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Log-Concave Probability and Its Applications
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Abstract In many applications, assumptions about the log-concavity of a
probability distribution allow just enough special structure to yield a work-
able theory. This paper catalogs a series of theorems relating log-concavity
and/or log-convexity of probability density functions, distribution func-
tions, reliability functions, and their integrals. We list a large number of
commonly-used probability distributions and report the log-concavity or
log-convexity of their density functions and their integrals. We also discuss
a variety of applications of log-concavity that have appeared in the litera-
ture.

1 Introduction

A function f that maps a concave set into the positive real numbers is said
to be log-concave if the function In f is concave and log-convez if In f is a
convex function. The log-concavity or log-convexity of probability densities
and their integrals has interesting qualitative implications in many areas of
economics, in political science, in biology, and in industrial engineering.
This paper records and proves a series of related theorems on the log-
concavity or log-convexity of univariate probability density functions, cumu-
lative distribution functions, and their integrals. We examine the invariance
of these properties under integration, truncations, and other transforma-
tions. We relate the properties of density functions to those of reliability
functions, failure rates, and the monotonicity of the “mean-residual-lifetime
function.” We define the “mean-advantage-over-inferiors function” for trun-
cated distributions and relate monotonicity of this function to log-concavity
or log-convexity of the probability density function and its integral. We
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2 Mark Bagnoli, Theodore C. Bergstrom

examine a large number of commonly-used probability distributions and
record the log-concavity or log-convexity of density functions and their in-
tegrals. Finally, we discuss a variety of applications of log-concavity that
have appeared in the literature.

Most of the results found in this paper have appeared somewhere in the
literature of statistics, economics, and industrial engineering. The purpose
of this paper is to offer a unified exposition of related results on the log-
concavity and log-convexity of univariate probability distributions and to
sample some applications of this theory. An earlier draft of this paper has
been available on the web since 1989. The current version streamlines the
exposition and proofs and makes note of several related papers that have
appeared since 1989.

2 From Densities to Distribution Functions
2.1 Log-concavity begets Log-concavity

The results in this paper include a bag of tricks that can be used to iden-
tify log-concave distribution functions when more straightforward methods
fail. Many familiar probability distributions lack closed-form cumulative
distribution functions, but have density functions that are represented by
simple algebraic expressions. Often, straightforward application of calculus
determines whether the density function is log-concave or log-convex. Con-
veniently, it turns out that log-concavity of the density function implies log-
concavity of the cumulative distribution function. Moreover, log-concavity
of the c.d.f. is a sufficient condition for log-concavity of the integral of the
c.d.f. We do not have to look far to find a useful application of this result.
The cumulative normal distribution does not have a closed-form represen-
tation and direct verification of its log-concavity is difficult. But the normal
density function is easily seen to be log-concave, since its natural logarithm
is a concave quadratic function.

The fact that log-concavity is passed from functions to their integrals was
proved by Prekopa [32]. Prekopa finds this result as a corollary of a general
theorem that requires a great deal of mathematical apparatus. Theorem 1,
which applies to the case of differentiable functions of a single real variable
this result has a simple calculus proof which we present in the Appendix.!

Theorem 1 Let f be a probability density function whose support is the
interval (a,b), and let F' be the corresponding cumulative distribution func-
tion:

— If f is continuously differentiable and log-concave on (a,b), then F is
also log-concave on (a,b).

! The proof used here is due to Dierker [15]. There is a useful extension of The-
orem 1 to higher dimensions. Prekopa shows that if f is a log-concave probability
density function defined on R", then the “marginal density functions” will also
be log-concave. See also An [4]
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— If F is log-concave on (a,b), then the left hand integral G, defined by
G(x) = fax F(x), is also a log-concave function on on (a,b).

The following corollary of Theorem 1 is often useful for diagnosing log-
concavity.

Corollary 1 If the density function f is monotone decreasing, then F is
log-concave and so is its left hand integral G.

Proof: Since F'is a c.d.f., it must be that F' is monotone increasing. There-
fore if f is monotone decreasing, it must be that f(z)/F(x) is monotone
decreasing. But ( ;ﬁ(é)) ) = (In F(x))". Therefore if f is monotone decreasing,

F must be log-concave. Log-concavity of G follows from Theorem 1 O

2.2 Log-convezity (Sometimes) Begets Log-convexity

Log-convexity, unlike log-concavity, is not always inherited by the cumu-
lative distribution function F' from the density function f. Table 3 below
lists examples of distribution functions that have strictly log-convex den-
sity functions and strictly log-concave distribution functions. But there is
an easily diagnosed subset of log-convex density functions whose cdf’s must
also be log-convex. Let us define f(a) = lim,_,q f(z). Then if f(a) =0, the
cdf F will inherit log-convexity from the density function.? Moreover, if F
is log-convex, the left hand integral G, defined so that G(z) = [ F(t)dt, is
also log-convex. A proof appears in the appendix.

Theorem 2 Let [ be a probability density function whose support is the
interval (a,b), and let F' be the corresponding cumulative distribution func-
tion:

— If f is continuously differentiable and log-convex on (a,b), and if f(a) =
0, then F is also log-convez on (a,b).

—If F is log-convex on (a,b), then the left hand integral G, defined by
G(z) = [ F(), is also log-convex on (a,b).

3 From Densities to Reliability Functions
3.1 Reliability Theory

Reliability theory is concerned with the time pattern of survival probability
of a machine or an organism.? Let us consider a machine that will break

2 Mark Yuying An [4] showed that F inherits log-convexity from f if a = —oo0.
An’s observation follows from our result, since for f to be a probability density
function it must be that f(—oo) = 0.

3 A thorough and interesting treatment of reliability theory is found in Barlow
and Proschan [7].
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down and be discarded at some time in the interval (a,b). The survival
density function f is defined so that f(z) is the probability that a machine
breaks down at age x. The probability that the machine breaks down be-
fore reaching age x is given by F'(x), where F' is the cumulative distribution
function defined by F(x) = [ f(t)dt. The reliability function, (also known
as the survival function) F, is defined so that F'(z) = 1 — F(z) is the prob-
ability that the machine does not break down before reaching x. It follows
from the definitions that F(x) = flb f(t)dt. The conditional probability that
a machine which has survived to time z will break down at time x is given
by the failure rate (also known as the hazard function), which is defined by
r(x) = f(z)/F(x). Let us also define a function H which is the right hand

integral of the reliability function, so that H(z) = f; F(t)dt.

3.2 Reliability Functions Inherit Log-concavity

Theorem 3 mirrors Theorem 1 by establishing that log-concavity is inher-
ited by right-hand integrals as well as by left-hand integrals. According to
Theorem 3, if the density function is log-concave, the reliability function, as
well as the cumulative distribution function, will be log-concave. Further-
more, log-concavity of the reliability function is inherited by its right-hand
integral.

