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Harnessing the predicted maize pan-interactome for 
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The recent assembly and annotation of the 26 maize nested association mapping population founder inbreds have enabled large-scale 
pan-genomic comparative studies. These studies have expanded our understanding of agronomically important traits by integrating 
pan-transcriptomic data with trait-specific gene candidates from previous association mapping results. In contrast to the availability 
of pan-transcriptomic data, obtaining reliable protein–protein interaction (PPI) data has remained a challenge due to its high cost 
and complexity. We generated predicted PPI networks for each of the 26 genomes using the established STRING database. The indi
vidual genome-interactomes were then integrated to generate core- and pan-interactomes. We deployed the PPI clustering algorithm 
ClusterONE to identify numerous PPI clusters that were functionally annotated using gene ontology (GO) functional enrichment, dem
onstrating a diverse range of enriched GO terms across different clusters. Additional cluster annotations were generated by integrating 
gene coexpression data and gene description annotations, providing additional useful information. We show that the functionally anno
tated PPI clusters establish a useful framework for protein function prediction and prioritization of candidate genes of interest. Our study 
not only provides a comprehensive resource of predicted PPI networks for 26 maize genomes but also offers annotated interactome 
clusters for predicting protein functions and prioritizing gene candidates. The source code for the Python implementation of the analysis 
workflow and a standalone web application for accessing the analysis results are available at https://github.com/eporetsky/PanPPI.

Keywords: Plant Genetics and Genomics; pan-genome; predicted protein–protein interactions (PPIs); interactome; protein function; 
gene candidate prioritization
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Introduction
Maize (Zea mays) is one of the most agriculturally and economical
ly important crops in the world (Hufford et al. 2021). In an effort to 
improve yield and reduce loss to stress conditions, association 
mapping for important agronomic traits has been extensively 
used to better understand the genetic basis underlying phenotyp
ic differences across the genomic diversity of maize (Wallace et al. 
2014; Mural et al. 2022). One major mapping population, the maize 
nested association mapping (NAM) population, consists of the 
products of crosses between 25 diverse founder inbred lines and 
the B73 reference genome inbred line that represent a large por
tion of maize genetic diversity (McMullen et al. 2009; Hufford 
et al. 2021). Association studies conducted using the NAM map
ping population identified a large number of genomic loci and 
gene candidates associated with a variety of traits, such as plant 
architecture, height, flowering time, kernel weight, and different 
metabolite abundances (Buckler et al. 2009; Peiffer et al. 2014; 
Wallace et al. 2014; Pan et al. 2017; Zhang et al. 2020). To better 

understand the genetic and molecular basis of these traits will re
quire improvements in gene function prediction and prioritization 
of causal candidate genes (Visscher et al. 2017). Thus, despite the 
comprehensive understanding of the genetic architecture and the 
association between some traits and genomic loci, identification 
of the causal genes and the underlying biological networks regu
lating their function remains elusive for many other traits 
(Broekema et al. 2020). Such identification would facilitate both 
crop improvement and progress in understanding complex bio
logical systems.

High-quality genome assemblies of diverse plant species re
vealed a more complete picture of the biological regulations and 
traits of agronomic importance (Kersey 2019; Sun et al. 2022; Shi 
et al. 2023). Improvements in the quality and cost of high- 
throughput genome sequencing methods are leading to a rapid in
crease in not only the number of plant species sequenced, but also 
in the number of accessions sequenced within many species 
(Della Coletta et al. 2021; Jayakodi et al. 2021). Recently, high- 
quality genome sequences and annotations have been released 

G3, 2024, jkae059 

https://doi.org/10.1093/g3journal/jkae059
Advance Access Publication Date: 16 March 2024 

Plant Genetics and Genomics

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae059/7630293 by guest on 01 April 2024

https://orcid.org/0000-0003-2380-6704
https://orcid.org/0000-0002-5553-6190
mailto:taner.sen@usda.gov
https://github.com/eporetsky/PanPPI


for the 26 maize NAM founder inbreds (Hufford et al. 2021), facili
tating comprehensive comparative pan-genomic studies (Cagirici 
et al. 2022; Lovell et al. 2022; Thatcher et al. 2023). Annotation of the 
maize NAM founder inbred gene sequences was performed by ap
plying state-of-the-art gene annotation methods using ab initio 
predictions and evidence-based predictions, including the use of 
transcriptomic data that were generated for all the NAM founder 
inbreds (Hufford et al. 2021; Li et al. 2022). Using the generated pan- 
genomic and pan-transcriptomic data for the NAM founder in
breds, a previous pan-genome coexpression network study 
showed substantial variation beyond the single reference genome 
and connected trait-specific genes with the pan-transcriptomic 
data (Cagirici et al. 2022), supporting other pan-transcriptome 
findings (Hirsch et al. 2014). These results suggest that the increase 
in the number of assembled pan-genomes and different types of 
available omics datasets will offer both opportunities and chal
lenges for comparative pan-genomic studies.

