated in a gradient-flat region (28%, orange), while the remainder 

were above the cutoff but were not in a gradient-flat region at the final iteration (black). 

As in the experiments on the nonlinear autoencoder applied to the multivariate gaussian 

data (see Figure 1C), all of the runs terminated with squared gradient norms over 10 orders 

of magnitude greater than the typical values observed after convergence in the linear case 

(<1e-30; see Figure 1A).

The relative residual norm for the Newton solution, r, is an index of gradient-flatness (see 

section 2.4 and appendix A.4 for details). The values of r for every iteration of Newton-MR 

are shown for three representative traces in Figure 3B. In the top trace, r is close to 

0, indicating that the iterates are not in a gradient-flat region (r ≪ 0.9, black). Newton 

methods can be substantially slowed when even a small fraction of the gradient is in the 

kernel (Griewank & Osborne, 1983) and can converge to points that are not gradient-flat 

(Byrd, Marazzi, & Nocedal, 2004). By contrast, in the middle trace (orange), the value of 

r approaches 1, indicating that almost the entirety of the gradient is in the kernel. This run 

terminated in a gradient-flat region, at effectively an exactly gradient-flat point.

Further, the squared gradient norm at 500 iterations, 2e-5, is multiple orders of magnitude 

higher than the cutoff necessary for approximate critical points to approximate the loss and 

index of exact critical points, 1e-8 (Frye et al., 2019). The norm at these points is, however, 

much smaller than the minimum observed during optimization of this loss (squared gradient 

norms between 1e-4 and 5e1), indicating the presence of noncritical gradient-flat regions 

with very low gradient norm. Critical point-finding methods that disqualify points on the 

basis of their norm but have too loose of a cutoff (e.g., those used in Dauphin et al., 2014; 

Pennington & Bahri, 2017) will both converge to and accept these points, even though they 

need not be near true critical points, as demonstrated in Frye et al. (2019). In the bottom 

Frye et al. Page 10

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trace (blue), the behavior of r is the same, while the gradient norm drops much lower, to 

3e-13, suggesting convergence to a gradient-flat region around a critical point that has an 

approximately singular Hessian.

Not all traces exhibit such simple behavior for the value of r. In many traces, the value 

of r oscillates from values close to 1 to middling values, indicating that the algorithm is 

bouncing in and out of one or more gradient-flat regions (see section A.5 for examples, on a 

classifier). This can occur when the final target of convergence given infinite iterations is a 

gradient-flat point, as in the example in section 2.3.

We found that 99 of 100 traces included a point where at least half of the gradient was in 

the kernel, according to our residual measure, while 89% of traces included a point that 

had a residual greater than 0.9, and 50% included a point with r > 0.99 (see Figure 3C, 

bottom). This demonstrates that there are many regions of substantive gradient-flatness, in 

which second-order critical point-finding methods could be substantively slowed.

The original purpose of applying these critical point-finding methods was to determine 

whether the no-bad-local-minima property held for this loss function and, more broadly, to 

characterize the relationship at the critical points between the loss and the local curvature, 

summarized via the Morse index. If we look at either the points found after 500 iterations 

(results not shown; see section A.5 for an example on a classifier) or the iterates with 

the highest gradient-flatness (see Figure 3D), we find that the qualitative features of the 

loss-index relationship reported previously are recreated: convex shape, small spread at low 

index that increases for higher index, no minima or near-minima at high values of the loss. 

However, our analysis suggests that the majority of these points are not critical points but 

either strict gradient-flat points (orange) or simply points of spurious or incomplete Newton 

convergence (black). The approximately critical points we do see (blue) have a very different 

loss-index relationship: their loss is equal to the loss of a network that has constant output 

equal to the mean of the data, and their index is low but not 0. This suggests that the results 

presented in Dauphin et al. (2014) and Pennington and Bahri (2017) are not evidence of the 

reported loss-index relationship at critical points of neural network losses.

4 Discussion

We observed that gradient-flat regions, where the gradient is nearly in the approximate 

kernel of the Hessian, are a prevalent feature of some protoypical neural network loss 

surfaces. The networks used in this article are very small relative to practical networks for 

image recognition and natural language processing, which have several orders of magnitude 

more parameters. However, increasing parameter count tends to increase the singularity 

of loss Hessians (Sagun et al., 2017), and so we expect there to be even greater gradient-

flatness for larger networks. The gradient-flat regions were discovered by second-order 

critical point-finding algorithms, which are attracted to these regions as bad local minima 

of the squared norm of the gradient of the loss. We measured approximate gradient-flatness 

using the norm, r, of the residual of the least-squares solution to the Newton system. We 

comment on these observations below.

Frye et al. Page 11

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1 Implications of Gradient-Flatness for Identification of Critical Points.

The strategy of using gradient norm cutoffs to determine whether a point is near enough to 

a critical point for the loss and index to match the true value is natural. However, in the 

absence of guarantees on the smoothness of the behavior of the Hessian (and its spectrum) 

around the critical point, the numerical value sufficient to guarantee correctness is unclear. 

The observation of gradient-flat regions at extremely low gradient norm and the separation 

of these values, in terms of loss-index relationship, from the bulk of the observations suggest 

that there may be spurious targets of convergence for critical point-finding methods even at 

such low gradient norm. Alternatively, they may in fact be near real critical points, and so 

indicate that the simple, convex picture of loss-index relationship painted by the numerical 

results in Dauphin et al. (2014) and Pennington and Bahri (2017) is incomplete.

