
UC San Diego
Technical Reports

Title
Learning to Traverse Image Manifolds

Permalink
https://escholarship.org/uc/item/62f8k8cq

Authors
Dollar, Piotr
Rabaud, Vincent
Belongie, Serge

Publication Date
2007-01-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62f8k8cq
https://escholarship.org
http://www.cdlib.org/

Learning to Traverse Image Manifolds

UCSD Technical Report ∗

Piotr Dollár, Vincent Rabaud and Serge Belongie
University of California, San Diego

{pdollar,vrabaud,sjb}@cs.ucsd.edu

Abstract

We present a new algorithm, Locally Smooth Manifold Learning (LSML), that learns a
warping function from a point on an manifold to its neighbors. Important characteristics
of LSML include the ability to recover the structure of the manifold in sparsely populated
regions and beyond the support of the provided data. Applications of our proposed tech-
nique include embedding with a natural out-of-sample extension and tasks such as tangent
distance estimation, frame rate up-conversion, video compression and motion transfer.

1 Introduction

A number of techniques have been developed for dealing with high dimensional data sets that fall on or
near a smooth low dimensional nonlinear manifold. Such data sets arise whenever the number of modes
of variability of the data are much fewer than the dimension of the input space, as is the case for image
sequences. Unsupervised manifold learning refers to the problem of recovering the structure of a manifold
from a set of unordered sample points. Manifold learning is often equated with dimensionality reduction,
where the goal is to find an embedding or ‘unrolling’ of the manifold into a lower dimensional space such
that certain relationships between points are preserved. Such embeddings are typically used for visualization,
with the projected dimension being 2 or 3.

Image manifolds have also been studied in the context of measuring distance between images undergoing
known transformations. For example, the tangent distance [19, 20] between two images is computed by
generating local approximations of a manifold from known transformations and then computing the distance
between these approximated manifolds. In this work, we seek to frame the problem of recovering the
structure of a manifold as that of directly learning the transformations a point on a manifold may undergo.
Our approach, Locally Smooth Manifold Learning (LSML), attempts to learn a warping function W with d
degrees of freedom that can take any point on the manifold and generate its neighbors. LSML recovers a first
order approximation of W , and by making smoothness assumptions on W can generalize to unseen points.

We show that LSML can recover the structure of the manifold where data is given, and also in regions
where it is not, including regions beyond the support of the original data. We propose a number of uses
for the recovered warping function W , including embedding with a natural out-of-sample extension, and
in the image domain discuss how it can be used for tasks such as computation of tangent distance, image
sequence interpolation, compression, and motion transfer. We also show examples where LSML is used
to simultaneously learn the structure of multiple “parallel” manifolds, and even generalize to data on new
manifolds. Finally, we show that by exploiting the manifold smoothness, LSML is robust under conditions
where many embedding methods have difficulty.

∗Shortened version to appear in Advances in Neural Information Processing Systems (NIPS) 19, 2007.

Related work is presented in Section 2 and the algorithm in Section 3. Experiments on point sets and results
on images are shown in Sections 4 and 5, respectively. We conclude in Section 6.

2 Related Work

Related work can be divided into two categories. The first is the literature on manifold learning, which serves
as the foundation for this work. The second is work in computer vision and computer graphics addressing
image warping and generative models for image formation.

A number of classic methods exist for recovering the structure of a manifold. Principal component analysis
(PCA) tries to find a linear subspace that best captures the variance of the original data. Traditional methods
for nonlinear manifolds include self organizing maps, principal curves, and variants of multi-dimensional
scaling (MDS) among others, see [10] for a brief introduction to these techniques. Recently the field has seen
a number of interesting developments in nonlinear manifold learning. [18] introduced a kernelized version
of (PCA). A number of related embedding methods have also been introduced, representatives include
LLE [16], ISOMAP [21], and more recently SDE [23]. Broadly, such methods can be classified as spectral
embedding techniques [23]; the embeddings they compute are based on an eigenvector decomposition of an
n × n matrix that represents geometrical relationships of some form between the original n points. Out-
of-sample extensions have been proposed [3]. The goal of embedding methods (to find structure preserving
embeddings) differs from the goals of LSML (learn to traverse the manifold).

Four methods that we share inspiration with are [6, 12, 2, 15]. [6] employs a novel charting based tech-
nique to achieve increased robustness to noise and decreased probability of pathological behavior vs. LLE

and ISOMAP; we exploit similar ideas in the construction of LSML but differ in motivation and potential ap-
plicability. [2] proposed a method to learn the tangent space of a manifold and demonstrated a preliminary
illustration of rotating a small bitmap image by about 1◦. Work by [12] is based on the notion of learning
a model for class specific variation, the method reduces to computing a linear tangent subspace that models
variability of each class. [15] shares one of our goals as it addresses the problem of learning Lie groups, the
infinitesimal generators of certain geometric transformations.

