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Abstract

The potential consequences of global warming for ecosystem carbon stocks

are a major concern, particularly in high-latitude regions where soil carbon

pools are especially large. Research on soil and plant carbon responses to

warming are often based on short-term (<10 year) warming experiments.

Furthermore, carbon budgets from boreal forests, which contain at least 10-

20% of the global soil carbon pool, have shown mixed responses to warming.

In  this  study,  we  measured  carbon  and  nitrogen  budgets  (i.e.,  soil  and

understory  vegetation  carbon  and  nitrogen  stocks)  from  a  13-year

greenhouse warming experiment in an Alaskan boreal forest. Although there

were no differences in total aboveground + belowground pools, the carbon in

the moss biomass and in the soil organic layer significantly decreased with

the warming treatment (-88.3% and -19.1%, respectively). Declines in moss

biomass carbon may be a consequence of warming-associated drying, while

shifts in the soil microbial community could be responsible for the decrease

in  carbon  in  the  soil  organic  layer.  Moreover,  in  response  to  warming,

aboveground plant biomass carbon tended to increase while root biomass

carbon tended to decrease, so carbon allocation may shift aboveground with

warming. Overall these results suggest that permafrost-free boreal forests

are susceptible to soil carbon loss with warming. 
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Introduction

Global warming is expected to alter the amount of carbon stored in

soils and plants; however, it is unclear whether warming will lead to a net

loss or gain of carbon (C). Soil C stocks are the balance of inputs and outputs

(Melillo et al. 2011; Lu et al. 2013). The effect of warming on soil C stocks,

especially in high-latitude areas (above 60˚N) with large C pools (Dixon et al.

1994; Hobbie et al. 2000), depends on the magnitude of change associated

with these C fluxes and on their temperature sensitivity  (Knorr et al. 2005;

Sistla et al. 2013). Soil carbon losses can occur due to increased microbial

and enzyme activity (Schimel et al. 2004; Davidson and Janssens 2006). On

the other hand, soil C may increase with warming through increased litter

inputs  and  root  production (Majdi  and Ohrvik  2004;  Rinnan  et  al.  2008).

Further  complicating  predictions  of  C  gain  or  loss  under  warming  are

changes in soil moisture (Lavelle et al. 1993; Davidson et al. 2000; Saleska

et  al.  2002;  Xu  et  al.  2015).  For  example,  while  warming  may stimulate

decomposition  and  plant  production,  warming-associated  drying  may

decrease  decomposition  and  plant  growth.  This  type  of  interaction

complicates predictions of net C gains and losses (van Gestel et al. 2018). 

Determining  how  boreal  forests  will  respond  to  warming,  and

associated drying, is of particular interest. Boreal forests contain at least 10-

20% of global soil C (Jobbagy and Jackson 2000; Allison and Treseder 2011;

Pan et al. 2011), and their high latitude distribution makes them especially

vulnerable to climate change since warming in these regions is expected to
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occur  faster  (Chapin  et  al.  2000;  Shukla  et  al.  2019).  Here,  we  took

advantage  of  a  13-year  greenhouse  warming  experiment  in  an  Alaskan

boreal forest to examine aboveground and belowground C and N budgets.

Previous  studies  at this  site have shown that,  when compared to control

plots, warmed plots have reduced fungal abundance and increased fungal

diversity  (Allison  and  Treseder  2008;  Treseder  et  al.  2016).  Fungal

decomposers tend to dominate under warming and drying because of their

drought-resistant growth forms  (Barnard et al. 2013; Treseder and Lennon

2015) and their ability to decompose recalcitrant compounds (e.g., cellulose

and lignin), which may become more abundant with warming due to changes

in the plant community (Mcguire et al. 2010; Fontaine et al. 2011; Xiong et

al. 2014). Fungi tend to specialize on recalcitrant compounds that may have

higher  temperature  sensitivities  for  decomposition,  thus  conferring  an

advantage over bacteria which tend not to target recalcitrant  compounds

(Romero-Olivares et al. 2017). Warmed plots at this site were also found to

have slower litter  decomposition  (Romero-Olivares et al.  2017),  increased

cellulose-  and  starch-degrading  enzyme  production  (German  and  Allison

2015), and lowered respiration rates  (German and Allison 2015). However,

no studies have determined whether any of these changes in decomposition

dynamics have elicited measurable changes in soil and plant C and N pools.

