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Abstract

Structure and Dispersion of Active Matter in Confinement

by

Kevin Joseph Modica

Many living systems, such as bacteria or eukaryotic cells, utilize self-propulsion to

enhance transport, find nutrients, or avoid threats. However, cells often inhabit complex

and heterogeneous spaces—e.g. gels and tissues in the body, or soil sediments in the

environment—that impede rapid transport. Additionally, many biologically and indus-

trially relevant complex materials are opaque and difficult to characterize, indicating the

need for adequate computational and analytical models to guide experimental efforts.

In this dissertation, I utilize theory and simulation to study the structure and mo-

tion of microscopic self-propelled (or active) species in confinement, including bacteria,

synthetic swimmers, and cytoskeletal filaments. Active matter systems are inherently

nonequilibrium and traditional theories of Brownian motion in porous media fail to ac-

curately describe the swimmers’ dispersion. Active particles accumulate along boundaries

due to their self-propulsion, even in the absence of attractive interactions. This mech-

anism traps the active particles at regions of high concavity, coupling the diffusivity of

the swimmer to the microstructure of the confining walls.

I then extend these theories to study the motion of anisotropic active particles (like

cytoskeletal filaments or rod-shaped bacteria) in the presence of soft confinement. I

develop a Smoluchowski model that demonstrates the connection between the long-time

self-diffusivity and active rod nematic order. Finally, I use these results to examine the

partitioning of bacteria in an aqueous two-phase system, and the nematic ordering of

F-actin filaments on topographically patterned channels.
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Introduction Chapter 1

1.1 The Role of Active Transport in Human Health

and Industry

Anyone who has driven through Los Angeles traffic can tell you the world is crowded.

A significant portion of our lives, and indeed that of most living creatures, is spent finding

efficient mechanisms to navigate cramped environments. At the macroscale, we contend

with streets, crowds, and forests. Navigating around these obstacles can be both tortuous

and torturous. Yet these challenges magnify at the microscale. Soil sediments, clays,

and mucus can trap microscopic organisms like bacteria and inhibit cell proliferation. To

overcome these obstacles, living creatures have evolved various methods of self-propulsion:

humans walk, birds fly, and motile bacteria swim. Understanding how bacteria navigate

crowded spaces is crucial in fields like agriculture, industry, and human health. After all,

a bacterium’s ability to move freely can determine if it benefits us, harms us, or simply

gets stuck. Whether a microbe gets trapped or transmitted depends as much on the

medium as it does on the creature.

Self-locomotion enables living creatures to avoid threats, find nutrients, and explore

their environments. Cells often inhabit complex and heterogeneous media bounded

by walls, pores, or other microbes, all of which inhibit navigation through the space.

Pathogenic bacteria squeeze through pores in tissues and mucus to spread through the

body [1–6] —leading to potentially life-threatening infections. After spreading, plank-

tonic bacteria may adhere to a nearby surface and initialize the formation of a biofilm.

These densely packed colonies of bacteria resist treatment and subvert innate immune

defenses. On the other hand, the transport of bacteria through soil plays an important

role in bioremediation [7, 8] and rhizosphere bacteria protect plant roots to promote

growth [9].

In Fig. 1.1, we show a schematic of a bacterium as well as two example crowded

2



Introduction Chapter 1

Pore size: 1µm-1mm

Bacterium

Mesh size: 1-100µm 

Wound Repair Matrix Rhizosphere

 ℓ ~ 1-10 µm 

 d ~ 1 µm 

Figure 1.1: Schematic demonstrating the relevant length scales in bacteria penetration
of wound repair material (like collagen or fibrin) and the rhizosphere near plant roots.
Microbes exist in dense, crowded environments.

environments: a polymer matrix designed to promote wound healing or tissue engineering,

and the rhizosphere soil surrounding a plant root. These materials may have pore sizes

of a similar magnitude to the length or diameter of the swimmer, inhibiting transport

through the material. In a wound site, fibrin and collagen form a matrix to restore

hemostasis and protect the body from invading bacteria [10, 11]. The outermost layer

has small pores to prevent microbial penetration (1-10µm), but the inner layers need to be

large enough for fibroblast proliferation and to encourage vascularization [12]. Similarly,

bacteria can impact root nutrient uptake and promote plant growth [13]. In one gram

of ectorhizosphere soil (within ∼2mm of the root) there are about 1010-1012 other cells

competing with each other in the sediment network [14, 15].

Recent advancements in micro/nanoscale synthesis have also led to the creation of

artificial swimmers that are excellent tools in the study of autonomous self-propulsion [16–

23]. Understanding the motion of these living and synthetic active matter constituents

embedded within heterogeneous materials is a challenging problem because of the com-

plex interactions between the swimmer and the material boundaries. Unfortunately,

many biologically or industrially relevant porous materials are opaque and the details of

the microstructure are challenging to resolve. Only recently have experiments been able

3



Introduction Chapter 1

to directly observe and track individual cell motion through a 3D porous domain [24].

Therefore, the development of theoretical models to predict boundary effects on self-

propelled constituents is critical to our understanding of active transport in complex

physical environments.

Cytoskeletal filaments like F-actin and microtubules can also be studied using the

mechanics of active matter. Inside single cells, these biopolymers are often self-propelled

by molecular motors such as myosin, kinesin, or dynein. In vitro gliding assays bind

motor proteins to a substrate and propel attached filaments using ATP [25]. These

motility assays are commonly used to study the physics of cytoskeletal rearrangement

and cargo transport in the cell. In addition to acting as a surrogate model for studying

cells, gliding assays are a promising candidate in the creation of lab on-a-chip devices.

By specifically patterning the topography of the substrate, researchers are able to create

microfluidic computers or sensitive analyte detectors [26, 27].

The models developed in this dissertation are general, and may be applicable to a

variety of self-propelled agents. In collaboration with experimentalists, we test these

models against synthetic, microbial, and cytoskeletal active matter.

1.2 Diffusion in Porous Media

This thesis is focused on the diffusion of motile particles in confinement, so we will

begin with a brief review of of non-motile (thermal) diffusion in porous materials. The

diffusion of a colloidal species is generally described by its diffusivity tensor D, which in

principle can be a function of the temperature, concentration, and other experimental

conditions. Generally it is assumed that motion is isotropic and a scalar-valued diffusivity

is used instead D = DI.

Adding to the complexity is the presence of multiple—potentially overlapping—

4



Introduction Chapter 1

definitions of diffusivity, all of which may be relevant when describing particle trans-

port [28]. In a colloidal system, these are the short-time self-diffusivity, Ds
0, the long-time

self-diffusivity, Ds
∞, and the collective diffusivity Dc. These are all equivalent in the sim-

plest case of infinite dilution in a unbounded system, but each corresponds to a distinct

physical process as shown in Fig. 1.2. The short-time self-diffusivity measures the local

mobility at timescales long compared to the momentum relaxation of a particle τI = m/ζ

(where ζ is the relevant drag coefficient), but small compared to the time it takes the

particle to move a fraction of its size (also called the Smoluchowski time) τS = σ2ζ/kBT .

Where kB is the Boltzmann constant, T is the temperature, and σ is the particle size.

The aptly named long-time self-diffusivity measures the dispersion of a particle at times

much greater than τS and any other timescale in the system, when the particle has been

able to fully explore its environment. Finally, the collective diffusivity corresponds to the

diffusivity one would measure from Fick’s first law. It describes the relationship between

the net flux of collections of particles in the presence of a macroscopic concentration

gradient.

In this dissertation, we will focus on determining the long-time self-diffusivity (also

called the effective diffusivity DE). This quantity describes the relevant mobility of a

single particle moving through a porous medium. The effective diffusivity is equivalent

to the slope of the mean-squared displacement at long time,

DE =
1

2
lim
t→∞

d

dt
⟨∆x(t)∆x(t)⟩. (1.1)

where ⟨·⟩ is the ensemble average and ∆x(t) = x(t)− x(0).

The long-time self-diffusivity captures all the effects (if any) from the surrounding

hydrodynamics, finite concentration, and geometric confinement to provide an powerful

descriptor of the spread of a particle at long time. For a vapor, the diffusion of molecules

is determined by the molecular speed and the mean free path. Gas phase particles

5
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Collective Diffusivity

Long-time
Self-Diffusivity

Short-time
Self-Diffusivity

Figure 1.2: Schematic describing three relevant diffusivities of colloidal particles. The
short-time self-diffusivity describes the mobility of a particle at times large compared
to the inertial time, but small compared to the Smoluchowski time. The long-time
self-diffusivity describes mobility at times large compared to all other time-scales of
the system. The collective diffusivity relates the flux to macroscopic concentration
gradients.

move at a high speed due to their kinetic energy, and rarely collide with each other,

resulting in gaseous self-diffusion coefficients easily reaching several square-centimeters

per second. Colloidal particle diffusion occurs due to collisions with the solvent and

decreases rapidly with particle size. For a dilute suspension, the impact of other colloids

is minimal and the short-time self-diffusivity converges to the traditional Stokes-Einstein-

Sutherland diffusivity DT = kBT/ζ, which is ∼ 0.5 µm2/s for a 1 µm diameter sphere in

water at room temperature.

In a confined environment, colloidal transport is hindered by the boundaries. For a

freely draining system, the short-time self-diffusivity of a colloid remains as DT ; how-

ever, the long-time particle mobility can be drastically reduced by the pore geometry.

Strategies for estimating the effective diffusivity of Brownian particles are discussed in

6
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Chapter 2 and compared against simulation and exact calculation for active particles.

1.3 Motion of Colloidal Swimmers

One example mechanism by which bacteria self-propel is using flagella—slender, heli-

cal appendages that rotate to induce motion [29]. The canonical examples of Escherichia

coli and Bacillus subtilis have bundles of flagella that cooperatively rotate to push the

surrounding fluid and generate a ballistic “run” followed by rapid reorientation in a

“tumble”.

In general, the dynamics of a particle suspended in a fluid are governed by the

Langevin equation.

m
dU

dt
= FB + FH + F P (1.2a)

I dΩ

dt
= LB +LH +LP (1.2b)

where m is the particle mass, I is the moment of inertia tensor, U and Ω are the transla-

tional and angular velocities. F and L are the forces and torques acting on the particle,

with the superscript B representing Brownian motion from solvent fluctuations, H rep-

resenting the remaining hydrodynamic components, and P representing the remaining

interparticle and external forces and torques acting on the particle. Generally, defining

the rotational and translational velocities of a body requires six degrees-of-freedom, three

angular and three spatial, but for the purposes of this discussion we will ignore the roll

rotation and assume the particle is axisymmetric.

The Reynolds number (Re) is a dimensionless number that describes flow conditions

and indicates the ratio of inertial forces to viscous forces in the fluid. Near a swimmer, it is

defined as Re = ρLU/µ, where ρ is the fluid density, U is the swimming velocity, L is half

the body length, and µ is the fluid viscosity. For most microscopic swimmers in water,

7



Introduction Chapter 1

the Reynolds number is between 10−6 − 10−2 [30], indicating that inertia is negligible

and particles move in the Stokes regime. For the purposes of this thesis, we will be

considering motion in the Re = 0 regime and their motion is considered “force-free”.

Therefore, particle inertia can be safely ignored. Active particles swim in a so-called

“force-free” manner by generating their own motion internally, such that there are no

external forces acting on the particle to induce a velocity. Instead, the particle generates

its own fluid flow via cilia or flagella (for microorganisms) or, say, self-diffusiophoresis /

self-electrophoresis (for inanimate colloidal particles) [31, 32].

The velocity of the surrounding fluid at any point r along the swimmer surface is

u(r) = U + Ω × (r − x) + uslip(r). Where x is the body center and uslip is the slip

velocity. Following the convention of Takatori and Brady [33], the slip velocity can be

expressed in terms of surface moments uslip = Es ·x′ +Bs : (x′x′ − I(x′)2) + · · · , where

x′ = r − x, and the surface moment tensors are in general a function of time.

This method allows us to group the hydrodynamic forces (and torques) into a drag

component and a swim component,

FH = [−RFU ·U −RFΩ ·Ω] +

[
−RFE : Es −RFB

...Bs − · · ·
]

(1.3a)

LH = [−RLΩ ·Ω−RLU ·U ] +

[
−RLE : Es −RLB

...Bs − · · ·
]
, (1.3b)

where the first grouping in each equation represents the drag, and the second grouping

is the (internally generated) swim force / torque F S and LS. In these equations RAB is

the resistance tensor coupling the motion B to the resulting force A (or torque, stress,

etc.).

For now, we will ignore coupling between the translation and rotation in the drag

(RLU = RFΩ = 0), and assume that the self-propulsion mechanism imposes no net

torque on the particles, allowing us to write the overdamped Langevin equations of

8
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motion as

dx

dt
= R−1

FU ·
[
FB + F S + F P

]
(1.4a)

dq

dt
= R−1

LΩ ·
[
LB +LP

]
(1.4b)

where x is the position vector and q is the orientation unit vector. The Brownian forces

and torques FB and LB are subject to the fluctuation dissipation theorem,

⟨FB(t)⟩ = 0 (1.5a)

⟨FB(t)FB(0)⟩ = 2kBTRFUδ(t) (1.5b)

⟨LB(t)⟩ = 0 (1.5c)

⟨LB(t)LB(0)⟩ = 2kBTRLΩδ(t) (1.5d)

where kB is the Boltzmann constant, T is the temperature, and δ is the Dirac delta

function.

The active Brownian particle (ABP) model is a powerful tool to study the motion

of an active swimmer. To a first approximation, the hydrodynamic resistance tensor is

the Stokes drag factor RFU = ζI, where ζ = 3πµσ in a Newtonian fluid of viscosity µ

and particle diameter σ. Similarly, the resistance tensor for the rotation is RLΩ = ζRI,

with ζR = πµσ3. This model represents the self-propulsion as an internal body force

F S = ζu0q, in which the direction unit vector q = cos(θ)êx + sin(θ)êy migrates via

Brownian motion. For a spherical active Brownian particle in two-dimensions, the ABP

equation can be written as

dx

dt
=
√
2DTη(t) +

1

ζ

(
ζu0q + F P

)
(1.6a)

dθ

dt
=
√

2DRξ(t). (1.6b)

9
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The thermal and rotational diffusion coefficients are DT = kBT/ζ and DR = kBT/ζR, the

swim speed is u0, and (η, ξ) are random variables obeying the zero mean and variance

consistent with the fluctuation-dissipation theorem.

While the trajectory of a single ABP can be found by solving the overdamped

Langevin equation (Eq. 1.6), it requires precise knowledge and integration of the stochas-

tic Brownian forces and torques acting on the particle for the period of interest. In-

stead, the dynamics of an active particle can be described by the conditional probability,

P (x, q, t|x0, q0, t0), of finding the particle at position x and orientation q at time t, given

that it was located at position x0 and orientation q0 at time t0. This probability density

obeys the Smoluchowski equation

∂P (x, q, t)

∂t
+∇T · jT +∇R · jR (1.7a)

jT = P

[
u0q −DT∇T lnP +

1

ζ
F P

]
(1.7b)

jR = P

[
−DR∇R lnP +

1

ζR
LP

]
. (1.7c)

with translational and rotational fluxes jT and jR. The translational gradient is∇T = ∂
∂x
,

and the rotational gradient is ∇R = q × ∂
∂q
.

1.4 Structure of this Dissertation

This thesis consists of independent chapters presented as a form suitable for publi-

cation, with Chapters 2, 3, 4, and 6 already published. In Chapter 2, I present several

case studies of example porous materials and discuss existing techniques for predicting

passive (not self-propelled) diffusion. I then assess their validity in a nonequilibrium

active system by comparing predictions to exact results calculated by simulation and

direct numerical calculation. In Chapter 3, I isolate the unique coupling of surface cur-

10



BIBLIOGRAPHY

vature and activity to the diffusivity, as well as validate our approach with experimental

measurements of ABPs in randomly placed obstacles.

In Chapter 4, I consider the impact of soft confinement, where the motion along one

axis is inhibited but not prohibited. When the swimmer is anisotropically shaped, the

dispersion can be increased by confinement along one axis due to the nematic alignment

for rod-shaped colloids in a confined medium. Chapter 5 uses the theory developed in

previous chapters to describe the partitioning of bacteria in an aqueous two-phase system

of dextran and polyethylene glycol.

In Chapter 6, I apply our methodology onto a system of practical interest, gliding

assays of cytoskeletal filaments. Careful analysis and simulation demonstrates that local

surface curvatures can create a form of soft-confinement that creates nematic swarms.

The bending energy of F-actin competes with the self-propulsive force to determine

whether the actin will align or bend out-of-plane and escape from a channel. This effect

is subtle, it occurs only at intermediate channel spacing when the filament nematic order

is coherent across the entire channel width. In Chapter 7, I summarize our findings as

well as present areas for future work.
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Predicting the Dispersion of Active Matter in Porous Media Chapter 2

Physical boundaries play a key role in governing the overall transport properties

of nearby self-propelled particles. In this chapter, we develop dispersion theories and

conduct Brownian dynamics simulations to predict the coupling between surface accu-

mulation and effective diffusivity of active particles in boundary-rich media. We focus on

three models that are well-understood for passive systems: particle transport in (i) an

array of fixed volume-excluding obstacles; (ii) a pore with spatially heterogeneous width;

and (iii) a tortuous path with kinks and corners. While the impact of these entropic bar-

riers on passive particle transport is well established, we find that these classical models

of porous media flows break down due to the unique interplay between activity and the

microstructure of the internal geometry. We study the activity-induced slowdown of

effective diffusivity by formulating a Smoluchowski description of long-time self diffu-

sivity which contains contributions from the density and fluctuation fields of the active

particles. Particle-based and finite element simulations corroborate this perspective and

reveal important nonequilibrium considerations of active transport.

This chapter includes content from our previously published article:

[1] K. J. Modica, A. K. Omar, and S. C. Takatori, Boundary design regulates the

diffusion of active matter in heterogeneous environments, Soft Matter 19 (2, 2023), no.

10 1890–1899. KJM and SCT conceived of the study; all authors designed research;

KJM performed simulations and analytical calculations; SCT supervised the study; and

all authors wrote the paper.

Reproduced with permission from the Royal Society of Chemistry.

2.1 Introduction

Porous media guides species transport through a combination of enthalpic and en-

tropic interactions [2, 3]. In this chapter, we will focus our attention on entropic,
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excluded-volume interactions between diffusing particles and hard external boundaries.

Introducing even a dilute concentration of immobile obstacles with purely excluded-

volume interactions can provide a substantial slowdown to diffusive flux [4–6]. While self-

propelled bacteria move via nonequilibrium forcing, recent research has found success in

describing swimmers as Brownian particles under a higher effective temperature and swim

energy ksTs. This is then translated to a bulk diffusivity using the drag coefficient ζ by

means of a modification to the Stokes-Einstein-Sutherland relation: D0 = (kBT+ksTs)/ζ.

This effective temperature approach is an approximation of the true nonequilibrium

behavior, but it has shown success in predicting swim pressure, bulk self-diffusivity, and

the energy transferred to a tracer in an active bath [7–10]. For an active Brownian

particle (ABP), one can define the swim energy in 2D [11]: ksTs = ζU2
0 τR/2. This

corresponds to a long time self diffusivity of D0 = DT + U2
0 τR/2, where DT = kBT/ζ

is the thermal diffusivity, U0 is the self-propulsive velocity, τR is the reorientation time,

and DR = 1/τR is the rotational diffusion coefficient [12]. The effective temperature

ansatz has been successful in describing the diffusivity of free suspensions; however, it

may break down in the presence of excluded volume interactions or external boundaries.

Boundaries are especially important for active matter systems due to their activity-

induced enrichment along surfaces. Unlike passive (equilibrium) Brownian particles,

active particles accumulate at boundaries due to their persistent motion, even in the

absence of particle-boundary attraction [8, 13–17].

Many researchers have examined how confinement influences the behavior of self-

propelled colloidal particles [6, 18–24]. In arrays of fixed obstacles, specific swimmer

models and geometries allow one to observe subdiffusive [25, 26] and superdiffusive [27]

transport. Increased concavity and surface area enhances the partitioning of ABPs at

boundaries and perturbs the microstructure further from Boltzmann statistics [28, 29].

We hypothesize that the transport properties of active matter can be tuned by the careful
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control of porous media microstructure, just as the steady-state properties can. We have

recently determined that variations in boundary curvature reduces the mobility of nearby

swimmers [29], but it is unclear how the design of porous materials reduces the macro-

scopic transport of swimmers from their well-known bulk diffusivity. Classical theories

of diffusive transport in porous media rely on averaging over local degrees of freedom

to find the effective diffusivity, DE. These theories are accurate for a dilute suspension

of passive Brownian particles that exhibit no accumulation on surfaces; however, their

applicability to self-propelled swimmers is unclear.

In this chapter, we demonstrate that existing theories of porous media transport fail

due to the accumulation of active swimmers on boundaries. Boundaries create signifi-

cant, long-ranged disturbances to the distribution of active particles; we show that these

disturbances correspond to a reduced scaled diffusivity in boundary-rich media.

2.2 Langevin and Smoluchowski Models

We design three representative examples of distinct porous media to interrogate the

accuracy of the corresponding equilibrium-based model with the transport of active Brow-

nian particles (Figure 2.1).

First, in Fig. 2.1A, we consider a lattice array of circular 2D inclusions. For a dilute

concentration of inclusions, the swimmers collide with the hard boundaries and then es-

cape without difficulty, leading to a minor slowdown that depends on the obstacle density

and size. Second, in Fig. 2.1B, we consider the transport across a narrow constriction.

This constriction can be considered as the limit of dense packing for a lattice array of

obstacles. Finally, in Fig. 2.1C, we consider the diffusion along a tortuous path that

represents a simple model of a porous network. Each model system is designed to test

how the geometry-dependent accumulation of active particles cause deviations in classi-
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Figure 2.1: Diagrams of the three sample systems used to probe diffusivity
models. A) An infinite lattice of hard spheres, used to study generalized Taylor
dispersion theory. B) A narrow pore of varying constriction, used to probe Fick-Ja-
cobs approximations. C) A winding path, used to test the applicability of tortuosity
relations.

cal theories developed for passive Brownian systems. We focus on the transport of dilute

ABPs in rigid, 2D porous media, such as swimmers in confined microfluidic devices, but

our qualitative results and framework apply in 3D as well.

An ABP particle i follows the overdamped Langevin equation with a swim force of

constant magnitude and white noise Brownian forces and torques [30–33]. To simulate a

dilute system, the ABPs interact with obstacles via a purely repulsive potential, but do

not interact with each other (i.e., the particles are “ideal”).

dxi

dt
=
√

2DTηi(t) +
Fi,rep(Ri)

ζ
+

Fi,swim

ζ
(2.1a)

dθi
dt

=
√
2DRξi(t). (2.1b)

Here, Fi,rep is the repulsive force on particle i from the boundary excluded volume, ζ is the

drag coefficient, and Fi,swim is the swim force. The swim force is set as Fi,swim = U0ζqi,

where qi = [cos θi, sin θi] is the unit vector describing particle i’s orientation in 2D. Finally,

the thermal and rotational diffusion coefficients are DT and DR = 1/τR, with (ηi, ξi)
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as random variables obeying the zero mean and variance consistent with the fluctuation-

dissipation theorem. The obstacle-particle repulsive force Fi,rep is implemented using

the Weeks-Chandler-Andersen (WCA) [34] potential on overlapping spheres defining the

obstacle surface (see Supplementary Information of [1] for details). We find the effective

diffusivity tensor (DE) of an ABP in the porous medium from the slope of the mean

squared displacement (MSD) at long times.

