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Abstract

Security of Freeway Traffic Systems:
A Distributed Optimal Control Approach

by

Jack Daniel Reilly
Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

This dissertation develops a general, scalable framework for controlling dynamical, networked
systems based on mathematical optimization theory, with a strong focus on applications
to freeway traffic management. The generality of the framework allows for controllers to
consider high-level objectives applied to systems with complex, nonlinear dynamics.

A continuous freeway traffic model and its discretization was developed specifically
for onramp metering control. The application serves as the motivating example behind
the theory developed subsequently. To apply effective control on such systems, a discrete-
adjoint-based model-predictive-control (MPC) approach for controlling networked systems
of conservation laws is presented, with explicit derivations for ramp metering applications.
Linear scalability of the method with respect to network size and time horizon is derived for
the discrete adjoint computations. To enable a more asynchronous control architecture, the
dissertation presents a distributed optimization algorithm for dynamical, networked systems.
The algorithm allows for a physical network to be partitioned into subnetworks that opti-
mize locally and communicate only with adjacent subnetworks to achieve a globally optimal
performance.

Within the context of the Connected Corridors project associated with UC Berkeley
PATH, the developed theory was implemented in a production-level traffic management
and simulation environment. Numerical examples applied to the San Diego I15 freeway
are presented alongside the theory to motivate the highly practical aspects of the work.
Simulations demonstrate the superiority of the MPC approach over existing methods widely
used in practice.

The optimization tools are applied to an investigation of security and vulnerabilities of
traffic control systems. The potential impact of a compromise of freeway traffic metering
lights is analyzed using MPC and multi-objective optimization tools. Several realizable
scenarios that exploit traffic system vulnerability locations are constructed and simulated to
illustrate the severity of compromises.

Investigations are made into optimal rerouting strategies while controlling only a subset
of network flow. A novel behavioral model is developed to account for the interaction of
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controllable and uncontrollable agents sharing a single flow network, where latency is a func-
tion of total flow. Using static freeway traffic models and communication network models,
a framework based on convex optimization techniques is presented for computing rerouting
policies, with numerical examples given for both freeway and communication networks.
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Chapter 1

Introduction

1.1 Motivation

Modern infrastructure, particularly systems associated with public use such as freeway
networks and water supplies, exist within a world with decreasing physical space and re-
sources. For instance, freeways often cannot add additional lanes to accommodate increased
demands. Thus, one must rely upon better management systems and control algorithms in
order to maximize performance within the limitations of the existing system. These “smart”
systems make use of sensing instrumentation to estimate real-time conditions and modeling
of the underlying physical dynamics to predict and plan for future states.

The focus of this thesis is the development of methods for the advanced modeling and
control of such networked dynamical systems. The goal is to provide operational managers
with scalable, flexible, and robust algorithms that can leverage the well-instrumented and
highly-connected control infrastructure present on modern systems.

The remainder of this section discusses the Connected Corridors project (Section 1.2)
on integrated corridor management (ICM), which served as the context in which this work
was conducted, followed by an overview of model predictive control (MPC) methods and
their suitability in solving some of the main objectives put forth in the Connected Corridors
project (Section 1.3). The section concludes with a summary of the original contributions
presented in this thesis (Section 1.4).

1.2 Connected Corridors

Connected-Corridors is a project funded by the California Department of Transportation
with the goal of creating the next generation of traffic management tools [2, 78]. While most
current systems consider the freeway networks as independent from the city-street arterial
road networks, Connected Corridors is tasked with creating an integrated approach to traffic
management (referred to as ICM) which accounts for their dual performance. The project
has demonstrated innovative control and estimation approaches to ICM on macroscopic and
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microscopic simulation environments (presented in Section 3.2.3), with the ultimate plan
of transferring the knowledge to a physical test-site within California located near the I210
freeway.

The proposed ICM system possesses the following capabilities.

• Estimation: Operators have access to a real-time estimation of the traffic state along
the major freeways and adjacent arterials [128, 59, 31].

• Simulation: Well-calibrated and efficient traffic models allow operators to simulate
many different future traffic conditions [82, 28, 58].

• Control: Traffic signal and message sign plans are computed online for a variety of
specialized objectives and serve as an optimized decision support tool [104, 100].

Control schemes implemented by the system include coordinated traffic light metering
plans on freeway onramps (commonly referred as ramp metering, see Section 2.2) and traffic
flow diversion around incidents via changeable message signs [113].

Estimation

Prediction

Calibration

Dynamic 
Reroute

Decision Support

Ramp 
Metering

FW -
Arterial

Coordination

Model
Predictive
Control
Adjoint 
Method

Traffic 
Simulator

Figure 1.1: The freeway state estimation, prediction and calibration submodules enable an
MPC-based framework that computes coordinated, predictive decision-support strategies for
numerous applications. Limited customization is required to extend the adjoint-based MPC
controller to specific objectives or actuation types.

To satisfy the above requirements, Connected Corridors focuses on a number of sub-
modules which are developed independently, but composed in a variety of ways to create
high-level, comprehensive support tools. Figure 1.1 shows several of the developed submod-
ules and how they can be composed to create an MPC controller (explained in Section 1.3).
Subsequently, the controller submodule is leveraged by a number of actuation strategies
which have similar architectural requirements. For instance, both ramp metering and dy-
namic rerouting require real-time estimation and a calibrated freeway model to compute
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effective control strategies. Via submodule composition, much of the technology can be
reused between the applications. This work contains the theory and implementation of
constructing such controller submodules which efficiently exploit the structure of freeway
networks.

1.3 Model Predictive Control

Central to the Connected Corridors approach of freeway traffic decision support is the
concept of model predictive control (MPC) [84, 88, 38]. Generally speaking, MPC schemes
successively compute a control policy which maximizes the performance, according to a
provided criteria, of the system over the immediate future, where this work assumes the
future to be of finite duration. The policy generated from the MPC scheme is recomputed as
frequently as the real-time state estimation and computation times permit. Thus, associated
with an MPC problem are two time periods: the update time representing how often the
MPC policy is recomputed online, and the time horizon representing how far into the future
for which the MPC policy will account. A more detailed treatment of MPC schemes is given
in Section 3.2.2.

The requirements of an online MPC controller for a traffic system are depicted in Fig-
ure 1.1. At the base of the method is a mathematical model of the physical system, referred
to as the forward system. These models often require calibration using historical sensor mea-
surements to set the model parameters. To fully specify the simulation, an initial condition
is specified (i.e. estimation), as well as the boundary conditions at the exteriors of the system
over the entire time horizon of the MPC problem (i.e. prediction). All these requirements
are satisfied by components within the Connected Corridors system [82, 28, 128], making
MPC control a natural fit for research and development in the project.

The focus of this thesis is the efficient and flexible design of MPC optimization techniques
and their applications to freeway control systems. At the heart of the developed approach
is the discrete adjoint method for gradient computations within first-order gradient descent
methods (Chapter 3). The efficiency of the developed method enables online application of
MPC to the control of large freeway networks (on the order of tens of miles) with frequent
recomputations (on the order of one minute) to “close the loop” with real-time measurements.

In addition to the well-established ramp metering control infrastructure, the emergence
of smartphones and connected vehicles and crowd-sourcing data collection [101, 32, 26] has
made mass rerouting strategies a new, viable form of control. This thesis showcases this
potential by including an investigation of rerouting strategies for a subset of flow on networks.
Inspired by the increasing penetration of navigation devices in vehicles (e.g. dedicated units,
smartphone applications), a single navigation provider may advise a signification portion of
the total flow on some networks, thus potentially affecting traffic conditions based on their
advice. This potential can be harnessed to reduce the inefficiencies of selfish routing [110, 71]
and drive network behavior towards socially optimal conditions.
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1.4 Contributions

This thesis contains the following contributions to the problem of optimal control of
networked dynamical systems, applied to the field of traffic control.

• A novel continuous freeway traffic model suitable for finite-horizon optimal
control problems [27, 104].

– The model represents an extension of the networked Lighthill-Richards-Whitham
(LWR) PDE traffic model [75, 106] proposed in [42], where onramps are modeled
as ODE buffers to guarantee strong boundary conditions and flow conservation
at the network boundaries.

– A discretized version of the continuous model is derived for optimal control ap-
plication using Godunov’s method [49, 73].

• A method for optimal control of networked conservation law systems based
on discrete adjoint calculations [104, 113].

– This work develops a framework for converting a continuous time and space con-
trol problem on a physical network, where edges behave according to a conserva-
tion law, into a discrete, finite-horizon optimal control problem using Godunov
discretization.

– The application of the discrete adjoint method [45, 30, 25, 55] to compute gradi-
ents for the above problem is presented, with an analysis of the linear scalability
of the approach in discrete time and discrete space for sparse network structures.

– An explicit formulation of the discrete adjoint method is given for the application
of coordinated ramp metering control [93, 38, 69, 50] for freeway networks.

– Simulations of MPC on a macroscopic model of the I15 South Freeway in San
Diego, California demonstrate the practical nature and the robustness to mea-
surement noise of the research.

• A decentralized algorithm and control infrastructure for networked dynam-
ical systems [100].

– This thesis presents a new distributed optimization method based on the alternat-
ing directions methods of multipliers (ADMM) [10, 41, 80] algorithm for solving
optimal control problems over subnetworks in parallel. The splitting method is
done in such a way to only require communication between physically-neighboring
subnetworks.

– Differing from similar work where subsystems only share control variables [80,
15], the presented method allows for subsystems to share both control and state
variables, an assumption necessary for the distributed control of traffic networks
and hydrological systems.
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– A discrete adjoint formulation is presented for efficient solution of subsystems
with coupled control and state variables.

– An implementation of a distributed ramp metering and variable speed limit con-
troller is simulated on a realistic macroscopic freeway network, demonstrating
advantages over other proposed communicative controllers.

• An analysis of the security of traffic control systems and coordinated ramp
metering attacks [103].

– A classification of traffic system vulnerability locations is constructed across such
categories as cost of attack, effectiveness, and directness of control.

– A novel analysis of the potential damage and impact of coordinated ramp meter-
ing attacks is conducted using adjoint-based optimal control and multi-objective
optimization tools.

– Illustrative attack scenarios are constructed and numerically investigated on real-
istic freeway networks. A web-based coordinated ramp metering attack tool was
created to implement the interactive optimization approaches presented in the
work [102].

• A framework for rerouting a subset of vehicles on freeway networks.

– As opposed to standard system-optimal routing problems [130, 68] where all flow
is controllable, we construct a network-flow optimization problem which allows
one to specify a compliance rate of cooperative vehicles. The proposed model
captures the delays induced by the noncompliant vehicles.

– To account for the possibility of noncompliant drivers adapting to the new flow
conditions, we propose a behavioral model, referred to as bounded tolerance, which
assumes that noncompliant drivers have bounded rationality and will only switch
routes under significant increases in delay.

– Numerical examples for communication networks and freeway systems demon-
strate the effectiveness of the method.

1.5 Organization

The rest of the article is organized as follows.
Chapter 2 presents the continuous and discrete freeway models which serves as the

running application of the theory presented subsequently. After covering preliminaries on
networked PDE systems, the derivation of and motivation behind the model are given.

Chapter 3 presents the discrete adjoint approach to optimal control of networked con-
servation laws. Presented first is a general overview of the discrete adjoint method, followed
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by its specific instantiation for discretized physical network systems. The application to co-
ordinated ramp metering is then presented with numerical examples. The chapter concludes
with the distributed, asynchronous formulation of the adjoint optimal control method via
subnetwork splitting.

Chapter 4 presents a study of traffic control systems and their vulnerabilities. After
defining the specific control system under consideration and its security weaknesses, the
work gives an in-depth study of coordinated ramp metering attacks.

Finally, we conclude with a overview of the work presented, as well as directions for
future research.

The material presented in Chapters 2 and 3 was done collaboratively as part of the
Optimal Reroute Strategies for Traffic Management (ORESTE) project between UC Berkeley
and INRIA research institute in Sophia-Antipolis, France. Chapter 4 also contains research
stemming from collaborations with Sebastien Martin and Mathias Payer. Chapters 3.3.3
and 5 contains research conducted independently.
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Chapter 2

Freeway Network Model

The problem of freeway oversaturation is well-documented [114], with $100 billion in
costs and 56 billion lbs in CO2 attributed to roadway congestion. More efficient freeway
management systems are developed to counter the above costs. Examples of such control
systems include the following:

• Ramp metering: Traffic lights installed on the onramps leading to freeway main-
lines serve the purpose of limiting the amount of total flow entering the mainline
during peak operation periods, when vehicle demand exceeds the total capacity of
the mainline. Feedback-based ramp metering algorithms have been applied success-
fully in practice [94, 93, 95], while many predictive algorithms have shown promise in
simulation environments [104, 50, 69].

• Variable speed limits: While metering on onramps is one way of reducing demand,
the mainline flow can be reduced by limiting the maximum speed of its vehicles [84].

• Flow rerouting: In situations where excess demand exists on the neighboring road
network or vehicles choose routes selfishly or suboptimally [71, 63, 70, 111], then route-
choice intervention can lead to improved traffic conditions [113, 130].

In order to implement the above traffic control strategies, one requires an accurate and
computationally efficient model of freeway dynamics which is sensitive to time-varying de-
mands and temporal changes in the physical properties of the freeway (e.g. lane closure
during reroutes, weather influencing maximum speeds). A common approach, which this
thesis adopts, is to treat vehicle flow as a continuum of vehicle density and develop con-
tinuous, distributed parameter system models tracking the evolution of the traffic density.
These macroscopic traffic models have been shown to accurately capture traffic dynamics [92]
and possess better analytical and computational properties than microscopic, particle-based
models. While microscopic models have a potential for greater extensibility and robustness,
they are often prohibitively hard to calibrate due to the number of parameters and harder
to analyze compared to macroscopic models. For these reasons, the following work focuses
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on macroscopic models for development of theory and models, while leveraging microscopic
models occasionally for validation.

This section first covers the preliminaries of continuous, conservation laws, a type of
partial differential equation (PDE) system, and discretization techniques applied to conser-
vation laws for computational and numerical purposes. Building off the preliminaries, we
then present novel continuous and discrete freeway traffic models [27] which are specifically
developed for freeway traffic management applications.

2.1 Preliminaries of Networked Conservation Laws

2.1.1 Networked Conservation Laws

We consider the non-linear conservation equation of the form:

∂tρ(t, x) + ∂xf(ρ(t, x)) = 0 (t, x) ∈ R+ × R (2.1)

where ρ = ρ(t, x) ∈ R+ is the scalar conserved quantity and f : R+ → R+ is a Lipschitz
continuous flux function [12]. Throughout the article we suppose that f is a concave function.
The Cauchy problem to solve for the evolution of the conservation law is then

{
∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R (2.2)

where ρ0(x) is the initial condition. It can be shown that there exists a unique weak entropy
solution for the Cauchy problem(2.2), as described in Definition 2.1.1.

Definition 2.1.1. A function ρ ∈ C0(R+; L1
loc ∩BV) is an admissible solution to (2.2) if ρ

satisfies the Kružhkov entropy condition [72] on (R+ × R), i.e.,for every k ∈ R and for all
ϕ ∈ C1

c (R2;R+),
∫
R+

∫
R(|ρ− k|∂tϕ+ sgn (ρ− k)(f(ρ)− f(k))∂xϕ)dxdt

+
∫
R |ρ0 − k|ϕ(0, x)dx ≥ 0. (2.3)

For further details regarding the theory of hyperbolic conservation laws we refer the
reader to [42, 33].

Networks A network of hyperbolic conservation laws such as (2.1) is defined as a set of
N links L = {1, . . . , N}, with junctions J . Each junction j ∈ J is defined as the union
of two non-empty sets: the set of nj incoming links Inc(j) =

(
l1j , . . . , l

nj

j

)
⊂ L and the set

of mj outgoing links Out(j) =
(
l
nj+1
j , . . . , l

nj+mj

j

)
⊂ L. Each link l ∈ L has an associated

upstream junction jU
l ∈ J and downstream junction jD

l ∈ J , and has an associated spatial
domain (0, Ll) over which the evolution of the state on link l, ρl(t, x), solves the Cauchy
problem:
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{
(ρl)t + f(ρl)x = 0

ρl(0, x) = ρ0
l (x)

(2.4)

where ρ0
l ∈ BV ∩ L1

loc(Li;R) is the initial condition on link l. For simplicity of nota-
tion, this section considers a single junction j ∈ J with Inc(j) = (1, . . . , n) and Out(j) =
(n+ 1, . . . , n+m).

Remark 2.1.1. There is redundancy in the labeling of the junctions, if link i is directly
upstream of link j, then we have jDl = jUj . See Fig. 2.2.

2.1.2 Riemann Solvers

While the dynamics on each link ρl(t, x) is determined by (2.4), the dynamics at junc-
tions still needs to be defined. This section describes Riemann solvers, which provide the
solution of the system at junction points. The solution of Riemann problems between 1× 1
junctions serve as building blocks for Riemann solvers, and thus we describe Riemann prob-
lems first.

Definition 2.1.2. Riemann Problem.
A Riemann problem is a Cauchy problem (2.2) with a piecewise-constant initial datum

(called the Riemann datum):

ρ̄(x) =

{
ρ− x < 0

ρ+ x ≥ 0
(2.5)

We denote the corresponding self-similar entropy weak solutions by WR

(
x
t
; ρ−, ρ+

)
.

Definition 2.1.3. Riemann problem at junctions.
A Riemann problem at j is a Cauchy problem corresponding to an initial datum (ρ̄1, . . . , ρ̄n+m) ∈

Rn+m which is constant on each link l.

Definition 2.1.4. A Riemann solver is a map that assigns a solution to each Riemann
initial data. For each junction j it is a function

RS : Rm+n → Rm+n

(ρ̄1, . . . , ρ̄n+m) 7→ RS(ρ̄1, . . . , ρ̄n+m) = (ρ̂1, . . . , ρ̂n+m)

where ρ̂l provides the trace for link l at the junction for all time t ≥ 0.

For a link i ∈ Inc(j), the solution ρi(t, x) over its spatial domain x < 0 is given by the
solution to the following Riemann problem:



Section 2.1. Preliminaries of Networked Conservation Laws 10

Figure 2.1: Solution of boundary conditions at junction. The boundary conditions
(ρ̂1, . . . , ρ̂5) are produced by applying the Riemann solver to the initial conditions,
(ρ̄1, . . . , ρ̄5).





(ρl)t + f(ρl)x = 0

ρl(0, x) =

{
ρ̄l x < 0

ρ̂l x ≥ 0,

(2.6)

The Riemann problem for an outgoing link is defined similarly, with the exception that
ρl(0, x > 0) = ρ̄l and ρl(0, x ≤ 0) = ρ̂l.

Fig. 2.1 gives a depiction of Riemann solution at the junction.
Note that the following properties for the Riemann Solver holds:

• All waves produced from the solution to Riemann problems on all links, generated by
the boundary conditions at a junction, must emanate out from the junction. More-
over, the solution to the Riemann problem on an incoming link must produce waves
with negative speeds, while the solution on an outgoing link must produce waves with
positive speed.

• The sum of all incoming fluxes must equal the sum of all outgoing fluxes:

∑

i∈Inc(j)

f(ρ̂l) =
∑

j∈Out(j)

f(ρ̂j).

This condition guarantees mass conservation at junctions.

• The Riemann solver must produce self-similar solutions, i.e.

RS(RS(ρ̄1, . . . , ρ̄n+m)) = RS(ρ̄1, . . . , ρ̄n+m) = (ρ̂1, . . . , ρ̂n+m)

The justification for these conditions can be found in [42].
The above conditions are not always sufficient to guarantee a unique Riemann solver.

Additional conditions are added for specific applications to achieve uniqueness, chosen to
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model physical phenomena at junctions. In Section 2.2.2, we detail the additional conditions
added to the ramp-metering solver which enforce flux maximization along the freeway main-
line sections and specify a merging priority model for vehicles entering from the onramps.

2.1.3 Godunov Discretization

In order to find approximate solutions we use the classical Godunov scheme [49]. We
use the following notation: xj+ 1

2
are the cell interfaces and tk = k∆t the time with k ∈ N

and j ∈ Z. xj is the center of the cell, ∆x = xj+ 1
2
− xj− 1

2
the cell width, and ∆t is the time

step.

Godunov scheme for a single link. The Godunov scheme is based on the solutions
of exact Riemann problems. The main idea of this method is to approximate the initial
datum by a piecewise constant function, then the corresponding Riemann problems are
solved exactly and a global solution is found by piecing them together. Finally one takes the
mean on the cell and proceed by iteration. Given ρ(t, x), the cell average of ρ at time tk in
the cell Cj =]xj− 1

2
, xj+ 1

2
] is given by

ρkj =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

ρ(tk, x)dx. (2.7)

Then we proceed as follows:

1. We solve the Riemann problem at each cell interface xj+ 1
2

with initial data (ρkj , ρ
k
j+1).

2. Compute the cell average at time tk+1 in each computational cell and obtain ρk+1
j .

We remark that waves in two neighbouring cells do not intersect before ∆t if the following
Courant–Friedrichs–Lewy (CFL) condition holds, λmax ≤ ∆x

∆t
, where λmax = max

a
|f ′(a)| is

the maximum wave speed of the Riemann solution at the interfaces.
Godunov scheme can be expressed as follows:

ρk+1
j = ρkj −

∆t

∆x
(gG(ρkj , ρ

k
j+1)− gG(ρkj−1, ρ

k
j )), (2.8)

where gG is the Godunov numerical flux given by

gG : R× R → R(
ρj, ρj+1

)
7→ gG

(
ρj, ρj+1

)
= f(WR(0; ρj, ρj+1)).

where WR is as defined in Definition 2.1.2.
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or or

Figure 2.2: Space discretization for a link l ∈ L. Step size is uniform ∆x, with discrete value
ρkj representing the state between xj−1 and xj.

Figure 2.3: Self-similar solution for Riemann problem with initial data
(
ρkj , ρ

k
j+1

)
. The self-

similar solution at x
t

= 0 for the top diagram (i.e. WR

(
0; ρkj , ρ

k
j+1

)
), gives the flux solution

to the discretized problem in the bottom diagram.
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Godunov scheme at junctions. The scheme just discussed applies to the case in which
a single cell is adjacent to another single cell. Yet, at junctions, a cell may share a boundary
with more than one cell. A more general Godunov flux can be derived for such cases. For
incoming links near the junction, we have:

ρk+1
L∆
l

= ρkL∆
l
− ∆t

∆x
(f(ρ̂kL∆

l
)− gG(ρkL∆

i −1, ρ
k
L∆
i

)), l ∈ {1, . . . , n}

where L∆
i are the number of cells for link i (see Fig. 2.2) and ρ̂ki is the solution of the Riemann

solver RS
(
ρk1, . . . , ρ

k
n+m

)
for link l at the junction. The same can be done for the outgoing

links:

ρk+1
1 = ρk1 −

∆t

∆x
(gG(ρk1, ρ

k
2)− f(ρ̂k1)), l ∈ {n+ 1, . . . , n+m}

Remark 2.1.2. Using the Godunov scheme, each mesh grid at a given tk can be seen as a
node for a 1-to-1 junction with one incoming and one outgoing link. It is therefore more
convenient to consider that every discretized cell is, rather, a link with both an upstream and
downstream junction. Thus, we consider networks in which the state of each link l ∈ L at a
time-step k ∈ {0, . . . , T − 1} is represented by the single discrete value ρkl .

The previous remark allows us to develop a generalized update step for all discrete state
variables. We first introduce a definition in order to reduce the cumbersome nature of the
preceding notation. Let the state variables adjacent to a junction j ∈ J at a time-step

k ∈ {0, . . . , T − 1} be represented as ~ρkj :=

(
ρk
l1j
, . . . , ρk

l
nj+mj
j

)
. Similarly, we let the solution

of a Riemann solver be represented as ~̂ρj := RS
(
~ρj
)
. Then, for a link l ∈ L with upstream

and downstream junctions, jU
l and jD

l , and time-step k ∈ {0, . . . , T − 1}, the update step
becomes:

ρk+1
l = ρkl −

∆t

∆x

(
f
((
RS
(
~ρkjDl

))
l

)
− f

((
RS
(
~ρkjUl

))
l

))

= ρkl −
∆t

∆x

(
f
((
~̂ρjDl

)
l

)
− f

((
~̂ρjUl

)
l

))
(2.9)

where (s)i is the ith element of the tuple s. This equation is thus a general way of writing
the Godunov scheme in a way which applies everywhere, including at junctions.

Working directly with flux solutions at junctions. The equations can be simplified
if we do not explicitly represent the solution of the Riemann solver, ~̂ρj, and, instead, directly
calculate the flux solution from the Riemann data. We denote this direct computation by
gGj , the Godunov flux solution at a junction:

gGj : Rnj+mj → Rnj+mj

~ρj 7→ f
(
RS
(
~ρj
))

= (f(ρ̂1), . . . , f(ρ̂n+m)). (2.10)
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Algorithm 1 Riemann solver update procedure

Input: initial state at time t = k∆t,
(
ρkl : l ∈ L

)

Output: resulting state at time t = (k + 1))∆t,
(
ρk+1
l : l ∈ L

)

for junction j ∈ J :

# Apply Riemann solver to j
~̂ρkj = RS

(
~ρkj
)

for link l ∈ L:
# update density on link l with junction fluxes

ρk+1
l = ρkl −

∆t

∆x

(
f
((
~̂ρkjDl

)
l

)
− f

((
~̂ρkjUl

)
l

))

Algorithm 2 Godunov junction flux update procedure

Input: initial state at time t = k∆t,
(
ρkl : l ∈ L

)

Output: resulting state at time t = (k + 1))∆t,
(
ρk+1
l : l ∈ L

)

for link l ∈ L:
# update density on link l with direct Godonuv fluxes

ρk+1
l = ρkl −

∆t

∆x

((
gGjDl

(
~ρkjDl

))
l
−
(
gGjUl

(
~ρkjUl

))
l

)

This gives a simplified expressions for the update step:

ρk+1
l = ρkl −

∆t

∆x

((
gGjDl

(
~ρkjDl

))
l
−
(
gGjUl

(
~ρkjUl

))
l

)
. (2.11)

Full discrete solution method. We assume a discrete scalar hyperbolic network of PDEs
with links L and junctions J , and a known discrete state at time-step k,

(
ρ̄kl : l ∈ L

)
.

The solution method for advancing the discrete system forward one time-step is given in
Algorithm (1), or alternatively Algorithm (2).

Algorithm 1 takes as input the state at a time-step k for all links
(
ρkl : l ∈ L

)
and

returns the state advanced by one time-step
(
ρk+1
l : l ∈ L

)
. The algorithm first iterates over

all junctions j, calculating all the boundary conditions, ~̂ρkj . Then, the algorithm iterates over

all links l ∈ L to compute the updated state ρk+1
l using the previously computed boundary

conditions, as in 2.9.
Algorithm 2 is similar to Algorithm 1, except that the boundary conditions ~̂ρkj are not

explicitly computed, but rather the Godunov flux solution is used to update the state, as
in 3.1.1. Algorithm 2 is more suitable if a Godunov flux solution is derived for solving
junctions, while Algorithm 1 is more suitable if one uses a Riemann solver at junctions.
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2.2 Continuous and Discrete Traffic Model for Freeway

Control

In this section, we derive and motivate the continuous freeway network traffic model
and discuss its improvements over existing models. We also present the discretized version
of the continuous model, which is used extensively in applications in the remainder of the
thesis.

