UC Berkeley
UC Berkeley Previously Published Works

Title
An Interface Theory for the Internet of Things

Permalink
https://escholarship.org/uc/item/62d598ad

ISBN
9783319229683

Authors

Lohstroh, Marten
Lee, Edward A

Publication Date
2015

DOI
10.1007/978-3-319-22969-0_2

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/62d598qd
https://escholarship.org
http://www.cdlib.org/

An Interface Theory for the Internet of Things

Marten Lohstroh* and Edward A. Lee*
{marten,eal}@eecs.berkeley.edu

EECS Department
University of California
Berkeley, CA 94720, USA

Abstract. This paper uses interface automata to develop an interface
theory for a component architecture for Internet of Things (IoT) ap-
plications. Specifically, it examines an architecture for IoT applications
where so-called “accessors” provide an actor-oriented proxy for devices
(“things”) and services. Following the principles of actor models, an ac-
cessor reacts to input stimuli and produces outputs that can stimulate
reactions in other accessors or actors. The paper focuses on a special-
ized form of actor models where inputs and outputs to accessors and
actors are time-stamped events, enabling timing-sensitive IoT applica-
tions. The interaction between accessors and actors via time-stamped
events forms a “horizontal contract,” formalized in this paper as an in-
terface automaton. The interaction between an accessor and the thing or
service for which it is a proxy is a “vertical contract,” also formalized as
an interface automaton. Following common practice in network program-
ming, our vertical contract uses an asynchronous atomic callback (AAC)
pattern. The formal composition of these interface automata allows us
to reason about the combination of a timed actor model and the AAC
pattern, enabling careful evaluation of design choices for IoT systems.

1 Introduction

Two major fields of research in engineering, one centered around cyber-physical
systems (CPS) and another around computer networks, now focus their atten-
tion on what is believed to be the next big thing after the rise of the Internet,
the Internet of Things (IoT). The vision embodied by this term appeals to
the imagination of many—our environment and virtually anything in it will turn
“smart” by having otherwise ordinary things be furnished with sensors, actua-
tors, and networking capability, so that we can patch these things together and
have them be orchestrated by sophisticated feedback and control mechanisms.
As Wegner argued in [23], interaction opens up limitless possibilities for things
to harness their environment and compensate for a lack of self-sufficient clever-
ness. Sensors aside, a connection to the Internet alone allows a thing to tap into

* This work was supported in part by the TerraSwarm Research Center, one of six
centers supported by the STARnet phase of the Focus Center Research Program
(FCRP) a Semiconductor Research Corporation program sponsored by MARCO
and DARPA.

"An Interface Theory for the Internet Theory of Things", Springer, LNCS 9276 (eds.), Software
Engineering and Formal Methods (SEFM), September, 2015; in Proceedings of the 13th
International Conference on Software Engineering and Formal Methods (SEFM), Sept. 7-11, 2015,
York, UK.

an exceedingly rich environment—unleashing a real potential for making things
smarter. To exploit this potential, however, a precise and well-defined coordi-
nation between a vast and heterogeneous collection of interfaces, protocols, and
components is required.

1.1 Accessors

In [10], accessors are proposed to take on the challenge of coordinating inter-
action between networked resources across different domains without imposing
standardized over-the-wire protocols or middleware. Accessors provide a formal
framework based on actors [8] that leverages platform-based design [20] as
a methodology to deal with the heterogeneity that characterizes the IoT. Ac-
cessors are essentially proxies for things and services, endowing them with an
actor interface. This interface consists of a set of input and output ports through
which the accessor may receive and send tokens, along with a set of action func-
tions that are triggered when inputs arrive or other relevant events occur. An
actor abstract semantics [13] provides ways to compose accessors with dis-
ciplined and understandable concurrency models, while accessors abstract the
mechanisms by which they provide access to sensor data, control actuators, com-
municate to devices, or outsource computation. Accessors run on a host that,
according to some model of computation (MoC), coordinates communication
with other actors or accessors. More formally, an accessor interfaces two different
MoCs. On the outside, the accessor is coordinated by some actor-oriented MoC,
while on the inside, an interpreter governs the execution of a script that defines
its key functionality.

The overarching goal of accessors is to lift existing functionality implemented
using a heterogeneous collection of scripting languages and network protocols
into a library of reusable components that are amenable to composition on a
unifying platform for the development of IoT applications. The focus of this
work thus moves away from protocol-specific APIs and language-specific design
patterns and centers the discussion around the composition semantics of acces-
sors.