Protein–protein interactions (PPIs) provide important insights 
into gene function and are considered to be a reliable indicator 
of functional associations (Wang et al. 2022). For proteins of inter
est, identification of interacting partners can elucidate the mo
lecular basis for associated traits, such as sugar transport, 
phytohormone signaling, and flowering time (Garg et al. 2022; 
Zahn et al. 2023), or inform on possible strategies for trait improve
ment, such as plant development (Wang and Wang 2022). On the 
other hand, PPI networks can be used to identify novel regulatory 
interactions for targeted validation of protein function in complex 
signaling pathways, such as response to phytohormones and 
pathogen resistance (Jones et al. 2014; Altmann et al. 2020). 
Furthermore, integrative analyses of different multiomics data
sets, including PPI and coexpression networks, can be used to dis
sect complex biological systems to identify target genes for crop 
improvement, such as flowering time (De Bodt et al. 2012; Han 
et al. 2023). Despite the large amount of experimental PPI data 
across different species, conditions, and organs (McWhite et al. 
2020), the complexity and cost of high-throughput PPI discovery 
remains a challenge for interspecies and intraspecies 
pan-interactome analyses (Smits and Vermeulen 2016). In the ab
sence of experimental PPI data, methods for genome-scale predic
tion of PPI network, such as the STRING database, offer a fast and 
scalable solution for generating predicted PPI networks from pro
tein sequences alone (Szklarczyk et al. 2021). The STRING data
base contains experimental and predicted protein–protein 
interactions for physical and functional associations. These inter
actions were curated from computational predictions, knowledge 
transfers between organisms, high-throughput lab experiments, 
conserved coexpression data, automated text mining, and exist
ing information in other databases, covering over 67 million pro
teins for more than 14,000 organisms (Szklarczyk et al. 2021). 
Using this information, it is possible to make reliable inferences 
and predictions of PPI networks. This not only advances our un
derstanding of specific interacting proteins and individual PPI net
works but also facilitates the comparisons between multispecies 
pan-interactomes.

In this study, we developed a framework for generating inform
ative predicted pan-interactomes, using the established STRING 
database PPI prediction workflow (Szklarczyk et al. 2021), based 
on a selection of genomes lacking experimental PPI data. A variety 
of bioinformatics approaches have been developed and applied to 
the prioritization of gene candidates, including gene expression 
profiling (Woodhouse, Sen, et al. 2021), gene coexpression and 
PPI network analyses (Liu et al. 2019), and examination of relevant 
gene ontology (GO) terms (Almeida-Silva and Venancio 2022). We 

show that by using a PPI network clustering algorithm, we can 
generate simplified and informative clustered PPI networks that 
improve the overall interpretability of the predicted interactomes. 
Using this framework, we were able to create and annotate the 
clustered genome-, core-, and pan-interactome networks with in
formation such as GO term enrichment-based functional annota
tions, coexpression data, and gene description annotations. 
Furthermore, we show that using GO enrichment analyses for 
cluster functional annotation can be leveraged for studying bio
logical processes, predicting the function of proteins of interest, 
and prioritizing putative trait-associated gene candidates. While 
our pan-interactome analysis focuses on the recently assembled 
26 NAM founder inbred genomes, our proposed framework can 
be extended to other pan-genomes, requiring only the annotated 
pan-gene mappings and protein sequences of each genome.

Materials and methods
Generating the predicted maize 
NAM-interactomes
The protein sequences of the latest B73 (RefGen_v5) reference 
genome and the 25 NAM founder genomes were obtained from 
MaizeGDB (Hufford et al. 2021; Woodhouse, Cannon, et al. 2021). 
For these genomes, protein sequences of the canonical transcripts 
were chosen based on domain coverage, protein length, and their 
similarity to assembled transcripts, representing a standard 
or reference version of a gene’s structure (Hufford et al. 2021). 
The protein sequences of the canonical gene models were submit
ted to the STRING database for PPI network predictions 
(Szklarczyk et al. 2021). All predicted physical interactions were 
then used to construct and analyze the 26 individual maize 
NAM genome-interactomes. A list of all the generated STRING 
database accessions, including links to the STRING database 
download page, is available (Supplementary Table 1). While all 
the individual NAM genome-interactomes were processed and 
analyzed similarly, the B73-interactome was used as the repre
sentative genome-interactome in subsequent analyses.

Generating the pan- and core-interactomes
The pan-interactome network was created by mapping the pro
tein IDs of the individual maize NAM genome-interactomes to 
the annotated MaizeGDB unified pan-gene IDs (Hufford et al. 
2021). Only pan-PPIs, defined as pairs of interacting proteins 
that were both successfully mapped to a unified pan-gene ID, 
were included in the generation of the pan-interactome. The 
number of unique pan-PPIs in each of the 26 individual maize 
NAM genome-interactomes were counted, keeping all pan-PPIs 
that occurred in more than one genome-interactome to generate 
the final pan-interactome. The core-interactome, a subset of the 
pan-interactome, was created by keeping all pan-PPIs that were 
found in all 26 individual NAM genome-interactomes. Note that 
the protein IDs in the core- and pan-interactomes are based on 
the unified MaizeGDB pan-gene ID annotation, while the protein 
IDs in the individual NAM genome-interactomes are based on 
the genome-specific canonical gene IDs. All network graph figures 
were made with either Cytoscape (v3.10.1) (Shannon et al. 2003) or 
the Python NetworkX package (v3.1) (Hagberg et al. 2008).

