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Summary:

Standard profiling analysis aims to evaluate medical providers, such as hospitals, nursing homes or 

dialysis facilities, with respect to a patient outcome. The outcome, for instance, may be mortality, 

medical complications or 30-day (unplanned) hospital readmission. Profiling analysis involves 

regression modeling of a patient outcome, adjusting for patient health status at baseline, and 

comparing each provider’s outcome rate (e.g., 30-day readmission rate) to a normative standard 

(e.g., national “average”). Profiling methods exist mostly for non time-varying patient outcomes. 

However, for patients on dialysis, a unique population which requires continuous medical care, 

methodologies to monitor patient outcomes continuously over time are particularly relevant. Thus, 

we introduce a novel time-dynamic profiling (TDP) approach to assess the time-varying 30-day 

readmission rate. TDP is used to estimate, for the first time, the risk-standardized time-dynamic 

30-day hospital readmission rate, throughout the time period that patients are on dialysis. We 

develop the framework for TDP by introducing the standardized dynamic readmission ratio as a 

function of time and a multilevel varying coefficient model with facility-specific time-varying 

effects. We propose estimation and inference procedures tailored to the problem of TDP and to 

overcome the challenge of high-dimensional parameters when examining thousands of dialysis 

facilities.

Keywords

End-stage renal disease; Hospital readmission; Multilevel varying coefficient models; Profiling of 
medical care providers; United States Renal Data System

* dsenturk@ucla.edu. 

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2019 February 04.

Published in final edited form as:
Biometrics. 2018 December ; 74(4): 1383–1394. doi:10.1111/biom.12908.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

End-stage renal disease (ESRD) is kidney failure requiring long-term renal replacement 

therapy with either dialysis or kidney transplantation. Most recent population data shows 

that there were over 661,000 individuals with ESRD in the United States (US) as of 

December 31, 2013 (United States Renal Data System Annual Data Report [USRDS ADR] 

2015). About 70% of patients with ESRD were on dialysis. In this population, 3-year 

mortality is about 55% and, on average, dialysis patients are admitted to a hospital nearly 

twice a year, and about 30% have an (unplanned) readmission within the 30 days following 

discharge (ADR 2015). Methodologies to monitor patient outcomes continuously over time 
are of particular relevance for patients on dialysis, since they require continuous medical 

care on maintenance dialysis, due to the limited treatment options through kidney 

transplantation. Towards this objective, we introduce a novel time-dynamic monitoring 

(profiling) method to assess the time-varying 30-day readmission rate. The method is used to 

estimate, for the first time, the risk-standardized time-varying readmission rate (throughout 

the time period that patients are on dialysis) for each dialysis facility in the US.

Profiling or evaluation of medical care providers (e.g., hospitals, nursing homes or dialysis 

facilities) involves the application of statistical models to compare quality of care, service 

utilization or cost relative to a normative standard (e.g., a national “average” standard). For 

example, a patient outcome, such as 30-day hospital readmission rate for patients at a 

specific dialysis facility, may be compared to a norm based on national rates of dialysis 

facilities. Profiling methods exist mostly for static or non time-varying patient outcomes, 

such as an annual risk-standardized mortality or annual 30-day hospital readmission rate 

(Normand et al. 1997; Normand and Shahian 2007; Ash et al. 2011; Horwitz et al. 2011; He 

et al. 2013; Kalbfleisch and Wolfe 2013; CMS 2014 and references therein). The limited 

time-varying metrics in the literature include the risk-adjusted CU mulative SUMmation 

(CUSUM) and observed-expected CUSUM techniques (Biswas and Kalbfleisch 2008; Sun 

and Kalbfleisch 2013; Van Rompaye et al. 2015), although these are tailored to survival time 

outcomes. In profiling, the modeling process to evaluate a provider includes an important 

risk-adjustment step to account for patient case-mix (i.e., baseline patient-level 

comorbidities). Profiling analyses serve many purposes, including identification of providers 

with below standard performance by government agencies for regulatory or payment 

policies; informing providers for improving patient care; providing patient outcome 

information to guide patients’ selection of specific providers; and research that inform 

patient care. We note that profiling analysis dates back nearly a century (Codman 1916), 

although the methodologies have received renewed attention, particularly since the Center 

for Medicare and Medicaid Services (CMS) implementation of a new national patient 

quality strategy (CMS 2016).

To address the challenge of profiling over time, we introduce a new approach called time-

dynamic profiling (TDP) to provide a time-varying metric for assessing performance over 

time for generalized patient outcomes (e.g., hospital readmission rate). The main goal of 

TDP is to evaluate a (dialysis) facility’s performance, with respect to a patient outcome 

measure, as a function of time that patients are on dialysis (vintage). This allows for 

examining distinct time periods of under-performance during dialysis relative to a reference 
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standard. Our proposed TDP also conforms to the necessary requirements of traditional 

profiling analysis: it compares a facility’s performance relative to a norm (e.g., a national 

standard) and accounts for baseline patient case-mix prior to dialysis (risk-standardized). We 

note here that our illustrative application of TDP using USRDS data (in Section 3) is based 

on 30-day hospital readmission as the outcome; however, other patient outcomes are also 

relevant to patients on dialysis, including mortality, transfusion, dialysis adequacy and 

hypercalcemia rate. The model, estimation, and inference procedures that we propose are of 

sufficient generality to be applicable to other settings, particularly for chronic disease 

conditions over time.

For TDP, we propose a multilevel varying coefficient model (MVCM) with fixed facility 

time-varying effects and subject-specific random effects to accommodate the multilevel data 

structure with patients nested within dialysis facilities, and observations over time nested 

within patients. The choice of fixed versus random facility effects has been examined for 

time-static profiling (Kalbfleisch and Wolf 2013). While the average absolute error in 

estimation is typically smaller overall for random effects models, this average gain is 

achieved mostly in the center of the distribution of the outcomes. However, when the main 

inferential interest is to identify extreme facilities, fixed effects models have been reported to 

be effective in identifying outliers in dialysis facility profiling (Kalbfleisch and Wolf 2013). 