In image analysis, the number of dimensions is usually reduced via approaches like PCA [14], epitomic
representation [11], or generative models like in the realMOVES system developed by Di Bernardo et al.
[1]. Sometimes, a precise model of the data, like for faces [4] or eyes [13], is even used to reduce the
complexity of the data. Another common approach is simply to have instances of an object in different
conditions: [5] start by estimating feature correspondences between a novel input with unknown pose and
lighting and a stored labeled example in order to apply an arbitrary warp between pictures. The applications
range from video texture synthesis [17] and facial expression extrapolation [8, 22] to face recognition [9]
and video rewrite [7].

3 Algorithm

Let D be the dimension of the input space, and assume the data lies on a smooth d-dimensional manifold
(d ≪ D). For simplicity assume that the manifold is diffeomorphic with a subset of R

d, meaning that it can
be endowed with a global coordinate system (this requirement can easily be relaxed) and that there exists
a continuous bijective mapping M that converts coordinates y ∈ R

d to points x ∈ R
D on the manifold.

The goal of most dimensionality reduction techniques given a set of data points xi is to find an embedding
yi = M−1(xi) that preserves certain properties of the original data like the distances between all points
(classical MDS) or the distances or angles between nearby points (e.g. spectral embedding methods).

Instead, we seek to learn a warping function W that can take a point on the manifold and return any neigh-
boring point on the manifold, capturing all the modes of variation of the data. Let us use W(x, ǫ) to denote
the warping of x, with ǫ ∈ R

d acting on the degrees of freedom of the warp according to the formula M:
W(x, ǫ) = M(y + ǫ), where y = M−1(x). Taking the first order approximation of the above gives:

(a) (b) (c) (d) (e) f

Figure 1: Overview. Twenty points (n=20) that lie on 1D curve (d=1) in a 2D space (D=2) are shown in (a). Black lines
denote neighbors, in this case the neighborhood graph is not connected. We apply LSML to train H (with f = 4 RBFs).
H maps points in R

2 to tangent vectors; in (b) tangent vectors computed over a regularly spaced grid are displayed, with
original points (blue) and curve (gray) overlayed. Tangent vectors near original points align with the curve, but note the
seam through the middle. Regularization fixes this problem (c), the resulting tangents roughly align to the curve along
its entirety. We can traverse the manifold by taking small steps in the direction of the tangent; (d) shows two such paths,
generated starting at the red plus and traversing outward in large steps (outer curve) and finer steps (inner curve). This
generates a coordinate system for the curve resulting in a 1D embedding shown in (e). In (f) two parallel curves are
shown, with n=8 samples each. Training a common H results in a vector field that more accurately fits each curve than
training a separate H for each (if the structure of the two manifolds was very different this need not be the case).

W(x, ǫ) ≈ x + H(x)ǫ, where each column H·k(x) of the matrix H(x) is the partial derivative of M w.r.t.
yk: H·k(x) = ∂/∂ykM(y). This approximation is valid given ǫ small enough, hence we speak of W being
an infinitesimal warping function.

We can restate our goal of learning to warp in terms of learning a function Hθ : R
D → R

D×d parameterized
by a variable θ. Only data points xi sampled from one or several manifolds are given. For each xi, the
set N i of neighbors is then computed (e.g. using variants of nearest neighbor such as kNN or ǫNN), with
the constraint that two points can be neighbors only if they come from the same manifold. To proceed, we
assume that if xj is a neighbor of xi, there then exists an unknown ǫ

ij such that W(xi, ǫij) = xj to within
a good approximation. Equivalently: Hθ(x

i)ǫij ≈ xj − xi. We wish to find the best θ in the squared error
sense (the ǫ

ij being additional free parameters that must be optimized over). The expression of the error we
need to minimize is therefore:

error1(θ) = min
{ǫ

ij}

n

i=1 j∈N i

Hθ(x
i)ǫij − (xj − x

i)
2

2

(1)

Minimizing the above error function can be interpreted as trying to find a warping function that can transform
a point into its neighbors. Note, however, that the warping function has only d degrees of freedom while a
point may have many more neighbors. This intuition allows us to rewrite the error in an alternate form. Let

∆i be the matrix where each column is of the form (xj − xi) for each neighbor of xi. Let ∆i = U iΣiV i⊤

be the thin singular value decomposition of ∆i. Then, one can show (see appendix) that error1 is equivalent
to the following:

error2(θ) = min
{Ei}

n

i=1

Hθ(x
i)Ei − U iΣi

2

F
(2)

Here, the matrices Ei are the additional free parameters. Minimizing the above can be interpreted as search-
ing for a warping function that directly explains the modes of variation at each point. This form is convenient
since we no longer have to keep track of neighbors. Furthermore, if there is no noise and the linearity as-
sumption holds there are at most d non-zero singular values. In practice we use the truncated SVD, keeping
at most 2d singular values, allowing for significant computational savings.