Clustering and analysis of the genome-, core-, and 
pan-interactomes
A PPI network clustering approach was applied to the 26 individ
ual genome-interactomes and to the core- and pan-interactomes 
to improve network interpretability. The interactomes were 
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clustered to identify densely connected PPIs using the overlapping 
graph clustering algorithm ClusterONE (v1.0, using the standa
lone Java application with default parameters) (Nepusz et al. 
2012). Clusters were filtered based on a P-value < 0.1 to retain a 
larger number of clusters (Wisecaver et al. 2017). Because 
ClusterONE was designed for detection of protein complexes, we 
compared experimentally derived protein complexes with 
ClusterONE clusters of STRING-db PPI predictions (McWhite 
et al. 2020). The Jaccard similarity index score, based on the 
PyWGCNA method (Langfelder and Horvath 2008; Rezaie et al. 
2023), was used to calculate overlap between ClusterONE clusters 
and experimental complexes that were detected using 4 different 
thresholds and mapped to the maize B73 (RefGen_v3) gene IDs 
(STRING-db accession STRG0A42DRC) using assigned eggNOG 
IDs (Huerta-Cepas et al. 2019). Additionally, we generated a cluster 
similarity network by comparing cluster pan-PPI overlap across 
the 26 individual genome-, core-, and pan-interactome clusters. 
After mapping the protein IDs to the annotated MaizeGDB unified 
pan-gene IDs, all clusters were compared based on overlap be
tween cluster pan-PPIs members using the PyWGCNA method 
for calculating the Jaccard similarity index (Langfelder and 
Horvath 2008; Rezaie et al. 2023). The cluster similarity network 
was constructed by connecting clusters with a Jaccard similarity 
index >0.5.

Analysis of GO enrichment in PPI clusters
The GO-basic ontology was download from the GO consortium 
website and used for annotating the GO terms (2023-01-01 release) 
(Ashburner et al. 2000; Carbon and Mungall 2018; Gene Ontology 
Consortium et al. 2023). The GO annotations that were used for 
the subsequent GO term enrichment analyses were predicted 
using the PANNZER2 webserver (Törönen et al. 2018), using the 
same protein sequences that were submitted to STRING-db. To 
generate the GO annotation for the pan-genes, we combined all 
unique GO terms associated with each pan-gene from all available 
GO annotations. Analysis of GO enrichment was conducted using 
the Python package GOATOOLS (v1.3.1) (Klopfenstein et al. 2018). 
GO terms were considered to be enriched if the false discovery 
rate (FDR)-adjusted P-value was smaller than 0.05.

Coexpression analysis of interactome clusters
The complete quantified RNA-Seq data, i.e. fragments per kilo
base of transcript per million mapped reads (FPKM) values, across 
20 tissues for each of the 26 maize pan-genomes were obtained 
from the CyVerse Commons shared repository submitted by 
MaizeGDB (Hufford et al. 2021; Woodhouse, Cannon, et al. 2021). 
Each PPI cluster was processed using the Pearson’s correlation 
coefficient (PCC) (SciPy v1.11.2) (Virtanen et al. 2020) for each 
pair of cluster genes, assigning genes to be coexpressed when 
PCC >0.9 and P-value < 0.05. The coexpression results for each 
cluster were used to supplement the PPI edges with coexpressed 
edges and edges that had both PPI and coexpression data. In the 
case of the core- and pan-interactome clusters, pan-genes were 
considered to be coexpressed if significant coexpression was 
observed in at least one of the individual NAM genome 
transcriptomes.

Generating gene descriptions from the 
Arabidopsis thaliana top DIAMOND hit
To provide additional informative gene description annotations, we 
have included the latest A. thaliana Araport11 (TAIR_Data_ 
20220331) gene functional descriptions (Berardini et al. 2022). The 
best DIAMOND hit (v2.1.8.162) (Buchfink et al. 2021) between a given 

NAM founder inbred genome and A. thaliana was used to annotate 
the custom protein sequences included in the pan-interactome 
analysis. Pan-genes were annotated by selecting the NAM founder 
inbred gene with the longest annotation, including the reference 
gene ID from which the annotation was obtained.

A standalone Python Dash web application for 
accessing the annotated cluster data
To facilitate access to the generated data, we developed a stan
dalone Python Dash web application (v2.13.0). The dash applica
tion takes one of two user inputs: (1) genes or (2) GO terms of 
interest. Based on the selected input, the web application identi
fies all relevant genome-, core-, and pan-interactome clusters 
containing either the genes or the enriched GO terms of interest. 
The cluster similarity network was used to identify all connected 
component groups of overlapping clusters based on a Jaccard 
similarity index score >0.5. The interface provides 4 output 
tabs that are updated based on the cluster selected: (1) a table 
containing all the enriched GO terms for the relevant clusters 
identified based on the user input, (2) a network graph showing 
the predicted PPIs and coexpression data between cluster mem
bers, (3) a table of the gene description annotation for cluster 
members based on protein sequence similarity to A. thaliana 
genes, and (4) a table containing all the enriched GO terms for 
similar clusters. The standalone web application and detailed in
stallation instructions are available online at https://github.com/ 
eporetsky/PanPPI/.