Our results motivate a revisiting of those numerical results, as do recent analytical results 

demonstrating that bad local minima do exist for almost all neural network architectures and 

data sets (see Ding et al., 2019, for a helpful table of positive and negative theoretical results 

regarding local minima). Looking back at Figure 4 of Dauphin et al. (2014), we see that their 

nonconvex Newton method, a second-order optimization algorithm designed to avoid saddle 

points by reversing the Newton update along directions of negative curvature, appears to 

terminate at a gradient norm of order 1. This is only a single order of magnitude lower than 

what was observed during training. It is likely that this point was either in a gradient-flat 

region or otherwise had sufficient gradient norm in the Hessian kernel to slow the progress 

of their algorithm. This suggests that second-order methods designed for optimization, 

which use the loss as a merit function, rather than norms of the gradient, can terminate in 

gradient-flat regions. In this case, the merit function encourages convergence to points where 

the loss, rather than the gradient norm, is small, but it still cannot guarantee convergence 

to a critical point. Dauphin et al. (2014) do not report a gradient norm cutoff, among other 

details needed to recreate their critical point-finding experiments, so it is unclear to which 

kind of points they converged. If, however, the norms are as large as those of the targets of 

their nonconvex Newton method, in accordance with our experience with damped Newton 

methods and that of Coetzee and Stonick (1997), then the loss-index relationships reported 

in their Figure 1 are likely to be for gradient-flat points, rather than critical points.

Pennington and Bahri (2017), who used the gradient norm minimization method to find 

critical points, report a squared gradient norm cutoff of 1e-6. This cutoff is right in the 

middle of the bulk of values we observed, and which we labeled gradient-flat regions and 

points of spurious convergence, based on the cutoff in Frye et al. (2019), which separates a 

small fraction of runs from this bulk. This suggests that some of their putative critical points 

were gradient flat points. Their Figure 6 shows a disagreement between their predictions for 

the index, based on a loss-weighted mixture of Wishart and Wigner random matrices and 

their observations. We speculate that some of this gap is due to their method of recovering 

approximate gradient-flat points rather than critical points.

It is notable that the loss-index relationship we observe for gradient-flat points (in Figures 

3D and 4D) resembles that reported by Dauphin et al. (2014) and Pennington and Bahri 

(2017): it is convex, with loss increasing as index increases. This overall shape is also 

observed for points sampled along the trajectory of gradient descent on a linear network (see 

Frye et al. Page 12

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Frye et al., 2019, Figure 2D) and so may in some sense be a property of generic points on 

neural network loss surfaces. This suggests that there may indeed be critical points that have 

this convex loss-index relationship but that previous attempts may or may not have found 

them due to becoming stuck in gradient-flat regions.

Gradient-flatness will cause trouble for all second-order critical point-finding methods, 

which rely on a quadratic approximation that becomes infinitely bad in the presence of 

gradient-flatness. Note that first-order methods, despite their popularity in optimization, are 

inapplicable to this problem since they are attracted to minima, rather than generic critical 

points.6

Other types of critical point-finding methods are not necessarily attracted to gradient-flat 

regions. In principle, higher-order methods, based on higher-order approximations, could 

be applied to the problem of finding critical points. However, these methods suffer from 

much increased computational complexity, and the development and analysis of practical 

implementations, even for the convex case, is a matter of ongoing research (Nesterov, 2018). 

Newton homotopy methods, first used on neural networks in the 1990s (Coetzee & Stonick, 

1997), then revived in the 2010s (Ballard et al., 2017; Mehta, Zhao, Bernal, & Wales, 

2018), which are popular in algebraic geometry (Bates, Haunstein, Sommese, & Wampler, 

2013), might also be used. However, singular Hessians still cause issues for homotopy-based 

methods: for a singular Hessian H, the curve to be continued by the homotopy becomes a 

manifold with dimension 1 + corank(H), and orientation becomes more difficult. This can be 

avoided by removing the singularity of the Hessian, for example, by the randomly weighted 

regularization method in Mehta, Chen, Tang, and Hauenstein (2018). While these techniques 

may make it possible to find critical points, they fundamentally alter the loss surface, 

limiting their utility in drawing conclusions about other features of the loss. In particular, 

in the time since the initial resurgence of interest in the curvature properties of neural 

network losses sparked by Dauphin et al. (2014), the importance of overparameterization 

for optimization of, and generalization by, neural networks has been identified (Li, Ding, 

& Sun, 2018; Poggio, Liao, & Banburski, 2020). Large overparameterized networks have 

more singular Hessians (Sagun et al., 2017), and so the difference between the original 

loss and an altered version with an invertible Hessian is greater. Importantly, in a more 

overparameterized network, the prevalence of gradient-flat regions should increase, since the 

Hessian kernel covers an increasingly large subspace.

4.2 Implications of Gradient-Flatness for Optimization.

While our focus in the work explored in this article was on the behavior of second-order 

critical point-finding methods, second-order methods for optimization also rely on the 

Hessian and so are affected by gradient-flatness.

