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Energy storage deployment and innovation for the
clean energy transition
Noah Kittner1,2, Felix Lill2,3 and Daniel M. Kammen1,2,4*

The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy
storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery
technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to
build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy
technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-e�ective
low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value
of investment in materials innovation and technology deployment over time from an empirical dataset covering battery
storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside
improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1W−1 solar with
US$100 kWh−1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based
electricity options.

In the face of the Paris climate agreement1, a combined transi-
tion to clean energy and acceleration of decarbonization goals
will require the refocusing of US and international research and

deployment schemes to promote energy R&D2–4. Dramatic cost
declines in solar and wind technologies, and now energy storage,
open the door to a reconceptualization of the roles of research and
deployment of electricity production, transmission, and consump-
tion that enable a clean energy transition5,6. While basic research
remains a vital element to address a clean energy transition, inc-
reasingly an interdisciplinary approach is needed. Deeper inte-
gration with policies that build market growth7 and cutting-edge
business models will enable far faster uptake of critical research
programme outputs.

The majority of technological learning studies to date attribute
deployment and innovation as isolated policies to expand and
plan for future cost reductions8–10. However, we also know there
are synergies between deployment and innovation where we
can capitalize and strategically target public spending to benefit
society11. This evolution has been demonstrated for clean energy
technologies by analysing s-curve trajectories and identifying
missed opportunities for increased investment in wind and
geothermal power R&D12. Previous frameworks investigated the
interaction of technology-push and demand-pull policies to guide
public programmes that support clean energy through solar and
wind deployment (learning by doing)13–15. The two-factor approach,
established previously for wind turbines and solar photovoltaics6,16,
demonstrates a theoretical framework to apply to clean energy
technologies to develop price trajectories and build technological
roadmaps for dramatic energy transitions.

In this article, we develop a two-factor learning curve model
to analyse the impact of innovation and deployment policies on
the cost of energy storage technologies. We use patent activity,
production output capacity (kWh), and historical global average

prices to track learning rates of battery energy storage technologies.
This allows us to investigate whether lithium-ion batteries can
achieve necessary cost targets to push intermittent renewable
systems with storage past conventional fossil-fuel-based generators.
We also trackUS and global R&D spending on the energy sector and
derive implications for policymakers. With increased investment
and strategic research, development, and deployment initiatives,
the cost reductions of lithium-ion batteries enable cost-competitive
and dispatchable renewable photovoltaic (PV) and wind systems.
Using an empirical global dataset of lithium-ion patent activity,
production volumes, and average prices from 1991 to 2015, we
find that innovation has a significant impact on prices of high-
tech energy products and services, especially energy storage. This
finding is in accordance with recent research on photovoltaics6 and
on wind turbines16. Therefore, we estimate two-factor models with a
high prediction capability as an advanced conceptual approach and
argue for further application in research compared to traditional
one-factor learning curves.

Applying a framework to innovation in battery storage
Learning rates typically relate the cost reduction of new technolo-
gies to key factors such as cumulative installed capacity or units
of output produced, and are widely employed to predict future
trends9. Traditional one-factor models explain the decreased cost
with increases in production volume (economies of scale, experience
curve approach) only. Although the conventional one-factor model
for innovation retains a good explanation value (adj. R2 = 0.9861),
the past four years of data overestimate the prices. Figure 1
shows the conventional one-factor learning rates of 17.31% for
economies of scale and 15.47% using the experience curve app-
roach. We explore three one-factor models representing annual
production, cumulative production, and patent activity as a proxy
for innovation.
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Figure 1 | Learning rates using the traditional one-factor learning curve model for lithium-ion battery storage. a, Learning rate of economies of scale at
17.31%. b, Experience curve approach with a learning rate of 15.47% for cumulative production. c, Learning rates for cumulative patents, amounting to
31.43%. Prices are adjusted to 2015 US dollars. PCT is Patent Cooperation Treaty, an international patent treaty to protect inventions across nations.

The one-factor models under consideration here are as follows:

Pt=δ0+δ1Qt+εt (1)

Pt=ζ0+ζ1CQt+εt (2)

Pt=ϑ0+ϑ1It+εt (3)

where Pt is the logarithmized price (US$ kWh−1) (adjusted to 2015
US dollars), Qt is the logarithmized production volumes (MWh),
CQt is the logarithmized cumulative production volumes until year
t (MWh), and It is the innovation activity (cumulative patents until
year t). The δ, ζ , and ϑ represent coefficients, and ε t represents the
error term.