Another reason for our choice of fixed facility effects is that fixed effects models do not have 

the inherent problem of confounding of patient risk with facility-level effects in multilevel 

modeling for dialysis facility profiling. Furthermore, to accommodate the dependence 

among the repeated measures on the same subject, we introduce subject-specific random 

effects in the MVCM.

Currently, available standard estimation and inference tools for MVCMs are not applicable 

to profiling analysis because they were not designed to handle the high-dimensional 

parameters associated with fixed effects MVCMs. For instance, the proposed TDP modeling 

for USRDS data involves approximately 400,000 discharges of over 100,000 patients from 

approximately 3,000 dialysis facilities. Thus, the problem entails simultaneous estimation of 

close to 3,000 varying coefficient functions (together with a large number of regression 

parameters). Estimation of these high-dimensional parameters cannot be handled in a single 

step via standard local smoothing or basis expansions, where such standard estimation 

techniques fail due to the high-dimension of the design matrix. To put our proposed MVCM 

into context, we review some of the relevant standard varying coefficient model (VCM) 

literature. VCMs were introduced by Cleveland et al. (1991) and Hastie and Tibshirani 

(1993) to model time-varying effects; see review in Fan and Zhang (2008). The literature on 

the standard VCMs (Hoover et al. 1998; Qu and Li 2006; Şentürk et al. 2013; Estes et al. 

2014) have largely been for “single-level” data. Limited works have considered mixed 

VCMs (Liang et al. 2003; Zhang 2004), mostly for the analysis of regular longitudinal data 

(i.e., without the higher-level units). A multilevel functional regression model with 

functional predictors was considered by Crainiceanu et al. (2009), but for modeling a scalar 

response. A MVCM for a space- and time-varying response and predictors was proposed by 

Serban (2011). Although the model was useful for its intended purpose, it is not applicable 

to the inferential goal of profiling.
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We formulate the MVCM for profiling analysis and introduce a time-dynamic facility 

performance assessment index called standardized dynamic readmission ratio (SDRR) in 

Section 2. To overcome the estimation and inference challenges for a high-dimensional 

parameter space, we propose an approximate EM algorithm based on an iterative Newton-

Raphson approach (Section 2.2), inspired by the work of He et al. (2013). We develop a 

hypothesis testing procedure in Section 2.3 which is tailored to the goal of profiling and is 

specifically developed for addressing the challenge of drawing inference on a very large 

number of varying coefficient functions. A novel application to assess time-dynamic 30-day 

readmission rates for dialysis facilities based on USRDS data is given in Section 3. 

Simulation studies examine the efficacy of the proposed method (Section 4). We conclude 

with a discussion in Section 5.

2. Multilevel Varying Coefficient Model for Time-Dynamic Profiling

Assume that we have a cohort of incident dialysis patients followed over time from the start 

of dialysis. Let i = 1,…, I denote dialysis facilities and j = 1,…, Ni denote patients receiving 

dialysis treatment at facility i with Ni total number of patients. Further, let k = 1,…, Nij 

index hospitalizations for patient j at facility i, where Nij denotes the total number of 

hospitalizations. Let the outcome variable, denoted by Yijk = Yij (tijk), equal 1 if the kth 

index hospitalization of the jth patient within facility i results in a readmission within 30 

days, and equal 0 otherwise. Here, tijk denotes the time of the index hospitalization after the 

jth patient has initiated dialysis. There are several important considerations in building 

models for TDP. First, the model needs to respect the multilevel data structure and needs to 

allow for potential time-varying effects for each facility. Second, longitudinal patient-level 

variables or post-dialysis cross-sectional covariates (such as adverse events during dialysis 

or patient health attributes acquired after the start of dialysis which might be the result of 

care) need to be excluded to avoid confounding with the time-dynamic facility-level effects, 

the main quantity of interest. Third, the extent to which the proposed modeling will be 

useful will depend on having a set of rich baseline covariates (case-mix), Zij = (Z1ij,…, 

Zrij)T, for each patient that when taken together adequately captures each patient’s health 

characteristics prior to dialysis. For this risk adjustment step, we follow CMS-defined risk 

adjustment variables to adjust for age, sex, body mass index (BMI), 23 comorbidities and 

presence of high-risk diagnosis at a hospital discharge during the year prior to dialysis (past-

year comorbidities), and whether diabetes was the cause of ESRD (CMS 2014). (Additional 

details are in Web Appendix C.) Note that case-mix risk variables (e.g., high-risk diagnosis) 

are not defined at the time of the index hospitalization, since this would constitute adjusting 

for longitudinal covariates with multiple index hospitalizations per patient. We emphasize 

that all risk variables are determined, instead, based on discharges during the year prior to 

dialysis.

To achieve the above goals we propose the generalized (logistic) MVCM

g E Y i j(t) Zi j, bi j, t < Si j = g pi j(t) = γi(t) + bi j + Zi j
Tβ, i = 1, …, I, (M1)
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where g is the logit link function, t denotes the time after initiation of dialysis, Sij denotes 

death time of subject j, the functions γi(t) correspond to the fixed time-varying facility-level 

effects, bi = bi1, …, biNi

T
 correspond to subject-specific random effects (REs) within the ith 

facility with variance σb
2, β = β1, …, βr

T is a vector of regression parameters, and 

pi j(t) ≡ E Y i j(t) |Zi j, bi j, t < Si j = g−1 γi(t) + bi j + Zi j
Tβ  denotes the ‘partly conditional’ target 

of inference, conditional on being alive t < Sij. The partly conditional target of inference has 

been considered before in modeling longitudinal data (Kurland and Heagerty 2005) and 

more recently in the context of varying coefficient models (Estes et al. 2014; 2015) to model 

time-varying regression effects in the dynamic cohort of survivors. We alert the reader here 

that model (M1) involves the collection of high-dimensional parameter space 

γ1(t), …, γI(t), β1, …, βr, σb
2  that requires simultaneous estimation. For our application, this 

involves simultaneous estimation and inference for about 2,900 γi(t)’s and over 20 

covariates, βr’s. One should not confuse model (M1) as a separate model for each facility i.

