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Record- breaking summer forest fires have become a regular occurrence in California. 
Observations indicate a fivefold increase in summer burned area (BA) in forests in 
northern and central California during 1996 to 2021 relative to 1971 to 1995. While 
the higher temperature and increased dryness have been suggested to be the leading 
causes of increased BA, the extent to which BA changes are due to natural variability or 
anthropogenic climate change remains unresolved. Here, we develop a climate- driven 
model of summer BA evolution in California and combine it with natural- only and 
historical climate simulations to assess the importance of anthropogenic climate change 
on increased BA. Our results indicate that nearly all the observed increase in BA is 
due to anthropogenic climate change as historical model simulations accounting for 
anthropogenic forcing yield 172% (range 84 to 310%) more area burned than simula-
tions with natural forcing only. We detect the signal of combined historical forcing on 
the observed BA emerging in 2001 with no detectable influence of the natural forcing 
alone. In addition, even when considering fuel limitations from fire- fuel feedbacks, a 3 
to 52% increase in BA relative to the last decades is expected in the next decades (2031 
to 2050), highlighting the need for proactive adaptations.

anthropogenic climate change | forest fires | California

Over the past 50 y, the area burned by summer wildfires in California has been increasing 
(1). The 10 largest California wildfires all happened in the last 20 y, five of which occurred 
in 2020 and eight after 2017 (2). Besides their immense environmental impacts, these 
fires have also had widespread negative impacts on human health and mortality and 
numerous socioeconomic consequences (3–5).

Recent changes in forest wildfire regimes across the western United States (1, 6–11) 
are a consequence of complex interactions among climatic and nonclimatic drivers. A 
number of mechanisms linking climate change to wildfires have been suggested, including 
below- average precipitation (12–14), higher spring temperatures and low spring snowpack 
(8, 12), hotter summer temperatures and larger vapor pressure deficit (VPD; 12, 15–17), 
more frequent hot temperature extremes (18), and a decrease in the number of rainy days 
during the fire season (19). Nonclimatic factors that have been implicated in changing 
wildfire characteristics include land management that has facilitated fuel buildup which 
favors increased burn severity as well as both increased susceptibility of California’s aging 
power grid to extreme weather and increased development in fire- prone areas that changes 
ignition patterns and fire management (3, 20–29). However, beneath these “external” 
factors, natural climate variability also influences the occurrence and severity of forest 
wildfires, creating a noise that can mask the signal of anthropogenic impacts on wildfire 
changes (30–32).

While understanding and quantifying the relative roles of these individual drivers is of 
societal importance, rigorous quantification of California’s wildfire increases attributable 
to anthropogenic climate change has been challenging. Important steps in this direction 
have been made by attributing the anthropogenic impacts on meteorological variables 
known to be of importance for wildfires or fire risk indices (for example, VPD; 1, 6, 31). 
Abatzoglou and Williams (6) and Williams et al. (1) used climate model simulations from 
the fifth phase of the Coupled Model Intercomparison Project (CMIP5; 33) to assess the 
impact of anthropogenic forcing on increased forest fire activity in the western United 
States and California, respectively. These studies estimate the role of anthropogenic climate 
change on observed fire record by removing a long- term low- pass filtered time series from 
climate models from observed climate data to approximate a counterfactual observational 
record that does not include the influence of anthropogenic forcing. However, in doing 
so, these approaches do not faithfully account for the natural climate variability as in 
standard attribution studies (see e.g., refs. 31 and 34–37). Instead, using historical 
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simulations with realistic anthropogenic forcings and simulations 
with natural climate forcings only can help to better partition 
temporal variations into internally generated and externally forced 
components. Such a formal attribution effort is needed to establish 
the degree to which anthropogenic climate change and natural 
climate variability have contributed to the increases in burned area 
(BA) in Californian forests.

Increased temporal coverage of fire datasets by the California 
Department of Forestry and Fire Protection’s Fire and Resource 
Assessment Program (FRAP) (https://www.fire.ca.gov/what- we- do/ 
fire- resource-  assessment- program), covering the period 1971 to 
2021 (SI Appendix, Table S1), comprehensive long- term meteor-
ological observations, and a large number of state- of- the- art cli-
mate simulations developed for climate change attribution and 
detection studies provide an invaluable resource for investigating 
the impacts of anthropogenic climate change on wildfire. In this 
study, we seek to formally attribute the role of anthropogenic 
climate change on forest fire BA in California and estimate the 
time when the statistically significant signal of climate influence 
emerges. We first derive a climate- fire model and run it with the 
climate data from the Detection and Attribution Model 
Intercomparison Project (DAMIP; 36), an initiative within the 
Coupled Model Intercomparison Project Phase 6 (CMIP6; 38). 
We utilize two sets of simulations: CMIP6- ALL (consisting of 
spliced historical and SSP2- 4.5 scenario runs, that contain 
all- forcings of the recent past) and CMIP6- NAT (consisting of 
hist- nat experiments containing natural- only forcing). Our 
climate- fire model is derived using summer forest BA data for the 
period 1971 to 2021 and the corresponding climate data. In addi-
tion to quantifying the impacts of anthropogenic climate change 
on forest fires in California since 1971, we complete our analysis 
by exploring possible future evolutions of California’s forest BA 
during 2031 to 2050 considering a large suite of global climate 
models and several different versions of climate- fire models under 
different climate change scenarios (Materials and Methods).