Modelling economies of scale and innovation
In comparison, our two-factor learning curve model incorporates
logarithmized production volumes (Qi), and innovation activity
(Ii) represented by cumulative international Patent Cooperation
Treaty (PCT) patents during each year with Pi (logarithmized
price) as the dependent variable. As both independent variables
increased during our time series, statistics show a correlation of
0.9644, which introduces multicollinearity17,18. Information on the
correlation and the variance inflation factor, analysing the degree
of multicollinearity can be found in Supplementary Tables 4–7. To
resolve this issue, a two-step regression approach using a residual
variable (ηi), as proposed by Qiu and Anadon, as well as Zheng
and Kammen, was implemented6,16. Detailed information on the
regression procedure is shown in Methods.

The final two-factor model (equation (4)) is as follows:

Pi=γ0+γ1Qi+γ2Ii+εi (4)

Forecasted price=

(
10γ0

Q−γ1i

)
(10γ2)Ii (5)

The two-factor learning curve model (Fig. 2, equation (4))
shows a learning rate of 16.9% for economies of scale (doubling
annual production) and a decrease in prices of 2.0% per 100
PCT patents. Notably, the two-factor model explains the recent
plunge of battery prices better than both conventional models
using economies of scale or a classic experience curve approach.
As Fig. 2 shows, the two-factor model captures the past five years
fairly well (with P < 0.001, adj. R2 = 0.9465), while economies of
scale and the experience curve approach systematically overestimate
prices. The learning rates for lithium-ion batteries fall quicker than
literature shows for c-Si PV modules (15.2%) and wind turbines
(4.1–4.3%) (refs 6,16). We note that multi-factor models may
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Figure 2 | Comparing traditional one-factor models and the two-factor
model to historical prices. Lithium-ion (Li+) forecasts are based on projects
for production output, and patent activity on the average of the past five
years. Prices for wind display averages of data from Qiu & Anadon until
2007 (ref. 16). From 2008 to 2019, prices are interpolated using the
2020 forecast47. Prices for solar are taken from Zheng & Kammen and
extrapolated using their two-factor model forecast for 2014 and 2015
(ref. 6). Price reductions for wind and solar are normalized in percentage
(%) terms and should be read o� the right-hand axis. All prices are
adjusted to 2015 US dollars.

achieve greater statistical significance (see Supplementary Note 1).
To address omitted variable bias, we investigate a ‘four-factor’
model (Supplementary Table 3), which incorporates raw material
prices. We find that it does not maintain a P value at the same
level of significance as one- or two-factor models. In contrast,
although one-factor models describe the price declines at a similar
level of statistical significance, they overestimate prices during the
2010–2015 period and perform worse in terms of forecast error.

The two-factor model attributes part of the cost reduction to
innovation, which is considered an important component for tech-
nological learning. Although costs are highly correlated with the
production volume, according to the International Energy Agency
(IEA) the share of responsibility of production volume and tech-
nological advancements on the cost reductions remain unclear19.
Our framework supports prevailing technological learning liter-
ature that describes innovation as a more critical component of
cost reductions compared to deployment9. For instance, if scien-
tists increase battery energy densities by 20% through extensive
R&D in materials science, yet continue to use materials and pro-
duction lines at their current cost, the price per kWh of storage
could drop by 16.7% before increasing any production volumes.
This is also exhibited through advances in net energy performance
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Table 1 | Forecasted prices by using two-factor learning
curve model.

Year Forecast:
consumer
cells

EV/ES cells EV/ES battery
pack

2016 124.15 155.00 202.88
2017 109.18 136.31 178.41
2018 96.38 120.33 157.50
2019 85.55 106.81 139.80
2020 76.03 94.92 124.24
Sensitivity range (66.17–88.32) (82.61–110.27) (108.13–144.33)

Second column represents the forecasted values. Third and fourth columns show estimations
for EV/ES (electric vehicle/electric energy storage) cells (+24.85%) and for battery packs
(+30.89%), respectively. Cell prices for electric vehicles and energy storage are higher due to
di�erent standards and chemistry. This model assumes the same learning across cells and
battery packs. Prices are in 2015 US dollars and shown per kWh.

(characteristics including cycle life and energy capacity) measured
by energy stored on energy invested20.