2.2.1 LWR Equation

The Lighthill-Whitham-Richards (LWR) equation [75, 106] is a scalar conservation law
used to represent the evolution of vehicle density on a section of linear roadway. The distin-
guishing assumptions in the LWR model deal with the flux function, f(ρ), referred to as the
fundamental diagram of traffic. Namely, we assume the following rules on f :

1. f(ρ) = ρv(ρ), where v is the velocity of the vehicle density.

2. v(ρ) is a decreasing function of ρ.

3. f is defined over the values [0, ρmax], where ρmax is considered the jam density.

4. f(0) = f(ρmax) = 0.

The four rules above fit well with our intuition of road traffic. Rules 1 and 2 state
that the flux varies as the velocity varies, and that as the roadway gets more congested,
the speed of the vehicles will only decrease. Rule 3 fits with the physical interpretation of
vehicle as being non-negative, and that there must be an upper limit of vehicle density (due
to minimum car lengths). Rule 4 states that no vehicles will have no flow, and that flow
completely breaks down at the maximum density.

An example of a quadratic fundamental diagram, known as the Greenshields flux func-
tion, is given in Figure 2.4. The term critical density, ρcr, is reserved for the density value
where the maximum vehicle flux, fmax, is obtained. The maximum flux can also be viewed
as the capacity of the road under consideration, where demand in excess of the maximum
flux will lead to congestion and traffic jams.

2.2.2 Continuous PDE-ODE Freeway Model

We concern ourselves with a linear freeway section, meaning that we are only interested
in one freeway mainline, with any number of onramps and offramps coming together at
junctions. While the approach can be readily extended to mainline-to-mainline junctions,
we exclude the analysis for the sake of presentation.
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Figure 2.4: The Greenshields (quadratic) flux function is one example of a fundamental
diagram.

Thus, a freeway network can be viewed as a sequence of junctions, where each junction
contains four links: an upstream mainline, a downstream mainline, an onramp and an of-
framp, as visualized in Figure 2.5. Note that a single mainline link (i.e. a stretch of mainline
in between two junction points) will serve as the upstream mainline of one junction and the
downstream mainline of the subsequent junction.

Figure 2.5: A freeway junction consisting of an upstream mainline I1, downstream mainline
I2, onramp R1 and offramp R2.

Weak Boundary Conditions and Vehicle Conservation

In reality, one cannot consider the evolution of a stretch of freeway in complete isola-
tion with respect to its surrounding traffic network, as the dynamics are coupled at every
junction point via Riemann solvers (Section 2.1.2). Thus, to account for the behavior at the
extremities of the network, one must consider boundary conditions.
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The standard approach to boundary conditions is to prescribe a time-varying density
ρ0(t) at each extremity point of the network. Due to the concave shape of the fundamental
diagram of traffic, density waves may propagate from within the system outwards to the
network extremities, in both the upstream and downstream directions.

As an example, one could consider the behavior upstream of onramp R1 as being the
solution of a Riemann problem of the form in Equation (2.5), where ρ− is the upstream
boundary condition, and ρ+ is the state within an onramp. Whenever f(ρ+) < f(ρ−)
and ρ+ > ρcr, then it can be shown [73, 42] that the vehicle flux across the boundary is
f(ρ+) and is thus insensitive to the value of f(ρ−). One can view this event as a loss of
information at the left boundary of the network, as the backward-moving congestion wave
prevented information about the boundary condition from entering the network. Systems
which possess this property are said to have weak boundary conditions [117].

This property of traffic network modeling is undesirable in traffic management applica-
tions, as the flux of vehicles at network boundaries is dependent upon the state of the system,
which in turn is dependent upon the control scheme being applied. Summarizing, different
control schemes can lead to different vehicle demands, which is not a realistic assumption,
can actually be exploited by control schemes. As the goal of the current traffic model is to
be used in control applications, we develop an alternative approach which effectively turns
the weak boundary conditions into strong boundary conditions which guarantee vehicle flux
conservation.

Onramps as ODE Buffers

Instead of modeling boundary conditions as vehicle densities, we consider a time-varying
boundary flux, D(t) entering onramp R1 and make the simplifying assumption that the
offramp R2 has infinite capacity and thus does not influence the evolution of the system1.

The onramp R1 stores the boundary flux in a vehicle buffer modeled by the following
ordinary differential equation (ODE):

dl(t)

dt
= D(t)− r(t), t ∈ R+, (2.12)

where r is the flux of vehicles exiting the onramp onto the downstream mainline I2.
The onramp ODE models the conservation of boundary flux in a vertical buffer of infinite

capacity, as opposed to a spatially distributed horizontal queue with finite capacity, until
there is enough capacity on the downstream mainline to empty the queue.

As the offramp R2 possesses no state, it does not require an ODE buffer. The behavior
of vehicles at the offramp is captured via a split ratio parameter β(t) ∈ [0, 1] which specifies
the fraction of vehicles which move from I1 to I2, where 1 − β(t) is the fraction of vehicles

1Motivation behind the offramp model is the focus on ramp-metering applications in this thesis, and
the general lack of available sensor data on freeway offramps, making accurate modeling of offramp state
difficult.
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Figure 2.6: Fundamental diagram (the name of the flux function in transportation literature)
with free-flow speed v, congestion wave speed w, max flux Fmax, critical density ρc, and max
density ρmax.

leaving the freeway from I1 to R2. It is assumed that no vehicles from R1 immediately exit
to R2.

Thus, the Cauchy problem we wish to solve across the four-link system is as follows:

∂tρi + ∂xf(ρi) = 0, (t, x) ∈ R+ × Ii, i = 1, 2 (2.13)

dl(t)

dt
= D(t)− r(t), t ∈ R+ (2.14)

ρi(0, x) = ρi,0(x), On Ii i = 1, 2 (2.15)

l(0) = l0, (2.16)

where ρi,0 is the initial condition on the mainline links Ii and l0 is the initial number of
vehicles in R1.

Riemann Solver for PDE-ODE Model

We assume for our applications that the fundamental diagram has a trapezoidal form
as depicted in Fig. 2.6, where v is the free-flow speed of traffic and w is referred to as the
congestion wave speed.

There are many potential Riemann solvers that satisfy the properties required in Sec-
tion 2.1.2. To guarantee a unique solution for each Riemann datum, we add two modeling
decisions to solve the junction. Let ρ+

1 and ρ−2 be the densities on I1 and I2 (respective)
adjacent to the junction. Let l be the queue length on R1. Then let ρ̂+

1 , ρ̂−2 be the result-
ing Riemann solutions for I1 and I2, while r̂ is the resulting Riemann flux from R1. The
additional modeling decisions are then:

1. The flux solution maximizes the outgoing mainline flux f
(
ρ̂+

1

)

2. When (1) does not give a unique solution, the Riemann solver attempts to satisfy
f
(
ρ̂−2
)

= pf
(
ρ̂+

1

)
, where p ∈ R+ is a merging parameter. The p parameter sets the
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(a) Case 1: Priority
violated due to limited
upstream mainline
demand entering
downstream mainline.

(b) Case 2: Priority
violated due to limited
on ramp demand
entering downstream
mainline.

(c) Case 3: Priority
rule satisfied due to
sufficient demand from
both mainline and on
ramp.

Figure 2.7: Godunov junction flux solution for freeway model. The rectangular region repre-
sents the feasible flux values for I1 (βδ) and R1 (d) as determined by the upstream demand,
while the line with slope 1

β
represents feasible flux values as determined by mass balance.

The βf1 term accounts for only the flux out of I1 that stays on the mainline. The flux
solution, represented by the red circle, is the point on the feasible region that minimizes the
distance from the priority line f1 = pr.

priority of flow from I1 over the flow from R1 when there is limited capacity. Since
(1) permits multiple flux solutions at the junction, (2) is necessary to obtain a unique
solution.

With the necessary restrictions on the Riemann solver in place, we outline the solution
method for the PDE-ODE junction problem. The well-posedness and self-similarity proofs
are given in [27]. The method closely follows that of general LWR network solutions presented
in [42].

For a Riemann datum of
(
ρ+

1 , ρ
−
2 , l
)
, we introduce the following intermediate variables:

• δ = min
(
Fmax, vρ+

1

)
, the maximum allowable flux out of I1.

• d =

{
Fmax if l > 0

min(Fmax, D(t)) if l = 0
, the maximum allowable flux out of R1

• σ = min
(
Fmax, w

(
ρmax − ρ−2

))
, the maximum allowable flux into I2.

The maximal flux into I2 is computed as f2 = min(βδ + d, σ), the minimum between
the upstream demand, and the downstream supply.
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To compute the flux leaving I1, we refer to Figure 2.7. The balance between the fluxes
βf1 (resp. r) entering I2 from I1 (resp. R1) must minimize the deviation from the equation
βf1 = pr. Since flow must be conserved across the junction, we also have the constraint that
the (βf1, r) flows must sum to f2, and thus the resultant flow pair (f1, r) must lie on the line
f2 = βf1 + r, depicted in Figure 2.7. This results in three distinct cases for the f1 solution.

• In Case 1, strict satisfaction of the priority line would lead to an f1 value greater than
δ when at the intersection with the supply line f2 = βf1 + r. Since δ is the maximum
allowable flux from I1, we can feasibly exactly satisfy the priority. Thus to minimize
the deviation from the priority line, we select f1 = δ.

• In Case 2, the priority dictates a flux from R1 in excess of d. To minimize deviation
from priority, we select r = d, and βf1 = f2 − r.

• In Case 3, strict satisfaction of the priority line gives a feasible f1 and r solution, and
thus we have f1 = f2

β(1+p−1)
.

Once we have determined f1 and f2, then flux balance across the junction dictates that
r = f2 − βf1.

To satisfy the Riemann solver condition that only waves that travel outward from the
junction may be created, we devise a mapping from the resultant mainline fluxes (f1, f2) to
the Riemann solver densities

(
ρ̂+

1 , ρ̂
−
2

)
. The following conditions uniquely determine

(
ρ̂+

1 , ρ̂
−
2

)
:

ρ̂+
1 ∈

{{
ρ+

1

}
∪]τ(ρ+

1 ), ρmax] if 0 ≤ ρ+
1 ≤ ρcr,

[ρcr, ρmax] if ρcr ≤ ρ+
1 ≤ ρmax;

f
(
ρ̂+

1

)
= f1 (2.17)

ρ̂−2 ∈
{

[0, ρcr] if 0 ≤ ρ−2 ≤ ρcr,{
ρ−2
}
∪ [0, τ(ρ−2 )] if ρcr ≤ ρ−2 ≤ ρmax;

f
(
ρ̂−2
)

= f2, (2.18)

where τ satisfies the following:

1. f(τ(ρ)) = f(ρ)

2. τ(ρ) 6= ρ

2.2.3 Discrete Freeway Model

The previous section derives a continuous traffic model based on the principle of mass
conservation and matching the empirical flux-density relationship. Furthermore, the model
possesses strong boundary conditions, allowing for the total flux through the network to be
independent of any varying control parameters.

In order to develop computationally efficient optimization and control techniques, we
work in the discrete time and space domain. As detailed in Section 2.1.3, we use the Godunov
discretization technique.
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Figure 2.8: Freeway network model. For a junction jD
2l−1 = jD

2(l−1) = jU
2l at time-step k ∈

{0, . . . , T − 1}, the upstream mainline density are represented by ρk2(l−1), the downstream

mainline density by ρk2l, the on ramp density by ρk2l−1, and the off-ramp split ratio by βk2(l−1).

We now consider a freeway network with multiple junctions, as opposed to the presen-
tation of the continuous model, which only considered a single junction.

Consider a freeway section with links L = {1, . . . , 2N} with a linear sequence of mainline
links = {2, 4, . . . , 2N} and connecting on ramp links = {1, 3, . . . , 2N − 1}. At discrete time
t = k∆t, 0 ≤ k ≤ T − 1, mainline link 2l ∈ L, i ∈ {1, . . . , N} has a downstream junction
jD

2l = jU
2(l+1) and an upstream junction jU

2l = jD
2(l−1), while on ramp 2l− 1 ∈ L, i ∈ {1, . . . , N}

has a downstream junction jD
2l−1 = jU

2l = jD
2(l−1) and an upstream junction jU

2l−1.

The off-ramp directly downstream of link 2l, i ∈ {1, . . . , N} has, at time-step k, a
split ratio βk2l Each link l ∈ L has a discretized state value ρkl ∈ R at each time-step
k ∈ {0, . . . , T − 1}, that represents the density of vehicles on the link. These values are
depicted in Fig 2.8. Junctions that have no on ramps can be effectively represented by
adding an on ramp with no demand while junctions with no off-ramps can be represented
by setting the split ratio to 1.

As control input which is used extensively in applications in proceeding sections, an
on ramp 2l − 1 ∈ L, l ∈ {1, . . . , N} at time-step k ∈ {0, . . . , T − 1} has a metering rate
uk2l−1 ∈ [0, 1] which limits the flux of vehicles leaving the on ramp. Intuitively, the metering
rate acts as a fractional decrease in the flow leaving the on ramp and entering the mainline
freeway. The domain of the metering control is to force the control to neither impose negative
flows nor send more vehicles than present in a queue. Its mathematical model is expressed
in (2.25).

For notational simplicity we define the set of densities of links incident to jU
2l = jD

2(l−1)

at time-step k as ~ρk
jU2l

=
{
ρk2(l−1), ρ

k
2i−1, ρ

k
2l

}
. For k ∈ {1, . . . , T − 1}, the mainline density ρk2l

using the Godunov scheme from (2.8) is given by:
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hk2l(~ρ, ~u) = ρk2l − ρk−1
2l +

∆t

L2l

(
gGjD2l

(
~ρk−1
jD2l

, uk−1
2l+1

))
2l

(2.19)

−∆t

L2l

(
gGjU2l

(
~ρk−1
jU2l

, uk−1
2l−1

))
2l

= ρk2l − ρk−1
2l +

∆t

L2l

(
gk−1

2l,D − gk−1
2l,U

)
= 0 (2.20)

where we have introduced some substitutions to reduce the notational burden of this section:
gkl,D is the Godunov flux at time-step k exiting a link l at the downstream boundary of the

link, and gkl,U is the Godunov flux entering the link at the upstream boundary.
We also make the assumption that on ramps have infinite capacity and a free-flow ve-

locity v2l−1 = L2l−1

∆t
to prevent the ramp congestion from blocking demand from ever entering

the network. Since the on ramp has no physical length, the length is chosen arbitrarily and
the “virtual” velocity chosen above is chosen to replicate the dynamics in [27]. We can then
simplify the on ramp update equation to be:

hk2l−1(~ρ, ~u) = ρk2l−1 − ρk−1
2l−1 −

∆t

L2l−1

((
gGjU2l

(
~ρk−1
jU2l

, uk−1
2l−1

))
2l−1
−Dk−1

2l−1

)
(2.21)

= ρk2l−1 − ρk−1
2l−1 −

∆t

L2l−1

(
gk−1

2l−1,D −Dk−1
2l−1

)
= 0 (2.22)

where Dk−1
2l−1 is the on ramp flux demand, and the same notational simplification has been

used for the downstream flux. This formulation results in “strong” boundary conditions at
the on ramps which guarantees all demand enters the network.

The on ramp model in (2.21) differs from [27] in that we model the on ramp as a
discretized PDE with an infinite critical density, while [27] models the on ramp as an ODE
“buffer”. While both models implement strong boundary conditions, the discretized PDE
model makes the freeway network more aligned with the PDE network framework presented
in this section.

Discrete Model Equations The following systems of equations give the flux solution of
the Riemann solver at time-step k ∈ {1, . . . , T − 1} and junction jU

2l for l ∈ {1, . . . , N}:
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δk2(l−1) = min
(
v2(i−1)ρ

k
2(l−1), F

max
2(l−1)

)
(2.23)

σk2l = min
(
w2i

(
ρmax

2i − ρk2l
)
, Fmax

2i

)
(2.24)

dk2l−1 = uk2l−1 min

(
L2l−1

∆t
ρk2l−1, F

max
2i−1

)
(2.25)

gk2l,U = min
(
βk2(l−1)δ

k
2(l−1) + dk2l−1, σ

k
2l

)
(2.26)

gk2(l−1),D =





δk2(l−1)

p2(l−1)g
k
2l,U

βk
2(l−1)(1+p2(l−1))

≥ δk2(l−1)[Case 1]

gk2l,U−dk2l−1

βk
2(l−1)

gk2l,U
1+p2(l−1)

≥ dk2l−1 [Case 2]

p2(l−1)g
k
2l,U

(1+p2(l−1))βk
2(l−1)

otherwise [Case 3]

(2.27)

gk2l−1,D = gk2l,U − βk2(l−1)g
k
2(l−1),D (2.28)

where, for notational simplicity, at the edges of of the range for l, any undefined state values
(e.g. ρk0) are assumed to be zero by convention.

Note that the equations can be solved sequentially via forward substitution. Also, we
do not include the flux result for off-ramps explicitly here since its value has no bearing
on further calculations, and we will henceforth ignore its calculation. To demonstrate that
indeed the flux solution satisfies the flux conservation property, the off-ramp flux is trivially
determined to be βk2(l−1)g

k
2(l−1),D.
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Chapter 3

Centralized and Decentralized
Optimal Freeway Control via the
Discrete Adjoint Method

In this chapter, we propose a discrete adjoint approach to compute optimal ramp-
metering strategies on road networks modeled by conservation laws. Networks of one-
dimensional conservation laws, described by systems of nonlinear first-order hyperbolic par-
tial differential equations (PDEs), are an efficient framework for modeling physical phe-
nomena, such as freeway traffic evolution [42, 128, 37] and supply chains [14]. Similarly,
PDE systems of balance laws are useful in modeling gas pipeline flow [54, 108] and wa-
ter channels [53, 98]. Optimization and control of these networks is an active field of re-
search [55, 7, 69]. More generally, numerous techniques exist for the control of conservation
laws, such as, for example, backstepping [22, 48], Lyapunov-based methods [22], and optimal
control methods [9, 67, 61]. In particular, a common approach is to compute the gradient of
the cost functional via the adjoint method [45, 62, 99]. Nevertheless, its implementation in
the framework of nonlinear conservation laws presents several difficulties linked to the dis-
continuous character of the solutions. In particular, the presence of shocks in the solutions
requires a careful sensitivity analysis based on the use of shift-differentials and generalized
tangent vectors, see [13, 122, 123].

Extensive study has also been conducted on the choice of method for effectively comput-
ing the gradient via the adjoint. In particular, the continuous adjoint method [60, 55, 79, 105]
operates directly on the PDE and a so-called adjoint PDE system, which when solved can be
used to obtain an explicit expression of the gradient of the underlying optimization problem.
Conversely, the discrete adjoint method [45, 55, 69] first discretizes a continuous-time PDE
and then requires the solution of a set of linear equations to solve for the gradient. Finally,
a third approach exists, which uses automatic differentiation techniques to automatically
generate an adjoint solver from the numerical representation of the forward system [81, 43].

It is well known that the numerical treatment of the adjoint method imposes a careful
choice of the discretization scheme to avoid the introduction of numerical errors at disconti-
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nuities [25]. Theoretical convergence results for optimization problems have been provided
for Lax-Friedichs type schemes [46] and relaxation methods [5]. The case of road networks
in free flow conditions is addressed in [55]. In our more general setting of PDE networks and
applications to freeway traffic control, the presence of junction conditions with both forward
and backward-moving shockwaves led us the use of a modified Godunov scheme that precisely
takes into account the flows at the network nodes. An alternative approach involves using
Lax-Friedichs-type discretization with higher-resolution interpolation schemes [85]. More-
over, general existence and stability results for the corresponding system of equations model-
ing traffic evolution on the network are still missing at the moment. Therefore, establishing
rigorous convergence results for the gradient computation in this framework is out of the
scope of this thesis. Here we made the choice of the discrete adjoint approach, which derives
the gradient directly from the discretized system, thus avoiding dealing with weak boundary
conditions in the continuous system [42, 128, 117].

There exist many applications of the adjoint method for control, optimization and es-
timation of physical systems in engineering. Shape optimization of aircraft [105, 44, 79]
has applied the method effectively to reduce the computational cost in gradient methods
associated with the large number of optimization parameters. The technique has also been
applied in parameter identification of biological systems [99]. State estimation problems can
be phrased as optimal control problems by setting the unknown state variables as control
parameters and penalizing errors in resulting state predictions from known values. This
approach has been applied to such problems as open water state estimation [16, 118] and
freeway traffic state estimation [59].

Since conservation laws may be nonlinear by nature and lead to non-convex or non-
linear formulations of the corresponding optimization problem, fewer efficient optimization
techniques exist for the discretized version of these problems than for convex problems for
example. One approach is to approximate the system with a “relaxed” version in order
to use efficient linear programming techniques. In transportation, by relaxing the Godunov
discretization scheme, the linearization approach was used in [50] for optimal ramp metering,
and in [130] for optimal route assignment which is exact when the relaxation gap can be
shown to be zero. The ramp metering technique in [84] uses an additional control parameter
(variable speed limits) to mimic the linearized freeway dynamics. While the upside of these
methods is reduced computational complexity and the guarantee of finding a globally opti-
mal solution, the downside is that the model of the linearized physical system may greatly
differ from the actual system to which the control policies would be applied.

Another approach avoids discretization of the continuous system by taking advantage of
certain simplifying assumptions in the dynamics. In [40], the problem of finding optimal split
ratios on a traffic networks is efficiently solved by deriving non-linear and linear algebraic
formulations of a simplified form of the continuous system dynamics which only considers
forward-moving shockwaves. In [25], a mixed-integer linear program (MILP) formulation is
posed for the optimal routing of goods on a supply chain, leading to efficient solutions of this
particular application. The number of integer constraints needed in the MILP formulation
is proportional to the number of non-linear constraints in the underlying system and has a



26

direct impact on the efficiency of MILP solvers. Applications to non-linear and non-smooth
systems such as freeway traffic may prefer non-linear programming approaches such as the
adjoint method using non-linear discretization techniques, which avoid integer constraints
and allow the constraints to capture more complex dynamics.

Alternatively, nonlinear optimization techniques can be applied to the discretized system
without any modification to the underlying dynamics. This approach leads to more expensive
optimization algorithms, such as gradient descent, and no guarantee of finding a global
optimum. One difficulty in this approach comes in the computation of the gradient, which,
if using finite differences, requires a full forward-simulation for each perturbation of a control
parameter. This approach is taken in [39, 38] to compute several types of decentralized
ramp metering strategies. The increased complexity of the finite differences approach for
each additional control parameter makes the method unsuitable for real-time application on
moderately-sized freeway networks.

Ramp metering is a common freeway control strategy, providing a means of dynamically
controlling freeway throughput without directly impeding mainline flow or implementing
complex tolling systems. While metering strategies have been developed using microscopic
models [8], most strategies are based off macroscopic state parameters, such as vehicle density
and the density’s relation to speed [106, 75, 24]. Reactive metering strategies [93, 95, 66] use
feedback from freeway loop detectors to target a desired mainline density, while predictive
metering strategies [38, 69, 50, 19] use a physical model with predicted boundary flow data to
generate policies over a finite time horizon. Predictive methods are often embedded within a
model predictive control loop to handle uncertainties in the boundary data and cumulative
model errors [84].

This section develops a framework for efficient control of discretized conservation law
PDE networks using the adjoint method [45, 96] via Godunov discretization [49], while detail-
ing its application to coordinated ramp metering on freeway networks. Note that the method
can be extended without significant difficulty to other numerical schemes commonly used to
discretize hyperbolic PDEs. We show how the complexity of the gradient computation in
nonlinear optimal control problems can be greatly decreased by using the discrete adjoint
method and exploiting the decoupling nature of the problem’s network structure, leading
to efficient gradient computation methods. After giving a general framework for computing
the gradient over the class of scalar conservation law networks, we show that the system’s
partial derivatives have a sparsity structure resulting in gradient computation times linear
in the number of state and control variables for networks of small vertex degree. Memory
usage is also linear when sparse data structures are utilized. The results are demonstrated
by running a coordinated ramp metering strategy on a 19 mile freeway stretch in California
faster than real-time (i.e. the computational time is faster than physical time), while giving
traffic performance superior to that of state of the art practitioners tools.
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3.1 Discrete Adjoint Derivation for Networked Con-

servation Laws

Section 2.1 developed a method for discretizing networked, scalar conservation laws.
Once a Riemann solver is selected for the junction behavior, the matter of discretization via
Godunov’s method becomes routine. This section uses Godunov’s method to construct an
efficient and general method for gradient computations of control objectives constrained by
networked conservation law systems.

3.1.1 State, Control, and Governing Equations

We now focus on controlling systems of the form in Equation (3.1.1):

ρk+1
l = ρkl −

∆t

∆x

((
gGjDl

(
~ρkjDl

))
l
−
(
gGjUl

(
~ρkjUl

))
l

)
,

in which some parts of the state can be controlled directly (for example, in the form of
boundary control). We wish to solve the system in Equation (3.1.1) T time-steps forward,
i.e. we wish to determine the discrete state values ρkl for all links l ∈ L and all time-steps
k ∈ {0, . . . , T − 1}. Furthermore, at each time-step k, we assume a set of “control” variables(
uk1, . . . , u

k
M

)
∈ RM that influence the solution of the Riemann problems at junctions, where

M is the number of controlled values at each time-step, and each control may be updated
at each time-step. We assume that a control may only influence a subset of junctions,
which is a reasonable assumption if the controls have some spatial locality. Thus, for a
junction j ∈ J , we assume without loss of generality that a subset of the control parameters(
uk
j1j
, . . . , uk

j
Mj
j

)
∈ RMj influence the solution of the Riemann solver. Similar to the notation

developed for state variables, for control variables, we define ~ukj :=

(
uk
j1j
, . . . , uk

j
Mj
j

)
as the

concatenation of the control variables around the junction j. To account for the addition
of controls, we modify the Riemann problem at a junction j ∈ J at time-step k to be a
function of the current state of connecting links ~ρkj , and the current control parameters ~ukj .
Then using the same notation as before, we express the Riemann solver as:

RSj : Rnj+mj × RMj → Rnj+mj

(
~ρkj , ~u

k
j

)
7→ RSj

(
~ρkj , ~u

k
j

)
= ~̂ρkj .

We represent the entire state of the solved system with the vector ~ρ ∈ RNT , where for
l ∈ L and k ∈ {0, . . . , T − 1}, we have ~ρNk+l = ρkl . Similarly, we represent the entire control
vector by ~u ∈ RMT , where ~uMk+j = ukj .

For each state variable ρkl , write the corresponding update equation hkl :
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hkl : RNT × RMT → R
(~ρ, ~u) 7→ hkl (~ρ, ~u) = 0.