Several modeling assumptions, choices, and limitations are inherent in the TDP setting. 

First, similar to the formulation in time-static profiling, the readmission risk, by definition, is 

conditional on the existence of an index hospitalization. The MVCM in (M1), which we will 

refer to as Model 1, extends the standard fixed effects logistic regression model of He et al. 

(2013) for time-static dialysis facility profiling, to model time-dynamic facility effects via 

facility-level varying coefficient functions, which are the main interest in TDP. Second, we 

do not make adjustments for longitudinal covariates and target facility-level effects under the 

assumption that, changes in a patient’s longitudinal readmission risk after initiation of 

dialysis are directly attributable to the care they receive at the dialysis facility, once adjusted 

for the health status of the patient prior to dialysis, characterized by the rich set of case-mix 

(Zij), which are assumed to be fixed over time within a facility. Third, even though, no 

adjustment are made for time-varying covariates on the causal pathway of facility-level 

effects, we include subject-specific random effects in Model 1, which are related to 

longitudinal changes in the readmission risk of the patient. We view inclusion of the subject-

specific random effects as a compromise between valid inference in TDP and avoiding 

confounding of facility effects, since as will be shown (through simulations of Section 4), 

their exclusion do not produce valid inference in testing for outlier facilities. Fourth, for 

mathematical convenience in deriving a feasible estimation procedure for Model 1 in Section 

2.2, we assume that there are two independent sources for within-subject correlation of the 

response: the subject-specific REs bij and the dependence of the response on the subject’s 

death time Sij, i.e. we assume bij and Sij to be independent. This formulation, while allowing 

for within-subject correlation, also achieves informative censoring in truncation by death, 

through the dependence of the response on the death time Sij. For more details on generation 

of the binary response Yijk based on the two independent sources of within- subject 

correlation for simulation studies, we refer the readers to Web Appendix D. Briefly, the 

binary response is generated based on a continuous latent outcome, denoted by Y i jk* , which is 

modeled unconditional on the subject-specific random effects, jointly with survival time. 

The means of the response conditional on the random effects are recovered using the 

bisection algorithm. Fifth, the current modeling assumes that once adjusted for the patients’ 
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baseline risks, readmission risks of high- and low-risk index hospitalizations are not 

different and the TDP setting can not adjust for length of stay. This issue is further discussed 

in details in the Discussion section and in Web Appendix C.

Finally, we model a partly conditional target of inference, which characterizes the 30-day 

readmission outcome among dialysis facilities conditional on the patients being alive and 

does not include patient death as another joint outcome resulting from the patient care 

process. This is an important limitation in the proposed modeling, since if patient care 

within facilities leads to differences in mortality rates, this is not directly accounted for in 

the current TDP set-up. To include death as part of the outcome of care, joint modeling of a 

longitudinal outcome (e.g. 30 day readmission rate) and survival can be considered for TDP. 

This extension would require extensive methodological developments to address 

computational challenges in estimation and inference for a high-dimensional parameter 

space and is identified as a potential direction for future research.

2.1 Standardized Dynamic Readmission Ratio

To assess the time-dynamic performance of the ith facility relative to a reference and account 

for patient case-mix, we introduce the standardized dynamic readmission ratio

SDRRi(t) =
∑ j ∈ ℕit

pi j(t)
∑ j ∈ ℕit

pi j, M(t) , (1)

where pi j, M(t) = g−1 γM(t) + bi j + Zi j
Tβ  with γM (t) denoting the cross-sectional median of 

γ1(t), …, γI(t) , ℕit denoting the time-varying index set of all subjects who are alive and 

receiving care at facility i at time t and t representing time after initiation of dialysis. Similar 

to model (M1), the proposed SDRRi(t) also targets the performance of the ith facility for the 

dynamic cohort of survivors. The SDRRi(t) is the ratio of the expected total number of 

readmissions for all patients at facility i at time t relative to the expected total number of 

readmissions for the same patients based on the reference (national) norm. The denominator 

is the expected total number of readmissions for an “average” facility (taken over the 

population of all facilities) at time t, adjusted for the particular case-mix of the same patients 
alive at time t in facility i. Note that it is the sum of readmission probabilities of all patients 

alive at time t in facility i based on a national norm, specified by γm (t). The definition of 

SDRRi(t) requires that ℕit is not an empty set, i.e. facility i treats some patients at time t. In 

our data application with about 2, 900 dialysis facilities, the number of patients treated 

throughout the three year follow-up does not get smaller than 5. We emphasize again that the 

risk adjustment (term Zi j
Tβ) to account for differences in patients’ health status at baseline is 

required to ensure that variations in patient outcomes among facilities are attributable to the 

process of care rather than to the differences in the characteristics of the patients.

Estimates of SDRRi(t) provide key patterns of time-varying patient outcome for each 

dialysis facility relative to a reference norm and provide a graphical display of the time 
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periods of under-performance during dialysis. Time periods (t) for which SDRRi(t) > 1 

indicate that 30-day readmission rates for facility i are greater than the reference norm. We 

caution that some practitioners or consumers may be tempted to compare this measure 

between two facilities (i and i′): SDRRi(t) versus SDRRi′(t). This is generally wrong 

because the distributions of patient case-mix between any two facilities may not be the 

same; a comparison of SDRRi(t) with SDRRi′(t) (i.e., between two facilities) would only be 

meaningful to the extent that their distributions of case-mixes, Zij and Zi′j, overlap.