A  fuller  understanding  of  the  relationship  between  aboveground  and

belowground C and N dynamics will  provide better insight into whether or
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not ecosystem C gains or losses should be expected with warming in this

critical ecosystem. 

We  hypothesized  that  the  greenhouse  warming  treatment  would

reduce soil C storage owing to greater activity of recalcitrant C decomposers

and  decrease  above-  and  below-ground  plant  biomass  owing  to  water

limitation (Hypothesis 1; Figure 1A). Warming-associated drying could also

increase soil C storage by inhibiting decomposer activity, while the warming

itself could augment above- and below-ground plant biomass by alleviating

temperature  or  nutrient  limitation  of  plants  (Hypothesis  2;  Figure  1A).

Alternatively, if decomposer activity and plant biomass inputs simultaneously

increase  or  decrease,  or  if  previously  reported  changes  at  our  site  are

ephemeral, soil C storage would remain the same (Null Hypothesis). To test

these hypotheses,  we compared changes in  understory  aboveground and

belowground C and N pools from greenhouse warmed and control plots in

order to better understand boreal forest ecosystem response to long-term

warming treatment. 

Methods

Our  study site  is  located in  a  mature  black spruce (Picea  mariana)

boreal forest on the Fort Greely military base near Delta Junction, Alaska,

USA  (63˚55’N,  145˚44’W).  The  understory  vegetation  is  dominated  by

mosses,  lichens,  and shrubs (Vaccinium uliginosum,  V.  vitis-idaea,  Ledum

groenlandicum,  Empetrum nigrum, and  Betula glandulosa)  (Treseder et al.
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2004). The soil is an Inceptisol, with an average organic horizon of 9.8 cm

(King et al. 2002) and pH of 4.9 (Hanson et al. 2008). 

In 2005, a greenhouse warming experiment was established with five

pairs of 2.5 x 2.5 m plots within a 1 km2 area in the open canopy forest, as

described in Allison and Treseder (2008). In each pair, one plot was covered

with a wood frame structure covered in greenhouse plastic film in order to

warm the  plots.  Gaps  between the  frame and  the  plastic  allowed  air  to

circulate, and gutters and tubing allowed water to flow in; the other plot was

left  unmanipulated  as  a  control  (Allison  and  Treseder  2008).  All  plots

excluded large trees. Air temperature increased by an average of 1.6°C and

Onset  HOBO data  loggers  recorded  an  average  of  0.5°C  increase  in  soil

temperature at 5 cm depth (Table S1; Allison and Treseder 2008). As a result

of the greenhouse warming treatment, soil moisture also decreased by an

average of 22% in the warmed plots (Table S1; Allison and Treseder 2008).

Passive warming approaches, such as this one, not only warm and dry but

can also alter temperature variation, light intensity, CO2 concentration, wind

speed,  snow  cover,  and  herbivory  (Kennedy  1995;  Aronson  and  McNulty

2009; Bokhorst et al. 2011). However, in remote areas where line power is

not available, greenhouse warming is a practical and cost-efficient way to

elevate  temperature.  Passive  warming  treatments  are  also  good  at

minimizing soil disturbance compared to other approaches like heated cables

(Aronson and McNulty 2009). Here, when we refer to the warming treatment,
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we are referring to the collective change in the microclimate which includes,

but is not limited to, warming and drying. 