This takes the following form:

h0
l (~ρ, ~u) = ρ0

l − ρ̄l = 0 (3.1)

hkl (~ρ, ~u) = ρkl − ρk−1
l +

∆t

Ll
f
(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

))
l

−∆t

Ll
f
(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

))
l

= 0 ∀k ∈ {2, . . . , T − 1}, (3.2)

or in terms of the Godunov junction flux:

hkl (~ρ, ~u) = ρkl − ρk−1
l +

∆t

∆x

(
gGjDl

(
~ρkjDl

, ~uk−1
jDl

))
l

−∆t

∆x

(
gGjUl

(
~ρkjUl

, ~uk−1
jUl

))
l

(3.3)

for all links l ∈ L, where ρ̄l is the initial condition for link l. Thus, we can construct a system
of NT governing equations H(~ρ, ~u) = 0, where the hl,k is the equation in H at index Nk+ l,
identical to the ordering of the corresponding discrete state variable.

Optimal Control Problem Formulation In addition to our governing equationsH(~ρ, ~u) =
0, where we assume each hki ∈ C1, we also introduce a cost function C ∈ C1.

C : RNT × RMT → R
(~ρ, ~u) 7→ C(~ρ, ~u)

which returns a scalar that serves as a metric of performance of the state and control values
of the system. We wish to minimize the quantity C over the set of control parameters ~u,
while constraining the state of the system to satisfy the governing equations H(~ρ, ~u) = 0,
which is, again, the concatenated version of (3.2) or (3.3). We summarize this with the
following optimization problem:

min
~u

C(~ρ, ~u)

subject to: H(~ρ, ~u) = 0 (3.4)

Both the cost function and governing equations may be non-convex in this problem.



Section 3.1. Discrete Adjoint Derivation for Networked Conservation
Laws 29

3.1.2 Discrete Adjoint Method

We wish to use gradient information in order to find control values ~u∗ that give lo-
cally optimal costs C∗ = C(~ρ(~u∗), ~u∗). Since there may exist many local minima for this
optimization problem (3.4) (which is non-convex in general), gradient methods do not guar-
antee global optimality of ~u∗. Still, nonlinear optimization methods such as interior point
optimization utilize gradient information to improve performance [125].

In a descent algorithm, the optimization procedure will have to descend a cost function,
by coupling the gradient, which, at a nominal point (~ρ′, ~u′) is given by:

d~uC(~ρ′, ~u′) =
∂C(~ρ, ~u)

∂~ρ

∣∣∣∣
~ρ′,~u′

d~ρ

d~u
+
∂C(~ρ, ~u)

∂~u

∣∣∣∣
~ρ′,~u′

. (3.5)

Note. For Equation (3.5) to be valid, all required partial and full derivatives must be well-
defined, including d~ρ

d~u
. In some applications, this assumption does not necessarily hold, either

because f itself is not smooth or because gG is not smooth (and thus H /∈ C1), as is the
case for the LWR equation with concave fundamental diagrams. There are several settings
in which the conditions for differentiability are satisfied, see in particular [55, 36].

The main difficulty is to compute the term d~ρ
d~u

. We take advantage of the fact that the
derivative of H(~ρ, ~u) with respect to ~u is equal to zero along trajectories of the system:

d~uH(~ρ′, ~u′) =
∂H(~ρ, ~u)

∂~ρ

∣∣∣∣
~ρ′,~u′

d~ρ

d~u
+
∂H(~ρ, ~u)

∂~u

∣∣∣∣
~ρ′,~u′

= 0. (3.6)

The partial derivative terms, H~ρ ∈ RNT×NT , H~u ∈ RNT×MT , C~ρ ∈ RNT , and C~u ∈ RMT ,
can all be evaluated (more details provided in Section 3.1.3) and then treated as constant
matrices. Thus, in order to evaluate d~uC(~ρ′, ~u′) ∈ RMT , we must solve a coupled system of
matrix equations.

Forward system. If we solve for d~ρ
d~u
∈ RNT×MT in (3.6), which we call the forward system:

H~ρ
d~ρ

d~u
= −H~u,

then we can substitute the solved value for d~ρ
d~u

into (3.5) to obtain the full expression for the
gradient. Section 3.1.3 below gives details on the invertibility of H~ρ, guaranteeing a solution
for d~ρ

d~u
.

Adjoint system. Instead of evaluating d~ρ
d~u

directly, the adjoint method solves the following
system, called the adjoint system, for a new unknown variable λ ∈ RNT (called the adjoint
variable):

HT
~ρ λ = −CT

~ρ (3.7)
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Under certain additional conditions on the flux function and discretization scheme, the
adjoint system in Equation (3.7) may be shown to converge to the continuous adjoint system
as the discretization steps go towards zero, as described in the following works [5, 55, 123].
No such convergence results exist in our setting of using a Godunov discretization with
general n×m junctions.

The expression for the gradient becomes:

d~uC(~ρ′, ~u′) = λTH~u + C~u (3.8)

We note that Equations (3.7) and (3.8) can be alternatively derived using the first-
order Karush-Kuhn-Tucker (KKT) conditions, coupled with the constraint qualification in
Equation (3.4). Given the assumed non-convexity of the underlying system, first-order KKT
conditions are necessary, but not sufficient conditions for optimality of ũ and λ. For practical
applications to non-convex systems and for the purposes of this thesis, we do not necessarily
seek global or local optimality, but rather the direction of steepest descent given in Equa-
tion (3.8) in order to improve the performance of the system.

We define D~ρ to be the maximum junction degree on the network:

D~ρ = max
j∈J

(nj +mj), (3.9)

and also define D~u to be the maximum number of constraints that a single control variable
appears in, which is equivalent to:

D~u = max
u∈~u

∑

j∈J :u∈~ukj

(nj +mj). (3.10)

Note that
{
u ∈ ~ukj : j ∈ J

}
is a k-dependent set. By convention, junctions are either

actuated or not, so there is no dependency on k, i.e. if ∃k s.t. u ∈ ~ukj , then ∀k, u ∈ ~ukj .
Using these definitions, we show later in Section 3.1.4 how the complexity of computing

the gradient is reduced from O(D~ρNMT 2) to O(T (D~ρN +D~uM)) by considering the adjoint
method over the forward method.

A graphical depiction of D~ρ and D~u are given in Fig. 3.1. Freeway networks are usually
considered to have topologies that are nearly planar, leading to junctions degrees which
typically do not exceed 3 or 4, regardless of the total number of links. Also, from the locality
argument for control variables in Section (3.1.1), a single control variable’s influence over
state variables will not grow with the size of the network. Since the D~ρ and D~u typically do
not grow with NT or MT for freeway networks, the complexity of evaluating the gradient
for such networks can be considered linear for the adjoint method.

3.1.3 Evaluating the Partial Derivatives

While no assumptions are made about the sparsity of the cost function C, the networked-
structure of the PDE system and the Godunov discretization scheme allows us to say more
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Figure 3.1: Depiction of D~ρ and Dv for an arbitrary graph. Fig. 3.1a shows the underlying
graphical structure for an arbitrary PDE network. Some control parameter u1 has influence
over junctions A, B, and F , while another control parameter u2 has influence over only
junction C. Fig. 3.1b depicts the center junction having the largest number of connecting
edges, thus giving D~ρ = 5. Fig. 3.1c shows that control parameter u1 influences three
junctions with sum of junctions degrees equal to six, which is maximal over the other control
parameter u2. leading to the result D~u = 6. Note that in Fig. 3.1c, the link going from
junction A to junction B is counted twice: once as an outgoing link ~AB and once as in
incoming link ~BA.

about the structure and sparsity of H~ρ and H~u.

Partial derivative expressions. Given that the governing equations require the evalua-
tion of a Riemann solver at each step, we detail some of the necessary computational steps
in evaluating the H~ρ and H~u matrices.

If we consider a particular governing equation hkl (~ρ, ~u) = 0, then we may determine the
partial term with respect to ρlj ∈ ~ρ by applying the chain rule:

∂hkl
∂ρlj

=
∂ρkl
∂ρlj
− ∂ρk−1

l

∂ρlj
+

∆t

Li
f ′
(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

)
l

) ∂

∂ρlj

(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

)
l

)
(3.11)

− ∆t

Li
f ′
(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

)
l

) ∂

∂ρlj

(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

)
l

)

or if we consider the composed Riemann flux solver gGj in (2.10):

∂hkl
∂ρlj

=
∂ρkl
∂ρlj
− ∂ρk−1

l

∂ρlj
+

∆t

Li

(
∂

∂ρlj

(
gGjDl

(
~ρk−1
jDl

, ~uk−1
jDl

))
l
− ∂

∂ρlj

(
gGjUl

(
~ρk−1
jUl

, ~uk−1
jUl

))
l

)
(3.12)

A diagram of the structure of the H~ρ matrix is given in Fig. (3.2a). Similarly for H~u,
we take a control parameter ulj ∈ ~u, and derive the expression:
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(a) Ordering of the partial derivative
terms. Constraints and state variables
are clustered first by time, and then by
cell index.

(b) Sparsity structure of the H~ρ

matrix. Besides the diagonal blocks,
which are identity matrices, blocks
where l 6= k − 1 are zero.

Figure 3.2: Structure of the H~ρ matrix.

∂hkl
∂ulj

= +
∆t

Li
f ′
(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

)
l

) ∂

∂ulj

(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

)
l

)
(3.13)

− ∆t

Li
f ′
(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

)
l

) ∂

∂ulj

(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

)
l

)

or for the composed Godunov junction flux solver gGj :

∂hkl
∂ulj

=
∆t

Li

(
∂

∂ulj

(
gGjDl

(
~ρk−1
jDl

, ~uk−1
jDl

))
l
− ∂

∂ulj

(
gGjUl

(
~ρk−1
jUl

, ~uk−1
jUl

))
l

)
. (3.14)

Analyzing (3.11), the only partial terms that are not trivial to compute are ∂
∂ρlj

(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

)
l

)

and ∂
∂ρlj

(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

)
l

)
. Similarly for (3.13), the only nontrivial terms are ∂

∂ulj

(
RSjDl

(
~ρk−1
jDl

, ~uk−1
jDl

)
l

)

and ∂
∂ulj

(
RSjUl

(
~ρk−1
jUl

, ~uk−1
jUl

)
l

)
. Once one obtains the solutions to these partial terms, then

one can construct the full H~ρ and H~u matrices and use (3.7) and (3.8) to obtain the gradient
value.

As these expressions are written for a general scalar conservation law, the only steps
in computing the gradient that are specific to a particular conservation law and Riemann
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solver are computing the derivative of the flux function f and the partial derivative terms
just discussed. These expressions are explicitly calculated for the problem of optimal ramp
metering in Section (3.2.1).

3.1.4 Complexity Analysis of Discrete Adjoint for Sparse Net-
works

This section demonstrates the following proposition:

Proposition 3.1. The total complexity for the adjoint method on a scalar hyperbolic net-
work of PDEs is O(T (D~ρN +D~uM)).

We can show the lower-triangular structure and invertibility of H~ρ by examining (3.1)
and (3.2). For k ∈ {1, . . . , T − 1}, we have that hkl is only a function of ρkl and of the
state variables from the previous time-step k − 1. Thus, based on our ordering scheme
in Section 3.1.1 of ordering variables by increasing time-step and ordering constraints by
corresponding variable, we know that the diagonal terms of H~ρ are always 1 and all upper-
triangular terms must be zero (since those terms correspond to constraints with a dependence
of future values). These two conditions demonstrate both that H~ρ is lower-triangular and is
invertible due to the ones along the diagonal.

Additionally, if we consider taking partial derivatives with respect to the variable ρlj,
then we can deduce from Equation (3.2) that all partial terms will be zero except for the
diagonal term, and those terms involving constraints at time j + 1 with links connecting to
the downstream and upstream junctions jD

j and jU
j respectively. To summarize, H~ρ matrices

for systems described in Section 3.1.1 will be square, invertible, lower-triangular and each
column will have a maximum cardinality equal to D~ρ in (3.9). The sparsity structure of H~ρ

is depicted in Fig. 3.2b.
Using the same line of argument for the maximum cardinality of H~ρ, we can bound the

maximum cardinality of each column of H~u. Taking a single control variable ulj, the variable
can only appear in the constraints at time-step j+ 1 that correspond to a link that connects
to a junction j such that ulj ∈ ~ul+1

j . These conditions give us the expression for D~u in (3.10),
or the maximum cardinality over all columns in H~u.

If we only consider the lower triangular form of H~ρ, then the complexity of solving
for the gradient using the forward system is O((NT )2MT ), where the dominating term
comes from solving (3.5), which requires the solution of MT separate NT × NT lower-
triangular systems. The lower-triangular system allows for forward substitution, which can
be solved in O((NT )2) steps, giving the overall complexity O((NT )2MT ). The complexity of
computing the gradient via the adjoint method is O((NT )2 +(NT )(MT )), which is certainly
more efficient than the forward-method, as long as MT > 1. The efficiency is gained by
considering that (3.7) only requires the solution of a single NT × NT upper -triangular
system (via backward-substitution), followed by the multiplication of λTHv, an NT × NT
and an NT ×MT matrix in (3.8), with a complexity of O((NT )2 + (NT )(MT )).
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For the adjoint method, this complexity can be improved upon by considering the spar-
sity of the H~ρ and H~u matrices, as detailed in Section 3.1.4. For the backward-substitution
step, each entry in the λ vector is solved by at most D~ρ multiplications, and thus the com-
plexity of solving (3.7) is reduced to O(D~ρNT ). Similarly, for the matrix multiplication of
λTHv, while λ is not necessarily sparse, we know that each entry in the resulting vector
requires at most D~u multiplications, giving a complexity of O(D~uMT ). Furthermore, if a
sparse implementation of the H~ρ and H~u matrices are used, then memory usage will also
scale linearly with the number of state and control variables.

3.2 Adjoint-based Model Predictive Control for Coor-

dinated, Predictive Ramp Metering

Problem Statement Including the initial conditions as specified in (3.1) with (2.19)
and (2.25) gives a complete description of the system H(~ρ, ~u) = 0, ~ρ ∈ R2N , ~u ∈ R, where:

~ρ2Nk+l := ρkl 1 ≤ i ≤ 2N, 0 ≤ k ≤ T − 1

~uNk+l := uk2l 1 ≤ i ≤ N, 0 ≤ k ≤ T − 1

The objective of the control is to minimize the total travel time on the network, expressed
by the cost function C:

C(~ρ, ~u) = ∆t
T∑

k=1

2N∑

i=1

Liρ
k
l .

The optimal coordinated ramp-metering problem can be formulated as an optimization
problem with PDE-network constraints:

min
~u

C(~ρ, ~u) (3.15)

subject to: H(~ρ, ~u) = 0

0 ≤ u ≤ 1 ∀u ∈ ~u (3.16)

Standard methods exist for the handling of geometric constraints on ~u in descent meth-
ods (such as box constraints in Equation (3.16)), such as projection methods [25] and barrier
methods [35, 11].

3.2.1 Partial Derivative Calculations for Ramp Metering

To use the adjoint method as described in Section 3.1.2, we need to compute the partial
derivative matrices H~ρ, H~u, C~ρ and C~u. Computing the partial derivatives with respect to
the cost function is straight forward:
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∂C

∂ρkl
= ∆tLi 1 ≤ i ≤ 2N, 0 ≤ k ≤ T − 1

∂C

∂uk2l
= ε

(
1

1−uk2l
− 1

uk2l

)
1 ≤ i ≤ N, 0 ≤ k ≤ T − 1

To compute the partial derivatives of H, we follow the procedure in Section 3.1.3. For
an upstream junction jU

2l ∈ J and time-step k ∈ {1, . . . , T − 1}, we only need to compute

the partial derivatives of the flux solver gG
jU2l

(
~ρk
jU2l
, uk2l−1

)
with respect to the adjacent state

variables ~ρkjl and ramp metering control ukl . We calculate the partial derivatives of the
functions in (2.23)-(2.28) with respect to either a state or control variables ∈ ~ρ ∪ ~u:

∂δk2(l−1)

∂s
=

{
v2(i−1) s = ρk2(l−1), viρ

k
2(l−1) ≤ Fmax

2(i−1)

0 otherwise

∂σk2l
∂s

=

{
−w2i s = ρk2l, w2i

(
ρmax

2i − ρk2l
)
≤ Fmax

2i

0 otherwise

∂d

∂s
=





uk2l−1 s = ρk2l−1, ρ
k
2l−1 ≤ Fmax

2l−1

min
(
ρk2l−1, F

max
2i−1

)
s = uk2l−1

0 otherwise

∂

∂s
gk2l,U =

{
βk2(l−1)

∂δk
2(l−1)

∂s
+

∂dk
2(l−1)

∂s
βk2(l−1)δ

k
2(l−1) + dk2l−1 ≤ σk2l

∂σk
2l

∂s
otherwise

∂

∂s
g2(l−1),D =





∂δk
2(l−1)

∂s

gk2l,Up2(l−1)

1+p2(l−1)
≥ δk

2(l−1)

βk
2(l−1)

1
βk

2(l−1)

(
∂
∂s
gk2l,U −

∂dk2l−1

∂s

)
gk2l,U

1+p2(l−1)
≥ dk2(l−1)

p2(l−1)

βk
2(l−1)(1+p2(l−1))

∂
∂s
gk2l,U otherwise

∂

∂s
g2l−1,D =

∂

∂s
gk2l,U − βk2(l−1)

∂

∂s
g2(l−1),D

These expressions fully specify the partial derivative values needed in (3.12) and (3.14).
Thus we can construct the H~ρ and H~u matrices. With these matrices and C~ρ and C~u, we can
solve for the adjoint variable λ ∈ R2NT in (3.7) and substitute its value into (3.8) to obtain
the gradient of the cost function C with respect to the control parameter ~u.

3.2.2 Model Predictive Control Overview

There are a number of underlying assumptions that permit finite-horizon optimal control
techniques to be useful.
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• The mathematical dynamics accurately models the actual physical system being con-
trolled.

• The current state of the system is known.

• The future state of the system can be accurately predicted as a function of the applied
control.

Under an idealized simulation, these conditions are met by assuming perfect knowledge
of initial and boundary conditions, and validating performance against using forward sim-
ulation identical to the controller’s assumed model. In application, the above conditions
will not be met exactly due to model inaccuracy, sensor noise, and prediction error. Thus,
when applying control policies generated from optimal control procedures in noisy environ-
ments, one would expect the future physical state to diverge from that predicted from the
controller’s model, and thus a degradation in the performance of the controller.

This stems from optimal control being an open loop control method, where the error in
the state estimation is not observed as the physical system evolves. Alternatively, closed loop
controllers [93, 95] incorporate the state estimation at frequent intervals (e.g. less than one
minute for freeway systems), and choose a control policy which is optimal for only the next
time-step. Such schemes are also referred to as reactive schemes, which react to real-time
conditions rather than attempt to anticipate future road conditions (predictive schemes).

7 AM 7:30 AM 8 AM

7 AM Estimated Occupancies
7 AM Forecasted Boundary Flows

7 AM Generated Metering Policies

Actuated Metering Policy

7:15 AM Estimated Occupancies
7:15 AM Forecasted Boundary Flows

7:15 AM Generated Metering Policies

7:30 AM Estimated Occupancies
7:30 AM Forecasted Boundary Flows

7:30 AM Generated Metering Policies

7:45 AM Estimated Occupancies
7:45 AM Forecasted Boundary Flows

7:45 AM Generated Metering Policies

Figure 3.3: Diagram of rolling-horizon MPC. At 15 minute intervals (Tupdate = 15 minutes),
the MPC controller requires an estimate of the current traffic (i.e. initial conditions) as
well as predictions over the next 30 minutes (Thorizon = 30 minutes) for the future vehicle
demands on the on ramps (i.e. boundary conditions).

Model predictive control (MPC) is a control technique which leverages the predictive
benefits of optimal control approaches without the drawbacks of open loop control. At
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time instances occurring with an update period Tupdate, the MPC controller constructs an
optimal control problem for the time period between the current time t and some future
time t + Thorizon, where Thorizon is typically much larger than Tupdate in order to properly
leverage the predictive nature of optimal control. A new control policy is produced for
the time period of the current optimal control problem, and the new control policy is then
applied to the physical system. After Tupdate time has elapsed, an updated control policy will
be generated which leverages the newest available initial and boundary conditions. Given
that Tupdate < Thorizon, the updated policy will be generated before the previous policy is
completely applied, at which point the old control policy is discarded in favor of the new
policy.

This process is summarized in Figure 3.3. An MPC-based controller was implemented
within the Connected Corridors system, leveraging the adjoint framework inside the optimal
control problem. Numerical results with respect to adjoint control are given in Sections 3.2.3
and 3.3.6.

3.2.3 Numerical Results

To demonstrate the effectiveness of using the adjoint ramp metering method to compute
gradients, we implemented the algorithm on practical scenarios with field experimental data.
The algorithm can then be used as a gradient computation subroutine inside any descent-
method optimization solver that takes advantage of first-order gradient information. Our
implementation makes use of the open-source IpOpt solver [125], an interior point, nonlinear
program optimizer. To serve as comparisons, two other case scenarios were run:

1. No control: the metering rate is set to 1 on all on-ramps at all times.

2. Alinea [93]: a well-adopted, feedback-based ramp metering algorithm commonly used
in the practitioner’s community. Alinea is computationally efficient and decentralized,
making it a popular choice for large networks, but does not take estimated boundary
flow data as input. Since Alinea has a number of tuning parameters, we perform a
modified grid-search technique over the different parameters that scales linearly with
the number of on-ramps, and select the best-performing parameters, in order to be fair
to this framework. A full grid-search approach scales exponentially with the number
of on-ramps, rendering it infeasible for moderate-size freeway networks.

All simulations were run on a 2012 commercial laptop with 8 GB of RAM and a dual-core
1.8 GHz Intel Core i5 processor.

Note. To demonstrate the reduced running time associated with the adjoint approach, we
also implemented a gradient descent using a finite differences approach similar to [38, 39],
which requires an O(T 2NM) computation for each step in gradient descent, but it proved to
be computationally infeasible for even small, synthetic networks. Running ramp metering on
even a network of 4 links over 6 time-steps for 5 gradient steps took well over 4 minutes,
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rendering the method useless for real-time applications. The comparison of running times of
finite differences versus the adjoint method is given in Fig. 3.4. Due to the impractically large
running times associated with finite differences, we do not consider the finite differences in
further results, which only becomes worse as the problem scales to larger networks and time
horizons.
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Figure 3.4: Running time of ramp metering algorithm using IpOpt with and without gradient
information. Network consists of 4 links and 6 time-steps with synthetic boundary flux data.
The method using gradient information via the adjoint method converged well before the
completion of the first step of the finite differences descent method.

Implementation of I15S in San Diego

As input into the optimization problem, we constructed a model of a 19.4 mile stretch
of the I15 South freeway in San Diego, California between San Marcos and Mira Mesa. The
network has N = 125 links, and M = 9 on-ramps, with boundary data specified for T = 1800
time-steps, for a time horizon of 120 minutes given ∆t =4 seconds. The network is shown
in Fig. 3.5.

Link length data was obtained using the Scenario Editor software developed as part of
the Connected Corridors project. Fundamental diagram parameters, split ratios, and bound-
ary data were also obtained using calibration techniques developed by Connected Corridors.

Figure 3.5: Model of section of I15 South in San Diego, California. The freeway section
spanning 19.4 miles was split into 125 links with 9 on-ramps.
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(a) Density profile. The units are the
ratio of a link’s vehicle density to a link’s
jam density.

(b) On-ramp queue profile in units of
vehicles.

Figure 3.6: Density and queue profile of no-control freeway simulation. In the first 80
minutes, congestion pockets form on the freeway and queues form on the on-ramps, then
eventually clear out before 120 minutes.

Densities resulting in free-flow speeds were chosen as initial conditions on the mainline and
on-ramps. The data used in calibration was taken from PeMS sensor data [18] during a
morning rush hour period, scaled to generate congested conditions. The input data was
chosen to demonstrate the effectiveness of the adjoint ramp metering method in a real-world
setting. A profile of the mainline and on-ramps during a forward-simulation of the network
is shown in Fig. 3.6 under the described boundary conditions.

Finite-Horizon Optimal Control

Experimental Setup. The adjoint ramp metering algorithm is compared to the reactive
Alinea scheme, for which we assume that perfect boundary conditions and initial conditions
are available. The metric we use to compare the different strategies is reduced-congestion
percentage, c̄ ∈ (−∞, 100], which we define as:

c̄ = 100

(
1− cc

cnc

)

where cc, cnc ∈ R+ are the congestion resulting from the control and no-control scenarios,
respectively. We use the metric for congestion as defined in [115]; for a given section of road
S and time horizon T , the congestion is given as

c(S, T ) =
∑

(s∈S,τ∈T )

max

[
TTT(s, τ)− VMT(s, τ)

vs
, 0

]

where vs is the free-flow velocity, VMT is total vehicle miles traveled, and TTT is total travel
time over the link s and time-step τ . Since it is infeasible to compute the global optimum
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for all cases, a reduced congestion of 100% serves as an upper bound on the possible amount
of improvement.

(a) Density difference profile in units of
change in density from the control
scenario to the no control scenario over
the jam density of the link.

(b) Queue difference profile in units of
vehicles.

Figure 3.7: Profile differences for mainline densities and on-ramp queues. Evidenced by the
mainly negative differences in the mainline densities and the mainly positive differences in
the on-ramp queue lengths, the adjoint ramp metering algorithm effectively limits on-ramp
flows in order to reduce mainly congestion. Best viewed in color.

Results. Fig. 3.7 shows a difference profile for both density and queue lengths between the
no control simulation and the simulation applying the ramp metering policy generated from
the adjoint method. Negative differences in Figs. 3.7a and 3.7b indicate where the adjoint
method resulted in fewer vehicles for the specific link and time-step. The adjoint method
was successful in appropriately deciding which ramps should be metered in order to improve
throughput for the mainline.

Running time analysis shows that the adjoint method can produce beneficial results in
real-time applications. Fig. 3.8 details the improvement of the adjoint method as a function
of the overall running time of the algorithm. After just a few gradient steps, the adjoint
method outperforms the Alinea method. Given that the time horizon of two hours is longer
than the period of time one can expect reasonably accurate boundary flow estimates, more
practical simulations with shorter time horizons should permit more gradient steps in a
real-time setting.

While the adjoint method leads to queues with a considerable number of cars in some
on-ramps, this can be addressed by introducing barrier terms into the cost function that limit
the maximum queue length. The Alinea method tested for the I15 network had no prescribed
maximum queue lengths as well, but was not able to produce significant improvements in
total travel time reduction, while the adjoint method was more successful.
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Figure 3.8: Reduced congestion versus simulation time for freeway network. The results
indicate that the algorithm can run with performance better than Alinea if given an update
time of less than a minute.

Model Predictive Control

To study the performance of the algorithm under noisy input data, we embed both
our adjoint ramp metering algorithm and the Alinea algorithm inside of a model predictive
control (MPC) loop.

Experimental Setup. The MPC loop begins at a time t by estimating the initial condi-
tions of the traffic on the freeway network and the predicted boundary fluxes over a certain
time horizon Th. These values are noisy, as exact estimation of these parameters is not
possible on real freeway networks. The estimated conditions are then passed to the ramp
metering algorithm to compute an optimal control policy over the Th time period. The
system is then forward-simulated over an update period of Tu ≤ Th, using the exact initial
conditions and boundary conditions, as opposed to the noisy data used to compute control
parameters. The state of the system and boundary conditions at t + Tu are then estimated
(with noise) and the process is repeated.