We now give the remaining details of LSML for the general case (see appendix). For the case of images, we
present an efficient version in Section 5 which uses some basic domain knowledge to avoid solving a large
regression. Although potentially any regression technique is applicable, a linear model is particularly easy to

(a) (b) (c) (d)

Figure 2: Robustness. LSML used to recover the embedding of the S-curve under a number of sampling conditions. In
each plot we show the original points along with the computed embedding (rotated to align vertically), correspondence
is indicated by coloring/shading (color was determined by the y-coordinate of the embedding). In each case LSML was
run with f = 8, d = 2, and neighbors computed by ǫNN with ǫ = 1 (the height of the curve is 4). The embeddings
shown were recovered from data that was: (a) densely sampled (n=500) (b) sparsely sampled (n=100), (c) highly struc-
tured (n=190), and (d) noisy (n=500, random Gaussian noise with σ = .1). In each case LSML recovered the correct
embedding. For comparison, LLE recovered good embeddings for (a) and (c) and ISOMAP for (a),(b), and (c). The
experiments were repeated a number of times yielding similar results. For a discussion see the text.

work with. Let f i be f features computed over xi. We can then define Hθ(x
i) = [Θ1f i · · ·ΘDf i]⊤, where

each Θk is a d × f matrix. Re-arranging error2 gives:

errorlin(θ) = min
{Ei}

n

i=1

D

k=1

f
i⊤Θk⊤

Ei − U i
k·Σ

i
2

2

(3)

Solving simultaneously for E and Θ is complex, but if either E or Θ is fixed, solving for the remaining
variable becomes a least squares problem (an equation of the form AXB = C can be rewritten as B⊤ ⊗
A · vec(X) = vec(C), where ⊗ denotes the Kronecker product and vec the matrix vectorization function).
To solve for θ, we use an alternating minimization procedure. In all experiments in this paper we perform
30 iterations of the above procedure, and while local minima do not seem to be to prevalent, we randomly
restart the procedure 5 times. Finally, nowhere in the construction have we enforced that the learned tangent
vectors be orthogonal (such a constraint would only be appropriate if the manifold was isometric to a plane).
To avoid numerically unstable solutions we regularize the error:

error
′
lin(θ) = errorlin(θ) + λE

n

i=1

Ei
2

F
+ λθ

D

k=1

Θk
2

F
(4)

For the features we use radial basis functions (RBFs) [10], the number of basis functions, f , being an addi-
tional parameter. Each basis function is of the form f j(x) = exp(−‖x − µ

j‖2

2
/2σ2) where the centers µ

j

are obtained using K-means clustering on the original data with f clusters and the width parameter σ is set
to be twice the average of the minimum distance between each cluster and its nearest neighbor center. The
feature vectors are then simply defined as f i = [f1(xi) · · · fp(xi)]⊤. The parameter f controls the smooth-
ness of the final mapping Hθ; larger values result in mappings that better fit local variations of the data, but
whose generalization abilities to other points on the manifold may be weaker. This is exactly analogous to
the standard supervised setting and techniques like cross validation could be used to optimize over f .

4 Experiments on Point Sets

We begin with a discussion on the intuition behind various aspects of LSML. We then show experiments
demonstrating the robustness of the method, followed by a number of applications. In the figures that follow
we make use of color/shading to indicate point correspondences, for example when we show the original
point set and its embedding.

(a) (b) (c) (d)

Figure 3: Reconstruction. Reconstruction examples are used to demonstrate quality and generalization of H. (a)
Points sampled from the Swiss-roll manifold (middle), some recovered tangent vectors in a zoomed-in region (left) and
embedding found by LSML (right). Here n = 500 f = 20, d = 2, and neighbors were computed by ǫNN with ǫ = 4
(height of roll is 20). Reconstruction of Swiss-roll (b), created by a backprojection from regularly spaced grid points
in the embedding (traversal was done from a single original point located at the base of the roll, see text for details).
Another reconstruction (c), this time using all points and extending the grid well beyond the support of the original
data. The Swiss-roll is extended in a reasonable manner both inward (occluded) and outward. (d) Reconstruction of unit
hemisphere (LSML trained with n = 100 f = 6, d = 2, ǫNN with ǫ = .3) by traversing outward from topmost point,
note reconstruction in regions with no points.