Results

Climate- Fire Model. To evaluate the impacts of past climate trends, 
we first build a model describing the climate- fire interactions over 
the period 1971 to 2021. We fit all possible regression models 
considering the logarithm of summer (May to September) forest 
fire BA and all the potential predictors (maximum temperature, 
precipitation, and VPD, aggregated over different time windows) 
together or individually through a leave- one- year- out cross- 
calibration. The best model, among the different combinations 
and temporal aggregation of the predictors considered, is the one 
that considers only the monthly mean of daily maximum near- 
surface air temperature (TSMAX) averaged over the period from 
spring to summer (April to October; see Materials and Methods).

This is also reflected by the correlations between log(BA) and 
the different climate variables (SI Appendix, Table S2). Specifically, 
climatic drivers of fuel aridity (high TSMAX, high VPD, and pre-
cipitation deficit) are positively related to BA, consistent with 
interannual climate- BA relationships in biomass- rich regions 
where fuel abundance is less limiting (38, 39). SI Appendix, 
Table S2 also shows that BA exhibits a stronger correlation with 
TSMAX or VPD (between 0.71 and 0.84 depending on the varia-
bles/aggregation windows) than with precipitation (−0.49 to 
−0.36), confirming previous studies in primarily flammability- 
 limited regions (see e.g., refs. 1 and 6). This may be explained 
since little precipitation falls in this region in the spring to summer 
months (around 22% of the total annual precipitation amount) 
and also since TSMAX and VPD are better proxies for aridity than 

precipitation as drier atmospheric conditions affect the fuel mois-
ture content of live and dead trees, affecting fuel availability (40).

Importantly, correlations between climate variables can hamper 
model development. Including dependent predictors can lead to 
model overfitting; conversely, excluding some determinants can 
omit important effects of climate on fires. SI Appendix, Table S3 
reports the correlations among TSMAX, VPD, and precipitation. 
There is a high correlation (between 0.90 and 0.95 depending on 
the aggregation windows) between TSMAX and VPD due to the 
exponential Clausius–Clapeyron effect of temperature on satura-
tion vapor pressure. In addition, TSMAX and VPD are negatively 
related to precipitation (correlation coefficients ranging between 
−0.67 and −0.50) as dry conditions induce near- surface moisture 
deficits, amplifying sensible heating, and consequently elevating 
surface air temperatures and evaporative demand (41). Thus, one 
variable effect on fires may be entrained in the correlation between 
BA and the other variable. For this reason, we present the out-
comes obtained both using the TSMAX- BA model and the model 
that takes into account the effects of precipitation.

Fig. 1A shows the strong relationship between log(BA) and 
TSMAX. Indeed, the correlation between these two variables is 0.84 
(P- value < 0.01). Importantly, the partial correlation between 
log(BA) and TSMAX, controlling for the co- occurring effects of 
precipitation, remains strong and significant (0.81, P < 0.01). 
Fig. 1A also indicates that the observed BA displayed a striking 
increase: in the second half of the study period, i.e., over the years 
1996 to 2021, the BA shows a fivefold increase compared to the 
period 1971 to 1995 (1,710 km2 versus 361 km2 annual averages). 
At the same time, TSMAX increased by around 0.8 °C (23.3 °C 
versus 22.5 °C). It is worth noting that the two seasons with the 
greatest BA values, i.e., in 2020 and 2021, coincide with the two 
highest temperature values. Fig. 1B, comparing observed and pre-
dicted BA, confirms that our simple regression model provides 
skillful out- of- sample 10- fold predictions of the influence of cli-
mate variability on BA. An ensemble of the 10,000 out- of- sample 
predictions has been used to demarcate the uncertainty bands, 
defined by the 2.5th and the 97.5th percentiles. The correlation 
of the data with the out- of- sample 10- fold predictions (r = 0.82, 
P- value < 0.01) indicates an accurate model performance, while 
the variance explained by the in- sample model amounts to about 
71%. The exponential relationship between BA and TSMAX means 
that a one- degree increase in TSMAX is associated with a 222% 
(160 to 294%) increase in BA.

Precipitation should have played some role in regulating recent 
fire activity and is also projected to change in the future. However, 
in the case of our TSMAX- BA model, the impact of precipitation 
is not obvious since it is implied indirectly, through its impact on 
temperature. For this reason, we also consider a second model that 
includes the direct effect of precipitation. First, we minimize the 
impact of precipitation on TSMAX by creating a regression model 
that links precipitation to temperature and use this model to adjust 
the observed TSMAX values. Subsequently, we formulate a BA 
model using precipitation and the adjusted TSMAX values as pre-
dictors. In this case, both variables are statistically significant in 
explaining the variability of fires, and the importance of adjusted 
TSMAX is larger than the precipitation one (SI Appendix, Fig. S2).