Theorem 3 Let f be a probability density function whose support is the
interval (a,b), and let F' be the corresponding reliability function:

— If the density function f is continuously differentiable and log-concave
on (a,b), then F is also log-concave on (a,b).

— If F is log-concave on (a,b), then the right hand integral H of the re-
liability function, defined by H(x) = ff F(t)dt, is also log-concave on
(a,b).

Corollaries 2 and 3 are useful consequences of Theorem 3.

Corollary 2 If the density function f is log-concave on (a,b), then the fail-
ure rate r(x) is monotone increasing on (a,b).

Proof:  The failure rate is r(z) = f(z)/F(z) = —F'(z)/F(x). From The-
orem 3, it follows that if f is log-concave, then F' is also log-concave, and
hence F'(z)/F(x) = —r(x) is decreasing in z, so that r(z) is increasing in
xz. O

Corollary 3 If the density function f is monotone increasing, then the re-
liability function, F, is log-concave and the failure rate is monotone increas-
mng.

Proof: Since F is a reliability function, it must be monotone decreasing.
Therefore if f is monotone increasing, the failure rate f/F must be mono-
tone increasing. But increasing failure rate is equivalent to a log-concave
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reliability function, which implies that the failure rate is monotone increas-
ing and mean-residual-lifetime is monotone decreasing. O

Remark 1 The converse of Corollary 2 is not true. There exist probability
distributions with monotone increasing failure rates but without log-concave
density functions.

The “Mirror-image Pareto distribution,” which is presented later in this
paper, is an example of a distribution with monotone increasing failure rate,
but with a density function that is log-convex rather than log-concave.

3.8 Reliability Functions (Sometimes) Inherit Log-convexity

Theorem 4 does for right hand integrals what Theorem 2 does for left hand
integrals. The reliability function will inherit log-convexity from the density
function if the density function approaches zero at the upper end of the
interval (a,b).

Theorem 4 Let f be a probability density function whose support is the
interval (a,b), and let F' be the corresponding reliability function:

— If f is continuously differentiable and log-convex on (a,b) and if f(b) =
0, then F' is also log-convez on (a,b).
— If F is log-convex on (a,b), then the right hand integral H, defined by

H(x)= ff F(t)dt, is also log-convex on (a,b).

4 Log-concavity Begets Monotonicity
4.1 The Mean-Residual-Lifetime Function

In the industrial engineering literature, the mean-residual-lifetime function
MRL is defined so that M RL(x) is the expected length of time before a
machine that is currently of age x will break down. Suppose that the density
function of length of life is given by a function f with support (a,b) and the
corresponding reliability function is F'. Then the probability that a machine
which has survived to age z will survive to age t > z is f(t)/F(x). The mean
residual lifetime function is therefore given by:

10
(

dt — x.
F(x)

MRL(z) = /:t

If M RL(x) is a monotone decreasing function, then a machine will “age”
with the passage of time, in the sense that it’s expected remaining lifetime
will diminish as it gets older. This property has been studied by Muth [27]
and Swarz [37].
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4.2 The Mean-Advantage-Over-Inferiors Function

The mean-residual-lifetime function has a mirror image, which we will call
the mean-advantage-over-inferiors function.* In the case of length of life,
the mean advantage over inferiors is the difference between the age x of
a machine that has not broken down and the average age at breakdown
of the machines that it has outlasted. Suppose that the survival density
function f for machines has support (a,b). For any z and ¢, the conditional
probability that a machine broke down at age t, given that it did not survive
to age x, is f(t)/F (x). The average age at breakdown of machines that broke
down before age  is therefore [ t(f(t)/F(z))dt. The mean advantage over
inferiors of a machine that survives to exactly age x is defined to be:

o(z)=a— /aw t;g%dt.

We are particularly interested in the question of when the function é(x)
is monotone increasing in x. As we will demonstrate, this property has
important implications in the economics of information and product quality.
The application explored here is a variant of George Akerlof’s “lemons”
model, in which credible appraisal is possible but costly. [1]

4.8 Log-concavity and Monotonic Differences

One reason to be interested in log-concavity of the left hand integral of the
cumulative distribution function G(x) = [ F(t)dt and of the right hand

integral of the reliability function H(z) = f; F(t)dt is that these properties
are equivalent to monotonicity of the mean-advantage-over-inferiors and
mean-residual-lifetime functions, respectively.

Lemma 1 The mean-advantage-over-inferiors function 6(x) is monotone
increasing if and only if G(x) is log-concave.®

Proof:
Integrating

_ v
oz)==x /a tF(x)dt
by parts, we have

cF(x)— [T F(t)dt [T F(t)dt  G(z)
F(x)  F(x)  G'(x)

* We find it a bit surprising that our invidious civilization has not created a
common English word for this idea, but we haven’t been able to find such a word.

5 This result was previously reported and proved by Arthur Goldberger [19].
Goldberger attributes his proof to Gary Chamberlin.
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Therefore §(x) is monotone increasing if and only if G'(z)/G(x) is monotone
decreasing. The conclusion of Lemma 1 follows immediately from Remark 2.
O

Combining the results of Lemma 1 and Theorem 1, we have the following.

Theorem 5 The mean-advantage-over-inferiors function §(x) is monotone
increasing if either the density function f or the cumulative distribution
function F' is log-concave.

Lemma 2 The mean-residual-lifetime function M RL(x) is monotone de-
creasing if and only if H(x) is log-concave.

Proof: Integrating

MRL(z) = / Ft)dt/F(z) —

by parts and noticing that f(t) = —F’(t), one finds that

vF(a) = [{F(t)dt  —H(x)

MRL(z) = Fla) r = Hr)

It follows that M RL(x) is monotone increasing if and only if H'(x)/H (x) is
monotone decreasing. But H'(x)/H (x) is monotone decreasing if and only
if H is log-concave. 0O

Combining the results of Lemma 2 and Theorem 3, we have Theorem 6.

Theorem 6 The mean residual lifetime function M RL(x) will be monotone
decreasing if the density function f(z) is log-concave or if the reliability
function F' is log-concave.

Since F is log-concave if and only if the failure rate is increasing, the
following is an immediate consequence of Theorem 6.5

Corollary 4 If the failure rate is monotone increasing, then the mean-
residual lifetime function is monotone decreasing.

4.4 Lemons with Costly Appraisals—An Application

Consider a population of used cars of varying quality all of which must be
sold by their current owners. The current owner of each used car knows its
quality, but buyers know only the probability density function f of quality
in the population. At a cost of $¢, any used-car owner can have it credibly
and accurately appraised, so that buyers will know its actual value. There
is a large number of potential buyers, and a used car of quality x is worth
$x to any of these buyers.