Results
Comparison of the functional annotation of the 
clustered interactomes
A protein interactome network for a given genome assembly is 
constructed using all the proteins present in that assembly. 
However, comparing single genome-based interactomes to inter
actomes of other genomes poses challenges. Using B73 as an ex
ample, not all proteins are included in the pan-protein set: 
95.4% of proteins and 93.5% of pan-PPIs in the B73-interactome 
made it to the pan-protein set (Supplementary Table 2). Analysis 
of the number of shared pan-PPIs showed that a substantial num
ber are either shared across more than 25 founder inbreds or are 
found in only five or fewer founder inbreds, with few found in be
tween (Supplementary Fig. 1). Because the initial B73-, core-, and 
pan-interactomes yielded a “hairball”-like network that was not 
readily interpretable (Supplementary Fig. 2), ClusterONE was 
used to generate clustered interactomes from the individual 26 
NAM genomes-, core-, and pan-interactomes to improve network 
interpretability (Fig. 1). We show that 338, 183, and 240, clusters 
were observed in the B73-, core-, and pan-interactomes, respect
ively (Fig. 2a). Among these clusters, a total of 3,633, 3,025, and 
7,841, unique proteins were identified in the B73-, core-, and 
pan-interactomes, respectively (Fig. 2b and Supplementary 
Table 3). To assess the performance of ClusterONE to detect pro
tein complexes, we compared our results with experimentally de
rived protein complexes obtained using four different thresholds 
(McWhite et al. 2020). We found that the number of predicted 
PPIs per complex increases with complex size (Supplementary 
Fig. 3a). On other hand, comparison of the overlap between experi
mental complexes and ClusterONE clusters showed that approxi
mately 60% of complexes overlapped with clusters at a low 
Jaccard similarity index score cutoff of 0.1, but that the percent 
of overlapping clusters decreased as the Jaccard similarity score 
cutoff increased above 0.1 (Supplementary Fig. 3b). Treating the 
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ClusterONE clusters as functionally associated groups of proteins, 
we further analyzed them using GO term enrichment analysis 
(Fig. 1) (Nepusz et al. 2012). An upset-plot comparison of the sig
nificantly enriched GO terms across the clusters of the B73-, 
core-, and pan-interactomes showed that many enriched GO 
terms were unique to each interactome, with many others shared 
by different interactome combinations (Fig. 2c). A higher degree of 
overlap between unique GO terms has been observed between the 
26 individual clustered genome-interactomes (Supplementary 

Fig. 4). In addition to the clustered interactomes, we generated a 
cluster similarity network for the individual NAM-, core-, and 
pan-interactome clusters, based on pan-PPI overlap using a 
Jaccard similarity index score <0.5 (Supplementary Fig. 5). When 
comparing the different groups of overlapping clusters formed, 
we observe substantial differences in group sizes and the number 
of enriched biological process (BP) GO terms (Supplementary 
Fig. 5). In particular, in many groups of overlapping clusters, we 
find clusters with and without enriched BP GO terms, enabling 

Fig. 1. Overview of the pan-genome analysis framework used for generating the annotated clustered maize NAM-, core-, and pan-interactomes. The 
workflow consists of 4 steps. First, STRING-db is used to generate the predicted PPI data for the 26 individual maize NAM genome-interactomes. Second, 
the MaizeGDB pan-gene annotation for the NAM founder inbreds is used to generate the core- and pan-interactomes. Third, ClusterONE is used to detect 
densely connected PPI clusters in the genome-, core-, and pan-interactomes. Finally, all the genome-, core-, and pan-interactome clusters are annotated 
using GO term enrichment analysis, gene coexpression data, and gene descriptions based on protein sequence similarity with Arabidopsis thaliana genes.

Fig. 2. Generation and functional annotation of the clustered interactomes. a) The number of clusters of densely connected PPIs in the predicted B73-, 
core-, and pan-interactomes detected by ClusterONE. b) The number of unique proteins found in the B73-, core-, and pan-interactome clusters. c) An 
upset plot showing the overlap of all significantly enriched GO terms (FDR-adjusted P-value < 0.05) found in an enrichment analysis of the B73-, core-, and 
pan-interactome clusters.
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the use of additional functional annotation information from 
similar clusters (Supplementary Fig. 5).

Comparison of the functional annotation of the 
core- and pan-clustered interactomes
To compare the clustered core- and pan-interactomes, we gener
ated a network graph showing each individual cluster, and col
ored the edges based on the number of times the pan-PPIs were 
observed across the different genome-interactomes (Fig. 3a and 
b). While comparing the 15 most significantly enriched BP GO 
terms in the core- and pan-interactome clusters, we observed a 
difference between larger (≥50 members) and smaller (<50 mem
bers) clusters (Supplementary Table 4). Larger clusters were pri
marily represented by general biological processes, such as 
translation, DNA replication, mRNA splicing, and rRNA process
ing (Supplementary Table 4), and had a large number of overlap
ping GO terms (Supplementary Table 4). On the other hand, the 
smaller core- and pan-interactome clusters had an overlap of 4 
GO terms, involved in protein catabolism, transcription regula
tion, carbohydrate transport, and abscisic acid signaling (Fig. 3c 
and d, and Supplementary Table 4). The lists of enriched GO terms 
also show that while many enriched GO terms in the 
core-interactome are involved in general biological processes, 
such as auxin signaling, cell cycle, photosynthesis, and mRNA 
processing (Fig. 3c and Supplementary Table 4), the enriched GO 
terms in the pan-interactome represent more specialized biologic
al processes, such as isoprenoid, arginine, and plastoquinone bio
synthesis, methylation, jasmonic acid signaling, and signal 
transduction (Fig. 3d and Supplementary Table 4).