A natural estimator of SDRRi(t) is SDRRi(t) = ∑ j ∈ ℕit
pi j(t)/∑ j ∈ ℕit

pi j, M(t) are predicted 

subject-specific random effects obtained from the means of the posterior distributions of bij. 

Estimators of the model parameters β, γ1 (t),…, γI(t) and predicted random effects, will be 

obtained via an approximate EM algorithm due to the large number of facilities, alternating 

between the estimation of γi(t), β, and the predicted random effects until convergence as 

outlined in the next section. The technique is motivated by the work of He et al. (2013).

2.2 Estimation Procedure

To develop the intuition behind the proposed estimation algorithm, first consider a simpler 

logistic MVCM without subject-specific random effects,

g E Y i j(t) Zi j, t < Si j = g pi j(t) = γi(t) + Zi j
Tβ, (M2)

which we refer to as Model 2. Also, this model will be used, in comparison to Model 1, to 

evaluate the impact of ignoring within-subject correlation. Let Lij{γi(t),β} denote the joint 

distribution of the response Y i j1, …, Y i jNi j
 observed at ti j = ti j1, …, ti jNi

, such that tij < Sij, 

given the case-mix Zij. Then the likelihood function is 

L γ1(t), …, γI(t), β = ∏i = 1
I ∏ j = 1

Ni Li j γi(t), β . For estimation in Model 2, facility-specific 

fixed effect functions γi(t) can be approximated locally and the derived parameters can be 

estimated via maximization of the local likelihoods. However, when the number of facilities 

is large (several thousands), maximizing the local likelihoods poses a serious computational 

challenge. Standard estimation techniques, such as a global estimation procedure through 

basis expansions (e.g., via spline approximations), is infeasible due to the high-dimension of 

the design matrix. Nevertheless, the likelihood L{γ1(t),…, γI (t), β} is separable into I 

components, where the ith component ∏ j = 1
Ni Li j γi(t), β  depends only on {γi(t), β}. Hence, 

given β, γi(t) can be estimated by maximizing the local likelihood based on data only from 

the ith facility; and given {γ1(t),…, γI (t)}, β can be estimated based on a global likelihood 

without the need for localization. Therefore, an iterative Newton-Raphson algorithm can be 

implemented for estimation in Model 2. (See Web Appendix A for details.)

Now consider Model 1, the proposed logistic MVCM (M1) with subject-specific REs to 

account for within-subject correlation. The estimation of Model 1 will similarly rely on the 

idea of iterating between estimation of the model parameters to deal with the computational 
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challenges due to the large number of parameters for thousands of dialysis facilities. Let b = 
(bij : i = 1,…,I;j = 1,…,Ni)T denote the vector of independent and identically distributed 

(i.i.d.) normal variables with mean zero and variance σb
2; bi j N 0, σb

2 . Further let Li j* γi(t), β

denote the joint distribution of the response Y i j1, …, Y i jNi j
 observed at tij, conditional on bij, 

tij < Sij and the case-mix Zij. Under the independence of bij and Sij, the joint distribution of 

Y i j1, …, Y i jNi j
, bi j  given the case-mix and tij < Sij, denoted by L{bij, σb, γi(t), β}, is given as

Li j bi j, σb, γi(t), β = Li j* γi(t), β ×
exp −bi j

2 / 2σb
2

2πσb
2 .

Viewing the subject-specific REs as missing data, we propose an approximate EM algo-

rithm. The complete likelihood for Model 1 is 

L b, σb, γ1(t), …, γI(t), β = ∏i = 1
I ∏ j = 1

Ni Li j bi j, σb, γi(t), β . The incomplete or observed 

likelihood is

L σb, γ1(t), …, γI(t), β = ∏
i = 1

I
∏
j = 1

Ni ∫−∞
∞

Li j bi j, σb, γi(t), β dbi j .

Also, let Y denote the vector of all outcomes Yijk, and Yij denote the vector of all outcomes 

for the patient j in facility i. The posterior distribution of bij given Yij and {γi(t), β, σb} is

Di j bi j Yi j, σb, γi(t), β, ti j < Si j =
Li j bi j, σb, γi(t), β

∫ −∞
∞ Li j bi j, σb, γi(t), β dbi j

.

Hence the posterior mean and variance of bi j0 ≡ Ci j
−1∫ −∞

∞ bi jLi j bi j, σb, γi(t), β dbi j and 

vi j0 ≡ Ci j
−1∫ −∞

∞ bi j − bi j0
2Li j bi j, σb, γi(t), β dbi j, respectively, where 

Ci j = ∫
−∞

∞
Li j {bi j, σb, γi(t), β dbi j. We use a Gauss-Hermite quadrature calculation with 20 

quadrature points to numerically approximate bij0 and vij0 and utilize a working 

independence assumption in approximating Li j* γi(t), β  by 

∏k = 1
Ni j exp γi ti jk + bi j + Zi j

Tβ Y i jk / 1 + exp γi ti jk + bi j + Zi j
Tβ  conditional on the subject-

specific REs. Note that the approximation will work well if a weak correlation is introduced 

due to sharing a death time Sij and that the subject- specific REs account for the majority of 

the within-subject correlations in the response. The working independence assumption will 

also be used in the M-step of the algorithm. As explained by Kurland and Heagerty (2005), 

generalized estimating equations or likelihood- based approaches with non-independence 

working correlation will not yield valid inference for the partly conditional target.
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The E-step of the approximate EM algorithm pertains to the calculation of the conditional 

expectation of the complete log-likelihood. Let σb*, γ1*(t), …, γI*(t), β*  denote the current 

parameter estimates; bi j0*  and vi j0*  denote the posterior mean and variance of bij given the 

current parameter estimates; and let p0, i jk* ≡ g−1 γi* ti jk + bi j0* + Zi j
Tβ* , q0, i jk* ≡ 1 − p0, i jk*

and 𝓁i j bi j, σb, γi(t), β ≡ logLi j bi j, σb, γi(t), β . Because the closed form for 