1.2 Code Mobility and Trust

An accessor provides access to a thing or service that is not necessarily local to
the host. The host is a microcontroller, mobile device, or server, whereas a thing
is typically a separate piece of hardware, not necessarily proximate to the host,
and a service is possibly cloud based, accessed over the net. The accessor itself is
software that runs on the host, serving as a local proxy for the thing or service.

A well established precedent for such proxies is found in the Web, where a
website serves HTML5 and JavaScript that executes in a browser. The script
is a local proxy for a remote service. The script is mobile code, supplied by
a website, downloaded, and executed on a host (in a browser). It is essential
that browsers be able to execute largely untrusted code, carefully regulating
its access to local resources such as the host file system. Although the security

model is not perfect, after two or so decades of experience, the Web community
has accumulated a great deal of experience with such untrusted code, and we
can reliably access important services, such as banking, through such proxies.

JavaScript proves to be a well-suited language for such proxies for several
reasons. One key reason is that the core JavaScript language includes no 1/0
mechanisms. These must be provided by the host in the form of a context in
which the JavaScript code runs. In a browser, for example, the context provides
functions to manipulate a document and to control how a document is rendered
in the browser window. It also provides functions for soliciting input from a
human user and for accessing remote resources through the network. It does not
provide functions for accessing the local file system or executing command-line
programs on the host. It took many years, but today most of the capabilities
provided by the browser context are standard across browsers, so most JavaScript
programs will work in a similar way in different browsers.

Accessors require a similar hosting mechanism. A host downloads possi-
bly untrusted code and executes it locally. The host, therefore, functions like
a browser, but instead of interfacing humans to network services, it interfaces
physical things to each other (and to network services). For example, an accessor
for a thing may provide output data that is massaged in some computation to
determine an action to be performed by some actuator. To be very specific, an
accessor for your front door lock may provide a notification that the door has
been opened, which could then trigger another accessor to turn on a light.

For accessors, the emphasis is not on rendering information for humans nor on
soliciting input from humans. Hence, the context provided by an accessor host
will not have the same facilities that a browser provides. Nevertheless, there
are strong commonalities. The accessor code is provided by a third party that
often cannot be completely trusted. Authentication, encryption, sandboxing, and
networked interactions are all just as relevant to accessors as to browsers. Hence,
leveraging the decades of experience with browsers is well justified. For this
reason, we focus on JavaScript as the accessor specification language.

1.3 Concurrency

Because accessors are local proxies for things and services that are not neces-
sarily local, concurrency becomes important. Physical things are intrinsically
concurrent, in that any two physical devices act and react at the same time.
They also act and react concurrently with any software that may be interacting
with them. And networked services, of course, are also intrinsically concurrent.
The concurrency model used by accessors therefore becomes a central feature.
JavaScript has an event-based concurrency model, and it typically interacts
with its environment asynchronously. For example, when accessing a web re-
source, instead of blocking to wait for a response from the server, when the
script queries the server, it provides a callback function or handler to be
invoked when the response arrives. A key feature of JavaScript is that every
function invocation is atomic with respect to every other function invocation.
Hence, unlike interrupt-driven I/O or threads, a callback function does not get

horizontal contract governs actor interactions

runs on an
’ _ ‘ accessor
~
\ // host
v

Actor Accessor ¢ Actor

swarmlet ‘H’
|, -€—— vertical contract governs

LA

SN the interaction between the
ket Y accessor and the service or thing

Service Implementation AN
request response ! runs on a thing

- 5= alocal server,
orin the cloud

swarm service or thing

Fig. 1. Accessor in a actor network of actors.

invoked at arbitrary points during the execution of the main program. A func-
tion executes to completion before any other function can begin executing. We
call this pattern of concurrency asynchronous atomic callback (AAC).

The AAC pattern is used extensively in web programming, both on the server
side (as in Node.js (http://nodejs.org) and Vert.x (http://vertx.io)) and on the
client side, in browsers. It has also been used in some other (non-web) applica-
tions such parallel computing (e.g. Active Messages [22]) and embedded systems
(e.g. TinyOS [15]).