DE =
1

2
lim
t→∞

d

dt

(
1

N

N∑
i

∆xi(t)∆xi(t)

)
(2.2)

As a complementary description of the Langevin equation, the probability distribution

P (x, q, t) of a single ABP at position x and orientation q in porous media can be studied

using a dimensionless Smoluchowski equation:

∂P

∂t̃
+ ∇̃ · jT − ∂2P

∂θ2
= 0 (2.3a)

jT =

(
ℓ

L

)
qP −

(
δ

L

)2

∇̃P (2.3b)

with the t̃ = t/τR, x̃ = x/L, ∇̃ = L∇. We impose a no-flux boundary condition on

any obstacle surface. Time is scaled by the reorientation time τR, and distance is scaled

by a geometric feature of length L. In principle, Frep(x) should also appear, but we

are assuming hard excluded volume interactions which can be implemented as boundary

conditions. This form of nondimensionalization introduces two important length scales.

The run length ℓ = U0τR is the average distance an ABP self-advects before reorienting

and the microscopic length δ =
√
DT τR is the root mean squared distance an ABP travels

by thermal motion before reorienting. These represent the strength of active and thermal

forces, respectively.

Taking orientational moments of the full Smoluchowski equation turns Eq. 2.3 into

an infinite series of coupled conservation equations [35]. The density field n(x, t) ≡
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∫
P (x, q, t)dq depends on the polar order, m(x, t) ≡

∫
Pqdq, which depends on the

nematic order, Q(x, t) ≡
∫
Pqqdq, and so on. We solve Eq. 2.3 numerically and take

orientational moments of the solution to calculate the effective translational diffusivity

using methods discussed in the following section. We will examine these equations using

the list of relevant length scales shown in Table 2.1.

Table 2.1: Table of relevant length scales for active matter in boundary-rich materials
Length Formula Description
ℓ U0τR Run length of a free ABP.
δ

√
DT τR Thermal diffusive distance moved

over one reorientation.

λ−1 δ/
√

1 + 1
2
(ℓ/δ)2 Screening length of ABP boundary

layer.
σ N/A Diameter of the ABP σ ≪ R,L,H, b
R, L,H, b N/A Material length scales

2.3 Case Studies of Porous Structures

2.3.1 Diffusion Around Rigid Inclusions

Background

Porous materials can be modelled as a continuous fluid interspersed with discrete rigid

inclusions. As a model system, we study a repeating square lattice of disks of radius R

and excluded area fraction ϕ = ρπR2, where ρ is the disk number density.

For passive Brownian particles in a high porosity lattice (ϕ ≪ 1), as in Figure 2.2A,

the effective diffusivity decreases linearly with the area density of obstacles DE/DT =

(1− ϕ) +O(ϕ2) [36, 37], and has been solved to arbitrary order using series solutions[4].

If the active particles are equivalent to passive Brownian particles at a higher effective

temperature, their reduced diffusivity should track the series solution after replacing DT

22



Predicting the Dispersion of Active Matter in Porous Media Chapter 2

σ Rc
ε

2L

A) Dilute Limit Theory

Run
Length

B) Dense Packing Theory

Figure 2.2: Diffusivity of swimmers in a lattice array depends strongly
on the obstacle density. A) At high porosity, diffusivity decreases linearly with
obstacle area density ϕ. The radius of the disk is defined as the volume excluded
to the ABP Rc = Rdisk + σ/2. In all our results, we keep σ constant and simplify
notation by R = Rc. B) At dense packing, ABPs are trapped in small pockets with
narrow escape domains of size ϵ. The lattice is made of disks centered in a unit cell
of length L.

with D0 = DT + U2
0 τR/2.

In addition to Brownian dynamics simulations, we numerically solve Eq. 2.3 using

generalized Taylor dispersion theory [4, 6, 38–42]. We obtain the effective velocity vector

uE and diffusivity tensor DE of the active particles by splitting the full distribution

into local and global contributions. The ABPs position vector x is defined as the sum

of the global unit cell vector (X) and the local position inside the unit cell (r). For

a particle that enters an L × L unit cell containing a central obstacle, the normalized

probability density of finding a particle at position r and orientation q at time t is

denoted as g0(r, q, t). Particle density fluctuations due to the presence of obstacles give

rise to an effective diffusivity that is distinct from the bulk diffusivity D0. The strength

and direction of these density fluctuations is measured by the fluctuation field d(r, q, t).

Equations are kept in dimensional form for clarity. (see Supplementary Information of
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[1] for full derivation):

0 =
∂g0(r, q, t)

∂t
+∇r · [U0qg0 −DT∇rg0]−DR

∂2g0
∂θ2

(2.4a)

0 =
∂d(r, q, t)

∂t
+ [U0qg0 −DT∇rg0] +∇r · [U0qd

−DT (Ig0 +∇rd)]−DR
∂2d

∂θ2

(2.4b)

where ∇r indicates the gradient operator over the local position variable r.

We solve these equations at steady state subject to no-flux boundary conditions along

the surface of the inclusion, periodic boundary conditions at the unit cell edges, and

normalization constraints ⟨g0⟩q,r = 1 ,⟨d⟩q,r = 0 using the finite element method. Where

⟨•⟩m,n =
∫
(•) dmdn. We use the steady state solutions to compute the average effective

velocity uE and diffusivity DE of the system:

uE = U0⟨qg0⟩q,r −DT ⟨∇rg0⟩q,r (2.5a)

DE = DTI − U0⟨qd⟩q,r +DT ⟨∇rd⟩q,r. (2.5b)

Results

In Fig. 2.3A, we summarize the results of our Brownian dynamics simulations and

dispersion theory calculations. In the limit of high porosity (ϕ → 0), the microstructure

of the ABPs is weakly perturbed from that of a uniform suspension. The self-diffusivity

decreases linearly with obstacle volume fraction ϕ as described by effective temperature

theories: DE = D0(1 − ϕ). However, as demonstrated in Fig. 2.3A, the initial slope of

the scaled diffusivity varies for highly active particles (ℓ ≫ δ or ℓ ≫ R). The effective

temperature expression only holds for obstacles spaced far enough apart that the ABPs

interact with at most one obstacle over many reorientation times. Therefore, as the

activity increases, the effective temperature is restricted to a smaller and smaller ϕ.
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ℓ
δ R

Figure 2.3: The effective diffusivity of active swimmers depends non-mono-
tonically on the run length (ℓ) and the microscopic length (δ). A) Scaled
diffusivity for an infinite square lattice as a function of obstacle volume density. The 4
sets represent example leaflets generated by varying particle activity. Points are Brow-
nian dynamics simulations data, dashed lines are numerical solutions to dispersion the-
ory. Dispersion theory calculations are not included for ℓ/R = 0.25, δ2/R2 = 2.5E-4
because the large relative activity ℓ ≫ δ generates a sharp boundary layer along
the obstacle surface that is numerically challenging to resolve. B) Activity has a
nonmonotonic effect on scaled diffusivity due to boundary layer coupling. Scaled dif-
fusivity deviation as a function of run length and for various microscopic length at
constant area fraction ϕ = 0.35. Error bars in A and B are the standard deviation
from 3 independent simulations, and when not visible are smaller than the marker
size.

As the obstacle density increases, the diffusivities diverge from those predicted by

the effective temperature theory. At intermediate obstacle densities, ϕ ≈ 0.1 − 0.7, the

relative microscopic length (δ) and run length (ℓ) become important predictors of scaled

diffusivity. While each curve monotonically decreases with higher obstacle density, at

high activities there can be large deviations from the effective temperature theory.

Finally, as the system approaches close packing, ϕ → π/4, the diffusivities rapidly

decrease to zero due to particle transport being limited by a narrow escape through a

small pore.

To further examine the effect of run length and microscopic length on active transport
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at intermediate obstacle densities, ϕ ≈ 0.1 − 0.7, we define the normalized deviation in

measured diffusivity from the model’s expected effective temperature diffusivity DModel

as the quantity ∆D/D0:

∆D

D0

=
DE −DModel

D0

(2.6)

This quantity measures the deviation in diffusivity the real ABPs experience com-

pared to that predicted for a Brownian particle in the same system at a higher effec-

tive temperature. Therefore, Eq. 2.6 isolates the true coupling between activity-induced

boundary accumulation and the obstacle-driven slowdown.

In Fig. 2.3B, we show the diffusivity deviation for a fixed obstacle density, ϕ = 0.35,

while varying both the run length and microscopic length of the ABPs. For weak activity,

ℓ/R ≪ 1, the scaled diffusivity matches the expected results from the passive limit,

leading to minimal departure from DModel. As activity increases beyond ℓ/R ≈ 1, the

effective temperature theories no longer hold. Reductions in transport coefficients are

reflected through the increased accumulation within the boundary layer. Strongly active

particles are “trapped” within the boundary layer until they reorient or slide off. In

contrast, when activity is weak, translational Brownian fluctuations dominate and carry

the ABP away from the boundary layer before reorientation occurs. Inactive or weakly

active particles “forget” the obstacle surface much faster than their reorientation time or

sliding time. As ℓ/R increases, more ABPs accumulate on the surface. While increasing

(δ/R)2 may decrease the magnitude of surface accumulation, it also increases the boundary

layer thickness, resulting in a net slowdown of scaled ABP diffusivity over the range of

parameters studied.

Interestingly, for very small values of the microscopic length [(δ/R)2 = 0.01 in

Fig. 2.3B], we see an enhancement in scaled diffusivity beyond the passive theory. We
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suspect this is due to the unique geometry of the square lattice. When Brownian fluctu-

ations are small in a square lattice, the particles exhibit sustained runs in the interstitial

space, effectively lowering the number of obstacles an ABP runs into in a manner similar

to the enhancement described by Pattanayak et al. [43].

The boundary-induced accumulation of ABPs occurs over a boundary layer [13] of

size λ−1:

λ−1 =
δ√

1 + 1
2
( ℓ
δ
)2

(2.7)

In Fig. 2.4, we show contour plots to connect the ABP microstructure and the diffusivity

reduction discussed previously. Figures 2.4A and 2.4D are the passive case, and exhibit

a uniform density field in space. Moving across the top row of Fig. 2.4A-C, both the

boundary layer width and strength are growing, leading to higher relative number of

active particles that are influenced by the obstacle before moving to the bulk. The second

row of Fig. 2.4D-F shows the corresponding local diffusivity deviation determined via

Taylor dispersion theory that is then averaged over the free space to obtain the normalized

effective diffusivity deviation ∆D/D0. As activity increases across Fig. 2.4D-F, the local

diffusivity decreases in regions near the obstacle surface due to ABPs accumulating within

the boundary layer. When an active swimmer is moving unobstructed through the bulk

fluid, it spreads with its swim diffusivity D0. The local diffusivity is quadrupolar near

the obstacle, showing reductions at the surface along the axis of motion (in this case

the left and right for Dxx), and enhancements above and below due to sliding. The

increased surface accumulation in 2D along a weakly curved obstacle with curvature 1/R

is described by [28]:

nsurf

n∞ = 1 +
ℓ2

2δ2
− ℓ2λ

R
+O

(
ℓ2λ

R

)2

(2.8)

At a constant density, larger obstacles and activities increase the surface accumulation,

which perturbs the behavior of the ABPs away from the effective temperature theory
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λ-1
Screening
Length

DT

DT

D0 D0

D0

Figure 2.4: Surface accumulation leads to slowdowns in scaled diffusivity..
A-C) Local number density of particles for different activity parameters. As the
activity increases in strength, the particles experience larger accumulation near the
obstacle surface as shown through the contours. D-F) Pointwise diffusivity devia-
tion along the x direction calculated numerically via dispersion theory (see Supple-
mentary Information of [1] for more details). The pointwise diffusivity deviation is
∆Dxx/D0 = (Dxx(x, y)−DModel) /D0. The pointwise diffusivity has a quadrupolar
form due to particles getting trapped in the leading and trailing wakes of the obsta-
cles. G) Cartoon demonstrating that ABPs within the boundary layer move with a
reduced diffusivity compared to the ABPs in the bulk. Subplots A,D correspond to
ℓ/R = 0 and δ2/R2 = N/A. Subplots B,E correspond to ℓ/R = 1 and δ2/R2 = 1.
Subplots C,F correspond to ℓ/R = 10 and δ2/R2 = 10. All data collected for ϕ = 0.38

described by ksTs.

Figure 2.4G is a schematic demonstrating the relationship between surface accumula-

tion and transport reduction. For ABPs inside the boundary layer, their self-propulsive

force is directed inward against the wall. These ABPs are trapped against the surface

until they reorient, and are therefore only diffusing by thermal motion until they escape.

This indicates that there are three domains relevant to ABP transport through a packed

bed: the occupied area of obstacles ϕ, the boundary layer around obstacles ϕBL (which

must be weighted by the fraction of ABPs partitioned inside the boundary layer), and
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∂P(y,t)
dy

y
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Figure 2.5: Schematic of the periodic narrow pore used to describe the
Fick-Jacobs approximation.

then the bulk space ϕFree.

Within each of these domains, the ABP moves with a different effective diffusivity.

Outside the boundary layer, an ABP in ϕFree does not feel any boundary effects and

moves with bulk diffusivity D0. Inside the boundary layer ϕBL, an ABP is slowed by

collisions with the obstacles, and moves with a local diffusivity approximately equal

to DT . Finally, for impenetrable obstacles no transport can occur and therefore the

diffusivity is zero.

2.3.2 Diffusion Through a Narrow Pore

Background

Taylor dispersion theory is a powerful tool to predict transport properties for dilute

systems; however, analytical treatment becomes intractable as the packing density ap-

proaches the percolation threshold. Additionally, due to the close packing, the active

boundary layers become numerically challenging to resolve. For all of these reasons,
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we use a simpler Fick-Jacobs [44, 45] model of the diffusion reduction due to narrow

constriction sites.

The Fick-Jacobs equation describes diffusion in a channel with a slowly varying cross

section of width w(y),
∣∣∣∂w(y)

∂y

∣∣∣ ≪ 1. Utilizing the methods described by Rub́ı and

Reguera [46, 47], we consider the flux of Brownian particles through a thin pore as a

1D problem, with local variations in transverse width as an “entropic force”. For a

Brownian particle, the Fick-Jacobs equation is:

∂P (y, t)

∂t
=

∂

∂y

[
DT

∂P

∂y
−DTP

∂ lnw

∂y

]
, (2.9)

See Supplementary Information of [1] for the full derivation. The Fick-Jacobs model

connects the geometry of the pore with thermodynamic potentials; the constrictions and

extensions of the boundaries create entropic traps of the form Veff = −kBT ln (w) that

reduce the axial flux. Rub́ı and Reguera [46, 47] show that the applicability of the

1D Fick-Jacobs equation can be extended via the introduction of a heuristically defined

position dependent diffusion coefficient

D(y) =
D0

[1 + (1/4)w′(y)2]1/3
(2.10)

with the scaling exponent 1/3 used to empirically match a series solution developed by

Zwanzig [45].

As shown earlier, if the self-propelled particles behave as Brownian particles at a

higher effective temperature, one should be able to replace their thermal diffusivity with

their bulk diffusivity, D0 = DT + U0τR/2. This expression can be used to find the one-

dimensional axial effective diffusivity by using the Lifson-Jackson formula [48] for motion

in a periodic potential described by our entropic barrier

1

DE

= ⟨w(y)⟩y
〈

1

D(y)w(y)

〉
y

. (2.11)
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ℓ

δ Δy

Figure 2.6: Fick-Jacobs (FJ) theory overestimates the ABP scaled diffu-
sivity. A) ABP diffusivity decreases below the Brownian reference due to high ac-
cumulation along the concave regions of the boundary. (H − b)/H is the degree of
constriction due to increased amplitude of pore perturbations (sinusoidal amplitude).
The case of H = b corresponds to two flat plates, whereas at b = 0 the pore walls are
touching and passage is impossible. The black dashed line is the FJ theory estimate.
The data points are from simulations of ABPs. B) Diffusivity deviation of the ABPs
from the Brownian FJ theory. For all simulations, we keep the max wall-wall distance
constant at H/∆y = 1 with minimum distance controlled by changing the amplitude
of the sinusoid. Lines are to guide the eye. Error bars are the standard deviation from
3 independent simulations, and when not visible are smaller than the marker size.

Results

The accuracy of the Fick-Jacobs (FJ) model is predicated on the assumption of rapid

local equilibrium in the transverse direction compared to the axial direction. For passive

systems, this assumption holds when variations in channel width are slow compared to

diffusive motion (|w′(y)| ≪ 1). For an active system, particles move ballistically for their
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run length ℓ = U0τR; therefore, we expect the FJ model to be the most accurate when

the pore width varies slowly compared to the run length.

In Fig. 2.6A, we show the scaled diffusivity of several example active particle systems

as a function of the nondimensional constriction. As the pore constricts [(H − b)/H → 1],

transport through the small opening is blocked, rapidly reducing the diffusivity down to

zero.

In Fig. 2.6B, we plot the scaled diffusivity deviation from the FJ theory as a function

of run length and microscopic length. Over the range of parameters studied, FJ theories

consistently overestimate the effective diffusivity past ℓ/∆y ≈ 0.2, with the exact devi-

ation point depending on the pore amplitude and wavelength. Taylor dispersion theory

is not used in Fig. 2.6 due to the high number of finite element meshing points needed

to converge the solution at high activities. For example Taylor dispersion theory calcu-

lations of weakly active systems, see the Supplementary Information of [1] for 3 contour

plots of ABP concentration and local diffusivity deviation in a sinusoidal pore.

Our results corroborate the previous findings by Sandoval and Dagdug [49], who found

that a similar overestimation of diffusivity occurred for a zig-zag and semicircular cavity

as the swim speed increased. Their work focused on the impact of varying swim speed

U0. However, our findings reveal this deviation is a result of geometric factors with ℓ and

δ providing the true measure of activity.

Axial diffusivity is reduced primarily through the high accumulation of active particles

along the concave regions of the pore. As demonstrated in Eq. 2.8, surface accumulation

depends on the radius of curvature. For concave surfaces, the curvature κ is negative,

causing surface accumulation to increase rapidly with more negative values of κ: nsurf ≈

1+ℓ2/2δ2−ℓ2λκ+O (ℓ2λκ)
2
. As the amplitude increases, the radius of curvature shrinks,

leading to high accumulation at the concave valleys, away from the small convex pore,

thus lowering scaled diffusivity further.
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Δy

ΔL=ΔyT

Δy

D0

DE = D0 /T
2

Li

H

Figure 2.7: The tortuosity is defined as T = ∆L/∆y, a ratio of the total path
length divided by the vertical displacement. For the tortuous paths considered
in this chapter, the center-line path is ∆L = 5Li and ∆y = 3Li, which gives a
tortuosity of T = 5/3.

2.3.3 Diffusion Through a Tortuous Path

Background

Porous materials often contain spatial and/or temporal heterogeneities in their mi-

crostructure that preclude detailed characterization. To differentiate between multiple

materials with the same porosity, catalyst beds and soil sediments are often described

with an empirically measured dimensionless tortuosity, T .

Assuming all motion is diffusive, the tortuosity can be determined using a tracer

particle of known diffusivity. The relative reduction in measured diffusivity compared to

bulk provides an estimate of the reduction factor. Following our definition provided in

Fig. 2.7, the ratio of measured diffusivity in the pore to bulk diffusivity is the ratio in

paths traveled in the same amount of time; therefore, one can define a nondimensional

tortuosity:

T 2 =

(
∆L

∆y

)2

=
D0

DE

. (2.12)
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Figure 2.8: Tortuosity scalings fail as run length increases beyond the chan-
nel width. Brownian dynamics scaled effective diffusivity of active particles confined
to the tortuous path. A) The scaled diffusivity decreases as the run length increases
above the pore width. The different symbols correspond to paths of different aspect
ratios. The hatched region represents the expected values described by tortuosity
theory. The top line estimates ∆L as the shortest possible path through the maze,
and the bottom line estimates ∆L as the path along the pore center-line. B) ABPs
accumulate significantly at concave corners. The local number density was found via
a histogram of particle positions in the Brownian simulation of bin size 0.04σ2. That
histogram was then divided by the max value. When ℓ/H > 1, strong corner accu-
mulation decreases the diffusivity far below the tortuosity predictions. This image
is from simulation data at Li/H = 4, ℓ/H = 20, and δ2/H2 = 4. Error bars in A)
are the standard deviation from 3 independent simulations, and when not visible are
smaller than the marker size. Lines are to guide the eye.

In general, the tortuosity T is system dependent and measured experimentally or via

image analysis; however, many models and correlations exist for simple structures[50].

In order to test the validity of the tortuosity effective temperature approach for active

systems, we have designed a winding path that allows us to define the tortuosity directly

from the geometry. Our system is made of 5 individual segments of length Li and width

H. Covering a vertical displacement ∆y = 3Li.
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Results

In Fig. 2.8A, we show the scaled effective diffusivity measured from active Brownian

particle (ABP) simulations. The hatched region between two horizontal lines represents

the predictions from the tortuosity theory. The lower bound estimates ∆L as the path

through the maze center-line. The upper bound estimates ∆L as the shortest possible

path through the maze. While the shortest path changes depending on the geometry,

in Fig. 2.8A we derive the diffusivity from the shortest path of the Li/H = 4 geometry.

Using the Li/H = 8 geometry would lower the upper bound by 20%; therefore, this

choice gives the broadest scaled diffusivity range.

At low activity, the scaled diffusivity matches the prediction from the center-line

path DE/D0 ≈ 1/T 2 = 0.36. This indicates that the diffusion of ABPs roughly follows

that of the center-line path, without extreme deviations due to backtracking or strong

accumulation.

Our geometry informed tortuosity begins to fail when the run length ℓ = U0τR ap-

proaches the same size as either the segment length Li or pore width H. Motion is still

diffusive over the unit cell, but the transport through each individual segment becomes

increasingly ballistic. ABPs move along a segment until getting trapped in a corner.

Eventually, the ABP reorients enough to hop across the next segment.

At high activities (ℓ/H) ≫ 1, the ABPs move ballistically along a segment until

colliding with the corner and then spend a significant amount of time trapped before

turning. This ballistic motion leads to the concentration profile shown in Fig. 2.8B. Par-

ticles deplete from the convex regions, and accumulate in the highly concave corners. The

ballistic motion also increases the effective path length, creating a long-tailed reduction

in scaled diffusivity, as shown in Fig. 2.8A. Further exploration of the parameter space

(such as Li/H ≫ 1 and full sweeps of ℓ/H at constant (δ/H)2) can be found in the
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Supplementary Information of [1]. Those additional simulations justify our scaling by

H instead of Li, as well as demonstrate that the solutions are relatively insensitive to

(δ/H)2.