LSML learns a function H from points in R
D to tangent directions that agree, up to a linear combination,

with estimated tangent directions at the original training points of the manifold. By constraining H to be
smooth (through use of a limited number of RBFs), we can compute tangents at points not seen during
training, including points that may not lie on the underlying manifold. This generalization ability of H will
be central to the types of applications considered. Finally, given multiple non-overlapping manifolds with
similar structure, we can train a single H to correctly predict the tangents of each, allowing information to
be shared. Fig. 1 gives a visual tutorial of these different concepts.

LSML appears quite robust. Fig. 2 shows LSML successfully applied for recovering the embedding of the
“S-curve” under a number of sampling conditions (similar results were obtained on the “Swiss-roll”). After
H is learned, the embedding is computed by choosing a random point on the manifold and establishing a
coordinate system by traversing outward (the same procedure can be used to embed novel points, providing
a natural out-of-sample extension). Here we compare only to LLE and ISOMAP using published code. The
densely sampled case, Fig. 2(a), is comparatively easy and a number of methods have been shown to suc-
cessfully recover an embedding. On sparsely sampled data, Fig. 2(b), the problem is more challenging; LLE

had problems for n < 250 (lowering LLE’s regularization parameter helped somewhat). Real data need not
be uniformly sampled, see Fig. 2(c). In the presence of noise Fig. 2(d), ISOMAP and LLE performed poorly.
A single outlier can distort the shortest path computed by ISOMAP, and LLE does not directly use global
information necessary to disambiguate noise. Other methods are known to be robust [6], and in [24] the
authors propose a method to “smooth” a manifold as a preprocessing step for manifold learning algorithms;
however a full comparison is outside the scope of this work.

Having learned H and computed an embedding, we can also backproject from a point y ∈ R
d to a point

x on the manifold by first finding the coordinate of the closest point yi in the original data, then traversing
from xi by ǫj = yj − yi

j along each tangent direction j (see Fig. 1(d)). Fig. 3(a) shows tangents and an

embedding recovered by LSML on the Swiss-roll. In Fig. 3(b) we backproject from a grid of points in R
2; by

linking adjacent sets of points to form quadrilaterals we can display the resulting backprojected points as a
surface. In Fig. 3(c), we likewise do a backprojection (this time keeping all the original points), however we
backproject grid points well below and above the support of the original data. Although there is no ground
truth here, the resulting extension of the surface seems “natural”. Fig. 3(d) shows the reconstruction of a
unit hemisphere by traversing outward from the topmost point. There is no isometric mapping (preserving
distance) between a hemisphere and a plane, and given a sphere there is actually not even a conformal
mapping (preserving angles). In the latter case an embedding is not possible, however, we can still easily
recover H for both (only hemisphere results are shown).

✲

✲

✲

(a) (b) (c) (d)

Figure 4: The translation manifold. Here F i = Xi; s = 17, d = 2 and 9 sets of 6 translated images each were used
(not including the cameraman). (a) Zero padded, smoothed test image x. (b) Visualization of learned Θ, see text for
details. (c) Hθ(x) computed via convolution. (d) Several transformations obtained after multiple steps along manifold
for different linear combinations of Hθ(x). Some artifacts due to error propagation start to appear in the top figures.

5 Results on Images

Before continuing, we consider potential applications of H in the image domain, including tangent distance
estimation, nonlinear interpolation, extrapolation, compression, and motion transfer. We refer to results on
point-sets to aid visualization. Tangent distance estimation: H computes the tangent and can be used directly
in invariant recognition schemes such as [20]. Compression: Fig. 3(b,d) suggest how given a reference
point and H nearby points can be reconstructed using d numbers (with distortion increasing with distance).
Nonlinear interpolation and extrapolation: points can be generated within and beyond the support of given
data (cf . Fig. 3); of potential use in tasks such as frame rate up-conversion, reconstructing dropped frames
and view synthesis. Motion transfer: for certain classes of manifolds with “parallel” structure (cf . Fig. 1(f)),
a recovered warp may be used on an entirely novel image. These applications will depend not only on the
accuracy of the learned H but also on how close a set of images is to a smooth manifold.

The key insight to working with images is that although images can live in very high dimensional spaces
(with D ≈ 106 quite common), we do not have to learn a transformation with that many parameters. Let x
be an image and H·k(x), k ∈ [1, d], be the d tangent images. Here we assume that each pixel in H·k(x) can
be computed based only on the information in s × s patch centered on the corresponding pixel in x. Thus,

instead of learning a function R
D → R

D×d we learn a function R
s2

→ R
d, and to compute H we apply the

per patch function at each of the D locations in the image. The resulting technique scales independently of
D, in fact different sized images can be used. The per patch assumption is not always suitable, most notably
for transformations that are based only on image coordinate and are independent of appearance.

