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Abstract

Humans read text in a sequence of fixations connected by sac-
cades spanning 7–9 characters. While most words are fixated,
some are skipped, and sometimes there are reverse saccades.
Previous work has explained this behavior in terms of a trade-
off between the accuracy of text comprehension and the effi-
ciency of reading, and modeled this using attention-based neu-
ral networks. We extend this line of work by modeling the lo-
cations of individual fixations down to the character level. We
evaluate our model on an eye-tracking corpus and demonstrate
that it reproduces human reading patterns, both quantitatively
and qualitatively. It achieves good performance in predicting
fixation positions and also captures lexical effects on fixation
rate and landing position effects.

Keywords: Computational linguistics; eye-tracking and read-
ing; Cognitive modeling

Introduction
Human readers normally fixate some words and skip others
while reading a text, rather than simply reading it word by
word. The eyes remain fairly static for 200–250 ms in a fix-
ation, before making a saccade to the next fixation position
(Rayner, 1998). A range of models account for many proper-
ties of fixation behavior, based on a sophisticated analysis of
saccade generation and word recognition (e.g., Reichle et al.,
1998; Engbert et al., 2002; Snell and Theeuwes, 2020). Here,
we ask whether key properties of fixation behavior can be
recovered using a simple rational modeling approach, which
derives predictions from an objective function balancing ef-
ficiency of attention allocation and accuracy of information
extraction. One reason to be interested in such an approach
is that it naturally lends itself to accounting for task variation,
which is known to substantially modulate reading behavior
(e.g., Kaakinen and Hyönä, 2010; Schotter et al., 2014b).
Such a modeling approach has been instantiated in the Neural
Attention Tradeoff (NEAT) model (Hahn and Keller, 2016,
2018), which accounts for task effects by optimizing reading
behavior for task-specific objective functions. This contrasts
with most prior models of reading behavior, which focus on
the process of word identification. However, the NEAT model
so far only accounts for word-level summary statistics (fixa-
tions and reading times), but does not model saccades at the
level of characters. Here, we propose an extension of NEAT
that models character-level fixation decisions.

Our aim is to build a first-principles rational model based
on the general assumption that human readers optimize a

tradeoff between efficiency and accuracy while reading, max-
imizing the identifiability of the full input from the observed
characters, while minimizing the number of fixations (e.g.
Legge et al., 1997; Hahn and Keller, 2016, 2018). We train
the model using a large corpus of unannotated English text,
and test it on the Dundee eye-tracking corpus (Kennedy,
2003). We evaluate the model on quantitative fit of fixation
positions, and reproducing well-documented effects of word
length, word frequency, and part-of-speech. Throughout, we
compare with the predictions of a widely used prior model of
saccade generation with an openly available implementation,
E-Z Reader (Reichle et al., 2003).

Our model will make a set of simplifying assumptions.
First, we will make the simplifying assumption that the aim of
reading is to recognize the words read, even though the mod-
eling framework is compatible with more high-level reading
tasks. Second, we will focus on fixation locations, and leave
modeling of fixation durations within this framework to fu-
ture work. Third, we only model forward saccades, whereas a
substantial minority of human saccades goes backwards. We
discuss prospects for relaxing these assumptions in the Con-
clusions.

Related Work
A range of computational cognitive models have been devel-
oped to simulate various aspects of human reading (Rayner,
2009). E-Z Reader (Reichle et al., 1998, 2003, 2009) and
SWIFT (Engbert et al., 2002, 2005) are two representative
computational reading models accounting for saccade gener-
ation.

E-Z Reader assumes two visual processing stages to de-
termine when and where the eyes move during reading. The
first one is called “familiarity check”. It takes place during
lexical access up to the point when the word can be reliably
identified. When the point is reached, the model initiates a
saccade to the next word. The second stage of lexical access
begins, called “saccade programming”. It is divided into two
stages: the initial labile stage and the non-labile stage, which
depends on whether a saccade can still be canceled or it has
become obligatory. Another key assumption of the model is
that human readers tend to fixate at the center of the word,
but they are also subject to random overshoot and undershoot
errors.