Unlike the narrow pore and the fixed obstacle array, the tortuous path never exhibits

a complete blockage of flow, meaning that for networks of the type described in this

section, a nonzero diffusivity is possible, even for an arbitrarily large number of seg-

ments. Changing the channel boundary patterning from flat walls is expected to further

decrease diffusivity. Small pockets of local curvature create an effect similar to that of

the sinusoidal pore, providing an additional barrier to whatever maze the ABPs must

diffuse through. While this chapter focuses on a design with only one possible path, the

addition of concave “dead ends” should partition the ABPs away from the optimal path,

resulting in a larger relative reduction in diffusivity.

2.4 Discussion

In this chapter, we test the validity of classical geometric scaling laws for diffusion in

heterogeneous environments using analytical theory and Brownian dynamics simulations.

We find that even mildly active particles have a scaled diffusivity that deviates from

simple effective temperature arguments. The nonequilibrium nature of self-propelled

particles needs to be carefully considered in transport calculations, just as it must be for

phase behavior and surface accumulation.

Through this chapter, we have examined the applicability (or lack thereof) of tra-

ditional porous media estimates for effective diffusivity in active matter. While Taylor

dispersion theory is rigorous and accurate for all activities, numerical instabilities and an-

alytic intractability create difficulty in practical use. Particle-based simulations allow for

a micromechanical explanation of the decrease in scaled diffusivity due to accumulation.
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Both the Fick-Jacobs and tortuosity relationships are accurate in the weakly active limit

(provided that one includes the swim diffusivity when calculating the bulk diffusivity),

but the strong accumulation at boundary layers and ballistic transport on length scales

commensurate with the geometry reduce scaled diffusivity beyond predicted amounts.

Interestingly, for a packed bed/ lattice, it is possible for ABPs to achieve scaled diffu-

sivity above the passive predictions, and future work aims to understand this intriguing

behavior.

Future work on this topic may look at modifications to the effective temperature

theory when incorporating it into boundary rich environments. As a first correction,

we can utilize the decreased local diffusivity in the boundary layer as DE ≈ D0ϕFree +

αDTϕBL. With an unknown coefficient α related to the increased partitioning ABPs

experience due to boundary curvature.

Previous research by Khatami et al. found that different models of active matter

with the same bulk diffusivity have different transport rates when traversing through a

maze[51]. They report that run and tumble models have a smaller mean first passage

time than active Brownian particles. Additionally, Kurzthaler et. al.[52] found that the

introduction of a reorientation mechanism may lead to greater absolute diffusivity when

the reversal run length is commensurate with the maximal chord length of a 3D porous

medium. These results indicate that porous media may be used as a novel sorting method

for mixtures of active particles utilizing different self-propulsion mechanisms.

This work focuses on the introduction of rigid, immobile obstacles and walls, similar

to those found in soil sediments and etched microfluidic devices. However, soft porous

materials present a rich opportunity for future study. Boundary fluctuations are impor-

tant for passive transport in mucus, hydrogels, and other polymeric networks [2, 53]. For

example, active particles can push through pores smaller than their diameter, if the pore

or the particle can deform under thermal or swim forces.
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Polymer networks are well-known to reduce the passive (non-motile) particle trans-

port. Steric hindrance, nonspecific interactions (hydrophobicity, electrostatics), and spe-

cific interactions (ligand-receptor binding), all play a part to trap foreign debris [2, 3].

While this chapter focused only on the effect of the obstacle excluded volume, other

forms of interactions can lead to controllable transport based on the swimmer and ob-

stacle chemistry.

External torques also influence transport in a nontrivial matter. Rod-shaped bacteria

can align with the boundaries and with other bacteria to create nematic ordering/ flock-

ing [54]. Chemoattractants, repellents, light sources, and other external fields can in-

fluence the favored direction of bacteria in the absence of hard-wall interactions. For

example, a random array of point-source repellents can lead to subdiffusive transport in

closed spirals [25, 26].

Hydrodynamic interactions can provide qualitative or quantitative changes to active

transport [55, 56]. Hydrodynamic coupling to walls leads to strong interactions between

swimmers and surfaces, which would further alter the boundary-accumulation effect on

transport [57]. Pusher type active matter (like bacteria and sperm) are hydrodynami-

cally driven to align parallel to the walls, while puller types align perpendicular to the

walls [58]. In addition, the surface-modified flow field creates a constant torque leading

to motion via counterclockwise (for E. Coli.) spirals [59].

Finally, in 3D there are additional degrees of freedom a swimmer can use to avoid

obstacles. In 2D, close packing of disks precludes transport; however, a close packed

bed of monodispersed spheres in 3D is permeable, resulting in a reduced but nonzero

diffusivity. Future work in this space would benefit from mean field approximations for

the network, in addition to a detailed analysis of the variance of pore sizes.
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Active swimmers are known to accumulate along external boundaries owing to their

persistent self-motion, resulting in a significant reduction in their effective mobility

through heterogeneous and tortuous materials. The dynamic interplay between the

slowdown experienced by the active constituents near boundaries and their long-time

diffusivity is critical for understanding and predicting active transport in porous media.

In this chapter, we study the impact of boundary layer accumulation on the effective dif-

fusivity of active matter by analyzing the motion of active Brownian particles in an array

of fixed obstacles. We combine Janus particle experiments, Brownian dynamics simula-

tions, and a theoretical analysis based on the Smoluchowski equation. We find that the

shape, curvature, and microstructure of the obstacles play a critical role in governing the

effective diffusivity of active particles. Indeed, even at dilute packing fractions of obsta-

cles, ϕ =12%, we observed a 25% reduction in the effective diffusivity of active particles,

which is much larger than the hindrance experienced by passive Brownian particles. Our

combined experimental and computational results demonstrate a strong coupling between

the active force and the porous media microstructure. This chapter provides a framework

to predict and control the transport of active matter in heterogeneous materials.

This chapter includes content from our previously published article:

[1] K. J. Modica, Y. Xi, and S. C. Takatori, Porous media microstructure determines

the diffusion of active matter: Experiments and simulations, Frontiers in Physics 10 (4,

2022) 869175. KJM and SCT conceived of the study; KJM and SCT designed research;

KJM performed finite element calculations; KJM and YX performed simulations and

analyzed data; SCT performed experiments; SCT supervised the study; and KJM, YX,

and SCT wrote the paper.

Reproduced with permission from Frontiers in Physics.
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3.1 Introduction

The transport of living, colloidal-sized species through crowded environments plays

a crucial function in many natural and synthetic processes. For example, the transport

of bacteria through soil plays a beneficial role in bioremediation, [2, 3] and novel drug

delivery mechanisms seek to utilize the proliferation of S. typhimurium to access tumor

tissues that have been conventionally out of reach [4, 5]. In contrast, the transport of

pathogens into wounds sites and mucosa can lead to life-threatening infections without

proper treatment [6–8]. The effective transport properties of bacteria in crowded envi-

ronments depend on the interplay between the swimmer motility and the boundaries that

make up the porous material [9]. Many forms of microscopic life enhance their transport

via directed self-propulsion, including E. coli bacteria, spermatozoa cells, and C. rein-

hardtii algae [10–12]. In addition to living swimmers, advancements in micro/nanoscale

synthesis have also led to the creation of synthetic active particles that are excellent

tools in the study of autonomous self-propulsion [13–20]. Understanding the motion of

active matter embedded within heterogeneous materials is made especially challenging

because the transport is dictated by the complex interactions between the swimmer and

the material boundaries. For porous materials composed of polymer networks, particle

transport may be affected by steric hindrance, nonspecific interactions (hydrophobicity,

electrostatics), and specific interactions (ligand-receptor binding) [21, 22]. This behavior

is not unique to polymer networks; introducing even a dilute concentration of immobile

obstacles with purely excluded-volume interactions provides a substantial slowdown to

diffusive flux [23–25].

In addition to the interactions experienced by non-motile Brownian particles, active

particles accumulate at physical boundaries due to their persistent self-motion, charac-

terized by a boundary layer near the surface. This accumulation occurs even in the
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absence of attractive interactions; the active particles propel freely until hitting a surface

and continue to propel themselves toward the surface until they reorient and escape into

the bulk fluid. This behavior has been observed experimentally and in simulations of

rods and spheres, both with and without hydrodynamic interactions [26–41]. A mecha-

nistic understanding of how the local accumulation near physical boundaries affects the

macroscopic mobility of active matter through heterogeneous and tortuous materials is

lacking. In this chapter, we study the impact of boundary accumulation on the effec-

tive diffusivity of active matter by analyzing the motion of active Brownian particles

(ABPs) in a system of rigid 2D obstacles. The presence of boundaries in active systems

reduces the effective long-time self diffusivity by an amount that depends on the average

swimming speed (U0) and the average reorientation time (τR). This is in sharp contrast

to passive Brownian particles, which do not accumulate along boundaries, and whose

effective diffusivity depends primarily on the packing fraction of the obstacles [24, 42].

Many studies on active transport focus on the effect of alignment along surfaces due

to steric or hydrodynamic torques aligning the swimmer parallel or perpendicular to

boundaries [28, 37, 39, 41, 43–47]. However, a connection between transport and surface

accumulation of active matter [29, 33–35, 38, 48, 49] without any imposed torques has not

been fully explored. For active systems, the precise shape and curvature of the boundary

can have a strong effect on motility induced accumulation [34, 35, 50]. This increased

accumulation corresponds to more time spent “trapped” in the boundary layer, which

inhibits the transport of active matter in tight pores. Therefore, we hypothesize that

active swimmers experience a strong reduction to relative diffusivity in porous media

due to the synergistic effects of active boundary accumulation and boundary shape.

While many existing theories predict the diffusive transport of passive Brownian par-

ticles through porous media [21, 23, 51–55], the unique accumulation of active matter

along boundaries — especially at regions of large curvature — leads to unexpected diffu-
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sive slowdowns that are not captured in traditional theories. In this chapter, we combine

Janus particle experiments, Brownian dynamics simulations, and theory to demonstrate

that the transport of active matter in heterogeneous materials is a strong function of

the obstacle shape, curvature, and microstructure. Experimentally, we rely upon optical

tracking of active particle trajectories, which has been a powerful tool to study both

living and artificial swimmers in porous environments [50, 56–63], and allows for direct

comparisons to particle based simulations [64–72]. In addition to advancing our basic

understanding of active matter transport, our work provides a mechanism to control the

transport of active matter in heterogeneous materials.

3.2 Material and Methods

3.2.1 Experiment Preparation

Lipid-coated silica beads were created by coating silica micro-beads with a supported

lipid bilayer (SLB). Small unilamellar vesicles (SUVs) were prepared by rehydrating

a lipid sheet composed of a mixture of phospholipids with pure deionized water to a

concentration of 0.2 mg/mL. For the Janus particles, we used 1,2-dioleoyl-sn-glycero-3-

phos-phocholine (DOPC) with 5% of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS)

and 0.3% of Atto 488-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE-Atto 488)

fluorescent dye. For the obstacle particles, we used DOPC with 5% of 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) and 0.3% of Atto 647-DOPE (DOPE-Atto 647).

After rehydrating the lipids for 30 min, the solution was vigorously vortexed, sonicated at

low-power (20% power) using a tip sonicator (Branson SFX250 Sonifier). The resulting

SUV solution was buffered with a MOPS buffer (50 mM MOPS, 100 mM sodium chlo-

ride, pH 7.5). DOPC (catalog number: 850375), DOPS (catalog number: 840035), and
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DOTAP (catalog number: 890890) were purchased from Avanti polar lipids. DOPE-Atto

488 and DOPE-Atto 647 were purchased from ATTO-TEC GmbH. Silica microspheres

(4.0 µm; catalog code: SS05002 and 6.5 µm; catalog code: SS06N) were purchased from

Bangs Laboratories.

Silica microspheres with diameters 4 µm and 6.5 µm were cleaned using a 3:2 mixture

of sulfuric acid:hydrogen peroxide (Piranha) for 30 minutes in a bath sonicator, and were

spun down at 1000g and washed 3 times before being resuspended in pure water. We

fabricated Janus particles from the cleaned 4 µm particles by depositing a monolayer on

a glass slide, and coating half of the particle surface with a 2 nm-thick layer of chromium

and 8 nm-thick layer of platinum using an E-beam evaporator at a deposition rate of

0.1 Å/s. To form SLBs on the Janus particles and the beads, 50 µL of SUV solution

was mixed gently with 10 µL of clean bead suspension. The bead/SUV mixture was

incubated for 15 minutes at room temperature while allowing the beads to sediment to

the bottom of the tube. Beads were washed 5 times with pure deionized water by gently

adding/removing the liquid without resuspending the beads into solution. We verified

the fluidity of the SLB by imaging beads on a glass coverslip at high laser intensity, where

the diffusion of labeled lipids was visible after photo-bleaching a small region.

For the 4 µm Janus particles, the SLBs coated only half of the particle surface ex-

posed to clean silica. The side with the platinum did not get coated with an SLB.

When these SLB half-coated Janus particles were deposited in a 2% solution of hydrogen

peroxide, the particles self-propelled pointing away from their platinum half-coating via

self-diffusiophoresis. Since silica is more dense than water, the Janus particles moved in

2D along the bottom of the imaging chamber. Within the time frame of our experimental

measurements, we did not observe any significant degradation of the SLB from hydrogen

peroxide.

For the 6.5 µm obstacle particles, we obtained a uniform SLB across the entire surface
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of the silica bead. We added a positively-charged DOTAP lipid to the SLB to facilitate

a strong electrostatic attraction between the obstacle particles and the borosilicate cov-

erslip substrate. We found that most obstacle particles remained fixed along the bottom

substrate with no observable Brownian motion. We did not observe any adhesion or

fusion of the SLBs between the obstacles and the Janus particles.

The SLB-coated obstacle particles were added into the imaging chamber at a desired

density, followed by the SLB half-coated Janus particles. We added 2% hydrogen perox-

ide into the chamber and conducted time lapse imaging. All imaging was carried out on

an inverted Nikon Ti2-Eclipse microscope (Nikon Instruments) using an oil-immersion

objective (Apo 60x, numerical aperture (NA) 1.4, oil). Lumencor SpectraX Multi-Line

LED Light Source was used for excitation (Lumencor, Inc). Fluorescent light was spec-

trally filtered with emission filters (515/30 and 680/42, Semrock, IDEX Health & Science)

and imaged on a Photometrics Prime 95 CMOS Camera (Teledyne Photometrics). Ex-

perimental results presented in this chapter are an average over 6 independent replicates

of systems with obstacles and 3 independent replicates of systems without obstacles as a

control.

3.2.2 Particle Tracking in Experiments

To determine the effect of the porous media on transport, we measured the Janus

particle trajectories with and without the presence of the fixed obstacles. We used a

modified MATLAB script based on IDL code by Crocker and Grier [73] to track the

individual Janus particles by identifying each particle center and tracking its trajectory

over time using an image stack with one frame taken every second. We removed any

macroscopic drifts by enforcing that the mean displacement over all particles was zero

at any time. We filtered out any Janus particles that were immobile due to defects of
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the particle (defined as moving less than 30 µm over 100 seconds or if it moved in only 1

direction via macroscopic drifts). In all experimental results, we tracked the particles for

times t > 7τR. We obtained the Janus particle mean swim speed, U0, and reorientation

time, τR, using the control experiments in the absence of obstacles. We obtained the

mean swim speed by averaging all tracked particles’ velocity over time,

U0 =

〈
∆r

∆t

〉
. (3.1)

The mean swim speed was determined to be U0 = 0.84 ± 0.01 µm/s with the reported

error as the standard error of the mean. We obtained the reorientation time by measuring

the bulk diffusivity for the control experiment in the absence of obstacles,

D0 = DT +
U2
0 τR
2

, (3.2)

where DT ≈ 0.1 µm2/s is the thermal Brownian diffusivity for 4 µm diameter spheres us-

ing the Stokes-Einstein-Sutherland relation [74–76]. We note that the thermal Brownian

diffusivity is negligible compared to the self-propulsive component. Using the experimen-

tal measurement of the bulk diffusivity, D0 = 5.1 µm2/s, we obtained the reorientation

time and it’s standard deviation τR = 14±2 s using Eq. 3.2. As a separate measurement,

we computed τR using the Janus particle orientation autocorrelation in 2D,

⟨q(t) · q(0)⟩ = e−t/τR . (3.3)

We obtained the Janus particle orientations directly from particle tracking, and we ob-

tained a reorientation time τR ≈ 10s using Eq. 3.3. This measurement is similar to the

value we obtained using Eq. 3.2, especially considering the difficulty in finding the orien-

tation using the velocity vector. We concluded that the particles are behaving as active

Brownian particles in 2D. In principle, the Janus particles are located along a 2D plane

but can reorient in 3D. However, the platinum coating makes the catalytic half-surface
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more heavy and causes the Janus particles to tilt downwards, making the particle move

effectively in 2D. We note that the direction of self-propulsion points away from the plat-

inum half-surface, so the configuration of the platinum half-surface pointing vertically

down appears to be an unstable state.

3.2.3 Brownian Dynamics (BD) Simulations

The parameters (U0,τR) obtained from the control experiment are then used as inputs

into our Brownian dynamics simulations in Fig. 3.2. In Fig. 3.5, the parameters were

chosen as described in the caption. We implemented our simulations using HOOMD-blue,

a molecular dynamics (MD) simulation package in Python [77]. We focused on the dilute

limit of a single active Brownian particle (ABP) in 2D interacting with fixed hard-sphere

obstacles. Hydrodynamic interactions are ignored in these simulations. The ABP model

describes a swimmer with constant propulsion force but white noise torques [12, 78–81].

Hard-sphere like interactions between the obstacles and the ABPs were implemented

using the Weeks-Chandler-Andersen (WCA) [82] potential (Eq. 3.5). For the nonspherical

Cassini Oval, the structure was formed using overlapping rigid surface particles offset so

that the surfaces of the particles formed the boundaries of the Cassini Oval.

The ABPs were initialized and integrated according to the overdamped Langevin

equations of motion:

dxi

dt
=
√

2DTηi(t) +
Fwca(xi, xj)

ζ
+ U0q (3.4a)

dθi
dt

=
√
2DRξi(t) (3.4b)

where Fwca is the force on the particle from all potentials and constraints, ζ is the

drag coefficient, q = [cos θ, sin θ] is the unit vector describing particle orientation in

2D, DR = 1/τR is the rotational diffusion coefficient, and (ηi, ξi) are random variables
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obeying the zero mean and variance consistent with the fluctuation-dissipation theorem.

We used a timestep of ∆t = 0.001 seconds, and set the thermal diffusivity to match

our experiments at DT = 0.1 µm2/s. The drag coefficient and the energy scale of the

potential were chosen such that force induced velocity at contact is 24ε
ζσavg

= 0.6 µm/s,

which is similar in magnitude as the self-propelled velocity U0. The WCA force is given

by

Fwca = −∇Vwca (3.5a)

Vwca(rij) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]
+ ε, r ≤ 21/6σ. (3.5b)

The particle diameters σABP and σobs were preset to 4 µm and 6.5 µm for Fig. 3.2, and

for Fig. 3.5 they were chosen to be small compared to the radius of the disk shown in

Fig. 3.5B, σ/R = 1/20. We used periodic boundary conditions to simulate a continuous

domain. Simulations are visualized using OVITO [83].

3.3 Results

To obtain a mechanistic understanding of boundary layer accumulation and slowdown

of active matter in heterogeneous materials, we combined Janus particle experiments,

Brownian dynamics (BD) simulations, and analytical theory. In our experiments, we

immobilized 6.5 µm lipid bilayer-coated silica particles in a random distribution at the

bottom of an imaging chamber at ϕ ≈ 12% area fraction. We added a dilute concentration

of 4 µm silica Janus particles, coated on one side with a thin layer of platinum and the

other side with a lipid bilayer containing fluorescently-labeled lipids (see Materials and

Methods). The silica beads sedimented to the bottom of the imaging chamber, so our

experiments are conducted in 2D. The lipid bilayers on the obstacles and Janus half-

coating contain different fluorescent dyes, which enabled us to track both types of particles

simultaneously in different fluorescence channels. Upon adding 2% hydrogen peroxide in
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t = 17s t = 80sh)

Experimental Janus Trajectory Brownian Dynamics Simulation

Experiments

t = 0 secondsd) t = 17 secondse) t = 80 secondsf) t = 100 secondsg)

20 μm 

Schematic

a) b) c)

i)

Obstacles placed 

in the same 

positions.

Figure 3.1: Active particles experience a significant slowdown near obstacle
boundaries and a reduction in effective diffusivity in a random array of fixed
obstacles. (A-C): Schematic demonstrating the obstructed motion of an active
particle near a grouping of 3 obstacles. (D-G): Experimental images of a 4 µm Janus
particle (green semicircle) moving through 6.5 µm obstacle particles (magenta). (H)
Displacement of the active Janus particle (green semicircle) tracked for 100 seconds.
(I) Brownian Dynamics (BD) simulation snapshot of active Brownian particles moving
through a recreated copy of the same porous media as in the experiments. More
individual particle trajectories are available in the Supplementary Information of [1](SI
Fig. 1 ).

Milli-Q water, the Janus particles self-propelled [84–86] with speed U0 = 0.84±0.01 µm/s

and reorientation time τR = 14 ± 2 s. The self-propulsive speed and the reorientation

time were determined via the mean instantaneous velocity and a fit to the known mean

squared displacement (see Eq. 3.1 and Eq. 3.2 in Materials and Methods). We conducted
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time lapse imaging and tracked the positions of the obstacles and the Janus particles

using a tracking algorithm [73]. In Fig. 3.1, we show the motion of a single Janus particle

moving through a random array of obstacles, punctuated by an obstructed motion of

over 1 min in a local grouping of obstacles creating a concave boundary. Eventually, the

Janus particle reoriented, propelled away from the concave boundary, and resumed an

active random walk (Fig. 3.1H).

To corroborate our experiments, we developed BD simulations in which the motion

of ABPs are evolved following the overdamped Langevin equation (see Materials and

Methods). We compare the experimental mean squared displacement (MSD) with sim-

ulated active Brownian particle MSD to determine if this simple model quantitatively

captures the transport behavior observed in the Janus particle experiments in Fig. 3.2.

Comparing the two MSDs also allowed us to determine that the entropic effect of im-

mobile obstacles was the cause of the diffusivity reduction, and not some unaccounted

for mechanism (e.g. hydrodynamic forces or interparticle attractions). To simulate a

dilute system, the active Brownian particles interact with obstacle particles via a purely

repulsive potential, but do not interact with each other (“ideal gas” particles). We chose

the active particle swimming speed and reorientation time to match our Janus particles,

and we placed obstacles of the same size in the same positions as the experiments. By

using the experimental obstacle particle positions as inputs into our simulations, we reca-

pitulated our precise experimental system in the simulations (Fig. 3.1I). Consistent with

our experimental observations, we also observed a similar accumulation of particles in

local groupings of obstacles that form a concave boundary.