The approach of Section 3 needs to be slightly modified to accommodate patches. We rewrite each image
xi ∈ R

D as a s2 × D matrix Xi where each row contains pixels from one patch in xi (in training we sub-
sample patches). Patches from all the images are clustered to obtain the f RBFs; each Xi is then transformed
to a f × D matrix F i that contains the features computed for each patch. The per patch linear model can
now be written as Hθ(x

i) = (ΘF i)⊤, where Θ is a d × f matrix (compare with the D Θs needed without
the patch assumption). The error function, which is minimized in a similar way (see appendix), becomes:

errorimg(Θ) = min
{Ei}

n❳
i=1

✌✌✌F i⊤Θ⊤Ei − U iΣi
✌✌✌2

F
(5)

We begin with the illustrative example of translation (Fig. 4). Here, RBFs were not used, instead F i = Xi.
The learned Θ is a 2×s2 matrix, which can be visualized as two s×s images as in Fig. 4(b). These resemble
derivative of Gaussian filters, which are in fact the infinitesimal generates for translation [15]. Computing the
dot product of each column of Θ with each patch can be done using a convolution. Fig. 4 shows applications
of the learned transformations, which resemble translations with some artifacts.

⑦⑦· · · ⑦⑦· · ·

(a) (b) (c) (d) (e)

Figure 5: Manifold generated by out-of-plane rotation of a teapot (data from [23], sub-sampled and smoothed).
Here, d = 1, f = 400 and roughly 3000 patches of width s = 13 were sampled from 30 frames. Bottom row shows the
ground truth images; dashed box contains 3 of 30 training images, representing ∼ 8◦ of physical rotation. The top row
shows the learned transformation applied to the central image. By observing the tip, handle and the two white blobs on
the teapot, and comparing to ground truth data, we can observe the quality of the learned transformation on seen data (b)
and unseen data (d), both starting from a single frame (c). The outmost figures (a)(e) shows failure for large rotations.

Fig. 5 shows the application of LSML for learning out-of-plane rotation of a teapot. On this size problem
training LSML (in MATLAB) takes a few minutes; convergence occurs within about 10 iterations of the mini-
mization procedure. Hθ(x) for novel x can be computed with f convolutions (to compute cross correlation)
and is also fast. The outer frames in Fig. 5 highlight a limitation of the approach: with every successive
step error is introduced; eventually significant error can accumulate. Here, we used a step size which gives
roughly 10 interpolated frames between each pair of original frames. With out-of-plane rotation, information
must be created and the problem becomes ambiguous (multiple manifolds can intersect at a single point),
hence generalization across images is not expected to be good.

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑✑

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗◗

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑✑

✑
✑

✑
✑

✑
✑

✑✑✰

✛ ◗
◗

◗
◗

◗
◗

◗◗❦

❄

✻

◗
◗

◗
◗

◗
◗

◗◗s

✲✑
✑

✑
✑

✑
✑

✑✑✸

(a) (b) (c) (d)

Figure 6: Traversing the eye manifold. LSML trained on one eye moving along five different lines (3 vertical and 2
horizontal). Here d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2 frames were considered neighbors
if they were adjacent in time. Figure (a) shows images generated from the central image. The inner 8 frames lie just
outside the support of the training data (not shown), the outer 8 are extrapolated beyond its support. Figure (b) details
Hθ(x) for two images in a warping sequence: a linear combination can lead the iris/eyelid to move in different directions
(e.g. the sum would make the iris go up). Figure (c) shows extrapolation far beyond the training data, i.e. an eye wide
open and fully closed. Finally, Figure(d) shows how the eye manifold we learned on one eye can be applied on a novel
eye not seen during training.

In Fig. 6, results are shown on an eye manifold with 2 degrees of freedom. LSML was trained on sparse data
from video of a single eye; Hθ was used to synthesize views within and also well outside the support of the
original data (cf . Fig. 6(c)). In Fig. 6(d), we applied the transformation learned from one person’s eye to
a single image of another person’s eye (taken under the same imaging conditions). LSML was able to start
from the novel test image and generate a convincing series of transformations. Thus, motion transfer was
possible - Hθ trained on one series of images generalized to a different set of images.

6 Conclusion

In this work we presented an algorithm, Locally Smooth Manifold Learning, for learning the structure of
a manifold. Rather than pose manifold learning as the problem of recovering an embedding, we posed the
problem in terms of learning a warping function for traversing the manifold. Smoothness assumptions on W
allowed us to generalize to unseen data. Proposed uses of LSML include tangent distance estimation, frame
rate up-conversion, video compression and motion transfer.

We are currently engaged in scaling the implementation to handle large datasets; the goal is to integrate
LSML into recognition systems to provide increased invariance to transformations.