SWIFT is a parallel eye-movement reading model in which
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activation is conceptualized as a gradient. The model spreads
activation across several words and computes lexical access
for these words at the same time. Furthermore, the time when
people move to the next view point in reading is regarded as
a random decision, determined by a SWIFT’s random timer.
For saccade programming, the assumptions are similar to the
ones made by E-Z Reader.

Bicknell and Levy (2010) model reading as Bayesian in-
ference on the identity of a sequence. The model generates
saccades using a control policy that aims to decrease uncer-
tainty about the identity of the sequence. Our approach makes
similar assumptions about the tradeoff between economy of
attention and the accuracy of text comprehension. However,
our approach differs in a number of ways. First, by using rein-
forcement learning, our model provides a learning algorithm
and is applicable to a range of different reading tasks. Sec-
ond, our approach draws on modern neural network methods,
making it scalable to arbitrary input, whereas Bicknell and
Levy (2010) only ran their model on sentences covered by a
fixed vocabulary and had to assume a very simple model of
language statistics.

Lewis et al. (2013) propose a model of saccade control
that combines Bayesian optimization and bounded optimal
control. Their model also assumes a speed-accuracy trade-
off which enables eye-movements to adapt to task conditions,
and is able to capture eye-movements behavior in a list lexi-
cal decision task. Presumably, the Lewis et al. model could
be extended to other tasks, including normal reading.

Model
Our model is based on the NEAT model (Hahn and Keller,
2016, 2018), which derives human reading behavior from
the Tradeoff Hypothesis: the assumption that human read-
ers rationally optimize a tradeoff between successfully ex-
tracting information and the economy of attention while read-
ing. NEAT as implemented models the allocation of attention
across the words in a text, but does not account for the de-
tailed behavior of skipping and fixation at the level of individ-
ual characters. We extend the tradeoff hypothesis to the level
of individual fixations at the character level, proposing that
readers optimize a tradeoff between successfully reading the
text (e.g., recognizing and memorizing the words) and mak-
ing as few fixations as possible. We follow much prior work
on reading (e.g. Legge et al., 1997; Bicknell and Levy, 2010;
Hahn and Keller, 2016) in assuming that the aim of reading
is simply to recognize the words read, though the modeling
framework can be flexibly adapted to other reading tasks (see
Conclusions for more discussion).

Model Architecture
We illustrate our model in Figure 1. It is based on a stan-
dard neural sequence-to-sequence architecture and consists of
three modules, Reader, Decoder, and Attention. Reader and
Decoder are realized as a one-layer Long Short-term Memory
neural network with 1,024 memory units. At each time step,
the reader model takes a fixed-window character sequence as

input and encodes it into a series of hidden vectors. At the
end of a text, the activations produced by the reader model
are provided to the decoder model, which attempts to recon-
struct the whole sequence.

For each fixation, the Attention component decides how far
to jump in the next saccade based on the information available
from a fixed-size window around the current fixation point.
Saccade length is assumed to be bounded by the length of the
window. Human visual acuity is highest in a small window
around the fixation point (the fovea), while further away (in
the parafovea), readers only receive partial visual input. In
order to account for this fact, only the closest four characters
to the right of the fixation point are made fully available to
the Attention module making the decision; for the other char-
acters to the right of the fixation point and up to the end of the
window, the module only receives an encoding distinguishing
characters from whitespace. This design is clearly a simpli-
fication: visual acuity actually decays more continuously (as
accounted for by Bicknell and Levy 2010). On a technical
level, the input character sequence is encoded into a series
of embedding vectors v1, . . . ,vK , which are passed through a
linear transformation into a softmax function, which outputs
a probability distribution over the number n of characters to
skip over in the next saccade:

P(ωi = n|ω1...i−1,s) = softmax(µ+wT [v1, . . . ,vK ]) (1)

where v̂i ∈ R300 is the character embedding of the i-th char-
acter and the bias vector µ and matrix w are the parameters
of the Attention component. Here, we make the simplifying
assumption that all saccades go forward (i.e., n > 0, see also
Conclusions).