The AAC pattern dramatically mitigates the difficulty of concurrent pro-
gramming [11], but at considerable cost. First, it becomes essential to write
code carefully to consist only of quick, small function invocations. Second, it
accentuates the chaos of asynchrony, where achieving coordinated action can
become challenging. The latter problem is particularly important for IoT, where
coordinated physical actions are often needed.

Because of these limitations, several efforts are under way to mix AAC with
other concurrency models. ECMAScript 6, a recent version of JavaScript, en-
riches AAC with a cooperative multitasking model, which allows a function
to suspend execution at well-defined points, allowing other functions to be in-
voked while it waits for some event. The Vert.x framework enriches AAC with
so-called “verticles” (think “particles”), which can execute in parallel while pre-
serving rigorous atomicity. Verticles can interact with one another through a
publish-and-subscribe concurrency model or through shared but immutable data
structures. But these are not the only concurrency models that could be usefully
combined with AAC. Click [9], for example, mixes push and pull interactions in
very interesting ways to create very efficient network routers. Ptides [24] lever-
ages synchronized clocks on a network to create coordinated real-time behavior.
Spanner [3] leverages synchronized clocks in a similar way, but for distributed
databases rather than distributed real-time systems. Calvin [18] uses a dataflow
concurrency model for IoT interactions.

In this paper, we advocate separating the AAC style of concurrency, which an
accessor uses to interact with a thing or service, and other styles of concurrency
(publish-and-subscribe, push-pull, timed events, dataflow, etc.), which accessors

use to interact with one another. Following Nuzzo et al. [17] and Benveniste et
al. [2], we formalize the first style as a vertical contract and the second as a
horizontal contract. As illustrated in Figure 1, the vertical contract defines
the interface between the accessor and the thing or service that it is providing
access to. The horizontal contract defines the interface between the accessor and
the context in which it executes, which can include other actors and accessors.
In fact, the very concept of accessors hinges on this separation of concerns.

This separation of concerns is a generalization of the classical separation
between computation and coordination that was promoted by Gelernter and
Carriero [7] in the 1990s. In the era of the Cloud, ubiquitous computing, and
swarms of smart things, a clear-cut division between computation and coordina-
tion seems no longer attainable, yet an organization in terms of horizontal and
vertical contracts can still facilitate portability and support for heterogeneity.

In this paper, we focus on vertical contracts based on AAC and horizontal
contracts based on discrete events (DE), by which we mean timed events
like those used in Ptides [24] and Spanner [3]. In Figure 1, a DE director
would govern the interaction between the accessor and the actors (realizing the
horizontal contract), while the accessor internally interacts using AAC with a
thing or service (the vertical contract).

In DE, every input to or output from an accessor has a time stamp, and
the host ensures that events are processed in time-stamp order. DE is more
deterministic than publish-and-subscribe (because of the use of time stamps),
and unlike dataflow, provides a semantic notion of time, which is important for
the “things” in IoT. This paper uses the formal idea of behavioral interfaces
[4] to provide rigor to these contracts. The formalism reveals subtleties in the
interplay between AAC and a timed discrete-event concurrency model.

1.4 Outline

The remainder of this paper is organized as follows. Section 2 gives background
material covering actors, models of computation, interface automata, behavioral
types, and timing and causality. We then introduce a formal model in Section 3
and apply it to combining AAC with DE. We draw conclusions in Section 4.

2 Background

2.1 Actors

The term “actor” was introduced by Hewitt to describe the concept of au-
tonomous reasoning agents [8]. The term evolved through the work of Agha
and others to describe a formalized model of concurrency [1]. Agha’s actors
each have an independent thread of control and communicate via asynchronous
message passing. The term “actor” was also used in Dennis’s dataflow models
[6] of discrete atomic computations that react to the availability of inputs by
producing outputs sent to other actors.

In this paper, the term “actor” embraces a larger family of models of concur-
rency. They are often more constrained than general message passing and do not
necessarily conform with a dataflow semantics. Our actors are still conceptually
concurrent, but unlike Agha’s actors, they need not have their own thread of
control. Unlike Dennis’ actors, they need not be triggered by input data. More-
over, although communication is still achieved through some form of message
passing, it need not be asynchronous.

Actors are components in systems and can be compared to objects, software
components in object-oriented design. In prevailing object-oriented languages
(such as Java, C++, and C#), the interfaces to objects are primarily methods,
which are procedures that modify or observe the state of objects. By contrast,
the actor interfaces are primarily ports, which send and receive data. They do
not imply the same sequential transfer of control that procedures do, and hence
they are better suited to concurrent models.