To further evaluate potential nonstationarity in the climate- fire 
relationship that can occur due to exogenous determinants, we 
demonstrated that models built using various subsets of the data, 
or considering detrended fire and climate data, return statistically 
indistinguishable regression parameters suggesting a limited influ-
ence of nonclimatic factors in modulating climate- fire relation-
ships during the study period (SI Appendix, Fig. S2). We train a 
model based on the first (1971 to 1995) and second (1996 to 
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2021) halves of the studied period and find that the regression 
coefficient did not change significantly. Similar results were 
obtained by training the model with the 25 coldest or hottest years 
(SI Appendix, Fig. S2). These tests support fuel aridity (using 
TSMAX or precipitation and adjusted TSMAX as a proxy) as the 
leading driver of the interannual variability and trends in forest 
fire BA in California during 1971 to 2021 and suggest that this 
model can be used for attribution assessments and offer predictive 
utility. Forest fires are affected by many interrelated aridity varia-
bles besides TSMAX or precipitation and adjusted TSMAX. In this 
study, these variables are not assumed to be the only factor that 
affects fire activity but are instead simply treated as a proxy of fuel 
aridity. In particular, warming is a key driver of the speed at which 
both live and dead fuels dry out, and thus of fuel aridity and 
flammability. These findings build upon the previous studies that 
found a strong relationship between BA and aridity metrics in 
forested regions in the western United States (see e.g., refs. 1, 14, 
39, and 42).

These findings strongly indicate that the observed increase in 
BA was primarily due to increased fuel aridity and not due to 
simultaneous variations in nonclimate factors such as human 
effects on ignitions, fire suppression, or by altering land cover 
(similarly to the conclusions by refs. 1 and 42). Our results suggest 
that changes in human environmental factors, including changes 
in biomass and fire management practices during the period of 
record, did not significantly affect the stability of the climate- fire 
relationship at the scales analyzed here. For instance, we assess the 
solidity of fire‐climate relationships during 1971 to 2021 by com-
paring regression statistics based on only data from 1971 to 1995 
versus 1996 to 2021 (SI Appendix, Fig. S2). Similar statistical 
relationships for both periods strongly suggest that nonclimate 
factors did not cause a change in the fire–climate relationship 
during the study period. This does not mean that nonclimate 
drivers had no influence on the contemporary BAs. Contrarily, 
the twentieth- century buildup of fuels due to fire suppression over 
the past century (see e.g., refs. 20, 22, 24, and 25) may have 
influenced the fire–climate relationship in general, heightening 
the mean state of modern- day forest- fire extent and sensitivity to 
aridity (20, 21, 23, 24). Thus, although consequences of human 
activities are apparent in multicentury assessments of fire activity 
(22, 26, 27), anthropogenic modification in background condi-
tions such as fuel availability throughout our relatively short study 

period does not emerge as the main driver for the increased in BA 
during 1971 to 2021.

Attribution of Wildfire BA Changes. To quantify the impacts of 
anthropogenic climate change on California’s forest fire area, we 
employ the simulations from the DAMIP initiative (36), specifically 
designed for detection and attribution studies. We run the climate- 
fire model with the output from climate model simulations using 
historical forcing that includes both anthropogenic and natural 
forcing (consisting of spliced simulations of historical “hist” 
and future “SSP2- 4.5” climate experiments, covering the period 
1971 to 2021, hereafter referred to as CMIP6- ALL) and using a 
counterfactual scenario driven by natural forcing alone (“hist- nat”; 
CMIP6- NAT hereafter). This counterfactual scenario simulates 
the climate in a world without anthropogenic climate change. A 
detailed description of the models used is given in the Materials 
and Methods section. Our assessment combines both the statistical 
uncertainty associated with the climate- fire models, by using 
10,000 bootstrap replications, and the climate model uncertainty, 
by using simulations from different models DAMIP, and internal 
variability uncertainty, by using different realizations of the same 
model (Materials and Methods).

We found that observed changes in TSMAX and VPD fall within 
the range of CMIP6- ALL trajectories and not CMIP6- NAT 
(SI Appendix, Fig. S3). The observed TSMAX increase of 0.82 °C 
between the first (1971 to 1995) and second (1996 to 2021) halves 
of the studied period is consistent with the change for the 
CMIP6- ALL experiments (+0.96 °C, 95% CI: 0.73/1.26 °C), 
while CMIP6- NAT experiments did not show any warming (0.04 
°C, CI: −0.64/0.25 °C). Analogously, observed VPD increased by 
0.95 hPa, comparable to that of CMIP6- ALL simulations 
(0.81 hPa, CI: 0.55/0.96 hPa) but not CMIP6- NAT simulations 
(0.17 hPa, CI: −0.12/0.32 hPa). By contrast, no significant 
changes in precipitation were evident in CMIP6- ALL (−10 mm, 
CI: −37/12 mm) and CMIP6- NAT (−0.3 mm, CI: −37/25 mm) 
experiments or in the observational record (the observed change 
between the two time periods is −0.2 mm; SI Appendix, Fig. S3).