Forecasting future storage prices
Applying the two-factor model to recent production forecasts
of leading industry experts21 and assuming that patent activity
stays on the high level of the five-year average (2011–2015), pro-
vides optimistic results with consumer cell prices falling below
US$100 kWh−1 by 2018. Figure 2 and Table 1 highlight their
respective price trajectories. The forecast is based on 25 annual
observations, and although the sample is small, it represents the best
available information in a nascent market. We include a detailed
sensitivity matrix in Supplementary Note 2 varying future patent
activity and production levels since patent counts historically follow
random Poisson processes22. We incorporate the effect of time lags
on patents and knowledge stock depreciation, where patents in the
past have less effect on prices than recent patents (Supplementary
Note 3). We find lower cost reductions than existing forecasts in the
literature, which in the past has found a systematic underestimation
of falling electric vehicle battery costs23.We account for rawmaterial
prices in a ‘four-factor’ model controlling for the impact of raw
lithium and cobalt prices, which we find to lower the learning rate
slightly (14.82%), and attributes greater reductions to innovation
rather than deployment. However, rawmaterial pricesmay not be as
critical to battery cost reductions as the experience of wind genera-
tion to steel prices. Diverse material components comprise lithium-
ion batteries, although lithium and cobalt represent important parts
of the cathode24. Controlling for rawmaterial prices in a ‘four-factor’
model is not as statistically significant (P < 0.16) as the two-factor
model (P < 0.001). However, sustainability criteria could guide
future development as new material innovations become viable25.
One potential bias in the two-factor model may be the exclusion of
subsidies that are typically proprietary and difficult to track. Further
research in this area would greatly address a gap in technology and
policy innovation studies.

Advances in lithium-ion batterieswill probably spur the adoption
of EVs. Studies show that EVs will become cost-competitive to
internal combustion engine vehicles with prices for battery packs
reaching US$125–165 per kWh assuming 2015 average US gasoline
prices26,27. According to our model, this critical threshold is reached
in 2017 as an upper bound and by 2020 in the low case. Besides
battery prices, gasoline prices, electricity rates, and yearly mileage
significantly impact when EVs reach cost competitiveness. These
forecasts are lower than previously reported literature values23.

We also investigate the cost of learning by searching compared
with the cost of deployment initiatives through the two-factormodel
results. Learning by searching represents the impact of research,

development, and demonstration (RD&D) on the cost of an energy
technology16. To estimate this, we scaled back patent activity by
33% from the current trajectory in the two-factor model and found
an additional 307GWh of global deployment is required through
learning by doing alone to achieve a US$100 kWh−1 battery storage
threshold by 2020 (Supplementary Note 2). For perspective, the
Tesla Gigafactory plans to deploy 35 GWh per year. Patent activity
critically drives the two-factormodel. A lack of patent activity would
drastically increase costs to reach cell level prices of US$76 kWh−1.
At the most extreme case of no new innovation, the opportunity
cost of meeting cost reduction targets through deployment alone
would be extremely high, in exceedance of 140 billion US dollars
through 2020. This is not likely or feasible, but highlights the
importance of innovation to achieve cost reductions through the
two-factor framework. The vast majority of recent solar PV and
wind cost reductions, however, stem from process improvements
and corporate R&D that use profits from deployment to further
drive innovation28. If true for storage, this feedback between
innovation anddeployment limits our ability to completely decouple
the effects of both R&D and deployment targets. This warrants
further research and underscores the importance of developing both
learning-by-searching and learning-by-doing policies, forming the
development of a learning-by-researching and doing approach.

Further, energy storage at the utility and residential scale is on
the verge of reaching grid and socket parity. We find that at current
targets, if the US reaches the ‘SunShot’ target pricing for solar
electricity at US$1W−1, the price trajectories estimated here would
make residential solar and electric battery storage cost-competitive
with grid electricity by 2020, achieving a levelized cost of electricity
(LCOE) of around US$0.11 kWh−1 as detailed in the Methods.

Currently, lithium-ion battery-based energy storage remains a
niche market for protection against blackouts, but our analysis
shows that this could change entirely, providing flexibility and
reliability for future power systems. This finding contrasts with
recent studies, postulating the value of energy storage for decar-
bonizing electricity to be low, given high costs of storage tech-
nologies29,30. According to our forecasts, both studies forecast pes-
simistic future prices for energy storage that do not consider the
complementary effects of innovation and deployment and the value
of flexibility for power and/or energy dense storage options in
future power systems. Gigawatt-scale grid storage would improve
the transmission and distribution system, resulting in lower future
investments necessary to ensure grid stability and improve customer
reliability31. Although total project costs, such as labour andbalance-
of-system components are included in the capital costs, the mod-
elling highlights the close proximity of this target for lithium- and
non-lithium-based electrochemical storage options.