In  July  2017,  two 0.6  x  0.6 m subsamples  of  aboveground biomass

were collected from each plot. The two subsamples were combined in the

field and the contents were sorted into different bags by moss and plant

type. Two soil cores (7 cm in diameter × 12 cm in depth) were taken from

each plot and divided into three fractions: lichens, O (organic) horizon, and A

(mineral)  horizon.  Depth  of  the  soil  organic  layer  is  reported  in  the

supplement (Table S2). We then combined fractions of the same type in the

field. Samples were kept cool during transportation and subsequently stored

at -20°C until processing at the University of California, Irvine. In the lab, we

separated the vegetation samples into herbaceous (leaves and stems) and

woody biomass (see Table S3 for list of plant species and for how plant types

were categorized).  The O and A soil  horizons were sieved and separated

manually  into  root  biomass,  soil,  and  other  organic  matter  biomass

components. We estimated bulk density of the soil horizons by calculating

soil volumes and dry weights. We separated the lichen fraction into lichen

biomass,  litter,  and  soil  components  (see  Table  S4  for  approximate

percentages).  However,  since  it  was  difficult  to  disentangle  these

components  precisely,  the lichen fraction  was treated as  a  single  unit  in

subsequent analyses. After final partitioning of each of the plant, moss, and

soil  samples,  all  samples  were  dried  at  60°C,  weighed  for  biomass,  and

subsamples were finely ground using a ball mill. The subsamples were then
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combusted for  C:N using  a  Thermo Scientific  FlashEA 1112 Nitrogen  and

Carbon  analyzer.  Pool  size  for  each  aboveground  and  belowground

component  was  estimated  using  the  biomass,  bulk  density  (when

applicable), and elemental analysis data. It was not possible to estimate pool

size for the mineral horizon because, unlike the organic horizon, we did not

sample the entire horizon.

Data were tested for normality and log-transformed if  needed. Two-

tailed,  paired  t-tests  at  α<0.05  were  conducted  to  test  for  differences

between the paired control and warmed plots. We also used a generalized

linear model, weighted by mass, to check for differences in plant community

composition in the plots and treatments in R version 3.4.1  (R Core Team

2017). Correlations were tested (also in R) to identify relationships between

the aboveground and belowground variables measured. Because our sample

size was relatively small (five pairs of plots), we conducted a power analysis

in G*Power  (Erdfelder et al. 2009) to determine the sample size needed to

achieve a power of 0.80. 

Results

After  13 years  of  the greenhouse warming treatment,  soil  C in  the

organic layer decreased by 19.1% in the warmed treatment (Table 1;  P =

0.048),  while  understory  aboveground  biomass  trended towards  C  stocks

increasing by 1.5- to 4-fold (except for moss). Total aboveground biomass C

was higher under the warmed plots, but the difference was not statistically
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significant (Table 1; P = 0.236). However, separating the data by vegetation

type, we observed that moss decreased by 88.3% with greenhouse warming

(Table 1;  P = 0.034). In contrast, the C biomass of herbaceous vegetation,

woody  vegetation,  and  lichen  increased  with  the  warming  treatment,

although these trends are only marginally significant at most (P = 0.166, P =

0.069,  and  P =  0.285,  respectively).  Based  on  the  power  analysis,  we

suspect that we may have detected significance with a larger sample size

(Table  S5).  In  terms of  aboveground  biomass  of  individual  plant  species,

there were no significant differences between the treatments (Table S6). In

addition,  soil  organic  horizon  depth  did  not  change  with  the  warming

treatment (P = 0.922).

The  greenhouse  warming  treatment  increased  allocation  of

aboveground vegetative C by 13%. Root biomass decreased in the warming

treatment by nearly a third, albeit non-significantly (P = 0.595), while total

aboveground  vegetation  increased  (Table  1).  There  was  also  a  positive

relationship between root biomass C and moss biomass C (R = 0.698;  P =

0.025;  Table  S7).  However,  no  other  significant  relationships  between

aboveground and belowground C pools were evident (Table S7). 

Percent  C  was  higher  for  herbaceous  and  woody  vegetation  in  the

greenhouse  warmed  plots,  but  this  trend  was  not  statistically  significant

(Table 2; P = 0.270 and P = 0.108, respectively). Percent N was significantly

lower in warmed plots for both herbaceous and woody vegetation (Table 2; P

= 0.044 and  P = 0.028, respectively), resulting in higher C:N ratios in the
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warmed plots (Table 2; herbaceous P = 0.055; woody P = 0.118). Percent C

and %N in  the  soil  layers  did  not  change  significantly  with  the  warming

treatment (Table 2). 