Simulated and observed BA trends over the period 1971 to 
2021 are shown in Fig. 2A. Models run with combined natural 
and anthropogenic forcings show a positive trend, similar to 
the observed one, whereas simulations with natural forcings 
alone indicate no trend in BA. We estimate the impact of 

BA

Fig. 1. (A) Time series of summer (May to September) forest fire burned area (BA, in red) and spring to summer (April to October) maximum near surface 
temperature (TSMAX; in black) from 1971 to 2021; (B) observed versus out- of- sample 10- fold predicted changes in BA. Vertical gray lines indicate 2.5th and 97.5th 
percentiles of 10,000 different predictions. Colors indicate the decade of each sample. The Inset shows a map of California with the domain of interest shaded 
in gray.
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anthropogenic climate change on BA as a relative change in BA 
in CMIP6- ALL compared to CMIP6- NAT over a given  
period (CMIP6- ALL–CMIP6- NAT)/CMIP6- NAT (Fig. 2B). 
We find that climate simulations that included both human and 
natural forcings yield 172% more BA (84/310%) during 1971 
to 2021 than models without anthropogenic forcing. Int-
erestingly, in the first half of the period studied (i.e., 1971 to 
1995), the impact of climate change is relatively small and not 
significant (+23%, CI: −36% to +71%). However, in the second 
half of the period (1996 to 2021), the impact is 320% 
(170/955%).

To quantify when and how much of the observed increase in 
BA is attributable to climate change, we next regress the multi-
model mean BA series from CMIP6- ALL and CMIP6- NAT 
against the observed BA values, starting with the time period 1971 
to 2000 and extending it by one year through 2021 (Fig. 2C). The 
resulting regression coefficients represent the scaling factors that 
are needed to reproduce the observed trends and quantify the level 
of consistency between the models and the observations. Values 
consistent with 1 and with a small uncertainty range indicate good 
agreement between the models and the observations. The scaling 
factor for CMIP6- ALL ensemble mean is close to 1 over almost 
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the entire period, suggesting that the model- based estimate of BA 
changes is consistent with observations. In addition, the scaling 
factors for CMIP6- ALL are statistically different from zero since 
2001, reflecting that we have "detected" the signal of climate 
change in the observed BA values after this year. In contrast, for 
CMIP6- NAT, the scaling factor values are not statistically different 
from zero, indicating no detectable influence of the natural forcing 
(when including more years from the last decade, the scaling factor 
values for CMIP6- NAT become more negative but still not sig-
nificant at the 95% confidence level). CMIP6- ALL and 
CMIP6- NAT simulations both feature relatively large uncertainty 
bands that, as expected, decrease as more years are taken into 
account. Their respective uncertainty bands overlap for most of 
the time periods considered; however, starting in 2018, there is a 
complete separation between CMIP6- ALL and CMIP6- NAT 
scaling factor distributions suggesting a complete dominance of 
anthropogenic over natural forcing. We conclude that the observed 
BA changes are inconsistent with internal variability or natural 
forcing alone and since 2001 can be attributed to the combination 
of anthropogenic and natural forcing from CMIP6- ALL simula-
tions. These conclusions are supported when constraining the 
analysis to the first ensemble member of each climate model 
(SI Appendix, Fig. S4) and also when considering the second 
climate- fire model that includes the precipitation effect 
(SI Appendix, Fig. S5).

Future Evolution of BA. Given the importance of anthropogenic 
climate change for the increase in forest BA in California between 
1971 and 2021, a critical question is what the future evolution of 
fires will look like with further changes in climate. The projections 
of future climate show robust temperature increase in the next 
decades: TSMAX is projected to increase by 1.4 °C (with +0.7 to 
+2.0 °C 2.5 to 97.5 percentile range) for 2031 to 2050 compared 
to 1995 to 2014 using the SSP2- 4.5 scenario and by 1.6 °C 
(+0.8 to +2.6 °C) under the SSP5- 8.5 scenario. Precipitation is 
projected to moderately decrease by −2.5 % (−16 to +11 %) using 
the SSP2- 4.5 scenario and by −3.3% (−16 to 10%) under the 
SSP5- 8.5 scenario. This temperature increase is translated by our 
TSMAX- fire model into an exponential BA increase (Fig. 3A), with 
an average annual BA for the period 2031 to 2050 of ~4,400 km2 
under SSP2- 4.5 scenario (~2,100 to ~6,900 km2) and ~5,100 km2 
under SSP5- 8.5 scenario (~2,000 to ~7,500 km2). Note that, as a 
reference, observed BA from 2002 to 2021 equals 2,037 km2. Very 
similar results have been obtained with the model that includes 
the precipitation effects (Fig. 3A).