5 This result is proved, in the industrial engineering literature, by Muth [27].
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*

In equilibrium for this market, there will be a pivotal quality, =*, such
that the owners of used cars of quality > x* choose to have their objects
appraised, in which case they can sell their used cars for their actual values
2 and receive a net return of $x — ¢. Owners of used cars worse than x*
will not have them appraised and will be able to sell them for the average
value of unappraised used cars, which in this case is the average value of
used cars that are no better than x*. The owner of a used car of quality
z* will be indifferent between appraising and not appraising. If the owner
of a used car of quality z* has it appraised, she will get a net revenue of

*

x* — c. If she does not have her object appraised, she will be able to sell
it for [” tf(t)/F(x*)dt. Since this owner is indifferent between appraising
and not appraising, it must be that

R N ()
T —C—/a tF(x*)dt7

or equivalently that 6(z*) = c. If the function §(-) is monotone increasing,
there will be a unique solution for the pivotal quality x*. Moreover, if ¢ is
not monotone increasing, there will be multiple equilibria for at least some
values of c. 7

5 Transformations, Truncations, and Mirror Images
5.1 Transformations

Some commonly-used distribution functions are defined by applying a sim-
pler distribution to a transformed variable. For example, the lognormal
distribution is defined on (0,00) by the cumulative distribution function
F(z) = N(In(z)) where N is the c.d.f. of the normal distribution. It hap-
pens that the normal distribution has a log-concave density function, and
the transformation function In(z) is a monotone increasing concave func-
tion. These two facts turn out to be sufficient to imply that the c.d.f. of
the lognormal distribution is log-concave. On the other hand, the density
function of the log-normal distribution is not log-concave.

Theorem 7 establishes the inheritance of log-concavity and log-convexity
under concave and convex transformations of variables.

Theorem 7 Let F' be a positive-valued, twice-differentiable function with
support (a,b) and let t be a monotonic, twice-differentiable function from
(a/,b) to (a,b) = (t(a'),t(V))) Define the function F with support (a’,b') so
that for all z € (a/, V'), F(z) = F(t(x)).

" The function &(z) must be increasing over some range, since §(a) = 0 and
d(b) > 0. Therefore if 4 is not a monotone increasing function, it will be increasing
over some range and decreasing over other ranges and hence for at least some
values of ¢ there will be multiple solutions.
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— If F is log-concave and t is a concave function, then Fis log-concave.
— If F' is log-convex and t is a convex function, then F is log-convex.

Proof: Calculation shows that (In F'(x))” is of the same sign as LCI.

F/(x)
I;((;)), and (In F(x))" is of the same si%n as F/((j)) + tt,((f)) - 1;((5)).
If ¢ is a concave function, then tt'((Z)) < 0 and therefore if F is log-

concave, it must be that I;,,,((z)) + il,/((j)) — I;((f)) < 0, which implies that F' is

log-concave.

t'(x
t'(x
it must be that 1;,((5)) + i,((:)) — l;((;)) > 0, which implies that I is log-convex.
O

Linear transformations are both concave and convex. Therefore, as a
corollary of Theorem 7, we can conclude that both log-concavity and log-
convexity are preserved under linear transformations of variables, as de-
scribed in Corollary 5. This result will be seen to have many useful appli-

cations.

)

If t is a convex function, then > 0 and therefore if F' is log-convex,

—~
N

Corollary 5

Let F be a function with support (a,b). Let t be a linear transformation from
the real line to itself and define a function E with support (t(a),t(b)) so that
F(z) = F(t(z)).

— If F is log-concave, then AF’ 18 log-concave.
— If F is log-convex, then F is log-convex.

5.2 Mirror-image Transformations

Consider a cumulative distribution function F' and support (a,b). This dis-
tribution can be used to define another cumulative distribution function
F*, with support (—b,—a), by setting F*(x) = F(—z) = 1 — F(—x). The
function F*, defined in this way will be called the “mirror-image” of F,
since the graphs of their density functions will be mirror-images, reflected
around x = 0.

Theorem 8 Let F' and F* be mirror-image cumulative distribution func-
tions:.

— If the density function for either F or F* is log-concave (log-conver),
then so is the density function for the other.

— The c.d.f. for one of these functions is log-concave if and only if the
reliability function of the other is log-concave.

— The mean-advantage-over-inferiors function for F* is increasing (de-
creasing) if and only if the mean-residual-lifetime function for F is de-
creasing (increasing).
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Proof:

Since F*(z) = 1 — F(—z) = F(—x), it must be that F*'(z) = F'(x).
Therefore where f* and f are the density functions for F* and F', respec-
tively, f*(x) = f(—=) for all z. Since f*(z) = f(—=z), these two densities are
related by a linear transformation of the variable x. It follows from Corol-
lary 5 that f* is log-concave (log-convex) if and only if f is log-concave
(log-convex).

Since F*(z) = F(—x), it also follows from Corollary 5 that F* is log-
concave (log-convex) if and only F is log-concave (log-convex).

The mean-advantage-over-inferiors function for F' is monotone increas-
ing (decreasing) in x if and only if G is a log-concave (log-convex) function
of z, where G(x) = [ F(t)dt. The mean-residual-lifetime function for F*
is monotone decreasing (increasing) in z if and only if H* is log-concave
(log-convex), where H*(z) = [~ F*(t)dt. But F*(z) = F(—x), so that
H*(z) = [ F(=t)dt = [ F(t)dt = G(z). Since H*(z) = G(z), for all z,
it must be that H* is log-convex (log-concave) if and only if G is log-convex
(log-concave). O

If a probability distribution has a density function that is symmetric
around zero, then this distribution will be its own mirror-image. In this
case Theorem 8 has the following consequence.

Corollary 6 If a probability distribution has a density function that is sym-
metric around zero, then

— The c.d.f. will be log-concave (log-convex) if and only if the reliability
function is log-concave (log-convex).

— The mean-advantage over-inferiors function will be monotone increasing
if and only if the mean-residual-lifetime is monotone decreasing.

5.8 Truncations

Suppose that a probability distribution with support (a,b) is “truncated”
to construct a new distribution function in which the probability mass is
restricted to a subinterval, (a*,b*), of (a,b) while the relative probability
density of any two points in this subinterval is unchanged. If F' is the c.d.f.
of the original distribution and F™* is the density function of the truncated
distribution, then it must be that

But this means that the distribution function F* is just a linear transfor-
mation of the F. It follows that the corresponding density functions are also
linear transformations of each other, as are the left and right hand integrals
of F and F*. Applying Corollary 5, we can conclude the following.
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Theorem 9 If a probability distribution has a log-concave (log-convex) den-
sity function (cumulative distribution function), then any truncation of this
probability distribution will also have a log-concave (log-convex) density func-
tion (cumulative distribution function).