Discussion

To our knowledge, this work is the first to directly measure how C and

N pools respond to long-term warming in an Alaskan, permafrost-free boreal

forest.  We  found  that  the  long-term  greenhouse  warming  treatment

significantly reduced soil C in the organic layer and moss biomass C (Figure

1B).  At  the same time, aboveground plant  biomass C tended to increase

while  root  C tended to  decrease.  Altogether,  the  distribution  of  C stocks

within this ecosystem tended to shift from belowground to aboveground in

response to the warming treatment. 

These results are important because permafrost-free boreal forests are

understudied,  yet  represent  approximately  45-60%  of  all  boreal  forests

(Allison and Treseder 2011). Forests cover over 30% of Earth’s land surface,

with more than a third of  that coming from boreal  forests  (Bonan 2008).

Understanding the uncertainties associated with these systems’ responses

provides greater clarity for biogeochemical model parameterization. These

findings also corroborate other permafrost-free boreal forest studies (Niinisto

et al.  2004;  Bronson et al.  2008),  which find that CO2  fluxes from boreal

forest  soils  increase with warming.  Altogether,  these results  suggest  that

warming can alter C pools in boreal forests lacking permafrost. 
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We found that the soil organic layer experienced a 19.1% reduction in

C with the warming treatment, supporting Hypothesis 1. Declines in soil C

are consistent with results of a prior study at this site predicting soil C loss

with warming due to shifts in the fungal community, which could improve

breakdown of recalcitrant C (Treseder et al. 2016). In contrast, other studies

from this  site  found that  warming and drying during  the growing  season

suppressed microbial activity and decomposition (Allison and Treseder 2008;

Romero-Olivares et al. 2017), suggesting a delay in soil C loss. However, in

the  context  of  our  results,  this  suppression  of  microbial  activity  may  be

reflective of only the short-term or seasonal response (Schmidt et al. 2007).

This  could  be  due  to  the  relatively  quick  successional  changes  of  the

microbial community (Schmidt et al. 2007; Voriskova and Baldrian 2013) or

depletion of the labile organic matter  (Knorr et al. 2005). Microbial activity

may return  to  pre-disturbance  levels  or  increase  once  the  community  is

adapted to the new environmental conditions  (Allison et al. 2010; Karhu et

al.  2014).  Since  aboveground  C  biomass  increased  with  the  warming

treatment,  it  is  unlikely  that  lower  aboveground  litter  production  was

responsible for the decline in soil C.

Declines  in  soil  C  in  the  organic  layer  with  long-term warming  are

common (Kane and Vogel 2009; DeAngelis et al. 2015). However, a recent

study from a boreal  forest  in  Eastern Canada contrasts  our results.  They

found no change in soil C stocks with 9 years of warming treatment (Marty et

al.  2019).  This  discrepancy could  be due to  differences  in  topography,  C
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quality,  soil  depth, or experimental  design between the Eastern Canadian

study and ours.

Also  in  support  of  Hypothesis  1,  moss  biomass  C  decreased  with

warming by 88.3%. This considerable decline in moss could potentially be

attributed to greater susceptibility to water loss with warming (Charron and

Quatrano 2009) since moisture declined in our warmed plots by 22% (Allison

and Treseder 2008). However, in support of Hypothesis 2, the herbaceous

and woody vegetation increased with the warming treatment (Figure 1B).

This  increase  in  aboveground  vegetation  could  be  due  to  removal  of

temperature limitations (Hobbie et al. 1999) or the ability to produce deeper

roots  to  acquire  water  (Comas  et  al.  2013;  Lindh  et  al.  2014).  These

increases  in  aboveground  vegetation  could  also  be  an  unintended

consequence  of  the  greenhouse  warming  treatment,  such  as  decreased

herbivory (Aronson and McNulty 2009). In contrast, the greenhouse warming

treatment reduced photosynthetic active radiation by 30-40%  (Allison and

Treseder  2008),  yet  we  found  an  increase  in  photosynthetic  biomass.