Such a simple approximation may however not be sufficient, 
since fires remove the fuel needed for subsequent fires, leading to 
near- term fuel limitations for forest BA (42). Indeed, while our 
results over 1971 to 2021 showed stationary climate- fire relation-
ships at the scale of our analysis, abrupt reduction in forest extent 
through increased fire activity may alter such relationships. Thus, 
we further quantify how the fuel limitation resulting from this 
potential feedback may modify the future trajectory of fires in 
response to anthropogenic climate change. The dynamic models 
that include a range of feedback strengths and durations imposed 
by fire- fuel feedbacks (Materials and Methods) reduce the magni-
tude of the projected increase in forest- fire area from ~4,400 km2 
(under SSP2- 4.5 scenario) to a range from ~2,300 km2 to 
~2,800 km2, depending on the type of feedback- model (Fig. 3), 
and from ~5,100 km2 (under SSP5- 89.5 scenario) to a range from 
~2,500 km2 to ~3,100 km2. The model that takes into account 
the effects of precipitation shows a somewhat smaller increase 
(Fig. 3). In any cases, even considering the potential reduction 

due to fuel feedbacks, anthropogenic climate change provides 
substantial potential for an increase in BA, emphasizing the impor-
tance of future fire management strategies.

Discussion and Conclusions

The ongoing increase in forest fire activity in California has had 
a dramatic impact on human activities and ecosystems alike. 
Considering the historical impacts of previous wildfires and the 
bitter taste of the 2020 and 2021 all- time record fire seasons, 
this is of immense importance. Using the latest simulations 
developed for climate change attribution and detection studies 
and accounting for the uncertainties arising from the data- 
driven climate- fire model, climate models, and internal climate 
variability, we have investigated the impact of anthropogenic 
climate change on the observed increase in BA in California’s 
forests. We detect the signal of combined natural and anthro-
pogenic forcing on the observed BA starting in 2001 while 
finding the observed BA changes to be inconsistent with internal 
variability or natural forcing alone. We estimate that from 1971 
to 2021, anthropogenic climate change contributed to a +172% 
increase in BA, with a remarkable +320% increase from 1996 
to 2021. In the next decades, even when considering fuel lim-
itations from fire- fuel feedbacks, a further increase in average 
annual forest BA is expected, ranging from 3 to 52% relative 
to the mean over the past two decades 2001 to 2021, which 
also corresponds to the highest record since 1971, highlighting 
the need for proactive adaptations to limit negative impacts of 
fire to ecosystems and society.

Further work on this topic, should include additional scenarios 
for future fire management policies, land use, land cover change, 
and, eventually, future generations of climate models that integrate 
fire processes under various climate change scenarios. Our results 
show that the observed increase in BA in California’s forests is 
consistent with the anthropogenic climate change and unlikely to 
have resulted from natural variability alone. This represents an 
important step toward overall accountability of the climate change 
impacts. As the current state of knowledge suggests, and our results 
strongly support, immediate action toward mitigating the impacts 
of global warming alongside intentional proactive land manage-
ment practices that can improve the resilience of forested land-
scape to fire (43) will all be necessary.

Materials and Methods

Study Region. The study domain consists of largely forested areas in northern 
and central California (Fig. 1). This domain was defined following ref. 1, by merg-
ing the following Bailey ecoregions: “Sierra Nevada”, “Sierra Nevada Foothills”, 
“Southern Cascades”, “Klamath Mountains”, “Northern California Coast Ranges,” 
and “Northern California Coast”. The Bailey ecoregions data were obtained from 
UNEP’s World Conservation Monitoring Centre (last access 12/01/2022) at 
http://datadownload.unep- wcmc.org/?dataset=Baileys_Ecoregions_of_the_
World_1989. In this area, around three- quarters of California’s forest- fire area 
occurred during 1972 to 2018 (1).

Fire Data. BA data were obtained from the California Department of Forestry 
and Fire Protection’s FRAP for the period 1971 to 2021. This dataset provides 
fire perimeters which we clipped at the boundaries of the regions of interest. 
Then we select the forest fires by lands classified as forest or woodlands (44) and 
that have started in the 5- mo window from May to September (using FRAP field 
ALARM DATE) and the burned- area values are aggregated over these months. Note 
that around 88% of the total BA in the study region occurred in forested lands.

While the FRAP dataset represents the most comprehensive fire inventory 
for California, it is not free from uncertainties (7, 45). It contains data since 
1878, and it is considered a reasonably reliable source of information of past 

http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
http://datadownload.unep-wcmc.org/?dataset=Baileys_Ecoregions_of_the_World_1989
http://datadownload.unep-wcmc.org/?dataset=Baileys_Ecoregions_of_the_World_1989
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large fires, but it is incomplete prior to 1950 and small fires are frequently 
missed (45, 46). We constrain our analyses to 1971–201 due to the uncertainty 
in some of the earlier records and for comparisons with more modern BA data 
sources. Indeed, we also consult the Monitoring Trends in Burn Severity (MTBS; 
47) database and the data used by refs. 1 and 48. Specifically, we consider 
the BA records of ref. 1 for forest land cover type. The correlation between the 
FRAP and these datasets is provided in SI Appendix, Table S1. The correlation 
significance is estimated using bootstrap resampling, where one of the two 
variables is shuffled 10,000 times and new correlations are computed.