Model Objective Function
As in the original NEAT model, we postulate that reading
rationally optimizes a tradeoff between comprehension accu-
racy and economy of reading. In line with much prior work
modeling reading (e.g. Legge et al., 1997; Bicknell and Levy,
2010), we assume the comprehension task of recognizing the
input. The overall model objective is to minimize the ex-
pected loss:

Q(θ) := Ew,ω

[
Loss(ω|s,θ)+α · ∥ω∥

N

]
(2)

Here w is the input, ω denotes saccades, Loss(ω|s,θ) is the
cross-entropy loss for correctly identifying the words in the
input, ∥ω∥ is the distance jumped (this models the economy
of reading – longer saccades are more efficient), N is the se-
quence length, α is a parameter trading off the two factors,
and θ denotes all parameters of the reader, decoder, and at-
tention networks.

Model Training
We train the Reader and Decoder components using stochas-
tic gradient descent (Equation 3), while the Attention compo-
nent is trained using reinforcement learning (Williams, 2004)
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Figure 1: The architecture of our model. The model reads a sequence s1,s2,s3 of words. The Attention module (A) decides
which parts of different words to skip or fixate on. Fixated parts are fed into the Reader module. At the end, the Decoder
module attempts to reconstruct the input based on the parts of the input that were made available to the Reader.

(Equation 4). We calculate the gradients of our network us-
ing the backpropagation algorithm and the parameters θ are
updated as follows:

∆1 := ∂θLoss(ω|s,θ) (3)

∆2 := (∂θlogPA(ω|s1...N ;θ)) · [Loss(ω|s,θ)+α · ∥ω∥] (4)

θ← θ−λ · (∆1 +∆2) (5)

where λ stands for the learning rate. We trained our model
using the Daily Mail corpus (Hermann et al., 2015), which is
composed of 195,462 articles and approximately 200 million
tokens from the Daily Mail newspaper. The recurrent neu-
ral networks and attention network were each trained for one
epoch.

Experiments
We test the effectiveness of our models in simulating human
fixations against the Dundee eye-tracking corpus. As a point
of comparison, we also report results from E-Z Reader (Re-
ichle et al., 2003), and a simple baseline that randomly selects
a fraction of words to fixate and places a fixation at their cen-
ter (“Random Word + Center Fixation”). We first evaluate the
model on fixating location prediction.

Setup
We used the Dundee eye-tracking corpus developed by
Kennedy (2003). The corpus was collected using a Dr. Bouis
Oculometer eye-tracker (Barrett et al., 2015) in an experiment
where 10 native English-speaking participants read newspa-
per articles from The Independent newspaper. The corpus
contains 20 texts with 51,502 tokens across 2,368 sentences
in total. We split the corpus into a development partition
and test partition, using the former (texts 1–3) for setting
model parameters and the latter (texts 4–20) for evaluating
the model. For evaluation, we removed the words at the be-
ginning or the end of sequences to avoid incomplete words
(and remove return sweeps, which our model is not able to
capture).

We first determined the window size and the tradeoff pa-
rameter α using random search (Bergstra and Bengio, 2012),
varying window size from 5 to 11, and α from −1.0 to 1.0 in

steps of 0.01. We chose two sets of parameter values result-
ing in overall fixation rates on the development set that best
matched either the human fixation rate in the Dundee corpus
(52.8%), or the fixation rate of E-Z Reader on the same data
(77.7%), respectively. Learning rate λ was set at 0.5. The
same hyperparameters were used in all experiments, as de-
scribed in Table 1.

Fixation Rate Parameter Value
52.8% Window size 11

α 0.12
77.7% Window size 6

α -0.79

Table 1: Parameter values of our model.

Accuracy of Fixation Location Prediction
Figure 2 shows a visualization of the fixation points of one
reader on a sample text, as well as the fixation decisions pre-
dicted by our model.

Previous studies quantitatively evaluating models for pre-
dicting fixations mostly operated at the word level (Nilsson
and Nivre, 2009; Matthies and Søgaard, 2013; Hahn and
Keller, 2016). They evaluated by measuring the overlap be-
tween the fixated words predicted by the models and those
in the human eye-tracking data. The design of our model is
different, as we assume that human readers operate over se-
quences of characters while reading.