Our observation of singular Hessians at low gradient norm suggests that some approximate 

saddle points of neural network losses may be degenerate (as defined in Jin, Ge, Netrapalli, 

Kakade, & Jordan, 2017) and non-strict (as defined in Lee et al., 2016). These points 

6Indeed, applying first-order optimization tools to the problem of minimizing the gradient norm results in the second-order method 
gradient norm minimization, as discussed in section 2.1.

Frye et al. Page 13

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



need not be local minima; they are effectively “local minima up to at least second order.” 

According to the analyses in Jin et al. (2017) and Lee et al. (2016), gradient descent may 

converge to these points. However, in two cases, we observe the lowest-index saddles at 

low values of the loss (see Figures 3 and 4) and so these analyses still predict that gradient 

descent will successfully reduce the loss, even if it does not find a local minimum. In 

the third case, an overparameterized network (see Figure 5), we do observe a bad local 

minimum, as predicted in Ding et al. (2019) for networks capable of achieving 0 training 

error.

Even in the face of results indicating the existence of bad local minima (Ding et al., 

2019), it remains possible that bad local minima of the loss are avoided by initialization 

and optimization strategies. For example ReLU networks suffer from bad local minima 

when one layer’s activations are all 0 or when the biases are initialized at too small of a 

value (Holzmüller & Steinwart, 2020), but careful initialization and training can avoid the 

issue. Our results do not directly invalidate this hypothesis, but they do call the supporting 

numerical evidence into question. Our observation of gradient-flat regions on almost every 

single run suggests that while critical points are hard to find and may even be rare, 

regions where gradient norm is extremely small are neither. For non-smooth losses, such 

as those of ReLU networks or networks with max-pooling, whose loss gradients can have 

discontinuities, critical points need not exist, but gradient-flat regions may. Indeed, in some 

cases, the only differentiable minima in ReLU networks are also flat (Laurent & von Brecht, 

2017).

Sagun et al. (2017) emphasize that when the Hessian is singular everywhere, the notion of 

a basin of attraction is misleading, since targets of convergence form connected manifolds 

and some assumptions in theorems guaranteeing first-order convergence become invalid (Jin 

et al., 2017), though with sufficient, if unrealistic, overparameterization, convergence can 

be proven (Du, Zhai, Poczos, & Singh, 2019). They speculate that a better approach to 

understanding the behavior of optimizers focuses on their exploration of the sublevel sets 

of the loss. Our results corroborate that speculation and further indicate that this flatness 

means using second-order methods to try to accelerate exploration of these regions in search 

of minimizers is likely to fail: the alignment of the gradient with the Hessian’s approximate 

kernel will tend to produce extremely large steps for some methods, or no acceleration and 

even convergence to nonminimizers, for others.

Our observation of ubiquitous gradient-flatness further provides an alternative explanation 

for the success and popularity of approximate second-order optimizers for neural networks, 

like K-FAC (Martens & Grosse, 2015), which uses a layerwise approximation to the 

Hessian. These methods are typically motivated by appeals to the computational cost of even 

Hessian-free exact second-order methods and their brittleness in the stochastic (nonbatch) 

setting. However, exact second-order methods are justified only when the second-order 

model is good, and at an exact gradient-flat point, the second-order model can be infinitely 

bad, in a sense, along the direction of the gradient. Approximations need not share this 

property. Even more extreme approximations, like the diagonal approximations in the 

adaptive gradient family, such as AdaGrad (Duchi, Hazan, & Singer, 2011) and Adam 

(Kingma & Ba, 2014), behave reasonably in gradient-flat regions: they smoothly scale up 

Frye et al. Page 14

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the gradient in the directions in which it is small and changing slowly, without making a 

quadratic model that is optimal in a local sense but poor in a global sense.

Overall, our results underscore the difficulty of searching for critical points of singular 

nonconvex functions, including deep network loss functions, and shed new light on other 

numerical results in this field. In this setting, second-order methods for finding critical 

points can fail badly by converging to gradient-flat points. This failure can be hard to detect 

unless it is specifically measured. Furthermore, gradient-flat points are generally places 

where quadratic approximations become untrustworthy, and so our observations are relevant 

for the design of exact and approximate second-order optimization methods as well.

Acknowledgments

We thank Yasaman Bahri, Jesse Livezey, Dhagash Mehta, Dylan Paiton, and Ryan Zarcone for useful discussions. 
C.F. and A.L. were supported by the National Science Foundation Graduate Research Fellowship Program under 
grant DGE 1752814. N.W. was supported by the Google PhD Fellowship. A.L. was supported by a National 
Institutes of Health training grant, 5T32NS095939. M.R.D. was supported in part by the U.S. Army Research 
Laboratory and the U.S. Army Research Office under contract W911NF-13-1-0390. K.B. was funded by a DOE/
LBNL LDRD, Deep Learning for Science (PI, Prabhat).

Appendix

A.1 Networks and Data Sets

A.1.1 Data Sets.

For the experiments in Figure 1, 10,000 16-dimensional gaussian vectors with mean 

parameter 0 and diagonal covariance with linearly spaced values between 1 and 16 were 

generated and then mean-centered.