To quantify the effect of active particle accumulation and slowdown near boundaries,

we computed the mean squared displacement (MSD) of the active particles in our ex-

periments and BD simulations, MSD(t) = ⟨|r(t) − r(0)|2⟩, where r(t) is the position of

the active particle at time t. We obtained the slope of the MSD at large times to find
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Janus (Exp):

Control Obstacles

ABP (Sim):

DE = 3.8 μm2/s 

D0 = 5.1 μm2/s 

Figure 3.2: The effective diffusivity of active particles decreased by 25%
in a random array of fixed obstacles at ϕA ≈ 12% area fraction. The mean
squared displacement (MSD) of 4 µm active Janus colloids in experiments (black sym-
bols) agrees with that in our BD simulation of the equivalent system using the active
Brownian particle (ABP) model (cyan symbols), for both the control case without
obstacles (circles) and with a random distribution of 6.5 µm obstacles (cross marks).
Labelled diffusivities correspond to the fit to the slope at times past 50 seconds in
the experiments. Standard error of the mean for the MSDs is available in the Supple-
mentary Information of [1] (SI Fig. 2). Additional MSD simulation data for different
ABP activities is available in SI Fig. 3.

the long-time self diffusivity of the active particles in the experiments and simulations,

D = limt→∞(1/4) (dMSD/dt). As shown in Fig. 3.2, we found that the effective diffusiv-

ity of active Janus particles decreases by 25 % in the presence of fixed obstacles, from

D0 = 5.1± 0.2 µm2/s (without obstacles) to DE = 3.8± 0.2 µm2/s (with obstacles). An

ABP in a dilute suspension in two dimensions has a self diffusivity of D0 = DT +U2
0 τR/2

without any obstacles present. Our BD simulations agreed quantitatively with the ex-
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perimental values when we used identical activity parameters with obstacles placed in

the same positions, confirming that our active Brownian particle simulations are a pro-

ficient model of the experiments. For passive Brownian particles in a dilute packing of

rigid obstacles, the effective diffusivity reduces to DT (1 − ϕ) where DT is the thermal

Brownian diffusivity of an isolated particle [23]. Therefore, our 25% reduction in the

effective diffusivity for active particles is about twice as large as the relative reduction

experienced by passive Brownian particles at the same obstacle packing fraction, 12%.

In our experiments, we noticed that several 6.5 µm obstacle particles formed local

groupings with narrow constrictions (Fig. 3.3A), even at semi-dilute packing fractions

(ϕ ≈ 12%). Indeed, we quantified the crowding by finding the number of other obstacle

neighbors located within a surface-to-surface distance of 4 µm (Fig. 3.3B). We observed

that the Janus particles spent significantly more time in the concave region of these

emergent shapes as opposed to the convex side (Fig. 3.3C). We therefore hypothesized

that the presence of these structures with curved geometries plays an important role in

reducing the effective transport properties of active particles beyond the 1 − ϕ correc-

tion observed in passive particles. Furthermore, we anticipated that the role of obstacle

geometry on the effective diffusivity is much larger for active particles undergoing persis-

tent self-propulsion compared to passive particles translating due to thermal Brownian

motion.

To test our hypothesis and to develop a micromechanical understanding of the role

of obstacle geometry on active particle diffusion, we analyzed the distribution of active

particles near obstacle boundaries, P (x, y, θ, t), which satisfies the Smoluchowski equation

∂P

∂t
+∇ · (U0qP −DT∇P )−DR

∂2P

∂θ2
= 0, (3.6)

where U0 is the self-propulsive speed of the active particles, q = [cos (θ), sin (θ)] is the

unit orientation vector indicating the direction of self-propulsion, and DT and DR = 1/τR
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20 μm 

a) c)b)

Figure 3.3: Active Janus particles spent a significant amount of time near
obstacle clusters that formed curved boundaries with narrow constriction
sites. (A) Image of an active Janus particle interacting with a grouping of obstacles
that form a curved boundary with concavity. (B) Histogram quantifying obstacle
particle grouping. Number of impassible neighbors is found by counting all the ob-
stacle neighbors within distance 4 µm from a reference obstacle’s surface. Groups
of obstacles within this distance are impassible by a Janus swimmer with diameter
4 µm. Error bars are the standard deviation from 6 independent experiments. (C)
Schematic demonstrating the concave shape formed by the packing of obstacles.

are the translational and rotational diffusivity, respectively. Equation 3.6 is subject to

the no-flux boundary condition along the obstacle surface, n̂ · [U0qP − DT∇P ] = 0,

and periodic boundary conditions across the unit cell. The probability distribution is

normalized,
∫∫∫

P dxdydθ = 1. We computed the density and polar order fields of active

particles at steady state (∂P/∂t = 0) by solving Eq. 3.6 using the finite element method

via the software Freefem++ [87].

We obtained steady-state density and polar order fields by taking orientational inte-

grals over the full probability distribution,

n(x, y) =

∫ 2π

0

P (x, y, θ) dθ, (3.7a)

m(x, y) =

∫ 2π

0

P (x, y, θ)q(θ) dθ, (3.7b)
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a)

d)

b)

e)

c)

f)

Concave

Obstacle

Circular

Obstacle

Number Density Polar Order - x Polar Order - y

Figure 3.4: Active constituents accumulate along boundaries due to their
persistent self-motion, with a significant increase in density and polar order
along curved boundaries with large concavity. (A-C): Density and polariza-
tion fields around a circular obstacle (radius over run length R/(U0τR) =

√
7/4) with

dashed lines to guide the eye around the faint increase in contours. The fields are nor-
malized by n∞, the bulk concentration of active particles far away from the boundary.
(D-F): the concentration and polarization fields around a curved obstacle with large
concavity (Rinner/(U0τR) = 1/2, Router/(U0τR) = 1). A convex, circular obstacle ex-
periences a 12% increase in active particle accumulation, while a concave shape in
the same active bath experiences a 40% increase in active particle accumulation at
the inner side, indicating that the specific arrangement and shape of obstacles play a
key role in the effective diffusivity of active particles. We used the same obstacle area
fraction of ≈ 5.5% and activity U0τR/δ = 1 in both cases, where δ =

√
DT τR is the

microscopic length.

We numerically solved the full Smoluchowski equation for a point-sized active particle

around fixed obstacles with different shapes. For a circular obstacle, we observed a small

accumulation of active particles near the surface, as shown in Fig. 3.4A. In contrast, for a

curved obstacle, we observed a significant increase in the number density n(x, y) and polar
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order vector m(x, y) near the obstacle surface, especially at regions of large concavity

(Fig. 3.4D-F). Our results in Fig. 3.4 are presented for a mild activity of U0τR/δ = 1 to

ensure numerical stability, where δ =
√
DT τR is the microscopic length describing how

far the active particle thermally diffuses before it reorients. Even for mild activity, we

observed a 40% increase in density accumulation along the inner surface compared to only

12% near the circular obstacle. The active Janus particles in our experiments have an

activity of U0τR/δ = 100, which would cause an even larger increase in the density and

polar order enhancement at concave boundaries. Our Smoluchowski analysis suggests

that the obstacle arrangement and shape play a critical role in governing local trapping

of active particles in porous media.

Motivated by our micromechanical understanding of active particles near curved ob-

stacles (Fig. 3.4), we hypothesized that the effective diffusivity of active particles in an

array of obstacles should depend on the specific shape of the obstacles. To these ends,

we conducted BD simulations of active Brownian particles moving through a square lat-

tice of obstacles, carefully varying the curvature while preserving the packing fraction

to keep the excluded volume constant within a unit cell. As a model obstacle shape

with smoothly-varying curvature, we utilized the “Cassini Oval” (Fig. 3.5B-D), which is

described by the equation

[
(x+ a)2 + y2

] [
(x− a)2 + y2

]
= b4, (3.8a)

A = 2b2E

(
a4

b4

)
, (3.8b)

κ∗ =
1

b

(
2a2/b2 − 1√
1− a2/b2

)
(3.8c)

where a and b are two shape parameters (a < b), κ∗ is the maximum curvature in the

shape, A is the shape area, and E(x) is the complete elliptic integral of the second kind.

The Cassini Oval is a modification of the traditional ellipse with the product of the dis-
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Figure 3.5: Curved obstacles with a large concavity generate a significant
slowdown in diffusive transport of active particles compared to purely con-
vex shapes at the same packing fraction. (A) Scaled diffusivity deviation as
a function of shape concavity for the Cassini Oval shape described by Eq. 3.8, where
bκ∗ is the non-dimensional curvature at the top of the inclusion. The diffusivity along
the direction facing the concavity, Dy, decreases by 24% for the active particles for
highly concave obstacles compared to 12.5% for the passive Brownian particles, in-
dicating that the coupling between the active force and curvature plays a key role.
Total packing fraction is fixed at ϕ ≈ 5.5%, and error bars are the standard deviation
of three independent trials. (B-D): Schematics of area preserving Cassini Ovals for
three different parameter sets. The two foci are separated a distance of 2a. Beyond a
critical distance, a = b/

√
2, the shape becomes concave.

tance to two foci (located at x = ±a) kept constant at b2. The shape extends laterally and

shrinks vertically as it is deformed at constant area, which would generate anisotropies

and slowdowns in the effective diffusivity for even passive Brownian particles. Since we

wish to isolate the effects of curvature, and not the artifacts from lateral elongation of the

shape, we performed BD simulations on both passive and active Brownian particles to
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quantify the effects of curvature and shape elongation. Passive Brownian particles with

purely excluded-volume interactions do not accumulate along boundaries, so any change

in their diffusivity is due to shape elongation within the unit cell. We have conducted

BD simulations at different activities and obstacle packing fractions, and found that the

effective diffusivity is well-approximated by the expression D0(1 − ϕ) for dilute packing

fractions, where D0 is the bulk diffusivity in 2D in the absence of any obstacles. This is a

proficient analytical expression for all activities at dilute obstacle densities (See SI Fig. 4

and 5 in [1]). However, at larger packing fractions of obstacles (greater than ≈ 5%), we

observe deviations in this expression as a function of varying activity parameters. For

example, as (U0τR)κ
∗ > 1, the scaled diffusivity decreases compared to the passive case,

due to the reduced swim diffusivity in the boundary layer.

To isolate the diffusivity reduction due to obstacle shape, we computed a scaled

diffusivity deviation given by

∆D

D0

=
DE − D̃

D0

, (3.9)

where DE is the effective diffusivity measured from the MSD, D0 = DT + U2
0 τR/2 is the

diffusivity without any obstacles, and D̃ = D0(1−ϕ) is a first correction to the diffusion

constant due to excluded volume effects of circles in a square lattice [23]. In Fig. 3.5,

we show our BD simulation results for an obstacle packing of ϕ = 0.055. Using active

particles of diameter σ, we set the activity as U0τR/σ = 100, δ/σ = 5
√
2, and the shape

area as A/σ2 = 400π. As the concave curvature of the obstacle increased, we found a

large reduction in the effective diffusivity along the direction facing the concavity (Dy)

whereas the diffusivity along the other direction (Dx) remained approximately constant.

As the local curvature of the shape increased, the conserved area moves off to the sides,

slightly thinning its vertical projection and expanding its horizontal projection. The effect

of obstacle shape elongation on the effective diffusivity is measured by the deviation in
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the passive case (black circles and crosses in Fig. 3.5A). In the active case, there is an

additional contribution that we designate as the active-curvature coupling.

As shown in our data for Dy in Fig. 3.5A, the active-curvature coupling contribution

to the effective diffusivity is equally as large as the diffusivity reduction due to obstacle

shape elongation. Due to their persistent self-propulsion, the active particles experience a

large accumulation of density and polar order fields near boundaries with large concavity,

consistent with our Smoluchowski analysis in Fig. 3.4. The magnitude of this boundary

layer accumulation is a strong function of curvature and activity, and we have observed

that the effect becomes more important at high activity and semi-dilute obstacle packing

(see SI Fig. 4 and SI Fig. 5 in [1]). Our results validate our hypothesis that the shape

and curvature of the obstacles play a critical role in governing the effective mobility of

active particles in porous materials. The physical mechanism behind this phenomenon

is that active matter accumulates along boundaries, especially along curved and concave

surfaces, where active particles are trapped. Therefore, the specific shape and arrange-

ment of obstacles within a porous material modulate the effective diffusivity of the active

particles in a manner that is more significant compared to passive Brownian particles.

3.4 Discussion

In this chapter, we discovered that the obstacle packing fraction alone is insufficient

to provide an accurate prediction of effective active particle diffusivity. The specific shape

and distribution of physical obstacles plays a critical role in determining active transport.

The microscopic details of the external boundary strongly influences the macroscopic

observables like the long-time self diffusivity. Both in our experiments and simulations,

a random packing of obstacles led to concave structures with narrow constriction sites

that gave rise to a significant accumulation of active particles. We showed that the local
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slowdown of active particles within the boundary layers has a direct effect on their overall

mobility across the porous material. We focused on obstacle curvature and microstructure

as metrics for predicting the effective diffusivity, which is complementary to other porosity

metrics, like chord-length distributions [88] or tortuosity measurements [53].

Our scientific basis for focusing on the obstacle shape and curvature was inspired by

the strong connection between active matter accumulation and its force generation along

boundaries [33, 86, 89, 90]. For example, Burkholder and Brady derived a macrotransport

based model to connect fluctuations in surface accumulation and the enhancement in

diffusivity of passive spherical tracers [91]. Furthermore, the surface accumulation is

highly dependent on surface curvature [29, 32, 34, 35]; the accumulation on certain parts

of an asymmetric shape can lead to a pressure imbalance and net translation of anisotropic

colloidal tracers [12, 92]. These studies showed that active matter can impart forces on

its environment; however, in our work, we focused on how the micromechanical details

of the environment, like curved boundaries, can alter the dynamical properties of the

active particles. We validated that a strong coupling between surface curvature and

active matter accumulation decreases the diffusivity of active particles by a much larger

relative degree than the slowdown expected for equivalent passive Brownian particles.

The surface accumulation of active particles around a single obstacle with small cur-

vature ((U0τR), δ ≪ 1/κ) is shown by Yan and Brady [34]:

nsurf

n∞ = 1 +
ℓ2

2δ2
+ κℓ2λ′ +O(κℓ2λ′)2, (3.10)

where n∞ is the bulk concentration of active particles, κ is the curvature in units of inverse

obstacle length, ℓ = U0τR is the run length, and λ′ =
√

(1 + 1
2
(ℓ/δ)2/δ is the inverse

screening length of the boundary layer. As the curvature goes from κ = 0 (e.g. a flat

wall) to a convex curvature κ < 0 (e.g. the outside of a circle), the surface accumulation

decreases proportionally. However, if regions of the shape have a concave curvature κ > 1
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(e.g. the inside of a circle), the accumulation increases. To first order in curvature, the

accumulation described in Eq. 3.10 predicts no net force on an asymmetric surface [34],

and higher order curvature expansions are needed to get a nonzero force. The need

for large curvatures is consistent with our simulations (Fig. 3.5), where we found that

the active-curvature coupling effect on the diffusivity is small until the nondimensional

curvature is large, κℓ ≫ 1, (see SI Fig. 4 in [1]). For our most curved obstacle in Fig. 3.5D,

our analysis from Eq. 3.10 leads us to define our grouping of κℓ2λ′ ≈ 7 × 103. The

effect of active-curvature coupling is expected to increase dramatically in dense, tortuous

media, leading to the mechanism of hopping and trapping transport. Other mechanisms

of motility, such as the run-reverse mechanism seen in bacteria and archaea [93, 94],

can enable swimmers to avoid the slowdown resulting from boundary accumulation and

enhance transport between highly curved pores [65].

We focused on the effects of immobile obstacles with purely excluded volume in-

teractions. However, soft porous materials present a rich opportunity for future study.

Boundary fluctuations of soft surfaces are important for particle transport in mucus, hy-

drogels, and other polymeric networks [21, 95, 96]. Active particles have been shown to

induce large deformations on soft membranes [97, 98], changing the curvature and trans-

port drastically. Hydrogel networks and sediments in 3D provide an additional degree

of freedom for a swimmer to avoid obstacles. In 2D, close packing of disks precludes

transport; however, a close packing of spheres in 3D allows for bicontinous percolation,

resulting in a reduced but nonzero diffusivity.

Our work opens up opportunities for future experimental work to control active mat-

ter diffusion via the design of obstacle shape and arrangement. Convex, nonspherical

inclusions can be used to control transport and create anisotropic spreading of bacteria

along a predefined axis. Novel sorting mechanisms have already been developed using

asymmetric blockers [38], and the method could be extended to sort mixtures of swim-
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mers with different types of motility [99]. Precise consideration of the activity-curvature

coupling on transport serves as a promising route to increase the efficacy of these sorting

methods, and may lead to more accurate predictions of bacterial transport coefficients.

Bibliography

[1] K. J. Modica, Y. Xi, and S. C. Takatori, Porous media microstructure determines

the diffusion of active matter: Experiments and simulations, Frontiers in Physics

10 (4, 2022) 869175.

[2] J. Gannon, U. Mingelgrin, M. Alexander, and R. Wagenet, Bacterial transport

through homogeneous soil, Soil Biology and Biochemistry 23 (1, 1991) 1155–1160.

[3] J. S. T. Adadevoh, S. Triolo, C. A. Ramsburg, and R. M. Ford, Chemotaxis

Increases the Residence Time of Bacteria in Granular Media Containing

Distributed Contaminant Sources, Environmental Science & Technology 50 (1,

2016) 181–187.

[4] B. J. Toley and N. S. Forbes, Motility is critical for effective distribution and

accumulation of bacteria in tumor tissue, Integrative Biology 4 (2, 2012) 165–176.

[5] R. W. Kasinskas and N. S. Forbes, Salmonella typhimurium specifically chemotax

and proliferate in heterogeneous tumor tissue in vitro, Biotechnology and

Bioengineering 94 (2006), no. 4 710–721,

[https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.20883].

[6] D. Ribet and P. Cossart, How bacterial pathogens colonize their hosts and invade

deeper tissues, Microbes and Infection 17 (2015), no. 3 173–183.

68

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.20883


BIBLIOGRAPHY

[7] S. X. Gu and S. R. Lentz, Fibrin films: overlooked hemostatic barriers against

microbial infiltration, Journal of Clinical Investigation 128 (8, 2018) 3243–3245.

[8] C. Y. Kao, W. H. Lin, C. C. Tseng, A. B. Wu, M. C. Wang, and J. J. Wu, The

complex interplay among bacterial motility and virulence factors in different

Escherichia coli infections, European Journal of Clinical Microbiology & Infectious

Diseases 33 (12, 2014) 2157–2162.

[9] A. Mart́ınez-Calvo, C. Trenado-Yuste, and S. S. Datta, Active Transport in

Complex Environments, in Out-of-equilibrium Soft Matter. The Royal Society of

Chemistry, 03, 2023.

[10] B. Chaban, H. V. Hughes, and M. Beeby, The flagellum in bacterial pathogens: For

motility and a whole lot more, Seminars in Cell & Developmental Biology 46

(2015) 91–103. Biomineralisation & Motorisation of pathogens.

[11] D. Woolley, Motility of spermatozoa at surfaces, Reproduction (8, 2003) 259–270.
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In this chapter, we present an analytical framework for evolving the dynamics of active

rods under any periodic external potential, including confining channels and arrays of

harmonic traps. As a proof of concept, we analyze the structure and dispersion of self-

propelled rods under a soft, periodic one-dimensional (1D) confinement potential and

under a two-dimensional (2D) periodic radial harmonic trap. While passive rods and

polymers nematically order under 1D confinement, their diffusive transport along the

director is limited by thermal diffusion. In contrast, self-propelled rods can generate large

convective fluxes when combined with nematic ordering, producing a strong dispersion

along the director. Combining theory and simulation, we demonstrate that nematic

alignment and self-propulsion generates an exponential enhancement in active diffusivity

along the director, in contrast to passive rods that experience at most a 2-fold increase.

This chapter includes content from our previously published article:

[1] K.J. Modica and S.C. Takatori, Soft confinement of self-propelled rods: simulation

and theory, Soft Matter 20 (2, 2024), no. 10 2331–2337. All authors conceived of the

study and designed research; KJM performed simulations and analytical calculations;

SCT supervised the study; and all authors wrote the paper.

Reproduced with permission from the Royal Society of Chemistry.

4.1 Introduction

Active rods, characterized by their anisotropic shape and nonequilibrium motion, are

a powerful model for describing the behavior of biological constituents across a range of

systems, from motile bacteria to cytoskeletal filaments.[2–4] While self-propelled systems

are often studied for their collective behaviors, even dilute systems of active particles can

present unexpected physics. Despite significant prior work, predicting and controlling

the transport and structure of active rods remains an ongoing challenge.
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One method to study and control active matter is through geometric confinement.[5–

12] Confinement introduces additional complexities to the dynamics of active matter,

as interactions with boundaries profoundly influence the emergent properties of the

system.[13–21] For active rods, the proportion of normal and parallel alignment to the

confinement direction is set by the competition between activity-induced boundary accu-

mulation (normal alignment) and entropy-mediated reorientation (parallel alignment).[22–

26]

In addition to impenetrable walls, many systems exhibit a softer form of confinement

where escape is made possible (if unlikely) by thermal fluctuations or active forcing.

Actin and microtubule filaments placed in shallow channels are known to leave the con-

fining channels when propelled by motor proteins, requiring specific geometries to prevent

escape.[27–30] Optical and acoustic tweezers provide another mechanism of weakly con-

fining bacteria and active particles for measuring their motility.[31–33] Despite the wide

prevalence of soft confinement on self-propelled rods, the topic remains under-explored

theoretically and in simulation. Existing work on anisotropic colloidal particles uses dy-

namical density functional theory (DDFT).[34–36] While DDFT has been used to model

the mean-field interactions between particles, in the presence of an external field, the

user needs to convert the local potential field acting across the mass density of the finite

body into a potential energy determined by the particle’s center of mass position and

orientation.

In this chapter, we demonstrate a framework for studying dilute active rods in any

periodic external field by converting a local potential energy density into a position

and orientation dependent potential energy on the rod center of mass. We apply our

framework for the special case of a 1D periodic potential to illustrate that soft confinement

in channels increases the axial transport even for dilute concentrations of swimmers when

the rod length is commensurate to the channel size. Lastly, inspired by optical tweezers,
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we also apply our framework on a periodic array of harmonic traps to demonstrate the

utility of our approach to more complex forms of soft confinement.

4.2 Modeling Active Rods

In the overdammped limit, the motion of self-propelled rods follows the Langevin

equation with no inertia. The rod is treated as a rigid body that propels by an active

force directed along the long axis. The active, Brownian, and external forces and torques

are summed to generate translational and rotational motion. To simulate a dilute system,

the self-propelled rods do not interact with each other (i.e., the rods are “ideal”). The

evolution equation for the ith rod’s center of mass is:

dri
dt

=
√

2DTηi(t) +
F ext

i

ζT
+

F act
i

ζT
(4.1a)

dθi
dt

=
√

2Dθξi(t) +
Lext
i

ζθ
. (4.1b)

where ζT and ζθ are the translational and rotational drag coefficients, F act
i is the swim

force, F ext
i is the force on the rod center of mass from the external potential, and Lext

i

is the torque on the rod center of mass from the external potential. The swim force

F act
i = U0ζTui is of constant magnitude, with the direction set by the rod orientation

unit vector ui = cos (θi)êx + sin (θi)êy in 2D. Finally, the translational and rotational

diffusion coefficients are DT and Dθ, with (ηi, ξi) as random variables with zero mean

and a variance consistent with the fluctuation-dissipation theorem.