Perhaps with a different warming technique, the aboveground C response to

warming would be more pronounced. The decrease in moss and increase in

herbaceous and woody vegetation may neutralize the effect of the warming

treatment on total aboveground C pools. 

In  addition  to  these  changes  in  aboveground  biomass  pools,  root

biomass C declined with the warming treatment, although not significantly

(Table 1). Additionally, root and moss biomass C positively correlated (Table
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S7).  These  results  are  surprising  given  our  predictions  about  moisture

structuring the vegetation response. However, since aboveground vegetation

%N  decreased  with  the  warming  treatment  (increasing  aboveground

vegetation C:N), perhaps N limitation plays a role. While warming is typically

thought to decrease N limitation owing to increased N mineralization (Rustad

et al. 2001), low soil moisture can slow N mineralization (Beier et al. 2008).

This  mechanism  could  elicit  lower  root  growth  with  moisture  loss.

Alternatively,  perhaps  warming  and  drying  resulted  in  a  deeper  rooting

system  to  acquire  water  and  nitrogen  that  was  not  captured  in  our

experiment. Inclusion of deeper soil horizons, and their roots, may provide

additional clarity, especially since C and N stocks in boreal forests can be

substantial in these deeper layers (Kane et al. 2005; Vogel et al. 2005; Marty

et al. 2015, 2017). Additionally, we only measured understory aboveground

biomass.  Inclusion  of  trees  may further  explain  the  relationship  between

aboveground and belowground pools in this critical ecosystem. 

In conclusion, we did not find that warming led to a net loss or gain of

C.  However,  our  results  suggest  that  permafrost-free  boreal  forests  are

susceptible to C loss from soil and moss with warming. Carbon losses from

soil  and  moss  represent  approximately  9% and  4% of  the  total  C  stock

calculated in our experiment, respectively. These changes could contribute

to climate change if increases in herbaceous and woody biomass no longer

compensate  for  these  losses.  Furthermore,  if  vegetative  C  continues  to

transfer from belowground to aboveground, we might expect habitat shifts
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and future changes to C stocks. Aboveground pools may be less stable than

belowground pools for storing C  (Zhou et al. 2006), so an increase in the

proportion  of  aboveground  C  could  cause  additional  C  losses  with

disturbance.  Knowledge of  individual  warming responses  from different  C

pools  improves  mechanistic  understanding  of  ecosystem  responses  to

climate  change,  which  is  especially  important  for  this  vulnerable  forest

system.  
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Table  1.  Effects  of  greenhouse  warming  on  boreal  forest  carbon  and

nitrogen pools  after 13 y of  treatment ± 1 standard error.  Bold indicates

significance (P ≤ 0.05).

  C (g m-2) N (g m-2)

  Control Greenhouse

P

Control

Greenhou

se

P

Herbaceous 

vegetation 19.96 ± 6.83

77.32 ±

38.75

0.16

6

0.50 ±

0.19

1.34 ±

0.59

0.25

9

Woody vegetation

33.63 ±

20.00

97.05 ±

32.77

0.06

9

0.37 ±

0.23

0.53 ±

0.18

0.51

1

Moss

66.50 ±

25.01 7.78 ± 6.07

0.0

34

1.23 ±

0.45

0.34 ±

0.30

0.14

2

Lichen fraction

193.64 ±

74.77

301.83 ±

67.57

0.28

5

2.09 ±

0.74

2.55 ±

0.48

0.68

7
Sum 

aboveground

313.73 ±

59.94

483.97 ±

122.25

0.23

6

4.19 ±

1.25

4.76 ±

1.15

0.77

3

Organic soil 

horizon

Roots

407.85 ±

132.86

290.10 ±

97.8

0.59

5

6.13 ±

2.40

6.00 ±

1.45

0.95

7

Soil

679.02 ±

84.03

549.47 ±

36.95

0.0

48

25.25 ±

3.74

20.83 ±

1.54

0.28

7

Other

15.76 ±

13.11

46.92 ±

31.50

0.27

6

0.17 ±

0.14

0.57 ±

0.34

0.30

7

Sum belowground

1102.63 ±

179.03

886.50 ±

148.75

0.11

5

31.55 ±

4.83

27.40 ±

2.44

0.35

0

Total above and 

belowground

1416.36 ±

181.49

1370.47 ±

255.38

0.81

0

35.74 ±

4.56

32.17 ±

2.99

0.37

6
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Table 2. Effects of greenhouse warming on boreal forest percent carbon, percent nitrogen, and C:N ratios