6 Log-concavity of Some Common Distributions

This section contains a catalog of information about the log-concavity and
log-convexity of density functions, distribution functions, reliability func-
tions, and of the integrals of the distribution functions and reliability func-
tions. Descriptions and discussions of these distributions can be found in
reference works by Patel, Kapadia, and Owen [30], Johnson and Kotz [22],
and Patil, Boswell, and Ratnaparkhi [31], and Evans, Hastings, and Pea-
cock [16]. None of these references deal extensively with log-concavity. Patel
et. al. report results on the monotonicity of failure rates and mean resid-
ual lifetime functions for some of the distributions that are most commonly
studied by reliability theorists.

Whatever we learn about log-concavity of distributions applies immedi-
ately to truncations of these distributions, since log-concavity of a density
function or of its integrals is inherited under truncation. 8

In the tables below, we usually describe distributions in a “standardized
form,” where the linear transformation that sets the scale and the “zero”
of random variable is chosen for simplicity of the expression. Recall from
Theorem 7 that log-concavity is preserved under linear transformations,
so that the results listed here apply to the entire family of distributions
defined by linear transformations of the random variable x in any of these
distributions.

6.1 Distributions with log-concave density functions

For distributions that have log-concave density functions, it is easy to deter-
mine the log-concavity of the distribution function and reliability function
and the monotonicity of failure rates, of mean-advantage-over-inferiors, and
of mean-residual-lifetime functions. If the density function f is log-concave,
then we know from Theorem 1 that the cumulative distribution function ¥
and the left-hand integral of the cumulative distribution function G are also

8 Reliability theorists normally concern themselves only with distributions that
are bounded from below by zero. It may therefore seem surprising that we ap-
ply the definitions of reliability theory to distributions whose support may be
unbounded from below. For our purposes, this is justified, since log-concavity is
preserved under truncations of random variables. If we find that a distribution has,
for example, a log-concave reliability function with a support that is unbounded
from below, then we know that any truncation of this distribution from below is
log-concave and has a support with a lower bound.
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log-concave. From Theorem 3 and its corollary, we know that the reliabil-
ity function F and its right-hand integral H are log-concave, and that the
failure rate (hazard function) r(z) is monotone increasing. From Theorem 5
we know that the mean-advantage-over-inferiors function §(z) is monotone
increasing, and from Theorem 6, we know that the mean-residual-lifetime
function M RL(x)is monotone decreasing.

Table 1 lists several commonly-used continuous, univariate probability
distributions that have log-concave density functions. For all of these distri-
butions except the Laplace distribution, we can verify log-concavity of the
density function f by checking that (In f(z))” < 0 for all z in the support of
f. Some distributions, such as the Weibull distribution, the power function
distribution, the beta function, and the gamma function have log-concave
density functions only if their parameters fall into certain ranges. The pa-
rameter ranges where these distributions are log-concave are indicated in
Table 1.

Table 1-Distributions with Log-concave Density Functions
(Distribution functions marked x lack a closed-form representation.)

Name of Support Density Cumulative Dist (In f(z))”
Distribution Function f(x) function F(x)
Uniform [0, 1] 1 X 0
Normal (—00,00) i —=7/2 * -1
Exponential (0, 0) e~ 1—e @ 0
LOgiStiC (—OO7 OO) ﬁ W —Qf(l’)
Extreme Value (—00,00) | e “exp{—e~"} exp{—e "} —e "
Laplace (Double _ 1|z e ifx <0 0forxz#0
Exponential) (=00, 00) 2€ l—ie™ifz>0
Power Function c—1 c 1—c
(c>1) (0,1] cx T —
Weibull c—1,_ —z° _ —x¢ l1—c c
(c>1) [0, 00) cr e 1—e (1 + cx)
Gamma (¢ > 1) [0, o) % * L
Chi-Squared L(c=2)/2 —a/2 N e
(c>2) [0, 00) 2¢/2T(c/2) 227

. 2C—1g—z2/2 % 1—c
Chi (¢ >1) [0, o0) P GRIe] — -1
Beta (v > 1, V"1 (1—z)~ L % 1-v 1-w
0> 1) [0,1] TBow) =t ar
Maxwell This is a Chi distribution with ¢ =3
Rayleigh This is a Weibull distribution with ¢ = 2

6.2 Distributions whose Density Functions are Not Log-Concave

Where the density function is not log-concave, determining the properties
of the the cumulative distribution function F', the reliability function, F',
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the mean-advantage-over inferiors function, and the mean-residual-lifetime
function is a more complicated task.

One possible outcome is that f is log-convex. As is shown by the exam-
ples below, some distributions with log-convex density functions have log-
concave c.d.f.’s, some have log-convex c.d.f.’s and some have c.d.f.’s which
are neither log-concave nor log-convex.

For some probability distribution functions, f is neither log-concave nor
log-convex but is log-concave over some interval of its support and log-

convex over another interval.

Table 2 describes several distributions that do not have log-concave den-
sity functions.

Table 2—Distributions without Log-concave Density Functions

Name of Support Density c.d.f. (In f(x))"”
Distribution Function f(x) F(x)
Power (¢ < 1) (0,1] cx T x° =
Weibull (¢ < 1) (0, 00) cat~le™" 1—e ™ (14 cxf)
Gamma (¢ < 1) (0,00) % * L
Beta ¥l (1—z)w ! 1— 1—
1 2V (o) * l-v | 1-w_
(v>lorw>1) [0,1] B(v,w) 2 T o)
. 1 2 i1 1-2x
Arc-sine [0,1] P cwsy Zsin” " (x) 2 (12%)
Pareto [1,00) Bz P71 1—az 7 (Zr1)2
Lognormal (0, 00) ﬁcf(l“ @)°/2 * oy
2 2
R 1+22 —n+1/2 _ n—x
Student’s ¢ (—00, 00) % * 1 (1—2n) nta?)?
an” " (x 2_
Cauchy (—00, 00) m i+ % Zﬁ
F distribution (0, 00) See discussion of F distribution below

Mirror-Image

Pt (~oo,=1) | pa (—a)’ ()2

Table 3 reports the log-convexity or log-concavity of density functions,
distribution functions, and reliability functions, as well as the monotonicity
of the mean-advantage-over-inferiors function §(z) and the mean-residual-
lifetime function M RL(x).
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Table 3 Properties of Distributions without Log-concave Density

Name of Density c.d.f o(x) Reliability | MRL(x)

Distribution Function Function

Power Function . . . .
log-convex | log-concave | increasing neither nonmonotonic

(0<e<1)

Weibull log-convex | log-concave | increasing log-convex deexem‘r{-ll=

%ainr:i 1) log-convex | log-concave | increasing log-convex | deereasine 7?_]

Arc-Sine log-convex | neither nonmonotonic | neither nonmonotonic

Pareto log-convex | log-concave | increasing log-convex increasing

Lognormal neither log-concave | increasing neither nonmonotonic

Student’s t neither neither nonmonotonic | neither nonmonotonic

Cauchy neither neither undefined neither nonmonotonic

Mirror-Image

Pareto log-convex | log-convex decreasing log-concave | decreasing

Beta (v > 1 See discussion of Beta distribution below

or w > 1)

F distribution See discussion of F distribution below

6.3 Remarks on Specific Distributions

The Uniform Distribution For the uniform distribution, there are simple
algebraic expressions for all of the functions 5tudied in this paper. The
mean-advantage-over-inferiors function is 6(z) = [ F(t)dt/F( F x) =z/2,
the failure rate (hazard function) is r(z) = ( )/F( ) = 1=, and the
mean-residual-lifetime function is MRL(x f Ft)dt/F(t) = (1 —

x)/2.