A non-negative noise factor, σ ∈ R+, is used to study how the adjoint method and
Alinea perform as the quality of estimated data decreases. If ρ is the actual density for a
cell and time-step, then the density ρ̄ passed to the control schemes is given by:

ρ̄ = ρ · (1 + σ ·R)

where R is a uniformly distributed random variable with mean 0 and domain [−0.5, 0.5].
The noise factor was applied to both initial and boundary conditions.

Two different experiments were conducted:

1. Real-time I15 South: MPC is run for the I15 South network with Th = 80 minutes
and Tu = 26 minutes. A noise factor of 2% was chosen for the initial and boundary
conditions. The number of iterations was chosen in order to ensure that each MPC
iteration finished in the predetermined update time Tu.
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Figure 3.9: Summary of model predictive control simulations. The results indicate that
the adjoint method has superior performance for moderate noise levels on the initial and
boundary conditions.

2. Noise Robustness: MPC is for over a synthetic network with length 12 miles and
boundary conditions over 75 minutes. The experiments are run over a profile of noise
factors between 1% and 8000%.

Results. Real-Time I15 South. The results are summarized in Fig. 3.9a. The adjoint
method applied once to the entire horizon with perfect boundary and initial condition in-
formation serves as a baseline performance for the other simulations, which had noisy input
data and limited knowledge of predicted boundary conditions. The adjoint method still
performs well under the more realistic conditions of the MPC loop with noise, resulting in
2% reduced congestion or 40 car-hours in relation to no control, as compared to the 3%
reduced (60 car-hours) congestion achieved by the adjoint method with no noise and full
time horizon (Th = T ). In comparison, the Alinea method was only able to achieve 1.5%
reduced congestion (30 car-hours) for both the noisy and no-noise scenarios. The results in-
dicate that, under a realistic assumption of a 2% noise factor in the sensor information, the
algorithm’s ability to consider boundary conditions results in an improvement upon strictly
reactive policies, such as Alinea.

Robustness to Noise. Simulation results on the synthetic network with varying levels
of noise are shown in Fig. 3.9b. The adjoint method is able to outperform the Alinea method
when the noise level is less than 80%, a reasonable assumption for data provided by well-
maintained loop detectors. As the initial and boundary condition data deteriorates, the
adjoint method becomes useless. Since Alinea does not rely on boundary data, it is able to
produce improvements, even with severely noisy data. The results indicate that the adjoint
method will outperform Alinea under reasonable noise levels in the sensor data.
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3.2.4 Summary of Key Results

This section has detailed a simple framework for finite-horizon optimal control methods
on a network of scalar conservation laws derived from first discretizing the network via the
Godunov method, then applying the discrete adjoint to this system. To tailor the framework
to a specific application, one need only provide the partial derivatives of the Riemann solver
at a network junction as well as the partial derivatives of the objective. Furthermore, we
show that for this class of problems, the sparsity pattern allows the problem to be imple-
mented with only linear memory and linear computational complexity with respect to the
number of state and control parameters. We demonstrate the scalability of the approach by
implementing a coordinated ramp metering algorithm using the adjoint method and apply-
ing the algorithm to the I-15 South freeway in California. The algorithm runs in a fraction
of real-time and produces significant improvements over existing algorithms. The ramp me-
tering algorithm has been fully implemented within Connected Corridors [1] system as a
component of the traffic simulator module.
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3.3 Decentralized Control of Flow Networks

Finite-horizon optimal control is a popular method for computing predictive control
strategies for dynamical systems [104, 7], its applicability growing with the increase of com-
putational power and pervasiveness of physical sensing. In general, a finite-horizon optimal
control problem will take the following form:

min
x∈X

f(s, x) (3.17)

subject to: s = g(x) (3.18)

where x represents the vector of control variables belonging to the set of feasible controls
X (which we may assume to be Rn for simplicity), s represents the vector of “state” variables,
constrained to be a deterministic function g(x) of the control, and f is some objective function
of the control and state we wish to minimize.

Related Work in Distributed Optimization Much attention has recently been given
to distributed methods for finite-horizon optimal control problems, where g is assumed to be
linear and f is assumed to be quadratic or convex. Distributed optimization has been found
useful for at least two reasons. Firstly, the parallelizability of the individual sub-problems
allows for faster computation time and better overall convergence properties [88, 38, 97, 47].
Secondly, physical systems often have controls physically distributed in space, creating a
need for distributed control algorithms which limit the amount of shared information and
communication between subsystems [80, 15, 124].

Different assumptions on the structure, smoothness, and convexity of f , X and g leads
to different convergence bounds and communication bounds. In optimal control, a method
presented in [88] for decoupling the quadratic terms from the nonquadratic terms leads to
efficient caching techniques shown to be effective in FPGA applications. A distributed gra-

dient descent-based approach is given in [15], which has O
(

1√
k

)
convergence to the global

optimum in the general case, where k is the number of iterations of the algorithm. A
common dual-decomposition technique employed for distributed optimal control is the al-
ternating directions method of multipliers [41, 10, 88] (ADMM), which has been shown to
have O

(
1
k

)
convergence under certain assumptions of the smoothness and decomposability

of the objectives [127]. Additionally, an accelerated version of ADMM, based on Nesterov’s
algorithm [86] can give O

(
1
k2

)
convergence when the decomposed objectives are smooth [97].

When the coupling between systems takes on some sparse form, then one can devise
algorithms with limited communication, which can be beneficial from a latency and architec-
tural standpoint. Optimal control problems where subsystems have disjoint state variables
but coupled control variables have been shown to be amenable to decomposition techniques
for distributed optimization [47, 15], where [80] shows how ADMM decomposition leads to
less communication without a decrease in solution accuracy.
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In [80, 47, 15], the subsystems with disjoint state are modeled as agents tasked with
optimizing over their own subsystem, where agents which share some control variables are
connected by some edge in a communication graph. Thus, the more sparse the coupling
of systems, the lesser the communication requirements. Such a model is referred to as
multi-agent optimization [127]. In systems with coupling due to physical proximity, this
consequence has the added benefit of requiring only physically local communication, and
removes the need for any centralized controller or hub for communication. In [127], an
asynchronous form of ADMM (subsequently referred to as A-ADMM) is presented for multi-
agent optimization, which permits agents to update themselves in arbitrary order, with
communication only required between neighboring agents. The method in [127] does not
present an accelerated version and is shown to have O

(
1
k

)
convergence.

Subsystems with Coupled State One recurring assumption in the distributed opti-
mization literature above is that subsystems have disjoint state variables. For network flow
problems, where subsystems correspond to partitions of a network into subnetworks, such
an assumption does not hold. To see this, one can imagine a traffic light timing plan causing
a traffic jam which spreads across the entire freeway network [104, 84] or a bottleneck of
planes in an airspace affecting flight times throughout the air network [7]. As a result, it
is not possible to decompose the subsystems by only sharing control parameters without
coupling each subsystem to all control variables and modeling the evolution of the entire
network within each subsystem.

Yet, freeway traffic and air traffic subsystems have a very sparse coupling in their state
variables. For instance, discrete traffic models [24, 27] often assume that the speed of traffic
on a particular section of road is only a function of the speed of traffic on neighboring links.
Thus, each subnetwork subsystem would only share a small number of control variables and
state variables with other subsystems, precisely those which physically share a border with
the subsystem.

To exploit the sparsity of such systems, we develop a multi-agent optimization algorithm
based on A-ADMM [127] which permits each agent (subsystem) to share both control and
state variables with neighboring agents, while still converging to the globally optimal control,
given the standard assumption of convex objectives and linear constraints. At a high level,
the algorithm “relaxes” the state variables external to an agent while constraining internal
state variables to adhere to the subsystem’s dynamics. Since A-ADMM eventually brings all
shared variables between agents into consensus (i.e. the difference between shared variables
converges to zero), the relaxed external state variables will converge to satisfying the original
constraints.

The rest of the section is structured as follows. Section 3.3.1 presents the general
problem of posing a multi-agent optimal control problem, with the additional assumption
that an agent may share both state and control variables with other agents. The problem
is then posed in a form amenable to using the A-ADMM algorithm in Section 3.3.2. A
systematic approach to modeling an optimal control problem over a dynamical network as



Section 3.3. Decentralized Control of Flow Networks 46

a multi-agent distributed optimization over subnetworks is given in Section 3.3.3, as well
as a discussion on the suitability of the method for scaling model predictive control on
dynamical networks. In Section 3.3.4, we give an adjoint-based approach to solving the
agent’s subnetwork optimal control problem, suitable for applications with complex, non-
convex dynamics. We then present the application of distributed, predictive ramp-metering
and variable speed limit (VSL) control on freeway networks in Section 3.3.5 followed by
numerical results in Section 3.3.6 with comparisons to existing distributed approaches.

Notation For a vector x, let x[i] be the i’th element of x, and similarly let y[i, j] be the
element of the two-dimensional vector in the i’th row and j’th column. If we have a vector
x with card(x) = N and let w be a subset of {1, . . . , N}, then let xw denote the vector
selecting only those elements x[i] where i ∈ w. If a vector d is the concatenation d = (a, b, c),
then let [d]a be the sub-vector of d corresponding to the original element a.

3.3.1 Optimization over Systems with Shared State

We wish to solve an optimization problem with a “free” global variable x ∈ Rn and a
“dependent” variable s ∈ Rm which is a deterministic function of x. We assume there is a
partition of s into D disjoint subsets,

s =
(
su(1), . . . , su(D)

)
,

where u(i) are subsets of {1, . . . ,m}. The objective function is assumed to be the sum of D
sub-objectives, where sub-objective fi, i ∈ {1, . . . , D} is a convex function of only variable
su(i).

1 Furthermore, su(i) is assumed to be a function of some subset of x and s. Explicitly,
for each i ∈ 1, . . . , D, there is well-defined, linear function gi and subsets v(i) and w(i)
(w(i) ∩ u(i) = ∅) where

su(i) = gi
((
xv(i), sw(i)

))
. (3.19)

The tuple
(
xv(i), sw(i)

)
is the concatenation vector of xv(i) and sw(i). We omit the double

parenthesis in the rest, for simplicity. One can view u(i), v(i), w(i), as the internal state, the
control, and the external state, respectively, of group i. We can now express the optimization
problem we wish to solve as:

min
x,s

D∑

i=1

fi
(
su(i)

)
(3.20)

subject to: su(i) = gi
(
xv(i), sw(i)

)
∀i (3.21)

1We omit the dependency of the objective on the control variable in this presentation for simplicity. It
is still easy in this form to add control variables into the objective by duplicating a control variable into the
state.
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Group Group Group

Control 
Variables

(a) Free and dependent variable
coupling diagram.

Group i u(i) v(i) w(i)
i = 1 {1,2} {1} {}
i = 2 {3} {1,2} {4,5}
i = 3 {4,5} {3} {3}

(b) Summary of resultant
state, control, and external
state subsets.

Edge (i, j) v(i) ∩ v(j) u(i) ∩ w(j) w(i) ∩ u(j)
i, j = 1, 2 {1} {} {}
i, j = 2, 3 {} {3} {4,5}
i, j = 1, 3 {} {} {}

(c) Summary of shared control and state between
groups

Figure 3.10: Example of optimization problem partitioned into D = 3 disjoint state variable
groups with shared control and external state variables. Figure 3.10a shows the partitioned
problem, where an arrow depicts a dependency of a partition group on an external state
variable or control variable. The arrows allow us to compute the u(i), v(i), w(i) subsets for
each group i, where → indicates functional dependency through Equation 3.19. Table 3.10b
summarizes the construction. The dependency graph (V,E) is computed using the subsets
in Table 3.10b, which is summarized in Table 3.10c and reveals that edges exist for groups
(1, 2) and (2, 3), but not for (1, 3).

Figure 3.10a shows an example of how different sub-objectives may be coupled and
Table 3.10b summarizes how one constructs the u(i), v(i), w(i) subsets from the state and
control coupling.

Dependency Graph There are no assumptions on the subsets v(i) and w(i), which implies
that the value of each sub-objective fi is coupled to not just the sub-vector su(i), but also the
global variable x, and other sub-vectors su(j). We can express this coupling as a dependency
graph (V,E), where vertices V are each sub-problem i ∈ {1, . . . , D} and an edge (i, j) ∈ E
exists whenever

1. w(i) ∩ u(j) 6= ∅ (gi is a function of some variable in su(j)), or

2. v(i) ∩ v(j) 6= ∅ (there is some x[k] which both gi and gj depend upon).

Let the neighboring edges of node i ∈ V be denoted by E(i). A dependency graph
construction for the example in Figure 3.10a is summarized in Table 3.10c.
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In Section 3.3.2, we devise a distributed algorithm solve Problem (3.20) with the fol-
lowing requirements:

1. Each processing node corresponds to a sub-objective node in the dependency graph.

2. Each node can be updated in parallel.

3. Each node i only exchanges information with its neighbors E(i) in the dependency
graph (V,E).

4. The algorithm is asynchronous and decentralized, i.e. no central process is required
and nodes can be updated arbitrarily.

3.3.2 Asynchronous-ADMM Algorithm

We reformulate Problem (3.20) to permit a distributed solution method via A-ADMM.
For each node i ∈ V , we duplicate the “shared variables” xv(i) and sw(i) as x̄i and s̄i respec-
tively, and reformulate Problem (3.20) as:

min
x

D∑

i=1

fi
(
su(i)

)
(3.22)

subject to: su(i) = gi(x̄i, s̄i) ∀i (3.23)

s̄i = sw(i) ∀i (3.24)

x̄i = xv(i) ∀i (3.25)

The variable replication allows Constraint (3.23) in Problem (3.22) to be decoupled
across nodes. To decouple Constraints (3.24) and (3.25), we follow a modified process
from [127].

First, we duplicate each subset su(i) with a vector si local to node i ∈ V , and then
concatenate all local variables into a single variable yi = (si, x̄i, s̄i), such that yi is restricted
to the space:

Yi = {(si, x̄i, s̄i) : si = gi(x̄i, s̄i)}.
Finally, we can repose Constraints 2 and 3 in an edge-wise fashion as follows. For each edge
e = (i, j) ∈ E, let yi,e and yj,e be the sub-vectors of yi and yj that are coupled through gj
and gi, respectively. Then Problem (3.20) becomes:

min
(yi∈Yi)i∈V

D∑

i=1

fi([yi]s) (3.26)

subject to: yi,e = yj,e ∀e ∈ E (3.27)
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Algorithm 3 Asynchronous Edge Based ADMM

1: while Not Converged do
2: Select edge (i, j) ∈ E
3: for q ∈ (i, j) do
4: yk+1

q ← arg miny∈Yq fq([y]s)−
∑

e∈E(q) Λq,eλ
k,T
e

(
yq,e − ȳke

)
+ ψ

2
‖yq,e − ȳke‖2

2

5: end for
6: λk+1

e ← λk+1
e − ψ

2

(
yk+1
i,e − yk+1

j,e

)

7: for q /∈ (i, j) do
8: ak+1 ← ak

9: end for
10: end while
11: Note: ỹke = 1

2

(
yki,e + ykj,e

)

12: Note: Λq,e =

{
1 q = i

−1 q = j
e = (i, j)

By moving the edge constraints into the objective through a standard Lagrange mul-
tiplier approach, and adding a regularization term which is equal to zero for feasible solu-
tions [10], we can construct the augmented Lagrangian L formulation (with tunable aug-
menting coefficient ψ), and express the optimization problem as:

min
y=(yi)i∈V

max
λ=(λe)e∈E

L(y, λ) :=
D∑

i=1

fi([yi]s) +
∑

e∈E
λTe (yi,e − yj,e) + ψ‖yi,e − yj,e‖2

2, (3.28)

The above form permits us to apply the A-ADMM algorithm as proposed and analyzed
in [127], and shown in Algorithm 3. At a high-level, the algorithm iterates by first randomly
selecting an edge e = (i, j) from E. Then, nodes i and j update yi and yj respectively by
minimizing the Lagrangian in Equation (3.28) in parallel, while holding all other variables
{λ′e}e′ 6=e, {yk}i/∈{i,j} constant. The new yi and yj values are used to update the dual λe
variables by applying a dual-ascent method [10]. Finally, the process is repeated ad-infinitum
by updating a new edge selected from E, until some convergence or termination criteria are
reached.

Section 3.3.4 presents an efficient solution method, based on discrete adjoint computa-
tions, to solving the subproblem on Line 4 of Algorithm 3.

Remark 3.1. The equation in Line 4 differs slightly from the augmented Lagrangian in
Equation (3.28) and is the result of a number of algebraic manipulations, which are explicitly
derived in [10, 127].

Remark 3.2. We introduce the asymmetric coefficient Λq,e to account for the fact that the
terms for edge e ∈ E(q) in Line 4 depend upon whether the updating problem q was the first
or second term (i or j) in the edge pair.
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3.3.3 Distributed Optimization on Coupled Dynamical Systems

Physical transport systems, such as freeway traffic networks [104, 24] or gas pipelines [54]
are often naturally expressed as a network of individual dynamical systems which influence
one another at contact points, or junction points. Given the coupling in dynamics across the
entire network, optimizing over partitioned sub-systems, with no communication between
systems, will lead to greedy solutions over the individual systems and sub-optimal global
results [38]. Thus, any distributed, globally optimal control scheme applied to such systems
must account for the shared state between the systems. We now show how this can be
done using the multi-agent A-ADMM approach. Furthermore, we show how the algorithm
naturally leads to a communication scheme which mirrors the physical structure of the
underlying physical network.

Assume some discrete-time, discrete-space dynamical system which possesses a network-
like dynamical coupling in space. Specifically, consider a graph

(
V d, Ed

)
(not to be confused

with the dependency graph (V,D) in Section 3.3.1, where the d superscript is added to
denote the dynamical network) where Ed represent the discrete-space cells and V d are the
junction points where cells connect to one another, i.e. each cell in Ed has a corresponding
upstream and downstream junction both in V d. Each discrete space “cell” c ∈ {1, . . . , Nd}
has for each discrete time step k ∈ {1, . . . , Td} both a control variable x[c, k] ∈ R and a state
variable s[c, k] ∈ R. The variable s[c, k] is assumed to be a function of all state and control
variables that satisfy two conditions:

• the time-step is k − 1, and

• the cell must share a junction with cell c.

Next, we wish to express a distributed optimization problem subject to the above dy-
namics in the form of Problem (3.20). To do so, we assume a partition of

(
V d, Ed

)
into D

sub-networks, which implies a partition of Ed into D subsets
(
Ed

1 , . . . , E
d
D

)
and assume an

objective f which is splittable across the state variables internal to each sub-network. This
leads to a state partitioning s =

(
su(1), . . . , su(D)

)
, where (c, k) ∈ u(i) iff c ∈ Ed

i .
Based on the two conditions for state dependencies above, we can deduce that the

state of a sub-network depends on the control and state both internal to the sub-network
and directly neighboring the sub-network. Explicitly, for sub-network i, we can express the
dependent control variables as xv(i) where (c, k) ∈ v(i) iff c ∈ Ed

i or c neighbors a cell in
Ed
i . Similarly, the shared state for sub-network i is sw(i), where (c, k) ∈ w(i) iff c /∈ Ed

i and
c neighbors a cell in Ed

i . Finally, we conclude that there exists some update equation gi,
specific to the particular dynamical system, where the constraint on su(i) can be expressed
familiarly as su(i) = gi

(
xv(i), sw(i)

)
.

As an example, we can consider the network in Figure 3.11a, which is partitioned into
three subnetworks based on line-style. We see that four of the edges share a single junction
between the three subnetworks. Thus, the dynamics assumed above implies that each sub-
network will share state with each other subnetwork. Specifically, the solid-lined network



Section 3.3. Decentralized Control of Flow Networks 51

(a) Complete network (b) Solid subnetwork
with two shared links

(c) Dotted
subnetwork with three
shared links

(d) Dash-dotted
subnetwork with three
shared links

Figure 3.11: A network is partitioned into three subnetworks: solid, dashed, and dash-dotted.
Each subnetwork will share state with neighboring subnetworks. For a subnetwork i, the
cells neighboring i, denoted by Ed

i , are shown in black, while those excluded from Ed
i are

shown in gray.

in Figure 3.11b shares one cell each from the other two subnetworks, while the dashed and
dash-dotted subnetworks in Figures 3.11c and 3.11d share two cells with the solid subnetwork
and one cell with the opposite subnetwork. We note again that while each optimizing agent
may have different values of the state on a particular cell in the network during intermediate
stages of the A-ADMM algorithm, each copy of the state will eventually come into consensus
as the shared-state A-ADMM algorithm converges.

Local Communication Requirements At this point, all relevant parameters to Prob-
lem (3.20) have been specified. The assumption on the dynamical network coupling leads
to a desirable dependency graph (V,E) for the system above. Since each sub-network only
requires shared state from neighboring sub-networks in the sense of the physical network(
V d, Ed

)
, then the dependency graph (V,E) is constructed by assigning a sub-network to

each node V and adding an edge (i, j) to E only for those sub-networks i and j which phys-
ically neighbor each other. Thus, the A-ADMM algorithm guarantees that communication
only take place between physically neighboring systems. This is useful for situations where
there are limitations in the networking capabilities due to physical distance, such as free-
way traffic control systems, where collaborations may only exist for those districts near each
other.

Furthermore, the formulation allows for a completely decentralized and asynchronous
implementation of the global optimization problem. If, for instance, all nodes are managed
by independent agencies with varying computational limits, then there are several practical
benefits to the approach. For a single sub-network, since only information that is directly
adjacent to other sub-networks needs to be shared with other sub-networks, much of the
internal formulation of the sub-network can be made completely hidden from the larger
network. The asynchronicity of the algorithm also permits for neighboring agencies to ex-
change information in an ad-hoc manner, and not be bottlenecked by slower updates between
separate sub-networks.
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Scalability of Subnetwork Splitting for Model Predictive Control A common
application of finite-horizon optimal control is in the context of model predictive control
(MPC) [104, 38], where optimal control policies are recomputed in a rolling-horizon fashion.
Given the optimal control problem beginning at a time-step t,

min
x={xt,...,xt+T }

f t+Tt (s, x) (3.29)

subject to: s = gt+Tt (x),

MPC chooses the control policy xt to apply at time-step t by solving for x = {xt, . . . , xt+T}
in Equation (3.29) using a prediction horizon of T and updating the objective f t+Tt and con-
straints gt+Tt based on the latest estimates of the initial conditions and boundary conditions.

In applications such as freeway onramp metering, a limiting factor in choosing an op-
timization time-horizon is the accuracy of the predictions of the boundary conditions, or
specifically, anticipating future vehicle demands on freeway onramps. At some point, increas-
ing the time-horizon will only decrease the effectiveness of the control due to the deviation
in predicted model state versus reality. Thus, it is often practical to consider the time-
horizon fixed in MPC applications, at which point the scalability with respect to network
size becomes of importance.

For freeway networks with very small branching factors, it is reasonable to assume the
following:

• For each subnetwork, the number of bordering links is constant.

• The number of shared state and control variables grows linearly with the time-horizon
for each subnetwork.

• The number of subnetworks scales linearly with network size (for fixed-size subsystems).

One concludes that the amount of communication required for the A-ADMM subnetwork
splitting method would scale linearly with the network size and quadratically with time-
horizon length. If we were to instead decompose our system, for instance, across time-slices,
the communication requirement would scale quadratically with network size and linearly with
time-horizon length. Given our assumption of a fixed time-horizon, the subnetwork splitting
approach for network-flow MPC has the added benefit of better scaling in the communication
requirements.

3.3.4 Solving Sub-problems via the Adjoint Method

What is not explicitly expressed in Algorithm 3 is a solution method for Step 4:

yk+1
i = arg min

y∈Yi
fi([y]s)−

∑

e∈E(i)

Λi,eλ
k,T
e

(
yi,e − ȳke

)
+
ψ

2
‖yi,e − ȳke‖2

2 (3.30)
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In the more general case of non-convex update equations gi and objectives fi, it is difficult
to find even local optima for yi over the space Yi using gradient-descent methods: a result
of the difficulty of projecting and expensiveness of computing gradients in Yi.

Since [yi]s is a deterministic function of the unconstrained variables [yi]x̄ and [yi]s̄, it
becomes more efficient to eliminate [yi]s from the search space and concatenate [yi]x̄ and
[yi]s̄ into a single “free” variable r̄i := ([yi]x̄, [yi]s̄). Similar to the convention for yi,e and
yj,e, we denote (r̄i,e, r̄j,e) and (s̄i,e, s̄j,e) as the free variables and constrained state variables,
respectively, shared between nodes i and j. Then we can repose the sub-optimization Prob-
lem (3.30) in the following way. We let

f̄i(si, r̄i) :=fi([y]s)−
∑

e∈E(i)

Λi,eλ
k,T
e

(
ri,e − r̄ke

)
+
ψ

2
‖ri,e − r̄ke‖2

2+

∑

e∈E(i)

Λi,eλ
k,T
e

(
si,e − s̄ke

)
+
ψ

2
‖si,e − s̄ke‖2

2

be the “augmented” sub-objective accounting for the additional ADMM terms for subprob-
lem i, where r̄e, s̄e denotes the vector mean of ri,e, rj,e and si,e, sj,e respectively. Also, if we
let the concatenated subsystem equations be:

Hi(s, r) := s− gi([r]x̄, [r]s̄),
then we have

(
sk+1
i , r̄k+1

i

)
= arg min

s,r
f̄i(s, r) (3.31)

subject to: Hi(s, r) = 0 (3.32)

The form of Problem (3.31) permits us to apply the discrete adjoint method (Sec-
tion 3.1.2) to compute gradients of f̄i at some search point r̄0

i . If we let s0
i be defined

so that Hi(s
0
i , r̄

0
i ) = 0, then we arrive at the following expression for the gradient:

∇rf̄i
(
s0
i , r̄

0
i

)
= γT

∂Hi(s
0
i , r̄

0
i )

∂r
+
∂f̄i(s

0
i , r̄

0
i )

∂r
(3.33)

subject to:
∂Hi(s

0
i , r̄

0
i )

∂s

T

γ = −∂f̄i(s
0
i , r̄

0
i )

∂s

T

, (3.34)

where γ is the discrete adjoint variable and Equation (3.34) is the discrete adjoint
system.
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(a) A single freeway junction
near link i.

Subnetwork 1 Subnetworks 2 to D-1 Subnetwork D

(b) Diagram of freeway network with A-ADMM
subnetwork splitting.

Figure 3.12: Overview of the freeway ramp metering network and state evolution. Fig-
ure 3.12a shows the dynamical state and control variables of a particular junction i on the
freeway. The relation between mainline density ρ[i, k], onramp queues l[i, k], metering con-
trol rate c[i, k], VSL ν[i, k], and boundary condition split ratios β[i, k] for a given time-step k
are depicted, and mathematically expressed in Equations (3.37)-(3.41). Figure 3.12b shows
how one may partition the linear network into subnetworks. While subnetworks may have
internal links and onramps, they will also include links and onramps immediately upstream
and downstream as part of their shared state (denoted by the dashed-line boxes), giving the
appearance of overlapping subnetworks.