Integrating gene coexpression evidence with the 
clustered pan- and core-interactomes
Gene coexpression networks have been extensively used to derive 
indirect evidence for functional association (Wisecaver et al. 2017; 
Poretsky and Huffaker 2020; Cagirici et al. 2022) and can be inte
grated with different network types to enhance gene function pre
diction (Fig. 4a) (Han et al. 2023). By combining predicted PPIs with 
coexpression data, we were able to show that the number of clus
ters with any coexpression evidence was 47% for the 
B73-interactome clusters, 89% for the core-interactome clusters, 
and 97% for the pan-interactome clusters (Fig. 4b). When consid
ering the total number of edges with only PPI evidence, coexpres
sion evidence, or both, we observed that the number of PPI edges 
in the B73- and pan-interactomes were higher than both the 
coexpression-only edges and PPI with coexpression edges 
(Fig. 4c). In the core-interactome clusters, the number of 
coexpression-only edges was the highest (Fig. 4c). For the average 
number of edges per node with only PPI evidence, coexpression 
evidence, or both, the B73- and pan-interactome clusters have 
more PPI edges than coexpressed edges and both PPI and coex
pressed edges (Fig. 4d). The B73 clusters have the lowest 
average coexpression-only edges per node (Fig. 4d). For the 
core-interactome clusters, the averages are similar across the 3 
cases (Fig. 4d).

Leveraging functional enrichment of PPI clusters 
for putative gene function prediction
Physical interaction between proteins is considered to be a reliable 
indicator of functional association (Schwikowski et al. 2000). Based 
on the assumption that the PPI cluster members are functionally 
associated, we considered inferring gene function using the func
tional annotations for each cluster. In the case of the 
B73-interactome clusters, less than 60% of the clusters had at 

least one GO term enriched for BP and molecular function (MF), 
and less than 40% of the clusters had at least one GO term en
riched for cellular component (CC) (Fig. 5a). A similar pattern 
was observed across the cluster NAM-interactomes for the en
riched BP, MF, and CC GO terms, respectively (Supplementary 
Fig. 6a–c). In the core- and pan-interactome clusters, it was close 
to 80% for the BP- and MF-enriched GO terms, and approximately 
50% for CC-enriched GO terms (Fig. 5a). Our framework allows 
users to retrieve useful functional information and infer putative 
gene functions based on clusters with relevant enriched GO term 
annotations. As an example, we considered clusters enriched for 
GO terms related to flowering time, an important agronomic trait 
with a relatively well understood genetic basis (Buckler et al. 2009; 
Dong et al. 2012). We searched for clusters enriched for GO terms 
with descriptions containing the keywords “photoperiodism” and 
“flowering” (GO:0048574, GO:2000028, GO:0048573, GO:0048578, 
GO:0048577, GO:0048579, GO:0048587, and GO:0048586) in the 
B73-, core-, and pan-interactome clusters and identified 3, 1, 
and 10 clusters, respectively (Fig. 5b and Supplementary 
Table 5). As an example, we selected cluster B73_184 that was en
riched for the GO term GO:0048579 (negative regulation of long- 
day photoperiodism, flowering) (Fig. 5c and Supplementary 
Table 6). The B73_184 cluster contains Zm00001eb380460, a maize 
homolog of the core regulator of flowering time CONSTANS (CO) in 
A. thaliana, named CONSTANS OF ZEA MAYS1 (CONZ1) (Fig. 5c) 
(Miller et al. 2008). Other cluster members, including four 
NUCLEAR FACTOR-Y (NF-Y) genes and one BOI-RELATED GENE 
(BRG) gene have been shown to regulate flowering time through 
a physical interaction with CO (Fig. 5c) (Nguyen et al. 2015; Myers 
and Holt 2018). Additionally, we find that CONZ1 is both coex
pressed and predicted to interact with Zm00001eb095880, mem
ber of the C2H2-like zinc finger transcription factor family, a 
gene family highly involved in transcriptional regulation of flow
ering induction and development (Fig. 5c) (Lyu and Cao 2018).

Leveraging functional enrichment of PPI clusters 
for prioritization of candidate genes
A multiomic study of maize development predicted 2,651 maize 
genes to be associated with flowering time regulation (Han et al. 
2023). Of the predicted 2,651 genes, 20 genes were validated to al
ter flowering time in maize using knockout alleles generated 
through CRISPR–Cas9-mediated gene editing (Supplementary 
Table 7) (Han et al. 2023). Considering the 20 validated genes as 
candidate genes for our workflow, our analysis showed that 5, 4, 
and 7 clusters contained at least one of these candidate genes in 
the B73-, core-, and pan-interactome clusters, respectively 
(Fig. 6a). Among these clusters, we found a number of clusters 
that were enriched for GO terms with relevance to flowering, 
such as shoot development (GO:0010016, GO:2000032, and 
GO:0080006), flower development (GO:0048437, GO:0048444, and 
GO:0048455), and flowering time (GO:0048573, GO:0048574, 
GO:0048578, and GO:0010228), representing 7 of the 20 candidate 
genes (Fig. 6b and Supplementary Table 8). As an example, we se
lected cluster pan_503 that was enriched for the GO term 
GO:0010228 (vegetative to reproductive phase transition of meri
stem). Cluster pan_503 contains pan_gene_18303, associated 
with the candidate gene Zm00001eb155150, that shares sequence 
similarity to the A. thaliana FLOWERING LOCUS VE (FVE) gene 
(Fig. 6c and Supplementary Table 9). Additionally, the candidate 
gene, Zm00001eb155150, was found to be coexpressed with 12 
other cluster members, in addition to two predicted pan-PPIs 
(Fig. 6c). Based on the descriptions of the top DIAMOND hits to 
A. thaliana genes, the cluster contains 9 FVE-similar genes, a 
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Fig. 3. Comparison of the core- and pan-interactome clusters and functional enrichments. a and b) Cytoscape network graphs of the core- and 
pan-interactome clusters, respectively. Edge density represents the number of times pan-PPIs are shared across multiple genome-interactomes. c and d) 
The top 15 most enriched BP GO terms among the core- and pan-interactome clusters that have less than 50 cluster members, respectively. Enrichment 
P-values were calculated using a hypergeometric test and adjusted using the Bonferroni method.