The Normal Distribution The normal cumulative distribution function il-
lustrates the usefulness of Theorems 1-4, since there do not exist closed-
form expression for the c.d.f. or for the functions, é(z), r(z), and M RL(z).
Thus we are able to determine that the functions 6(z) and r(x) are
monotone increasing and that M RL(z) is monotone decreasing, despite
the fact that we can not write out these functions and calculate their
derivatives.

The Extreme-Value Distribution The extreme value distribution arises as
the limit as n — oo of the greatest value among n independent random
variables. This is sometimes known as the Gumbel distribution, or as a
Type 1 Extreme Value distribution. In demography, this distribution is
known as the Gompertz distribution and is frequently used to model the
distribution of the length of human lives.

The Exponential Distribution Barlow and Proschan [7] point out that the
exponential distribution is the only distribution for which the failure
rate and the mean residual lifetime are constant. In most applications,
the exponential distribution is written with the decay parameter A. The
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failure rate is f(x)/F(x) = A. The mean residual lifetime function is
MRL(z) = fzh F(t)dt/F(x) = . If the lifetime of an object has an
exponential distribution, then it does not “wear out” over time. That
is to say, the probability of failure and the expected remaining lifetime
remain constant so long as the object “survives”.

The Laplace Distribution The Laplace density function is sometimes known
as the double exponential distribution, since it is proportional to the ex-
ponential density for positive x and to the mirror-image of the exponen-
tial distribution for negative x. For the Laplace distribution, In f(x) =
—A|z|. The derivative of In f(z) does not exist at z = 0, so that we can
not verify log-concavity from the second derivative. However, concavity
of the function —\|z| can be verified directly from the definition.

The Power Function Distribution The power function distribution has sup-
port (a,b] = (0, 1], density function f(z) = cX° !, and c.d.f. F(x) = z°.
The mean-advantage-over-inferiors function is

_ [ F(t)dt T

o) F(x) T1tc

Since (In f(z))” = <3', we see that f is strictly log-concave if ¢ > 1,

strictly log-convex if 0 < ¢ < 1, and log-linear (and hence both log-
concave and log-convex) if ¢ = 1.

If0<e<1, f(a) = f(0) = 0o and f(b) = f(1) = c. Therefore neither
Theorem 2 nor Theorem 4 applies, and we cannot use these theorems to
conclude that either F' or F' inherits log-convexity from f. In fact, we
can verify that F'is log-concave by observing that (In F'(z))"” = — < 0.
We also see by inspection that ¢(x) = {1 is monotone increasing in x.
Since F(z) = 1 — z¢, calculation shows that

_ 0 cx¢ %(1 —c— x°)
(In F(z))" = (1= z¢)2

Therefore (In F'(x))” is negative for x close to 1 and positive for z close
to 0, and hence F is neither log-concave nor log-convex. The right hand
integral of the reliability function is H(z) = Cﬁgf:;rl — z This function
is found to be neither log-concave nor log-convex. Therefore the mean-
residual-lifetime function is neither monotone decreasing nor monotone
increasing.

The Weibull Distribution The Weibull distribution has support (a,b)

(0,00) and density function,

f(x) = ca®le ™",

Calculation shows that (In f(z)) = <L — cz*~le™", and (In f(z))" =
%(1 + cz). The sign of (In f(x))"” is negative, zero, or positive, respec-
tively, as ¢ > 1, ¢ = 1, or ¢ < 1. Therefore the Weibull distribution is
log-concave if ¢ > 1, log-linear if ¢ = 1, and log-convex if ¢ < 1.
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If0<e<1, f(a) = f(0) =0 and f(b) = f(oco) = 0. Since f(b) =0, we
can conclude from Theorem 4 that F is log-convex. Therefore the failure
rate r(z) is monotone decreasing and, by Theorem 6, mean residual
lifetime is an increasing function of age.
Since f(a) # 0, we cannot conclude from Theorem 2 that F inherits log-
convexity from f for 0 < ¢ < 1. In fact, we can establish by other means
that in this case F' is log-concave, rather than log-convex. If 0 < ¢ < 1,
(In f(x)) < 0 for all > 0. Therefore f(z) is seen to be a monotone
decreasing function, and by Corollary 1, it must be that F' is log-concave,
the left hand integral G is log-concave. From Theorem 5, it follows that
d(z) is monotone increasing.

The Gamma Distribution The Gamma distribution has support (a,b) =

c—1_—x

(0,00) and density function f(z) = £ (g Calculation shows that

(Inf(z)) = =2 — 1, and (Inf(2))” = 3¢ The sign of (Inf(x))”
is negative, zero, or positive, respectively, as ¢ > 1, ¢ = 1, or ¢ < 1.
Therefore the Gamma distribution is log-concave if ¢ > 1, log-linear if
c =1, and log-convex if ¢ < 1.

For the Gamma distribution with ¢ < 1, we have f(a) = f(0) = o0
and f(b) = f(co) = 0. Since f(b) = 0, it follows from Theorem 4 that
if ¢ < 1 the reliability function F' and its right hand integral H both
inherit log-convexity from f. Since F' and H are log-convex, the failure
rate must be decreasing in x, and the mean-residual-lifetime function
must be increasing in x.

Since f(a) # 0, Theorem 2 does not establish log-convexity of the cu-
mulative distribution function F'. In fact, when 0 < ¢ < 1, we see that
(In f(z))" < 0 for all z > 0, so that f is monotone decreasing on (a,b).
It follows from Corollary 1 that the cumulative distribution function F’
is log-concave and from Theorem 1 it follows that G, the left hand inte-
gral of F is also log-concave. Theorem 5, therefore implies that §(x) is
monotone increasing.

The Chi-squared Distribution The Chi-square distribution with ¢ degrees
of freedom is a gamma distribution with parameter ¢/2. The most com-
mon application of the Chi-squared distribution comes from the fact
that the sum of the squares of ¢ independent standard normal random
variables has a chi-square distribution with ¢ degrees of freedom. Since
the gamma distribution has a log-concave density function for ¢ > 1,
it must be that the sum of the squares of two or more independent
standard normal random variables has a log-concave density function.