3.3.5 Distributed, Coordinated Optimal Ramp Metering and VSL

We apply distributed optimization via subnetwork splitting to the problem of coordi-
nated, predictive freeway onramp metering and VSL control [93, 38, 104, 84], where traffic
lights on freeway onramps are used to regulate the flow entering freeway mainlines and speed
limits are dynamically adapted in order to prevent congestion and improve such metrics as
driver travel time and speed variability. The term coordinated indicates that many traffic
lights and VSL signs along a freeway stretch will act cooperatively, given that conditions
near one onramp or VSL sign may eventually affect conditions at a neighboring onramp or
VSL sign. The term predictive indicates that the metering/VSL strategy should anticipate
future conditions on the roadway using traffic demand predictions and an underlying model
of the evolution of the freeway system.

Similar to discretized freeway models following the cell transmission model (CTM) ap-
proach [24] taken in [27, 104], we adopt the Link-Node CTM model presented in [84]. The
network is given as a linear sequence of mainline link, onramp and offramp triples2, as de-
picted in Figure 3.12. We establish the state variables of the system as s = {ρ[i, k], l[i, k] :
i ∈ [1, N ], k ∈ [1, T ]}, where ρ[i, k] is the number of vehicles on the mainline link i (with
unit length) and l[i, k] is the number of vehicles queued on onramp i, both at time-step k.
Additionally, the control variables are x = {(c[i, k], ν[i, k]) : i ∈ [1, N ], k ∈ [1, T ]}, where
c[i, k] ∈ R+ is the maximum vehicles that can leave onramp i at time k (ramp metering rate),

2Freeway models with more general network topologies exist [42] and allow direct application of the
subnetwork splitting method presented herewithin. We limit our discussion to linear freeway networks to
simplify the presentation.
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and ν[i, k] is the maximum speed of vehicles on link i at time k (VSL rate). The following
system of equations relate the state of the freeway at time-step k − 1 to k:

δ[i, k] = min(ν[i, k]ρ[i, k], fmax)(1− β[i, k]) + d[i, k] (3.35)

σ[i, k] = min(w(ρmax − ρ[i, k]), fmax) (3.36)

d[i, k] = min(c[i, k], l[i, k]) (3.37)

f [i, k] = min(ν[i, k]ρ[i, k], fmax) (3.38)

× min(δ[i, k], σ[i+ 1, k])

δ[i, k]

r[i, k] = d[i, k]
min(δ[i− 1, k], σ[i, k])

δ[i− 1, k]
(3.39)

l[i, k] = l[i, k − 1] +D[i, k]− r[i, k − 1] (3.40)

ρ[i, k] = ρ[i, k − 1] + f [i− 1, k − 1](1− β[i, k − 1]) (3.41)

+ r[i, k − 1]− f [i, k − 1]

The above model is similar to the model in Section 2.2.3, differing mainly in the junction
model. Explicitly, the variables ρ and l are analogous to the discrete mainline density
and queue length, equations (3.37)-(??) have the same supply and demand analogies of
equations (2.23)-(2.25), and finally equations (??) and (3.39) are the outgoing vehicle flows
corresponding to equations (2.27) and (2.28).

The recursive definitions above require an initial condition,

s0 = {ρ0[i], l0[i] : i ∈ [1, N ]},
and boundary conditions at the left and right extremes of the network,

(
sL, sR

)
= {
(
sL[k], sR[k]

)
: k ∈ [0, T ]},

both of which are assumed given. Equations (3.37)-(3.39) can be seen as intermediate com-
putations required to update the state variables given in Equations (3.40)-(3.41), and not
explicitly part of the state vector. We note that the offramps are modeled as stateless,
infinite-capacity sinks, and thus are only captured through β[i, k], the fraction of vehicles
which desire to exit offramp i rather than continue to mainline link i + 1 at time-step k.
A diagram of the state and control variables for a single junction is given in Figure 3.12a.
The above dynamics are non-convex, but it is shown in [84] that, assuming some maximum
velocity V and ramp flow C, if a set of variables satisfy the following linear inequalities and
equalities:
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f [i, k] ≤ min(ρ[i, k]V, fmax) (3.42)

f [i, k](1− β[i+ 1, k]) + r[i+ 1, k] (3.43)

≤ min(w(ρmax − ρ[i+ 1, k]), fmax)

r[i, k] ≤ min(C, l[i, k]) (3.44)

Eqns (3.40)− (3.41),

then a control c, ν can be constructed such that f, r, ρ, l, c, ν satisfy Equations (3.37)-
(3.41). Thus, we can employ the adjoint method presented in Section 3.3.4 on the relaxed
problem in order to improve sub-objectives during each iteration of the A-ADMM algo-
rithm with a guarantee of convergence to the global optimum. We omit the explicit c, ν
reconstruction procedure and refer the reader to [84] for details.

As an objective, we use total travel time, or the cumulative time spent by all vehicles
on the network. Total travel time is mathematically expressed as

fTTT =
∑

i,k

ρ[i, k] + l[i, k],

and is decomposable across subnetwork splits.
It is clear from the definitions of s and x above that each state variable is a direct

function of only the state and control variables of neighboring links at the previous time-
step, and as such, can be decomposed using the subnetwork splitting method in Section 3.3.3.
Figure 3.12b depicts such a splitting, where each subnetwork also includes the neighboring
upstream and downstream links as boundary conditions.

The dependency graph (V,E) for such a network has a natural structure, where an
edge (i, j) is in E if and only if j = i + 1, and thus a subnetwork need only communicate
with the linear subnetworks immediately upstream and downstream of itself. Furthermore,
only information pertaining to the bordering links and onramps of a subnetwork needs to be
shared with its neighbors, allowing a subnetwork to conceal the particular implementation
of its internal freeway model from the rest of the system.

3.3.6 Numerical Results

Convergence with Number of Subnetworks We first investigate the numerical con-
vergence of the A-ADMM metering and VSL controller on a model 4-lane freeway network
spanning 12 miles (N = 12) with 3 onramps and 2 offramps over a 2 hour simulation
(T = 120). We consider three different partitionings by splitting the network into 2, 3
and 4 subnetworks, respectively. We also simulated the following alternative controllers for
comparison:

• No control: Metering rates are set to maximum ramp flux rates C and speeds are set
to free flow velocity V .
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Figure 3.13: Space-time diagrams of mainline (row 1) and onramp (row 2) vehicle count
evolution for 12 mile network. Large congestion pockets appearing for (A) no control case
are reduced using coordinated holding of vehicles on onramps and decreased speed limits
during periods of congestion (C). Lack of communication between subsystems (B) leads to
an ineffective control policy.

• Centralized: A single optimal control problem over the entire freeway is solved as a
convex optimization problem. This solution gives the theoretical lower bound on total
travel time.

• No communication: Individual subnetworks optimize over their own decomposed total
travel time objective, with no exchange of information between subnetworks.

• Communicative: Subnetworks iteratively optimize over decomposed objectives and
exchange the resulting predicted boundary conditions with neighbors until resulting
boundary conditions converge (see [38]). There is no guarantee of convergence of
boundary conditions or of finding the global optimum.

Figure 3.13 gives a space-time depiction of the mainline and onramp vehicle evolution
for the no control, no communication, and A-ADMM controllers.

The convergence results for the 12 mile freeway network are summarized in Figure 3.14.
The centralized approach is faster than the distributed approaches (A-ADMM and commu-
nicative) as the former does not require an outer communication loop. As the number of
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Figure 3.14: Total travel time vs. computation time for several different different control
schemes and subnetwork (SN) partitionings. The no-communication results are omitted due
to poor performance.

network partitions increases, A-ADMM converges faster to the optimum due to the par-
allelization of the subnetwork optimizations. Furthermore, the communicative algorithm
degrades in performance with increasing number of partitions due to the increase in commu-
nication requirements and lack of global objective coordination. If a decentralized algorithm
is required for architectural reasons, then the A-ADMM approach is shown to be most de-
sirable due to the lower degree of coordination than the centralized approach and better
convergence than the communicative approach.

Distributed MPC for I15 Network MPC simulations were run on a calibrated model of
the I15 South freeway in San Diego, CA with boundary flow data taken from measurements
recording during a morning rush hour. The simulation spans 20 miles (N = 32), contains 9
onramps and runs over a 170 minute window (T = 1000) with an MPC update time of 17
minutes and a horizon of 25 minutes. The network is partitioned into 5 subnetworks and is
depicted geographically in Figure 3.15a.

Table 3.15b gives a summary of the performance of the A-ADMM MPC controller
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I15 South
(a) Geographical depiction.

Opt. No Con. Cent. MPC No Comm. Comm. A-ADMM
2.572 2.605 2.584 4.529 8.453 2.589

(b) Total travel time summary in 1000 vehicle hours.

Figure 3.15: I15 South MPC simulation summary. Figure 3.15a shows the freeway under
consideration partitioned into 5 subnetworks, while Table 3.15b gives a summary of the
performance of the different ramp metering/VSL controllers.

along with other controllers. The results indicate that the A-ADMM controller performs
nearly as well as the centralized MPC controller, which can be viewed as a lower-bound on
the performance of MPC controllers with limited horizons. The communicative approach
performed worse than the non-communicative approach because its iterative terminated after
reaching a set number iterations on a highly inefficient solution, due to its lack of convergence
guarantees.
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Chapter 4

Security of Traffic Control Systems

Public traffic infrastructure is arriving in the cyber age with increasing connectivity be-
tween the different segments of roadways. For example, freeways are commonly instrumented
with loop detectors that allow for real-time monitoring of roadway speeds [65]. Estimates
of road traffic conditions are then fed directly into onramp traffic light metering algorithms
which regulate traffic flow to improve congestion [93]. Finally, these metering algorithms
can be coordinated and controlled by a remote command and monitoring center, leading to
a regional network of interconnected sensors and controllers [104].

Increased efforts to build systems which understand and utilize the interconnectivity
are evidenced by integrated-corridor-management (ICM) projects such as Connected Corri-
dors [78] and mobile applications which use GPS probe data to improve navigation [128].

This connectivity offers great potential to better analyze, control and manage traffic
but also poses a significant security risk. A compromise at any level of the traffic control
infrastructure can lead to both direct access of an attacker to alter traffic lights and change-
able message signs, and indirect access via spoofing of sensor readings, which may trick the
control algorithms to respond to false conditions.

A number of traffic-related attacks of infrastructure systems have already been demon-
strated in the past few years. A man-in-the-middle attack on GPS coordinate transmissions
from mobile navigation applications showed it is possible to trick navigation services into in-
ferring non-existent jams [64], while a similar attack used a fleet of mobile phone emulators to
mimic the presence of many virtual vehicles on a roadway [121]. A popular vehicle-detection
sensor was revealed to use a type of wireless protocol vulnerable to data injection attacks,
and a demonstration showed that the access point could be tricked into receiving arbitrary
readings [129]. Cyber attacks on a centralized command center remain a serious threat given
the frequent discovery of networking vulnerabilities, such as the Heartbleed bug [21]. Even
insider attacks on command centers have precedent as two Los Angeles traffic engineers in
2009 were found guilty of intentionally creating massive delays by adjusting signal times at
key intersections [52].

Given the existence of such vulnerabilities and the scale at which they can be exploited,
understanding the nature and costs of such attacks becomes paramount to public safety.
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In this chapter, we present a systematic approach to analyzing the topic of traffic control
system vulnerabilities and their potential impact.

To do so, we begin by constructing a taxonomy of different vulnerability locations in
traffic control systems, defining three distinct layers: physical, close-proximity, and virtual.
Difficulty, impact, and cost values are also associated with each potential attack. We mo-
tivate our classifications by presenting two scenarios that combine a number of attacks to
accomplish a high-level goal.

We then focus our analysis on an in-depth exploration of freeway attacks using coordi-
nated, ramp metering. To achieve this, we develop a method based on adjoint computations
and finite-horizon optimal control for finding optimal metering rates to create a desired dis-
ruption on the freeway. We additionally give an overview of multi-objective optimization
and discuss how such an approach is useful for solving high-level attack objectives which
contain many conflicting sub-goals, such as permitting a fleeing vehicle to escape pursuants
on a particular freeway stretch without overly congesting freeway regions irrelevant to the
pursuit.

Central to the plausibility of intricate freeway attacks is the efficiency in which the
control and state space of the freeway can be explored. For large systems, brute force
exploration would be infeasible, and one could not expect an effective strategy to be com-
puted in a reasonable amount of time. To overcome the large control and state space, this
work suggests application of the adjoint method (Chapter 3) and its distributed extension
(Chapter 3.3.3) within the multi-objective optimization framework. While the derivations
are given explicitly for the centralized form of adjoint control, the methodology extends the
distributed case.

The contributions of this chapter are as follows. We present a classification of a broad
set of attacks on traffic control systems with their relation to the underlying physical and
cyber infrastructure. Mathematical formulations based optimal control and adjoint-based
methods are used to show exactly how an attacker can exploit these weaknesses. Explicit
algorithms using these tools for coordinated ramp metering attacks are derived and presented.
Finally, we provide numerical evidence and novel results of the feasibility of these attacks
via simulations modeled after actual freeway networks.

The rest of the chapter is organized as follows. Section 4.1.2 summarizes and classifies
the vulnerabilities of traffic control systems. Section 4.2 gives a mathematical approach for
carrying out a class of the presented attacks. Sections 4.2.3 and 4.2.4 give two detailed
applications of the mathematical approach to ramp metering attacks. The first application
shows how ramp metering can allow an attacker to cause congestion in precise locations and
at precise moments in time along a freeway. Simulations are applied to a full-sized model of
a 19.4 mile stretch of the I15 South Freeway in San Diego, California. Results are shown for
both a custom macroscopic flow simulator as well as an Aimsun [6] microscopic model. The
second application finds a strategy to solve the aforementioned problem of allowing a fleeing
vehicles to escape pursuants. Numerical results are presented, as well as a discussion of the
benefits of the multi-objective optimization method. We conclude with some future areas of
study for traffic system security.
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Figure 4.1: The physical roadway, sensors, connected vehicles and controllers near a free-
way/onramp junction in Figure 4.1a form a cyber-physical network we refer to as a local
freeway control system. The mask icons (white/black masks for indirect/direct vulnera-
bilities) denote vulnerability points in the local control network. In Figure 4.1b, the local
controllers are wired together, then connected to a command center via a relay box to form
the global control system. This chapter analyzes vulnerability locations associated with each
component.

4.1 Traffic Control Systems and Vulnerabilities

In the later part of the chapter we propose attacks to create congestion based on user-
defined needs. This section reviews the current architecture of freeway control systems to
show that these attacks can be implemented in practice on such systems.

4.1.1 The Freeway Control System

Modern freeways encompass control and monitoring mechanisms which enable traffic
management to mitigate congestion and improve traffic flow in real-time. While the exact
combination of sensors, controllers and transmitters differ from location to location, this
chapter chooses one particular instantiation of a freeway control system, which we find to
be representative. Figure 4.1a shows a control system installed near a junction of a freeway
and an onramp. We consider three elements of the control system:

• Sensors, used to gather information about the freeway state. For example, loop detec-
tors are used to acquire the flow of vehicles along the freeway and onramps/offramps,
while the trajectory of vehicles equipped with GPS (or containing GPS-powered smart-
phone applications) can be used for estimating real-time traffic conditions [128].

• Actuators, used to influence the evolution and efficiency of the freeway. The most
common actuation strategy is ramp metering, where traffic lights installed on freeway
onramps control the influx of vehicles to the mainline. Other actuators include variable



Section 4.1. Traffic Control Systems and Vulnerabilities 63

speed limit control [84] and variable message signs. For the purposes of this chapter,
the ramp meters are the only actuators we will consider.

• Local controllers, such as 2070 boxes [3] and the older 170 boxes [34], which allows
interaction between the sensors and ramp meters.

We assume control boxes are wired to the nearby metering light and have a wireless con-
nection to nearby sensors. Vehicles with navigation devices such as TomTom automatically
analyze radio-broadcasted traffic reports from traffic control centers to improve their navi-
gating functionality.

In order to allow coordinated control and sensing across a freeway stretch with many
onramps, the local control systems are connected to allow for a more global configuration.
Figure 4.1b depicts our representative global communication architecture. The local control
boxes are wired together along the freeway to form the actuation network, with intermediary
relay boxes allowing for an uplink and downlink to a remote command center. The command
center contains instrumentation and personnel for monitoring traffic conditions and setting
the metering lights accordingly.

4.1.2 Vulnerability Classification

The traffic control infrastructure is built up of several layers and each layer poses in-
dividual security risks, starting from tampering with the actual devices, cables or wireless
signals, to attacking the software of deployed devices or attacking the command center. At-
tackers can leverage vulnerabilities in the infrastructure to control or disrupt these connected
systems. Individual attacks can thereby target the physical layer, the communication layer,
the layer of the control center, or any combination thereof.

Direct physical access: The physical layer is the lowest attackable layer and involves
direct access to individual wires, opening and accessing the control box, or tampering with
individual sensors. Physical attacks involve clipping, tampering, removing, or replacing of
wires or hardware. For instance, copper wire theft near freeways is a common occurrence [119,
107]. Such attacks need low sophistication, are easy to carry out, and are hard to protect
against as each device must be physically protected given that software-based protection is
not effective against physical attacks. On the other hand, the attack is costly as (i) direct
physical access is needed, (ii) the attacker is exposed, and (iii) the attack does not scale (i.e.,
each piece of equipment is attacked individually). Examples of such an attack in Figure 4.1a
include clipping or removing wires between sensors and the 2070 controller, tampering with
individual sensors, the ramp meter, or the 2070 controller.

Proximity access (locality): Figure 4.1b depicts multiple control boxes chained together
to form a corridor where actuators have a coordinated plan between the different control
boxes. An attack on the communication layer forges, removes, replaces, or inserts attacker-
controlled measurements into the control system, which may then make further decisions
based on forged data. An attacker can either replace or add sensors to the current sensor
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Attack Description Access Control Complexity Cost
copper theft/clipping wires physical low low low
replacing a single sensor/actuator physical low low low
attacking a single sensor/actuator locality low medium low
replacing a single control box physical medium medium medium
replacing a set of sensors/actua-
tor

physical medium medium medium

attacking a set of sensors/actua-
tor

locality low medium low

replacing a corridor of control
boxes

physical high medium medium

attacking a corridor of control
boxes

network high high medium

attacking the control center network high high high
spoofing GPS data network medium high medium
attacking navigation software network medium medium medium

Table 4.1: List of possible infrastructure attacks with access to different layers that is needed,
level of control that the attacker gains, sophistication of the attack, and cost.

network to inject new measurements or attack the software running on sensors and/or ac-
tuators to take over control. Both aspects of the attack are feasible; the first aspect needs
additional hardware and an attacker that delivers the hardware, the second aspect needs to
find a software vulnerability with a security analysis of the existing devices. These attacks
need higher sophistication and knowledge but no longer need direct hardware access to the
existing sensors and scales to some extent.

Networked/virtual access: Remote connections from the physical freeway infrastructure
to the command center defines another layer with potential vulnerabilities. An attack on
this layer can be done by forging or controlling messages from/to the command center and
possibly even compromises the command center itself. For this scenario an attacker needs to
find software vulnerabilities in the software running in the command center. Direct access to
these centers is usually not given and this attack therefore is highly sophisticated (or needs
insider access). This attack is the hardest possible attack as command centers and back links
are usually guarded but allows a great scaling effect as many control boxes can be controlled
directly.

Table 4.1 gives a (partial) list of vulnerabilities in our freeway control system along with
classifications for each attack.

Motivating Examples

We will consider two fictional but realizable attack scenarios and study their conse-
quences on the compromised network. The first scenario involves indirect control of the
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freeway, through spoofing the sensors, to achieve a local objective. The second scenario
involves direct control of the ramp meters to achieve a global objective along a larger stretch
of freeway.

The distinction between direct and indirect control is illustrated in Figure 4.1a via
the white mask (indirect) and black mask (direct) icons; direct control can set arbitrary
metering rates to a single traffic light or to many lights in a coordinated fashion, while
indirect control only modifies sensor readings, with the anticipation that the uncompromised
metering system will respond to the spoofed sensors in a predictable manner. Examples of
direct attacks include a compromise of the 2070 boxes which are directly wired to the meters
and a compromise of the command center, which issues upstream metering plans to the 2070
controllers. Examples of indirect attacks include sending fake loop-detector readings to access
points and broadcasting false traffic reports to GPS devices which may respond with poor
routing advice.

Direct Attack: catch-me-if-you-can The objective of the attacker is to escape from
pursuants along a large section of freeway. A compromise of all the ramp meters is assumed,
as it permits the attacker to selectively congest certain sections of the roadway (see Sec-
tion 4.2). One approach is to hack the command center itself, with the downside being the
expensiveness and complexity of such an attack (see Table 4.1). Another solution is to begin
by hacking one of the 2070 boxes, and since all the 2070 boxes are networked along the
freeway (see Figure 4.1b), a single hacked box can serve as a means of compromising the
other nearby boxes, leading to a cascading attack. The attacker can then acquire full control
of all the 2070 boxes, and in turn, the ramp metering lights.
The current traffic control architecture presented above supports the class of attacks de-
scribed in the next section. Specifically, a mathematical approach to coordinated ramp
metering attacks is developed to permit an attacker to effectively exploit vulnerabilities in
the metering control system.

Indirect Attack: VIP-lane The objective of the attacker is to clear a predetermined
section of a regularly congested freeway. The attacker drops low-cost wireless transmitters
near the 2070 controllers along the freeway section. As the actual loop-detector sensors
communicate with the control box wirelessly, the attacker will be able to override the loop-
detector signals and send false data that indicates a fully congested freeway. This will
indirectly affect the ramp meters, which will respond by limiting on ramp flow and thus
eliminating significant freeway mainline flow. The attacker will then transmit false GPS
location data via a set of hacked cellphones to trick navigation software into believing the
freeway is congested. Approaching vehicles using navigation software will then be rerouted
around the fake congestion which leads to a further reduction in incoming flow. The net
effect of the attack is a congestion-free commute for the attacker: a private VIP lane created
purely by indirect, sensor-based attacks.

A depiction of the VIP-lane attack is shown in Figure 4.2. The attack was also im-



Section 4.1. Traffic Control Systems and Vulnerabilities 66

Free Flow Conditions

Ramps Blocked

Figure 4.2: Diagram of the VIP-Lane attack on the Aimsun micro-simulation. Trucks (dra-
matized in [102] as belonging to a hypothetical delivery company, OptiRoute) passing by
transmit fake traffic count data in an attempt to spoof the readings received by the traffic
count sensors. The count sensors are deceived into inferring high-density conditions, caus-
ing large amounts of metering on the on ramps while creating free-flow conditions on the
mainline.

plemented numerically as a part of the SmartRoads project, which is discussed in the next
section.

4.1.3 SmartRoads and SmartAmerica

As part of the White House SmartAmerica 2014 Conference on cyber-physical sys-
tems, A UC Berkeley PATH institute and Vanderbilt University collaboration presented a
functional microscopic simulation framework for conducting and analyzing cyber attacks on
freeway control infrastructure. The project, nicknamed SmartRoads, consists of three main
components:

• UC Berkeley Connected Corridors : A simulation and decision support system for traffic
systems which implements estimation and ramp metering control.

• TSS Aimsun [6]: a microscopic traffic simulator with API’s for broadcasting loop-
detector information and modifying metering rates dynamically.

• Vanderbilt C2WindTunnel [17]: A computer network communication simulator and
visualization tool.

The ultimate mission of the collaboration is to allow for a comprehensive modeling of
traffic control system vulnerabilities to enable real-time security compromise detection and
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Figure 4.3: System diagram for SmartRoads project. The Aimsun micro-simulator (Label
A) interfaces with the Connected Corridors Control System (Label B) through databases.
The C2WindTunnel (Label C) system models networking and serves as the attack point.
Sensors information intercepts are indirect attacks, while metering command intercepts are
direct attacks.

prevention. SmartRoads aims to accomplish this by modeling the flow of information and
communication between the Connected Corridors system and the Aimsun simulator.

As a initial task, a simulation of both indirect and direct attacks was conducted on a
calibrated microscopic model of the I15 Freeway. As the communication between Aimsun
and Connected Corridors is conducted through database intermediaries, the C2WindTunnel
software was installed on the communication link between Aimsun and the databases. Be-
fore sensor information reached the database from Aimsun and before metering commands
reached Aimsun from the database, C2WindTunnel simulated a communication interception
and modified the contents of the packets. A sensor intercept is viewed as a simulated indirect
attack, while a metering rate intercept is viewed as a simulated direct attack. The system
architecture of SmartRoads is summarized in Figure 4.3.

The VIP-Lane attack was fully simulated on the SmartRoads system, where a video
playback of the simulation clearly indicates that a spoofing attack on the loop detectors
results in an under-utilized freeway mainline, while the metering algorithms are “tricked”
into over-metering. See our link [102] for a Youtube video depiction.

A direct attack was also simulated in the SmartRoads framework, demonstrating the
interception of metering commands to a series of traffic lights along I15 South. The attack,
referred to as a box attack, attempts to create a precise pocket of congestion over a prede-
termined section of road and period of time. The details of box attacks, as well as a visual
summary of the direct attack within SmartRoads, are given in Section 4.2.3.
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4.2 Coordinated Ramp Metering Attacks

An attacker can negatively influence the performance of the freeway network or achieve
some criminal goal by setting the metering lights to a particular configuration. The impact
of such an attack can be maximized by leveraging a discrete dynamical freeway model to
compute metering rates which achieve the desired goal using finite-horizon optimal control
and multi-objective optimization techniques.

4.2.1 Optimal Control Model

Optimal Control Formulation

Using the discrete model in Section 2.2 mathematically expressed as follows:

δ[i, k] = min(vρ[i, k], fmax) (4.1)

σ[i, k] = min(w(ρmax − ρ[i, k]), fmax) (4.2)

d[i, k] = u[i, k] min(l[i, k]/4t, rmax) (4.3)

f in[i, k] = min(σ[i, k], d[i− 1, k] + β[i, k]δ[i, k]) (4.4)

f out[i, k] =





δ[i, k] if pf in[i+1,k]
β[i,k](1+p)

≥ δ[i, k]
f in[i+1,k]−d[i+1,k]

β[i,k]
if f in[i+1,k]

1+p
≥ d[i+ 1, k]

pf in[i+1,k]
(1+p)β[i,k]

otherwise

(4.5)

r[i, k] = f in[i, k]− β[i, k]f out[i, k] (4.6)

ρ[i, k + 1] = ρ[i, k] +
4t
4x
(
f in[i, k]− f out[i, k]

)
(4.7)

l[i, k + 1] = l[i, k] +4t(D[i, k]− r[i, k]), (4.8)

we seek a method to compute a coordinated ramp metering policy u[i, k] over all space
i ∈ [1, N ] and time k ∈ [1, T ], which minimizes (or reduces) some specified objective. We
cast the problem as a finite-horizon optimal control problem, as done in Section 3.1.1.