In this paper, we will focus on a discrete-event actor model, where inputs and
outputs received and sent by actors have time stamps, and actors process these
events in time-stamp order. It is useful in IoT applications to bind these time
stamps to real time when software has an interaction with the outside world.
For example, in Spanner [3], a database query receives a time stamp equal to
the value of the local clock at the machine that receives the query. In Ptides
[24], a sensor measurement receives a time stamp equal to the value of the local
clock of the machine hosting the sensor. By ensuring that events are processed
in time-stamp order, it becomes well-defined how a system should react to these
external stimuli. For example, in a distributed database, a query for the value
of a record and an update to the value of the record are ordered by time stamp,
so the correct response to the query is defined by the relative values of the time
stamps. If the time stamp of the query is less than or equal to the time stamp
of the update, then the correct response is the updated record value. Otherwise,
the correct response is the value before the update.

2.2 Behavioral Interfaces

The notion of contracts is much more useful if the contracts have a formal
encoding and the composition of components can be checked for compliance
with the contracts. Specifically, in our case, the AAC style of concurrency used
in the vertical contract manifests as timed events in the DE horizontal contract.

Subtle questions arise from these interactions. For example, in the DE model,
an actor fires at a (logical) time, and during the firing it can determine what
input events are present at that time, and for each event that is present, what
its value is. Similarly, while firing, an actor can produce outputs events. In
an AAC model, a callback function is invoked when some condition has been
satisfied, for example a reply has arrived from a remote server. In our model, the
invocation of such a callback is an internal event, in that it is neither a actor
input nor a actor output event. But the handling of such an internal event may
require observing inputs or producing outputs. Suppose that an accessor (with a
DE actor horizontal contract) observes an input in a callback function that was

triggered by an internal event. What should this mean? Suppose that callback
is executed asynchronously, nondeterministically interleaving its execution with
processing of time-stamped events. What is the semantics of observing an input?
Observing an input in DE only has meaning at a logical time. Under what
conditions should an input event be present? What is the logical time (the time
stamp) of that event?

Similar questions arise if a callback function triggered by an internal event
wishes to produce outputs in the DE world. What should the time stamp of
those events be? If an output depends on an input event, is the timestamp of
that input event then strictly earlier than the timestamp of the output event,
or can they be the same? The purpose of this paper is to develop a formal
framework for reasoning about such alternatives.

Interface automata (IA), proposed by Henzinger and de Alfaro in [4], offer
an attractive approach for defining and composing behavioral interfaces. Inter-
faces are automata with inputs and outputs, and interaction between interfaces
occurs through synchronized actions. Output actions are denoted with an excla-
mation mark, and input actions with a question mark. Internal transitions (also
known as T-transitions or silent steps), which do not involve input or output, are
interleaved asynchronously across components. When two IA are composed, an
input action in one and an output action in the other are matched by name and
become a shared transition, an internal transition in the resulting composition
automaton. Note that inputs and outputs in the context of IA have no relation
with inputs or output in actor semantics, nor should actions be confused with
events in DE or JavaScript.

Compatibility. Two interfaces A and B are compatible if, when they are com-
posed (i.e., A® B, which coincides with the composition of I/O automata [16]),
there exists some environment that satisfies the constraints that the composition
automaton imposes. Error states in A ® B are those in which one automaton
produces an output that the other one does not accept as an input. Since the
environment is unable to prevent the automata from reaching these states, the
composition of two interface automata prunes away all error states and all states
from which error states are reachable. Two interface automata are compatible if
the pruned composition, A||B, is not empty. A compelling advantage of the prun-
ing is that the resulting composite interface automaton is relatively compact, in
contrast to the entire product state space.

Refinement. Interface automata feature a refinement relation that acts con-
travariantly on input assumptions and output guarantees; i.e., in a refinement,
the former can only be relaxed and the latter can only be restricted. This re-
lation is defined as an alternating simulation between components. Since we
do not use refinement relations here, we will say nothing further about them.