Implications of R&D spending on price decreases
To enable a storage-driven transition, further research is necessary
to maintain patent activity levels. Public R&D spending and private
research projects directly trigger innovation by stimulating research
and facilitating a high level of experimentation, yet US-federal
R&D spending continues to decline. Photovoltaic research remains
a prime example of the ability for R&D programmes to drive growth
and cost reductions32. During the past decade, however, public R&D
spending in energy did not keep pace with rising revenues of the
energy sector. Figure 3 shows the US-federal R&D expenditures
between 1976 and 2015. During this period, total US-federal R&D
spending plunged from1.2% to 0.8%of theUSGDP33,34. Spending of
energy R&Dplunged from0.3% to 0.013% respectively. Global share
of energy to total R&D spending declined on average from over 10%
to 3.9% as of 2013. The share of energy to total R&D amounted
to 2.1% in the US in 201533,34. The current share of energy R&D
spending does not reflect the importance of clean energy technology
deployment and its role in meeting global climate objectives. With
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the US GDP. In the same time frame, federal R&D spending of
energy-related topics plunged from over 0.3% to 0.013%. The dark green
dots show a similar development for the share of energy-related R&D to
total R&D spending. In the late 1970s, energy R&D accounted for over 10%
of total R&D, of which more than 50% was allocated to nuclear energy
globally. By comparison, the international community allocated 3.9% of
R&D funds to energy-related activities in 2013. Data are from AAAS33,34.

regard to battery technology, an urgent call for action to increase
public R&D spending and therefore push innovation forward and
prices for storage downbecomes apparent to create cost-competitive
dispatchable solar, wind, and storage electricity.

Further advances in materials science may foster an increase
in battery energy density, which remains crucial to increase the
driving range of EVs to a competitive level with conventional
vehicles and to reduce the cost of grid-scale storage applications.
Current patent activity for lithium-ion batteries is on a high level,
although it has plateaued within the past five years. This model
highlights the importance for policymakers to stabilize declining
public R&D spending and fuel innovation activity through system-
atic funding of clean-tech R&D projects to meet decarbonization
goals in a cost-effective manner, affirming results from previous
studies and extending not just to electricity generation sources, but
also storage32. Additionally, policymakers should initiate a standard-
ized framework favouring private venture capital investing in clean
technology. Venture capital (VC) is seen as vital to the clean-tech
industry35,36, and research indicates that VC investments are more
effective than (public) R&Dwith regard to patenting, and thus could
be applied to target emerging electrochemical and mechanical stor-
age systems37. Figure 4 shows the global corporate and VC invest-
ment in the energy storage sector between 2009 and 2014. Although
large loan guarantees to VC-backed firms have lacked prior cost-
effectiveness, government initiatives such as the Small Business
InnovationResearchProgram (SBIR), university R&Dprogrammes,
and large-scale demonstration projects have seen more success38.

Discussion
According to our two-factor model, adoption policies that
incentivize total deployment of EVs or energy storage systems are
expensive measures. We calculate that achieving a lower boundary
of US$125 kWh−1 for EVs by 2018, at the current five-year
patent average, would require a more than twofold increase of
yearly production output than currently forecasted. This equals a
production of about 300GWh of additional manufactured capacity.
In particular, lithium batteries for consumer devices comprise
a significant market share of total production, and it is likely
energy applications will continue to lag. Learning by searching,
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or innovation (learning by ‘researching’), very likely plays a larger
role than deployment incentives alone by achieving more rapid
cost reductions in a shorter time frame. Adoption policies could
yield cost improvements at the manufacturing or systems-level
value chain for EVs and grid-scale storage. However, incentivizing
deployment through capacity targets may create significant wind-
falls where customers receive incentives for what they would have
bought regardless. Deployment targets for energy storage may not
prove as effective as research-based, innovation-driven activities.

We propose a strategy that allocates funds toward more cost-
effective research and development measures. Governments can
play a critical role for promoting research advances and innovations
that drive down cost further. Outlining future research and legal
frameworks to enable distributed energy systems and vehicle-to-
grid interactions is one emergent research area. Another research
focus is to understand conditions when grid storage is valuable,
operational frameworks to provide spinning reserves or ancillary
services, demand response, and opportunities for emission reduc-
tions. For vehicle storage applications, incentivizing and designing
a tight-meshed charging infrastructure alleviates range limits. All of
these outcomes could contribute to innovation-driven cost reduc-
tions through not only materials research, but also deployment.