after 13 y of treatment ± 1 standard error. Bold indicates significance (P ≤ 0.05).

  %C   %N   C:N

  Control

Greenhou

se

P

Control

Greenho

use

P

Control

Greenhous

e

P

Herbaceous

vegetation

49.76 ±

0.42

50.28 ±

0.42

0.27

0 1.15 ± 0.07

0.92 ±

0.07

0.0

44

44.08 ±

2.77

55.48 ±

3.91 0.055

Woody vegetation

49.35 ±

0.43

50.73 ±

0.36

0.10

8 0.61 ± 0.06

0.36 ±

0.13

0.0

28

83.63 ±

8.29

253.57 ±

91.68 0.118

Moss

44.22 ±

0.67

44.29 ±

5.61

0.95

8 0.87 ± 0.07

1.05 ±

0.25

0.52

3

52.86 ±

5.56

52.21 ±

14.89 0.896

Lichen fraction

48.93 ±

2.39

47.49 ±

3.56

0.95

9 0.67 ± 0.30

0.42 ±

0.05

0.41

0

106.44 ±

23.03

118.95 ±

14.82 0.275
Organic soil

horizon

Roots

48.97 ±

1.55

48.21 ±

3.31

0.86

8 0.71 ± 0.10

1.27 ±

0.39

0.30

5

74.28 ±

9.37

50.47 ±

11.61 0.292

Soil

24.09 ±

3.89

24.71 ±

3.57

0.89

9 0.86 ± 0.11

0.92 ±

0.09

0.70

5

27.46 ±

1.35

26.58 ±

1.40 0.663
Mineral soil

horizon

Roots

43.48 ±

3.49

47.05 ±

2.33

0.40

6 1.18 ± 0.19

1.03 ±

0.19

0.67

7

44.64 ±

13.21

52.13 ±

10.23 0.730

Soil

9.93 ±

1.85

8.93 ±

1.81

0.60

2 0.37 ± 0.09

0.35 ±

0.10

0.65

5

28.01 ±

2.79

27.85 ±

2.51 0.908

25

496

497



26

498

499



Warming

Drying

+Greenhouse 
warming treatment

Belowground carbon pool 
(soil and roots)

Aboveground carbon pool
(plants, moss, and lichen)

Decomposer 
activity

Water 
availability

-

Temperature and 
nutrient limitation

+

-

-

+/-

-

+

+/-

A) Hypotheses B) Results

Belowground carbon pool (-): 
soil (-) 

roots (-)

Aboveground carbon pool (+):
herbaceous veg (+)

woody veg (+)
moss (-)
lichen (+)

Figure 1. A) Hypothesized positive and negative effects of the greenhouse

warming  treatment  on  aboveground  and  belowground  C  pools  in  a

permafrost-free boreal forest. In this experiment, we measured aboveground

and belowground carbon pools (black, solid-lined boxes). Grey, dashed boxes

indicate mechanisms that were not measured in this experiment but were

observed in prior experiments at our study site (Allison and Treseder 2008;

German and Allison 2015; Treseder et al. 2016; Romero-Olivares et al. 2017).

Depending  on  which  mechanisms  dominate,  we  predicted  different

responses for aboveground and belowground C pools. B) Inlay of changes to

aboveground and belowground C pools found in our experiment. Positive and

negative signs indicate increases and decreases in  pool  size.  Bolded text

(soil,  moss,  and  the  relationship  between  roots  and  moss)  specifies

significance (P ≤ 0.05). 
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