Behavioral Types. Lee and Xiong [14] used interface automata to formulate
behavioral type signatures for several directors in Ptolemy II [19]. In their paper,
several examples illustrate the interactions between a producer and consumer
that exchange tokens, mediated by different directors. Their DE automaton has
a key feature that it formally models the constraint that it is illegal for an

actor to get or send tokens (DE events) in between firings. The firings provide
the temporal coherence of the DE model, and by constraining consumption of
inputs and production of outputs to occur during a firing, the time stamps of
those inputs and outputs become unambiguous. We leverage this key feature in
this paper.

2.3 Time & Synchrony

In DE, two events can occur simultaneously. Operationally, this means that they
have the same time stamp and that an actor that observes these events will see
them in the same firing. In AAC, events are invocations of callback functions.
These are mutually exclusive; only one event can occur at a time. Hence, if the
callback functions observe or produce DE events, we need to reconcile these
conflicting properties.

Typical implementations of the AAC pattern have no temporal semantics.
Yet time matters for them. The order in which responses come back from a
remote web server, for example, matters, so the time of arrival of the responses
matters. Programs that interact with things will typically need to exercise some
control over timing, for example in order to estimate the trajectory of a moving
object based on the order in which events are reported by different sensors.
Most JavaScript contexts provides a function setTimeout (£, t) which causes a
callback function f to be invoked after time t. But without temporal semantics,
the time t is an informal notion. There is no assurance, for example, that if
setTimeout (f1, t1) and setTimeout(f2, t2) are called with t1 < t2, that
f1 will be invoked before f2. If these two callback functions produce timed
DE events, then what time stamps should be assigned to those events? A well-
designed combination of AAC and DE would bind the timeout times and the
DE times, giving a much stronger temporal semantics and more controlled and
predictable interaction with things.

Of course, because there is no preemption in JavaScript, the real-time accu-
racy of the timeouts may vary wildly. The DE model, nevertheless, provides a
model of time that is synchronous among all of its components. It is a logical
time, not a physical time. Logical time can be used to guarantee that £1 will
be invoked before £2 if t1 < t2, for example, regardless of when these invoca-
tions occur in real time. More interestingly, if t1 = t2, the DE logical time model
can guarantee that if the two callbacks both produce an output event, then any
downstream observer will see these events simultaneously. Such guarantees make
concurrent programs much more deterministic and understandable.

Moreover, if logical time can be made to closely approximate real time, as
is done in Ptides and Spanner, then it can make the interactions of these pro-
grams with things much more deterministic and understandable. A simple way
to establish a relationship between logical time and physical time is to delay the
processing of any time-stamped event until the local real-time clock matches or
exceeds the logical time of the time stamp. A more sophisticated mechanism,
implemented in Ptides, introduces such delays only where there is an interaction
with the physical world.

2.4 Causality & Predictable Timing

Consider an accessor that responds to an input event with time stamp ¢ by issuing
a query to an external thing or service that will take some time to respond. Under
the DE MoC, the actor fires at logical time ¢ and consumes the input event. Using
the AAC pattern, this accessor makes the request to the thing or service and
provides a callback function to be invoked later with the response to the query.
The fire method returns immediately, allowing the accessor to function like a
pipeline that can handle a number of requests concurrently. However, because
of unpredictable network delays for example, responses may arrive out-of-order.
Suppose each response to the query causes the accessor to produce a time-
stamped DE event as an output. Should the time stamps of those responses be
required to respect the same order of the time stamps that trigger the queries?
Should they be required to match those of the input events? Or be offset from
those of the input events by some fixed constant? In any of these cases, extra
machinery is required to relate the accessor’s output to the input that triggers the
query. Similar problems have been solved in computer architecture (Tomasulo’s
algorithm [21]) and distributed systems (PTIDES safe-to-process analysis [24]).

An extreme choice is to require the time stamp of an output to match the
time stamp of the input that triggers the query. In this case, the accessor has a
logical zero delay, but the physical delay may be substantial. This choice comes
at the cost of sacrificing the pipelining capability of the component. Worse, the
component may block other components, preventing them from handling events
with time stamps ¢ or greater, because of the DE constraint that events always
be processed in time-stamp order.

A better choice that provides determinism without sacrificing (as much) con-
currency is to require an output to have a time stamp ¢t + 4, for some fixed offset
6, for each input that has time stamp ¢. If ¢ is at least as large as the worst-case
delay for a response to the query, then no concurrency will be sacrificed.