We succinctly express the discrete, controllable dynamical system given in Section 2.2
by:

H(u, ρ) = 0. (4.9)

Given some objective function J(u, ρ), our goal is now to find the optimal u∗ which
solves the following constrained finite-horizon optimal control problem:

min
u

J(u, ρ) (4.10)

subject to: Equation (4.9). (4.11)

We utilize the discrete adjoint method discussed in Section 3.1.2 to efficiently compute
gradients within a first-order descent method.
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4.2.2 Multiple Objectives: Interactive Multi-objective Optimiza-
tion

A high-level attack goal often requires satisfaction of many sub-goals at once, and often-
times the sub-goals can be competing or conflicting. For example, in the catch-me-if-you-can
scenario, the attacker wants to escape from his chasers. Hence the attacker wants to travel
the freeway as quickly as possible, but also wants to slow down the chasers behind. As a
consequence, we have two simpler but competing objectives.

Such a situation with multiple, competing objectives can be described as a multi-
objective optimization problem.

Multi-objective Optimization and Pareto Front

Definition 4.1 (Multi-objective optimization problem). Given N ∈ N, let (fi(u, ρ)) be a
set of N objective functions describing the goal of a freeway attack. The multi-objective
optimization problem we consider is the following simultaneous minimization problem:

min
x∈X

(f1(x), f2(x), . . . , fN(x)) (4.12)

As we are now minimizing a vector and not a scalar, we need to define how a solution
of equation (4.12) can be “better” than another.

Definition 4.2 (Pareto front). An solution x ∈ X is said to Pareto dominate another
solution x′ if:

• ∀i ≤ N fi(x) ≤ fi(x
′)

• ∃j ≤ N fj(x) < fj(x
′)

A solution x ∈ X is called Pareto optimal if there is no other solution x′ that dominates it.
The set of all Pareto-optimal solutions is called the Pareto front, P ⊆ X.

Hence, we consider Pareto-optimal solutions to be the solutions of Equation (4.12).

Decision Maker

There are many ways to find a Pareto-optimal solution. For example if we have three
objective functions, we can minimize f1 first, minimize f2 on the subset arg minx∈X f1(x)
and finally minimize f3 on the remaining subset to obtain a Pareto-optimal solution. But
we could also do the same in any order, with potentially very different results. Thus, the
Pareto front can sometimes be very large and hard to explore. As a consequence, we need
to be able to identify the most desirable solutions within the potentially large Pareto front.

A Decision Maker (DM) represents the human whose expertise is used to discern a
preference between two control values. As we only wish to judge controls which are Pareto



Section 4.2. Coordinated Ramp Metering Attacks 70

optimal, The DM only observes and discerns values on the Pareto front to limit the search
space and improve the efficiency of the method. As a consequence, the DM has a hidden ob-
jective function: u(u, ρ), the utility function, which can only be indirectly observed through
probing the DM. With u, we can reformulate the multi-objective optimization problem as:

min
x∈P

u(x) (4.13)

The DM is essential to multi-objective optimization problems with large Pareto fronts.
There are several ways to interact with him:

• He can evaluate his utility function u on any given Pareto-optimal solution.

• He can give more general preferences on the Pareto front, for example a preference for
one of the objective functions, or for a given subset of the Pareto front.

Finite-horizon Optimal Control and Multi-objective Optimization

Scalarization In order to find Pareto-optimal solutions, we will reduce the problem to the
common scalar minimization problem, which can be solved with the optimal control tools of
Section 4.2.1. This process is called scalarization. As our particular scalarization, we use a
linear combination of the individual objective functions:

f(x) =
∑

i≤N
aifi(x). (4.14)

The DM can favor a specific objective fi over other objectives by increasing the ai
coefficient.

It is easy to show that any solution of Equation (4.14) will also belong to the Pareto
front. As a consequence, we can explore at least a subset of the Pareto front (with the
hope that this subset is representative) by minimizing a linear combination of the objective
functions.

For example, the next proposition shows that a linear combination of the objectives is
a type of scalarization.

Proposition 4.2.1. If a solution x ∈ X satisfies:

∃ (ai)i≤N ∈ R∗+ x ∈ arg min
y∈X

∑

i≤N
aifi(y) (4.15)

Then x is a Pareto optimal solution

Proof. If x is not a Pareto optimal solution, a solution y ∈ X Pareto - dominate x, by
Definition 4.2. As a consequence, we have:

• ∀i ≤ N fi(y) ≤ fi(x)
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• ∃j ≤ N fj(y) < fj(x)

And immediately: ∑

i≤N
aifi(y) <

∑

i≤N
aifi(x)

So x 6∈ arg miny∈X
∑

i≤N aifi(y), hence the proof by contraposition.

A Posteriori Method Equation (4.14) allows one to sample the Pareto front by exploring
the space of the coefficients which can provide to the DM a representative subset of Pareto-
optimal solutions. The DM can then choose a posteriori his preferred solutions. And as such
this method is called an a posteriori method.

This method can be computationally costly as many different optimal control problems
need to be solved, but provides a good overview of the Pareto front. In particular, it gives
an estimation of the lower and upper bounds of each objective function. Thus one can scale
each objective function to take values only between 0 and 1, allowing the different objectives
to be easily compared.

Interactive 
Scalarisation

Decision
Maker

Finite Horizon 
Optimal Control

Optimal Control and 
Simulation

Preferences based on 
last simulation

Scalar
Objective

Figure 4.4: The interactive method for multi-objective optimization embeds the Decision
Maker (DM) in the optimization loop, allowing the DM to direct the search of the Pareto
front. The optimal controller adapts the advice of the DM to scalarize the multiple objectives
and solve a new optimization problem. The results of the optimization are then fed back to
the DM, and the cycle repeats until satisfaction.

Interactive Method Unlike with the a posteriori method, Interactive methods are based
upon a repeated interaction with the Decision Maker.

1. The DM gives an indication of how to compute the next Pareto-optimal solution —
for example, he may give an idea for the next set of coefficients (ai) to use and his
evaluation of the previous simulation.
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2. The interactive scalarization process uses this indication to create a scalar objective
— for example using Equation (4.14), we obtain a scalar objective with the set of
coefficients given by the DM.

3. The finite-horizon optimal control method is used to solve the corresponding optimiza-
tion problem, and gives the result to the DM.

This process is repeated until the DM is satisfied with the results. Figure 4.4 shows the
general process of interactive methods.

The important part of the interactive method is the kind of indications that can be
given by the DM, and how the indications and the simulation history will be used in the
scalarization process. Section 4.2.4 gives an example of an interactive method.

4.2.3 Congestion-on-demand Attack

We will now apply the tools of adjoint-based finite-horizon optimal control and multi-
objective optimization from Section 4.2 to two families of attacks. The first attack highlights
the precision of coordinated ramp metering attacks, while the second showcases the benefits
of multi-objective optimization.

Following reproducible research practices [29, 116], the software and data used to pro-
duce the numerical results and diagrams in this section is made available [102] to permit the
reader to reproduce the presented results.

Simulation Network

The attacks for the first example, box objective (to be described), use a macroscopic
freeway model of a 19.4 mile stretch of the I15 South Freeway in San Diego California. The
model was split into 125 links with 9 onramps and was calibrated [28, 83] using loop-detector
measurements available through the PeMS loop-detector system [65]. Figure 4.5a is a Space-
time diagram of the I15 freeway. There is no ramp metering control applied to the simulation
in Figure 4.5a, i.e. the ramp meters are always set to green.

Constructing the objective function

In order to achieve the congestion-on-demand objective, we will use the finite-horizon
optimal control technique introduced in Section 4.2.1. Therefore, we need to create a class
of objective functions able to represent any jam pattern on the freeway. The method we
have chosen is to maximize the traffic density where we want to put the congestion, while
minimizing it everywhere else.

For every cell density value at position i and time k, we assign a coefficient aki ∈ R. We
can then define the corresponding objective function:

J(u, ρ) =
N∑

i=1

T∑

k=1

aki ρ[i, k] (4.16)
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0 mi.

(a) Simulation with no metering.

4.5 mi.

14 mi.

8:20 8:40

(b) Trade-off: α = 0.3 (c) Trade-off: α = 0.5 (d) Trade-off: α = 0.9

Figure 4.5: Figure 4.5a depicts a space-time diagram of vehicle densities on 19.4 mile stretch
of I15 Freeway with no ramp metering. The box objective, and example of congestion-on-
demand, is applied in Figures 4.5b-4.5d. The user specifies a “desired” traffic jam between
postmile 4.5 and 14, for a duration of 20 minutes between 8:20 and 8:40. For this, the
α parameter (introduced in Equation (4.19)) enables the proper design of tradeoffs in the
objective.
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When J is minimized, a positive coefficient aki will encourage the minimization of the traffic
density at position i and time k, whereas a negative coefficient will encourage congestion.
The absolute value of the coefficient represents the importance given to the fulfillment of the
objective at the particular time and location of the simulation.

Congestion On Demand Examples

Box Objective The box objective creates a box of congestion in the space-time diagram,
i.e. congestion will be created on a specific segment of the freeway during a user-specified
time interval.

As we have two competing goals (maximize congestion in the box, minimize congestion
elsewhere), we apply the multi-objective optimization procedure in Section 4.2.2. Indeed,
we have the following two objective functions:

f1(u, ρ) = −
∑

(i,k)∈Box

ρ[i, k] (4.17)

and f2(u, ρ) =
∑

(i,k) 6∈Box

ρ[i, k] (4.18)

To solve this multi-objective problem, we balance our two objectives using a linear combi-
nation. As we limit ourselves to one degree of freedom, we introduce a single parameter
α ∈ [0, 1] and minimize the following objective function:

Jα(u, ρ) = α f1(u, ρ) + (1− α) f2(u, ρ), (4.19)

where α is a trade-off parameter: α = 1 is complete priority on the congestion inside the
box, while α = 0 is complete priority on limiting density outside the box.

The results of the box objective are presented in Figures 4.5b-4.5d. We give space-time
diagrams for three different values of the parameter α. The box of the objective is shown as
a black frame with an actual size of 10 miles and 20 minutes. As the trade-off moves from
α = 0.3 to 0.9, there is a clear increase in the congestion within the box, at the expense of
allowing the congestion to spill outside the desired bounds. In fact, Figure 4.5d (α = 0.9)
activates the bottleneck near the top-left of the box earlier than Figure 4.5b (α = 0.3) to
congest the middle portion of the box, which leads to a propagation of a congestion wave
outside the bounds of the bottom-right of the box.

As a part of the SmartRoads project, we also implemented the box objective on an
Aimsun microsimulation model [6] of the I15 freeway network. This model originates from
the I15 integrated corridor management project ran in San Diego in 2010, ref [78]. The
geographical location of the I15 network is given in Figure 4.6 and shows San Marcos as
the southbound start and Mira Mesa as the end, with the desired box of congestion placed
approximately 5 miles before Mira Mesa. A snapshot of the northern and southern extents
of the box at the time of 8:30 are shown below the map. The south-bound lanes in the
snapshot indicate that congestion was more or less confined to the desired box. A summary
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I15 South

I15 North

I15 South

I15 North

I15 South

Congestion

Figure 4.6: Box objective attack implemented on a microscopic model of I15 Freeway pro-
duced with Aimsun software. The metering lights were set using the congestion-on-demand
strategy. Snapshots of traffic at the north and south extents of the box show that the strat-
egy maintains congestion within the box and free-flow conditions outside the box. A link to
a video of the microsimulation is provided [102]. Best viewed in color.

video [102] of the I15 microsimulation shows the formation and dissipation of congestion
within the predetermined freeway section.

Attack to Create Traffic Patterns in the Form of Morse Code

• Network Since the I15 network does not have enough controllable onramps for the fol-
lowing attacks to be precise, we now consider a 60 mile freeway network with onramps
and offramps spaced every 3.75 miles and a fixed demand on the onramps.

• Attack Figure 4.7 represents the space-time diagram of a Morse code attack. The
objective is to create the Morse code representation of the three letters “C-A-L”1,
spelled with congestion blocks on the freeway. The corresponding objective function is
the superposition of several box objectives on three thin time stripes of the space-time
diagram. Everywhere else, the coefficients are put to zero. The result demonstrates
that even with a reasonable number of ramps, one can achieve complex attack patterns.
In particular, the optimal control approach was able to identify that creating a single
backwards-moving jam was the most effective way to produce the second dash for “C”,
the first dash for “A” and the first dot for “L”.

Arbitrary Patterns Provided the right controllability conditions are satisfied, any conges-
tion pattern may be created if the network has enough control ramps. To work towards this,
we can choose the negative and positive coefficients of the congestion-on-demand method

1Short for University of California.
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(a) Space-time diagram.
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(b) Density profiles over space for
three moments in time spaced 17
minutes apart. Best viewed in color.

Figure 4.7: Attack to create traffic patterns in the form of Morse code. A coordinated ramp
metering attack using the proposed algorithm is able to spell out “C-A-L” in Morse code
over successive time-slices of the space-time diagram: C= − · −·, A= ·−, L= · − ··. The
entire space-time diagram of the attack is shown in Figure 4.7a, while three snapshots of
the freeway are shown in Figure 4.7b, each slice spelling out one of the letters in “C-A-L”
in blocks of congestion.

carefully to match a desired pattern. The following process, as depicted in Figure 4.8, gives
a methodological approach to constructing arbitrary congestion-on-demand patterns.

One selects some image file they wish to reproduce in congestion patterns on a space-
time diagram. The image is thresholded by color intensity to produce a bitmap of regions of
desired congestion (X’s) and free-flow (O’s). Then a congestion-on-demand objective (Equa-
tion (4.16)) is constructed from the bitmap and scalarized using the α balance parameter to
produce the aki coefficients. A metering policy minimizing the objective is then computed us-
ing the optimal control method in Section 4.2.1. Given sufficient control of the network and
optimization time, the resulting space-time diagram from the metering policy will resemble
the input image file.

Target 
Image

O X O O O O O 
X X X O O O O 
O O O O O X O 
X X X X X X X
X X X X X X X 

Thresholded 
Bitmap

Total Travel Time 
Coefficients (     = -.6)

-.6 0.4 -.6 ……
-.6 -.6 -.6 ……
0.4 0.4 0.4 ……
-.6 -.6 -.6 ……
-.6 -.6 -.6 ……

Optimal Metering
Rates for Coefs.

Resultant Space-time 
Diagram

Figure 4.8: Flow-chart for converting an arbitrary image to a congestion-on-demand goal.
“Converting” an objective of the form in Equation 4.16 allows an attacker to compute me-
tering rates that produce space-time diagrams resembling the original image.
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Figure 4.9: Space-time diagram obtained following a congestion-on-demand attack with a
Cal logo as the objective function. The attack was simulated on a 90 miles and 33-onramp
freeway, for a 2 hours simulation time and using coordinated ramp metering.

We give an example of the arbitrary congestion-on-demand attack in Figure 4.9, which
produces a space-time diagram resembling the logo. See [102] for a online video simu-
lation of the Cal attack.

4.2.4 Catch-me-if-you-can Attack

We will now show that the use of the multi-objective optimization methods introduced
in Section 4.2.2 can allow the design of more realistic and hard to define attacks. We
will consider the example of a vehicle chase, presented in Section 4.1.2. Some vehicles are
pursuing the driver along the freeway, while the driver wishes to escape. This objective is
distinct from the congestion-on-demand attack, as our desired congestion pattern cannot
immediately be imagined beforehand and is highly dependent upon the eventual path of the
driver.

We translate the attack into a multi-objective problem (see Section 4.2.2). We can split
this attack into four simpler and sometimes conflicting goals, each goal associated with an
objective function to minimize:

1. The followers (everyone behind the driver) should travel along the freeway section as
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slowly as possible — Minimizing f1 will maximize the traffic density of all freeway
sections behind the driver’s trajectory.

2. In particular, those vehicles directly behind the driver should be impeded with in-
creased priority — Minimizing f2 will maximize the traffic density difference between
the cells of the driver’s trajectory and those cells immediately behind.

3. As to not arouse suspicion from monitoring traffic managers, most other travel times
should be reduced — Minimizing f3 will reduce the total travel time of all the vehicles
on the freeway to avoid unnecessary congestion.

4. The driver should quickly exit the freeway — Minimizing f4 will reduce the driver’s
travel time, to allow him to travel along the freeway as quickly as possible and escape
his followers.

Constructing a trajectory f2, f3 and f4 requires the trajectory of the driver, but recon-
structing a vehicle’s trajectory using a discretized, macroscopic traffic model is not obvious.
We have chosen the following algorithm:

1. The driver’s trajectory starts at t = 0 and in the first “spatial cell” of the freeway
section.

2. The driver’s current velocity is computed using the current cell’s density.

3. The trajectory, assuming the current velocity, is projected to the next spatial cell.

4. If we are not at the end of the trajectory (in space or in time), we go back to step 2.

This algorithm only gives an approximation of the driver’s trajectory, as some resolution
is sacrificed in order to have a closed-form expression which permits computation of its partial
derivatives.

We have four objective functions. In practice, presenting the results is clearer with only
three functions, and we have chosen to keep only f1, f2 and f3 in this chapter, as f4 was
not essential for producing interesting results. We will use the linear scalarization technique
presented in Section 4.2.2, and chose three coefficients a1, a2, a3 ∈ R+, so that

∑3
i=1 ai = 1.

The objective function we want to optimize is then the following:

J(u, ρ) =
3∑

i=1

ai fi(u, ρ) (4.20)

Implementation

Graphical Representation The space-time diagram in Figure 4.10, for a 21 miles freeway
with 6 adjacent onramps and a 20 minutes simulation time, is an example output of the
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0 mi.

Figure 4.10: Space-time diagram with a ternary graph representing the a1, a2, a3 coefficients
(here 30%, 55% and 15% respectively) used for the scalarization process in the catch-me-if-
you-can example. The trajectory of the driver (blue line) appears to always gain distance in
relation to pursuants further upstream (black lines). Best viewed in color.

optimal control scalarization method. Such plots are useful for the DM to discern between
“good” and “bad” simulations produced from metering rates. The driver’s trajectory is
represented in blue, while the trajectory of three pursuants (a, b, c) are depicted losing
ground on the driver.

Ternary Graph The triangle in Figure 4.10 is a visualization of the chosen set of coeffi-
cients ai. The red dot represents the weighted average of the three corners of an equilateral
triangle: the closer the red circle is to the ai corner, the closer ai is to 1. This is called a
ternary graph. The top edge will always be a1, and the right and left a2 and a3 respectively.
In this example, we can see that the dominant coefficients are a1 and a2. As a consequence,
we have an significant congestion behind the driver, forming immediately behind him.

A posteriori Method - Grid Exploration Our approach for the a posteriori method
is to automatically “explore the triangle of coefficients” to help the Decision Maker find a
preferred coefficient solution or region of solutions. Figure 4.11 presents the result of the
a posteriori method. We plot the values of each objective function for the optimal solution
associated with all sets of ai coefficients. The lowest values of each fi are always reached with
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objective

values for fi

(b) Scaled values of f1 (c) Scaled values of f2 (d) Scaled values of f3

Figure 4.11: A grid exploration over the ternary graph. An optimization was conducted for a
grid of coefficients regularly spaced on the ternary graph. The resulting scalarized objective
is decomposed into the constituent objectives (normalized between 0 an 1) and plotted on
separate summary ternary graphs.

the highest values of ai (where fi has been normalized to take values between 0 and 1; see
Section 4.2.2). Any non-monotonicity in the graphs are attributed to early terminations of
the optimizer’s gradient descent or convergence to sub-optimal local minima. The conflicting
nature of the objectives is apparent. Figure 4.11b shows that f1 is penalized more by high a3

values than by high a2 values, i.e. lowering the total travel time at the expense of congesting
the region behind the driver.

The a posteriori method provides the DM with a global overview of the Pareto front,
enabling him to immediately locate a desired solution, or at least identify interesting starting
points in the Pareto front. For example, Figure 4.11 gives an indication that the center
regions of the triangles have large variations and should be explored further.

Interactive Method A web application2 (diagram in Figure 4.12) was developed to allow
a full exploration of the interactive method. The DM first selects his desired coefficients
(ai) by clicking on the appropriate spot within triangle b). Then, after a scalarization using
the particular coefficients and an optimization of the resultant objective, the interface plots
the space-time diagram of the resulting simulation in window a), along with the driver’s
trajectory. Any other vehicle’s trajectory can be visualized by clicking at the starting point
of the desired trajectory. To enhance the exploration process, the interactive program also
chooses two random (but nearby) sets of coefficients and plots their simulation in c1) and
c2).

Figure 4.13a shows an overview of the results obtained while using the interactive inter-
face. The first column shows simulations for the corners of the ternary graph, i.e. only one
objective is active at a time. The results are intuitive in that optimizing f1 (Figure 4.13a.1)

2Interactive web application demo available at [102].
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a)
Simulation

c1)
Nearby Sim

   b)
Coefs

d)
History

c2)
Nearby Sim

(a) Diagram of web application functionality. (b) Actual web application [102] created for
the purpose of this article. The triangle is
replaced by 4 sliders, to match the 4 objective
functions. Web application [102] is available
online for the reader’s convenience.

Figure 4.12: Interface of the interactive optimization system used to solve the multi-objective
optimization problem to produce the attacks presented in the chapter.

produces congestion everywhere behind the driver, optimizing f2 (Figure 4.13a.2) creates a
distinct increase in congestion behind the driver, and optimizing f3 (Figure 4.13a.3) main-
tains critical density everywhere, equivalent to maximizing throughput at maximum freeway
speeds.

The second column (Figures 4.13a.A-C) shows an interactive shift from favoring f3 (min-
imize travel times) to favoring f2 (trajectory boundary congestion). The shift progressively
limits congestion formation, and intelligently removes more congestion ahead of the driver,
as to not decrease the delay of pursuant vehicles.

The last column of Figure 4.13a demonstrates how the interactive process allows for
fine-tuning of the balance of the objectives. Figure 4.13a.a appears to be overly congested
within the driver’s trajectory. An interactive progression towards lower total travel times
concludes with a desirable congestion boundary in Figure 4.13a.c.

Figure 4.13b shows a few more examples of the coefficient space exploration. It shows
result that all seem correct while being very different: this is the definition of the Pareto
front. This is why interacting with the DM is necessary to chose the “best” attack.

In particular, examples a), b) and c) of Figure 4.13b were given by the random explo-
ration tool of the interface of Figure 4.12. Their common idea is to hide a clearer path for
the driver into a big congestion that covers almost the entire freeway. They are examples of



Section 4.2. Coordinated Ramp Metering Attacks 82

One$objective$function$ Two$objective$functions:$
f3$to$f2$

Three$objective$
functions$

$ $ $

$ $ $

$ $ $
$

1)$ A)$

2)$

3)$

B)$

C)$

a)$

b)$

c)$

(a)

! ! !

! !

!

!

a)! b)! c)!

d)! e)! f)!

(b)

Figure 4.13: Summary of catch-me-if-you-can simulations generated via the interactive
method are shown in Figure 4.13a. Column 1 shows optimizations over individual objectives.
Column 2 shows a transition from favoring f3 to favoring f2. Column 3 shows a progression
across all three objectives. More interesting solutions of the multi-objective problem found
via the use of the interface are shown in Figure 4.12.

situations that fulfill the objective (the vehicle escapes, the followers are slowed down), but
that would not have been find easily without the interactive process.

4.2.5 Summary of Results

This chapter presents an overview of freeway traffic control systems and their vulnera-
bility to physical and cyber-attacks. The impact of an attack is understood via the response
of the control system, with direct attacks on the metering lights being potentially more effec-
tive than indirect attacks on the sensing infrastructure. Coordinated ramp metering attacks,
being the highest level compromise, are extensively analyzed using methods from the fields
of optimal control and multi-objective optimization. The mathematical approach to coordi-
nated attacks on the freeway is explicitly derived for ramp metering applications. Detailed
numerical simulations of coordinated ramp metering attacks were conducted to demonstrate
the hazards of such compromises and the utility of optimal control tools in not only the
hands of traffic managers, but also of adversaries.
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Chapter 5

Optimization-based Framework for
Rerouting a Subset of Users with
Mixed Lagrangian-Eulerian Demand

5.1 Introduction

5.1.1 Traffic assignment: selfish routing vs. social routing

The problem of traffic assignment handles users’ route and departure time decisions
and how individual behaviors impact the performance of the underlying traffic network.
If all user decide in a self-optimizing manner, then the resulting network state is a user
equilibrium (e.g. [126]). If every user acts in a manner that is beneficial to societal goals,
it is said to be a system or social optimum. Socially optimal schemes are studied under
the assumption that a central agency controls all the users, while on the other extreme,
user equilibrium is is a good model to describe selfish behavior in the absence of a central
agency. A complete characterization user equilibrium model requires complete information
of the origin-destination demands on the network. This information is often too expensive
to obtain. Specifically, origin-destination information may only be available for a fraction of
users because collecting such information requires participation/consent of the travelers and
technological capability of the central agency. [76] give a variational inequality approach to
solving user equilibrium, while [91] presents an optimal control framework, and both methods
require full information of origin-destination demands on the network.

These technologies can be broadly categorized into two categories. First, there are
recommendation systems, such as variable message signs that suggest particular routes based
on estimated travel times or general dissemination of information to better inform users of
network conditions. Second, there are direct control systems that restrict behavior of users
via ramp metering or detours. [51] discusses the effectiveness of ramp metering as a means
of achieving a social optimum. These direct control mechanisms are generally applied at a
specific point and time and do not distinguish between users who have different routes or
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destinations. The effectiveness of such active control schemes usually depends on complete
origin-destination demands. An exception is that boundary flow demands may be sufficient
for evacuation-type problems (e.g. [130]).

5.1.2 Using mobile phones to control routes of individual users

With the emergence of GPS-enabled cell phones and their widespread adoption in pop-
ulated city areas, a third category of control has become possible: one that communicates
directly with users and permits a central agency or a private entity to engage individual users
to shift their travel choices. Such a high granularity of control would allow specific origin-
destinations or routes to be targeted by the control scheme and could even be customized
to the route preferences of the individual users.

Vehicle navigation services that collect, aggregate, and process information from a large
number of GPS-equipped mobile devices have become increasingly popular. Such services
include Waze, Google Maps, and other such mobile applications. While these services are
popular for their utility to individual drivers, the service providers are also able to collect in-
formation on behavior of the fraction of users that are equipped with these devices. Once the
data has been anonymized to protect the privacy of individual users, the origin-destination
information could be interpreted as a subset of the total demand on a network. Additionally,
route guidance decisions could be made to benefit their user-base as a whole, rather than
on an individual level. [89] discusses the inherent inefficiencies of selfish routing versus the
social optimum.

Individually-applied control schemes have many advantages, but a limitation is that
the user-base of a particular vehicle navigation service would only constitute a subset of
the total users of the network. A significant number of users of the network may not have
access to or prefer not to use a GPS-enabled device. Also, a complete understanding of the
origin-destination demands on a network by a single entity would still be difficult or very
expensive to obtain.