For the experiments in Figures 3 and 4, 10,000 images from the MNIST data set (LeCun, 

Cortes, & Burges, 2010) were cropped to 20 × 20 and rescaled to 4 × 4 using PyTorch 

(Paszke et al., 2019), then z-scored. This was done for two reasons: (1) to improve the 

conditioning of the data covariance, which is very poor for MNIST due to low variance 

in the border pixels, and (2) to reduce the number of parameters n in the network, 

as computing a high-quality inexact Newton solution is O(n2). Nonlinear classification 

networks trained on this downsampled data could still obtain accuracies above 90%, better 

than the performance of logistic regression (≈87%).

For the experiments in Figure 5, 50 random images of 0s and 1s from the MNIST data 

set were PCA-downsampled to 32 dimensions using sklearn (Pedregosa et al., 2011). This 

provided an alternative approach to improving the conditioning of the data covariance 

and reducing the parameter counts in the network. The labels for these images were then 

shuffled.

A.1.2 Networks.

All networks, their optimization algorithms, and the critical point-finding algorithms were 

defined in the autograd Python package (Maclaurin, 2016). For the experiments in Figure 1, 

two networks were trained: a linear auto-encoder with a single, fully connected hidden layer 

Frye et al. Page 15

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 4 units and a deep non-linear auto-encoder with two fully connected hidden layers of 16 

and 4 units with Swish (Ramachandran et al., 2017) activations. Performance of the critical 

point-finding algorithms was even worse for networks with rectified linear units (results not 

shown) as reported by others (Pennington and Bahri, personal communication). Nonsmooth 

losses need not have gradients that smoothly approach 0 near local minimizers, so it is 

only sensible to apply critical point finding to smooth losses (see Laurent & von Brecht, 

2017). The nonlinear auto-encoder used ℓ2 regularization. Neither network had biases. All 

auto-encoding networks were trained with mean squared error.

For the experiments in Figure 3, a fully connected autoencoder with two hidden layers 

of 8 and 16 units, with Swish activations and biases, was used. This network had no ℓ2 

regularization.

For the experiments in Figure 4, a fully connected classifier with two hidden layers of 12 

and 8 units, with Swish activations and biases, was used. This network had ℓ2 regularization, 

since the cross-entropy loss with which it was trained can otherwise have critical points at 

infinity.

For the experiments in Figure 5, a fully connected classifier with two hidden layers of 32 

and 4 units, with Swish activations, was used. This network had no biases. This network also 

used ℓ2 regularization and was trained with the cross-entropy loss. Networks were trained to 

near-perfect training performance: 48 to 50 correctly classified examples out of 50.

A.2 Critical Point-Finding Experiments.

The code for all of our experiments is available at https://github.com/charlesfrye/autocrit.

For all critical point-finding experiments, we followed the basic procedure pioneered in 

Dauphin et al. (2014) and used in Pennington and Bahri (2017) and Frye et al. (2019). 

First, an optimization algorithm was used to train the network multiple times. For the results 

in Figure 1, this algorithm was full-batch gradient descent, while for the remainder of the 

results, this algorithm was full-batch gradient descent with momentum (learning rates 0.1 in 

both cases; momentum 0.9 in the latter).

The parameter values produced during optimization were then used as starting positions for 

Newton-MR. Following Pennington and Bahri (2017) and based on the arguments in Frye 

et al. (2019), we selected these initial points uniformly at random with respect to their loss 

value.

Newton-MR (Roosta et al., 2018) computes an inexact Newton update with the MR-QLP 

solver (Choi et al., 2011) and then performs backtracking line search based on the squared 

gradient norm. For pseudocode of the equivalent exact algorithm, see section A.3.

The MR-QLP solver has the following hyperparameters for determining stopping behavior: 

maximum number of iterations (maxit), maximum solution norm (maxxnorm), relative 

residual tolerance (rtol), and condition number limit (acondlim). We set maxit to be equal to 

the number of parameters, since with exact arithmetic, this is sufficient to solve the Newton 

Frye et al. Page 16

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/charlesfrye/autocrit


system. We found that the maxxnorm and acondlim parameters did not affect stopping 

behavior, which was driven by the tolerance rtol. For Figure 1, we used a tolerance of 

1e-10. For Figures 3 and 4, we used a tolerance of 5e-4, based on the values for the relative 

residuals found after maxit iterations on test points. See section A.4 for details about the 

relative residual stopping criterion. We do not provide pseudocode for this algorithm (Choi 

et al., 2011).

The backtracking line search has the following hyperparameters: α, the starting step size; β, 

the multiplicative factor by which the step size is reduced; and ρ, the degree of improvement 

required to terminate the line search. We set these hyperparameters to α := 0.1, β := 0.5, 

and ρ := 0.1. Furthermore, in backtracking line search for Newton methods, it is important to 

always check a unit step size in order to attain superlinear convergence (Nocedal & Wright, 

2006). So before running the line search, we also check unit step size with a stricter ρ′ := 

0.5.

On termination of the critical point-finding algorithm, the loss and index must be calculated. 

The index is defined analytically as the fraction of negative eigenvalues, but numerical errors 

make this infeasible for highly singular matrices, which have many eigenvalues that are 

close to but not exactly 0. We use the same cutoff verified in Frye et al. (2019): eigenvalues 

greater than or equal to −1e-5 are considered nonnegative.

A.3 Newton-MR Pseudocode.