The Chi Distribution Since (In f(z))” = —<z* — 1, the chi distribution has

a log-concave density function for ¢ > 1.
The sample standard deviation from the sum of n independent standard
normal variables has a chi distribution with ¢ = n/2. Therefore the
distribution of the sum of two or more independent standard normal
variables is necessarily log-concave.
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The chi distribution with ¢ = 2 is sometimes known as the Rayleigh
distribution amd the chi distribution with ¢ = 3 is sometimes known as
the Mazwell distribution.

The Beta Distribution The Beta distribution has support (a,b) = (0, 1) and
density function

.’I}V_1<1 _ x)w—l

B(a,b)

Calculation shows that (In f(z))” = =% + 1=%. Therefore if v > 1 and
w > 1, then the density function is log-concave.
If v <1 and w < 1, then the density function is log-convex. But in this
case, Theorems 2 and 4 are of no assistance in determining log-convexity
of F or F, since f(a) = f(b) = co. More definite results apply for the
special case of the Beta distribution where v = w = .5, which is known
as the Arc-sine distribution and is discussed below.
If v <1 and w > 1, the density function is neither log-convex nor log-
concave on (0,1). In this case, however, the density function is mono-
tone decreasing on (0, 1), and therefore from Corollary 1 it follows that
the distribution function F' is log-concave and the mean-advantage-over-
inferiors function § is monotone decreasing.
If v > 1 and w < 1, the density function is again neither log-convex
nor log-concave. In this case, the density function is monotone increas-
ing on (0, 1), and therefore by Corollary 3, the reliability function F is
log-concave, the failure rate is monotone increasing, and mean-residual-
lifetime is monotone decreasing.

The Arc-sine Distribution The Arc-sine distribution is the special case of

fx) =

the Beta distribution where v = w = .5. The cumulative distribution
function has the closed-form expression, F(z) = Zsin™'(z). For this
distribution,
1—2z
1 " - - =
(In £ () 222(1 — 22)’

which is positive for < 1/2 and negative for x > 1/2. The Arc-sine
distribution is therefore neither log-concave nor log-convex, but is log-
convex on the interval, (0,1/2) and log-concave on the interval (1/2,0).
It follows that on the interval (1/2,1), the cumulative distribution is
log-concave and §(z) is monotone decreasing.

The Arc-sine distribution has the property that F(z) = F(1 — z). Since
1—2z < 1/2 when z > 1/2 and vice versa, it must be that on the interval
(0,1/2) F is log-concave and M RL(z) is monotone decreasing.

The Pareto Distribution For the Pareto distribution (In(f(z)) = —%
and (In f(z))” = % > 0. Thus the density function is monotone de-

creasing and log-convex for all x. Although f is log-convex, the condition
of theorem 2 does not apply (since f(a) = 3 > 0) and the c.d.f is not
log-convex. In fact, since f is a decreasing function, it follows from Corol-
lary 1 that the c.d.f, F(x), is log-concave and therefore from Lemma 1
it must also be that § is monotone increasing.
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The reliability function for the Pareto distribution is F(z) = z~°.
Therefore (In F(z))” = B/z* > 0. Therefore the reliability function

is log-convex. The right hand integral, H(z f F(t)dt, converges

if and only if 8 > 1 and in this case, H(x ) = ﬁxl 8. In this case,

(lnH(x))" = 5;21 > 0. Therefore H(z) is log-convex and the mean
residual lifetime is a decreasing function of x.

The Lognormal Distribution The log-normal distribution has support (0, o)

and a cumulative distribution function F(x) = N(In(x)) where N is the
c.d.f. of the normal distribution.

Since the normal distribution has a log-concave c.d.f., it follows from
Theorem 7, that the lognormal distribution also has a concave c.d.f.
From Theorem 5 it then follows that §(x) is increasing.

Unlike the normal distribution, the lognormal distribution does not have
a log-concave density function. The lognormal density function is

f(x) — 67(1n1)2/2.

A bit of calculation shows that

(n f(2))" = 5
x

Since Inz is negative for 0 < z < 1 and positive for > 1, it must be
that f(x) is neither log-concave nor log-convex on its entire domain, but
log-concave on the interval (0,1) and log-convex on the interval (1, 00).
The failure rate of a log normally distributed random variable is nei-
ther monotone increasing nor monotone decreasing. (Patel, et.al. [30]).
Furthermore the mean residual lifetime for the lognormal distribution
is not monotonic, but is increasing for small values and decreasing for
large values of x. (see Muth [27]). We have not found an analytic proof of
either of these last two propositions. As far as we can tell, they have only
been demonstrated by numerical calculation and computer graphics.

Student’s t Distribution Student’s ¢ distribution is defined on the entire real

line with density function
f(z) = & %) e
VnB(.5,1/2)
where B(a,b) is the incomplete beta function and n is referred to as
the number of degrees of freedom. For the ¢ distribution (In f(z))” =

—(n+ 1)(n+T)2 Therefore the density function of the ¢ distribution is

log-concave on the central interval [—/n, v/n] and log-convex on each of
the outer intervals, [—oo, —/n] and [\/n, 0o]. Although the ¢ distribution
itself is not log-concave, a truncated ¢ distribution will be log-concave if
the truncation is restricted to a subset of the interval [—/n, \/n].

We do not have a general, analytic proof of the concavity or non-concavity
of the c.d.f. of the t distribution. But numerical calculations show that
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the c.d.f is neither log-concave nor log-convex for the cases of n =1, 2, 3,
4, and 24. Since the ¢ distribution is symmetric, the reliability function is
the mirror-image of the c.d.f. Therefore if the c.d.f. is neither log-concave
nor log-convex, the reliability function must also be neither concave nor
convex.

The Cauchy Distribution The Cauchy distribution is a Student’s ¢ distri-
bution with 1 degree of freedom. It is equal to the distribution of the
ratio of two independent standard normal random variables.

The Cauchy distribution has density function f(z) = m and c.d.f
Fz)=1/2+ @ Then (In f(z))” = 72(522?1)2. This expression is

negative if |z| < 1 and positive if |z| > 1. Like the rest of the family of ¢
distributions, the density function of the Cauchy distribution is neither
log-concave, nor log-convex.

The integral [ foo F(t)dt does not converge for the Cauchy distribution,
and therefore the function G is not well-defined.

The F Distribution The F' distribution arises in statistical applications as
the distribution of the ratio of two independent chi-square distributions
with m and mo degrees of freedom. The parameters m; and ms, known
as “degrees of freedom”. The density function of an F' distribution with
my and mo degrees of freedom is

f(x) = ca ™D 4 (my fmg)x)~(mrtm2)/2

where c is a constant that depends only on m; and ms. The F' distribu-
tion has support (a,b)=(0, c0).
For the F' distribution,

(In f(2))" = =(m1/2 = 1) /a® + (m1/m2)*(m1 +m2) /2(1 +ma fmaz) 2.
If my > 2, then (In f(x))” is positive or negative depending on whether
x is greater than or less than

my—2
mi+ma

1— mi—2 '
mi+ma

Therefore the density function is neither log-concave nor log-convex
when mq > 2.