As a complementary description of the Langevin equation, the probability distribution

f(r, θ, t) of a self-propelled Brownian rod at position r, orientation angle θ and time t

confined in 2-dimensions follows the Smoluchowski diffusion equation:

∂f(r, θ, t)

∂t
+∇ · JT +

∂

∂θ
Jθ = 0 (4.2a)
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JT =

[
U0uf −D(u) ·

(
∇f + f∇

[
V

kBT

])]
(4.2b)

Jθ = −Dθ

(
∂

∂θ
f + f

∂

∂θ

[
V

kBT

])
. (4.2c)

The Smoluchowski equation can be derived by noise averaging the Langevin equation

for the rod.[37, 38] It describes the normalized probability density f of rods moving at

constant velocity U0 due to a force acting along its center of mass and oriented along

its long axis in direction u. The rods undergo Brownian motion with a (potentially

orientationally dependent) translational diffusion tensor D(u) and rotational diffusion

constant Dθ. kBT is the thermal energy, and V is the potential energy of the entire body

in the presence of an external field. JT and Jθ represent the translational and angular

flux, with the translational gradient operator ∇ = ∂
∂x
êx +

∂
∂y
êy. For the purpose of this

study, interactions between rods are neglected to probe the dilute limit.

When studying anisotropic particles, Eq. 4.2 is complicated by the calculation of the

constituent’s potential energy given a potential energy field ϕ and mass distribution ρ

V (r, θ) =

∫
ϕ(r − s)ρ(s)ds. (4.3)

The mass distribution ρ is zero everywhere except in the region r+ s where r is the rod

center of mass, s = su is the displacement along the rod long axis in direction u from the

rod center, with distance spanning from s = −LRod/2 to s = LRod/2 (see Supplementary

Information Section I. of [1]).

To find an analytical expression for V , one would traditionally perform a multipole

series expansion on ϕ. This Taylor series expansion about the rod center is slow to

converge when the potential energy changes rapidly relative to the length of the rod.

In fact, a multipole series of a periodic monochromatic field with wavelength λ diverges

for 2πLRod ≥ λ. To overcome this challenge, we have instead chosen to expand ϕ as a

Fourier series and compute the Fourier coefficients (rather than the multipole moments)
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of V (r, θ). We compute the convolution in Eq. 4.3 as a product in Fourier space:

V̂nm(θ) = ϕ̂nmρ̂nm(θ). (4.4)

The Fourier transform of the line density ρ̂nm can be derived analytically as described

in Supplementary Information Section I. of [1], allowing us to determine an expression

for the center of mass potential directly:

V (r, θ) =
∑
n,m

ϕ̂nme
i2πknm·rsinc (πLRodknm · u) . (4.5)

The wavevector is defined as knm = n
Lx
êx + m

Ly
êy. This method converges rapidly for

periodic potentials with a low-wavenumber power spectrum. The sinc(πLRodkn,m · u)

term comes from the Fourier transform of the segment density for a rod[39] and couples

the orientation of the rod to the potential energy.

Although Eqs. 4.2-4.5 are true for any periodic potential, we will focus on a particular

case of active rods confined in a 1D monochromatic potential field as shown in Fig. 4.1.

In this field, the rod potential energy is

V (x, θ) = −A cos

(
2πx

λ

)
sinc

(
πLRod cos(θ)

λ

)
. (4.6)

We compare the solutions to the Smoluchowski equations to discrete simulations of

thin rods using Brownian dynamics (BD) simulations. The rods are composed of coarse-

grained beads separated by distance σ connected by rigid body constraints. Each bead

on the rigid rod feels the potential energy field ϕ, and the resultant forces and torques

move the rod center of mass and rotate the body. The center of mass potential energy

in this discrete system is slightly modified from the continuum limit (see Supplementary

Information Section I. of [1]), but Eq. 4.5 is suitable within error for our results when

LRod/σ ≳ 10. For the following results, we set LRod/σ = 21. As mentioned in Fig. 4.1,

this study is focused on dilute systems and as such the coarse-grained beads are point
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Figure 4.1: Schematic of active rods in a monochromatic potential energy field ϕ.
The rods are modelled in simulation as a rigid assembly of coarse-grained beads. Left:
Simulation snapshot of self-propelled rotors in the potential field, colored by their
direction. Right: Schematic demonstrating rotors which are composed of spherical
point masses that are pushed by random forces, active forces along the rod contour,
and the potential energy field. In all simulations, the rod is composed of 21 coarse–
grained beads separated by bond length σ. In the dilute limit, the beads are point
masses and do not interact with each other. Therefore, the rod diameter is zero, and
the aspect ratio LRod/dRod = ∞.

masses that have no interparticle interactions. Therefore, the rod diameter is zero, and

the aspect ratio LRod/dRod = ∞.

Based on the form of the external potential, and ignoring any directional dependence

to the translational drag D∥ ≈ D⊥ = DT , there are four dimensionless groupings present

in the system: the ratio of rod length to the confinement wavelength LRod/λ, the ratio

of active run length to the rod length U0/(DθLRod), the translational diffusivity over

the rotational diffusivity DT/(DθL
2
Rod), and the trap strength divided by the thermal

energy A/(kBT ). For all systems discussed, we choose DT/(DθL
2
Rod) = 1/6, following the

traditional scaling of rotational diffusion for a thin rod in dilute conditions.[38]

In addition to solving the steady state Smoluchowski equation in a periodic unit cell,
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we utilize the mechanics of generalized Taylor dispersion theory to calculate the long-

time self-diffusivity of the dilute rods in confinement.[40–42] For brevity, we save the

mechanics of the derivation and solution to the dispersion equations for Supplementary

Information Section II. of [1].

We implemented our simulations using HOOMD-blue, a molecular dynamics (MD)

simulation package in Python.[43] We integrate the Langevin equation using a timestep

size of ∆t = 0.01σ2/DT for at least 2 ∗ 107 timesteps. Numerical solutions to the field

equations were conducted using spectral methods implemented in Dedalus.[44]

4.3 Results and Discussion

To compare the effect of confinement on passive and active rods, we plot the compo-

nent of the normalized nematic tensor aligned orthogonal to the external field ⟨Qyy⟩ in

Fig. 4.2 a) and b). The angled brackets indicate the ensemble average of the quantity

over all particles and timesteps (Nsamples) for BD simulations. For the solutions to the

Smoluchowski equation, the angled brackets indicate the expected value calculated by

integrating the probability distribution.

⟨Qyy⟩sim =
1

Nsamples

Nsamples∑
i

(
2 sin2(θi)− 1

)
(4.7a)

⟨Qyy⟩theory =
∫∫

r,θ

f(r, θ)(2 sin2(θ)− 1)drdθ (4.7b)

These values are equivalent at steady state.

As the potential strength A/(kBT ) increases, the rods experience an aligning torque

due to their finite length. The potential energy is minimized when all monomers on the

rod are located at x = 0; therefore, energy is minimized at the expense of rotational

entropy by the rotation of the entire rod. In addition to large potential strengths (A ≫

kBT ), Qyy is maximized when the rod length increases relative to the wavelength; the
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Figure 4.2: Softly confined active rods exhibit significant nematic ordering and disper-
sion in a direction orthogonal to confinement. Panels (a) and (c) are passive whereas
panels (b) and (d) are self-propelled rods with activity U0/(DθLRod) = 3.5. Panels
(a) and (b) show the axial component of the traceless ensemble averaged nematic ten-
sor. Panels (c) and (d) show the components of the effective diffusivity scaled by the
bulk diffusivity in the absence of confinement. While the diffusivity across confining
channels (Dxx/D0) decreases for both active and passive rods, the active rods ex-
hibit enhanced diffusivity in the direction orthogonal to confinement (Dyy/D0) as rod
length and field strength increase. Markers are from Brownian dynamics simulations,
solid lines are numerical solutions to the Smoluchoski and dispersion theories. Error
bars are standard error of the mean calculated from three independent simulations
and when not visible are smaller than the marker size. Dotted lines in panels (c) and
(d) are the Kramers’ escape solution for diffusivity of a point particle.

energy penalty increases as more of the rod density is moved further from the potential

energy minimum. Both active and passive rods exhibit increased nematic ordering as

the field strength and rod length increase. Compared to the passive rods, self-propelled
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rods at the activity studied exhibit slightly less nematic order at the same trap strength

due to their increased ability to escape the trap basin and reorient at a more favorable

location.

In Fig. 4.2 c) and d), we calculate the long time self diffusivity of the confined active

rods scaled by the bulk diffusivity in the absence of external fields, DE/D0. The bulk

diffusivity, D0 = DT +U2
0/(2Dθ), is defined as the sum of the Stoke-Einstein-Sutherland

diffusivity DT and the “swim diffusivity” U2
0/(2Dθ) for active species. In the absence of

confinementDE = D0. This normalization isolates the impact of the activity-confinement

coupling, instead of capturing the well studied enhancement in bulk diffusivity due to

activity.

We plot the components of the diffusivity aligned with the external field, Dxx/D0,

and orthogonal to the external field, Dyy/D0, for passive and active rods. For passive

rods, Dxx/D0 decreases following a standard Kramers’ escape process (dashed black

line). Kramers’ theory[45–47] indicates that the effective diffusivity scales linearly with

the curvature of the potential well and exponentially with the activation energy barrier

to hopping. Note that when the rod length is comparable to the wavelength LRod/λ = 1,

the scaled diffusivity is slightly higher due to the coupling between the density and higher

order moments (e.g. nematicity) from the potential. Long rods near the top of the trap

are able to reorient so that part of their mass density is in the next basin, creating a weaker

activation barrier to escape. In contrast, the scaled dispersivity perpendicular to the field

Dyy/D0 remains unaffected by confinement. Transport in the axial direction follows a

1D random walk at its bulk diffusivity Dyy = D0. For the purpose of this chapter, we

ignored any orientation dependence to the Stokes-Einstein-Sutherland diffusivity, but at

most that would modify the results by a factor of two for an infinitely long and thin rod.

For active rods in Fig. 4.2 d), the effective diffusivity between channels (Dxx/D0)

decreases as rod length increases. The active forcing is powerful enough to overcome
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Figure 4.3: 1D monochromatic potentials increase active rod dispersion orthogonal
to confinement by preventing reorientation. As rod length increases, the activation
barrier against rotation grows. Data points are measured from Brownian dynamics
simulations and the solid lines are numerical solutions to the full dispersion theory.
The dotted lines are predictions from Eq. 4.8 with n=2. Activity U0/(DθLRod) = 3.5
Error bars are from three independent simulations and when not visible are smaller
than the marker size.

the external field in all cases F act/F ext
max = (U0kBT/DT )/(A/λ) > 1; however, the large

nematic order present as LRod/λ increases prevents reorientation and inhibits facilitated

active escape.

Most surprisingly, the axial diffusivity of active rods in confinement increases by

many orders of magnitude such that Dyy/D0 ≫ 1. Rod alignment via the external

potential couples with persistent self-propulsion to increase the dispersion. At strong

field strengths and long rod lengths, the rods align nematically inside the channel field,

moving ballistically until an energetically unlikely reorientation event occurs. The time

between direction reversals is increased by the potential barrier, leading to exponentially

longer ballistic runs.

To understand the cause of the increase in dispersion, we can examine the energetics
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of direction reversal for confined rods. At strong field strengths, A ≫ kBT , the rod

number density is focused primarily in the center of the channel. A rod sitting in the

center oriented vertically (θ = π/2) has an activation energy barrier to change direction

to θ = 3π/2, which for LRod/λ ≤ 1 is the energy needed to rotate through the completely

horizontal state: Ea,rot = A
[
1− sinc

(
πLRod

λ

)]
. This activation energy determines the

frequency of direction reversal. The activation barrier exponentially lowers the effective

rotational diffusion coefficient (DE,θ); however, due to the coupling between orientation

and persistent self-propulsion, the reduced rotational diffusion increases the effective

translational diffusion.

We propose that when the rod is strongly confined, the effective translational diffu-

sivity of an active rod in an external potential may be approximated as

DE,yy/D0 ∼ eα ≈ enEa,rot/kBT , (4.8)

where Ea,rot is the activation barrier for the rod to rotate and reverse polarity. And n is

a factor depending weakly on rod length. Over the course of our study, we found n ≈ 2,

but it is not necessarily constant for all systems.

In Fig. 4.3), we compare the effective diffusivity from our Brownian dynamics simula-

tions (via slope of the mean-squared displacement) with our proposed theoretical model

in Eq. 4.8. When confinement strength is weak (A ≪ kBT ), the effective diffusivity is

equivalent to the bulk diffusivity. As the confinement strength increases to A ≫ kBT ,

the effective diffusivity increases exponentially, based on the formation of an activation

barrier to rotation DE,yy ∼ 1/DE,θ ∼ eα. Across an order of magnitude of rod lengths,

we obtain proficient agreement between the simulation data and our proposed theoretical

model, Eq. 4.8.

Our Smoluchowski formulation allows for a detailed view of the local rod structure

found via the probability distribution. In Fig. 4.4a) - c), we calculate the local density,
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Figure 4.4: Steady state moments of the probability distribution found numerically
via Eq. 4.2 for a 1D monochromatic potential ϕ = −A cos(2πx/λ). Active rods at
potential strength A/(kBT ) = 10 and activity U0/(DθLRod) = 3.5. (a) Rod number
density (n) across the channel increases due to the large nematic order preventing
active escape. (b) Rod polar order against the channels (mx) exhibits a maximum
at intermediate LRod/λ because the maximum restoring force (A/λ) and active force
balance before succumbing to nematic reorientation. (c) Rod nematic order in the
channels (Qyy) increases as LRod/λ grows due to the increased barrier to reorientation.

polarity, and nematicity fields across a single channel at a fixed potential strength of

A/(kBT ) = 10. The local density (n(x) =
∫∫

f(x, y, θ)dydθ) increases as LRod/λ in-

creases. For low LRod/λ, the active force is easily able to overcome the potential energy

barrier and there is a broad density distribution. At large LRod/λ, the small wavelengths

lead to large gradients of the potential energy creating a restoring force similar in magni-

tude to the active force A/λ ≈ 0.48U0(kBT/DT ) (for LRod = λ). Additionally, the strong

torques at large LRod/λ prevents rod orientation (and therefore self-propulsion) out of
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Figure 4.5: (a) An optical trap potential energy field ϕ(r) defined as a radially
harmonic trap with curvature κ, width Wtrap and depth ∆ϕ = 1

8κW
2
trap. (b)-(g)

Moments of the steady-state probability distribution for rods in an array of optical
traps in two dimensions. Upper panels (b,c and d) are for passive (not self-propelled)
rods in a harmonic trap, lower panels (e,f and g) are for self-propelled rods with
activity set as U0/(DθLRod) = 1.0. Panels (b) and (e) are the number density of
rods, center panels (c) and (f) are the polar order of rods in the x-direction, and
right panels (d) and (g) are the nematic order in the y-direction. The circular dashed
line represents the edge of the trap. The trap width Wtrap = 0.5λ and trap depth
∆ϕ = 2kBT gives a curvature κ = 64λ−1. For this example, rod length LRod = 0.25λ.

the basin.

Interestingly, the polarity in the x-direction (mx(x) =
∫∫

f(x, y, θ) cos (θ)dydθ) in-

creases non-monotonically as a function of wavelength. When LRod/λ is small, the

aligning torques on the rods are weak, and the self-propelled rods behave as active

spheres, orienting against restoring forces. The polarity should increase with the restor-

ing force, but eventually the torques on the rods dominate and prevent alignment with

the x-axis (normal to the soft confinement). Finally, the nematic order (Qyy(x) =∫∫
f(x, y, θ)(2 sin2(θ) − 1)dydθ) increases with LRod/λ as large gradients in potential

energy along a single filament length rotate the particle.

Although we focused on the special case of a 1D sinusoidal potential, our spectral
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formulation (Eq. 4.5) is universal for any well behaved periodic potential energy field. To

demonstrate the application of our framework towards more complex potentials, we solved

the steady-state probability distribution of a rod in a lattice array of radially parabolic

potentials, inspired by an array of optical traps.[42] Optical traps do not necessarily have

a parabolic profile for anisotropic colloidal particles[48]; however, this model provides a

useful demonstration of the range of energy fields made possible to study.

In Fig. 4.5a), we show a schematic of a parabolic potential described by the trap

curvature κ, width Wtrap and depth ∆ϕ = 1
8
κW 2

trap. This parabolic trap biases the rod

density to the center, but may also impact the (local) polarity and nematicity of the

rods, especially with activity. We cut off the parabolic potential at the width Wtrap to

create a finite activation barrier to escape, we then tile the potential in a square lattice

to measure properties of the entire suspension as opposed to motion within a single

stiff trap. In Fig. 4.5b)-g), we show the density, x-direction polarity, and yy-direction

nematicity for both passive and self-propelled rods, respectively. In Fig. 4.5b) and e), the

number density is maximized at the center of the trap. However, the addition of activity

allows for particles to more easily escape from the harmonic trap, as previously shown

for spherical active particles.[32, 49–52]

Self-propulsion adds an orientation-dependent force to the translational flux, thereby

coupling the polar order to potential and concentration gradients in a way not present

for passive rods. As shown in Fig. 4.5c) and f), this coupling generates local polar order

from the propulsive force “pushing” against the energy barrier, which corresponds to a

maxima in polar order in locations where the potential energy gradient is the strongest.

The isotropic nature of the trap prevents global orientational ordering vertically or

horizontally; however, the rods will tend to align in such a way that they “hang” over

the edge, thereby lowering their potential energy. This creates the quadrupolar structure

present in Fig. 4.5d) and g). This effect is modified for active particles because the polar
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order induced by pushing against the trap feeds into the local nematic order in regions

of high restoring force.

4.4 Conclusions

This chapter presents a general method to study anisotropic active rods in two di-

mensions under a range of periodic external fields. Extensions to this work include the

study of rods in three dimensional confinement, where the Fourier transform of the rod

density (sinc(πLRodkn,m · u)) remains the same provided that u is now the unit vector

in spherical coordinates.

Extending this work to concentrated suspensions of active rods is possible using a

modification to the Smoluchowski equation to incorporate a mean-field model.[38, 53, 54]

However, mean-field models are only valid in the regime of low rod density, weak inter-

particle interactions, and small density correlations, so phenomenological hydrodynamic

models are often used to study concentrated active nematic systems.[54] For example,

recent theoretical work by Gulati et. al.[55] on concentrated suspensions of polar fluids

confined between walls demonstrates that by controlling the wall anchoring and the ac-

tivity, one can transition between no flow, laminar, shear banded, and vortex lattice flow

types. We believe that the machinery of Eq. 4.5 can also extend these phenomenological

methods by enabling the addition of a variety of periodic potentials to rod models.
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In this short chapter I will utilize the theory developed in Chapter 4 to model the

experimentally observed partitioning of Bacillus subtilis in a phase-separated dextran

(DEX)/ polyethylene glycol (PEG) aqueous mixture. We hypothesize that the bacteria

sequester into the two phases due to a chemical affinity between dextran polymer and

the bacteria cell wall. Non-motile bacteria are observed to partition exclusively into the

DEX-rich phase in all conditions tested, while motile bacteria penetrate across the soft

DEX/PEG interface and partition variably among the two phases.

We model the two-phase system as a fixed, periodic, lamellar pattern in space. A

square wave potential mimics the affinity a bacterium feels in the two domains. The low

energy region corresponds to the DEX-rich phase and the high energy region corresponds

to the PEG-rich phase. We fit the unknown parameters of a Smoluchowski-based model

from the experimental data, and find strong agreement between the data and the model.

This chapter is the result of a collaboration with Prof. Joonwoo Jeong, Prof. Robert

J. Mitchell, and Jiyong Cheon at the Ulsan National Institute of Science and Technology

(UNIST), as well as Kyu Hwan Choi and Prof. Sho C. Takatori at UC Santa Barbara.

JC and KHC performed all experiments. KJM developed the model and performed

calculations. JJ, RJM, and SCT supervised the study.

An updated version of this work has been submitted for publication and is available

on arXiv:

[1] J. Cheon, K. H. Choi, K. J. Modica, R. J. Mitchell, S. C. Takatori, and J. Jeong,

Motility modulates the partitioning of bacteria in aqueous two-phase systems, (5,2024)

arXiv:2405.0899.
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5.1 Introduction

The behavior of living bacteria in multiphase aqueous suspensions plays an important

role in many biological and ecological systems, including the determination of infection

routes, and cell sorting [2–4]. Prior work has shown that living bacteria immersed in

an aqueous two-phase system (ATPS) of dextran (DEX) and polyethylene glycol (PEG)

eventually partition into one phase [5–10]. However, the basic mechanisms underlying the

biased partitioning of living bacteria into different phases of ATPS mixtures, especially

in the presence of bacteria motility, remain unknown.

For systems at thermodynamic equilibrium, passive colloidal particles immersed in a

DEX/PEG mixture have been shown to partition into different bulk phases depending on

the surface properties of the colloids[11–14]. By coating the colloidal surfaces with differ-

ent chemical moieties, the partitioning of passive colloids into the DEX-rich versus PEG-

rich phases follows the equilibrium-based Boltzmann distribution, ∼ exp (−V (x)/(kBT )),

where V (x) describes the interaction energy landscape of the particle in the mixture

[14–16]. In contrast, the partitioning of motile bacteria in two-phase systems is not guar-

anteed to obey Boltzmann statistics because the bacteria generate nonequilibrium forces

through their motility.

In this chapter, we combine experiment and theory to study the partitioning of motile

bacteria in a DEX/PEG system using Bacillus subtilis as a model organism. As shown

in Fig. 5.1A-B, we confined the bacteria into a quasi-2D system immersed in a phase-

separated mixture of PEG-rich domains surrounded by DEX-rich continous phase. We

observed that non-motile B. subtilis undergo Brownian motion only and partitioned

entirely into the DEX-rich phase (Fig. 5.1C). In contrast, the motile B. subtilis distributed

more evenly across the two phases and reached a dynamic steady-state, with bacteria

frequently crossing the DEX/PEG interface (Fig. 5.1D). When observing the crossing
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Figure 5.1: Motile bacteria B. subtilis immersed in an aqueous two-phase system
(ATPS) of dextran (DEX) and polyethylene glycol (PEG) partition more evenly across
the two phases compared to non-motile strains, which partition exclusively into the
DEX-rich phrase. A) Top and B) side views of our quasi-2D setup for measuring
bacterial partitioning. The chamber thickness is 5 µm to prevent the bacteria from
orienting vertically (average body length ≈ 5 µm). C) The non-motile strain par-
titions exclusively into the DEX-rich phase (yellow region), whereas the D) motile
strain partitions into both phases. Total DEX concentration is 3.2 wt/wt%, PEG
concentration is 2.5 wt/wt%. The scale bar is 20 µm.
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of bacteria across the two-phase boundary, we observed asymmetry in the interfacial

deformation, always toward the DEX-rich phase: when crossing from DEX → PEG, we

observed the interface bend outwards away from the bacterium, generating an antiparallel

force against bacterial swimming. In contrast, when crossing from PEG → DEX, we

observed the interface bend inwards towards the bacteria, generating a parallel force

aligned with swimming. Based on these observations, we hypothesized that the chemical

affinity between dextran sugars and the chemical components on the B. subtilis cell wall

acts to weakly confine the bacteria within the DEX-rich phase, similar to the partitioning

mechanism for synthetic colloids. However, motility can generate sufficient mechanical

forces to overcome the soft confinement and propel the bacteria into the PEG-rich phase.