A third choice is to nondeterministically assign a time stamp to each response,
for example giving it as a time stamp the time-stamp of the most recently han-
dled DE event. This choice results in the order of outputs not necessarily match-
ing the inputs that trigger the queries, but it could nevertheless be useful if the
time stamps are in fact used to represent physical response times. All three of
these choices are available in Ptolemy II [19] using the Threaded Composite actor
[12]. And all three can be used with accessors that combine AAC with DE. How
should we choose which one to use? The next section offers the beginnings of a
formalism for reasoning about such choices.

3 A Formal Model

Our formalization comprises three interfaces: the DE director, the accessor, and
the JavaScript environment that features AACs. The goal is to model each as
an interface automaton and to check the compatibility of the composition of all
three. If the interfaces are compatible then their composition (denoted by ||) will
be non-empty.

Fig. 2. DE director. Fig. 3. JavaScript (1).

An interface automaton for the DE director is shown in Figure 2. The au-
tomaton has four inputs: g (get), s (send), fR (return from fire), and fA (fire at),
and one output: f (fire). This director will fire an actor at a given (logical) time
t if either an upstream actor has sent it an input with time stamp ¢, or the actor
has requested to be fired at logical time ¢. These events are inserted in an event
queue, sorted by time stamp, and processed by the director when the current
(logical) time corresponds to the time stamp of the event. This bookkeeping
happens internally, so it is not part of the director’s interface. For completeness,
however, we added an internal action q_qR in the initial state that represents the
director consulting the event queue. In any state of the director, an actor may
request a firing at the current (logical) time or some time in the future. Hence,
every state accepts an fA? action.

Figure 2 illustrates a key property of interface automata. In state init, the au-
tomaton does not accept inputs s and g. The assumption is that the environment
will never generate these illegal inputs. Hence, the interface imposes constraints
on the environment. de Alfaro and Henzinger [5] distinguish interface theories
from component theories in precisely this sense; an interface may impose con-
straints on its environment, whereas a component exhibits some behavior (not
necessarily desired behavior) in every environment.

Only after taking the transition to state fire, guarded by action fl, is the
director accepting of g and s actions. In other words, it is illegal for an actor
to consume inputs or produce outputs when it is not being fired. After ob-
serving an fR? action, meaning the actor has concluded its firing, the director
returns to its initial state where it can consult its event queue to process new
DE events. The composition of the DE director and the accessor formalizes the
horizontal contract. The composition between the accessor and the JavaScript
environment formalizes the vertical contract. All composed together, we obtain
a closed labeled transition system (LTS) describing all possible interactions
through our interfaces. This LTS is amenable to further analysis. For instance,
one could check whether the composition satisfies some LTL property using a
model checker such as SPIN (http://spinroot.com). This, however, is outside the
scope of this paper.

As to the interface automata for the accessor and the JavaScript environ-
ment, we have several options, and we explore two candidate solutions. But
first, we list the primitives of the vertical contract. The accessor host provides a
get() and a send() function in the JavaScript context through which, respec-

tively, actor inputs can be read and actor outputs can be sent. We encode these
JavaScript functions using actions Jg (JS get) and Js (JS send). In addition, we
define an input action Jf (JS fire) to allow the accessor to signal the JavaScript
environment that it is currently being fired by the director. Similarly, we define
an action JfR (JS return from fire) for the JavaScript environment to notify the
accessor that it can now safely end its firing. Finally, the host offers a function
setTimeout (), represented by the action t. This primitive allows the accessor
implementation to schedule itself to be fired at some time in the future.

To achieve compatibility between the DE director and the JavaScript envi-
ronment through the accessor, we need to prevent Jg! and Js! actions, which may
be invoked asynchronously in a callback, from triggering the accessor to emit g!
or s! actions before it observes an f? action and after it emits a fR! action. There
are multiple solutions to this puzzle that yield useful behavior.

The first option we explore is to have the JavaScript environment block
on reading actor inputs when the accessor is not currently being fired by the
director. This may occur during a callback that originates from an internal event.
Actor outputs produced during an AAC are queued by the accessor and emitted
during the next firing. The accessor is responsible for requesting a new firing at
the current time upon the occurrence of an AAC.

The second option that we explore is for any AAC to trigger a request for a
firing of the actor, and to suspend until that firing occurs.