Fig. 4. Integration of PPI cluster networks with gene coexpression data. a) Outline of the PPI cluster and gene coexpression data integration. b) Total 
number of clusters in the B73-, core-, and pan-interactomes with only predicted PPI edges or clusters containing both PPI and gene coexpression edges. 
c) Total number of edges in all clusters of the B73-, core-, and pan-interactomes with PPI, coexpression, or both annotations. d) Number of edges 
normalized by cluster size for all B73-, core-, and pan-interactome clusters with PPI, coexpression, or both annotations.
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FLOWERING LOCUS D (FLD)-similar gene, 7 histone deacetylase 
genes, 4 adenine-thymine (AT)-hook motif containing genes, a 
ubiquitin-protein ligase, and 12 unannotated genes (Fig. 6c and 
Supplementary Table 9). In A. thaliana, FLD and FVE are part of 
the flowering autonomous pathway that restricts FLOWERING 
LOCUS C (FLC) expression to promote transition to flowering 
(Ausín et al. 2004). Histone deacetylation by histone deacetylases 
in the FLC chromatin was shown to regulate flowering by down- 
regulating FLC expression (He et al. 2003), possibly through physic
al interaction between FLD and histone deacetylases (Yu et al. 
2011). The 4 AT-hook genes were most similar to AT-HOOK 
MOTIF NUCLEAR-LOCALIZED PROTEIN22 that was shown to regu
late flowering time by promoting acetylation and methylation in 
the FLOWERING LOCUS T chromatin (Yun et al. 2012). The 
ubiquitin-protein ligase was most similar to HIGH EXPRESSION 
OF OSMOTICALLY RESPONSIVE GENES1, shown to regulate flower
ing through physical interaction with CO to promote FLC expres
sion (Lazaro et al. 2012). Of the 34 clusters genes, only the 4 
AT-hook genes were annotated with the GO:0010228 term 
(Supplementary Table 9).

As a second example, we examined a list of trait-specific gene 
candidates from an association mapping study conducted in the 

maize NAM mapping population for diverse metabolomic traits 
(Wallace et al. 2014; Wang et al. 2022). Focusing on the trait-specific 
genes found in proximity to loci associated with 2 metabolomic 
traits, the first principal component (PC1) and PC2 traits of the me
tabolite data (Supplementary Table 7), we searched for relevant 
enriched GO terms in the B73-, core-, and pan-interactome clus
ters. We first looked at the PCCs of the PC1 and PC2 traits with 
each of the analyzed metabolites and found that PC1 had the high
est correlation with glutamate, chlorophyll A, and malate levels 
(PCCs of 0.74, 0.62, and 0.61, respectively), with glutamate being 
the precursor for chlorophyll (Tanaka and Tanaka 2006), while 
PC2 was most highly correlated with glucose, starch, and fructose 
levels (PCCs of 0.71, 0.7, and 0.7, respectively) (Fig. 7a). More than 8 
clusters in each of the B73-, core-, and pan-interactomes were 
found to contain PC1 and PC2 trait-specific gene candidates 
(Fig. 7b). Within the PC1 trait-specific clusters, we found 7 clusters 
to be enriched for a GO term associated chlorophyll catabolism 
(GO:0015996) and within the PC2 trait-specific clusters we found 
only one cluster to be associated with UDP-xylose transmem
brane transport (GO:0015790) (Fig. 7c and Supplementary 
Table 10). Cluster network graphs show that the trait-specific 
genes for both the PC1 and PC2 traits were annotated with the 

Fig. 5. Using functional enrichment of interactome clusters to search for relevant clusters. a) Comparison of the percent of B73-, core-, and 
pan-interactome clusters with one or more enriched GO terms in the 3 GO domains. b) Number of unique clusters enriched for flowering time-related GO 
terms that contain “flowering” and “photoperiodism” in their GO term descriptions (GO:0048574, GO:2000028, GO:0048573, GO:0048578, GO:0048577, 
GO:0048579, GO:0048587, and GO:0048586). c) The B73_184 cluster is enriched for the GO term GO:0048579 (negative regulation of long-day 
photoperiodism, flowering). Labeled nodes represent gene descriptions related to flowering time based on the gene description annotation, including 
CONSTANS OF MAIZE1 (CONZ1), NF-Y, BRG, and C2H2-like zinc finger transcription factor family genes.