A dynamic steady-state between these two forces gives a partitioning ratio of motile

bacteria between the two phases.

5.2 Experiments of Bacteria in Aqueous Two-Phase

Systems

To quantify the degree of bacterial partitioning, we define the partitioning ratio as

the number of bacteria in the DEX-rich phase divided by the total number of bacteria in

the sampled area (see Supplementary Figs. 5.5 and 5.6). As shown in Fig. 5.2, all non-

motile B. subtilis are trapped in the DEX-rich phase across all dextran concentrations

tested (1.5 - 8 wt/wt%) with fixed PEG concentration (2.5 wt/wt%). In contrast, the

partitioning ratio for the motile bacteria increased monotonically from 0.58± 0.10 at 1.5

wt/wt% DEX concentration, to 1 (completely in the DEX-rich phase) at 8 wt/wt%.

Several possible mechanisms may explain the biased partitioning of the bacteria,

including motility induced phase separation (MIPS), chemotaxis, and chemical affinity.
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One possible mechanism is based on the difference in viscosities of the PEG-rich and

DEX-rich phases. Larger drag in the DEX-rich phase may slow down the bacteria,

leading to an accumulation in the DEX-rich phase from an effect analogous to MIPS of

active Brownian particles [17–19]. In a control experiment, we measured the bacteria

swim speeds in the DEX-rich phase (30.7 ± 6.1 µm/s) and in the PEG-rich phase (34.5

± 6.4 µm/s) at 3.2 wt/wt% dextran concentration. Variable swimming speeds would

produce a density distribution that scales as n(x) ∼ 1/U(x), and we expect the ≈ 10%

slower speeds in the DEX-rich phase to give a partitioning ratio, nDEX/(nDEX +nPEG) =

(1 + UDEX/UPEG)
−1 ≈ 0.52, which does not fully explain the separation observed in our

experiments, 0.78 ± 0.08. Another possible mechanism is bacterial sensing of chemical

attractants through chemotaxis. B. subtilis is attracted by sugar gradients [20]. Upon

imaging the DEX-PEG interface using dextran-FITC (see Supplementary Fig. 5.7), we

observed a sharp gradient of dextran near the interface over a narrow width of ≈ 2 µm,

surrounded by a constant dextran concentration in the bulk phases outside of this narrow

interface. Since chemotaxis requires chemical gradients to persist over distances larger

than the run length (≫ 100 µm) and the body length of an individual bacterium (≈ 5

µm) [21], chemotaxis is unlikely to explain the biased partitioning of motile bacteria in

our experiments.

We hypothesized that the chemical affinity of the DEX-rich phase with the chemical

components on the bacterial cell wall [10] drives the partitioning. To these ends, we

performed optical tweezer experiments to drag a single bacterium across the DEX-PEG

interface and measured the forces required to cross the two-phase boundary (Fig. 5.3A).

We attached a tracer silica bead as a calibration handle to the bacteria cell wall using

click chemistry (See Fig. 5.3A, Supplementary Figs. 5.8). We used silica beads because

precise forces are easier to compute on spherical trapped particles, and because the bead

can be adjusted to sit at the PEG-DEX boundary without creating additional interfacial
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Figure 5.2: Experimental and predicted partitioning ratios of bacteria in DEX-rich
phase versus dextran concentration of the overall mixture, where open and filled mark-
ers are experimental results of non-motile and motile bacteria, respectively, and the
red solid curve is the predicted partitioning ratio based on our theory, Eqs. 5.1 and
5.2. The shaded region represents the 95% confidence band of our model. The hori-
zontal dash line at 0.5 represents a theoretical partitioning ratio when the two-phase
boundary vanishes at the critical composition.

deformations. We translated the trap location from the DEX-rich phase into the PEG-

rich phase at sufficiently small speeds (0.5 or 2 µm/s) to ignore the viscous drag force

on the bead. We measured the displacement of the bead center from the trap center to

measure the force generated by the two-phase boundary on the bacterium, Fint, as shown

in Fig. 5.3B and Supplementary Fig. 5.8.

First, consistent with our initial observations of interface deformation upon bacteria

two-phase crossing, we observed that the interface always applies a force on B. subtilis

towards the DEX-rich phase. As the bacterium body crossed the interface from DEX-
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rich to PEG-rich phases, the interface deformed and pulled the bacterium back towards

the DEX-rich phase, causing the magnitude of the net force to increase as a function of

distance. When the magnitude of Fint reached the maximum force, Fmax, the interface

slipped along the bacterium surface as the bacterium penetrated completely across the

interface and the interface snapped back to a planar geometry on the trailing edge of the

bacterium. At this point, the force suddenly released to zero and the bacterium was now

submerged completely inside the PEG-rich phase.

We conducted the measurement across several different dextran compositions in the

ATPS mixture. As shown in Fig. 5.3C, Fmax has magnitudes ∼ O(pN) and increases

linearly with dextran concentration. Our measurements corroborate the hypothesis that

thermal forces alone are not sufficient to allow non-motile bacteria to cross the two-phase

boundary (1kBT/1µm ≈ 10−3pN ≪ O(pN)). Therefore, in the absence of a propulsion

force, all non-motile bacteria partitioned into the DEX-rich phase across all conditions

tested in Fig. 5.2. In contrast, for motile bacteria, a propulsion force of magnitude Fprop ∼

O(pN) is sufficiently large to overcome the forces generated by the interface, Fmax. As the

dextran concentration increases, the force needed to cross into the PEG-rich phase grows

quasi-linearly (see Fig. 5.3). At large dextran concentrations, 8wt/wt%, the interfacial

forces Fint are too strong for the laser trap to drag the bacteria completely inside the PEG-

rich phase. We lose the handle bead prior to crossing the interface and we are unable

to measure Fmax. Consistent with this observation, the motile B. subtilis partitioned

completely inside the DEX-rich phase at 8wt/wt% dextran concentration, likely because

the propulsion forces were always smaller than the interface barrier, Fprop < Fmax.
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Figure 5.3: Optical laser tweezers were used to drag a single bacterium across the
two-phase boundary and measure the forces on the bacterium. A) Representative
snapshot of a bacterium attached to a tracer bead crossing the interface. The red solid
arrow is the moving path of the optical trap. The force generated by the interface,
Fint, is calculated by measuring the displacement, dx, between the laser focus (red
dot) and the tracer bead center (blue dot). Negative sign means the force is directed
against the moving path. The scale bar is 5 µm. B) Representative force profile of
Fint as the bacterium crosses the two-phase boundary. The laser travel distance is set
to zero when the bacterium-bead assembly feels zero interface force. C) Maximum
forces (Fmax) at various dextran concentrations of the ATPS mixture. Dashed lines
represent a linear regression for parameter estimation in our theory, Eq. 5.1.

5.3 Model of Bacteria Partitioning

To corroborate our experimental measurements, we model the affinity of the bacteria

to the DEX-rich phase as an external field which drives the bacteria to regions of high

dextran concentration. We then develop an active Brownian particle model that predicts

the partitioning of self-propelled particles subject to that potential driving force.

The Smoluchowski equation describing the evolution of probability for a dilute system
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of swimming rod-like particles in a 1-D potential field is given by [22, 23]

∂P

∂t
+

∂

∂x

[
P

ζ

(
Fprop cos θ − kBT

∂ lnP

∂x
− ∂V

∂x

)]
+

∂

∂θ

[
P

(
− 1

τR

∂ lnP

∂θ
− 1

ζR

∂V

∂θ

)]
= 0, (5.1)

where x and θ are the position and orientation of the active particle, ζ and ζR are

translational and rotational drag coefficients, Fprop is the propulsive force, τR is the

reorientation time, and V (x, θ) encodes the energetic cost for the bacterium to move

from the DEX-rich phase to the PEG-rich phase (see Supplementary Information for

the functional form). Approximating the bacterium as a thin rod, we can relate their

rotational and translational drag coefficients using the length of the bacterium ζ/ζR =

6/ℓbact. For simplicity we ignore the orientation dependence on the translational drag

coefficient, and we treat the PEG-rich and DEX-rich phases as a 1-D lamellar system

with equal domain width L/2 and periodicity L. This model can be described with 5

dimensionless parameters: the ratio of the maximum restoring force to the propulsive

force Fmax/Fprop, the propulsive force relative to the thermal energy (FpropL)/kBT , the

thermal diffusivity relative to the reorientation time (L2ζ)/(τRkBT ), the scaled bacteria

length ℓbact/L and the scaled interface width δ/L. δ is the length-scale over which the

phase transitions from pure PEG-rich to pure DEX-rich. We allow the reorientation time

τR to be determined independently from the drag to account for non-thermal reorientation

mechanisms.

Based on this theoretical model, we solved the steady-state Smoluchowski equation

using the methods described in Chapter 4. The partitioning ratio is determined by the

fraction of bacteria in the DEX-rich phase:

nDEX

nDEX + nPEG

=

∫ 2π

0

∫ L/4

−L/4

P (x, θ) dx dθ (5.2)

We integrate between ±L/4 because that is the energetically favorable DEX-rich phase,
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and the rest of the domain is the PEG-rich phase. Based on the average measured

propulsion force of Fprop ≈ 10pN (See Supplementary Fig. 5.9), we use a linear regression

to relate the dextran concentration to the maximum restoring force (see Fig. 5.3C) to

determine the force ratio, Fmax/Fprop. Due to the large parameter space, we use the

experimentally determined propulsion force and bacteria length to set (FpropL)/kBT =

5∗105 and ℓbact/L = 0.025. We find the remaining parameters (δ/L and (L2ζ)/(τRkBT ))

using a nonlinear-least-squares regression, while bounding them to be within a realistic

range based on the experimental system. Due to the order of magnitude difference in

parameter values, the regression was performed on their logarithms and converged to

log10[(L
2ζ)/(τRkBT )] = 8.0± 2.0 and log10[δ/L] = −2.6± 1.8.

As shown in Fig. 5.2 our model is able to predict the increased partitioning as the

maximum restoring force grows (dextran concentration is obtained from Fmax by the

regression in Fig. 5.3C). Like the experimental trend of motile bacteria, the prediction

line also monotonically increases with dextran concentration from 0.57 ± 0.14 at 1.5

wt/wt% to 0.99± 0.07 at 8 wt/wt%, corresponding to experimental ratios of 0.58± 0.10

and 1 respectively. As the energy barrier (and Fmax) grows, it becomes difficult for

bacteria to escape across the interface using their swim force alone. When this occurs,

bacteria become trapped in the low energy region until they make a statistically unlikely

Brownian move into the PEG-rich region. By the same logic, when the energy barrier

is weak the motile bacteria can easily penetrate the interface and evenly distribute over

the two phases.

5.4 Discussion and Conclusions

The solution to the Smoluchowski equation is the steady-state probability density

of dilute active rods as a function of position and orientation. When we integrate the
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distribution to get the partitioning ratio, we lose much of the fined grained detail; as

such, there are multiple sets of parameters that give identical partitioning. In our case

the parameters (L2ζ)/(τRkBT ) and δ/L are strongly anticorrelated, with correlation co-

efficients nearing −0.99. We expect this is the primary cause for the large uncertainty in

the parameter estimation. Deconvoluting the two parameters would require additional

measurements capturing the distribution of bacteria throughout space and orientation.

A clear source of potential error in our model is the assumption that the two phases

form a lamellar pattern with a fixed and flat interface. As seen in Fig. 5.1, the DEX-rich

continuous phase and PEG-rich dispersed phase have a highly curved interface due to the

ultra-low interfacial tension between the two phases. The interface is easily deformed by

the B. subtilis, which can drag the DEX-rich phase behind it when a bacterium passes

through the interface. The deformation of the interface creates additional nonconserva-

tive interfacial tension-derived forces that are present in the measured Fmax. This makes

it challenging to define a free energy functional that describes the affinity of the bacteria

to each phase. The B. subtilis have a large dispersity in body length, propulsion force,

and tumbling rate. This heterogeneity means that some bacteria will be more likely to

cross the interface than others, potentially enabling the ATPS to partition and sort the

cells according to the properties. These factors will all increase the uncertainty of the

theoretical model and parameter estimation. Finally, as we discussed previously, while

we do not expect MIPS from a viscosity difference to be enough to explain the prefer-

ential partitioning present in our system, it may slightly enhance the partitioning effect

as well. The bacteria propulsion force and the PEG-rich domain size heterogeneities are

shown in Supplementary Fig. 5.9.

In conclusion, we studied the competition between motility and two-phase boundaries

on the biased partitioning of active B. subtilis using experiment and theory. The motility

of B. subtilis helps to mix the bacteria across both DEX-rich and PEG-rich phases by
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providing a large propulsion force, Fprop ≈ 10pN, to overcome the maximum interfacial

force. We found that the chemical affinity of the B. subtilis cell wall with the DEX-rich

phase generates interfacial forces on the bacterium with magnitudes Fmax = 2pN to 10pN

depending on dextran composition.

5.5 Supplementary Information

5.5.1 Experimental Methods

Bacterial cell culture

For the partitioning-ratio measurements, mid-exponentially growing Bacillus subtilis

strain ATCC 6051 was used. For this, bacterial colonies were first cultured overnight

on a lysogeny broth (Duchefa Biochemie, USA) agar plate at 37◦C. A single colony was

transferred into sterile terrific broth (TB; MBcell, Republic of Korea) and cultured in a

shaking chamber (250 rpm) at 37◦C. After overnight growth, an aliquot of the bacterial

culture was transferred to fresh TB (O.D. = 0.03) and cultured under the same condition

for 2.5 hours (O.D. ∼ 0.5). At this point, the bacteria were pelleted and resuspended in

a sterile M9 minimal medium (MBcell, Republic of Korea) to prevent further division.

For the optical tweezers experiments, a single colony of Bacillus subtilis strain ATCC

6051, grown as described above, was inoculated into 2 ml of TB, and cultured in a shaking

incubator (100 rpm) at 37◦C. After overnight growth, an aliquot of the bacterial culture

was transferred to fresh TB (1:10 dilution) and cultured under the same condition for

∼4 hours. Then 2 ml of bacterial suspension were then pelleted (6k RCF for 1 min) and

washed in deionized water. This was repeated five times before the cells were resuspended

in 400µL of deionized water.
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Sample preparation

We utilized two different polymers: PEG (Polyethylene Glycol) with a molecular

weight of 35,000 Da from Sigma-Aldrich (USA), and dextran with a molecular weight

of 500,000 Da from Spectrum (USA), to create an Aqueous Two-Phase System (ATPS).

Both polymers were dissolved in M9 (for partitioning ratio measurement) or deionized

water (for optical tweezers experiment) to measure the partitioning ratio and force, re-

spectively. The dextran concentrations were systematically adjusted to achieve final

concentrations (including bacteria) of 1.5, 2.5, 3.2, 4, 5, and 8 wt/wt%, while the PEG

concentration was maintained at 2.5 wt/wt%. The final bacterial densities were adjusted

to an optical density (O.D. at 600 nm) of 1 (partitioning ratio measurement) or 0.05 (force

measurement) by pelleting the bacteria at 8k RCF for 1 min and resuspending them in

an appropriate volume of either M9 or deionized water.

The quasi-2D cell gap was controlled by the volume of the bacterial ATPS solu-

tion. For example, to measure the partitioning ratio of bacteria, a ∼ 1.3µL volume of

the bacterial ATPS solution is sandwiched between a polymeric, air-permeable coverslip

(purchased from SPL Life Science, Republic of Korea). Based on the area of the coverslip

(254 mm2, 9 mm diameter), the cell gap was estimated to be ≪ 5µm with the two phases

to be horizontally separated by an interface. In the optical tweezers experiment, we used

a 25×25 mm2 coverslip where the cell gap was ≪ 5µm.

A confocal image, taken with a Leica SP8 Resonant Scanning Confocal microscope

using a solution containing dissolved Alexa Fluor 647-labeled dextran (40,000 Da) dextran

in a 3.2 wt/wt% dextran and 2.5 wt/wt% PEG ATPS solution, confirmed that a wall-like

interface formed between and separated these two phases completely.
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Figure 5.4: Configuration of the observation cell. A) Confocal image of the sandwich
cell with labeled dextran and B) schematic image of the cell. The dark region of Panel
A is the PEG-rich phase, and the red region represents the Alexa Fluor 647-labeled
DEX-rich phase. The cell thickness is ∼ 5µm, and the 10-µm scale bar only applies
to the lateral direction.

Motility suppression of B. subtilis

For the non-motile controls, the B. subtilis suspensions were incubated at the 65◦C

for 10 minutes.

5.5.2 Measuring the Partitioning Ratio

Observation

The samples were observed using an inverted phase-contrast microscope (BX53-P;

Olympus) at room temperature (23◦C). Image stacks, spanning more than 20 hours, were

captured at the rate of 1 frame per second using a 20× dry objective and a CCD camera

(INFINITY5-3M; Lumenera). Illumination was provided by an LED lamp (U-LEDPS;

Olympus, the illumination light was adjusted to be 550nm by a filter, 43IF550-W45;

Olympus).

Methods and Result

We chose a domain of the PEG-rich phase enclosed by the DEX-rich phase within

the image stacks and adjusted this PEG-rich island to be located at the center of the

image, making the area of each phase the same as shown in Fig. 5.5. Then we counted

the number of bacteria inside and outside of the PEG-rich domain as shown in Fig. 5.6A
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until the partitioning ratio reached a steady-state as shown in Fig. 5.6B.

PEG-rich

DEX-rich

Figure 5.5: Experimental image of the sampled area. The PEG-rich island was ad-
justed to be at the center. The red lines highlights the interface. The number of
bacteria inside and outside of the PEG-rich island was then counted. Scale bar =
50µm
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Figure 5.6: Change in the number and partitioning ratio of bacteria in sampled areas
over time. (A) The number of bacteria inside(green) and outside(red) of the sampled
PEG-domain and the total(black) are plotted. (B) Steady-state partitioning ratio,
with each color indicating the concentration of dextran employed in each test. The
thick solid lines after smoothing illustrate the partitioning trend over time. The raw
data plotted here were used to calculate the values in Fig. 5.2

5.5.3 Attaching a Colloidal Bead to the Bacteria

We attached a spherical silica bead as a handle on the bacterium’s surface to calibrate

the force in the optical tweezers experiment. Grabbing the handle on the bacterium
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Figure 5.7: Fluorescence microscope image of ATPS and its intensity profile. (A) The
phase-separated system and its fluorescence signal images were obtained from the
solution containing 3.2 wt/wt% of DEX, 2.5 wt/wt%of PEG, and 0.0004 wt/wt% of
DEX-FITC) The intensity profile of the red line, which corresponds with the dextran
composition, is plotted in (B). Scale bar = 50 µm

rather than the bacterial body with the optical tweezers simplifies the force calculation

by reducing any complexity arising from an anisotropic morphology of the bacterium, as

well as changes in the refractive index while crossing the PEG-dextran interface.

Attaching a handle to the bacteria was achieved in two steps. Partially oxidizing the

bacterial surface is the first. The second is a biotinylation process involving hydrazide

Biotin (Thermo Fisher Scientific). During the first step, the surfaces of the bacteria are

partially oxidized and treated by adding 20 µL of aqueous 100 mMNaIO4 (Sigma-Aldrich)

solution into 100 µL of washed bacteria solution. After 30 min at room temperature,

22◦C, the bacteria were pelleted (6k RCF for 1min) and washed 5 times with deionized

water. Then the sedimented pellet is dispersed into 50 µL of deionized water for the

biotinylation step. To chemically bind biotin to the bacterial surface, aqueous solutions

of 10 µL of 100 mM aniline(Sigma-Aldrich) and 10 µL of 100 mM hydrazide biotin were

added to the partially oxidized bacteria solution (50 µL) to make a final concentration

of 14.3 mM of aniline and 14.3 mM of a binding material. This was incubated at 36℃

118



Partitioning of Motile Bacteria in Aqueous Two-Phase Systems Chapter 5

for 2 hours after which the oxidation reaction was quenched by adding 1 mL of deionized

water. The biotinylated bacterial cells were collected into 50 µL of deionized water after

five rounds of pelleting (6k RCF for 1 min) and washing with deionized water.

Streptavidin-functionalized silica beads (SA-bead, 3-3.9 µm, Spherotech) were added

to the biotinylated bacteria suspension. For this, 5 µL of biotinylated bacterial cells and

5 µL of 0.5 wt/wt% SA-bead solution in deionized water were mixed with 200 µL of the

ATPS solution. The biotin present on the bacterial surface binds to the streptavidin on

the particle.

5.5.4 Optical tweezers measurement

Observation and method

An inverted microscope(TI-2 Eclipse, Nikon) with 100x objective lens (CFI Plan Apo

lambda) was used. The optical trapping was controlled by Tweez300 software (Aresis).

In this study, the laser beam was focused on the spherical handle attached to the bacte-

rial surface and dragged the bacterium across the interface. The dragging velocity was

maintained at a value of 0.5-2 µm/s, which is slow enough to neglect the viscous drag

(6πηrv : 0.10 ∼ 0.41pN where r = 1µm, η = 11mPa · s and v = 0.5 ∼ 2µm/s) when

compared to the force applied by the interface (≫ 1pN). Namely, as the laser beam

moved, the sphere remained at the laser beam’s focus, and any displacement observed

should result from external forces, specifically those from the interface. As the bacterium

moved, we tracked the spherical handle and compared its position against the position of

the laser focus, which moved at a constant speed. The difference between two positions

is defined as dx where the force applied on the particle (F ) is defined as F = κt · dx,

with trap stiffness, κt, is listed in Table. 5.1.
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Figure 5.8: Optical tweezers experiment snapshots and calibrated force curve. The
images are snapshots of the bacteria assembly crossing the PEG-dextran interface
from the DEX-rich phase. The force applied on the assembly as measured by the
optical tweezers is shown at the bottom. (1) Because of the interaction between the
silica bead and the interface, the assembly is pulled forward along a laser traveling
direction (0.5 µm/s, black arrow, same for all snapshots). The force applied by the
interface on the assembly, Fint, is represented as a red arrow. (2) At the point where
Fint = 0, the interaction between the bacterial body and the interface begins. (3)
Fint increases, but its direction is opposite to the traveling direction. (4) Fint reaches
its maximum magnitude, Fmax. (5) The interface begins sliding (white arrow) over
the bacterial body. (6) Finally, the interface releases the assembly. (7) Fint rapidly
approaches 0, as the assembly enters the PEG-rich phase completely. Scale bar =
5 µm

5.5.5 Determining Trap Stiffness

The trap stiffness (κt) for the force measurement was determined from the analysis

of a Brownian particle trapped with different laser powers. Because of the parabolic

shape of the potential in the vicinity of the trapping focus, the particle’s displacement

from the laser focus follows a Gaussian probability distribution, represented as P (dr) =

1
σ
√
2π
e−

1
2(

dr
σ )

2

, where dr represents the displacement from the focus and σ is the standard

deviation. The exponent in this expression corresponds to the dimensionless trapping

energy, given by Etrap

kBT
= −1

2
κtdr2

kBT
, where kB is the Boltzmann constant, and T is the
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Figure 5.9: Experimental data of B. subtilis and the sample area. (A) The
mean square displacement of B.subtilis in ATPS (where dextran concentration is
3.2wt/wt%). The navy line indicates the averaged MSD with the standard deviation
plotted as a shadow. Two red lines are references slopes of 1 and 2. The background
lines are the raw data obtained with individual B. subtilis cells. (B) Radius of the
sampled PEG-rich domain. The area of the domain was estimated and, assumed to
be circular, used to calculate the average radius. (C) Propulsion force of B. subtilis
obtained by multiplying its speed with the drag coefficient of a prolate ellipsoid (the
body length and the diameter of the bacterium’s body were considered as the ma-
jor and minor axes, respectively) in the DEX-rich phase (from ATPS prepared with
3.2 wt/wt% dextran).

temperature of the system. Thus, experimental measurement of σ2 can determine κt =

kBT
σ2 .