Observed Climate Data. We use observational datasets of monthly precipita-
tion and monthly mean of daily maximum near- surface air temperature (TSMAX) 
obtained from the National Centers for Environmental Information database 
“nClimGrid”, available at a spatial resolution of 5 km (49, 50). This data can be 
accessed at https://www.ncei.noaa.gov/data/nclimgrid- monthly/access/ (last 
access 22/11/2022).

We also consider the monthly mean VPD since ref. 1 showed that this is a key 
driver for fires in California. VPD was calculated from monthly temperature and 
dewpoint data from PRISM, available at a spatial resolution of 4 km (51). We 
used PRISM data because they provide all the variables needed to calculate the 
VPD. We used nClimgrid for precipitation and temperature since it has more strict 
record- length requirements than PRISM, making nClimgrid more appropriate 

for calculating multidecadal climate trends. In any case, the correlation of TSMAX 
calculated with the two datasets is 0.99 (P value < 0.01).

For the purpose of our analysis, climate data were spatially averaged over 
the study domain.

Climate- Fire Model Derivation. First, we calculate the correlation between 
summer (May to September) log(BA) and different climate variables (maximum 
temperature, precipitation, and VPD) aggregated over different temporal windows 
(SI Appendix, Table S2). Very similar correlations have been obtained considering 
TSMAX or VPD, with the highest value considering TSMAX aggregated over the period 
from April to October (0.84).

Then, to derive the climate- fire model, we compare models employing 
monthly mean daily maximum temperature (TSMAX) and precipitation (similarly 
to ref. 52). Prior to the analysis, the predictors are standardized by a) defining an 
anomaly by subtracting the long- term mean from the original series and by b) 
dividing the anomaly by its long- term SD. This standardization makes the coeffi-
cients of the regression model comparable with each other.

We consider all possible temporal aggregations of the predictors through a one- 
year out- of- sample calibration. Specifically, for temperature variables, we test all 
possible aggregations of multimonth series between January and October, while 
for precipitation, we also test antecedent periods starting from the previous October 
in order to capture potential mechanisms relating fuel moisture going into the fire 
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Fig. 3. Forest fire area projections using static and dynamic models. (A) Burned areas simulated from CMIP6 climate models and the static climate- fire model 
(historical forcing until 2014 and SSP2- 4.5 forcing 2015 to 2050). Model results are shown as 21- y moving averages to emphasize gradual changes rather than 
year- to- year fluctuations. Red bars are observations. (B) Time series of trailing 21- y moving average considering both static and dynamic models and (C) mean 
burned area in the period 2031 to 2050. The median is shown as a solid line; the box indicates the 25 to 75 percentile range, while the whiskers show the 2.5 to 
97.5 percentile range. The BA simulations span 10,000 different predictions × 24 GCMs.
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season. To identify the best model, we i) fit all the possible regression models con-
sidering all the potential predictors together or individually through a leave- one- 
year- out- cross- calibration; ii) calculate the significance of the individual (Pearson) 
correlations of these models through a one- tailed hypothesis test; iii) ensure that 
calculated correlations do not appear significant just by chance, by applying the 
false discovery rate method to adjust the P values of the correlation tests; iv) analyze 
the model with the highest correlation values among all the significant (adjusted P 
value < 0.01) correlations calculated in the previous steps. The most skillful model in 
predicting the May- to- September log(BA) is the one using April- to- October TSMAX and 
July- to- September precipitation. However, only the coefficient of the TSMAX predictor is 
statistically significant (P value < 0.01). SI Appendix, Fig. S2 A and B show a multire-
gression model that predicts BA from April to October TSMAX and July to September 
precipitation. The model uses different subsets of the data or detrended fire and 
climate data. Results show that only the TSMAX parameters are significant statistically, 
while the precipitation parameters are always not different from zero statistically. We 
also made another model that removed the effect of precipitation on TSMAX by using 
a linear regression of precipitation and temperature series. We used this model on 
the observed temperature record to get another estimate of how precipitation and 
this adjusted TSMAX are related to BA (SI Appendix, Fig. S2). In this case, the regression 
parameters are statistically significant (except considering the 25 coldest years for 
calibration; see SI Appendix, Fig. S2), and this model yields very similar results as 
the one that considers only TSMAX as shown in Fig. 3 and SI Appendix, Fig. S5. We also 
test whether the model improves considering an interaction term between TSMAX and 
precipitation, but the coefficient of this term is not statistically significant. Thus, in the 
following, we detail the development of the model that considers TSMAX.