If my < 2, then the density function is log-convex. Since f(b) = f(o0) =
0, it follows from Theorem 4 that if m; < 2, the reliability function F is
log-convex and the mean-residual-lifetime function M RL(x) is monotone
increasing.

Mirror-image of the Pareto Distribution None of the examples listed so far
has a monotone increasing mean-advantage-over-inferiors function, d(z).
Indeed, we have not come across a “named” distribution that has this
property. But, according to Theorem 8, the mirror-image of a distri-
bution that has monotone increasing mean-residual-lifetime must have
monotone decreasing 6(x).

ma
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A simple probability distribution with increasing mean-residual-lifetime
is the Pareto distribution. The mirror-image of the Pareto distribution
has support (—oo,—1) and c.d.f. F(z) = (—2)~# where 3 > 0. For
B> 1, Gx) = [T F(t)dt converges and G(z) = (8 — 1)~ (—z)*F.

Then §(z) = G(2)/G'(x) = G(z)/F(z) = %5 and §'(z) = ﬁ < 0.

7 Notes on Related Literature

As far as we know, the earliest application of the assumption of log-concavity
in the economics literature is due to Flinn and Heckman [18]. Economic ap-
plications can also be found in the industrial engineering literature in the
context of reliability theory; see for example, Barlow and Proschan [7] and
Muth, [27]. A pair of remarkable papers by Caplin and Nalebuff [11], [12]
introduced Prekopa’s theorems on log-concave probability to the economics
literature and applied them to voting theory and the theory of imperfect
competition. Two useful theoretical papers by Mark Yuying An [3] and [4]
discuss properties of log-concave and log-convex probability distributions.
His paper contains several results not found here.? The main contributions
of his paper are: 1) He shows that the standard results on inheritance of
log-concavity can be established without the assumption that density func-
tions are differentiable. 2) He pays more systematic attention to results
concerning log-convexity than had been done previously. 3) He discusses
the log-concavity of multivariate distributions.

Applications to labor economics and search theory Flinn and Heckman [18]
consider a model of job search in which job offers arrive as a Poisson process
and where the wage associated with a job offer is drawn from a random
variable with distribution function F'. They show that if the right hand
integral of the reliability function, H(z) = [ (1 — F(t))dt is log-concave,
then with optimal search strategies, an increase in the rate of arrivals of job
offers will increase the exit rate from unemployment.

Heckman and Honore [21] discuss a labor market in which workers have
differing comparative advantage in each of two sectors of the economy. They
show that if the distribution of differences of skills is log-concave, then in-
comes of workers who are able to choose occupations according to compar-
ative advantage in a competitive market will be more equally distributed
than they would be if workers were randomly assigned to sectors and paid
their marginal products.

9 An generously acknowledges an early draft of this paper, which predated his
studies. In turn, our current paper has benefited from An’s work. In particular,
An’s discussion motivated us to treat the inheritance theorems for log-convex
distributions in a more systematic way. Our treatment of log-convexity is a slight
generalization of that of An.
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Applications to monopoly theory Consider a product whose consumers buy
either one unit or none at all, and suppose that F(+) is the distribution func-
tion of consumers’ reservation prices for this product. Then the quantity
demanded at price p is proportional to F'(p) = 1 — F(p) and a monopolistic
seller’s expected revenue R(p) at price p is proportional to pF(p). Compara-
tive statics is greatly simplified if the revenue function R(-) is quasi-concave.
It is easy to show that log-concavity of the reliability function F(-) implies
quasi-concavity of R(-).!1° This fact finds frequent application in the eco-
nomics literature. It is applied to the distribution of reservation demands
for houses in Bagnoli and Khanna [6] and in a study of firm takeovers by
Jegadeesh and Chowdry [13]. Segal [36] uses this assumption in his study
of an optimal pricing mechanism for a monopolist who faces an unknown
demand curve.

The assumption that willingness to pay is log-concavely distributed also
plays a central part in the theory of price-competition with differentiated
products. Dierker [15] develops foundations for a theory of price competition
with differentiated products by showing that log-concavity of the distribu-
tion of certain preference parameters implies quasi-concavity of a firm’s
profits in its own price. Caplin and Nalebuff [11] are able to establish ex-
istence and uniqueness of equilibrium under assumptions that the density
functions of the population distribution of certain preference parameters sat-
isfy assumptions that are weaker than log-concavity. Further development
of the relation between log-concavity and equlibrium in spatial markets can
be found in Anderson, de Palma, and Thisse [2].

Fang and Norman [17] have discovered an important application of log-
concave probability distributions to the theory of commodity bundling.
They show that if a monopolist sells several goods and if each consumer’s
demand for any one of the bundled goods is uncorrelated with his demand
for the others, then it will be more profitable for the seller to bundle these
goods rather than sell them separately under the following conditions: a) the
mean willingness to pay for each good exceeds marginal cost of that good b)
the probability density of willingness to pay for each good is log-concave. It
is well understood (see Armstrong [5]) that in the limit as bundles get large
(and demands are independent), the distribution of average willingness to
pay becomes highly concentrated about the mean willingness to pay and
thus a bundling monopolist can capture almost all of consumers’ surplus.
Fang and Norman note that in order to ensure that bundling is profitable
when only a small number of independently demanded commodities is avail-
able, one needs a stronger convergence result than the law of large numbers.
The desired property is that the probability that the sample mean deviates
from the population mean by a specified amount is monotonically decreas-
ing in sample size. Not all probability distributions have this property, but

10 In fact, as Caplin and Nalebuff [11] point out, quasi-concavity of the revenue
function is implied by the condition that 1/F(p) is a convex function of p, a
condition which is weaker than log-concavity.
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using a theorem of Proschan [33], Fang and Norman show that if the density
function is log-concave, then the sample means converge monotonically as
required.

Mechanism design theory With games of incomplete information, it is cus-
tomary to convert the game into a game of imperfect, but complete, infor-
mation by assuming that an opponent of unknown characteristics is drawn
from a probability distribution over a set of possible “types” of player. For
example, in the literature on contracts, it is assumed that the principal does
not know a relevant characteristic of an agent. From the principal’s point
of view the agent’s type is a random variable, with distribution function,
F. Tt is standard to assume, as do Laffont and Tirole [23] or Corbett and
de Groote [14] that F is log-concave. This assumption is required to make
the optimal incentive contract invertible in the agent’s type and thus to
ensure a separating equilibrium. In the theory of regulation, the regulator
does not know the firm’s costs. Baron and Myerson [8] show that a sufficient
condition for existence of a separating equilibrium is that the distribution
function of types is log-concave. Rob [35] in a study of pollution claim set-
tlements, Lewis and Sappington [24] in a study of regulatory theory, and
Riordan and Sappington [34], in a study of government procurement, use
essentially the same condition.