Trap stiffnesses were measured with more than five different laser powers in the range

2 - 15% of the maximum laser power. Then, a linear regression line depending on laser

powers can estimate the trap stiffness at an experimental power range of 10-80% of the

maximum laser power using extrapolation.

Dextran concentration [wt/wt%] 1.5 2.5 3.2 4 5 8
Slope [pN/µm/% of Pmax] 8.78 9.82 9.57 8.86 6.91 8.08

Table 5.1: Slope from the linear regression relating the trap stiffness to the percentage
of the maximum laser power.
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5.5.6 Model Development

The probability distribution of an active Brownian rod confined in 2-dimensions fol-

lows the Smoluchowski equation:

∂P

∂t
+∇ ·

[
P

ζ
(Fprop + FB + Fext)

]
+

∂

∂θ

[
P

ζR
(LB + Lext)

]
= 0 (5.3)

where P (r, θ, t) is the normalized probability density in the periodic unit cell, ζ is the

translational drag coefficient (which is approximated as a constant independent of particle

orientation) and ζR is the rotational drag coefficient. Fprop = Fprop[cos(θ), sin(θ)]
T , FB =

−kBT∇ lnP , and Fext are respectively the active, Brownian, and external forces acting

upon the body, and LB = −kBT
∂ lnP
∂θ

and Lext are the Brownian and external torques.

Ignoring gradients in the y direction, the Smoluchowski equation simplifies to:

∂P

∂t
+

∂

∂x

[
P

ζ

(
Fprop cos (θ)− kBT

∂ ln(P )

∂x
− ∂V

∂x

)]
+

∂

∂θ

[
P

(
− 1

τR

∂ ln(P )

∂θ
− 1

ζR

∂V

∂θ

)]
= 0,

(5.4)

where τR is the reorientation time.

To study the partitioning between two phases, we model a repeating lamellar phase us-

ing a 1-D periodic potential of strengthA and wavelength L: ϕ(x) = −A tanh
[

L
2πδ

cos
(
2πx
L

)]
with δ ≪ L to approximate a square wave. For a finite-sized body described by den-

sity ρ(s), the potential energy V of the body is given by the convolution V (r, θ) =∫
ϕ(r− s)ρ(s)ds. We compute the convolution as a product in Fourier space

V̂n(θ) = ϕ̂nρ̂n(θ). (5.5)

The n-th Fourier coefficient of the line density ρ̂n can be derived analytically [22],

allowing us to determine an expression for the center of mass potential directly.

V (x, θ) =
∑
n

ϕ̂ne
i2πknxsinc (πℓbactkn cos(θ)) . (5.6)
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The wavevector is defined as kn = n
Lx
, and the bacteria length is ℓbact. This method

converges rapidly for periodic potentials with a low-wavenumber power spectrum. The

sinc(πℓbactkn cos(θ)) term comes from the Fourier transform of the segment density for

a rod and couples the orientation of the bacterium to the potential energy. We solve

Eq. 5.4 at steady state using spectral methods implemented in the spectral PDE solver

Dedalus [24].
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Surface-bound molecular motors can drive the collective motion of cytoskeletal fil-

aments in the form of nematic bands and polar flocks in reconstituted gliding assays.

Although these “swarming transitions” are an emergent property of active filament colli-

sions, they can be controlled and guided by tuning the surface chemistry or topography

of the substrate. To date, the impact of surface topography on collective motion in active

nematics is only partially understood, with most experimental studies focusing on the

escape of a single filament from etched channels. Since the late 1990s, significant progress

has been made to utilize the nonequilibrium properties of active filaments and create a

range of functional nanodevices relevant to biosensing and parallel computation; however,

the complexity of these swarming transitions presents a challenge when attempting to

increase filament surface concentrations. In this chapter, we etch shallow, linear trenches

into glass substrates to induce the formation of swarming nematic bands and investi-

gate the mechanisms by which surface topography regulates the two-dimensional (2D)

collective motion of driven filamentous actin (F-actin). We demonstrate that nematic

swarms only appear at intermediate trench spacings, and vanish if the trenches are made

too narrow, wide, or tortuous. To rationalize these results, we simulate the F-actin as

self-propelled, semi-flexible chains subject to a soft, spatially modulated potential that

encodes the energetic cost of bending a filament along the edge of a trench. We hypothe-

size that an individual filament will feel a penalty when its projected end-to-end distance

is smaller than the trench spacing (“bending and turning”). However, chains that span

the channel width glide above the trenches in a force- and torque-free manner (“crowd-

surfing”). Our simulations demonstrate that collections of filaments form nematic bands

only at intermediate trench spacings, consistent with our experimental findings.

This chapter includes content from our previously published article:

[1] J.M. Barakat (equal contribution), K.J. Modica (equal contribution), L. Lu, S.

Anujarerat, K.H. Choi, and S.C. Takatori, Surface topography induces and orients ne-
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matic swarms of active filaments: Considerations for lab-on-a-chip devices, ACS Applied

Nano Materials 7 (5, 2024), no. 10 12142-12152. JMB, KJM, and SCT conceived of

the study; all authors designed research; JMB, LL, SA, KHC, and SCT performed ex-

periments; KJM performed simulations; JMB, KJM, and SCT supervised the study and

wrote the paper.

Reprinted with permission. Copyright 2024 American Chemical Society.

6.1 Introduction

Filamentous active matter, including filamentous actin (F-actin) and microtubules,

are essential components of the cytoskeleton [2, 3]. The seminal work by Kron and

Spudich established the F-actin gliding assay for visualizing single filaments driven by

surface-bound myosin motors [4]. Active filaments exhibit collective dynamics that hold

promise for the development of miniaturized, multifunctional lab-on-a-chip (LOC) de-

vices. These devices could potentially utilize orchestrated groups of filaments for tasks

such as analyte sensing, parallel computation, and targeted cargo delivery [5, 6]. While

significant research efforts have focused on exploiting individual filaments in nanodevices,

a growing area of interest lies in harnessing the emergent properties that arise from collec-

tive filament behavior. Researchers have already utilized the gliding assay to demonstrate

the emergence of polar flocks and nematic swarms in collections of F-actin at moderate

surface densities [7–11]. Theory and agent-based simulation have demonstrated that the

emergence of these “swarming transitions” are determined by the symmetry of the in-

teraction between colliding filaments [7, 9, 12]. If the pairwise collision of two filaments

has nematic symmetry, the system will form nematic bands at high density; however,

if the pairwise collision preferentially aligns the filaments to point the same direction,

the system can form polar flocks. While experiments have shown the presence of both
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nematic swarms and polar flocks, excluded-volume interactions alone only exhibit ne-

matic symmetry upon the inelastic collision of two filaments. While the mechanics of

the isotropic to polar or nematic transition is well understood for individual filaments,

controlling the onset and evolution of filamentous swarms and flocks remains challeng-

ing, as these structures are inherently nonequilibrium and localized in space and time

[13, 14]. Furthermore, the collective patterns observed in dry active systems, like glid-

ing F-actin, showed a density-dependent polar transition, whereas other active nematics

in wet systems exhibited dynamics driven by fluid-mediated hydrodynamic interactions

[15, 16].

Researchers have proposed different methods to control the collective behavior of

two-dimensional (2D) active matter [17]. Strategies include light-activated force gener-

ation [18–20], thermotropic liquid crystals [21–23], boundary confinement [24–26], sur-

face chemistry patterning [27–31], and surface topography [32–42]. The latter has been

shown to direct the motion of individual filaments in dilute systems of kinesin-driven

microtubules [32–35] and myosin-driven F-actin [37–42]. By comparison, relatively few

experimental studies have examined the effect of surface topography on collections of

filaments at high surface densities [16, 43, 44].

Theory and simulation have demonstrated various methods to control swarming tran-

sitions in 2D active nematics, including boundary effects [13, 45–50]. In the presence of

hydrodynamic interactions, active nematics confined between two parallel walls under-

goes a transition between active turbulence, an ordered vortex lattice with dynamically

structured disclinations, and coherent flow when the channel spacing and active stress

decrease relative to the system’s effective Frank elastic constant [51]. Similar results

have been found for active nematics in a disk and annulus, with the boundary curvature

allowing circulating and corotating states [52, 53]. The behavior of these wet systems

are characterized by the presence and motion of topological defects in the director field.
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In dry systems, it remains unclear how confinement and surface topography influence the

order-disorder transitions between isotropic motion, polar flocks, and nematic swarms in

collections of filaments, precluding the possibility of precise control.

In this chapter, we study the effect of surface topography on collections of dry active

nematics. We manipulate surface topography by introducing periodic, shallow trenches

in myosin-coated glass substrates to trigger the formation of nematic swarms within F-

actin systems. These trenches are shallow enough that the F-actin is able to bend out

of plane and escape the trenches to glide along the surrounding hills or to reenter the

trenches after gliding on the hills.

In low-density systems, we find that individual F-actin exhibit enrichment along the

trench boundaries, consistent with previous studies [37–42]. At higher F-actin densi-

ties, we observe the development of swarming nematic bands characterized by spatially-

modulated density and nematic order along the channels. Notably, the swarming nematic

bands form only at intermediate trench spacing, and the nematic order is non-monotonic

with channel spacing. Narrow trenches suppress the formation of swarms altogether,

whereas wide trenches result in uncorrelated collective motion. Similar suppression is

observed for tortuous trenches compared to linear ones. Interestingly, for intermediate

channel spacing, swarms consistently manifest and align along the channels. These exper-

imental findings suggest the existence of an optimal length scale for surface topography

to effectively guide the collective motion of filaments.

To rationalize our experimental findings, we develop a computational model of 2D

self-propelled filaments subject to bending forces and torques along periodic intervals

in one direction. Filaments spanning more than one periodic cell are assumed to glide

freely without bending, whereas collapsed filaments are forced to bend and turn. This

model is then implemented in 2D Brownian dynamics simulations of a collection of self-

propelled, mutually interacting filaments, which demonstrate significant nematic ordering
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and swarming when the filament length is comparable to the periodic repeat distance.

Our model and simulations are consistent with the experimental observation that the

“optimal” trench spacing is comparable to the run length and persistence length of F-

actin. Taken together, our experiments and simulations suggest that the relationship

between surface topography and self-propulsion is strongly coupled, and that precise

tuning of topographical surfaces is necessary to promote and direct swarming behavior

in filamentous active matter.

6.2 Materials and Methods

6.2.1 Experimental Details of F-actin Gliding Assay on Micro-

fabricated Etched Topographies

We microfabricated etched features on a 24 mm by 40 mm, 170 µm thickness borosil-

icate coverslip (Azer Scientific). We used the Heidelberg Maskless Aligner, a high-speed

direct-write photolithography equipment that is available at the UCSB Nanofabrication

Facility for rapid prototyping and high-throughput of etched patterns. We developed a

photolithographic mask on the substrate with a specified pattern, followed by anisotropic

plasma dry etching with CF4/CHF3 gases [54]. Using this technique, we created topo-

graphic patterns on the coverslip because the photoresist will mask select regions from

dry etching [54]. Once the topographical substrates were created, we followed the existing

methods for actin-gliding assays [7, 55]. We purified heavy meromyosin (HMM) motor

proteins and globular actin monomers (G-actin) from rabbit skeletal muscle [56–58].

We coated the etched coverslip with a thin layer of trichloromethylsilane, and created

an observation chamber on the coated substrate using a 5mm thick polydimethylsiloxane

(PDMS, Sylgard 184, Dow) block with a 6mm hole. We deposited F-buffer containing
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HMM into the observation chamber to allow the HMM to stick on the substrate. The

F-buffer composition is 50mM Tris pH 7.5, 2mM MgCl2, 0.2mM CaCl2, 25mM KCl,

0.5mM adenosine 5’-triphosphate (ATP), and 1mM dithiothreitol (DTT). Separately, 10

µM G-actin and 1 µM phalloidin-647 (Alexa Fluor Plus 647 Phalloidin, Invitrogen) were

added to F-buffer and incubated for 45 min. The F-actin suspension was pipetted into the

observation cell at a desired density. We allowed the F-actin to sediment for 30 min and

added ATP at a specified density, following previous actin-gliding assays [4, 7]. Activity

persisted for at least 30 minutes after ATP addition. An ATP regeneration system was

not necessary for our system.

All imaging was carried out on an inverted Nikon Ti2-Eclipse microscope (Nikon

Instruments) using an oil-immersion objective (Plan Apochromat VC 100x, numerical

aperture 1.4). Lumencor SpectraX Multi-Line LED Light Source was used for excitation

(Lumencor, Inc). Fluorescent light was spectrally filtered with an emission filter (680/42;

Semrock, IDEX Health and Science) and imaged on a Photometrics Prime 95 CMOS

Camera (Teledyne Photometrics).

6.2.2 Brownian Dynamics Simulations of Active Filaments

An active filament is represented as a chain of 21 spherical particles of diameter

σ connected by harmonic spring forces between adjacent pairs and bond-angle forces

between connected triplets. The position ri,j(t) of the jth particle on the ith chain is

advanced via the Langevin equation,

dri,j(t)

dt
=

√
2kBT

ζ
ηi,j(t)

+
1

ζ

(
F bond

i,j + F angle
i,j + F excl

i,j + F ext
i,j + F act

i,j

)
, (6.1)
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where ζ is the particle drag coefficient and ηi,j is a white-noise source. In this model,

each particle experiences forces due to bond pairs, angular triplets, excluded-volume

interactions, external fields, and active propulsion, each of which is discussed further

below.

The bond and angle forces, F bond
i,j and F angle

i,j , between particles on the same chain

are defined as follows. For two bonded particles separated by a distance r, a harmonic

spring potential pulls them to an equilibrium separation equal to their diameter,

Vbond(r) =
1
2
kbond(r − σ)2. (6.2)

Similarly for a group of three linearly bonded particles forming an angle θ, an angle

potential pulls them into parallel alignment,

Vang(θ) =
1
2
kang(θ − π)2. (6.3)

Here, kbond and kang denote the Hookean spring stiffnesses for these potentials. To sim-

ulate semiflexible filaments, we choose a large bond stiffness, kbond = 50kBT , and an

angle stiffness that gives a persistence length, L, equal to the contour length, Lc = 21σ,

kang = 21kBT . The bond and angle forces are then obtained from a virtual work argu-

ment,

F bond
i,j = −∇i,jVbond(ri,j), F ang

i,j = −∇i,jVang(ri,j), (6.4)

where ∇i,j denotes the gradient with respect to the position of the jth particle on the

ith chain.

Any two particles not directly bonded to each other interact with each other via the

following soft excluded-volume interaction:

Vexcl(r) =


ε

[
1 + cos

(
πr

rc

)]
, if r ≤ rc,

0, if r > rc,

(6.5)
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where ε = 10kBT is the energy-well depth and rc = 1.1σ is the interaction radius. The

excluded-volume force is then computed via the gradient,

F excl
i,j = −∇i,jVexcl(ri,j). (6.6)

To simulate an externally imposed, soft confinement with periodic repeat distance

2H, we use a continuous approximation of the square-wave potential,

Vext(ri,j) =


0,

if the jth filament crosses

two or more “edges,”

−A tanh

[
H

πσ
cos
(πri,j · ex

H

)]
, otherwise,

(6.7)

where A is the potential amplitude. Here, an “edge” denotes an inflection point in the

potential landscape where a “hill” meets a “valley.” This external field is defined such

that a filament crossing multiple edges feels no force or torque. The number of edges

crossed, Ni,cross by the ith chain with its tail at xi,1 and head at xi,N is found via the

following algorithm:

Ni,cross =

∣∣∣∣floor(xi,N

H
+

1

2

)
− floor

(
xi,1

H
+

1

2

)∣∣∣∣ (6.8)

The amplitude, A, of the external field is calibrated such that the work required for a

filament to escape a trench is 2ALc/σ = 42kBT . The associated force on the jth particle

on the ith chain is

F ext
i,j = −∇i,jVext(ri,j). (6.9)

Finally, active propulsion is modeled by imposing a constant force, Fact, on each

particle along the tangent of the filament contour [59],

F act
i,j =


F act ri,j+1 − ri,j

∥ri,j+1 − ri,j∥
, j = 1, 2, . . . , N − 1,

F act ri,N − ri,N−1

∥ri,N − ri,N−1∥
, j = N,

(6.10)
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where N = 21 is the number of particles per chain. The strength of the active propulsion

force is set to be one-half the value of the maximum external-potential force. Hence,

a single particle on the chain will not easily overcome the energy barrier, but multiple

particles directed together can push the chain out of a local potential well.

A system of filaments with number density ρ was initialized in a periodic box of

width Lx and length Ly. The box width was determined from an integer multiple of

the periodic repeat spacing of the external potential, Lx = 2pH. The periodicity, p, and

number of filaments were adjusted such that the box width Lx > 20Lc and the box length

Ly > 50Lc, to avoid finite-size effects from the periodic boundary conditions.

After calibrating our parameters, we ran simulations to determine the impact of

inter-filament interactions on ordering and alignment. All simulations were performed

at number density ρ = 3/L2
c. We calculated the density-weighted nematic order tensor,

Q, by finding the unit orientation vector q for all filaments at all timesteps (resulting

in Nsamp number of samples), forming a symmetric and traceless dyad, and then taking

the ensemble average. The ensemble-averaged nematic order tensor was found for three

independent simulations and the standard deviation of the average values were computed

to find the error of the mean.

6.3 Results and Discussion

6.3.1 Surface Topography Directs the Motion of Individual Fil-

aments and Dense Swarms

Figure 6.1A-B depicts our etched coverslips coated with molecular motors to direct

the motion of F-actin in a gliding assay (for details, see Methods). The etched trenches

have a fixed depth ≈ 200 nm, as verified by scanning electron microscopy (Fig. 6.1C), and
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B.A. Soft barrier to actin hopping

Actin filament

HMM

200 nm

200 nm

~38 nm

D.C.

H = 5 µmH = 5 µm

0 sec 1 sec 2 sec 3 sec

H

200 nm

actin length
= 3-8 μm

Etched cover slip

run length
UτR = 1-30 µm

SEM image

Figure 6.1: Etched surface topographies are used to control the motion and
swarming transitions of filamentous actin (F-actin) propelled by surface-bound heavy
meromyosin (HMM) motors. (A) Schematic of parallel trenches with shallow valleys
and variable spacing, H. (B) Etched substrates of depth ≈ 200 nm impose a soft
confinement for F-actin inside the trenches. (C) Scanning electron microscopy image
of the etched substrates with parallel trenches (5 µm channels shown here). (D) Indi-
vidual actin filaments bounce off the walls due to a soft confinement potential imposed
by the trench edges. All scale bars are 5 µm.

a periodic repeat spacing, H, that can be controlled. Figure 6.1D depicts measurements

for single filaments with trench spacing H = 5 µm. Upon activating the system via

addition of ATP, we observed individual F-actin collide into the trench boundaries and

reorient their motion within the confines of the trenches. Since F-actin glides at an

average height of ≈ 38 nm above the substrate [60], we hypothesized that the filaments

experience a soft barrier to bending at the sharp edge of the trench (Fig. 6.1B) similar

to the confinement observed for kinesin-propelled microtubules in microfluidic channels

with deep trenches [33–35]. The flexural modulus of phalloidin-stabilized F-actin [17] is

EI ≈ 20 kBT ·µm and so the work to bend a filament segment into a quarter-arc of radius
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≈ 200 nm is of order 50 kBT [61]. Therefore, while thermal Brownian forces are unlikely

to drive the filaments out of the trenches, active forces generated by the myosin motors

can overcome the bending penalty posed by the trench edge.

At larger F-actin surface densities, we observed the spontaneous formation of swarm-

ing nematic bands along the trenches that repeated every periodic spacing (Fig. 6.2A;

see Supplementary Movie 1 of [1]). These robust nematic bands spanned hundreds of

micrometers and persisted over tens of minutes until ATP depletion. Filaments continu-

ously enter and leave the bands while maintaining an enriched density within the trenches

(line scan in Fig. 6.2B shows approximately four-fold enrichment). The nematic bands

were similar in structure to those observed in F-actin gliding assays on planar substrates

[7]; here, we demonstrated our ability to control the alignment of nematic filaments using

surface topography.

To confirm the development of spatially modulated order within the system, we com-

puted the intensity-weighted nematic order tensor [62],

QI(r) = I(r)[2n(r)n(r)− I], (6.11)

as a function of position r = xêx+yêy, where I(r) is the normalized scalar intensity and

n(r) is the unit director (Fig. 6.2B-C). The concentration of filaments is not uniform in

space; we use the intensity as a proxy for actin density when sampling the F-actin nematic

order. Contour plots of the yy tensor component (parallel to the trenches) confirm the

formation of ordered, nematic bands within the trenches (Fig. 6.2D). The average degree

of order for a particular experiment is quantified by the areal average of the order tensor,

⟨QI⟩ =
1

A

∫
A

QI(r) dr, (6.12)

where dr = dx dy and A denotes the two-dimensional area in the field of view. Equation

6.12 is used to compare the degree of ordering across different experiments.
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Figure 6.2: Parallel trenches induce and guide nematic bands of F-actin. (A) Image
of gliding assay showing swarming nematic bands of F-actin moving up and down
along the periodic parallel channels (outlined in white dashed lines). (B) Line scan
of local intensity, I(r) shows periodic, fourfold enrichment of F-actin. (C) The unit
director field, n(r) is strongly aligned with the direction of the trenches. (D) Contours
of the yy component of the nematic order tensor, QI(r), as defined by Eq. 6.11.