E logL b, σb, γ1(t), …, γI(t), β |Y , σb*, γ1*(t), …, γI*(t), β*, t < S = ∑i = 1
I ∑ j = 1

Ni E[𝓁i j bi j, σb, γi(t), β

|Y i j, σb*, γi*(t), β*, t < Si j] ≡ ℰ

, the expected log-likelihood, is not available, we approximate 𝓁i j bi j, σb, γi(t), β  using a 

second order Taylor’s expansion about bi j0*  to obtain

ℰ ≈ ∑
i = 1

I
∑
j = 1

Ni
∑

k = 1

Ni j
Y i jk γi* ti jk + bi j0* + Zi j

Tβ* + log q0, i jk* −
vi j0*
2 p0, i jk* q0, i jk*

−
bi j0* 2 + vi j0*

2 σb*
2 − 1

2log 2π σb*
2 = ∑

i = 1

I
Li σb*, γi*(t), β* ,

(2)

where Li σb*, γi*(t), β*  is defined implicitly. The M-step maximizes the expectation of the 

complete log-likelihood utilizing the approximation in (2). A key observation is that this 

approximation is separable into I components, namely Li σb*, γi*(t), β* , i = 1, …, I, where the 

ith component depends only on σb*, γi*(t), β*  and the posterior mean bi j0*  and variance, vi j0* , 

similar to the likelihood of Model 2. Hence, while joint maximization with respect to all 

model parameters is a substantial computational challenge for a large number of facilities, an 

iterative alternating approach similar to the one discussed for Model 2 can be feasibly 

implemented. In the proposed sequential algorithm, we estimate σb and β by maximizing the 

approximation of the expected global log-likelihood given in (2). For estimation of γi(t), we 

maximize the approximate expected local log-likelihood (derived by plugging the local 

linear approximation of γi (t) into Li σb*, γi*(t), β* ) using data from only the ith facility. We 

begin by estimation of σb, followed by the estimation of γi(t) given the current estimates β*, 

σb*, and bi j0* , vi j0*  via a one-step Newton-Raphson iteration. Finally, β is estimated utilizing a 

one-step Newton-Raphson iteration. The algorithm is summarized in Web Appendix A.

2.3 Hypothesis Testing for Fixed Effects: Identifying Extreme Facilities

In addition to estimation, statistical inference about the time-varying readmission rate for 

dialysis facilities, SDRRi(t) i = 1
I , is of interest. More precisely, it is of interest to identify 

facilities that deviate from the national norm over time. For facilities with time-varying 

readmission rates not different from the national norm, SDRRi(t) will be a constant function 

equal to 1 across time t. Time periods during which SDRRi(t) < 1 or SDRRi(t) > 1 would 
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indicate that the facility’s readmission rates are less than or greater than expected, 

respectively. Thus, the null hypothesis H0 : SDRRi(t) = 1 for all t is of interest.

However, making statistical inference about the large number of functions, SDRRi(t) i = 1
I , is 

a non-standard problem and is challenging given the computational cost to estimate 

thousands of facility-specific varying coefficient functions. To reduce the computational 

burden, we take advantage of the fact that β, γM (t) and σb can be estimated quite precisely 

based on data from all facilities. Hence, these quantities are estimated only once and fixed 

throughout the proposed algorithm which is based on resampling the subject-specific 

random effects and the responses under the null hypothesis. Since the global parameters β, 

γm(t) and σb are fixed, model refitting to the resampled data only requires estimation of 

facility-specific parameters bij0, Vij0 and γi(t). This reduces the computational time 

substantially, since model fits to the resampled data are carried out using data from each 

facility separately. Explicit steps of the testing procedure including the test statistic are 

outlined in Web Appendix B.

3. Time-Dynamic Patterns of Hospital Readmission Among Dialysis 

Facilities

Our study was conducted using the USRDS, which collects data on nearly all patients 

receiving care for ESRD, including data on patient demographics and baseline factors prior 

to the initiation of dialysis. The analysis/study cohort included 113,764 patients receiving 

dialysis care at 2,896 facilities for a maximum follow-up of three years. Patients experienced 

a total of 381,922 index discharges with an overall 30-day readmission rate of 29.7%. 

Details of the study cohort, risk adjustment variables and inclusion/exclusion rules are 

provided in Web Appendix C. The number of patients per facility varied between 20 to 146.

Overall model fits.

We summarize results from fitting Model 1, the main model, for estimation of the facility-

specific time-dynamic 30-day readmission index, SDRR (t), as well as hypothesis testing 

results from testing the null H0 : SDRRi(t) = 1 to identify/flag facilities deviating from the 

national norm over time. The bandwidths used in estimation of γi(t) were allowed to change 

across facilities and were selected using 10-fold cross-validation, as described in the 

simulation results presented in Web Appendix D, where the selected bandwidth values 

ranged between .8 and 1.3 years. The variance of the subject-specific random effects in 

Model 1 was estimated to be of σb
2 = .63, leading to relatively small to medium differences in 

the estimated SDRRs. We also compared flagging patterns of Model 1 with Model 2, which 

ignores within-subject correlation. Both models included a risk adjustment step to account 

for age, sex, body mass index (BMI), 23 comorbidities and presence of high- risk discharge 

during the year prior to dialysis and whether diabetes was the cause of ESRD. (The effects 

of these baseline risk factors on 30-day readmission are given in Web Appendix Table 2.)
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Relative time-dynamic hospital readmission patterns.