Log-concavity also arises in the analysis of auctions. Myerson and Sat-
terthwaite [28], Matthews[26], and Maskin and Riley[25], impose conditions
that are implied by log-concavity of the distribution function in order to
characterize efficient auctions.

Applications to political science and law Many results from the theory of
spatially differentiated markets have counterparts in the theory of voting
and elections. An important paper by Nalebuff and Caplin [12] introduces
powerful mathematical results that generalize the inheritance theorems for
log-concave distributions and apply these concepts to voting theory and to
the theory of income distribution. Weber [40] uses the assumption that in-
dividuals have single-peaked preferences and that the distribution of ideal
points among individuals is log-concave to show the existence and unique-
ness of equilibrium in a theory of “hierarchical” voting, where incumbents
act as Stackelberg leaders with respect to potential entrants. primary elec-
tions are followed by general elections. Haimanko, LeBreton, and Weber [20]
use similar assumptions to analyze equilibrium in a model where central gov-
ernments use interregional redistribution to prevent succession of subgroups
with divergent interests.

Cameron, Segal and Songer [10] study the transmission of information in
a hierarchical court system. Their model has a lower court and a high court.
The lower court hears the case, learns information that will not be directly
available to the high court, and makes a decision. The high court’s utility
function differs from the lower court’s and the high court tries to infer what
the lower court learned from the decision it made. The high court must
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decide whether to incur the costs of reviewing the lower court’s decision.
There is a close parallel in logical structure to that found in the mechanism
design literature.

Costly signalling As noted in Theorem 1, the mean-advantage-over-inferiors
function &(x) is increasing if and only if the left hand integral of the c.d.f.
function is log-concave. The assumption that the distribution of quality
has this property plays a critical role in theories of costly signalling and
has found a variety of applications. Bergstrom and Bagnoli [9] develop a
marriage market model in which there is asymmetric information about
the quality of persons as potential marriage partners and where quality is
revealed with the passage of time. In this model there is a unique equilib-
rium distribution of marriages by age and quality of the partners if §(z) is
increasing.

In Verrecchia [38], [39], a manager who wishes to maximize the market
value of a firm must decide whether to incur a proprietary cost to disclose
his information about the firm’s prospects. Thus, the manager compares
the market’s expected value of the firm given his disclosure (less the cost
of the disclosure) to the market’s expected value of the firm given that
the manager chooses to not disclose his private information. The resulting
theory is essentially the same as that illustrated in section 4.4 of this paper.

Noldeke and Samuelson [29] explore an evolutionary model in which
males engage in costly signaling (as exemplified by the peacock’s tail) to
convince females that they are superior mates. The authors ask whether
there can be a costly signaling equilibrium if females care about the net value
of males after they have paid the cost of their signals. They assume that
females choose from among n competing males. Where F' is the cumulative
distribution function of initial male quality, it turns out there exists an
equilibrium with costly signaling if and only if the right hand integral of
Fn=1is a log-concave function. A sufficient condition for this function to
be log-concave is that the distribution function F' is log-concave.

8 Appendix—Proofs of Inheritance Theorems
8.1 Proof of Theorems 1 and 2

We apply two Remarks based on elementary calculus to prove Lemma 3,
from which Theorems 1 and 2 are almost immediate.

Remark 2 A continuously differentiable function f : ® — R is log-concave
[ ()
)

log-convex) if and only if HCIRTN non-increasing (non-decreasing) function
f(
of z in (a,b).

Proof: 'The function In f is concave (convex) if and only if

(i f(2))" = 5]
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is non-positive (non-negative) for all z in (a,b). O

Remark 3 Where F(z) = [7 f(t)dt, the function F is log-concave (log-
convex) if and only if f’(z)F(z) — f(2)? is non-positive (non-negative) for

all z in (a,b).

Proof: The function In F' is concave (convex) if and only if the expression

T "2)F(z) — f(x)?
(1@@))//%(?&) _ ['(@)F(z) — f(x)

is non-positive (non-negative) for all « in (a,b). O

Lemma 3 Let f be a continuously-differentiable function, mapping the in-
terval (a,b) into the positive real numbers, let F(x) = [ f(t)dt for all x in
(a,b), and define f(a) = lim,_, f(x). Then:

— If f is log-concave on (a,b), then F is also log concave on (a,b).
— If f is log-convex on (a,b) and if f(a) =0, then F' is also log convezr on

(a,b).

Proof: If f is log-concave, then for all z € (a,b),

f'(x)
f(z)

ro) =28 [ o< [ L 50a - [ 5w - -

where the inequality follows from Remark 2. Since f(a) > 0, it follows that

and therefore

From Remark 3 it follows that F' is log-concave.
Reasoning similar to that of the previous paragraph leads to the conclu-
sion that if f is log-convex and if f(a) = 0, then

It follows that f’(z)F(z) — f(z)? > 0, and then from Remark 3, it follows
that F' is log-convex. 0O
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8.2 Proof of Theorems 8 and 4

We now apply Remarks 2 and 4 to prove Lemma 4, from which Theorems 3
and 4 are almost immediate.

Remark 4 Where F(z) = f; f(t)dt, the function F is log-concave (log-
convex) if and only 1f f (2)F(z) + (m)2 is non-negative (non-positive) for
all z in (a,b).

Proof: The function In F' is concave (convex) if and only if the expression

o d (@) f@F@ T @)
mF@) =z () =T 0

is non-positive (non-negative) for all = in (a,b). O

Lemma 4 Let f be a continuously-differentiable functwn mapping the in-

terval (a,b) into the positive real numbers, let F(x f f(t)dt for all x in
(a,b), and define f(b) = lim,_, f(x). Then:

— If f is log-concave on (a,b), then F is also log concave on (a,b).
— If f is log-convex on (a,b) and if f(b) =0, then F is also log convexr on

(a,b).

Proof: 1If f is log-concave, then for all x € (a,b),

! ! b opr b
P p) = L2 L8 0= [ roa = 10)- s
where the inequality follows from Remark 2. Since f(b) > 0, it must be that

') & _ ) > — (e
Foy L @) 2 f() = f(z) 2 = f(@).

Therefore f'(z)F(z) + f(z)? < 0, and from Remark 3 it follows that F is
log-concave.

Reasoning similar to that of the previous paragraph shows that if f is
log-convex and if f(b) = 0, then
f'(@)

F(x) < f(b) — f(x) = —f(x).
@) () < f(b) — f(x) (z)
It follows that f'(z)F(z) + f(z)? <0, and from Remark 3, it then follows
that F' is log-convex. 0O
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