We therefore use a simple evaluation metric that computes,
for each word, the Euclidean distance between each predicted
fixation point and the closest human fixation point, normal-
ized by the word length. We calculate this separately for each
participant in the Dundee corpus, and average over those.

We compared our character-based version of NEAT to two
other models. The first one is a baseline that randomly se-
lects a fraction of words to fixate and places a fixation at the
center of each fixated word (“Random Word + Center Fix-
ation”, abbreviated “RW+CF”). Second, we compared with
E-Z Reader (Reichle et al., 2003), a well-established model
of saccade generation with an openly available implementa-

2173



Figure 2: Visualization of fixation decisions from human readers and our model. We select as example one participant (A) in
the Dundee Corpus.

Figure 3: Euclidean distance (in characters) of the pre-
dicted fixation point at the character level against human data.
Smaller Euclidean distance means a better fit to the correct
human fixation point from. The dotted line bar represents E-Z
Reader, whose fixation rate is static and cannot be adjusted to
match the human fixation rate. RW+CF refers to the baseline
“Random Word + Center Fixation”, abbreviated “RW+CF”.
Model means the current model.

tion.1 We provided E-Z Reader with word frequency and pre-
dictability metrics estimated from the same corpus we used
for training our model; predictability metrics were estimated
using an LSTM language model trained on the same corpus.
In order to ensure meaningful comparison, we include a ver-
sion of our model whose fixation rate matched that of E-Z
Reader (77.7% of words).

Figure 3 illustrates that our model shows lower Euclidean
distance compared to the baseline Random Word + Center
Fixation, and also compared to E-Z Reader. The latter re-
sults holds even when matching our model’s fixation rate with
that of E-Z Reader. This is remarkable, as our model is de-
rived in a way quite different from E-Z Reader: Whereas
E-Z Reader is a sophisticated eye-movement model specifi-
cally designed for modeling saccade generation, our proposed

1We used E-Z Reader 10.2 (Reichle et al., 2012), re-
trieved from http://www.erikdreichle.com/downloads.html,
December 20, 2021.

model is instead derived from general assumptions about a
rational tradeoff underlying reading, plus training on large-
scale unlabeled text.

Human Model E-Z Reader RW+CF
Corr 0.966 0.880 0.886 0.268

Table 2: Correlation between word length and fixation rate.

Figure 4: Fixation rate by word length.

Human Model E-Z Reader RW+CF
Corr -0.677 -0.729 -0.178 0.431

Table 3: Correlation between log word frequency and fixation
rate.

Effect of Word Length, Frequency, and Part of
Speech
We furthermore analyzed if our model exhibits general fea-
tures of reading, specifically the effects of lexical properties
on fixation rate. The previous literature observed that lexi-
cal properties such as word length, word frequency, and part
of speech (PoS) are good predictors of fixation probabilities
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Figure 5: Fixation rate by log word frequency. We binned
words into five bins according to their log word frequency.

Figure 6: Fixation rate by part of speech.

(Carpenter and Just, 1983; Rayner, 1998; Hahn and Keller,
2016). For instance, human readers will not easily skip a long
word because of the limitation of their visual range, and are
more likely to fixate on uncommon words to aid word identi-
fication.
Fixation Rate by Word Length Figure 4 shows that E-Z
Reader and our model both approximately simulate the ef-
fect of word length on fixation rate that is observed in human
reading behavior (longer words have a higher fixation rate, as
shown in Table 2), in contrast to the baseline (Random Word
+ Center Fixation).
Fixation Rate by Word Frequency We then compared fix-
ation rate to word frequency in the corpus used for training
our model; these word frequencies were the ones provided to
E-Z Reader. Figure 5 and Table 3 shows that both E-Z Reader
and our model reproduce patterns of fixation rate by log word
frequency that similar to the ones found in human readers,
unlike the baseline. Interestingly, our proposed model shows
a stronger correlation between word frequency and fixation
rate than E-Z Reader, more in line with the human data.
Fixation Rate by Part of Speech We also calculated fix-
ation rate by part of speech. It has long been documented

that content words are more likely to get fixated than func-
tion words (Carpenter and Just, 1983). Figure 6 demonstrates
that compared to the baseline, our model exhibits the effect of
part of speech on the fixation probability of a word, so that a
content word receives more fixations than a function word. In
conclusion, our model reproduces the lexical effects of word
length, word frequency, and part of speech on fixation rates
when evaluated against the Dundee corpus.