We identified distinct relative patterns of hospital readmission over time by testing the null 

hypothesis H0 : SDRRi(t) = 1 under Model 1, which accounts for within-subject correlation. 

Note that when H0 is rejected and the performance of the dialysis facility is found to be 

significantly different than the national norm, there are three patterns to consider. The 

identified/flagged facility, relative to the national norm, may be (1) consistently worse over 

time SDRRi(t) > 1, (2) consistently better over time (i.e. SDRRi(t) < 1 (3) mixed pattern over 

time, with some time periods of worse or better or not different over the observation time 

period. Figure 1 illustrates the time-dynamic patterns of 30-day readmission for selected 

facilities with varying sizes (Model 1 fits). The first row of Figure 1 provides examples of 

dialysis facilities flagged as significantly worse than the national norm. Also illustrated in 

Figure 1 are some facilities with SDRR significantly better (row 4), mixed patterns (row 3), 

and not different (row 2), relative to the national norm. As expected, estimated SDRRs were 

more variable for smaller facility size (lower volume) for all patterns of SDRR. When the 

SDRR demonstrates a mixed pattern over time, further investigation will be needed if one is 

interested in identifying specific time periods of significant over-performance, or under-

performance. Note that the proposed hypothesis testing algorithm can be extended to test for 

significantly worse or better rate of readmission in specific time periods during follow-up by 

restricting the support of the testing period to these pre-specified time intervals.

Model 1 and Model 2 comparison and flagging rates.

The estimated SDRRs from the two models (with and without accounting for within-subject 

correlation) were compared using the normalized L2 distance 

∫ 0
3 SDRR1i(t) − SDRR2i(t)

2dt
1/2

/ ∫ 0
3SDRR1i

2 (t)dt
1/2

 where SDR1i(t) and SDRR2i(t) denote the 

estimated SDRRi(t) under Models 1 and 2, respectively. The distributions of the normalized 

differences between the two estimated SDRRs are displayed in Figure 2(d), stratified by 

small, medium and large facilities (20–30, 31–42 and 43–146 patients, respectively). Figure 

2(d) shows that the difference in SDRRs decreased with increasing facility size as expected 

since the effects of the predicted random effects on estimated SDRRi(t) shrink as the 

predicted probabilities were averaged over larger number of patients within a facility.

The pairwise comparison of the number and percentage of outlier facilities identified by the 

nominal p-values calculated under Models 1 and 2 are displayed in Table 1(A). Since the 

proposed test statistic in Section 2.3 is one-sided, the categorization of an outlier facility as 

better, worse, or mixed was determined by the shape of its estimated SDRRi(t). Models 1 

and 2 identified many more facilities as significantly worse or mixed (12.5% and 15.5% in 

Models 1 and 2, respectively), than significantly better (1.7% and 1.2% in Models 1 and 2, 

respectively). The two models did not always identify the same facility as significantly 

different from the national norm, which was to be expected. For example, 22 out of 125 

facilities flagged as significantly worse under Model 1 were not flagged under Model 2. 

Note that consistent with the decline in the estimated differences in SDRRs between the two 

models with increasing facility size (Figure 2(d)), the proportion of agreement in flagging 

results also increased with increasing facility size (results not shown).

Estes et al. Page 11

Biometrics. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overdisperson, empirical null distribution, and facility volume.

We also considered the empirical null adjustment, discussed in Kalbfleish and Wolfe (2013) 

and He et al. (2013) (based on Efron (2004)), that accounts for the overdispersion when 

simultaneously testing a large number of facilities. Accounting for this overdispersion allows 

for identification of a targeted proportion (e.g., 2.5%) of outlying facilities to further 

investigate. The degree of overdispersion may depend on the facility size where large 

facilities will be flagged more frequently. Therefore, the adjustment can be stratified by 

facility size. The adjustment procedure, similar to He al al. (2013), converts the nominal p-

value for each facility to a z-score using the inverse cumulative distribution function (see 

Web Appendix C for details).

The results are given in Figure 2(a)-(c), which show the histograms of the z-scores, stratified 

by facility size. Evidently, the distributions are left skewed due to outlier facilities with large 

negative z-scores. The overdispersion was highest for large facilities, consistent with the 

findings in Kalbfleisch and Wolfe (2013) who first considered adjustment based on the 

empirical null for standard (time-invariant) profiling. Also provided in Figure 2(a)-(c) is the 

density function of a N(0,1) superimposed onto each histogram of the z-scores for reference, 

as well as a normal density fitted to each histogram representing the empirical null 

distribution. Since the means of all three empirical null distributions were negative, 

identifying the 2.5% left-tail of the empirical null distributions for flagged facilities, resulted 

in much fewer facilities compared to using nominal p-values < .025. Table 1(B) compares 

the flagging rates of worse or mixed facilities using the nominal p-value and the empirical 

null distribution. While 12.5% of facilities were flagged as worse or mixed using the 

nominal p-value, 3.9% were flagged using the empirical null method. The number of flagged 

facilities were similarly reduced for Model 2. However, Model 1 flagged fewer facilities 

overall than Model 2, based on the empirical null, consistently for all facility sizes. As 

expected, a higher percentage of large facilities were flagged using the nominal p-value 

(16.6%), compared to small (9.3%) and medium (11.7%) facilities. Estimation of the 

empirical null separately by facility size, reduced the difference in the amount of flagged 

facilities in each category (2.2%, 4.3%, and 5.2% of the small, medium and large facilities 

were flagged, respectively).