The pseudocode in algorithm 1 defines an exact least-squares Newton method with exact 

line search. To obtain the inexact Newton-MR algorithm, the double argmin to determine the 

update direction p should be approximately satisfied using the MR-QLP solver (Choi et al., 

2011) and the argmin to determine the step size α should be approximately satisfied using 

Armijo-type backtracking line search. For details, see Roosta et al. (2018).

A.4 Relative Residual and Relative Co-Kernel Residual.

The quantities referred to in this article as the relative residual norm r and co-kernel 

residual norm rH were introduced in Paige and Strakos (2002) for the quantification of 

the performance of minimum residual Krylov subspace methods. r measures the size of the 

error of an approximate solution to the Newton system. Introducing the symbols H and g, for 

the Hessian and gradient at a query point, the Newton system may be written 0 = Hp + g, 

and r is then

Frye et al. Page 17

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1:Exact Newton-MR.

Require T ∈ ℕ, θ0 ∈ ℝN,

∇f :ℝN ℝN, ∇2f :ℝN ℝN × N

t = 0
while t < T do

g ∇f(θt)

H ∇2f(θt)

P arg minp′ ‖Hp′ + g‖2

p argmin
p ∈ P

‖p‖2

α arg minα ‖∇f(θt + αp)‖2

θt − 1 θt + αp
if θt = = θt then

∣ break
end
t t + 1

end

r(p) = ‖Hp + g‖
‖H‖F‖p‖ + ‖g‖,

where ∥M∥F of a matrix M is its Frobenius norm. Since all quantities are nonnegative, r is 

nonnegative; because the denominator bounds the numerator, by the triangle inequality and 

the compatibility of the Frobenius and Euclidean norms, r is at most 1. For an exact solution 

of the Newton system p*, r(p*) is 0, the minimum value, while r(0) is 1, the maximum value. 

Note that small values of ∥p∥ do not imply large values of this quantity, since ∥p∥ goes to 0 

when a Newton method converges toward a critical point, while r goes to 0.

When g is partially in the kernel of H, the Newton system is unsatisfiable, as g will also 

be partly in the co-image of H, the linear subspace into which H cannot map any vector. In 

this case, the minimal value for r will no longer be 0. The optimal solution for ∥Hp + g∥ 
instead has the property that its residual is 0 once restricted to the co-kernel of H, the linear 

subspace orthogonal to the kernel of H. This co-kernel residual can be measured by applying 

the matrix H to the residual vector Hp + g. After normalization, it becomes

rH(p) = ‖H(Hp + g)‖
‖H‖F‖Hp + g‖ .

Again, by the compatibility of the Frobenius and Euclidean norms, we have that the 

numerator is less than the denominator, and so rH is bounded between 0 and 1. Note that 

this value is also small when the gradient lies primarily along the eigenvalues of smallest 

Frye et al. Page 18

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



magnitude. On each internal iteration, MR-QLP checks whether either of these values is 

below a tolerance level—in our experiments, 5e-4—and if either is, it ceases iteration. With 

exact arithmetic, either one or the other of these values should go to 0 within a finite 

number of iterations given by the dimension of p; with inexact arithmetic, they should just 

become small. We determined the tolerance level 5e-4 by executing the maximum number 

of iterations and checking the size of the residual on a number of candidate runs. See Choi 

et al. (2011) for details. Less than 5% of Newton steps were obtained from the kernel 

residual going below the tolerance, indicating that almost all points of the loss surface had 

an approximately unsatisfiable Newton system.

A.5 Replication of Results from Section 3 on MNIST MLP.

We repeated the experiments whose results are shown in Figure 3 on the loss surface of a 

fully connected classifier on the same modified MNIST data set (details in section A.1). We 

again found that the performance of the Newton-MR critical point-finding algorithm was 

poor (see Figure 4A) and that around 90% of runs encountered a point with gradient-flatness 

above 0.9 (see Figure 4C, bottom row). However, we observed that fewer runs terminated at 

a gradient-flat point (see Figure 4C, top row), perhaps because the algorithm was bouncing 

in and out of gradient-flat regions (see Figure 4B, top and bottom rows), rather than because 

of another type of spurious Newton convergence. If we measure the loss-index relationship 

at the maximally gradient-flat points (see Figure 4D), we see the same pattern as in Figure 

3D. This also holds if we look at the loss and index of the points at termination (results not 

shown).

A.6 Replication of Results from Section 3 on Binary MNIST Subset 

Memorization.

We repeated the experiments whose results are shown in Figure 3 on the loss surface of 

a fully connected classifier on a small subset of 50 0s and 1s from the MNIST data set 

(details in section A.1). In this setting, the network is overparameterized, in that it has a 

hidden layer almost as wide as the number of points in the data set (32 versus 50) and has 

more parameters than there are points in the data set (1160 versus 50). It is also capable of 

achieving 100% accuracy on this training set, which has random labels, as in Zhang et al. 

(2016). We again observe that the majority of runs do not terminate with squared gradient 

norm under 1e-8 (33 out of 50 runs) and a similar fraction (31 out of 50 runs) encounter 

gradient-flat points (see Figures 5A and 5C, bottom panel). The loss-index relationship 

looks qualitatively different, as might be expected for a task with random labels. Notice the 

appearance of a bad local minimum: the blue point at index 0 and loss ln(2).