Fig. 6. Identifying relevant clusters from omics-related flowering time candidate genes. a) A list of 20 flowering time candidate genes, obtained from Han 
et al. (2023), were used to find the number of associated clusters in the B73-, core-, and pan-interactome. b) Number of clusters containing relevant 
enriched GO terms split into three categories: (1) shoot development, consisting of GO:0010016 (shoot system morphogenesis), GO:2000032 (regulation of 
secondary shoot formation), and GO:0080006 (internode patterning), (2) flower development, consisting of GO:0048437 (floral organ development), 
GO:0048444 (floral organ morphogenesis), and GO:0048455 (stamen formation), and (3) flowering time, consisting of GO:0048573 (photoperiodism, 
flowering), GO:0048574 (long-day photoperiodism, flowering), GO:0048578 (positive regulation of long-day photoperiodism, flowering), and GO:0010228 
(vegetative to reproductive phase transition of meristem). c) Graph of the pan_503 cluster containing the flowering time candidate gene, 
Zm00001eb155150 (pan_gene_18303), 1 of 8 FVE genes. Nodes annotated with the GO:0010228 term are diamond shaped.
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relevant GO term and that while the trait-specific gene in the PC2 
had evidence for both PPI and coexpression with other cluster 
members, the PC1 trait-specific gene had only PPI evidence 
(Fig. 7d and e). A closer inspection of the trait-specific genes 
showed that, according to the top A. thaliana DIAMOND hit, the 
PC1 trait-specific gene (Zm00001eb027950) encodes RED 
CHLOROPHYLL CATABOLITE REDUCTASE (RCCR) involved in the 
chlorophyll breakdown pathway (Fig. 7d and Supplementary 
Table 11) (Sugishima et al. 2010). Six other cluster members are de
scribed as involved in chlorophyll degradation and catabolism 
(Supplementary Table 11). The PC2 trait-specific gene (pan_
gene_6500), with 3 other cluster members, were similar to the A. 
thaliana UDP-XYLOSE TRANSPORTER1 (UXT1), with UXT1 mutants 
showing altered monosaccharide composition, including altered 
UDP-glucose levels (Fig. 7e and Supplementary Table 11) (Zhao 
et al. 2018). Additionally, pan_gene_6500 was found to be coex
pressed with four other cluster members, in addition to the 2 pre
dicted pan-PPIs (Fig. 7e). Two other pan_217 cluster members 
were described as aluminum activated malate transporters 
(Supplementary Table 11), with evidence showing malate content 
to be negatively correlated with starch and soluble sugars content 
(Centeno et al. 2011).

Discussion
Protein interaction networks are a reliable source for functional 
association prediction and are often used for understanding com
plex biological processes (Schwikowski et al. 2000; Wang et al. 
2022). Although pan-genome analyses are becoming increasingly 
prevalent and useful, most plant species lack experimental PPI 

data beyond the reference species (McWhite et al. 2020). In this 
study, we generated predicted PPI networks for the 26 maize 
NAM founder inbreds which were used to generate the clustered 
genome-, core- and pan-interactomes. We show that in contrast 
to the small number of coexpressed pan-genes shared across 
the majority of maize NAM founder inbreds (Cagirici et al. 2022), 
a large number of PPIs were shared among the predicted genome 
PPI networks (Supplementary Fig. 1). Nonetheless, many PPIs were 
identified in only a few predicted genome PPI networks, suggesting 
a benefit for retaining the individual genome-interactomes for 
comparative pan-interactome studies (Supplementary Fig. 1). 
Due to the complexity and high interconnectedness of the pre
dicted genome-, core-, and pan-interactomes (Supplementary 
Fig. 2), we show that PPI clustering improved interpretability and 
facilitated identification of putative groups of functionally asso
ciated proteins (Fig. 2a–c). We find that while STRING-db captures 
a substantial number of PPIs between experimentally derived 
complex members (Supplementary Fig. 3a), using ClusterONE on 
STRING-db predicted PPIs is more suitable for identifying densely 
connected PPI clusters than recovery of protein complexes 
(Supplementary Fig. 3b). Comparison of the enriched BP GO terms 
in the core- and pan-interactome clusters showed that clusters 
larger than 50 members are similarly enriched for general GO 
terms (Supplementary Table 4). On the other hand, smaller 
core-interactome clusters were more highly enriched for general 
BP GO terms and smaller pan-interactome clusters were more 
highly enriched for specialized BP GO terms (Fig. 3c and d), similar 
to the observation made in an A. thaliana pan-transcriptomic ana
lysis (He and Maslov 2016). Furthermore, we observed that keep
ing the individual genome-interactome clusters, in addition to 

Fig. 7. Identifying relevant clusters for association mapping-related metabolomic candidate genes. a) Correlation between the metabolite PC1 and PC2 
traits with the individual metabolites, measured across the NAM mapping population in Wallace et al. (2014). b) Number of identified PC1 and PC2 
trait-specific clusters in the B73, core-, and pan-interactomes. c) Number of clusters containing the GO term GO:0015996 (chlorophyll catabolic process) 
and GO:0015790 (UDP-xylose transmembrane transport) associated with the PC1 and PC2 trait-specific clusters, respectively. d and e) Cluster graphs of 
the PC1 trait B73_216 and PC2 trait pan_217 clusters with the labeled A. thaliana-based gene descriptions of the candidate genes RCCR and UXT1, 
respectively. Nodes annotated with specified GO terms are diamond shaped.
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the core- and pan-interactomes, substantially increases the num
ber of unique enriched GO terms (Supplementary Fig. 4) and in
creases the diversity of functional annotations for comparative 
pan-interactome analyses (Supplementary Fig. 5).