3.1 Blocking Inputs & Delayed Outputs

The interface automaton that models our JavaScript environment, illustrated in
Figure 3, has three states: run, block, and fire. The initial state is run, and in
this state it can either emit a Js! action (invoke send()), observe a Jf? action (a
signal that the accessor is currently fired) or emit a Jg! action (invoke get (D).
When Jg! happens, the automaton transitions to the state block in which the
only legal action is Jf?, which enables the transition to fire. In fire, actions Jg!
and Js! guard self loops, meaning that they return immediately. Emitting JfR!
will let the automaton transition back to run. In summary, Js! actions return
immediately, whereas Jg! actions block until the accessor reaches a state that is
synchronous with a firing. During fire, Js! and Jg! are handled immediately. Note
that shared t transitions are excluded from the interface in order to simplify the
example, but their use is described in Section 3.2.

The automaton that models the accessor interface, depicted in Figure 4, is
more complex. For each output of the automata in Figures 2 and 3 it has a
corresponding input, and for each of their outputs it has a corresponding input.
The ports interfacing with the JavaScript environment are grouped at the bottom
of the figure, the ports interfacing with the DE director on the sides.

The initial state of the IA in Figure 4 (indicated by a bold outline) is init,
from where it can either observe fl and transition to start or observe Jg? or Js?
(from a callback invoked in the JavaScript execution environment) and transition
to fireAt. From fireAt, an fA! action leads back to init whereas f?7 enables the
transition to start. The intuition here is that observing f? eliminates the need

Jg? |Js? Jg? |Js?

Jg Js JF R

> =

Fig. 4. Accessor (1).

to request a new firing. Note that, due to the asynchrony of the AACs, the
automaton has to be accepting Jg? and Js? in every state, and because it is not
receptive, each state must thus be augmented with a guarded (self-)transition
that is guarded by these actions. Ignoring these transitions for a moment, the
remainder of the automaton is no more than a simple linear sequence of actions.
First it gets new actor inputs (g!) and signals to the JavaScript environment
that it is now firing, then it waits until the JavaScript signals JfR!, and finally
it sends any queued outputs (s!) and returns from fire (fR!).

f;
.
q_aR; A
; ‘ fire_start_run
f;
init_fireAt_run

fire_send_run

Fig. 5. DE director || Accessor (1) || JavaScript (1).

The composition of the automata from Figures 2, 3, and 4 is depicted in Fig-
ure 5.1 The automaton is non-empty (and closed), hence the three components
are compatible. Notice that product of the state spaces has size 42, and yet the
composition automaton only has 13 states. This is because illegal states, where
one component outputs an action that is not accepted by another, are pruned
away. The LTS in Figure 5 is not per se intended for human analysis, but it does

! This composition was constructed automatically using software written by Yuhong
Xiong over 12 years ago [14].

; 5
IR
» t! JS_
JR > > 1
= IE ¢ T s o o
- >
Fig. 6. JavaScript (2). Fig. 7. Accessor (2).

show quite neatly how the accessor coordinates the interaction between DE and
JavaScript. The outer states in the diagram correspond to the steps taken in
one iteration in the DE semantics, whereas the inner states deal with AACs by
blocking and issuing firing requests to the DE director.

3.2 Deferred AACs

An alternative solution to the one proposed in Section 3.1, is to formulate the
vertical contract such that any AAC that can possibly invoke get () or send()
will be synchronized, regardless of whether it happens to emit a Jg! or Js! action.
The horizontal contract remains the same. Interestingly, this approach results in
a much simpler model. To demonstrate this solution, we need a slightly different
representation of the accessor and the JavaScript environment. Their interface
automata, Figures 7 and 6 respectively, are very similar to the ones in Figures
4 and 3, so we only discuss the differences.

First of all, we include a shared transition t that represents setTimeout ().
We assume that any internal event will be caught by the host and that it will
defer (i.e., suspend, not block) the associated AACs until the accessor is fired;
a t! will be triggered to request a new firing if needed. This is realized in our
implementation using the standard CommonJS EventEmitter pattern.

The interface of the JavaScript environment now only has two states: run
and fire. In either state it can emit t!, but only in fire can it emit Jg! and Js!. As
before, Jg! and Js! are only legal after observing Jf? and before emitting JfR!.

For the same reason as stated in section 3.1, the accessor must accept t? in
any state. Only when observed in init will it be followed by an immediate fA!
action. The t? actions observed in other states will be cached and processed after
completing the firing, upon arriving again in state init.