Landing Position in a Word A range of prior work has
studied the typical landing position in words during read-
ing. It found that the landing position can be influenced by
word length and by the spaces between words (Blanchard
et al., 1984; O’Regan, 1979; Osaka, 1993; Rayner and Mor-
ris, 1992). According to Legge et al. (1997), readers tend to
locate their first fixation at the center of the word or a bit to
the left of the center. In our experiment, we replicate this re-
sult for words of length five or more on Dundee eye-tracking
corpus, illustrated in Figure 7.

Conclusions
We have described a model of human fixation locations build-
ing on the Tradeoff Hypothesis, i.e., the assumption that hu-
man reading rationally trades off accuracy of information ex-
traction with economy of reading. Our model is implemented
using modern neural network-based machine learning tech-
niques and trained using reinforcement learning with a math-
ematical formalization of the Tradeoff Hypothesis as the ob-
jective function.

Experimental results showed that our model reproduces ba-
sic features of human reading patterns both quantitatively and
qualitatively, consistently outperforming over a random base-
line. Throughout, we compared our model to E-Z Reader, a
sophisticated model of saccade generation that includes sub-
stantial machinery. Even though our model is based on rel-
atively general architectural assumptions and trained only on
unannotated text, it provided a better fit to human fixation
positions than E-Z Reader, as measured by the mean Eu-
clidean distance between human fixation position and model
predicted fixation positions. Our model also reproduced the
relationship between word frequency and fixation rate more
convincingly than E-Z Reader.

The proposed model differs from existing models of
character-level fixation decisions in two main ways. First,
following the NEAT model (Hahn and Keller, 2016, 2018), it
aims to derive reading behavior from a general rational objec-
tive function. In this respect, it also bears resemblance to the
model of Bicknell and Levy (2010), which optimizes reading
behavior for word identification, but does not provide a gen-
eral mechanism that could accommodate other reading tasks,
such as proof-reading (Schotter et al., 2014a). Second, un-
like prior models of fixations at the character level, our model
draws on contemporary neural network modeling and thus
scales to broad-coverage applicability on text and can utilize
rich knowledge of language statistics. More broadly, our re-
sults suggest that neural networks, combined with cognitively
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Figure 7: Landing positions for words with five or more character. The x-axis shows the character within the word that is
fixated, the y-axis shows the probability of fixating on a given character.

plausible training algorithms such as reinforcement learning,
can be a promising way of building scalable rational models
of language processing.

In evaluating the model, we collapsed across the 10 read-
ers in the Dundee corpus. Given that human reading exhibits
substantial individual differences, accounting for those within
a rational modeling framework is an interesting question for
future research.

In this work, we focused on predicting fixation locations,
and left modeling of the durations of those fixations to fu-
ture work. Adaptations of surprisal (Hale, 2001; Levy, 2008)
computed using character-level language models (e.g. Kim
et al., 2016; Hahn et al., 2019) might be useful component for
predicting durations for individual character-level fixations.

As described in the Introduction, our model makes a set of
simplifying assumptions. First, following much prior work
modeling reading, we assumed that the goal of reading was
simply to recognize the words read, whereas human read-
ers arguably aim for more high-level text comprehension
(Kintsch, 1988). As the Tradeoff Hypothesis as implemented
using neural networks can be equally applied to higher-level
comprehension tasks (Hahn and Keller, 2018), extending the
character-level modeling described here to other tasks, and to
accounting for the impact of the reading task on fixations by

changing the objective function, will be an interesting task
for future research. Second, our model makes the simplifying
assumption that saccades in reading always go forward. How-
ever, approximately 10% to 25% of saccades jump backwards
(regressions, Rayner et al. 2012). A more complete reading
model should capture this behavior. An important direction
for future research is therefore to extend our model to also
incorporate regressive saccades.
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