Acknowledgements

This work was funded by the following grants and organizations: NSF Career Grant #0448615, Alfred P. Sloan Research
Fellowship, NSF IGERT Grant DGE-0333451, and UCSD Division of Calit2. We would like to thank Sameer Agarwal,
Kristin Branson, and Matt Tong for valuable input and Anna Shemorry for helping us make it through the deadline.

References

[1] E. Di Bernardo, L. Goncalves and P. Perona.US Patent 6,552,729: Automatic generation of animation of synthetic characters., 2003.

[2] Y. Bengio and M. Monperrus. Non-local manifold tangent learning. In NIPS. 2005.

[3] Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and

spectral clustering. In NIPS, 2004.

[4] D. Beymer and T. Poggio. Face recognition from one example view. In ICCV, page 500, Washington, DC, USA, 1995. IEEE Computer Society.

[5] Volker Blanz and Thomas Vetter. Face recognition based on fitting a 3D morphable model. PAMI, 25(9):1063–1074, 2003.

[6] M. Brand. Charting a manifold. In NIPS, 2003.

[7] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite: driving visual speech with audio. In SIGGRAPH, pages 353–360, 1997.

[8] E. Chuang, H. Deshpande, and C. Bregler. Facial expression space learning. In Pacific Graphics, 2002.

[9] G. J. Edwards, T. F. Cootes, and C. J. Taylor. Face recognition using active appearance models. ECCV, 1998.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

[11] N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of appearance and shape. In ICCV, 2003.

[12] D. Keysers, W. Macherey, J. Dahmen, and H. Ney. Learning of variability for invariant statistical pattern recognition. ECML, 2001.

[13] T. Moriyama, T. Kanade, J. Xiao, and J. F. Cohn. Meticulously detailed eye region model. PAMI, 2006.

[14] H. Murase and S.K. Nayar. Visual learning and recognition of 3D objects from appearance. IJCV, 1995.

[15] R. Rao and D. Ruderman. Learning Lie groups for invariant visual perception. In NIPS, 1999.

[16] L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. JMLR, 2003.

[17] A. Schödl, R. Szeliski, D.H. Salesin, and I. Essa. Video textures. In SIGGRAPH, 2000.

[18] B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neur. Comp., 1998.

[19] P. Simard, Y. LeCun, and J. S. Denker. Efficient pattern recognition using a new transformation distance. In NIPS, 1993.

[20] P. Simard, Y. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in pattern recognition-tangent distance and tangent propagation. In

Neural Networks: Tricks of the Trade, 1998.

[21] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2000.

[22] Joshua B. Tenenbaum and William T. Freeman. Separating style and content with bilinear models. Neural Computation, 12(6):1247–1283, 2000.

[23] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. In CVPR04.

[24] Z. Zhang and Zha. Local linear smoothing for nonlinear manifold learning. Technical report, 2003.

Appendix

Notation:
a Scalar
a Vector

ai Vector indexed for some purpose

ai ith element of the vector a
A Matrix

Ai Matrix indexed for some purpose

A·j j th column of the matrix A
Ai· ith row of the matrix A
vec (A) vector version of the matrix A
A+ Pseudo-inverse of A
‖x‖2

2
squared L2 norm of x

‖A‖2

F
squared Frobenius norm of A

Variables:
D dim. of original space
d dim. of projected space
n number of data points
f number features per point

xi [D × 1] i ∈ [n], data point

f i [f × 1] i ∈ [n], features of xi

Ni indices of neighbors of xi

Hθ Hθ : R
D → R

D×d

Hi [D × d] Hi = Hθ(x
i)(θ fixed)

ǫ
ij , Ei free parameters

∆i [D × |Ni|] ∆i
·j = xj − xi

U iΣiV i⊤ SVD of ∆i

Appendix A: Equivalence of error1(θ) and error2(θ)

error1(θ) = min
{ǫ

ij}

n❳
i=1

❳
j∈N i

✌✌✌Hθ(x
i)ǫij − (xj − x

i)
✌✌✌2

2

error2(θ) = min
{Ei}

n❳
i=1

✌✌✌Hθ(x
i)Ei − U iΣi

✌✌✌2

F

Fixing θ we can solve for each ǫ
ij and Ei and rewrite error1(θ) and error2(θ) as:

error1(θ) = min
{ǫ

ij}

n❳
i=1

❳
j∈N i

✌✌✌Hi
ǫ

ij − ∆i
·j

✌✌✌2

2

=

n❳
i=1

❳
j∈N i

✌✌✌✏HiHi+ − I
✑

∆i
·j

✌✌✌2

2

error2(θ) = min
{Ei}

n❳
i=1

✌✌✌HiEi − U iΣi
✌✌✌2

F
=

n❳
i=1

✌✌✌✏HiHi+ − I
✑

U iΣi
✌✌✌2

F

We show the equivalence of these two forms, using the facts that ‖A‖2

F
= tr(A · A⊤), ‖x‖2

2
= tr(xx⊤), and for any

unitary matrix V the following holds:
P

j

�
Vj·

⊤ · Vj·

✁
= I . Proof:

error1(θ) =

n❳
i=1

❳
j∈N i

✌✌✌✏HiHi+ − I
✑

∆i
·j

✌✌✌2

2

=
❳

i

❳
j∈Ni

tr

✒✏
HiHi+ − I

✑
∆i

·j∆
i
·j⊤

✏
HiHi+ − I

✑⊤✓

=
❳

i

❳
j∈Ni

tr

✒✏
HiHi+ − I

✑
· U iΣiV i

·j
⊤
· V i

·jΣ
i⊤U i⊤ ·

✏
HiHi+ − I

✑⊤✓

=
❳

i

tr

✵
❅✏HiHi+ − I

✑
· U iΣi ·

❳
j∈Ni

✏
V i
·j

⊤
· V i

·j

✑
· Σi⊤U i⊤ ·

✏
HiHi+ − I

✑⊤✶❆
=
❳

i

tr

✒✏
HiHi+ − I

✑
· U iΣi · Σi⊤U i⊤ ·

✏
HiHi+ − I

✑⊤✓
as V i

is unitary

=
❳

i

✌✌✌✏HiHi+ − I
✑

U iΣi
✌✌✌2

F
= error2(θ)

Appendix B: Minimization for General Manifolds

Here we use the linear parametrization of HΘ: HΘ is parameterized by Θ = (Θ1, · · · , ΘD), where each Θk is a d × f
matrix. The total number of parameters is thus Ddf . HΘ has the following form:

HΘ(xi) =
❤
Θ1

f
i · · ·ΘD

f
i
✐⊤

Plugging HΘ into error2(θ) gives the new error function errorlin(θ):

errorlin(θ) = min
{Ei}

n❳
i=1

✌✌✌HΘ(xi)Ei − U iΣi
✌✌✌2

F

= min
{Ei}

n❳
i=1

D❳
k=1

✌✌✌f i⊤Θk⊤
Ei − U i

k·Σ
i
✌✌✌2

2

Minimize with respect to Θ:

1. Initialize Θ randomly.

2. Loop:

(a) For each i, solve for the best Ei given the Θk’s:

Ei = arg min
{Ei}

D❳
k=1

✌✌✌f i⊤Θk⊤
Ei − U i

k·Σ
i
✌✌✌2

2

=

✷
✻✻✹

f i⊤Θ1⊤

...

f i⊤ΘD⊤

✸
✼✼✺

+ ✷
✻✹

U i
1·Σ

i

...

U i
D·Σ

i

✸
✼✺

(b) For each k, solve for the best Θk given the Ei’s:

Θk = arg min
Θk

n❳
i=1

✌✌✌f i⊤Θk⊤
Ei − U i

k·Σ
i
✌✌✌2

2

= arg min
Θk

n❳
i=1

✌✌✌✏Ei⊤ ⊗ f
i⊤
✑

vec
✏
Θk⊤

✑
− vec

✏
U i

k·Σ
i
✑✌✌✌2

2

Since vec
�
U i

k·Σ
i
✁

= ΣiU i
k·

⊤
, the least squares solution for Θk becomes:

vec
✏
Θk⊤

✑
=

✷
✻✹

E1⊤ ⊗ f1⊤

...

En⊤ ⊗ fn⊤

✸
✼✺

+ ✷
✻✹

ΣiU1
k·

⊤

...

ΣiUn
k·

⊤

✸
✼✺

Adding a regularization term on the Eis and Θks is important for achieving good solutions. The error function becomes:

error
′
lin(θ) = errorlin(θ) + λE

n❳
i=1

✌✌✌Ei
✌✌✌2

F
+ λθ

D❳
k=1

✌✌✌Θk
✌✌✌2

F

When computing the optimal Θk and Ei, the above equations needs to be modified only slightly. The scheme is similar

to solving for x = arg minx ‖Ax − b‖2

2
+λ ‖x‖2

2
, in which case the solution is simply obtained by taking the derivative

and setting to 0: x = (A⊤A + λI)−1A⊤b. The above equations are adjusted similarly.