6.3.2 Two-dimensional (2D) model of topography-directed ac-

tive filaments

In order to develop a mechanistic understanding of topography-driven spatial enrich-

ment and nematic ordering of active filaments, we model the topographical surface as a

spatially-modulated potential in the x-y plane. This 2D representation offers favorable

computational efficiency when applied to a large number of filaments. Our potential

model, illustrated in Fig. 6.3, derives from the argument that filaments experience local

bending forces and torques near the edge of a trench. Under the action of a square-

wave potential with periodicity in the x-direction, a single filament is forced towards

the potential minima and torqued to align along the y-direction (Fig. 6.3A). Groups of

mutually exclusive filaments under such forces and torques will coordinate their motion

to run transverse to the potential gradients. We call this type of behavior “bending and

turning.”

However, when an active filament is longer than the periodic spacing, a single filament

has to sharply bend at multiple locations, which is energetically unfavorable. In this
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scenario, we expect the filament to detach from the motors coating the depressed regions

of the topographical surface rather than bend at multiple points. Active propulsion is

then solely generated by motors on the elevated surfaces. This latter type of behavior

is called “crowd-surfing,” since the filament glides above the trenches without bending.

In order to model this behavior, we switch off the potential whenever the end-to-end

distance of a filament spans multiple periodic cells (Fig. 6.3A). This phenomenological

rule is inspired by experimental observations of F-actin that predominantly glide in a

straight path on the tops of the trenches for the small-wavelength trenches, unaffected

by the undulations of the substrate.

Fext

Vext(x)

τext = 0
Fext = 0

τext = 0
Fext = 0

Key:

A. B.

Bridging

Bridging

τext

Figure 6.3: Actin gliding captured in simulations using a 2D potential model. (A)
Schematic demonstrating our model of topographical confinement using an external
field. Active filaments are confined and turned by the external field only if the actin is
not bridging the channel. If a filament bridges between two hills or valleys (represented
as potential energy minima and maxima), the filament ignores the energy field and
glides across channels under zero force and torque, F ext = 0 and Text = 0. (B)
Simulation snapshot of active filaments moving under the influence of the potential
field. Filaments are colored by their local nematic order along the contour.

We implemented this potential model in 2D Brownian Dynamics (BD) simulations of

semi-flexible filaments of persistence length L = 10 µm and contour length Lc = 10 µm

subject to thermal, active, and potential-driven forces as well as pairwise excluded-body

forces. Details of our simulation methodology can be found in the Methods section; a
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sample simulation is shown in Fig. 6.3B. Simulation parameters were first calibrated for

a dilute system, for which the excluded-body forces are disabled, before increasing the

surface concentration to determine the impact of inter-filament interactions on ordering

and alignment. To compare against our experimental results on a qualitative basis, we

calculated the ensemble-averaged, density-weighted nematic order tensor,

⟨Q⟩ = 1

Nsamp

Nsamp∑
i=1

[2q(i)q(i)− I] (6.13)

where q(i) is unit orientation vector (directed along the propulsion axis) for the ith

sampled filament at a particular timestep, Nsamp is the total number of samples (filaments

and timesteps), and ⟨· · · ⟩ denotes an ensemble average over all simulated trajectories.

The latter should not be confused with the areal average in Eq. 6.12, which is intended

for the limited sampling window observed in our experiments.

6.3.3 Swarm Suppression by Varying the Periodic Repeat Spac-

ing

In our experiments, we varied the trench spacing across H = 5 - 40 µm while keeping

the F-actin surface density and ATP concentration fixed (Fig. 6.4). Interestingly, we

found that the large (H = 40 µm) and small (H = 5 µm) trench spacings do not produce

nematic bands (see Supplementary Movies 2 and 3 of [1] for videoes of H = 5 µm and

H = 40 µm, respectively). For small spacing, H = 5 µm, we never observed nematic

bands in any of our experiments (more than 30 replicates). For large spacing, H = 40 µm,

we occasionally observed nematic bands that are similar to the bulk swarms in unconfined

systems [7, 13], but these bulk swarms were not correlated with the periodic trenches.

In contrast, nematic bands formed consistently in the direction of the channels over

intermediate trench spacings of H = 10 - 20 µm (Fig. 6.4C and D). These intermediate
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spacings are similar to the characteristic length scale associated with the actin swarms

observed previously on planar surfaces [7]. Taken together, our data suggest that the

nematic bands appear in our periodic channels when the spacing, H, is comparable to

the orientation screening length of the swarms.

Align.

Iso.

Swarming nematic bands
Edge accumulation; 

Swarming suppressed Swarming nematic bands

bandsNematic disappearNematic bands appearExperiment

Simulation

Fact

Fact 
x

y

Vext(x)

Edge accumulation; 
No swarming

40 μm Key:E.A. 5 μm

F. G.

10 μmB. C. D. 20 μmH = 5 - 40 μm

H = 40 μmJ.H = 10 μmH = 4 μmH. I.H = 2 μm
Key:

Figure 6.4: Nematic bands appear at intermediate spacing, H, but not at large and
small spacing. (A) Schematic of our experiments on etched coverslips. (B - D) Con-
tours of the yy component of the nematic order tensor, QI(r). All experiments were
conducted at the same ATP concentration, 0.1 mM. (B) At small spacing, H = 5
µm, we do not observe swarming nematic bands. (C, D) At intermediate spacing,
H = 10 − 20 µm, nematic bands form along the channels with significant actin en-
richment. (E) At large spacing, H = 40 µm, we see an isotropic distribution of actin
filaments, with a small accumulation at the periodic edges. (F) Schematic of the sim-
ulation box with a periodically modulated potential. (G-J) BD simulations varying
the potential width corroborate our experimental observations.

Using our 2D model, we also performed BD simulations of active filaments in a po-

tential field of varying periodic repeat spacing H (Fig. 6.4F-J and Supplmentary Movies

4-6). Similar to our experiments, our simulations indicated that swarms preferentially

align along the potential wells at an intermediate spacing, H = 3 - 12 µm. The physical

mechanism behind this preferential alignment at intermediate spacing is linked to a ener-

getic competition between filament bending and adhesion to the substrate, as discussed
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previously.
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Figure 6.5: Experiments and simulations indicate filament alignment is maximized
at intermediate trench spacing. Simulated filaments have contour length Lc = 10 µm
to roughly match the mean experimental actin length. (A) The degree of alignment
of filaments with the channel director is plotted as a function of trench width. Black
circles are the density-weighted nematic order measured from simulations, ⟨Q⟩yy.
Red squares are the intensity-weighted average nematic order from the experiments,
⟨QI⟩yy. These metrics quantify the appearance of swarming nematic bands over an
intermediate trench spacing, H∗. The simulations underpredict (H∗

sim ≈ 4 µm) the
value of H∗ observed in the experiments (H∗

exp ≈ 10 µm). Dashed lines in both figures
are markers of visual observations of the appearance of nematic bands in simulation
(black) and experiment (red).

To quantify the onset of swarming, we computed the average nematic order tensors

⟨QI⟩ and ⟨Q⟩ from the experiments and simulations, respectively [cf. Eqs. 6.12 and 6.13].

Since these tensors are weighted differently (by intensity in the experiments, by density

in the simulations), the comparison between the two is intended to be qualitative rather

than quantitative. The yy components of each are co-plotted in Fig. 6.5 as a function of

the periodic repeat spacing (or trench width), H. Both the experiments and simulations

indicate that order is maximized at an intermediate trench spacing, H∗. At small trench
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spacings (H < H∗), filaments align along boundaries but do not form collective nematic

bands, resulting in low nematic order. As the spacing is increased (H ≈ H∗), ordered

nematic bands appear in both simulation and experiment. Actin propels along a director

parallel to the trenches in bundles made from a large number of individual filaments. At

large trench spacing (H > H∗), the boundaries are far enough apart that orientational

correlations decay by the time the filament reaches the center of the trenches, resulting

in loss of global order.

The simulations predict a value H∗ ≈ 4 µm that is smaller than the experimental

observation, ≈ 10 µm, which we believe could be caused by polydispersity in the ex-

perimental actin contour lengths. Nevertheless, the qualitative agreement between the

experiments and simulations indicate that the microscopic rule proposed in our simple

model can explain the non-monotonic dependence of nematic order with trench spacing.

To recapitulate, the basic idea of this rule is that filaments will only bend and turn to

align with the edge of a trench only if their length does not span the entire trench width.

A filament crossing one edge will start to turn until it reaches the second edge; this

implies that most filaments will cross the second edge at an angle relative to the x-axis,

provided their run length is sufficiently small. This explains why the optimal trench

width for alignment as predicted in the simulation (≈ 4 µm) is smaller than the filament

length (≈ 10 µm). More accurate predictions would likely require a (much more com-

putationally intensive) 3D simulation of filament motion, explicitly resolving the spatial

variation in depth (i.e., in the z-direction).

As discussed previously, we estimate the bending penalty for actin to be ≈ 50kBT

at each of the trench corners. A filament that spans multiple channels can avoid this

bending penalty by detaching from Nbound bound HMM motors. The precise dissocia-

tion energy between actin and myosin depends upon the experimental conditions (ionic

strength, pH, presence of ATP, etc.), but we estimate from previously reported values
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for the dissociation constant that ∆Gdissoc < 10kBT per motor [63]. Since HMM is a

non-processive motor, actin is rapidly binding and unbinding with the surface-bound

motor and stochastically sampling the competing bending and binding energies within

the trenches. We model the cross over of the filament into the “crowd-surfing” state

when the filament crosses two or more trench boundaries.

In experiments on planar gliding assays, collisions between F-actin have been shown to

have a slight polar symmetry, leading to large density fluctuations and nematic bands or

polar flocks depending on experimental conditions [9]. In our model, interactions between

filaments are purely steric with nematic symmetry. Generally, agent-based simulations

and theories prescribe an additional alignment interaction to capture experimentally

observed polar flocks, but here we focus on the isotropic to nematic transition. Therefore,

this model will not capture the formation of bulk polar flocks seen in some experiments.

An important distinction between the experiments and the simulations is the com-

plete suppression of collective swarms at small trench spacings. In the simulations, by

contrast, collective swarms are observed even when the periodic repeat spacing is small,

but the directional motion of these swarms do not correlate with the applied potential

field. Rather, the simulated swarms “surf” across the peaks and valleys of the poten-

tial landscape. We attribute the absence of swarming in the experiments at small trench

spacings to additional physics not accounted for in the simulations. For instance, scission

events at the trench boundaries produce successively smaller filaments and reduce their

ability to orient with one another. Such events occur more frequently when the trench

spacing is narrow, which could possibly explain the absence of swarms in the experiments.

By contrast, in the simulations the contour length of each filament is fixed and collisions

between filaments can give rise to spontaneous collective motion. Bending of the fila-

ments into the third dimension is another feature that is present in the experiments but

not in the simulations.
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6.3.4 Impact of Propulsion Speed and Trench Tortuosity on

Swarm Formation

In a separate set of experiments, we varied the ATP concentration to study the role of

propulsion speed on nematic band formation (Fig. 6.6). At ATP concentrations between

0.025 - 0.3 mM, we observed robust nematic bands along the trenches for intermediate

spacings, H = 10 - 20 µm (Fig. 6.6A). However, at large ATP concentrations, ≥ 0.3 mM,

we observed polar flocks and nematic swarms that were uncorrelated with the etched

features (Fig. 6.6B; see also Supplementary Movie 7 of [1]), with similar structure and

dynamics as previous studies on planar substrates [7].

Increasing the ATP concentration increases the rate of myosin attachment and de-

tachment, as well as increases the number of myosin involved in pushing a single filament

[64]. We suspect that the additional tension imparted onto the filament makes it easier

to escape the channels and facilitates “crowd-surfing” due to increased ATP-driven de-

tachment. Similar flocking behavior is observed in the simulations when the active force

on the filament is large (see Supporting Information document of [1]).

Additionally, we studied the effect of in-plane tortuosity on nematic band formation

by creating etched patterns that zigzag along the substrate. We hypothesized that the

competition between the tortuosity path length and the swarm persistence length gov-

erns the onset of nematic band formation. To test this hypothesis, we studied two zigzag

patterns, with periodic triangle- and square-wave features, at a fixed spacing H = 20 µm

(Fig. 6.7). In both tortuous patterns, we observed accumulation of actin filaments along

the boundaries but no swarming nematic bands. Tortuosity changes the preferred orien-

tation at the channel edges causing destructive interference between nematic boundary

layers at various points along the surface. The nematic bands disappear when the tor-

tuosity path length is comparable to the swarm persistence length. Although the biased
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Polar FlocksNematic Bands
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Figure 6.6: Topography-induced nematic bands only appear at intermediate propul-
sion speeds. (A) Nematic bands appear at intermediate ATP concentration, 0.1 mM.
(B) Nematic bands vanish along the periodic trenches upon increasing ATP concen-
tration to 1 mM. Polar flocks appear after 15 min, indicating that actin motion is
unaffected by topography at high ATP concentration. These experiments were con-
ducted with the same channel spacing, H = 20 µm.

orientation of an individual filament from one boundary can interact with other filaments

on the opposing boundary, the tortuous path causes a destructive interference with no

collective enhancement of nematic ordering. This effect is similar to a spherical active

particle moving through a porous media with a tortuous path, which is known to create

density and polar boundary layers that can overlap destructively [65, 66].

The fact that directed swarms emerge when the topographic and filament length

scales are commensurate suggests a type of coherence between collections of filaments in

a corrugated landscape. In dense 2D systems, passive filaments with infinite persistence

length (hard rods) are known to undergo a Berezinskii-Kosterlitz-Thouless (BKT) phase

transition [67, 68]. In an unbounded system, the local orientation correlation decays

algebraically over a length scale λ that depends upon the Frank elastic constant of a

continuum nematic fluid [69]. In our case, the soft walls bias the orientation of the
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Figure 6.7: Etched substrates with tortuous topographies disrupt swarming nematic
bands. (A) We designed etched substrates with tortuous zigzag patterns with H = 20
µm spacing. (B) Swarming nematic bands vanish on substrates with triangle- and
square-wave patterns. Scale bars are 20 µm. (C) Comparing the yy component of the
intensity-weighted nematic order tensor confirms the reduction of ordering along the
y-direction on tortuous trenches compared to parallel trenches. All experiments are
conducted at 0.05 mM ATP concentration.

filaments at the boundaries and this propagates into the center of the channel over the

distance λ, which is a function of the effective Frank elastic constant and the activity.

The effective elastic constant depends on the physical properties of the filament (i.e.

filament persistence length and contour length) [70, 71]. We also vary the persistence

length of the simulated filaments and show that the magnitude of nematic order increases

and the location of the optimal spacing H∗ decreases as the persistence length grows (see

the Supporting Information document of [1]). Scission events due to collisions create a

large polydispersity in the actin contour length. This precludes us from meaningfully

increasing the F-actin length to explore different ratios of contour length and persistence

length in experiments.

Consequently, nearby filaments align with the boundaries due to proximity with their

neighbors. The finite concentration of filaments provides a mechanism of transmitting the

nematic bias across multiple filaments up to a distance λ away from boundaries, beyond

which orientational correlations between filaments rapidly fall off. If the corrugations are

spaced less than λ, nematic order persists throughout the entire channel.

To help explain this idea of nematic coherence induced by an aligning bias, Fig. 6.8A-
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C depicts simulation snapshots of a system of filaments with three different periodic

repeat spacings, H = 2, 4, and 40 µm. In Fig. 6.8D-F, we have plotted histograms of the

yy component of the local nematic order tensor, Q(x), corresponding to these snapshots.

The local nematic order tensor is defined by “binning” filaments into a primitive section

of the periodic potential landscape, spanning a distance −H ≤ x ≤ H:

Q(x) =
2H

Nsamp

Nsamp∑
i=1

[2q(i)q(i)− 1] δ[x− xH(i)], (6.14)

where xH(i) = H+mod[x(i)+H, 2H] is the global displacement of the ith filament from

the primitive periodic cell. In numerically evaluating Eq. 6.14, the Dirac delta function

is approximated by a finite impulse function whose width and reciprocal height is equal

to the bin size. Averaging Eq. 6.14 over the periodic interval, −H ≤ x ≤ H, recovers

the average nematic order tensor defined by Eq. 6.13

⟨Q⟩ = 1

2H

∫ H

−H

Q(x) dx; (6.15)

therefore, the components of Q(x) are normalized such that their average over space ⟨Q⟩

has components bounded between ±1.

The snapshots and histograms presented in Fig. 6.8 can be understood as follows.

For the narrow spacing shown (H = 2 µm, Fig. 6.8A,D), filaments are only partially

biased by the potential gradient to align along the y direction. This weak bias results

from the fact that the filaments are much longer than the repeat spacing (Lc ≫ H,

where Lc = 10 µm) and so frequently bridge multiple periodic cells under zero force

and torque. Importantly, the peak nematic order is centered within the potential well.

As H is increased to 4 µm (Fig. 6.8B,E), the peak nematic order increases in scale and

widens in extent to span nearly the entire well. This case corresponds to the “optimal”

spacing, H∗, discussed in Fig. 6.5. At much larger spacing (H = 40 µm, Fig. 6.8C,F),

the peak nematic order localizes near the edges of the potential well, where the gradient
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Key:
A. B. C.

D. E. F.

Figure 6.8: Nematic bands form when edge-induced nematic order is coherent through
the entire channel. Top row (A)-(C): cropped simulation snapshots of filaments in a
confining potential with different periodic repeat spacing. Filament segments are
colored according to their director. White dashed lines indicate the edges of the
potential wells where the gradient is strongest. Bottom row (D)-(F): local nematic
order across a primitive periodic cell, obtained from Eq. 6.14. The origin of the x-axis
is centered inside the potential well.

is strongest, and decays toward the center. The decay length (or coherence length), λ,

is of order 10 µm and comparable to the filament contour length, Lc. In this case, the

size of the well is larger than the scale over which nematic order can be transmitted via

interactions with other filaments, resulting in loss of nematic order across a “boundary

layer” adjacent to the edges of the well. Comparing this case to the intermediate spacing

(H = 4 µm) indicates that the highest order is achieved when the two boundary layers

on either side of the well overlap.
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6.4 Conclusions

Our experimental results demonstrate that surface topography can be employed to

induce and control the ordering and swarming transitions of self-propelled filaments at

finite surface density. We successfully modeled this coupling between topography and

collective motion using a 2D soft confinement potential, which reflects the local effect

of bending filaments across the trench boundaries. The 2D system serves as a com-

pelling model for understanding active force generation on curved surfaces of practical

interest, including 2D active materials and biological cell membranes. Whether this con-

cept extends to 3D active fluids remains to be demonstrated, but is worthy of further

investigation.

Our findings highlight the intricate interplay between active propulsion, many-body

interactions, and soft confinement, which orchestrate the emergence of ordered, regular

patterns in active filaments under specific surface topographies. This observation suggests

that the optimal confinement length scale, corresponding to the coherence length in active

nematic systems, offers a valuable design principle for manipulating two-dimensional (2D)

active fluids in confined geometries.

Future work in this project can focus on the utilization of collections of active fila-

ments to enhance the capabilities of existing lab-on-a-chip devices. Specific topographical

patterning can be used to locally enhance or repress swarming of filaments, allowing for

precise control of the location and direction of nematic bands and polar flocks. Ad-

ditionally, incorporating tortuous channels offers a promising approach for sorting or

separating incoming groups of filaments, facilitating tasks like analyte detection while

enabling greater filament surface density.
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In this dissertation, I have developed models to analyze the structure and dispersion

of confined active swimmers in two dimensions. I have found that the nonequilibrium

self-propulsion couples the particle dynamics to the surrounding surface microstructure,

controlling both the transport and the steady-state distribution of the swimmers.

In Chapter 2, we introduced several techniques that are commonly used to predict

the effective diffusivity of passive colloidal systems, and tested their applicability to

nonequilibrium swimmers via the “effective temperature” approach. While the effective

temperature approach provides a good first approximation to estimate active diffusivity,

it fails to capture the impact of boundary shape when the run length is commensurate

to the surface radius of curvature. In Chapter 3, we tested the impact of surface concav-

ity using simulations and experimental measurements of active Brownian particle (ABP)

transport in random arrays of immovable obstacles. As the porosity decreases, collections

of obstacles aggregate into impassible walls and concave traps. The increased accumu-

lation of active Brownian particles at regions of high concavity inhibits active transport

when compared to convex systems at identical porosity.

In Chapter 4, we extended our Smoluchowski-based models to study the mobility of

anisotropic swimmers under confining external fields. For rods in channel confinement,

the torque imposed on the rod nematically orients the particles along the channel axis.

As rod nematic order increases, there is an subsequent magnification of diffusivity in the

direction parallel to the channels. This occurs because the nematic alignment inhibits

reorientation of the rods, creating extended ballistic runs. In Chapters 5 and 6, we use

the methods we have developed to study systems of practical interest. We are able to

predict the partitioning of bacteria in an aqueous two-phase system (ATPS) of dextran

and polyethylene glycol. We verified that the motility allows the bacteria to overcome the

chemical affinity between the bacteria surface and the dextran polymer, partitioning the

bacteria between the two phases. Additionally, we used simulations to offer mechanistic
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insight into the alignment of cytoskeletal filaments within topographically patterned sur-

faces. In a gliding assay containing shallow channels, we find that filaments escape due

to their flexibility and exhibit a unique “crowd-surfing” behavior at intermediate channel

width. In summary, we find that one can control active transport by careful design of

the boundary microstructure. Through extensive collaboration with experimentalists, we

have shown the utility of these models in providing mechanistic insight and have provided

design principles for engineers seeking to create devices utilizing active agents.

A clear future direction of this work would be to extend these models into three-

dimensional systems. Percolation of obstacles in 2D prevents all transport; however, in

3D the swimmer has additional directions it can move to avoid barriers, even when the

obstacles are closely packed. Incorporating the additional degrees of freedom necessary to

model three-dimensional active motion is both computationally and analytically challeng-

ing, but it is a critical next step toward accurately predicting active transport through

many biologically and industrially relevant materials. The continued development of

GPU-accelerated Brownian dynamics will be essential for studying these phenomena in

three dimensions.

This work examines the confinement of active swimmers using stationary obstacles or

fixed external fields. However, many porous materials are soft, elastic, and dynamic. For

example, fluctuations can play an important role in particle transport through mucus,

hydrogels, and other polymeric networks due to the flexibility of the mesh. Cytoskeletal

filaments control cell shape and induce large deformations on lipid membranes, changing

the boundary curvature and active transport drastically. In suspended media, obstacles

will dynamically rearrange due to thermal fluctuations, fluid flow, or from the pressure of

the active bath. These rearrangements allow swimmers to enter previously inaccessible

regions of the phase space, and warrants future study.

With the exception of Chapter 6, we focused on the transport of dilute active swim-
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mers and ignore interactions between particles. Extending this work to concentrated

suspensions is possible using a modification to the Smoluchowski equation that incor-

porates density correlations via a mean-field, or by using a phenomenological hydrody-

namic model of dense active nematics. These techniques would be particularly useful

when modeling the behavior of bacteria in biofilms, which may help researchers design

new treatments for these traditionally recalcitrant multicellular aggregates.
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