Developing research programmes with an emphasis not only
on electrochemical storage for materials science advances, but also
emerging mechanical storage applications would provide increased
flexibility in power system planning. Some claim that mechanical
storage applications could undercut electrochemical storage in
terms of price; however, there may be a role for both. Long-duration
bulk storage capacity and short bursts from high-power devices
that can provide frequency regulation, ancillary services, or simply
inject power to the grid during times of intermittency. Finding
complementarity between increasing storage performance through
energy density and lowering cost will be necessary for both vehicle
and grid-scale applications. Storage technologies can learn from
asset complementarity driving PV market growth and find niche
applications across the clean-tech ecosystem, not just for pure kWh
of energy storage capacity39. It is likely that multi-utility storage
applications may surface as a result of innovation and deployment-
driven cost reductions.

Based on the two-factor model, we recommend policymakers to
adopt balanced innovation and deployment policies. A portfolio of
policies is more likely to successfully drive environmental change
than a single policy40. We note that the relative decline in public
R&D spending could forestall critical cost reduction and advances
toward achieving a deep decarbonization in the electricity sector
and bringing new material advances from the lab to the market. We
find significant value associated with investing in increased patents
through research, and one way to drive this research is through
government spending that could achieve drastic cost reductions
for energy storage systems. The diversity of materials for current
lithium-based batteries suggest that, unlike solar photovoltaics
or wind turbines, it is likely new material advances in storage
technologies are necessary to achieve a US$100 kWh−1 target.
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Patent activity and R&D spending continue to drive down

the price of electrochemical battery storage technologies. Our
two-factor learning curve estimates a turning point in 2019 when
forecasted prices cross the threshold of US$100 kWh−1, contra-
dicting current forecasts and studies. The strong relationship in
the two-factor learning curve suggests that US R&D could enable
further cost reductions through investment in developing new bat-
tery materials. Designing a deployment strategy would lower over-
all costs in decarbonizing the electricity grid and transportation
sectors, which account for more than 60% of overall CO2 emis-
sions combined. Therefore, critical to evaluating new technologies
remains the material choices to improve safety, energy density, and
cost. New research promoting soft-side innovations and business
models will expedite integration of electrochemical storage into
common markets. Further government support is necessary to pro-
mote responsible R&D spending that enables serious cost reductions
across solar, wind, and storage, while also decarbonizing electric-
ity and transportation. The US has the opportunity to become a
leader, not a laggard, in electric battery storage manufacturing and
development. We find that R&D spending is a strong indicator
of driving innovation. Therefore, concomitant increases in R&D
spending across energy research would promote a diverse suite of
storage technologies and materials science advances.

Methods
Global battery price and output volume data collection. We compiled a
comprehensive global dataset of average prices and global production
output of lithium-ion consumer cells from 1991 to 2015 available at
http://rael.berkeley.edu/project/innovation-in-energy-storage. As data within this
industry is typically proprietary and not accessible via a transparent platform, we
cross-validated data with industry experts and leading international research
agencies specializing in the battery market at the Energy Storage North America
meeting in October 2015 (http://www.esnaexpo.com).

Collection of patent data as a proxy for innovation. Previous research highlights
three proxies to measure innovation: private and public R&D expenditures,
literature-based innovation output, and number of patents41.

We consider patents filed according to the Patent Cooperation Treaty (PCT)
as a proxy for innovation. Following the work of Griliches42, others evaluated
patenting in the energy sector, and concluded that patents are a valid indicator to
measure innovativeness within the energy sector2,28. This result has been
extended and re-confirmed by a number of authors43. PCT patent reviews contain
high-quality standards and innovators seeking international protection file for
PCT patents, attesting to the high economic value of their patent, which
represents a gold standard for patent information44.

Queries were conducted using Patentscope, a database of the World
Intellectual Property Organization (WIPO), retrieving patent information by
searching for the keywords ‘lithium and ion and (battery or batteries or
accumulator or accumulators or cell or cells)’ on the patents’ front page. We
include patents in the manufacturing process and were inclusive of any patent
that contained the search terms we determined that we found in Patentscope.
Supplementary Fig. 1 highlights the patent activity over time for
lithium-ion batteries.