4. Simulation Studies

We studied estimation of model parameters, including estimation of the key time-varying 

metric SDRRi(t), the effects of ignoring within-subject correlation, the validity of the 

hypothesis testing procedure and the overdispersion when simultaneously testing a large 

number of facilities through simulation studies. We briefly summarize the main results here 

where details of the simulation designs and results are deferred to Web Appendix D. The 

mean squared error (MSE) and the relative mean squared deviation error (MSDE), used to 

assess estimation of time-invariant and time-varying model parameters, respectively, are 

given in Table 2, which show that the model parameters were well estimated. Figure 3 

illustrates how the estimates track the true SDRRi(t) (given for Model 1). Given in Table 3 

are the estimated levels (acceptance probabilities) of the facility hypothesis test for an outlier 

facility deviating more from other facilities with varying δ. While the proposed estimation 
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procedure for Model 1 targeted the parameter estimates and SDRRi(t) effectively leading to 

valid inference for identifying outlier facilities, Model 2 which ignores the within-subject 

correlation resulted in reduced validity (levels substantially less than the 0.95 target). While 

the first part of Table 3 reports estimated levels of the hypothesis testing from multiple null 

hypotheses, the second part reports estimated power values. The power increases rapidly 

with increasing δ and is most effected by facility size rather than the total number of 

facilities, since the test is largely based on data within a facility. Finally our simulation on 

overdispersion justified carrying out the empirical null adjustment stratified according to 

facility size, since a disproportionate number of large facilities were flagged compared to 

small and medium facilities.

5. Discussion

In this work we proposed a novel method for time-dynamic profiling and solutions to 

inferential challenges involving a high-dimensional parameter space. Our application of the 

methodology to assess time-varying 30-day readmission rate over the entire time period 

from the start of dialysis identified distinct patterns of SDRR. We believe that the focus on 

the assessment of patient outcome over time among medical care providers, although 

challenging, is deserving of more research emphasis. For instance, are there common 

aspects/factors of the patient care processes among providers that exhibit consistently better 

patient outcomes over time? The first step to answering such a question is the availability of 

techniques to assess time-varying effects for providers; our work here is a contribution 

towards this effort.

There are several important limitations and potential extensions to the proposed modeling 

approach. First, we directly modeled the 30-day readmission outcome among dialysis 

facilities conditional on the patients being alive via a partly conditional target of inference. 

To include death as part of the outcome of care, joint modeling of a longitudinal outcome 

(e.g. 30 day readmission rate) and survival can be considered for TDP as discussed in 

Section 2. A second limitation involves the case-mix risk adjustment. A factor affecting the 

readmission risk following an index hospitalization is the discharge reasons/status of the 

initial index hospitalization. However due to not adjusting for longitudinal covariates on the 

causal pathway of the facility performance, our time-varying profiling framework cannot 

adjust for high-risk status of the index hospitalization. Hence an implicit assumption in the 

current modeling is that once adjusted for the patient’s baseline risks, readmission risks of 

high- and low-risk index hospitalizations are not different. Nevertheless, a sensitivity 

analysis can be explored excluding the high-risk index hospitalizations; the sensitivity 

analysis of excluding the low prevalence (1.1%) of high-risk hospitalizations did not have an 

impact on the results in our application. We note that although we do not adjust for 

longitudinal case-mix risk variables, we encourage practitioners to expand the risk 

adjustment to include measurable time-varying confounders that are independent of the 

effects of the facility’s process of care. Also, the impact of time-dependent confounding 

requires further research.

Finally, several extensions to the proposed modeling framework may be of interest. The 

model can be extended to include subject-specific time-varying random effects (e.g., see Yao 
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et al. 2005). The model may also be extended to include calendar year at the initiation of 

dialysis, especially for a larger cohort initiating dialysis over longer calendar year periods. 

Also, alternative ways of defining the benchmark for assessing provider performance, other 

than the national median/average standard, deserves attention. For example, an alternative 

for defining the benchmark could be based on an external standard of possibly time-specific 

deviations from the national medium facility performance. The deviation could be based on 

an “acceptable” tolerance level or on a desired level of patient outcome improvement.

6. Supplementary Materials

Web appendices referenced in Sections 2–4 are available with this article at the Biometrics 

website on Wiley Online Library.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustrative time-dynamic patterns of estimated standardized dynamic readmission ratio 

SDRRi(t) for several dialysis facilities flagged as significantly worse (row 1), better (row 4), 

mixed (row 3) and not significantly different than the national norm (row 2) with varying 

size (small, medium, large). Displayed are 5 distinct dialysis facilities per plot.
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Figure 2: 
Histograms of z-scores estimated from p-values of Model 1 in testing H0: SDRRi(t) = 1, 

stratified by facility size (a) small, (b) medium, and (c) large. The standard normal density is 

superimposed on the histograms (grey) along with normal densities (empirical null 

distribution) fitted to the center of the histograms using a robust M-estimation procedure. (d) 

Normalized L2-norm of the difference between the estimated facility SDRRi(t) functions 

under Model 1 and 2, stratified by facility size.
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Figure 3: 
Estimated SDRRi(t) functions at the median (black), 10th and 90th percentiles (dashed) of 

mean squared deviation error (MSDE), stratified by facility size (small, medium and large). 

The corresponding true average SDRRi(t) is given in gray. Columns (a), (b) and (c) 

correspond to the shape of the underlying facility-specific effects γi(t) as a square root, 

quadratic or constant function, respectively. See Web Appendix D for details.
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Table 1:

(A) Number (percent) of facilities identified as significantly different (better, worse, mixed) from expectation 

(national norm) over time, determined by nominal p-value < .025. (B) Number (percent) of facilities flagged 

as worse or mixed based on the nominal p-value and the empirical null distribution, stratified by facility size 

(small, medium, large).