Specifically, we build a data- driven, empirical model that links the changes in 
summertime (May to September) BA over California to monthly mean maximum 
temperature (TSMAX) aggregated over the period from April to October, as this is the 
temporal windows that maximize the correlation between TSMAX and BA. We also 
include the month of October for TSMAX aggregation since the FRAP fire records 
assign fires by the month they start and many of the fires in the region can con-
tinue to burn after September (generally until autumn rains limit flammability). 
The link between climate and BA is sought in the form of a log- linear stochastic 
model. In this formulation, BA is log transformed because BA has an exponential 
distribution. The simplest empirical model relating temperature in the year i to 
log(BA)i assumes a linear dependence between the variables:

 [1]

where β0 is the constant term of the regression model; the coefficient β1 weights the 
temperature dependency. The last term represents the “residuals”, i.e., the differences 
between the data and the deterministic version of the model. This is a noise term 
where �2

r
 is the variance of the stochastic component, and Wi is white noise with zero 

mean and unit variance. To estimate the β coefficients of the model, we employ a 
standard least- squares method. Following standard procedures (see e.g., ref. 53), we 
tested that the stochastic term in the model is Gaussian (through the Kolmogorov–
Smirnov test; 54), uncorrelated (through the Durbin–Watson statistic; 55) and does 
not present heteroscedasticity (through the Engle's ARCH test; 56).

The empirical model correctly reproduces the oscillations in the BA signal and 
the variance explained by the model amounts to about 71%. Bootstrap techniques 
are used to assess the significance of model parameter estimates. Specifically, we 
estimate the uncertainty of the parameters of the climate- fire model using boot-
strap resampling, where the predictand and predictor pairs are drawn randomly 
with replacement 10,000 times and new regression models are fit to the data. 
The coefficient β1 estimated fitting Eq. 1 is = 1.17 (0.96 to 1.37). Interpreting 
parameter estimates in a log- linear regression is not straightforward. For instance, 
consider increasing TSMAX by one- degree Celsius, this means that

Thus, 

or e�1 = BAnew∕BA and d 100(e�1 − 1) is the percent change in BA associated 
with a one- degree Celsius increase in TSMAX, which consists of 222% (160 to 
294%).

A stochastic component is usually introduced in empirical regression models 
to represent unresolved processes (53). Physically, the source of the stochastic 
term may account for stochastic factors like lightning outbreaks, wind events, and 
measurement errors (possibly in both BA and TSMAX variables) and is also related to 
other processes that are not accounted for by the model. A stochastic component 
such as that included in Eq. 1 is a simplified way to describe these unresolved 
processes. This component is added following these steps: i) the variance of the 
residuals is estimated; ii) an ensemble of 10,000 Gaussian, temporally uncor-
related stochastic residual time series are generated, with variance equal to that 
estimated in the previous step; and iii) the stochastic residuals are added to the 
predicted model values, generating an ensemble of 10,000 predictions, which 
include the residual stochasticity.

It is also necessary to validate the quality and robustness of statistical models 
to perform out- of- sample prediction. To this aim, a leave- 10- y- out cross- validation 
method was considered that divides the whole period into disjoint subperiods 
of 10 y (folds), and for each subperiod, the rest of the folds are used to train 
the model and to predict the corresponding 10- y subperiod (the last fold is of 
11 y as it refers to the period 2011 to 2021). This procedure is repeated for each 
fold obtaining a prediction of the whole period considering training the model 
as an independent sample. Noticeably, the difficulty in obtaining a good out- 
of- sample prediction is higher than of a pure hindcast (reproduction) in which 
both the train and test periods are the same. Fig. 1 shows that this simple model 
can be used to produce out- of- sample 10- fold predictions of the BA response to 
climatic variability (correlation of 0.82, P value < 0.01). Clearly, the linearity of 
our model limits its applicability to conditions that are not too different from the 
current ones. A linear log(BA) response cannot be assumed under all situations, 
especially in the case of fuel limitation. However, in addition to the 10- fold cross- 
validation performed, we here provide more analysis to justify the applicability 
of this empirical model (SI Appendix, Fig. S2).

Climate Models. The list of climate models used is shown in SI  Appendix, 
Tables S4 and S5. Historical and future projections of monthly mean near- surface 
daily maximum temperatures (tasmax) from the Coupled Model Intercomparison 
Project Phases 6 (CMIP6) were obtained from the User Data Gateway (https://
meteo.unican.es/udg- tap/home) of the Santander MetGroup (https://meteo.uni-
can.es). All the simulations were downloaded using the R climate4R package 
(https://github.com/SantanderMetGroup/climate4R, 57).