Multivariable regression analysis to develop a two-factor learning curve model.
For our analysis, we use a two-factor learning curve model. Traditional one-factor
models explain the decreased cost with increases in production volume
(economies of scale, experience curve approach) only. However, the two-factor
model attributes part of the cost reduction to innovation, which is considered an
important component for technological learning. Although costs are highly
correlated with the production volume, according to the International Energy
Agency (IEA) the share of responsibility of production volume and technological
advancements on the cost reductions remain unclear19. For instance, if scientists
increase battery energy densities by 20% through extensive R&D in materials
science, yet continue to use materials and production lines at their current cost,
the price per kWh of storage could drop by 16.7% before increasing any
production volumes. This is an illustrative example demonstrated by the
hypothetical situation where a US$200 kWh−1 battery increases in energy density
by 20%, which would change the price per kWh to US$167 kWh−1 before
changing anything in relation to the bill of materials.

Our two-factor model incorporates logarithmized production volumes (Qi),
and innovation activity (Ii) represented by cumulative PCT patents during each
year with Pi (logarithmized price) as the dependent variable. To resolve the issue

of multicollinearity, a two-step regression approach using a residual variable (ηi),
as proposed by Qui and Anadon, as well as Zheng and Kammen,
was implemented6,16.

Developing the two-factor learning curve model follows the subsequent
rationale:

Ii=α0+α1Qi+ηi (6)

ηi= Ii−α0−α1Qi (7)

After introducing the residual variable to remove the correlation, the reformed
equation (7) is inserted in equation (6). Further transformation gives the new
coefficients γ 0, γ 2 and γ 3. Information on the correlation and variance inflation
factor after introducing the residual variable is displayed in Supplementary
Tables 4–7.

Pi=β0+β1Qi+β2ηi+εi (8)

Pi=β0+β1Qi+β2Ii−β2α0−β2α1Qi+εi (7) in (8)

Pi=[β0−β2α0]+[β1−β2α1]Qi+β2Ii+εi (9)

γ0=β0−β2α0

γ1=β1−β2α1

γ2=β2

The final model and be found in equations (4) and (5).

Pi=γ0+γ1Qi+γ2Ii+εi (4)

Forecasted price=
( 10γ0

Q−γ1i

)
(10γ2 )Ii (5)

LCOE system cost calculation. We assume LCOE for residential PV in Germany:
10.7–15.6 US$-cent + LCOE Powerwall ∼15 US$-cent <36.3 US$-cent average
residential electricity rate in Germany when considering it at ‘socket parity.’
This is a term referring to the state when cost is equivalent to the retail rate
of electricity45.

We calculate system LCOE costs if SunShot solar goal is achieved by 2020,
where LCOE for PV reaches US$0.05 kWh−1 by 202046. We assume a 2-kW
residential home solar system represented by average US insolation levels at
∼4.8 kWhm−2 d−1 that could be installed in Kansas City, Missouri (used by
NREL to represent average US insolation). We also assume Tesla’s
lithium-ion-based Powerwall is US$350 kWh−1 for residential customers and
US$250 kWh−1 at utility scale and reaches US$100 kWh−1 by 2020. We use a
7 kWp Powerwall with 13.5 kWh energy capacity ratings that charge for six hours
during the day with 90% roundtrip efficiency and 100% depth of discharge. The
battery discharges at night when electricity is more expensive and net load is
higher. This would place residential solar+storage at an estimated
US$0.11–0.12 kWh−1 target. Based on a ten-year project lifetime, and in the
optimal case assuming a full charge–discharge cycle on a daily basis ignoring
losses, LCOE at current prices is US$0.15 kWh−1 at residential scale and
US$0.10 kWh−1 at utility scale. Based on current price trajectories and a patent
activity level of 444 patents per year using our model, battery prices will
fall from 2016 to 2020 by 39%, which puts utility-scale battery storage roughly
equivalent to US$0.06 kWh−1 based on current usage rates that model
integration of storage into power grids with high penetrations of renewables5.
Then we find that, although distributed PV and battery storage may not be
competitive everywhere by 2020, systems will already hit grid parity in certain
locations where electricity prices are higher than average coupled with high solar
irradiation. This also occurs before including other use cases including peak
shaving, ancillary services, voltage regulation, and the displacement of natural
gas peaker plants. In Hawaii and many other states, PV and storage will
achieve grid parity21,45. This could be achieved at a solar+storage target of
US$0.11–0.12 kWh−1.

Data availability. The data that support the plots within this paper and other
findings of this study are publicly available on the Innovation in Energy Storage
database at http://rael.berkeley.edu/project/innovation-in-energy-storage and in
the Supplementary Information (Supplementary Data 1).
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