(A)

Model 1

Model 2 Non-significant Better Worse Mixed Total

Non-significant 2305 (79.6%) 16 (0.6%) 22 (0.8%) 67 (2.3%) 2410 (83.2%)

Better 6 (0.2%) 28 (1%) 0 (0%) 2 (0.1%) 36 (1.2%)

Worse 53 (1.8%) 0 (0%) 91 (3.1%) 9 (0.3%) 153 (5.3%)

Mixed 123 (4.2%) 4 (0.1%) 12 (0.4%) 158 (5.5%) 297 (10.3%)

Total 2487 (85.9%) 48 (1.7%) 125 (4.3%) 236 (8.1%) 2896 (100%)

(B)

Model 1 Model 2

# of Subjects Nom. p-value Emp. null Nom. p-value Emp. null

Small [20,30] 96 (9.3%) 23 (2.2%) 114(11.1%) 44 (4.3%)

Med. [31,42] 108 (11.7%) 40 (4.3%) 134 (14.5%) 40 (4.3%)

Large [43,146] 157 (16.6%) 49 (5.2%) 202 (21.4%) 82 (8.7%)

Overall 361 (12.5%) 112 (3.9%) 450 (15.5%) 166 (5.7%)
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Table 2:

(A) Estimated bias, standard error (SE), mean squared error (MSE) of the time-invariant parameter estimates 

and (B) quartiles of the mean squared deviation error (MSDE) of the time-varying estimates of γi(t) and (C) 

SDRRi(t) based on 200 Monte Carlo runs. MSDE are given by overall (all), stratified by facility size (small, 

medium and large) and by time-varying coefficient function shape (constant, square root and quadratic).

I = 100 I = 1000

(A) Model 1 Model 2 Model 1 Model 2

Estimate Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

β1 .008 .066 .004 −.058 .058 .007 .008 .021 .001 −.057 .019 .004

β2 −.014 .063 .004 .052 .055 .006 −.006 .021 < .001 .058 .018 .004

σb
2

−.025 .041 .002 — — — −.023 .013 .001 — — —

(B) γ (t) Model 1 Model 2 Model 1 Model 2

MSDE 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

All .055 .116 .241 .055 .109 .209 .055 .117 .242 .056 .108 .211

Small .101 .208 .391 .093 .179 .333 .101 .210 .401 .093 .180 .335

Medium .063 .119 .227 .058 .111 .200 .063 .124 .235 .060 .112 .203

Large .035 .067 .122 .038 .072 .123 .034 .064 .123 .038 .070 .120

Constant .052 .105 .218 .052 .103 .193 .052 .107 .211 .053 .101 .191

Square root .042 .085 .168 .046 .089 .163 .041 .084 .166 .046 .089 .162

Quadratic .089 .182 .351 .078 .150 .282 .087 .185 .361 .077 .151 .281

(C) SDRR(t) Model 1 Model 2 Model 1 Model 2

MSDE 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

All .012 .024 .048 .010 .021 .041 .011 .024 .048 .010 .021 .041

Small .019 .040 .077 .017 .034 .066 .019 .039 .075 .017 .034 .063

Medium .012 .025 .046 .011 .022 .040 .012 .025 .048 .011 .022 .041

Large .008 .015 .027 .007 .014 .024 .007 .014 .026 .007 .013 .023

Constant .015 .031 .058 .013 .026 .049 .016 .031 .057 .014 .027 .049

Square root .017 .033 .061 .015 .029 .052 .017 .033 .062 .015 .028 .053

Quadratic .007 .013 .026 .007 .013 .023 .006 .013 .025 .006 .012 .023
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Table 3:

Median mean squared deviation error (MSDE) of SDRRi(t) estimates and Part I: acceptance probabilities (AP) 

in testing H0 : γ1 (t) = γ0δ (t) and Part II: estimated power (P) in testing H0 : γ1(t) = γm (t), from Section 4. 

Results are reported from 500 Monte Carlo runs and grouped by facility size (small, medium and large).

Part I

I = 100

Small Medium Large

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

δ MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP

0 .057 .943 .049 .810 .039 .962 .034 .744 .021 .971 .018 .767

.25 .042 .954 .036 .835 .031 .969 .026 .809 .018 .979 .015 .787

.50 .037 .969 .029 .852 .023 .975 .017 .873 .016 .963 .012 .841

.75 .031 .980 .023 .911 .022 .978 .014 .883 .015 .971 .009 .875

1 .024 .965 .017 .882 .020 .971 .011 .878 .012 .963 .007 .870

I = 1000

Small Medium Large

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

δ MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP MSDE AP

0 .055 .960 .045 .850 .034 .954 .028 .796 .022 .954 .018 .752

.25 .041 .958 .033 .838 .028 .968 .022 .834 .019 .984 .015 .808

.50 .033 .964 .024 .870 .022 .976 .016 .872 .016 .970 .013 .830

.75 .028 .972 .020 .874 .020 .970 .014 .890 .015 .968 .010 .846

1 .023 .968 .016 .850 .018 .964 .011 .872 .014 .956 .008 .860

Part II

I = 100

Small Medium Large

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

δ MSDE P MSDE P MSDE P MSDE P MSDE P MSDE P

0 .057 .039 .047 .096 .035 .033 .029 .118 .024 .038 .020 .111

.25 .047 .161 .036 .391 .032 .214 .024 .498 .022 .397 .017 .665

.50 .040 .617 .027 .901 .026 .841 .018 .968 .018 .981 .014 .998

.75 .031 .942 .023 .991 .021 1 .018 1 .015 1 .015 1

1 .026 1 .020 1 .019 1 .018 1 .015 1 .017 1

I = 1000

Small Medium Large

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

δ MSDE P MSDE P MSDE P MSDE P MSDE P MSDE P

0 .056 .035 .049 .107 .037 .054 .031 .124 .023 .026 .019 .105

.25 .046 .141 .032 .382 .031 .227 .023 .527 .021 .371 .015 .701

.50 .037 .618 .024 .869 .028 .835 .018 .970 .018 .967 .013 .994

.75 .028 .964 .022 .990 .019 1 .018 1 .016 1 .015 1
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1 .025 1 .019 1 .018 1 .017 1 .013 1 .017 1
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