References

Angelani L, Leonardo RD, Ruocco G, Scala A, & Sciortino F (2000). Saddles in the energy landscape 
probed by supercooled liquids. Physical Review Letters, 85(25), 5356–5359. [PubMed: 11135995] 

Baldi P, & Hornik K (1989). Neural networks and principal component analysis: Learning from 
examples without local minima. Neural Networks, 2(1), 53–58.

Ballard AJ, Das R, Martiniani S, Mehta D, Sagun L, Stevenson JD, & Wales DJ (2017). Energy 
landscapes for machine learning. Phys. Chemistry Chemical Physics, 19, 12585–12603.

Frye et al. Page 19

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bates DJ, Haunstein JD, Sommese AJ, & Wampler CW (2013). Numerically solving polynomial 
systems with Bertini (software, environments and tools). Philadelphia: Society for Industrial and 
Applied Mathematics.

Boyd S, & Vandenberghe L (2004). Convex optimization. New York: Cambridge University Press.

Broderix K, Bhattacharya KK, Cavagna A, Zippelius A, & Giardina I (2000). Energy landscape of a 
Lennard-Jones liquid: Statistics of stationary points. Physical Review Letters, 85(25), 5360–5363. 
[PubMed: 11135996] 

Byrd RH, Marazzi M, & Nocedal J (2004). On the convergence of Newton iterations to non-stationary 
points. Mathematical Programming, 99(1), 127–148. doi:10.1007/s10107-003-0376-8

Cerjan CJ, & Miller WH (1981). On finding transition states. Journal of Chemical Physics, 75(6), 
2800–2806. doi:10.1063/1.442352

Choi S-CT, Paige CC, & Saunders MA (2011). MINRES-QLP: A Krylov subspace method for 
indefinite or singular symmetric systems. SIAM Journal on Scientific Computing, 33(4), 1810–
1836.

Coetzee F, & Stonick VL (1997). 488 solutions to the XOR problem. In Mozer MC, Jordan MI, 
& Petsche T (Eds.), Advances in neural information processing systems, 9 (pp. 410–416). 
Cambridge, MA: MIT Press.

Dauphin Y, Pascanu R, Gülçehre Ç, Cho K, Ganguli S, & Bengio Y (2014). Identifying and attacking 
the saddle point problem in high- dimensional non-convex optimization. CoRR, abs/1406.2572.

Ding T, Li D, & Sun R (2019). Sub-optimal local minima exist for almost all over-parameterized 
neural networks. arXiv:1911.01413.

Doye JPK, & Wales DJ (2002). Saddle points and dynamics of Lennard-Jones clusters, solids, and 
supercooled liquids. Journal of Chemical Physics, 116(9), 3777–3788.

Du SS, Zhai X, Poczos B, & Singh A (2019). Gradient descent provably optimizes over-parameterized 
neural networks. In Proceedings of the International Conference on Learning Representations. 
https://openreview.net/forum?id=S1eK3i09YQ.

Duchi J, Hazan E, & Singer Y (2011). Adaptive subgradient methods for online learning and stochastic 
optimization. J. Mach. Learn. Res, 12, 2121–2159.

Frye CG, Wadia NS, DeWeese MR, & Bouchard KE (2019). Numerically recovering the critical points 
of a deep linear autoencoder. arXiv:1901.10603.

Garipov T, Izmailov P, Podoprikhin D, Vetrov D, & Wilson AG (2018). Loss surfaces, mode 
connectivity, and fast ensembling of DNNs. arXiv:1802.10026.

Ghorbani B, Krishnan S, & Xiao Y (2019). An investigation into neural net optimization via Hessian 
eigenvalue density. In Proceedings of Machine Learning Research.

Goodfellow IJ, & Vinyals O 2014. Qualitatively characterizing neural network optimization problems. 
CoRR, abs/1412.6544.

Griewank A, & Osborne MR (1983). Analysis of Newton’s method at irregular singularities. SIAM 
Journal on Numerical Analysis, 20(4), 747–773.

Holzmüller D, & Steinwart I 2020. Training two-layer RELU networks with gradient descent is 
inconsistent. arXiv:2002.04861.

Izmailov AF, & Solodov MV 2014. Newton-type methods for optimization and variational problems. 
New York: Springer.

Jin C, Ge R, Netrapalli P, Kakade SM, & Jordan MI 2017. How to escape saddle points efficiently. 
CoRR, abs/1703.00887.

Kingma DP, & Ba J 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.

Laurent T, & von Brecht J (2017). The multilinear structure of ReLU networks. arXiv:1712.10132.

LeCun Y, Cortes C, & Burges C 2010. MNIST handwritten digit database. http://yann.lecun.com/exdb/
mnist, 2.

Lee JD, Simchowitz M, Jordan MI, & Recht B 2016. Gradient descent only converges to minimizers. 
In Feldman V, Rakhlin A, & Shamir O, (Eds.), Proceedings of the 29th Annual Conference on 
Learning Theory (vol. 49, pp. 1246–1257).

Li D, Ding T, & Sun R 2018. On the benefit of width for neural networks: Disappearance of bad 
basins. arXiv:1812.11039.

Frye et al. Page 20

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openreview.net/forum?id=S1eK3i09YQ
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist


Maclaurin D 2016. Modeling, inference and optimization with composable differentiable procedures. 
PhD diss., Harvard University.