For the attribution analysis, we use two sets of simulations provided by the 
DAMIP under the umbrella of the CMIP6 initiative (36). Specifically, we use the 
“hist- nat” experiments that simulate the influence of natural forcing alone on the 
climate system (we call these runs CMIP6- NAT). These data cover the period until 
2020. Since these are forced simulations, and not initialized from observations, 
for most variables, most years in the natural simulations are equivalent to each 
other (the only major exception to this is for the years following large volcanic 
eruptions). So as approximation, we concatenate the “hist- nat” experiment for 
1971 to 2020 with a proxy for year 2021 using the mean of the data over the 
period 2001 to 2020. We also use the “historical” experiments (1971 to 2014) 
that simulate the influence of both human and natural forcings on the climate 
system (we call these runs CMIP6- ALL). Historical simulations with full forcings 
for 1971 to 2014 and from the SSP2–4.5 experiment for 2015 to 2021 have been 
concatenated together as stipulated by CMIP6. For the future scenario analysis, 
we use historical experiments and future scenarios (SSP2- 4.5 and SSP5- 8.5) for 
CMIP6 runs.

All the GCMs have been bilinearly interpolated to a common 1.0- degree hori-
zontal resolution grid, and, as for the climate observations, we averaged the data 
of each model over the study domain. Then, the monthly GCM data have been 
aggregated over the period April to October, and finally, we applied equidistant 
quantile mapping (58) to each series considering as reference the observed data 
described above.

Model names and ensemble numbers are listed in SI Appendix, Tables S4 and S5.  
Importantly, simply averaging all ensemble members as ensemble mean would 
bias the result toward the models with more members; thus, we first apply the 
climate- fire model to each GCM realization, and then, we average across all the 
single model runs, before averaging across all the models.

In the attribution analysis, we used 137 simulations from 12 different GCMs, all 
of which “hist- nat,” “historical,” and “SSP2- 4.5” experiments were available at the 
time of this analysis (SI Appendix, Table S4). For climate model data, VPD has been 

log (BA)i = �0 + �1 ⋅ TSMAXi + �rWi ,

log (BA)new = �0 + �1(TSmax + 1) = log(BA) + �1.

log(BA)new − log(BA) = �1,

http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
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http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
https://meteo.unican.es/udg-tap/home
https://meteo.unican.es/udg-tap/home
https://meteo.unican.es
https://meteo.unican.es
https://github.com/SantanderMetGroup/climate4R
http://www.pnas.org/lookup/doi/10.1073/pnas.2213815120#supplementary-materials
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calculated from mean minimum and maximum temperature and relative humidity 
considering all the models listed in SI Appendix, Table S4 except for the model BCC- 
CSM2- MR which does not provide all the necessary variables for calculating VPD.

In the analysis of future BA changes, we used 118 simulations from 24 differ-
ent GCMs, for which “historical,” “SSP2- 4.5,” and “SSP5- 8.5” experiments were 
available at the time of this analysis (SI Appendix, Table S5).

For the attribution analysis, we computed the impact of anthropogenic climate 
change by nesting the model of Eq. 1 with CMIP6- NAT and CMIP6- ALL output data. 
When estimating the impact of anthropogenic climate change, the TSMAX series 
(both observed and simulated) are rescaled to have the same mean value over 
the 23- y climatology centered around 1971 (1960 to 1982; similarly to ref. 37).

To reflect the joint statistical uncertainty from the climate- fire model and climate 
uncertainty arising from different GCMs, we nest Eq. 1 for each GCM, and we add 
an ensemble of 10,000 Gaussian, temporally uncorrelated stochastic residual time 
series, with variance equal to that estimated fitting Eq. 1 with observed data. With 
this approach, we generate an ensemble of 10,000 predictions × the number of 
GCMs used.

Similarly, to the attribution analysis, we calculate the future BA scenarios 
by nesting the model of Eq. 1 with CMIP6 data and generating an ensemble 
of 10,000 predictions × the number of GCMs used. This is a static model that 
does not incorporate vegetation feedbacks and assumes constant fuel extent. 
We constrain projections of the forest- fire area to 2050 recognizing the greater 
uncertainty in vegetation dynamics and human and climate trajectories after 
the midcentury. In addition, we test how fire- fuel feedbacks modify near- term 
forest- fire area using dynamic models that account for various fire- fuel feed-
backs. Specifically, we estimate fire- fuel feedbacks considering the fraction of 
forested land that is unable to carry forest fire in a given year because it has 
been altered by recent fire or through semipermanent loss of forest due to 
postfire tree regeneration failure as in ref. 42. Assuming the broad range of 
uncertainty in the fire- fuel feedbacks, we present two forms of fire- fuel feed-
back: i) moderate constant and ii) moderate fading. In the case of the constant 
feedback, the limitations due to recent fire history are constant following fires, 
while the fading feedback more heavily weights the contribution from recent 
fires, and increasingly reduces the contributions from prior years. The term 
“moderate” indicates that we consider a moderate fuel- limitation strength 

to account for potential effects of past fires. For instance, in the moderate- 
constant fuel- limitation case, the forested area ineligible to burn postfire 
equals the total recent BA. The details of these models are described in ref. 43.

Data, Materials, and Software Availability. All data used in this study are 
publicly accessible. Data access links are included in the article. Software and 
data for reproducing the results of this study are available at https://github.com/
marcoturco/2022_turco_pnas (60).
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