The composition of the automata from Figures 2, 7, and 6, is depicted in
Figure 8. Again, the automaton is non-empty, which shows that the three com-
ponents are compatible. We still recognize the same general structure of the LTS
shown in 5, but the number of states is reduced from 13 to 7.

5 A_GR; 1

" — fR; m m f; "
&—)@n|t_|n|t_run)—>(f|re_start_run)
A t
fA;
f;
t

init_fireAt_run

9q_qR; . t

t; Jsi Jg; t;

Fig. 8. DE director || Accessor (2) || JavaScript (2).

4 Conclusion

For IoT applications, where networked “things” and services interact with the
physical and information worlds, combinations of concurrency models and mod-
els of timed behavior are essential. We have developed a formal framework based
on interface automata that enables rigorous definition of behavioral interfaces,
and we have shown that this framework enables formal analysis of a combination
of two popular and useful models of computation, both used (usually separately)
for IoT applications. The discrete-event MoC, which models timed concurrent
interactions, is formally modeled in this paper as a horizontal contract between
peer components (actors). In an IoT application, some of these actors will be
“accessors,” which provide access to things and services. The interaction between
the accessor actors and their thing or service is formally modeled as a vertical
contract. Both contracts are represented as interface automata. An automated
tool, previously developed, is used to compose these interface automata to val-
idate compatibility of the contracts and to produce a labeled transition system
representing the overall system behavior. This LTS can be subjected to further
formal analysis, for example using model checking to verify safety conditions.

References

1. G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1-72, 1997.

2. A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier,
A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K. G. Larsen. Contracts
for System Design. Research Report RR-8147, Nov. 2012.

3. J. C. Corbett, et al. Spanner: Google’s globally-distributed database. ACM Trans-
actions on Computer Systems (TOCS), 31(8), 2013.

4. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), ACM, pages
109-120. Press, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. deAlfaro and T. A. Henzinger. Interface theories for component-based design.
In First International Workshop on Embedded Software (EMSOFT), volume LNCS
2211, pages 148-165. Springer-Verlag, 2001.

J. B. Dennis. First version data flow procedure language. Report MAC TM61,
MIT Laboratory for Computer Science, 1974.

D. Gelernter and N. Carriero. Coordination Languages and their Significance.
Communications of the ACM, 35(2):97-107, Feb. 1992.

C. Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence, 8(3):323-363, 1977.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular
router. ACM Transactions on Computer Systems, 18(3):263-297, 2000.

E. Latronico, E. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and M. Weber. A vision
of swarmlets. Internet Computing, IEEE, PP(99):1-1, 2015.

E. A. Lee. The problem with threads. Computer, 39(5):33-42, 2006.

E. A. Lee. ThreadedComposite: A mechanism for building concurrent and parallel
Ptolemy II models. Technical Report UCB/EECS-2008-151, EECS Department,
University of California, Berkeley, December 7 2008.

E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers,
12(3):231-260, 2003.

E. A. Lee and Y. Xiong. A behavioral type system and its application in Ptolemy
I1. Formal Aspects of Computing, 16(3):210 — 237, August 2003.

P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and
D. Culler. The emergence of networking abstractions and techniques in TinyOS.
In First USENIX/ACM Symposium on Networked Systems Design and Implemen-
tation (NSDI 2004), 2004.

N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the Sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’87, pages 137-151, New York, NY, USA, 1987.
ACM.

P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli. Methodology for
the design of analog integrated interfaces using contracts. Sensors Journal, IEEE,
12(12):3329-3345, Dec 2012.

J. Perssson. Open source release of IoT app environment Calvin, June 4 2015. Eric-
sson Research Blog, http://ericsson.com/research-blog/cloud/open-source-calvin/.
C. Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy
1I. Ptolemy.org, 2014.

A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software
design methodology for embedded systems. IEEE Design & Test of Computers,
18(6):23-33, 2001.

R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of Research and Development, 11(1):25-33, Jan 1967.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
A mechanism for integrated communication and computation. SIGARCH Comput.
Archit. News, 20(2):256-266, Apr. 1992.

P. Wegner. Why interaction is more powerful than algorithms. Commun. ACM,
40(5):80-91, May 1997.

Y. Zhao, E. A. Lee, and J. Liu. A programming model for time-synchronized
distributed real-time systems. In Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 259 — 268. IEEE, 2007.