Gene coexpression analyses have been extensively used to pro
vide indirect evidence for functional association across species 
and conditions, facilitating the elucidation of different functional 
associations and biological pathways (Wisecaver et al. 2017). For 
this reason, we sought to integrate gene coexpression data from 
the NAM founder inbreds with the predicted PPI clusters to pro
vide additional supporting information for functional association 
(Fig. 4a). Pan-genomes offer an opportunity to extend existing 
gene candidate prioritization approaches by integrating informa
tion from multiple genomes in relation to the studied trait. For ex
ample, pan-genome graph-based genetic mapping approaches 
have been able to identify novel trait-associated genetic markers 
that were missing from the traditional reference genome-based 
genetic mapping approaches but that were present in the pan- 
genome (Della Coletta et al. 2021). Furthermore, pan-genome co
expression analyses can be used to construct trait-specific coex
pression pan-networks to identify groups of coregulated genes 
(Cagirici et al. 2022). Thus, integrating gene coexpression data 
with the PPI clusters adds a considerable number of new connec
tions between interactome clusters members for almost half 
of the B73-interactome clusters and over 90% of the core- and 
pan-interactome clusters (Fig. 4b–d). In one example, the 
predicted PPI between CONZ1 and a C2H2 transcription factor 
was supplemented with a coexpression interaction (Fig. 5c). 
Considering that coexpression between interacting proteins can 
coevolve to maintain stoichiometry among interacting partners, 
such information could indicate a biologically significant func
tional associations (Fraser et al. 2004; Piya et al. 2014). In two other 
examples, gene coexpression data provided additional connec
tions between candidate genes and cluster members, as shown 
for the flowering time FVE candidate gene in cluster pan_503 
and for the PC2 metabolomic trait UTX1 candidate gene in cluster 
pan_217 (Figs. 6c and 7e). Despite not being connected by pre
dicted PPIs, coexpression edges between candidate genes and 
other interactome cluster members are a useful indicator for 
functional association underlying a given trait of interest 
(Ficklin et al. 2010; De Bodt et al. 2012).

Protein interaction networks have been extensively used for 
the identification of functionally associated proteins and function 
prediction (Schwikowski et al. 2000; Szklarczyk et al. 2021; Wang 
et al. 2022), offering a better understanding of biological and mo
lecular functions. In contrast to experimental PPI networks, the 
use of predicted PPI networks for network analysis and protein 
function prediction has been limited (Lin et al. 2011; Musungu 
et al. 2015). Nonetheless, until sufficient experimental PPI data 
are produced for individual genomes and pan-genomes, predicted 
PPI networks offer a promising opportunity for comparative inter
actome studies (Wang et al. 2022). The enrichment analysis of 
clustered interactomes allows researchers to search for GO terms 
of interest and to identify relevant enriched clusters. For example, 
when searching for clusters enriched for GO terms associated 
with flowering time regulation, we found cluster B73_184 to con
tain cluster members with both known and unknown roles 
in flowering time regulation, based on similarity to A. thaliana 
genes (Fig. 5c and Supplementary Table 6). Of the 10 B73_184 clus
ter members, only CONZ1 and one of four NF-Y genes were anno
tated with the enriched flowering time GO:0048579 term 
(Supplementary Table 6), suggesting that the information from 
the annotated clusters can provide support for putative protein 

function predictions (Letovsky and Kasif 2003). Thus, researchers 
studying specific biological processes can search for relevant clus
ters and use the provided cluster annotations to predict function
al associations and putative protein functions (Ficklin et al. 2010). 
Researchers can also search the clustered interactomes for clus
ters containing candidate genes of interest, such as obtained 
from omics-related and association mapping studies. In this 
case, clusters with trait-relevant enriched GO terms can be used 
to prioritize lists of candidate genes (Ficklin et al. 2010). In one ex
ample, 7 out of 20 verified flowering time candidate genes were 
present in clusters with relevant enriched GO terms (Fig. 6b and 
Supplementary Table 8), including the putative flowering time 
regulator FVE candidate gene in the pan_503 cluster (Fig. 6c) 
(Han et al. 2023). In a second example, we identified clusters en
riched for chlorophyll catabolism and carbohydrate transport 
GO terms, relevant to the candidate genes obtained from an asso
ciation mapping study using the PC1 and PC2 metabolomic traits, 
respectively (Fig. 7d and e) (Wallace et al. 2014). In both cases, the 
cluster annotations provide evidence for possible causal links be
tween the candidate genes and the associated traits, in addition to 
providing useful information about the cluster members and their 
functional associations (Supplementary Tables 9 and 11). We an
ticipate that the results generated in this study will enable re
searchers in different fields, including biochemists, molecular 
biologists, and geneticists, to harness the annotated clusters to 
better understand interactions between genes, and for obtaining 
useful information and hypothesis generation.

Conclusion
A major advantage of our proposed pan-interactome analysis ap
proach is the reliance on an established PPI prediction method, 
namely the STRING database, in generating the input data re
quired for the analysis. For practical reasons, this means that 
our analysis workflow can be easily adapted to any set of gen
omes, including for interspecies and intraspecies analyses. To 
gain useful insights from the predicted PPI networks, we applied 
a PPI clustering algorithm, namely ClusterONE, to extract putative 
functionally meaningful PPI clusters, effectively disentangling 
the complex raw “hairball”-like PPI networks. By including the 
genome-interactomes, together with core- and pan-interactomes, 
we show that we capture substantially more functionally en
riched clusters with unique GO term annotations. Additionally, 
our method allows the simple integration of supporting informa
tion such as gene coexpression and gene description annotations 
with the predicted interactomes, significantly increasing the 
breadth of genomic annotations that can be included in the 
pan-interactome analysis. Furthermore, we show that using 
functional enrichment to annotate PPI clusters can be used for 
putative protein function prediction and prioritization of 
trait-specific candidate gene sets. We anticipate that improved 
PPI prediction methods and gene function annotation (Odell 
et al. 2017) will further improve the annotation of the predicted 
PPI-interactome clusters.

Data availability
The files used in the preparation of the manuscript and the gener
ated results have been submitted to figshare: https://doi.org/10. 
25387/g3.25301212. The source code for the Python implementa
tion of the analysis workflow is available at github.com/ 
eporetsky/PanPPI.

Supplemental material is available at G3 online.
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