5.1.3 Combining route-based demands with link-level flow infor-
mation

While collecting route information on individual users suffers from limited penetration,
existing traffic monitoring systems, such as loop detectors or cameras, are able to capture
all vehicle flows for particular locations on networks. These stationary systems are often
monitored by public, traffic management agencies, that are interested in the welfare of all
users on the network. It is apparent that the two methods for capturing traffic information
are complementary: GPS-based methods have limited penetration but more detailed origin-
destination information, while stationary sensors have full penetration of flow, but cannot
give route-level information on the demands. Figure 5.1a depicts the vehicle navigation
service collecting aggregate GPS data from their “dark” users on the network (1), while the
traffic management agency collects flow count data, accounting for all users (“dark” and
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Figure 5.1: Route guidance system architecture for using both route-based and link-level flow
information. (a) An illustration of Lagrangian and Eulerian traffic information collection
systems. (1) Path-based information is collected via GPS-equipped vehicles, from either
onboard route-guidance systems or cell phones. (2) Route-based information is sent back
to a vehicle navigation service that aggregates traffic information from many GPS-equipped
users. (3) Eulerian-based loop detectors collect flow counts and send the information to
a traffic management agency. (b) An illustration of proposed interaction the traffic man-
agement agency, vehicle navigation services, and network users. (I) Contracting of the
vehicle navigation services by the traffic management agency. This may involve monetary
compensation or tolling. (II) Anonymized Lagrangian information (owned by the vehicle
navigation agency) is transferred to the traffic management agency. (III) The traffic man-
agement service provides route guidance to the vehicle navigation service to improve overall
traffic conditions. (IV) The vehicle navigation service provides individual network users
with alternate route suggestions, with potential incentivization. Users may be guided to
switch from their previously preferred (nominal) route.
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“light”) (2), from the loop detectors embedded in the road. Collectively, the route-based
flow data could be used as a source of re-routable traffic flow, while the link-based flow data
could be used to better estimate the expected travel times that all users will experience
before and after re-routing a subset of users. This chapter proposes a method for using both
information types to improve traffic conditions across the network. For now, we motivate
our work with a scenario in which such a technique could be employed.

Figure 5.1b depicts the scenario in which a traffic management agency partners with a
vehicle navigation service to take advantage of their different information sources. Initially,
a contractual phase may take place (I), where the public agency compensates the vehicle
navigation service for access to their data (II). The information from the vehicle navigation
service would be aggregated and anonymized, in order to protect the privacy of the individual
users of the service. Then, the traffic management agency would input the route-based
demand data and the stationary, link-based loop detector data into the algorithm we have
developed (Sections 5.2 and 5.3). The algorithm outputs a new set of aggregated routing
suggestions, which are then sent to the vehicle navigation service (III). Finally, the service
relays the routing suggestions to their users (IV).

For this last point of communication between the agency and the user, there are two
notes. First, it is likely that a fraction of users will be suggested routes with larger travel
times than to which they have become accustomed. In order to incentivize the user to ac-
cept the route suggestion, the traffic management agency may require the vehicle navigation
service to compensate these users, enforceable by the initial contractual agreement between
the two organizations. [77] describes an experiment which utilized incentives to move com-
muters’ departure times to less congested times. Alternatively, one can consider that socially
optimized routing policies may decrease the travel time for all users on average. Then, if all
users get assigned desirable routes some days and less desirable routes other days (in order
to reduce congestion on desirable routes), then every user could expect to have an improved
average travel time. Such an argument could potentially remove the need for monetary com-
pensation or other types of incentivizes. The second note is that we have assumed, given
enough incentive from the vehicle navigation service, a user will always comply with the
suggested route. We do not discuss the method of incentives in this chapter, but note that
the assumption can be relaxed by limiting the amount of re-routable flow.

Due to the decoupled nature of the system described in Figure 5.1, we can generalize
the scenario to include multiple vehicle navigation services (Figure 5.2). Without sharing
information between services, more route-based flow information can be used as input into the
algorithm, thus providing more complete information on the origin-destination preferences
of the users and collecting a larger pool of re-routable users, while maintaining the privacy
of the services which wish to provide socially optimal routes to users.

5.1.4 Accounting for untracked users’ response

There are a number of reasons why a user would participate in the socially optimized
routing guidance program described above. As already stated, they could be incentivized
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Figure 5.2: Scenario with multiple vehicle navigation services. Individual service’s data is
aggregated by the central agency and not shared with other agencies. The routing strategies
are calculated by the traffic management agency, and the suggested routes are partitioned
between the different user groups.

through monetary compensation. They could also simply be altruistic, and willing to sacrifice
personal optimality for the greater good. What is unknown is the behavioral aspects of those
users of the network whose route cannot be tracked. How can one predict the response of
these untracked (which we refer to as noncooperative later) network users to the routing
schemes being implemented for the tracked users?

A standard approach, described as a Stackelberg game (e.g. [109, 70]), assumes that
the users outside the control of the central agency will respond with a user equilibrium
assignment. Since the origin-destination demands of the untracked users is unknown, solving
for a user equilibrium is not possible.

In order to address this lack of information on preferences of untracked users, we de-
velop an alternative model of behavior. Related to the concept of bounded rationality in
[56, 57], we assume that the untracked users lack the full information of the state of the
network, and cannot make fully rational decisions on their optimal route. Alternatively, the
untracked users could possess some inertia towards switching routes, and will be content
with their previously chosen (nominal) routes, as long as the experienced travel time on the
route does not change “too much”. This concept of inertia can be practically motivated
by considering that some users may appreciate the scenic beauty of a particular suboptimal
route, or others have a favorite caf along another route. Thus, in order to reasonably assume
that the untracked users will not switch their routes, the routing suggestions provided by
the algorithm are guaranteed to not significantly deteriorate the quality of existing routes,
beyond an a priori specified bound.

A bounded rationality argument in the context of drivers’ route selections was made
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in [57], where drivers only seek utility gains outside of a certain threshold. [56] give some
empirical evidence of bounded rationality on road networks. Our model differs from these
because our model lacks origin-destination information on the noncooperative users, and to
make this distinction, we refer to our model as bounded tolerance model.

5.1.5 Contributions and overview

There is relatively little work done on how partial control schemes can be practically
implemented on flow networks. Additionally, inconsistent estimations of traffic between GPS-
based data and link-level data can complicate the analysis of the problem. In this chapter, we
present a single methodology for accommodating both origin-destination based and link-level
flow information for a general, multi-origin, multi-destination, static network (parameters
are unchanging with time), while guaranteeing that the two sources of data are consistent
with mass balance across junctions (Section 5.2). Furthermore, we present a behavioral
model on the untracked users based on the concept of bounded rationality (Section 5.3).
This bounded rationality model permits one to cope without origin-destination demands for
all users on the network, while still addressing the behavioral aspects of self-routing users.

As our main contribution, we demonstrate how the models presented in this chapter lead
to an elegant, optimization-based solution to the socially optimal routing strategy problem
(Section 5.4). The optimization problem is proven to be convex for a specific instance of
horizontal queues that model highway traffic and extended to a general class of vertical
queues . As a corollary, we show that for the discretized LWR network model, the social
optimum can be solved exactly for both the purely Eulerian flow and the purely Lagrangian
flow cases.

The generality of our method is given by applying the framework to a multiple-destination
network with horizontal queues and investigating how changes in the tolerance model impact
the routing advice (Section 5.5). The chapter finishes with a conclusion and discussion of
the practical importance of the framework and models developed here-within (Section 5.6).

Nomenclature

L Set of links.
O ⊂ L Set of origins (sources).
D ⊂ L Set of destinations (sinks).
J Set of junctions.
R Set of routes.
r ∈ R Sequence of contiguous links

(
r1, . . . , r|r|

)
: ri ∈ L

Γj ⊂ L Set of incoming links for junction j ∈ J .
Γ−1
j ⊂ L Set of outgoing links for junction j ∈ J .

rj ⊂ R Set of routes passing through junction j ∈ J .
fl, f̄l Flow (resp. nominal flow) on link l ∈ L.
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fr Total flow on route r ∈ R
f c
r Cooperative flow on route r ∈ R.
ρl, ρ̄l Density (resp. nominal density) on link l ∈ L
f c Assignment of cooperative flows across all routes ∈ R.
f̄nc
l Nominal noncooperative flow on link l ∈ L.
f̄o,d OD flow demand of cooperative (Lagrangian) users from origin o ∈ O to destination d ∈ D.
`l, ¯̀

l Latency (resp. nominal latency) on link l ∈ L.
α Tolerance scale factor.

5.2 Modeling partial cooperation with Lagrangian-Eulerian
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Figure 5.3: Data-flow diagram

We present the general setting of the routing
problem considered, as summarized in Figure 5.3.
Consider a setting in which a subset of users are
equipped with GPS-enabled devices and are con-
nected to a central coordinator through a Routing in-
terface (e.g. a mobile phone application). We refer
to this subset as cooperative users. First, the coop-
erative users provide their desired routes to the co-
ordinator through the routing interface. This allows
the coordinator to have individual route information,
i.e. Lagrangian information for the cooperative users.
Second, the loop-detectors (or other sensors capable
of measuring aggregate link-level flows) provide Eule-
rian information. We refer to the historical estimates
of Lagrangian and Eulerian information as the nomi-
nal state of the network.

Given the nominal Eulerian flow measurements for the entire network and the nominal
Lagrangian information for the equipped vehicles, the central coordinator determines the
optimal route assignment for the equipped vehicles (Section 5.2.3). This optimization prob-
lem is represented by the optimal router block. Since only the cooperative users follow the
optimal route assignments provided by the central coordinator, we will refer to this problem
as a partial cooperation problem.

The next step is an incentivization step: given the target optimal routes, and possibly
additional constraints (such as a total available budget) a second problem (not discussed in
this chapter) determines an incentive for each equipped vehicle and the corresponding target
route. The incentivization problem is outside of the scope of the present chapter. More
information on how to solve incentivization and traffic demand management can be found in
[74].The assigned routes and the corresponding incentives are then offered to the equipped
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drivers, who can either accept or refuse the offer. The subset of vehicles that do accept
the offer (thus taking the route assigned by the central coordinator) are called cooperating
vehicles. In the present chapter, we focus our attention on the optimal route assignment
with information on mixed Lagrangian-Eulerian demands.

Considering the route optimization goals stated above, we give a declaration of the
problem statement to direct the model development of the proceeding sections.

Problem statement: Find a mathematical framework for flow networks which
can encompass:

• Two different types of demand information: Lagrangian information,
which is specified by the route traversed by the flow, and Eulerian infor-
mation, which is specified by the flow-count across a link.

• Socially optimal routing strategies which can encompass both informa-
tion types, given their limitations:

– Lagrangian information is only known for the cooperative flow, which
can be rerouted from its nominal route to improve network condi-
tions.

– Only Eulerian information is known for the noncooperative flow,
which is assumed to maintain its nominal state.

5.2.1 Network model

Using standard network notation, the network model is defined by the tuple, (L,J ),
where L is the set of links, and J is the set of junctions. A junction j ∈ J has a set of
incoming links Γj ⊆ L and outgoing links Γ−1

j ⊆ L. An origin o ∈ O ⊆ L is a link with
no upstream junction. A destination d ∈ D ⊆ L is a link with no downstream junction.
A route r =

(
r1, . . . , r|r|

)
∈ R is a set of adjacent links where r1 ∈ O, r|r| ∈ D, and

∀i ∈ (1, . . . , |r| − 1), ∃jri : ri ∈ Γjri , ri+1 ∈ Γ−1
jri

.

5.2.2 Cooperative demand vs. total demand

Let the network in Section 5.2.1 contain flows fl on every link l ∈ L. Furthermore, we
assume that the network is in steady state, i.e. all state on the network is stationary with
respect to time (e.g. flows). We further differentiate two types of demands: Lagrangian and
Eulerian.

• We assume that the cooperative users have provided their desired origin and destina-
tion. Therefore, for every origin-destination pair (o, d) ∈ O×D, there is a nominal flow
demand f̄o,d from the cooperative users, where the bar notation refers to nominal state
values. Since this type of demand concerns the routes taken by the flow, we describe
this type of demand as Lagrangian demand.
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• For the noncooperative users, i.e., the users who do not (or choose not to) interact
with the routing interface, we do not assume knowledge of Lagrangian demand. Thus,
we assume that the only the aggregate link-level flows are available via loop detectors.
This aggregate level information does not include OD and route information, and is
therefore defined as Eulerian demand.

To recover the nominal Eulerian demand of the noncooperative vehicles, we further assume
that the nominally used routes of the cooperative vehicles are known. For each link l ∈ L,
we specify a nominal total link flow f̄l, and for each route r ∈ R, we can specify a nominal
route flow for cooperative vehicles, f̄ c

r . Then, the nominal noncooperative Eulerian demand,
f̄nc
l , is obtained for each link l ∈ L by subtracting cooperative flow from the total link flow:

f̄nc
l = f̄l −

∑

r|l∈r
f̄ c
r (5.1)

For the remainder of the chapter we use the noncooperative link flows (f̄nc
l , l ∈ L) as

the input data for nominal flow, but it is understood that this data is derived from the more
practically measurable total nominal flow values (f̄l, l ∈ L) and the cooperative nominal
route flows (f̄ c

r , r ∈ R) via Equation (5.1).
Since we have subtracted off the flow of nominal cooperative flow to obtain the non-

cooperative flow, we study properties of the network flow when the rerouted cooperative
flow is added back into the network. We introduce the decision variable: f c

r , the amount of
cooperative flow assigned to route r ∈ R. To enforce that the entire flow across a link is
accounted for and same origin-destination demands of the cooperative users are satisfied, we
have the following constraints:

∑

r|o,d∈r
f c
r = f̄o,d ∀o ∈ O, d ∈ D (5.2)

fl =
∑
r|l∈r

f c
r + f̄nc

l ∀l ∈ L (5.3)

where f̄o,d =
∑

r|o,d∈r f̄
c
r is cooperative flow between origin o and destination d.

A requirement of the Eulerian flow is that noncooperative flow must be conserved across
junctions. If the flow across a link l ∈ L is fl, then the following must hold:

∑

l∈Γj

fl =
∑
l∈Γ−1

j

fl ∀j ∈ J (5.4)

Since we partitioned flow on each link into two classes (cooperative and noncooperative),
flow conservation must hold across both classes independently. We will see shortly that
flow conservation across the cooperative class will be guaranteed by the condition that all
cooperative flow must be assigned to a route. Then, for the noncooperative class of nominal
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flow, we must always have the condition that flow conservation holds across junctions. Since
this is a condition on the input to the problem we only state it here once and assume the
condition for the rest of the chapter.

Model Consistency Condition: For every junction j ∈ J , we assume:
∑

l∈Γj
f̄nc
l =∑

l∈Γ−1
j
f̄nc
l .

Equations (5.2)-(5.4) define a route-allocation policy f c = {f c
r : r ∈ R} for all cooper-

ative users that satisfies all demand requirements. There are three main requirements that
we have from the set of constraints: non-compliant (Eulerian) demand is satisfied, compliant
(Lagrangian) demand is satisfied, and mass balance across junctions is satisfied. The first
two are obvious from the above constraints, while the third one needs proof.

Proposition 5.1. For a feasible f c to the set of Equations (5.2) and (5.3), ∀j ∈ J ,∑
l∈Γj

fl =
∑

l∈Γ−1
j
fl.

Proof. From the model consistency condition above, we only need to prove the following
statement: ∑

l∈Γj

∑

r|l∈r
f c
r =

∑

l∈Γ−1
j

∑

r|l∈r
f c
r

Let rin
j be the routes that pass through links in the incoming links of junction j. Let rout

j

be the same for outgoing links. Then rin
j = {r ∈ R : Γj ∩ r 6= ∅}. We also know that by

the definition of a route, any route that passes through an incoming link of a junction (not
a source or sink) must pass through an outgoing link, and therefore rin

j ⊆ rout
j . A similar

argument can be made to show rout
j ⊆ rin

j . This shows that rin
j = rout

j . Then,

∑

l∈Γj

∑

r|l∈r
f c
r =

∑

rin
j

f c
r =

∑

rout
j

f c
r =

∑

l∈Γ−1
j

∑

r|l∈r
f c
r

5.2.3 Reducing total latency by rerouting cooperative users

We now formulate the problem of minimizing total latency (or equivalently, total travel
time) with route assignments of cooperative vehicles as the decision variable. There are two
classes of latency functions studied in the literature: first [87, 109, 90], where the link latency
is assumed to be the function of flow in the link, and second [120, 76, 23, 75, 106], where
density is assumed to affect link latencies. We generically introduce latency as a value `l
associated with the state and properties of a link l ∈ L and discuss the different models of
latency as it pertains to different flow models in Section 5.4. We can therefore express the
total latency on a link as the flow times the latency, or fl`l.

We can now express a general form of the Lagrangian-Eulerian flow, route assignment
problem in a standard optimization program formulation:
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minimize
fl|l∈L,fc|r∈R

∑
l∈L fl`l

subject to:

fl =
∑

r|l∈r
f c
r + f̄nc

l ∀l ∈ L
∑

r|o,d∈r
f c
r = f̄o,d ∀o ∈ O, d ∈ D

(5.5)

where the objective represents the total latency in the network, the first constraint
relates cooperative route flows and noncooperative link flows to total link flows, and the last
constraint states that the compliant route flows must be partitioned in a way that satisfies
the nominal origin-destination demand.

5.3 Accounting for response of noncooperative demand

via bounded tolerance

Recall from our discussion in Section 5.2, that due to imperfect perceptions of the travel
times, the travelers forming the non-cooperative demand may be assumed to be boundedly
rational, and may not change their nominal paths. This assumption is especially valid when
the travel times of non-cooperative users do not significantly change when the cooperative
users are routed in a socially optimal manner. In contrast, if the cooperative vehicles cause an
excessive increase in latency on some routes for noncooperative vehicles, then this assumption
may not be realistic (see [4, 109, 71]). For this reason, we have to enhance the model for
rerouting cooperative vehicles under stricter conditions.

5.3.1 Bounded tolerance

A traditional approach to predicting vehicle route choice comes from the field of traffic
assignment (e.g. [126, 76, 91]) and Nash equilibria in game theory (e.g. [110, 90]), often
described as user equilibrium in the context of traffic assignment and introduced in [126].
The congestion games literature considers Stackelberg games, which are used to analyze
how selfish users respond to a centrally-controlled subset of users in a principled way (see
[70, 109]). Our approach in this chapter is simpler. The reasonability of our approach can
be argued using a bounded tolerance assumption on the part of noncooperative vehicles.
We replace the assumption of stationarity with a stronger assumption that stationarity
is only achieved if all routes on the network do not have a latency increase greater than
a certain amount, proportional to the nominal latency experienced before rerouting the
cooperative vehicles. Tolerance is assumed in the sense that if latencies on a route do not
noticeably increase, then noncooperative vehicles do not seek better paths. However, the
tolerance to increase delay is still limited in the sense that as latency increases on a route,
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noncooperative vehicles will eventually switch. The term tolerance is used to address the fact
that the bounded rationality models assumed in [57, 56] allow decisions to be made by the
noncooperative users, while our bounded tolerance model specifies how much perturbation
of the nominal is allowed, before the assumption the assumption is no longer valid that
noncooperative users do not change routes.

5.3.2 Modeling bounded tolerance

The discussion in Section 5.3.1 dictates that one must have knowledge about a nominal
network state with which to compare final network state conditions. Therefore, we introduce
as input, the nominal latency ¯̀

r for every route r ∈ R. We then select as a model of bounded
tolerance the condition that the final latency on a route may not be a factor (1 + α) greater
than the nominal latency ¯̀

r, where α ∈ R+ can be seen as the tolerance scale factor. The
latency on a route can be computed by summing the latencies experienced on all links in
r =

{
r1, . . . , r|r|

}
:

`r =
∑

l∈r
`l

We can now express the bounded tolerance condition constraints:

∑

l∈r
`l ≤ (1 + α)¯̀

r ∀r ∈ R (5.6)

Adding this constraint to Problem 5.5 completes the partial cooperation, bounded tol-
erance problem. Section 5.4 describes how this problem applies to different flow models
and latency models. We now introduce another tolerance model and describe the class of
problems to which it can be applied.

5.3.3 Comparative tolerance

The model for bounded tolerance described above places a limit on the increase of latency
on a particular route. An alternative approach would be to limit the increase in utility that
alternative routes gain over a particular route. In other words, the model developed in Section
5.3.2 assumes that a particular route flow would be complacent on its original route as long
as its own latency does not increase too much, while not considering the possibility that the
utilities of alternative routes may have increased significantly. To address this limitation, we
introduce a comparative tolerance model and discuss the underlying modeling assumptions.

We first assume for a given route r ∈ R with origin or ∈ O and destination dr ∈ D,
and assuming a tolerance scale factor α = 0 (no tolerance to delays induced by cooperative
flows), that the allowable difference between the route’s final latency and the final latency of
all other routes sharing the same origin and destination is the largest difference in nominal
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latencies between itself and all other routes, or 0 if the considered route has the smallest
nominal latency. Then, if the scale factor α is greater than 0, this allowable difference is
increased by α ¯̀

r. Mathematically, we can express this condition as follows:

`r − `r̄ ≤ max
(
0,maxr̃|o,d∈r̃,r̃ 6=r

(
¯̀
r − ¯̀̃

r

))
+ α ¯̀

r ∀r̄ : o, d ∈ r̄, r̄ 6= r

∀r : o, d ∈ r,∀o ∈ O,∀d ∈ D

While this formulation more accurately captures the concept of traveler behavior un-
der improved comparative information about alternative routes, it introduces many more
constraints than the bounded tolerance formulation in Section 5.3.2. Additionally, since the
LHS of the constraint is a less-than inequality that contains the subtraction of two functions
of decision variables, common assumptions on the latency functions will typically lead to a
non-convex constraint.

One assumption that will guarantee convexity of the above constraints is if all links have
affine latency functions. It can be seen by considering that the LHS is the summation of link
latencies along a particular route, and the RHS is a constant that can be computed a priori.
In Section 5.5.1 we will give a numerical example of a simple network with linear latency
functions, comparing the output of our model assuming first simple bounded tolerance, and
then considering comparative tolerance.

5.4 Formulating bounded tolerance as a convex opti-

mization problem

The preceding sections discussed a generic model for route-based flow optimization on
a flow network with mixed Lagrangian-Eulerian demands, without identifying any specific
flow model. In this section, we discuss two types of flow models, horizontal queues and
vertical queues. We show for each case how the modeling assumptions can be made into
convex constraints, enabling one to solve the partial cooperation, bounded tolerance model
as a convex optimization problem. We begin our discussion showing how vertical queues fit
cleanly within our model (Section 5.4.1). However, modeling horizontal queues (e.g. highway
networks) requires some additional theoretical setup. What has worked for modeling internet,
supply chains, etc. does not work for highway networks, as they are nonlinear systems with
non-convex constraints that depend on the density of the links, rather than the flows. Its
discussion constitutes the bulk of the section (Section 5.4.2).

5.4.1 Vertical queues

Several types of networks, such as communication networks or machine queues (e.g.
[109]), can model link latencies as a function of the aggregated flow on the link. To contrast
with the model discussed in Section 5.4.2, we refer to such networks as vertical queues. In
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this section, we show an example of how the concepts of partial cooperation and bounded
tolerance can be modeled as a convex optimization program for a specific class of vertical
queues, and give a brief discussion on how the results extend to a more general class of
vertical queues.

Example: M/M/1 queueing model

A common way to model latencies for communication networks is the M/M/1 queue (e.g.
[4]), which assumes Poisson arrivals and exponential service times. On a link l ∈ L, the
average latency as a function of the rate of Poisson arrivals (the flow) f is given by the
equation:

`l(f) =
βl

µl − f
(5.7)

where βl is the occupation rate and µl is the processing rate. The flow on a link must
be less than the processing rate for the system to be stable. The function `l(·) is convex in
[0, µl). We can now substitute Equation (5.7) into (5.5) and (5.6) to obtain the following
program:

minimize
fl|l∈L,fr|r∈R

∑
l∈L

βlfl
µl−fl

subject to:
∑

l∈r
βl

µl − fl
≤ ¯̀

r(1 + α) ∀r ∈ R

fl =
∑

r|l∈r
f c
r + f̄nc

l ∀l ∈ L
∑

r|o,d∈r
f c
r = f̄o,d ∀o ∈ O, d ∈ D

(5.8)

where again, α is given and corresponds to the maximal threshold tolerable by users if
Lagrangian (cooperative) demand perturbs the nominal flow. This program is convex and
can be solved by standard convex solvers (with some algebraic manipulations for disciplined
convex programming solvers). Indeed, the objective is the summation of convex functions,
and the first constraint is a convex inequality (less-than inequality with a summation of
convex functions on the LHS).

Class of convex vertical queues

This section shows that if all link latencies are convex, increasing functions of flow (e.g.
following the modeling assumptions of [109]), then the partial cooperation, bounded tolerance
problem is guaranteed to be convex.

From the discussion in Section 5.4.1, we can generalize the class of latency functions for
vertical queues, which lead to a convex formulation. In Equation (5.5), only the objective
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contains latency terms, and in Equation (5.6), the LHS of the inequality contains latency
terms. Therefore, we need to verify the convexity of the objective and the bounded tolerance
constraints.

A well known-result of convex analysis is that the summation of convex functions pre-
serves convexity. Therefore, the convexity of the bounded tolerance constraint is guaranteed
if the latency function on every link is convex. Additionally, for a link l ∈ L, the total link
latency, fl`l(fl), is convex from the assumptions on `l, and therefore the sum of all total link
latencies (which is the objective) is guaranteed to be convex.

5.4.2 Horizontal queues

A standard assumption in transportation networks is that latencies are not determined
uniquely by the flow on the link, but rather how densely populated the link is. Such latency
models are referred to as horizontal queues, as the congestion on a link occupies physical space
which may propagate in the horizontal direction. In this section, we show how the partial
cooperation and bounded tolerance models can be extended to horizontal queues. First we
develop the relationship between link flow and link density, the resulting latency model, and
how a convex optimization problem can be formulated for networks with horizontal queues.

Link model

Constraining flow by link densities For each horizontal queuing link l ∈ L, in addition
to having a link flow fl, a horizontal queue link also has a density of vehicles ρl, expressing the
number of vehicles occupying a link divided by the length Ll. Relating the density of a link to
its flow, each link also has a trapezoidal fundamental diagram specified by three parameters:
free-flow velocity vl, congestion velocity wl, and max flow fmax

l . From these parameters, one
can compute the critical density ρc

l and jam density ρmax
l . Given that we are assuming the

network is in equilibrium, then outflow must equal inflow for each link (see [51] for a detailed
analysis of horizontal queue equilibria). Therefore, only need to consider the single variable
fl when analyzing flow on a link, rather than considering both the inflow and outflow of a
link. We express the ρl (as traditionally assumed by the LWR equation [23, 24, 75, 106]),
we have two coupled variables fl and ρl, with the following constraints:

fl ≤ vlρl (5.9)

fl ≤ wl (ρmax
l − ρl) (5.10)

0 ≤ fl ≤ fmax
l (5.11)

where (5.9) restricts the outflow of link l, (5.10) restricts the inflow, and (5.11) is a
physical capacity of the link. These constraints are a relaxation of the fundamental diagram,
initially introduced by [50].
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Latencies For a link l ∈ L, the latency `l is obtained by multiplying the length and
velocity of the link, where the velocity of the link is a function of both flow and density.
With a notational change (the latency now depending on two variables), the latency function
is given by:

`l(f, ρ) =
Llρ

f

and the total latency fl`l(fl, ρl) on a link is given simply by the number of vehicles on
a link, or Llρ. Note that a nominal link latency must be determined from both a nominal
flow and nominal density, requiring more information than the point queue model, which
only needs nominal link flows.