Martens J, & Grosse R 2015. Optimizing neural networks with Kronecker-factored approximate 
curvature. arXiv:1503.05671.

McIver JW, & Komornicki A (1972). Structure of transition states in organic reactions: General theory 
and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular 
orbital method. Journal of the American Chemical Society, 94(8), 2625–2633.

Mehta D, Chen T, Tang T, & Hauenstein JD 2018. The loss surface of deep linear networks viewed 
through the algebraic geometry lens. arXiv:1810.07716.

Mehta D, Zhao X, Bernal EA, & Wales DJ 2018. Loss surface of XOR artificial neural networks. 
Physical Review E, 97(5).

Nesterov Y 2018. Implementable tensor methods in unconstrained convex optimization (Technical 
Report 2018005). Center for Operations Research and Econometrics Université catholique de 
Louvain. https://ideas.repec.org/p/cor/louvco/2018005.html.

Nocedal J, & Wright S (2006). Numerical optimization (2nded.). New York: Springer.

Paige CC, & Strakos Z 2002. Residual and backward error bounds in minimum residual Krylov 
subspace methods. SIAM Journal on Scientific Computing, 23(6), 1898–1923. doi:10.1137/
s1064827500381239

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, … Chintala S (2019). PyTorch: 
An imperative style, high-performance deep learning library. In Wallach H, Larochelle H, 
Beygelzimer A, d’AlchéBuc F, Fox E, & Garnett R (Eds.), Advances in neural information 
processing systems, 32 (pp. 8024–8035). Red Hook, NY: Curran.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, … Duchesnay E (2011). 
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pennington J, & Bahri Y 2017. Geometry of neural network loss surfaces via random matrix theory. In 
Proceedings of the International Conference on Learning Representations.

Poggio T, Liao Q, & Banburski A 2020. Complexity control by gradient descent in deep networks. 
Nature Communications, 11(1). doi:10.1038/s41467-020-14663-9

Powell MJ 1970. A hybrid method for nonlinear equations. Numerical methods for non-linear 
algebraic equations.

Ramachandran P, Zoph B, & Le QV 2017. Searching for activation functions. arXiv:1710.05941.

Roosta F, Liu Y, Xu P, & Mahoney MW 2018. Newton-MR: Newton’s method without smoothness or 
convexity. arXiv:1810.00303.

Sagun L, Evci U, Güney VU, Dauphin Y, & Bottou L 2017. Empirical analysis of the Hessian of 
over-parameterized neural networks. CoRR, abs/1706.04454.

Strang G 1993. The fundamental theorem of linear algebra. American Mathematical Monthly, 100(9), 
848. doi:10.2307/2324660

Sun R 2019. Optimization for deep learning: Theory and algorithms. arXiv:1912.08957.

Zhang C, Bengio S, Hardt M, Recht B, & Vinyals O 2016. Understanding deep learning requires 
rethinking generalization. CoRR, abs/1611.03530.

Frye et al. Page 21

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ideas.repec.org/p/cor/louvco/2018005.html


Figure 1: 
Newton methods that find critical points on a linear network fail on a nonlinear network. 

(A, B) Newton-MR on a linear autoencoder applied to multivariate gaussian data, as in Frye 

et al. (2019). (A) Squared gradient norms of the loss L, as a function of the parameters θ, 

across iterations of Newton-MR, colored by whether, after the first of early termination or 

1000 epochs, squared gradient norms are below 1e-8 (blue) or not (orange). (B) The loss 

and Morse index of putative and actual critical points, with ground truth. The Morse index 

is defined as the fraction of negative eigenvalues. Analytically derived critical points in gray, 

points from the end of runs that terminate below a squared gradient norm of 1e-8 in light 

blue, and points from trajectories stopped early, once they pass a squared gradient norm 

of 1e-2, in dark red. (C, D) As in panels A and B, on the same network architecture and 

data, but with Swish (Ramachandran, Zoph, & Le, 2017) nonlinear activations instead of 

identity activations. (D) Loss and Morse index of putative critical points. Points with squared 

gradient norm above 1e-8 in orange, those below 1e-8 in blue. Analytical expressions for 

critical points are not available for this nonlinear network.

Frye et al. Page 22

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Stationarity of and convergence to a strict gradient-flat point on a quartic function. (A) 

Critical and strict gradient-flat points of quartic f(x, y) (defined in equation 2.3). Central 

panel: f(x, y) plotted in color (black, low values; white, high values), along with the 

direction of the Newton update p as a (notably nonsmooth) vector field (red). Stationary 

points of the squared gradient norm merit function g are indicated: strict gradient-flat points 

in orange, the critical point in blue. Top and bottom panels: The value (top) and squared 

gradient norm (bottom) of f as a function of x value with y fixed at 0. The x-axis is 

shared between panels. (B) Performance and trajectories of Newton-MR (Roosta, Liu, Xu, & 

Mahoney, 2018) on equation 2.3. Runs that terminate near a strict gradient-flat point are in 

orange, while those that terminate near a critical point are in blue. Central panel: Trajectories 

of Newton-MR laid over f(x, y). x- and y-axes are shared with the central panel of panel A. 

Initial values indicated with scatter points. Top and bottom panels: Function values (top) and 

squared gradient norms (bottom) of Newton-MR trajectories as a function of iteration. The 

x-axis is shared between panels.