Appendix C: Minimization for Image Manifolds

K ≤ D patches of size s × s are extracted from each image. After clustering the patches to obtain f clusters, for each
patch a length f feature vector is computed, and for each image i the feature vectors for each patch are stacked in a
matrix F i (of size f × K). For images, there is a single Θ (of size d × f). The error, again derived from error2(θ) is:

errorimg(θ) = min
{Ei}

n❳
i=1

✌✌✌HΘ(xi)Ei − U iΣi
✌✌✌2

F

= min
{Ei}

n❳
i=1

✌✌✌F i⊤Θ⊤Ei − U iΣi
✌✌✌2

F

Minimize with respect to Θ:

1. Initialize Θ randomly.

2. Loop:

(a) For each i, solve for the best Ei given Θ:

Ei =
✏
F i⊤Θ⊤

✑+

U iΣi

(b) Solve for the best Θ given the Ei’s:

Θ = arg min
Θ

n❳
i=1

✌✌✌F i⊤Θ⊤Ei − U iΣi
✌✌✌2

F

= arg min
Θ

n❳
i=1

✌✌✌✏Ei⊤ ⊗ F i⊤
✑

vec
✏
Θ⊤
✑
− vec

✏
U iΣi

✑✌✌✌2

F

Hence, vec
�
Θ⊤
✁

is the least square solution of:

✷
✻✹

A11

...

AnD

✸
✼✺ vec

✏
Θ⊤
✑

= vec(U iΣi) =

✷
✻✹

U1
·1Σ

1
11

...
Un

·DΣn
DD

✸
✼✺

where Aij = Ei
·j

⊤
⊗ F i⊤. As the left matrix is of size nDK × df , we do not solve this least squares

problem directly, but rather transform the equation to:

✷
✻✹

A11

...

AnD

✸
✼✺

⊤ ✷
✻✹

A11

...

AnD

✸
✼✺ vec

✏
Θ⊤
✑

=

✷
✻✹

A11

...

AnD

✸
✼✺

⊤ ✷
✻✹

U1
·1Σ

1
11

...
Un

·DΣn
DD

✸
✼✺

✥
n❳

i=1

D❳
j=1

Aij⊤Aij

✦
vec
✏
Θ⊤
✑

=

n❳
i=1

D❳
j=1

Σi
jjA

ij⊤U i
·j

This equation is simpler to solve as the left matrix is only df × df and typically full rank.

Adding a regularization term is similar to the case for general manifolds.

Appendix D: Summary of the Algorithms

LSML for General Manifolds

INPUT

xi: input data points (1 ≤ i ≤ n) in R
D

N i: neighbors of xi (e.g. using kNN)
d: manifold dimensionality
f : number of RBFs (controls smoothness)

PRECOMPUTATIONS

µ
j , σ: Run K-means on the xi with f clus-

ters; set µ
j to the cluster centers. Set σ

to twice the average distance between a
cluster and its nearest neighbor.

f i: Features: f i
j = exp(

✌✌xi − µ
j
✌✌2

2
/2σ2)

U i, Σi: For each xi, compute the difference to
neighbor matrix ∆i and apply the SVD

to get: ∆i = U iΣiV i⊤

MINIMIZATION

∀k, initialize Θk to a random d × f matrix.
while errorlin(θ) still decreases do

∀i, solve for the best Ei given the Θks:

Ei =

✷
✻✻✹

f i⊤Θ1⊤

...

f i⊤ΘD⊤

✸
✼✼✺

+ ✷
✻✹

U i
1·Σ

i

...

U i
D·Σ

i

✸
✼✺

∀k, solve for the best Θk given the Ei’s:

vec
✏
Θk⊤

✑
=

✷
✻✹

E1⊤ ⊗ f1⊤

...

En⊤ ⊗ fn⊤

✸
✼✺

+ ✷
✻✹

ΣiU1
k·

⊤

...

ΣiUn
k·

⊤

✸
✼✺

end while

LSML for Image Manifolds

INPUT

xi: input images (1 ≤ i ≤ n) in R
D

N i: neighbors of xi (e.g. from proximity in video)
d: manifold dimensionality
f : number of RBFs (controls smoothness)
s: patch width/height

PRECOMPUTATIONS

µ
j , σ: Run K-means on large number of flat-

tened s× s image patches. Set µ
j , σ as

in general case.

F i: Ftrs: F i
jk = exp(

✌✌pik − µ
j
✌✌2

2
/2σ2)

where pik is the kth patch in image i.
U i, Σi: For each xi, compute the difference to

neighbor matrix ∆i and apply the SVD

to get: ∆i = U iΣiV i⊤

MINIMIZATION

Initialize Θ to a random d × f matrix.
while errorimg(θ) still decreases do

∀i, solve for the best Ei given Θ:

Ei =
✏
F i⊤Θ⊤

✑+

U iΣi

solve for the best Θ given the Ei’s:

Aij = Ei
·j

⊤
⊗ F i⊤

A =

✥
n❳

i=1

D❳
j=1

Aij⊤Aij

✦

vec
✏
Θ⊤
✑

= A+

n❳
i=1

D❳
j=1

Σi
jjA

ij⊤U i
·j

end while