Relaxation of Junction Model

In order to guarantee uniqueness of solutions of junction problems in LWR networks,
it is common to assume that the sum of flows across junctions is maximal, while respecting
the prescribed turning ratios. [24] describes a junction model for 2-to-1 merges and 1-to-
2 diverges tailored to the CTM model, while [42] describe a more general junction model
allowing n-to-m merges for the continuous LWR network model, which includes the Daganzo
model as a special case with triangular fundamental diagrams and limited merge/diverge
types. We refer to the flow-maximizing junction models as the unrelaxed junction model,
and the flow-density relationship in Section 5.4.2 as the relaxed junction model as it does
not include a flow maximization condition.

One technical reason why the relaxed model is used is that a flow-maximization condition
would lead to a non-convex problem formulation. Another argument that can be made is
that for certain junction types, some split-ratio vector or priority vector (see [20]) may exist
that would lead to the flow solution given by the optimization problem. Therefore, since this
problem has no fixed split-ratios, it can be considered a free variable and the optimization
problem has discovered one of the many possible solutions to some junction. This argument
has limits, as there is no such free parameter for 1-to-1 junction types, for instance.

There have been methods proposed for dealing with the implicit “car holding” issue
introduced from the relaxation, such as adding penalty terms in the objective (see [130]),
but we do not consider these in our analysis.

Optimization program

For the horizontal queues network, we can now express the total latency minimization
problem expressed in Section (5.3.2):
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minimize
fl,ρl|l∈L,fr|r∈R

∑
l∈L Llρl

subject to:
∑

l∈r
Llρl
fl
≤ (1 + α)¯̀

r ∀r ∈ R
fl ≤ vlρl ∀l ∈ L
fl ≤ wl(ρ

max
l − ρl) ∀l ∈ L

0 ≤ fl ≤ fmax
l ∀l ∈ L

fl =
∑

r|l∈r
f c
r + f̄nc

l ∀l ∈ L
∑

r|o,d∈r
f c
r = f̄o,d ∀o ∈ O, d ∈ D

(5.12)

This formulation is not convex, specifically the bounded tolerance constraint is not
convex. There is a superseding problem with the formulation, that the bounded tolerance
constraints and outflow constraints (fl ≤ wl(ρ

max
l − ρl)) are guaranteed to be non-binding.

Several of the constraints can be shown to be non-binding by observing that a solution must
satisfy ρl = fl

vl
. We prove that next.

Lemma 5.1. If the solution f c∗, ρ∗ is optimal for Problem 5.12, then ∀l ∈ L: ρ∗l =
f∗l
vl

Proof. Assume ∃ρl > f∗l
vl

. Reducing ρl to
f∗l
vl

only decreases the LHS of the first constraint

in Problem (5.12). The second constraint becomes an equality by construction. The RHS
of the third constraint increases. Since the flow terms are not changed, we see that the
feasibility of the problem is maintained. Additionally, the objective strictly decreases, thus
proving that a solution with such a ρl is sub-optimal.

We can now simplify Problem 5.12 by substituting in the value of ρ from Lemma 5.1,
and using the following notational change for the parameters Ll and al = Ll

vl
:

min
fl|l∈L,fc

r |r∈R

∑
l∈L alfl (5.13)

subject to: ∑
l∈r Llvl ≤ (1 + α)¯̀

r ∀r ∈ R
fl ≤ vl

(
fl
vl

)
∀l ∈ L

fl ≤ wl

(
ρmax
l − fl

vl

)
∀l ∈ L

0 ≤ fl ≤ fmax
l ∀l ∈ L

fl =
∑

r|l∈r f
c
r + f̄nc

l ∀l ∈ L
∑

r|o,d∈r f
c
r = f̄o,d ∀o ∈ O, d ∈ D
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We can now detect non-binding constraints easily. The first constraint in Problem (5.13)
must be satisfied because the LHS is the free-flow travel time of the route and is minimal,
while the RHS must be greater or equal to free-flow (keeping in mind α ≥ 0). The second
constraint is always an equality, by Lemma 5.1. The third constraint is guaranteed from the
assumption of a trapezoidal fundamental diagram. The simplified problem is now:

min
fl|l∈L,fc

r |r∈R

∑
l∈L alfl (5.14)

subject to:

0 ≤ fl ≤ fmax
l ∀l ∈ L

fl =
∑

r|l∈r f
c
r + f̄nc

l ∀l ∈ L
∑

r|o,d∈r f
c
r = f̄o,d ∀o ∈ O, d ∈ D

The above problem is now in a linear program formulation. We now show that the
concept of noncooperative flow can be replaced by a capacity reduction on all the links. Let
us rework some of the expressions in terms of the cooperative and noncooperative vehicles:

min
fc
r |r∈R

∑
l∈L alf̄

nc
l +

∑
l∈L al

∑
r|l∈r f

c
r (5.15)

subject to:

−f̄nc
l ≤ 0 ≤∑r|l∈r f

c
r ≤ fmax

l − f̄nc
l ∀l ∈ L

∑
r|o,d∈r f

c
r = f̄o,d ∀o ∈ O, d ∈ D

We can now simplify further. The first term in the objective is constant, since fnc
r

is not a decision variable. Then, the second constraint can be simplified by introducing a
reduced capacity constant, f̄max

l = fmax
l − f̄nc

l . If we drop the cooperative pretense from the
decision variable, then we have reduced the problem to a modified capacity, constant latency,
Lagrangian system optimal problem, which is simplified and linear:

min
fr|r∈R

∑
l∈L al

∑
r|l∈r fr (5.16)

subject to:

0 ≤∑r|l∈r fr ≤ f̄max
l ∀r ∈ R

∑
r|o,d∈r fr = f̄o,d ∀o ∈ O, d ∈ D

Lemma 5.2. Let f∗ = {f ∗r : r ∈ R} be a solution to Problem (5.16). Then

f c′ = f∗

ρ′l =
f̄nc
l +

∑
r|l∈r f

∗
r

vl
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is a solution to Problem (5.12).

Proof. Using Lemma 5.1, the equality fl = f̄nc
l +

∑
r|l∈r f

c
r , and the variable name substitution

made in Problem 5.16, the result follows immediately.

Corollary 5.1. An optimal solution to Problem (5.12) is a feasible solution of the unrelaxed
junction model in Section 5.4.2.

Proof. Since the flow on every link is in free flow (fl = vlρl,∀l ∈ L), the supply
∑

l∈Γj
vlρl

at every junction j ∈ J is equal to the flow across the junction
∑

l∈Γj
fl, and is therefore

maximal.

This corollary shows that solving for the static social optimum on networks with hori-
zontal queues does not encounter the non-convexity issues typically associated with the CTM
constraints in dynamic traffic problems. For instance, [130] uses the relaxed junction model
(which allows “car-holding”) that we present in Section 5.4.2 to solve the single destination
social optimum problem as a linear program, and [50] use a relaxed junction model to solve
an optimal ramp metering problem as a linear program (with a zero-relaxation gap under
certain conditions).

Commonly considered problems in traffic assignment such as social optimum for purely
Lagrangian flow (f̄nc

l = 0,∀l ∈ L) and purely Eulerian flow (f c
r = 0, ∀r ∈ R) serve as special

cases of Corollary 5.1 and therefore an optimal solution can be found for both problems for
the unrelaxed junction model by solving the linear program in Problem (5.16).

Limiting deviations in density

There are limitations in the expressiveness of the current horizontal queues model under
total latency minimization. To circumvent these issues, this section proposes the addition
of constraints that restrict the allowable densities to be within the locality of the nominal
densities that are used to compute nominal latencies.

The purpose of these constraints is to prevent the optimization program from setting
all links to be in the free-flow state, which has the negative effect of over-simplifying the
model developed here-within (Section (5.4.2)). Instead, total latencies across the network
can be minimized while considering likely congestion patterns. To motivate the usefulness
of such a model, one can make a physical argument that rerouting may only cause bounded
deviations in the density, and that congestion may not be cleared due to rerouting because
of additional issues such as weaving or the physical road conditions.

To restrict the densities to only take certain values, we require that each link l ∈ L,
includes an upper and lower density bound, ρ↑l and ρ↓l respectively. We append to the
program in Equation (5.12), the set of constraints bounding the allowable densities:

ρ↓l ≤ ρl ≤ ρ↑l ∀l ∈ L
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In Section 5.5, we show an example of a network with horizontal queues with density
bounds that has the bounded tolerance constraint as a tight constraint. This demonstrates
that bounding the allowable densities can capture the characteristics of bounded tolerance
for networks with horizontal queues.

5.4.3 Algorithm for data preconditioning

If input data into our problem is taken from a physical network with inherent sources of
noise, it is likely that there will be a number of conditions that will cause the raw data to be
incompatible with the problem constraints, thus making the problem infeasible. For instance,
a link’s estimated density may not lie within the fundamental diagram constraints in Section
5.4.2, or there may not be exact mass balance across junctions. If the estimates from the
stationary sensors are reasonable, then these constraint violations will not be severe, but even
small deviations will render the optimization program infeasible. Therefore the input data
must be filtered to be preconditioned to meet the requirements. We propose an optimization
program formulation.

The constraints that concern noncooperative flow are the following:

fl ≤ vlρl ∀l ∈ L (5.17)

fl ≤ wl(ρ
max
l − ρl) ∀l ∈ L (5.18)

0 ≤ fl ≤ fmax
l ∀l ∈ L (5.19)

fl =
∑

r|l∈r fr ∀l ∈ L (5.20)

These constraints are all convex (indeed, linear) in the decision variables fl, fr. Then,
let f̂l, ρ̂l be the input flow and density respectively on link l ∈ L̂, where L̂ ⊆ L are the links
with input data available. Our objective will be to minimize some definition of distance
from the input data to the selected data that violates none of the above constraints. If we
select as the distance measurement the n-norm, n ≥ 1, then we have the following convex
optimization program for obtaining amenable input data:

minimize
fl,ρl:l∈L

∑
l∈L̄

∥∥∥f̂l − fl
∥∥∥
n

+ ‖ρ̂l − ρl‖n
subject to: Constraints (5.17)− (5.20)

The result of the optimization problem is a set of route-based flows {fr : r ∈ R}. Finally,
the route flows would then be partitioned into both cooperative and noncooperative flows,
which then gets the data in a suitable format.

While the formulation presented specifically discusses horizontal queue constraints, the
same methods can be extended to other problems with convex constraints, such as M/M/1
queues presented in Section 5.4.1.
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Name a
(

s2

units

)
b (s) fmax

(
units
s

)

source 1 0 1
sink 1 0 1
left 1 0 1

right 0.5 0.5 1

(a)

Type Description f ( cars
s

)

O-D (Lagrangian) source-sink 0.8
Link (Eulerian) source 0.2
Link (Eulerian) sink 0.1
Link (Eulerian) left 0.1
Link (Eulerian) right 0.2

(b)

Table 5.2: Summary of illustrative network properties. 5.2a: Link-level input parameters.
5.2b: Network-level input demands

5.5 Numerical results

We demonstrate the highly practical nature of our work by applying the model to two
different problems. We focus on a multi-destination network of horizontal queues. This
problem demonstrates the generality of our method to the multi-commodity case and the
ability to solve real-world transportation planning problems on a regional level. First, we
demonstrate the simplicity of the model on a small network of vertical queues, to which we
apply both models of tolerance and compare the benefits gained by re-routing.

5.5.1 Linear Latency

Left Route

Right Route
Source Sink

Figure 5.4: Network
diagram

Figure 5.4 depicts an illustrative, two parallel routes network.
Flow enters at the source and exits at the sink and can travel along
either the “left” route or the “right” route. Each link l ∈ L has a
linear latency function `l(f) = alf + bl. The link properties given
in Figure 5.2a show that the left link has a lower zero-flow latency
than the right link, but has a higher marginal cost per unit flow.
As the left route becomes more congested, its latency will eventu-
ally increase until the right route has equal utility. From a user
equilibrium viewpoint, as the network is loaded with additional flow, the latencies across the
two routes will remain the same. But from a social optimum viewpoint, additional flow will
always be routed to the right route since it will always have a lower marginal cost than the
left route.

As described in Figure 5.2b, we assume the network is loaded with both cooperative
and noncooperative flow. There is a total of 0.2 units-per-second of noncooperative flow,
with 0.1 units-per-second of flow on both the left and right link. In addition, there is 0.8
units-per-second of flow on the network, which we assume is initially distributed amongst
the left and right routes in a manner that achieves user equilibrium.

We now show how our route optimization framework can be applied to this network to
optimally route the cooperative flow. Results are given over a range of bounded rationality
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Figure 5.5: Comparison of simple bounded tolerance and comparative tolerance. 5.5a:
Route latencies. Comparative tolerance allows smaller deviations in route latencies than
bounded tolerance. 5.5b: Total latencies. The total latencies decrease more slowly with
the comparative tolerance model versus the bounded tolerance model. The total route flows
approach the Stackelberg equilibrium as the tolerance scale factor goes to infinite.

scale factor to show the sensitivity of our results to the scale factor. Since the latency
functions are linear, both the standard bounded rationality model and comparative bounded
rationality model are solved using well-developed and highly efficient convex optimization
tools (see [112]). In addition to comparing the two models against each other, we compare
them both against the Stackelberg game solution of the routing problem. The Stackelberg
game solution gives a minimum social cost with the assumption that the noncooperative flow
will be routed in a user equilibrium manner. Stackelberg analysis is only possible in the case
when origin-destination demands can be uniquely determined for all users of the network,
which holds for our simple network. This does not hold in general, and this case will studied
subsequently (Section 5.5.2).

Figure 5.5 summarizes the numerical results on the simple network. The route latencies
as a function of the bounded rationality scale factor are shown in Figure 5.5a, while total
latencies are shown in Figure 5.5b. As expected, as the bounded rationality scale factor
increases, so do the benefits of re-routing. Additionally, the comparative bounded rationality
model improves at a slower rate than the standard bounded rationality model. This is due
to the fact that the comparative model permits the right route to be “aware” of the latency
improvements on the left route, while the standard model only limits deviations in route
latencies in comparison to a route’s individual nominal latency and ignores the improvements
on the left route.

The results tell us that as the scale factor increases, the model converges to the Stackel-
berg solution. It may appear counter-intuitive that the model with inherently no tolerance
factor could perform better than the tolerance models. The explanation is that the tolerance
models are overly-conservative due to the assumption that no noncooperative flow changes
routes, and the routing strategy will not drastically improve one route over another route.
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On the other hand, the Stackelberg solution shifts all noncooperative flow to the left route
and the cooperative flow accommodates this shift in a socially optimal manner. Since all
noncooperative flow is on a single route and improves upon its nominal latency, discrepancies
in route latencies are no longer a behavioral issue, allowing the Stackelberg to be as liberal
as necessary with latency increases on the right route.

5.5.2 Horizontal queueing network

Source
0

1
2 3 4

5 6 7 8 9

10

11
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13

12

Sink B
Sink A

Sink C

(a) Multiple-destination network with
horizontal queues. There are many
overlapping routes between Source
and Sink A, while Sink B and Sink C
are origin-destinations which have
demands on the same network as Sink
A demands.
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(b) Total latency on network of horizontal
queues as a function of tolerance scale.

As discussed in Section 5.4.2, given the nonlinear dynamics of horizontal queueing cells,
modeling horizontal queues is in general a more difficult process than vertical queues. It is
also important to consider a more general network than the compact one in Section 5.5.1,
one with multiple destinations, and therefore multiple Lagrangian demand types. In this
section, we model a mid-sized multi-destination network of horizontal queues within the
partial cooperation, bounded tolerance framework. We follow with numerical results on how
the routing strategies change with respect to the parameters of the tolerance model.
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Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Length (m) 0.5 0.1 1.0 1.5 0.3 0.1 0.6 0.4 1.0 1.5 1.0 0.7 0.8 1.0 0.1

Nom. flow ( units
s

) 0.15 0.05 0.03 0.02 0.05 0.05 0 0.02 0.01 0.02 0 0.02 0.01 0.05 0.05

Nom. density ( units
m

) 0.15 0.05 0.03 4.99 0.05 0.05 0 0.02 4.99 4.99 0 0.02 0.01 0.05 0.05
State constraint F F F C F F F F C C F F F F F

(a)

Sink Dest. A B C
Flow ( users

s
) 0.5 0.5 0.5

(b)

Table 5.3: Multi-destination network properties. 5.3a: Link properties, including nominal
state. 5.3b: demand input into network

Network properties and demands

Figure 5.6a shows a topological description of the network. Since only Sink A can be
reached through multiple routes, the algorithm only decides how to partition the demand
across the routes originating from Source and leading to Sink A. The algorithm will take as
input some network and link level properties, as recorded in Table 5.3. The nominal state
given in Table 5.3a shows that links 3, 8 and 9 were heavily congested, while the other links
were close to free flow. Furthermore, as discussed in Section 5.4.2, the densities must have
more constraints than just the fundamental diagram constraints (Equations (5.9)-(5.11)).
Table 5.3a tells us that this problem assumes that links do not shift from their nominal state
(links with a nominal free flow/congestion state must maintain this state). Table 5.3b tells
us that there is 0.5 users

sec
demand between all origin-destination pairs on the network. For

simplicity, we assume that all demand is cooperative as well to focus analysis.

Numerical results

The results of our numerical calculations are summarized in Figure 5.6b. As supported
by the results for vertical queues in Section 5.5.1, the relief of network congestion is greater
the more tolerance is assumed in the users. Additionally, it is noted that the network does
not immediately push into free flow (social optimum), but rather decongests links to an
amount dependent on the tolerance scale factor. This is a desirable behavior of the model,
as it is not reasonable to assume that congestion can be completely avoided just through
re-routing schemes. Lastly, we see the intuitive result that the bounded tolerance model will
converge to the more familiar social optimum as the scale factor increases.

5.6 Summary of Results

We have presented a framework rerouting flow in an socially optimal way with mixed
Lagrangian-Eulerian information. The cooperative flow has known nominal routes, while
the noncooperative flow has known flow counts across links. In order to anticipate network
conditions for all users after re-routing has been applied, the model combines the two types of
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information in a complementary way; by only allowing the cooperative flow to change routes,
we have removed the necessity of having origin-destination demand information for all users
on the network. Furthermore, by looking at the static flow problem, we can study practical
networks with multiple origins and multiple destinations, where dynamic multi-commodity
problems often suffer from intractability issues.

The framework also addresses the behavioral nature of the noncooperative users, which
we call bounded tolerance and comparative tolerance, by only allowing perturbations of the
nominal state of the network that boundedly impact the noncooperative flow in a negative
manner. The tolerance model comes about as a response to the lack of origin-destination
information that does not permit the game-theoretic Stackelberg game analysis, but does
allow us to require only Eulerian information across the majority of the network. We show
that the comparative tolerance model will in general limit network latency improvements
more so than the bounded tolerance model, but since the comparative tolerance model allows
individual routes to compare latencies with other routes, it is arguably a more accurate model
of noncooperative flow behavior.

By taking a convex optimization-based approach, the framework is shown to efficiently
solve many classes of network flow problems. The horizontal queue, highway network problem
can be modeled as a convex optimization program, which permits one to study highway
networks of practical size. The multi-destination network of horizontal queues gives an
example of how the framework can be applied to multi-commodity type networks such as
highways with multiple onramps and off-ramps. A live data feed of Lagrangian GPS sensors
and Eulerian loop detectors, in conjunction with the data pre-conditioning algorithm, would
enable the framework to run in an “online” sense, and provide automatic, daily routing
advice for a traffic management agency during rush hour periods. We conclude that the
partial cooperation, bounded tolerance model can allow a traffic management operator to
make beneficial re-routing decisions with much less origin-destination demand input required.
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Chapter 6

Conclusion, Future Work, and Vision

To conclude the work presented in this thesis, we summarize the main contributions,
detail a number of extensions for future study, and provide a broader context and purpose
in which the work was developed.

Summary of Contributions

• A continuous and discrete model for freeway onramp metering and optimal
control applications. In Chapter 2, we covered preliminary networked conservation
law theory including the PDE formulation, Riemann solvers and Godunov discretiza-
tion. From these tools, we derived a new model for linear freeway stretches, where the
mainline flow is modeled as networked horizontal queues of vehicle density, while the
onramps are modeled as ODE’s of vertical queues of vehicle counts. The ODE allows
for strong boundary conditions to be guaranteed at the onramp boundaries, and thus
guaranteeing all applied boundary flow enters the system. We discussed the suitability
of such a model to optimal control applications, where strong boundary conditions are
desirable.

• Adjoint-based finite horizon optimal control framework for networked con-
servation laws. In Chapters 3.1 and 3.2, we gave an overview of the discrete adjoint
method and its general applicability to optimal control problems. We derived a spe-
cific discrete adjoint formulation for networked conservation laws generalized about the
specific Riemann solver being used in the application. Such a formulation allows for
a study of the sparsity structure of such networked systems. We showed that such a
sparsity structure permits one to compute gradients of optimal control objectives on
such systems with complexity linear in the size of the network and linear in the time
horizon. We demonstrated the effectiveness and robustness of an adjoint-based MPC
ramp metering controller on a model of the I15 South freeway, where our method was
able to improve upon standard practicioners’ techniques.

• Distributed optimization over subsystems with shared state. In Chapter 3.3,



109

we derived a decentralized and asynchronous control algorithm over sub-systems which
share not only “free” control variables, but “dependent” state variables. We first pre-
sented a general treatment of the problem and solution method following the A-ADMM
algorithm [127]. Then we showed how networked conservation laws, such as freeway
networks, fit the assumptions of the presented problem, and how its specific sparsity
pattern permits one to solve optimal control problems in parallel by splitting the net-
work into subnetworks, with communication requirements that scale linearly with the
network size. Furthermore, we showed how the adjoint method can be applied to the
subnetwork subproblems for systems with nonconvex dynamics. We then implemented
a provably optimal, decentralized ramp metering and variable-speed-limit controller
and demonstrated its improved running time with increasing subnetwork splits and its
performance improvement over simpler decentralized approaches.

• Security analysis of freeway control systems. In Chapter 4, we investigated the
security and potential compromise points of freeway control systems, including by the
physical and virtual aspects of control, sensing and communication. We distinguished
between direct attacks, where the actuation is directly compromised, and indirect at-
tacks, where sensing infrastructure is compromised in a manner which induces a desired
outcome from the actuation. For coordinated ramp metering attacks, we constructed
a high-level framework, based on optimal control and multi-objective optimization,
which enables an attacker to accomplish precise and intricate objectives using only
metering lights as the control. A number of attack simulations were conducted on
macroscopic freeway models which demonstrate the level of precisions possible from a
coordinated ramp metering attack.

• Rerouting strategies using mixed Lagrangian-Eulerian information. In Chap-
ter 5, we presented a framework for static route suggestions to a subset of users on
flow networks occupied by non-compliant, greedy users. The framework only requires
route-based, Lagrangian information from the compliant users, and flow counts on links
from all users (Eulerian information). After applying a bounded-tolerance model for
the non-compliant drivers, we posed the optimal route suggestion problem as a convex
optimization problem and give numerical examples applying the framework to both
communication network dynamics and freeway dynamics.

Future Work During the course of conducting the above work, a number of avenues for
further research were identified.

• Adjoint-based model calibration. While using the discrete adjoint framework to
conduct congestion-on-demand attacks in Chapter 4, it was identified that one could
consider congestion-on-demand objectives as model calibration, using onramp flow as
the tuning model parameter. If one were to use more standard model parameters, such
as the triangular fundamental diagram parameters and split ratios as the controllable,
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tuning parameters, then one can employ the discrete adjoint framework to minimize the
model prediction error from some known sensor measurements by optimally adjusting
the fundamental diagram parameters. A similar concept was presented in [60] for state
estimation. As future work, one could study how such a calibration technique could
be introduced into an MPC framework to allow for automatic, dynamic adjustment of
freeway model parameters to account for unknowns such as weather or lane closures.

• Sensitivity analysis of coordinated traffic subnetworks. The strength of the A-
ADMM approach to distributed freeway control presented in Chapter 3.3 comes from
the transmission of not only boundary conditions to neighboring subnetworks, but
objective value information via the Lagrangian dual variables. These dual variables also
capture the sensitivity of the objective to a particular dynamical constraint violation.
Since constraint violation is equivalent to consensus enforcement in A-ADMM, by
studying the dual variable values being transmitted between different subnetworks,
one observes the impact of their communication on the objective value. Such analyses
could inform traffic control systems designers on which subnetworks one should invest
in enabling coordination, and which subnetworks do not require such investments.

Vision Adapting to the broader trends of smarter cities and connected infrastructure,
transportation agencies have become increasingly better at measuring, estimating and pre-
dicting their traffic patterns. We view understanding and measuring as the first step in
a fully closed-loop management system, where control systems can leverage the improved
estimation and prediction systems. The research contained in this thesis works towards a
practical and effective implementation of the control and actuation part of such a future
management system, and has done so from two distinct perspectives.

First, we have given numerous real-world applications and numerical examples to demon-
strate the current-day feasibility of the proposed methods. The PDE-ODE model in Chap-
ter 2.2.2 was developed since strong boundary conditions were necessary for vehicle demand
conservation, thus enabling accurate modeling of the system response at the boundaries to
varying control. Robustness validations were conducted in Chapter 3 to address the realis-
tic scenario of noise pervading many dimensions of the control problems (initial conditions,
boundary conditions, model parameters). In Chapter 4, controllability analysis was con-
ducted on a realistic model of the I15 Freeway to demonstrate the vulnerability of real-world
traffic systems to harmful attacks with ramp meters as the only control mechanism.

Second, the presented control framework was specifically designed for generalization
to enable extensions to future control methods and new applications. The adjoint-based
model predictive control framework in Chapter 1.3 extends readily to any continuous system
which can be discretized using Godunov’s method, while still having the same computational
efficiency guarantees. Thus, if one prefers a more expressive offramp model for freeway-
onramp traffic, or one wants to consider variable speed limits, or even a cost function which
considers fairness, little specialization is needed to apply optimal control to the new model
besides the straight-forward calculation of partial derivatives. The decentralized control
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theory in Chapter 3.3.3 can be seen as a “module” for permitting looser communication and
higher scalability applied to the centralized adjoint framework, without any sacrifice in the
expressiveness or extensibility of the centralized approach.

Thus, we view the current work as sitting squarely between immediate application and
future extension. The specific examples presented for ramp metering, variable speed limits,
and even rerouting in Chapter 5 and [113] serve as a “proof-of-concept”, and are readily
implementable within any control system with some level of coordination and communica-
tion. But additionally, and potentially more-importantly, these examples sit upon a general
framework which is agnostic to the specific networks, the current objectives, and even the
phenomena being modeled. In light of the evidence of feasibility and versatility presented in
this thesis, it is our hope that model-predictive control in traffic applications will continue
to be studied and adopted in practice.
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