Frye et al. Page 23

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Critical point-finding methods more often find gradient-flat regions on a neural network 

loss. (A) Squared gradient norms across the first 100 iterations of Newton-MR for 100 

separate runs on an autoencoder loss. Gradient norms were flat after 100 iterations. See 

section A.1 for details. Runs that terminate with squared gradient norm below 1e-8, at a 

critical point, in blue. Runs that terminate above that cutoff and with r above 0.9, in a 

gradient-flat region, in orange. All other runs in black. Asterisks indicate trajectories in 

panel B. (B) The relative residual norm r, an index of gradient-flatness, for the approximate 

Newton update computed by MR-QLP at each iteration (solid lines) for three representative 

traces. Values are local averages with a window size of 10 iterations. Raw values are 

plotted with reduced opacity underneath. Top: nonflat, noncritical point (black). Middle: 

flat, noncritical point (orange). Bottom: flat, critical point (blue). (C) Empirical cumulative 

distribution functions for the final (top) and maximal (bottom) relative residual norm r 
observed during each run of Newton-MR. Values above the cutoff for approximate gradient-

flatness, r > 0.9, in orange. Observations from runs that terminated below the cutoff for 

critical points, ∥∇L(θ)∥2 < 1e-8, indicated with blue ticks. (D) Loss and index for the 

maximally gradient-flat points obtained during application of Newton-MR. Points with 

squared gradient norm below 1e-8 in blue. Other points colored by their gradient-flatness: 

points above 0.9 in orange, points below in black. Only points with squared gradient norm 

below 1e-4 shown.

Frye et al. Page 24

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Gradient-flat regions also appear on an MLP loss. (A) Squared gradient norms across the 

first 100 iterations of Newton-MR for 60 separate runs on an MLP loss (see section A.1 

for details). Runs that terminate with squared gradient norm below 1e-8 in blue. Runs that 

terminate above that cutoff and with r above 0.9, in orange. All other runs in black. Asterisks 

indicate trajectories in panel B. (B) The relative residual norm r, for the approximate 

Newton update computed by MR-QLP at each iteration for three representative traces. 

Values are local averages with a window size of 10 iterations. Raw values are plotted with 

reduced opacity underneath. Top: nonflat, noncritical point (black). Middle: flat, noncritical 

point (orange). Bottom: nonflat, critical point (blue). (C) Empirical cumulative distribution 

functions for the final (top) and maximal (bottom) relative residual norm r. Values above 

the cutoff for approximate gradient-flatness, r > 0.9, in orange. Observations from runs 

that terminated below the cutoff for critical points, ∥∇L(θ)∥2 < 1e-8, indicated with blue 

ticks. (D) Loss and index for the maximally gradient-flat points obtained during application 

of Newton-MR. Colors as in top-left; only points with squared gradient norm below 1e-4 

shown.

Frye et al. Page 25

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Gradient-flat regions also appear on an overparameterized loss. (A) Squared gradient 

norms across 500 iterations of Newton-MR for 50 separate runs on the loss of an 

overparameterized network (see section A.1 for details). Runs that terminate with squared 

gradient norm below 1e-8 in blue. Runs that terminate above that cutoff and with r above 

0.9, in orange. All other runs in black. Asterisks indicate trajectories in panel B. (B) The 

relative residual norm r, for the approximate Newton update computed by MR-QLP at each 

iteration for three representative traces. Values are local averages with a window size of 10 

iterations. Raw values are plotted with reduced opacity underneath. Top: nonflat, noncritical 

point (black). Middle: flat, noncritical point (orange). Bottom: flat, critical point (blue). 

(C) Empirical cumulative distribution functions for the final (top) and maximal (bottom) 

relative residual norm r. Values above the cutoff for approximate gradient-flatness, r > 0.9, in 

orange. Observations from runs that terminated below the cutoff for critical points, ∥∇L(θ)∥2 

< 1e-8, indicated with blue ticks. (D) Loss and index for the points found after 500 iterations 

of Newton-MR. Colors as in top-left; only points with squared gradient norm below 1e-4 

shown.

Frye et al. Page 26

Neural Comput. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Frye et al. Page 27

Table 1:

Criteria for Determining the Class of a Point.

∥g∥2 r rH

Exact critical point 0 0 0

Approximate critical point < εc ≥ 0 ≥ 0

Gradient-flat point ≥ εc 1 0

Approximate gradient-flat point ≥ 0 > 1 – εg < εr

Strict gradient-flat point > 0 1 0

Approximate strict gradient-flat point ≥ εc > 1 – εg < εr

Neural Comput. Author manuscript; available in PMC 2022 March 14.


	Abstract
	Introduction
	Gradient-Flat Points Are Stationary Points for Second-Order Methods
	Second-Order Critical Point-Finding Methods Rely on the Hessian Matrix.
	At Gradient-Flat Points, the Gradient Lies in the Hessian’s Kernel.
	Convergence to Gradient-Flat Points Occurs in a Low-Dimensional Quartic Example.
	Approximate Gradient-Flat Points and Gradient-Flat Regions.

	Gradient-Flat Regions Are Common on Deep Network Losses
	Discussion
	Implications of Gradient-Flatness for Identification of Critical Points.
	Implications of Gradient-Flatness for Optimization.

	Appendix
	Table T1
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:



