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Abstract

Beyond Worst-Case Generalization in Modern Machine Learning

by

Ryan Christopher Theisen

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Michael W. Mahoney, Chair

This thesis is concerned with the topic of generalization in large, over-parameterized machine
learning systems—that is, how models with many more parameters than the number of
examples they are trained on can perform well on new, unseen data. Such systems have
become ubiquitous in many modern technologies, achieving unprecedented success across a
wide range of domains. Yet, a comprehensive understanding of exactly why modern machine
learning models work so well has alluded fundamental understanding. Classical approaches
to this question have focused on characterizing how models will perform in the worst-case.
However, recent findings have strongly suggested that such an approach is unlikely to yield
the desired insight. This thesis is concerned with furthering our understanding of this
phenomenon, with an eye towards moving beyond the worst-case. The contents of this thesis
are divided into six chapters.

In Chapter 1, we introduce the problem of generalization in machine learning, and briefly
overview some of the approaches—both recent and classical—that have been taken to
understand it.

Chapter 2 introduces a novel analyses of deep neural networks with positive homogeneous
activation functions. We develop a method to provably sparsify and quantize the parameters
of a model by sampling paths through the network. This directly leads to a covering of this
class of neural networks, whose size grows with a measure of complexity we call the "path
norm". Using standard techniques, we can derive new worst-case generalization bounds that
improve on previous results appearing in the literature.

In Chapter 3, we take a critical look at the worst-case approach to understanding generalization.
To do this, we develop a methodology to compute the full distribution of test errors for
interpolating linear classifiers on real-world datasets, and compare this distribution to the
performance of the worst-case classifier on the same tasks. We consistently find that, while
truly poor, worst-case classifiers indeed exist for these tasks, they are exceedingly rare—so
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much so that we expect to essentially never encounter them in practice. Moreover, we observe
that as models become larger, test errors undergo a concentration around a critical threshold,
with almost all classifiers achieving nearly the same error rate. These results suggest that the
worst-case approach to generalization is unlikely to describe practical performance of large,
over-parameterized models, and that new approaches are needed.

In light of our findings in Chapter 3, in Chapter 4 we ask a complementary question: if
modern machine learning systems perform nowhere near the worst-case, how close might their
performance be to the best-case? For an arbitrary classification task, we can quantify the
best possible error attainable by any model with the Bayes error rate, though it is generally
intractable to estimate for realistic datasets. To address this intractibility, we first prove that
the Bayes error rate is invariant under invertible transformation of the input features. We
then use normalizing flows to estimate an invertible map between the target data distribution
and a simple base distribution, for which the Bayes error can be easily computed. We then
evaluate a variety of state-of-the-art architectures against this estimated Bayes error rate,
and find that in some (but not all) cases, these models achieve very close to optimal error
rates.

In Chapter 5, we investigate average-case generalization via ensembling—a popular method
wherein the predictions of multiple models are aggregated into a single, often more powerful
predictor. In classical settings, the effectiveness of ensembling is well-understood; however,
for ensembles comprised of deep neural networks, the benefits of this method are surprisingly
inconsistent. To understand why, we first prove a new set of results relating the ensemble
improvement rate (a measure of how much ensembling decreases error relative to the average
error rate of a single model) to the ratio of model disagreement to the average error rate. This
results in new oracle bounds on the error rate of ensemble classifiers, significantly improving
on prior results in the literature. We then investigate ensembling experimentally and find,
most notably, a distinct and consistent transition in the rate of ensemble improvement (and
the disagreement-error ratio) occuring at the interpolation threshold—the point at which
individual classifiers achieve exactly zero training error. Our findings suggest that ensembling
is significantly less effective in the modern, over-parameterized regime than it is in more
classical settings.

Finally, in Chapter 6 we conclude with some reflections on the state of the field, and outlook
for how it might advance in the coming years.
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Chapter 1

Introduction

1.1 The generalization problem in modern machine
learning

A hallmark of modern (supervised) machine learning is the training of large, over-parameterized
models, that is, models with many more parameters than the number of examples on
which they are fit. These methods have yielded tremendous successes across a range of
applications; for example, computer vision [KSH12, HZRS16], natural language processing
[VSP+17, DCLT19], biology [BB21, JEP+21], and many others.

In Table 1.1 we give a sampling of a variety of benchmark tasks, the corresponding state-of-
the-art models and their (approximate) number of parameters, and the number of labeled
samples available in the training dataset. Across tasks and application areas, it is consistently
observed that large, over-parameterized models perform extremely well. This phenomenon
seems to defy classical reasoning: given sufficiently many parameters, such models should be
capable of easily over-fitting the training data, and performing poorly on new, unseen data.

Figure 1.1: Training and testing error curves for a ResNet18 model trained on the CIFAR-10 dataset
using stochastic gradient descent with no explicit regularization employed.
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Dataset Task Model # Parameters # Examples
ImageNet Image Classification BASIC-L [CLH+23] 2.44B 1.3M
WMT2014 English-German Machine Translation T5-11B [RSR+20] 11B 4.5M
SST-2 Sentiment Analysis T5-11B [RSR+20] 11B 12K
QM9 Drug Discovery MXMNet [ZLX20] 3.8M 110K

Table 1.1: Current state-of-the-art (or near-state-of-the-art) models across a sampling of domains,
their number of parameters, and the number of labeled training examples available for each task.
Data retrieved from [Pap].

A natural refrain would be that this phenomenon is due to explicit regularization enforced
during model fitting. However, this notion is quickly dispelled with a simple experiment.
We run the following: we train a popular residual neural network architecture, ResNet18
[HZRS16], on a standard 10-class image classification benchmark task called CIFAR-10,
[KH+09]. The model itself has approximately 17 million total parameters, and the training
dataset contains 50,000 labeled examples. We train the model using standard batched
stochastic gradient descent, with no explicit regularization employed. In Figure 1.1, we plot
the learning curves (training and testing errors during training) for this model. We observe
that even when the training error rate reaches exactly zero, the testing error remains stable,
and even continues to decrease. Why do we not observe over-fitting, even with a highly
over-parameterized model, and no explicit regularization?

In what follows, we provide a brief overview of some of the approaches to understanding
the problem of generalization in large-scale machine learning, both mathematically and
scientifically. Though many of the concepts we discuss here also apply to models besides
neural networks, these will serve as our primary motivation.

1.2 The classical approach: worst-case analysis of
learning

We start with a review of the classical approach to understanding generalization – the
worst-case or uniform approach.

To formalize this approach we require the following: a hypothesis space of possible models
F (e.g. a set of parametric neural networks of a prescribed architecture), a loss function
ℓ(f,x, y) operating on a function f ∈ F and an input-output pair x, y, a training dataset
S = {(x1, y1), . . . , (xn, yn)} of size n, and a testing distribution D over pairs (x, y). Given
these, the training error is defined as

L̂S(f) =
1

n

n

∑
i=1
ℓ(f,xi, yi)

and the testing error is
LD(f) = Ex,y∼D[ℓ(f,x, y)].
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The generalization gap is simply the difference between performance on the training and
testing sets:

∆(f) = LD(f) − L̂S(f).

We remark that throughout this thesis, we will describe results related to generalization as
any bound or other characterization of either the generalization gap or the testing error itself.

The uniform (or worst-case) generalization gap is typically defined as largest possible general-
ization gap among models f ∈ F :

∆unif = sup
f∈F

∆(f).

Over the years, a few powerful and now standard techniques have emerged to provide bounds
on the uniform error ∆unif. Typically, bounds are derived under the "probably approximately
correct" (PAC) framework. The statement of a PAC generalization bound will most commonly
take the following form: with high probability over random draws of the training data S,

∆unif ≤ Õ(
√
M(F)/n),

where M(F) is some complexity term, and the notation Õ(⋅) hides various constant terms
and log factors. Here the complexity term M(F) could one of a number of measures, for
example the The Vapnik–Chervonenkis (VC) dimension, the Rademacher complexity, or a
log covering number (also called the metric entropy). The general recipe for obtaining a
worst-case generalization bound is to 1) define a suitable function class F , and 2) estimate
(upper bound) M(F), for some suitable complexity measure M . An alternative (though
closely related) set of techniques are used to prove PAC-Bayes bounds, which instead relies
on a prior Q over models, though the functional form of the bounds remains largely the same.
A great number of bounds proved using these techniques are available in the literature. We
provide a brief overview of some of these in what follows, though we note that this set of
references is in no way exhaustive.

Intuition from simple models suggests that the VC dimension of a parametric model class
should be closely related to the number of parameters of a given model in that class; this is
formalized in [BHLM19], which shows that the VC dimension of classes of neural networks with
piece-wise linear activation functions is essentially proportional to the number of parameters
in the model. Thus the uniform bound based on the VC dimension scales (roughly) as

√
d/n,

where d is the number of parameters and n is again the number of training examples. In light
of the results in Table 1.1, most approaches avoid the use of the VC dimension to describe
modern neural networks.

One approach that has been quite popular is to obtain norm-based generalization bounds,
that is, bounds in terms of the norms of the parameter matrices in a neural network. The
motivation for norm-based bounds is dates back to classical analyses of linear models, wherein
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the norm of the parameters is often used as explicit regularization. [BFT17] use covering
numbers to obtain a generalization bound in terms of the product of the norms of the weight
matrices, M(F) ∝∏L

l=1 ∥Wl∥, of an L-layer neural network. Similar bounds were obtained
via a PAC-Bayes approach in [NBS18]. The approach of [GRS18] used a "peeling" technique
to bound the Rademacher complexity, and ultimately attain similar-looking bounds. Other
examples in the literature include [NTS15, NSS15], which obtain bounds in terms of a "path
norm" of a neural network. In Chapter 2, we show how a new sparsification technique can be
used to prove bounds that strictly improve on these.

Other examples of bounds include approaches based on compression [AGNZ18, LFK+22],
control of the Lipschitz constants or Jacobians of models [WM19], "sharpness" and/or
sensitivity [NBMS17], and many others. For a more exhaustive taxonomy of results, many
modern reviews are available, for example [VPL20].

There’s one very significant problem with the worst-case/uniform approach: it largely doesn’t
work. While the bounds themselves are of course mathematically correct, they simply do
not describe practical performance of large, modern models. One basic issue with uniform
bounds is that they are typically vacuous1 when computed numerically (meaning that if the
loss ℓ is, say, upper bounded by B, then the bounds are > B). However, one could argue
that vacuousness is not fundamental to the uniform approach, and that these issues could be
alleviated if only one were able to obtain better bounds, or somehow define better function
classes F over which to compute a uniform bound. However, this argument has also been
challenged in a number of works. Indeed, it is provably the case that uniform generalization
bounds will fail in many reasonable cases [ZBH+17, NK19, GWWM23]. Notably, [NK19]
shows that the general rate 1/

√
n appearing in many bounds is numerically wrong for many

practical examples, and, worse still, that many of the best bounds from the literature
can actually grow with the number of training examples. As we will argue in Chapter 3,
these problems are in many ways inherent to over-parameterization. By computing the full
distribution of test errors for interpolating classifiers, we show that worst-case models are
extremely rare, and do not reflect average case performance.

1.3 Generalization beyond the worst-case
In light of the known issues with the worst-case approach, many studies have endeavored
to find alternative ways to describe generalization for over-parameterized models. In what
follows, we provide a rough taxonomy of these approaches, organized into three categories.
We remark that this topic has been the subject of a tremendous amount of research over
the last decade, and the related literature is vast; consequently, the following discussion is
inevitably incomplete.

1Though this is not necessarily always the case, as shown in [DR17, ZVA+19].
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Figure 1.2: Illustration of the double descent phenomenon. Figure taken from [BHMM19b].

The exact approach

We refer to the exact approach as any means of studying generalization via precise analysis,
usually of simple (or even toy) models, with the hope that conclusions drawn for these settings
may lend insight into the performance of more complex models encountered in practice.

One of the most important results in recent years has been the identification of the so-
called "double descent" phenomenon, wherein, as a function of model capacity, the testing
error exhibits first a standard "U-shape", governed by the classical bias-variance trade-off,
followed by a surprising decrease in the test error beyond the interpolation threshold
(i.e. the capacity at which the model can achieve exactly zero training error). The term
double descent was first coined, and popularized in the machine learning community, in a
sequence of works [BHMM19b, BHX19] exhibiting the phenomenon across a wide variety of
settings (though the underlying ideas can be traced back significantly farther, e.g. [VCR89,
Dui00, SGd+19]). In a long line of subsequent works, the double descent phenomenon
has been proven to exist for a number of different models, ranging from linear and ridge
regression [BLLT20, DLM19, HMRT19, TB23], random feature models [LCM20, LSC22],
logistic regression [DKT20, DKT19, CL20], nearest neighbors [XSC19], and many others. In
Chapter 5, we observe double descent for ensembles of deep networks. The general message
of these works is that over-parameterization need not always lead to over-fitting, i.e. a large
generalization gap. In particular, it is possible (perhaps even common) to perfectly fit the
training data, add no or little explicit regularization, and still achieve low (even minimal)
testing error. Importantly, these results tend to rely on very precise analyses; worst-case
upper bounds generally do not suffice to capture behavior like double descent.

Another important family of results are related to the derivation of the so-called neural
tangent kernel (NTK) [JGH18]. The NTK is a deterministic kernel arising in the limit of
infinite width (but fixed, finite depth and number of training samples) for neural networks.
Specifically, it has been proven under very general conditions that as the number of the hidden
units in a neural network grows to infinity, when trained using e.g. stochastic gradient descent
with sufficiently small step size, the trained network is a linear model x↦ ⟨w, ϕ0(x)⟩ for a
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feature map ϕ0(x) associated with the kernel function k(x,x′) = Eθ0[⟨∇θfθ0(x),∇θfθ0(x
′)⟩],

where fθ(x) is a parameterized neural network, and θ0 are parameters drawn at random at
initialization (e.g. from a properly scaled Gaussian) [ADH+19, AZLS19]. The limit obtained
here has a close analogue in the Bayesian setting, wherein the limit results in a neural network
Gaussian process [LSdP+18]. The analysis in this limit reduces to that of a significantly
simpler linear model, facilitating more precise results, which one might hope would result in
a correspondingly precise theory for over-parameterized neural networks of large but finite
width. However, empirical investigations have suggested that the linear models obtained in
the NTK limit differ non-trivially from practically large models used in practice [FDP+20].
Recent work has shown exciting progress towards avoiding these issues by considering the
simultaneous limit of infinite width and depth [LNR22].

Finally, we mention approaches utilizing techniques from statistical physics. These approaches
have significantly influenced many of the ideas present in this thesis (in particular, the contents
of Chapter 3). Many physical systems (e.g. large systems of interacting particles), share
conceptual similarities with large machine learning systems, wherein an analogy is drawn
between randomly distributed particles and the parameters of a statistical model fit to
randomly sampled data; this connection has been formalized since at least the early 90s
[SST92, WRB93, HKSST96, EVdB01]. Rather than studying the worst-case estimator f ∈ F ,
the statistical mechanics approach seeks to understand the behavior of the typical function
f . This typicality can be characterized in a number of ways. A natural measure, from the
statistical physics perspective, would be the free energy (or entropy), from which large-scale
behavior can be deduced. Analyses following the statistical mechanics approach usually
obtain in a "thermodynamic" limit, wherein two or more parameters are sent to infinity
together. For example, most commonly, this means letting some measure of the number
of parameters d and the number of examples n go to infinity together such that the ratio
n/d→ α > 0. Note that this limit is in contrast to the limit used in the analysis of the NTK,
which considers n fixed, and allows the width d to grow to infinity. It also contrasts with the
usual limit considered relevant for uniform convergence, wherein d is presumed fixed, and we
are interested in the behavior when n is large. There are many examples of the statistical
mechanics style of analysis; some quite old (e.g. [HKSST96, OH91, EVdB01]), and some
much more modern. For example, this approach has recently been used to demonstrate the
existence of phase transitions in learning behavior in logistic regression [CS18] and generalized
linear models [BKM+19].

Average-case bounds

While the exact approach has provided many important insight into how large, over-
parameterized models generalize, there is a still a desire to have theory that applies to
real-world systems. Towards this end, a number of efforts have been made to obtain bounds
on the average-case generalization error of realistic systems. The first challenge in this
approach is defining a distribution under which the "average" error can be estimated. There
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are multiple ways this can be done, though typically approaches have considered two distinct
sources of randomness: randomness in the drawing of the training data, and randomness
in the learning algorithm used to fit a model. The latter randomness is much harder to
characterize in general, as it requires a study of the dynamics during training using, most
commonly, variants of stochastic gradient descent.

One approach that has proved successful in providing very generic bounds on the gener-
alization error is the information theoretic approach. Recently, a large number of works
have obtained average-case generalization bounds under very general conditions, for a va-
riety of stochastic learning algorithms. Perhaps the simplest of these, proved in [XR17],
holds for a σ-sub-Gaussian loss function ℓ, in which case it can be proven that the average
generalization gap Eθ,S[∆(fθ)] is upper bounded by

√
2σ2I(S; θ)/n, where I(S; θ) is the

mutual information between the training data S and trained parameters θ. Subsequently,
a number of results have improved upon this initial bound, for example by refining the
analysis via the conditional mutual information, or the chaining of mutual information
[HNK+20, SZ20, HDMR21, HRSG21, ZTL22]. One shortcoming of this approach is that
the information theoretic quantities typically appearing in the bounds, such as I(S; θ), are
generally intractable to compute, and hence it’s unclear the extent to which they describe
behavior encountered in practice.

The scientific approach

In a parallel line of work to much of the theory that has been developed around generalization,
significant progress has been made via a "scientific" approach to understanding generalization,
i.e. through careful experimentation testing specific hypotheses. Like in many sciences, many
works in this category conduct empirical studies testing hypotheses arising out of rigorous
analyses in simpler settings. For example, [NKB+20] investigates the presence of the double
descent phenomenon in large, practical models used in practice, finding that, surprisingly,
many of the findings derived analytically for simpler models hold much more generally in
practice. Specifically, they report the existence of non-trivial phase transitions occurring at
the interpolation threshold. This finding has since been corroborated in more recent studies,
e.g. [YHT+21]. In Chapter 5, we find similar behavior arises when measuring the rate of
ensemble improvement for ensembles of interpolating models. Another interesting example of
this approach is in [FDP+20], which rigorously investigates the validity of the neural tangent
kernel analysis in practical settings. They find that in practice, the linearization obtained in
the infinite-width limit differs non-trivially from what is found in practice, even for very wide
models, suggesting that this limit is not appropriate for studying realistic models.

A separate line of work has recently endeavored on large-scale empirical studies in search of
generalization measures (i.e. computable metrics derived from theory or practice), that exhibit
a robust ability to predict generalization performance in realistic settings [SQDC21, JNM+20]
(this goal inspired a popular competition at NeurIPS 2020 [JFY+20]). Other work has gone
even further, attempting to design studies capable of deducing causal relationships between
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various metrics and generalization [DDN+20]. Towards the goal of finding robust and effective
generalization metrics, an interesting line of work has observed a strong relationship between
the spectrum of the weight matrices in trained neural networks and their generalization
performance [MM17, MM18, MM20, MM22, YTH+23]. In particular, this work suggests that
models with good generalization performance exhibit heavy tails in the spectra of their weight
matrices. Interestingly, [YTH+23] suggests that studying the generalization gap may be
misleading; in practice, most users are interesting in predicting the testing error itself, rather
than the gap between testing and training errors. They show that many metrics exhibiting
strong (rank) correlation with the generalization gap have surprisingly poor correlation with
the test error itself.

As previously discussed, it has been observed empirically that the "standard" 1/
√
n rate

arising out of uniform convergence analyses is often incorrect in practical settings. Following
the scientific approach, exciting recent work has experimentally derived effective "scaling laws"
that empirically govern model performance as model size and number of training examples
grows [KMH+20, HBM+22]. In general, the scientific approach has seen great success in
providing a practically useful understanding of how and when large machine learning systems
can be expected to work. We suspect that while purely theoretical efforts to understand
generalization will surely continue to progress, the field will rely more heavily on carefully
designed, large-scale experimental studies to help guide it forward—much like any other
science.

1.4 This thesis
This thesis will touch on aspects of many different approaches to understanding generalization,
using both theoretical and empirical studies to derive new insights.

Organization and credits

The contents of this thesis are adapted from four separate works, of which I was the lead
author. It is organized as follows.

Chapter 2 is based on develops a method for sparsifying and quantizing the parameters of a
neural network with positive homogeneous activation function by sampling paths through the
network. By approximating a model in such a way, we are able to obtain a covering of the
space of such neural networks, which we use to derive novel worst-case generalization bounds
in terms of a family of path norms, improving on similar bounds appearing previously in the
literature. This chapter showcases a template of how uniform generalization bounds can be
derived.

In Chapter 3, we take a critical look at the worst-case approach to understanding generalization.
To do this, we develop a methodology to compute the full distribution of test errors for
interpolating linear classifiers on real-world datasets, and compare this distribution to the
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performance of the worst-case classifier on the same tasks. We consistently find that, while
truly poor, worst-case classifiers indeed exist for these tasks, they are exceedingly rare—so
much so that we expect to essentially never encounter them in practice. Moreover, we observe
that as models become larger, test errors undergo a concentration around a critical threshold,
with almost all classifiers achieving nearly the same error rate. These results suggest that the
worst-case approach is unlikely to describe practical performance of large, over-parameterized
models, and supports the case for new approaches to understanding generalization.

Chapter 4 addresses a complementary question: if modern models don’t perform nearly as
bad as the worst-case, how close might they be to achieving the best possible error rate? For
classification tasks, the lowest attainable error rate can be quantified with the Bayes error
rate—a quantity which is generally intractable to estimate for realistic datasets. To address
this, we first prove that the Bayes error rate is invariant under invertible transformation of
the input features. We then use normalizing flow techniques—a class of generative models
which explicitly learn an invertible mapping—to estimate a map between the target data
distribution a simple base distribution (e.g. a multivariate Gaussian), for which the Bayes
error can be easily computed. We then evaluate a variety of state-of-the-art architectures
against this estimated Bayes error rate, and find that in some (but not all) cases, these
models achieve very close to optimal error rates.

In Chapter 5, we study the average-case behavior of classification models f as it relates to
the practice of ensembling—a popular method wherein the predictions of multiple models are
aggregated into a single, often more powerful predictor. In classical settings, the effectiveness
of ensembling is well-understood; however, for ensembles comprised of deep neural networks,
the benefits of this method are surprisingly inconsistent. To understand why, we first prove a
new set of results relating the ensemble improvement rate (a measure of how much ensembling
decreases error relative to the average error rate of a single model) to the ratio of model
disagreement to the average error rate. This results in new oracle bounds on the error
rate of ensemble classifiers, significantly improving on prior results in the literature. We
then investigate ensembling experimentally and find, most notably, a distinct and consistent
transition in the rate of ensemble improvement (and the disagreement-error ratio) occurring
at the interpolation threshold. Our findings suggest that ensembling is significantly less
effective in the modern, over-parameterized regime than it is in more classical settings.

Other works not included

In addition to the works included fully here, I was also fortunate during my time as a graduate
student to be a co-author on other works closely related to the content presented herein.
There are two of particular relevance: the first is [YHT+21], appearing in NeurIPS 2021, in
which we conduct an extensive study on modern neural network architectures and training
methods, and connect the generalization of these models to a large number of metrics related
to the (training) loss landscape. The second is [YTH+23], to appear in KDD 2023, in which
we evaluate the various theoretically-proposed generalization metrics across modern natural
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language processing (NLP) models and tasks. NLP provides an interesting deviation from
other popular benchmark areas for machine learning, as the discrete nature of the input
domain often precludes the possibility of interpolation. We show that, correspondingly, many
standard quantitative measures of generalization fail to "generalize" to this domain, and
that superior metrics measuring the spectral properties of the weight matrices perform much
better.
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Chapter 2

Worst-Case Generalization for ReLU
Networks via Path Sampling

The contents of this chapter are partially based on the technical report "Global
Capacity Measures for Deep ReLU Networks via Path Sampling", co-authored
with Jason Klusowski, Huan Wang, Nitish Sirish Keskar, Caiming Xiong
and Richard Socher [TKW+19].

2.1 Introduction
For classes of linear models, including deep linear networks, it is well known that the
norm of the weights ∥w∥ is an important capacity measure that governs much of their
statistical behavior. As a consequence, many algorithms have been developed for these
problems that explicitly regularize on such norms. For more complex function classes, such
as deep neural networks, various generalizations of this capacity measure have been proposed.
Such analyses have commonly identified the product of norms ∏ ∥Wℓ∥ as a complexity
measure, e.g. [BFT17, NBS18, GRS18]. In this chapter, we show that for a large class of
deep networks possessing a positive homogeneity property, including ReLU networks and
convolution networks with max or average pooling, we can obtain bounds that are instead
in terms of a norm of a product ∥∏ ∣Wℓ∣∥, which we show often lower bounds the former
product of norms. These quantities arise out of a path-based analysis of positive homogeneous
networks, and are in fact closely related to the path norms appearing in previous work, such
as [NSS15, NTS15, KKB19].

Our method for proving such bounds generalizes a sampling technique recently proposed
in [BK18], wherein a positive homogeneous network is parameterized explicitly in terms
of a path distribution, which is subsequently sampled from in order to produce a sparse
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approximant of the original network. This technique allows us to prove that any given positive
homogeneous network f admits a sparse approximant f̃ which belongs to a small representer
set of functions, whose cardinality we show to be governed by various norms. These results
immediately imply covering number bounds, which can be used to control various statistical
performance measures, including generalization error.

Our sampling approach is an example of the probabilistic method, which, interestingly, appears
frequently in previous work on generalization. For example, [BFT17] prove covering number
bounds via the use of Maurey sparsification, wherein each layer of a network is sparsified
individually using a probabilistic sampling argument. [AGNZ18] introduce a compression-
based approach to generalization, and prove a bound by compressing each layer of a deep
network via a random projection. [BLG+19] recently introduced an edge-wise sampling
procedure for compressing networks, which likewise can be used to obtain generalization
bounds via the compression approach of [AGNZ18]. Notably, however, in almost all existing
works, compression and/or sparsification of deep networks is conducted layer-wise. In the
context of norm-based bounds, operating in such a manner generally leads to bounds in terms
of the product of norms of the weights, as is the case in [BFT17, NBS18].

In contrast, our path-based approach allows us to sample from a distribution over all
parameters at once, without the need to work in a layer-wise fashion. More specifically, we
define a distribution over paths through the network, obtained by normalizing with various
quantities of the form ∥∏L

1 ∣Wℓ∣∥. These quantities subsequently appear in our error bounds.
In contrast to the product of weight norms, the norm of the product captures a notion
of global variation in networks. Indeed, the product of weight norms measures the size of
weights within layers, but fails to capture the strength of connections and interactions across
successive layers. On the other hand, the norm of the product of weights incorporates both
aspects.

We remark that a path-based approach to studying neural networks has appeared in several
other works, for example in the design of optimization algorithms [NSS15] for neural networks,
as well the study of their loss surfaces [CHM+15a]. The path norms studied in [NTS15]
are closely related to the quantities arising in our analysis, and in fact, as we discuss in
Section 2.4, our results can be seen as improvements of the bounds given therein, by avoiding
exponential dependence on network depth. Other path-based capacity measures have been
considered as well, notably by [KKB19], though the resulting bounds depend critically on
the (unknown) data distribution. Recent work has also proposed the Fisher-Rao norm as a
global, norm-based capacity metric for deep networks, though this has only been shown to
control generalization error for the case of linear networks [LPRS19].

Organization and contributions

The chapter is organized as follows.

• In Section 2.2, we outline our general setting and notation, and review a sampling
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technique proposed by [BK18], which they use to prove approximation and covering
bounds for single output, fully-connected networks in terms of ℓ1-type norms.

• In Section 2.3, we extend the sampling scheme and analysis to the multi-class and
convolutional setting, and show that it can be generalized to obtain bounds in terms of
a much broader class of norms. We further show with a lower bound that our analysis
of the sampling scheme is nearly optimal.

• In Section 2.4, we exploit certain permutation invariances in deep networks to bound the
number of networks that are realized by the sampling method. This results in covering
number and metric entropy bounds. We provide as a consequence of these results a
new margin-based generalization bound for multi-class classification. We compare this
bound to existing results in the literature, and find that our bound is comparable to,
and often improves upon, existing norm-based bounds.

• In Section 2.5, we investigate empirically the sampling strategy studied theoretically
above, and find that compressibility of networks correlates well with generalization
performance. An analysis of certain normalized margin distributions suggests that the
quantities appearing in our bounds do indeed capture this behavior.

• Finally, in Section 2.6, we suggest directions for future research; namely, we outline one
potential approach to extending our technique and results to the analysis of residual
networks.

2.2 Setup and Background
In this work, we consider a standard setting of multi-class classification, wherein a network
f(x;W ) ∶ X ⊆ Rd ↦ Rk makes a classification decision ŷ = argmaxj f(x;W )j. We use S
to denote a training set {x1, ..., xn} of n points, each of which has a corresponding label
{y1, ..., yn}, with yi ∈ {1, ..., k}. For a vector v ∈ Rk and y ∈ {1, ..., k}, we define the margin
operator to beM(v, y) = vy −maxj≠y vj. We denote the classification loss

ℓ(f(x;W ), y) = 1(M(f(x;W ), y) ≤ 0) (2.1)

and, for γ > 0, the γ-margin loss

ℓγ(f(x;W ), y) = 1(M(f(x;W ), y) ≤ γ). (2.2)

For the empirical loss, we denote ℓ̂(f) = 1
n ∑(x,y)∶x∈S ℓ(f(x;W ), y) and for the population loss

we use ℓ(f) = E(x,y)[ℓ(f(x;W ), y)], and likewise for ℓ̂γ(f) and ℓγ(f). We will also use the
ramp function which, for any γ > 0, is given by

Rγ(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 z < −γ,

1 + z/γ z ∈ [−γ,0]

1 z > 0

. (2.3)
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Rγ importantly satisfies the following:

ℓ(f) ≤ E(x,y)[Rγ(−M(f(x;W ), y)] ≤ ℓγ(f) (2.4)

with analogous inequalities holding for ℓ̂(f), ℓ̂γ(f) with the empirical distribution on S.

We will use the notation Bq(r) = {x ∈ Rd ∶ ∥x∥q ≤ r} to denote the ℓq balls in Rd. For an m×n
matrix A, we define the matrix q-norm induced by the ℓq norm by

∥A∥q = sup
z≠0

∥Az∥q
∥z∥q

. (2.5)

We will be particularly interested in ∥ ⋅ ∥2, which is the spectral norm (also denoted ∥ ⋅ ∥σ),
and ∥ ⋅ ∥∞, which is also equal to the (1,∞) norm appearing in the analysis of [GRS18]. We
will also use the matrix (q,1) norm, which is given by

∥A∥q,1 =
n

∑
j=1
(

m

∑
i=1
∣aij ∣

q)
1/q
. (2.6)

We consider networks of the form

f(x;W ) =WLϕ(WL−1ϕ(⋯ϕ(W1x))) (2.7)

where Wℓ[jℓ, jℓ−1] = wjℓ,jℓ−1 are the dℓ × dℓ−1 weight matrices (d0 = d and dL = k) and ϕ(z)
is an activation which is positive homogeneous1, 1-Lipschitz and satisfies ϕ(0) = 0. The
most common example is the ReLU activation ϕ(z) = max(z,0), though it also applies to
other activations, such as the ‘leaky ReLU’ or the identity. Since compositions of positive
homogeneous functions are also positive homogeneous, our theory applies to max or average
pooling operations followed by a positive homogeneous activation, as in convolutional networks.
For each output unit jL ∈ {1, ..., k}, the subnetwork terminating at node jL may be expressed
as

f(x;W )jL = ∑
jL−1

wjL,jL−1ϕ(⋯ϕ(∑
j0

wj1,j0xj0)). (2.8)

Each unit of the network outputs xjℓ = ϕ(zjℓ) for a corresponding input

zjℓ = ∑
jℓ−1

wjℓ,jℓ−1xjℓ−1 = ∑
jℓ−1

wjℓ,jℓ−1ϕ(zjℓ−1). (2.9)

1The property that for all α > 0, ϕ(αz) = αϕ(z).
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ℓ1 normalization and the path distribution

A crucial observation made in [BK18] is that by doubling the number of nodes per layer and
relabeling the indices, we can assign the absolute weights ∣wjℓ,jℓ−1 ∣ into one of two pre-specified
groups, each of size dℓ−1: (I) if wjℓ,jℓ−1 is negative, we associate it with −ϕ(zjℓ−1) and (II)
if wjℓ,jℓ−1 is positive, we associate it with +ϕ(zjℓ−1). By doing this, we can assume all the
weights are nonnegative. For notational convenience, we do not explicitly account for these
sign differences in the activation function when we describe the network. Instead, without
loss of generality, we simply write ϕ with the understanding that it is a placeholder for either
−ϕ or +ϕ. Likewise, we use Wℓ with the understanding that the weights are taken to be
nonnegative, which results in quantities that are in terms of the absolute values of the original
weights.

With this convention, we may exploit the positive homogeneity of ϕ, and move all the
(non-negative) weights to the inner layer sum to get

f(x;W )jL = ∑
jL−1

ϕ( ∑
jL−2

ϕ(⋯ϕ(∑
j0

wj0,j1,...,jLxj0))) (2.10)

where

wj0,j1,...,jL = wjL,jL−1wjL−1,jL−2wjL−2,jL−3⋯wj1,j0 . (2.11)

Here we think of each (j0, ..., jL) as indexing a single path through the network. It is this
representation of the network in terms of the paths that facilitates our analysis.

Remark 2.1 (Path representation for networks with pooling). We remark that a similar
expression can be used to study convolutional networks with max and/or average pooling, by
recalling that 2D convolution can be expressed as matrix multiplication with respect to a
particular class of Toeplitz matrices and that the (max or average) pooling operator P is
positive homogeneous. For simplicity, in what follows we omit the use of P , hence considering
feed-forward networks or convolution networks without pooling, though we address the details
of the convolutional case with pooling in Appendix A.2.

We now turn our attention to normalizing the path weights (wj0,j1,...,jL)j0,j1,...,jL in such a
way that they may form a probability distribution. Since the wj0,...,jL are non-negative, the
simplest way to do this would be to normalize by their sum, which is also equal to the 1-norm
of the product of the (non-negative) weights:

V1 = ∑
j0,j1,...,jL

wj0,j1,...,jL = ∥
L

∏
1

∣Wℓ∣∥
1,1
. (2.12)

Now by construction we see that we can equally well express the function as

f(x;W )jL = V1 ∑
jL−1

ϕ( ∑
jL−2

ϕ(⋯ϕ(∑
j0

pj0,j1,...,jLxj0))), (2.13)
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where pj0,...,jL =
1
V1
wj0,...,jL . We see that by design, pj0,...,jL ≥ 0 and ∑j0,...,jL pj0,...,jL = 1. Hence

we can view (pj0,...,jL)j0,...,jL as a discrete distribution over the multi-indices (j0, ..., jL), which
we interpret as a path (a sequence of nodes) through the network. We call (pj0 , ..., pjL)j0,...,jL
the 1-path distribution and the normalizing factor V1 the 1-path variation of the network
f(x;W ). As we discuss in Section 2.4, in the single output case, V1 is in fact the same as the
1-path norm, studied in [NTS15].

Another quantity that will arise in our analysis is related to the 1/2-Renyi entropy of the
marginal distributions pℓ (obtained by marginalization of the path distribution pj0,j1,...,jℓ). We
define the 1-path complexity to be

ζ1 =
1

L
(1 +

L−1
∑
ℓ=1

e
1
2
H1/2(pℓ)) (2.14)

Since 0 ≤ H1/2(pℓ) ≤ log(dℓ), we have 1 ≤ ζ1 ≤
1
L(1 +∑

L−1
ℓ=1
√
dℓ), though this quantity can be

substantially smaller when the marginal distributions pℓ are non-uniform over units in the
network. Hence ζ1 can be thought of as a measure of the average effective square-root width
of the intermediate layers.

Importantly, the path distribution p can be shown to possess a Markov structure (see [BK18]),
allowing us to write

pj0,...,jL = pjLpjL−1∣jLpjL−2∣jL−1⋯pj0∣j1 (2.15)

and the network correspondingly as

V1f(x;P ) = V1PLϕ(PL−1ϕ(⋯ϕ(P1x))) (2.16)

where Pℓ is a transition matrix for the Markov distribution p, Pℓ[jℓ, jℓ−1] = pjℓ−1∣jℓ for ℓ < L
and PL[jL, jL−1] = pjL,jL−1 = pjLpjL−1∣jL .

Constructing sparse approximants from the path distribution

The representations (2.13) suggests an approach for constructing an approximant f̃ of f , by
taking f̃ = f(x; p̃) for some estimate p̃ of p. Since p is a probability distribution, a natural
candidate for an approximant p̃ is an empirical distribution which arises from taking M
independent samples from the path distribution p. We refer to such an empirical distribution
as p̃M , or simply p̃, when the number of samples M is clear. If one can then bound
Ep̃[∥f(x;p) − f(x; p̃)∥] ≤ δM , for some δM , then since the average over p̃ is always more than
the minimum over p̃, one can deduce the existence of some p̃ for which ∥f(x;p)−f(x; p̃)∥ ≤ δM .
This type of reasoning is known as the probabilistic method, and appears in many results in
the literature, as we discuss in Section 2.3. It is also employed in the main result of [BK18],
which we now review.

Consider sampling K = (Kj0,j1,...,jL)j0,j1,...,jL ∼ Multinomial(M,p), where Kj0,j1,...,jL is the
number of times the path (j0, j1, ..., jL) appeared in the M samples. One could then take
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an approximant to be p̃ =K/M . However, this p̃ would not necessarily factor into matrices,
which is favorable both for practical reasons and for the sake of analysis. Instead, [BK18]
construct p̃j0,j1,...,jL = p̃jL p̃jL−1∣jL⋯p̃j0∣j1 as the empirical Markov distribution on the paths
(j0, j1, ..., jL), where

p̃jℓ =
Kjℓ

M
, p̃jℓ,jℓ+1 =

Kjℓ,jℓ+1

M
, p̃jℓ∣jℓ+1 =

p̃jℓ,jℓ+1
p̃jℓ+1

(2.17)

with the convention that 0/0 = 0. Here Kjℓ ,Kjℓ,jℓ+1 are the marginal and pairwise counts,
respectively, obtained by summing out Kj0,..,jℓ,jℓ+1,..,jL over unspecified indices.

Another more principled reason to favor a network built from the above quantities is that,
within the class of Markov distributions, p̃ is the (restricted) maximum likelihood estimator
(MLE) of p from the empirical counts K. We state this formally in our first theorem. At a
high-level, it says that, among plug-in approximants of the original network, the one using
the empirical Markov distribution is ‘optimal’.

Theorem 2.1.
p̃ = argmax

p Markov
L(p),

where L(p) =M !∏(j0,j1,...,jL)
p
Kj0,j1,...,jL
j0,j1,...,jL

Kj0,j1,...,jL
! is the likelihood of the count vector K.

Proof. This can be shown by combining the fact that the (unrestricted) MLE of a multinomial
distribution is the empirical class proportion vector K/M , together with the invariance
property of MLEs.

Throughout, we think of the number M as a parameter which controls the level of compression
of f(x; p̃M) relative to f(x;p). Intuitively, it is clear that as M gets large, f(x; p̃M) more
closely approximates f(x;p). Moreover, M controls the sparsity and precision of the parame-
ters p̃M , which is demonstrated by the following facts: first, the number of nonzero parameters
p̃M is upper bounded deterministically by LM , and, second, the (base-10) precision of the
p̃M is upper bounded by log10(M). Hence, we can think of p̃M as also a natural quantization
of the weights p.

In the single output case, [BK18] prove the following L2 bound (adapted slightly to match
our notation), when X = [−1,1]d.

Theorem 2.2 ([BK18], Theorem 1). Let f(x;W ) be a single output ReLU network with
1-path variation V1 and 1-path complexity ζ1, and let P be probability measure on [−1,1]d.
Then

Ep̃[∫ ∣f(x;W ) − f(x; W̃ )∣
2P(dx)] ≤ (

V1ζ1L
√
M
)
2

, (2.18)

where f(x; W̃ ) = V1f(x; p̃).
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In the next section, we extend this result in the following ways: first, we show that we can
obtain path distributions by normalizing by a much broader class of path variations than
the 1-path variation V1. We also extend the bound to the multi-output setting, where we
obtain a bound on the ℓ2 norm of outputs. This result allows us to later study multi-class
classification. Finally, we show that similar results can also be obtained for networks with
pooling layers, though we defer the details of this case to the Appendix.

2.3 Path Sampling and Sparse Approximation

Path sampling with general norms

In this section, we show how the sampling scheme summarized in the previous section can be
generalized to norms besides ∥ ⋅ ∥1,1. To see how this is possible, notice that for any wj0 , we
can express f(x;W )jL as

∑
jL−1

ϕ( ∑
jL−2

ϕ(⋯ϕ(∑
j0

wj0wj0,j1,...,jLx
′
j0))) (2.19)

where x′j0 = xj0/wj0 . Now for

V = ∑
j0,...,jL

wj0wj0,...,jL , (2.20)

we can define a path distribution pj0,...,jL =
1
V
wj0wj0,...,jL .

Now let 1 ≤ q ≤∞ and let q∗ be its conjugate exponent (so that 1
q +

1
q∗ = 1). For a dataset S,

we consider

w
(q)
j0
=

⎧⎪⎪
⎨
⎪⎪⎩

(n−1∑x∈S ∣xj0 ∣
q∗)1/q

∗
1 < q ≤∞

maxx∈S ∣xj0 ∣ q = 1
(2.21)

which gives rise to the q-path variation

Vq = ∑
j0,...,jL

w
(q)
j0
wj0,...,jL (2.22)

The value in these definitions is captured in the following lemma, which shows that we can
bound Vq in terms of norms ∥∏L

1 ∣Wℓ∣∥.

Lemma 1. Let 1 ≤ q ≤∞, and let q∗ be its conjugate exponent. Then

Vq ≤ (max
x∈S
∥x∥q∗)k

1−1/q∗∥
L

∏
1

∣Wℓ∣∥
q∗

(2.23)

and

Vq ≤ (max
x∈S
∥x∥q∗)∥

L

∏
1

∣Wℓ∣∥
q,1
. (2.24)
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Proof. The proof is several simple applications of Hölder’s inequality. See A.2 for details.

With the above in mind, we introduce the following definitions.

Definition 2.1. For 1 ≤ q ≤∞, we define the q-path distribution by

p
(q)
j0,...,jL

=
w
(q)
j0
wj0,...,jL

Vq

. (2.25)

We define the q-path complexity by

ζq =
1

L
(1 +

L−1
∑
ℓ=1

e
1
2
H1/2(p

(q)
ℓ
)). (2.26)

Notice that for q = 1, r = 1, the above definitions reduce to the setting of the Section 2.2, with
p(1) obtained by normalizing by ∥∏L

1 ∣Wℓ∣∥1,1 and x ∈ [−1, 1]d. In the next section, we use the
path distributions p(q) to obtain sparsification results for vector-valued neural networks.

Bounds for Path Sampling with Deep ReLU Networks

In this section, we extend the analysis of Theorem 2.2 to the multi-output and convolution
setting, and show that similar bounds may be obtained in terms of Vq, for q ∈ [1,2].

Theorem 2.3. Let f(x;W ) be an L-layer ReLU network, S a dataset, and let 1 ≤ q ≤ 2. If p̃
is the Markov distribution formed from M samples from p

(q)
j0,j1,...,jL

, then

Ep̃[
1

n
∑
x∈S
∥f(x; W̃ ) − f(x;W )∥22] ≤ (

VqζqL
√
M
)
2

, (2.27)

where f(x; W̃ ) = Vqf(x; p̃).

Proof. See A.1.

Using Lemma 1, Theorem 2.3 can be used to give bounds, for example, in terms of the matrix
(2,1) norm, the spectral norm, and the (1,∞) norm.

Since the minimum over p̃ is always less than the expected value, the above results imply, for
example, the existence of representer f(x; W̃ ) = Vqf(x; p̃M) such that

√
1

n
∑
x∈S
∥f(x; W̃ ) − f(x;W )∥22 ≤

VqζqL
√
M

. (2.28)

It turns out that, in the case of q = 1, the error analysis in Theorem 2.3 is optimal for single
output, two layer networks.
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Theorem 2.4. There exists a dataset S ⊆ [−1, 1]d, a single output, two layer network f(x;W ),
and an integer M0 such that for all M ≥M0, we have

Ep̃[
1

n
∑
x∈S
∣f(x; W̃ ) − f(x;W )∣2] = Ω(

V1ζ1
√
M
)
2

. (2.29)

Proof. See A.2.

Comparison to existing techniques

It is worth taking a moment to compare our technique and results to existing work. The
probabilistic method, interestingly, appears frequently.

In [BFT17], layers are sparsified individually, using a technique known as Maurey sparsification.
This type of reasoning in the context of function approximation is due to [PM80] and was later
applied to single output, single hidden layer networks (i.e., k = 1 and L = 2) in the seminal
work of [Bar91, Bar93]. [BFT17] use a generalization of this technique given in [Zha02] to
establish the existence of an approximant Ũ of a matrix U by defining a distribution over Ũ
and bounding E∥Ũ −U∥2, though using this approach to analyze multilayer networks results
in error bounds that scale with ∏L

1 ∥Wℓ∥, which arises from a worst case analysis of error
propagation between layers. In contrast, our technique takes advantage of global structure in
the network, and as a consequence instead scales with a quantity ∥∏L

1 ∣Wℓ∣∥.

Other examples of sampling techniques include the recent work of [AGNZ18] and [BLG+19].
The former uses a Johnson-Lindenstrauss-type random projection to compress each layer of a
deep network, which deduces the existence of a compression by showing that the probability
of sampling an approximant at the desired level of accuracy is nonzero. [BLG+19] instead use
an edge-wise sampling approach which is similar to existing matrix sparsification techniques
(e.g. [AKL13, KD14, DZ11]), but notably improves these methods by using a held-out set
of data to measure the sensitivity of each layer’s output to certain edges. In both cases,
however, the error analysis does not involve norm quantities, and instead involves strongly
data dependent quantities which are harder to compute and interpret. As a consequence of
the stronger dependence on the function and dataset S, these techniques can only be used
to prove a slightly weaker notion of generalization; they prove only the generalization of
the compressed network, rather than the original network. It is nonetheless a fascinating
direction for future research to study if stronger data-dependence may be incorporated into
our path-based approach to obtain better error bounds.

2.4 Covering, Metric Entropy, and Implications for
Generalization

In this section, we show that the sampling results given in the previous section can be
used to obtain covering number bounds, which imply generalization bounds for multi-class
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classification. The approach is similar to that used to prove the results of [BFT17]. Throughout
this section, we use F(Vq, ζq) to denote the class of positive homogeneous networks with
q-path variation at most Vq and q-path complexity at most ζq, and for any γ > 0, we denote
Fγ(Vq, ζq) = Rγ ○ (−M) ○F(Vq, ζq).

We first recall a few definitions.

Definition 2.2. For a class of real-valued functions F and ϵ > 0, a set Gϵ is an ϵ-covering
of F (with respect to ∥ ⋅ ∥2,S) if for all f ∈ F , there exists g ∈ Gϵ such that ∥f − g∥2,S =√

1
n ∑x∈S ∣f(x) − g(x)∣

2 ≤ ϵ. We define the ϵ-covering number N2(ϵ,F , S) to be the mini-
mum cardinality of covering sets Gϵ. Finally, the ϵ-metric entropy of F is defined to be
logN2(ϵ,F , S).

To use the sampling bounds from Theorem 2.3 to get covering number bounds, we need to
bound the cardinality of the set of functions f̃ arising from M samples. The below gives such
a bound.

Theorem 2.5. The number of networks f(x; p̃) that arise from the sampling scheme is at most
8ML(de)M . Thus, the log-cardinality of the representor set is bounded by M(log(de)+L log(8)).

Proof. See A.3.

We remark that a more naïve bound may be obtained by simply counting the total number
of possible samples K =KM that can arise from sampling Multinomial(M,p). This can be
shown by a standard combinatorial argument to be (M+D−1M

), where D = d0d1⋯dL. Theorem
2.5 improves this bound considerably by recognizing that there are many samples KM which
result in the same function f(x; p̃M). Exploiting this observation, the proof takes advantage
of the permutation invariance of units in deep networks, which implies that the number of
functions that can be obtained from the sampling scheme depends only on the number of ways
we can partition the integer M into pairwise counts Kjℓ,jℓ+1 . As a consequence, the cardinality
is completely independent of the intermediate layer dimensions dℓ for ℓ = 1,2, . . . , L, except
for mild logarithmic dependence on the input dimension d. It turns out that in the setting of
the 2-path variation, we can use a trick from [Zha02] to remove dependence on d altogether,
though we defer the details of this to Appendix A.1.

Using the fact that M is 2-Lipschitz with respect to ∥ ⋅ ∥2 (see appendix of [BFT17] for
details), and Rγ is 1

γ Lipschitz, we may use this result together with Theorem 2.3 to obtain
the following metric entropy bounds.

Corollary 2.1. Let ϵ, γ > 0, 1 ≤ q ≤ 2. Then

logN2(ϵ,Fγ(Vq, ζq), S) ≤
9V2

qζ
2
qL

2(L + log(de))

γ2ϵ2
(2.30)
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Using standard techniques, Corollary 2.1 implies the following generalization guarantees.

Theorem 2.6. Let f(x;W ) be an L-layer positive homogeneous network and let δ ∈ (0,1).
For any 1 ≤ q ≤ 2 and γ > 0, with probability at least 1 − δ over the training set S, the
generalization error ℓ(f) − ℓ̂γ(f) is bounded by

Õ(
VqζqL

√
L + log(d)

γ
√
n

+

√
log(1/δ)

n
), (2.31)

where Vq, ζq are the q- path variation and path complexity of f .

Proof. See A.4.

Plugging in the bounds from Lemma 1, this implies a host of norm-based generalization
bounds, summarized in the following Corollary.

Corollary 2.2. Let f(x;W ) be an L-layer positive homogeneous network and let δ ∈ (0,1).
For any 1 ≤ q ≤ 2 and γ > 0, with probability at least 1 − δ over the training set S, the
generalization error ℓ(f) − ℓ̂γ(f) is bounded by

Õ(
maxx∈S ∥x∥q∗∥∏

L
1 ∣Wℓ∣∥q,1ζqL

√
L + log(d)

γ
√
n

+

√
log(1/δ)

n
), (2.32)

as well as

Õ(
maxx∈S ∥x∥q∗k1−1/q

∗
∥∏

L
1 ∣Wℓ∣∥q∗ζqL

√
L + log(d)

γ
√
n

+

√
log(1/δ)

n
). (2.33)

Comparison to Existing Generalization Bounds

Before comparing the bounds from Theorem 2.6 to existing norm-based bounds, we remark
that by arranging for the weights to be positive, the matrix products we obtain above are
in terms of absolute values of the original weight matrices. However, we can still compare
our bounds to those that use products of matrix norms. For example, for entry-wise norms
such as (q,1) norms, the (1,∞) norm, and the Frobenius norm, it is always the case that
∥∏ℓ ∣Wℓ∣∥ ≤∏ℓ ∥Wℓ∥. On the other hand, note that ∥∣A∣∥σ ≥ ∥A∥σ and so the term ∥∏L

1 ∣Wℓ∣∥σ
is not directly comparable to ∏ℓ ∥Wℓ∥σ. Nevertheless, there are many examples of (non-
positive) weight matrices such that ∥∏ℓ ∣Wℓ∣∥σ ≤∏ℓ ∥Wℓ∥σ.

Several results have identified product of weight norms as a complexity measure; we detail a
few here. For example, [BFT17] use covering numbers to obtain the generalization bound

Õ(
maxx∈S ∥x∥2L3/2R3/2∏

L
1 ∥Wℓ∥σ

γ
√
n

), (2.34)
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where R = 1
L ∑

L
1 (
∥Wℓ∥2,1
∥Wℓ∥σ )

2/3
, which, similar to our ζ quantities, admits an interpretation as an

average effective width. This is naturally contrasted with our bound in terms of ∥∏L
1 ∣Wℓ∣∥σ

and ζ2, though as we mention above, the quantities ∥∏L
1 ∣Wℓ∣∥σ and ∏L

1 ∥Wℓ∥σ are not directly
comparable. However, there are examples of matrices for which our bound is superior. Similar
bounds were likewise obtained via a PAC-Bayes approach in [NBS18], though these are known
to be strictly weaker than the above bound from [BFT17].

The approach of [GRS18] (which addressed the single output case) used a more direct bound
on Rademacher complexities, via ‘peeling’, to get generalization bounds of order

maxx∈S ∥x∥2
√
L + log(d)∏

L
1 ∥Wℓ∥

γ
√
n

, (2.35)

where the associated norm is ∥ ⋅ ∥1,∞ or ∥ ⋅ ∥F . Notably, these bounds avoid the correction
factors R or ζ appearing in our results and [BFT17, NBS18], and have slightly more mild
(explicit) dependence on the number of layers. However, since these bounds are in terms of
entry-wise norms, our capacity constants can be shown to lower bound these quantities. For
example, in the single output case, V2 will lower bound the product ∏L

1 ∥Wℓ∥F . Similarly,
taking q = 1 in Corollary 2.2, we get a bound in terms of ∥∏L

1 ∣Wℓ∣∥1,∞, which lower bounds
∏

L
1 ∥Wℓ∥1,∞.

Other norm-based bounds have identified more global quantities as complexity measures for
deep networks. Of particular relevance to our work is the path norm ϕp of a network f(x;W )
studied in [NTS15, NSS15], which is defined as2

ϕp =∑
jL

( ∑
j0,...,jL−1

∣wj0,...,jL ∣
p)

1/p
. (2.36)

We observe immediately that ϕ1 = V1. In [NTS15], generalization bounds of order

maxx∈S ∥x∥∞V12L

γ
√
n

, (2.37)

were given for the case of p = 1 and k = 1. While this bound avoids involving products of
norms, it has explicit exponential dependence on the depth of order 2L, which our bound
improves to the low order polynomial L3/2. Furthermore, the following lemma shows that V2

may be upper bounded by ϕ2. Hence we can view our results also as an improvement on this
line of work.

Lemma 2. We have

V2 ≤∑
jL

( ∑
j0,j1,...,jL−1

w2
j0,j1,...,jL

)
1/2

(2.38)

2Note this is in fact a generalization of the definition in [NTS15], which considered only the single output
case, and hence did not have the sum over jL.
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where in the single output case, the right-hand side is equal to the 2−path norm ϕ2 from
[NTS15].

Proof. See A.2.

Finally, we remark that while more direct analysis of Rademacher complexities, such as
[GRS18, NTS15], avoid the correction factors such as ζ and R, these works seem to address
only the single output case. It is therefore unclear if extending these analyses to the multi-class
setting would involve more direct dependence on the number of classes k.

2.5 Empirical Investigation
In the previous section, we used a sampling procedure as a technical tool to derive gener-
alization bounds. Intuitively, the ability to express a large network with many parameters
as a network with few parameters of low precision indicates lower complexity. In this sec-
tion, we investigate this relationship empirically, using the sampling procedure employed
theoretically above. For simplicity, we work with V1 and the 1-path distribution. For each
network V1f(x;p) considered, we will draw Multinomial(M,p) samples and compute the
corresponding estimates p̃M . Here, as is justified in Section 2, we will use the number of trials
M as a proxy for compression, and investigate the number of samples M required to obtain
a given level of accuracy. We note that working directly with the full path distribution p
quickly becomes unwieldy as the network grows in depth, as it involves storing a (potentially
dense) L-tensor. Fortunately, by exploiting the Markov structure of p and storing only the
conditional distributions pjℓ∣jℓ+1 , and sampling forward through the Markov chain, this issue
can be avoided.

We study three different problems, which range from easy (generalize very well) to hard
(generalize poorly). Namely, we study a basic mnist network, a cifar10 network, and a
cifar10 network with labels chosen uniformly at random. We use a four layer, feed-forward
network with hidden layer dimensions 600,400 and 200. Throughout our experiments, plots
demonstrating the performance of the mnist (easy; test accuracy ≈ 98%) network will be
shown in orange , the cifar10 (medium; test accuracy ≈ 60%) network in green , and the
cifar10 with random labels (hard; test accuracy ≈ 10%) network in blue . Each network is
trained to 100% training accuracy using stochastic gradient descent with momentum set to
0.9 and no additional regularization.

We observe that compressibility does indeed correlate with generalization: networks with
higher test accuracy can be represented with fewer samples. For example, we see from Figure
2.1 that with M = 106 samples, we can obtain 100% accuracy from the mnist model, 80%
from the cifar10 model, and only 40% from the cifar10 model with random labels.

According to our theory, this accuracy should be governed in part by the trade-off of V1/γ
with ℓ̂γ(f), where γ is some chosen value of margin. To study this, we look at the path
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Figure 2.1: Left: Comparison of sampling with mnist, cifar10, and cifar10 with random labels.
Solid line indicates mean classification accuracy on the training set over 10 trials; shaded region
indicates range over these trials. Right: Comparison of path normalized margin distributions. We
observe that the mnist model has considerably larger normalized margins than the cifar10 model,
which itself has larger normalized margins than cifar10 with random labels.

normalized margin distribution, which for a network f(x;W ) and dataset {(xi, yi)}ni=1, is the
histogram of values

M(f(xi,W ), yi)

V1

. (2.39)

This is analogous to the normalized margins studied in [BFT17], though with the path
variation serving as the normalizing constant, rather than the spectral complexity (which is
related to the network’s Lipschitz constant). In Figure 2.1, we see that these distributions
do indeed significantly distinguish the three models. Intuitively, it seems natural that
larger margin classifiers would be easier to sparsely approximate, as correspondingly larger
perturbations to the function’s output do not change the function’s classification decision. It is
also well documented, and is suggested by Theorem 2.6, that large (normalized) margins play
an important role in generalization behavior of neural network classifiers. Thus we see that,
in this sense, model sparsification and compression are strongly related to generalization.

2.6 Conclusions and Future Directions
In this paper, we exploited the Markov structure of positive homogeneous networks to analyze
and implement a sampling scheme for network sparsification, which we then used to obtain
covering number and generalization bounds. Our analysis identified the path variations Vq,
which we show to be bounded by various norms ∥∏L

1 ∣Wℓ∣∥, as important quantities controlling
approximation rates and generalization error, which we then verified empirically. In what
follows, we briefly highlight some potential directions for further work building on the present
results.
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Sampling with residual networks. Residual networks have been shown to be a powerful
network architecture, used to obtain state-of-the-art performance on many difficult classi-
fication tasks. However, our analysis does not immediately apply to networks with skip
connections. Here we present one potential direction for extending our techniques to the
analysis of residual networks.

Recently, [VWB16] proposed an ‘unravelled’ view of residual networks as a collection of paths
with different lengths. We show how to utilize this perspective to develop a sampling strategy.
Each unique path P = (jℓ0 , jℓ1 , . . . , jℓm) through the residual network can be assigned a binary
code b(P ) ∈ {0,1}L where bt(P ) = 1 if the input flows through residual module t and 0
if it is skipped (i.e., a skip connection). In this case, the path distribution of a residual
network can be seen as a mixture of path distributions for fully-connected networks, namely,
p = 2−L∑b∈{0,1}L p

(b), where p(b) is the path distribution of the fully-connected subnetwork
induced by all paths P such that b = b(P ).

Thus, the marginal distribution of paths leading up to residual module t is a mixture of
2t−1 different path distributions generated from every possible configuration of the previous
t − 1 residual modules. Note also that p generates paths with lengths that are distributed
Binom(1/2, L). This coincides with the model of path lengths proposed in [VWB16], who
empirically show that they are distributed Bin(1/2, L) and concentrate around L/2. Samples
from p can easily be generated by first sampling b̃ from the uniform mixing distribution on
{0,1}L and then sampling a path from the Markov distribution p(b̃). Counts K of indices
can be used to form the empirical Markov distribution p̃ as before.

Removing the path complexity. A notable difference between our results and those of
[GRS18] is the presence of the path complexity ζ. As a similar term also appears in [BFT17],
it seems as though such correction factors may be consequences of the covering approach. By
using a ‘peeling’ argument, and bounding the Rademacher complexity directly, [GRS18] are
able to avoid such factors. It is an interesting open question whether the path complexity
term can be removed from our bounds using similar techniques.
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Chapter 3

The Pitfalls of the Worst-Case Approach
in the Overparameterized Regime

The contents of this chapter are partially based on the paper "Good Classifiers
are Abundant in the Interpolating Regime", appearing in AISTATS 2021,
co-authored with Jason Klusowski and Michael M.W. Mahoney [TKM21].

3.1 Introduction
The phenomenon of good generalization in highly over-parameterized models, including
neural networks, has largely eluded theoretical understanding. Recently, however, progress
has been made towards understanding over-parameterization in several simpler settings.
Important examples include the variety of results demonstrating “double descent” phenomena
in linear regression [BHMM19b, BLLT20, HMRT19, DLM19] (and, in particular, how it is
essentially a consequence of a transition between two different phases of learning [LCM20]),
nearest neighbors models [XSC19], and binary classification [CL20, DKT20]. These results
are typically derived by defining a specific estimator (e.g., the least-norm estimator in linear
regression), and carefully examining its test risk. This approach presents a challenge when
extending these analyses to the setting of neural networks, where no such estimator can
easily be defined. In these situations, almost all results rely, in one way or another, on the
framework of uniform convergence; that is, results which bound a quantity of the form

εunif ∶= sup
f∈F
∣Ên(f) − E(f)∣ , (3.1)

where F is a given function class, Ên is the training error on a dataset of n points, and E is
the population error.
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Figure 3.1: Test error distribution of MNIST 0 vs 1 interpolating classifiers, using N = 1000 random
ReLU features, with n = 500 training samples, as well as test error of worst-case interpolating
classifier. Here, for illustrative purposes, we plot the PDF (fit from a histogram using a kernel
density estimate); in the remainder of the paper, we instead plot the CDFs, which can be more
accurately estimated.

Recently, it has been drawn into question whether this approach is fine-grained enough to
capture the good generalization properties observed in deep learning [MM17, NK19]. One issue
that arises when using the uniform convergence framework is that for any given training set
{(x1, y1), . . . , (xn, yn)}, and a sufficiently complex function class F , the worst-case estimator
f ∈ F fitting the training data may indeed perform quite poorly—thus dooming quantities
like (3.1)—even if we are extremely unlikely to encounter such models in practice. One line of
work has attempted to tackle this problem by studying the implicit biases of the algorithms
used to train modern machine learning models [GWB+18, MWCC20, SHS18] (by using what
may be called implicit regularization in non-exact approximation algorithms [Mah12]). Still,
such results are mostly limited to simplified settings, and a comprehensive understanding of
the relationship between optimization and generalization remains elusive.

In another line of work [WZ17, CHM+15b], it has been observed that, at least in practice for
deep networks, it is not particularly important which model we obtain at the end of training;
most models tend to have roughly the same test error. Reconciling this phenomenon with
the worst-case theory must then require one of a few things to be true: i) that most models
have nearly worst-case test error; ii) that models with nearly worst-case error are very rare;
or iii) that worst-case bounds are simply too loose to capture the actual worst-case error. In
this chapter, we investigate these possibilities rigorously in the setting of linear and random
feature classification, and we find that worst-case models with very high test error do in fact
exist, but that they are exceedingly rare.

Our approach builds conceptually on several old ideas originating out of the statistical physics
literature. c(Such a perspective, while less common in statistical learning theory today,
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has a long history [MM17, SST92, WRB93, HKSST96, EVdB01].) Rather than studying
the worst-case estimator f ∈ F , the statistical mechanics approach seeks to understand the
behavior of the typical function f . This typicality can be characterized in a number of
ways. A natural measure, from the statistical physics perspective, would be the entropy (or
log density of states), which captures the number of models at any given test error value.
Analyses of learning problems have been conducted using the entropy method in a variety
of simplified settings, including the case of finite F as well as linear classification under
various simplifying assumptions on the data [HKSST96, OH91, EVdB01]. Similar approaches
have also been used to demonstrate the existence of phase transitions in learning behavior
in logistic regression [CS18] and generalized linear models [BKM+19]. In the deep learning
literature, [CHM+15b] used the theory of spin glasses to argue that poor local minima on the
training surface are rare. While insightful (and often technically impressive), many of these
theoretical results rely on very specific assumptions on the data generating process, and hold
only in the asymptotic regime.

In this chapter, we study the behavior of test errors on real-world datasets used in practice,
in a non-asymptotic regime, and without any assumptions on the data generating process. To
do this, in Section 3.2, we formally define and develop a methodology to compute precisely
the full distribution of test errors among interpolating classifiers from several model classes.
In Sections 3.3 and 3.4, we then apply this methodology to compute these distributions for
several real and synthetic datasets, and for both linear and random feature classification
models, respectively. We furthermore develop a method to estimate the worst-case test errors
of these classification models on the same datasets. Our investigation yields the following key
insights:

1. Good classifiers are abundant: an overwhelming proportion of interpolating models
have very small test error, relative to the worst-case error.

2. Test errors tend to concentrate: as the size of models grow, test errors concentrate
sharply around a critical value ε∗.

3. There exist worst-case classifiers that are very poor: much worse than the typical
classifier.

These findings are illustrated in Figure 3.1.

To understand these observations mathematically, in Section 3.5, we provide theoretical
results in a simple setting in which we characterize the full (asymptotic) distribution of test
errors, and we show that these indeed concentrate around a value ε∗, which we also identify
exactly. We then formalize a more general conjecture, supported by our empirical findings,
which we hope will motivate further research. Finally, in Section 3.6, we offer some concluding
thoughts, and provide several promising directions for future work. Proofs and additional
empirical results can be found in the appendix.
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3.2 Efficiently Computing the Distribution of Test Errors
for Interpolating Classifiers

Notation and Setup

We begin with some notation that will be used throughout the chapter.

We consider the setting of binary classification, and denote a training dataset by

Sn = {(x1, y1), . . . , (xn, yn)},

with samples xi ∈ Rd and labels yi ∈ {−1, 1}. We let F be a class of functions f ∶ Rd → {−1, 1},
and we define the version space to be the following subset of F :

VS(Sn) = {f ∈ F ∶ f(x1) = y1, . . . , f(xn) = yn}. (3.2)

That is, the version space is the set of “interpolating” functions, i.e., those which perfectly fit
the dataset Sn. Note that if F is a linear family, then one element of the version space is the
max-margin solution. We also use P to denote a probability measure defined over F . We
use Stest = {(xn+1, yn+1), . . . , (xn+m, yn+m)} to denote a set of m testing points, and Prx,y to
denote a testing distribution over the data (x, y). Using these, we define the empirical and
population testing errors:

Em(f) =
1

m

m

∑
h=1

1(−yn+hf(xn+h) > 0), (3.3)

E(f) = Pr
x,y
(−yf(x) > 0). (3.4)

With these definitions in place, we can now formally define the test error distribution of
interpolating classifiers.

Definition 3.1. Given a function class F , a measure P over F , and a training set Sn, let

Rn,m(ε) ∶=
P({Em(f) ≤ ε} ∩VS(Sn))

P(VS(Sn))
, (3.5)

and

Rn(ε) ∶=
P({E(f) ≤ ε} ∩VS(Sn))

P(VS(Sn))
. (3.6)

That is, the quantities Rn,m(ε) and Rn(ε) are the cumulative distribution functions (CDFs)
of the errors Em and E , conditioned on perfectly fitting the training data. Intuitively, these
quantities measure the fraction of interpolating classifiers f ∈ VS(Sn) that have test error at
most ε.
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Efficient Estimation of Rn,m

An advantage of our definition of Rn,m(ε) is that it is defined only relative to fixed training
and testing sets, Sn and Stest. This means that, at least in principle, Rn,m(ε) can be computed
exactly (without explicit knowledge of the training and testing distributions). To do this
naïvely would require computing the ratio of two (in general very small) high-dimensional
volumes, which would be costly and also lead to issues with numerical instability. Instead, a
natural estimator for Rn,m(ε) can be generated as follows: sample f̂1, . . . , f̂M ∼ P(⋅ ∣ VS(Sn)),
and compute

R̂n,m(ε) =
1

M

M

∑
j=1

1(Em(f̂j) ≤ ε).

Standard Gilvenko-Cantelli-type results can be used to guarantee that supε ∣Rn,m(ε) −
R̂n,m(ε)∣ = O(

1√
M
). Hence, assuming we have the ability to sample from P(⋅ ∣ VS(Sn)),

the distribution Rn,m(ε) can be estimated to arbitrary precision.

For the remainder of this section, we show how we can generate samples f̂ ∼ P(⋅ ∣ VS(Sn))

for any function class of the form Fϕ = {f(x) = sign(w⊺ϕ(x)) ∶w ∈ RN}, where ϕ ∶ Rd → RN

is any mapping. In this paper, we will address the following important examples:

ϕ(x) = x, (linear classification)
ϕ(x) = σ(Ux). (random features)

Notice that for these classes of functions, a probability measure P over F is simply a
distribution over RN . Throughout this paper, we will assume that P is the uniform distribution
on the sphere SN−1 = {w ∈ RN ∶ ∥w∥ = 1}. This choice is made so as to obtain results that are
agnostic to the choice of optimization algorithm: since any reasonable measure on the sphere
will be absolutely continuous with respect to P, we do not expect our main conclusions to be
qualitatively changed by choosing a different base distribution. For the sake of computation,
it will be convenient to make use of the equivalence (up to scaling) of the uniform distribution
with the Gaussian distribution N (0, I), which is a consequence of the spherical symmetry of
the Gaussian.

Let us define the function

Ln(w) =
n

∏
i=1

1(yiw⊺ϕ(xi) ≥ 0), (3.7)

and notice that P(⋅ ∣ VS(Sn)) = P(⋅ ∣ Ln = 1). Therefore, we are interested in drawing samples
from a linearly constrained Gaussian distribution. Fortunately, the recent work [GKH20a]
developed the lin-ess algorithm (an extension of Elliptical Slice Sampling [MPDM10])
specifically for this purpose. Using traditional Monte Carlo methods, this task would be
computationally infeasible in high dimensions, since if we naïvely drew samples from P and
rejected those not lying in the domain {Ln(w) = 1}, then drawing a reasonable number of
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Figure 3.2: Estimated test error distribution R̂n,m(ε) for interpolating linear classifiers on the mnist
(0 vs 1) dataset (blue) and fashion-mnist (shirt vs pants) dataset (red).

samples could take an exponential amount of time. In contrast, lin-ess is able to exploit
special properties of the linear constraints yiw⊺ϕ(xi) ≥ 0 to draw samples without rejection. In
particular, in our setup, lin-ess can be used to generate samples ŵ1, . . . , ŵM ∼ P(⋅ ∣ Ln = 1),
which we can then use to compute the estimator R̂n,m(ε). As is the case with most MCMC
algorithms, lin-ess is only guaranteed to produce independent samples from the posterior
P(⋅ ∣ Ln = 1) asymptotically; we mitigate this issue in practice by using 1,000 warm-up
samples, and keeping only every 10th sample thereafter.

3.3 Linear Classification
In this section, we compute the estimated test error distributions R̂n,m(ε) and R̂n(ε) on
both real benchmark data as well as illustrative synthetic data, for the class FLIN = {f(x) =
sign(w⊺x) ∶w ∈ Rd} of linear classifiers.

Evaluation on Image Datasets

For our first set of evaluations, we compute R̂n,m(ε) for high-dimensional image datasets
used in modern machine learning. In particular, we focus on the mnist and fashion-mnist
datasets, which consist of images in d = 784 dimensional space. Thus, throughout this section,
we only consider values of n < 784. Since we are specialized to the binary classification setting,
we focus on the mnist 0 vs 1 task, and on the shirt vs pants task for fashion-mnist. For
both of these tasks, the data has been centered and scaled, so as to have mean 0 and variance
1.

In Figure 3.2, we plot the R̂n,m(ε) for various values of n. For each of the plots in this section,
estimators R̂n,m(ε) are formed with M = 10, 000 samples from P(⋅ ∣ Ln = 1) using the lin-ess
algorithm, and they are evaluated on m = 5000 testing points.
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Figure 3.3: Test errors of interpolating classifiers with fit to n “good” training samples and nb =

(d − 1) − n “bad” training samples. The classifiers constructed here have extremely poor test set
performance, in contrast to results shown in Figure 3.2.

Observation 1: Good classifiers are abundant. Our first observation is that, for
reasonable n, most interpolating classifiers have good1 test set performance. For example,
for the mnist dataset, we see that at n = 350, nearly 100% of the models that perfectly
fit the training data achieve at least 95% (ε = 0.05) test accuracy. This indicates that, for
this particular training set, bad classifiers (with error > 5%) make up a set with very small
measure. On the other hand, for the fashion-mnist task, only about 60% of classifiers
perfectly fitting the training data get 95% test performance at n = 350 samples, but nearly
100% of such classifiers get 92% accuracy.

Observation 2: Existence of bad classifiers. A natural question that may arise out of
these results is whether or not bad interpolating classifiers even exist for these tasks, at least
for the parameter settings we consider. Here, we demonstrate a simple method for finding
bad classifiers which, together with the previous results, shows that bad classifiers exist and
constitute a tiny fraction of the version space. Given a dataset Sn, with n < d, we can append
up to nb ≤ (d−1)−n “bad” samples, to form a new dataset S′n with n′ = n+nb samples. Notice
that any model w ∈ VS(S′n) must also belong to VS(Sn), since VS(S′n) ⊆ VS(Sn). Here, we
construct nb = (d − 1) − n “bad” points lying in the span of the set {−y1x1, . . . ,−ynxn}. In
Figure 3.3, we plot the test error of interpolating classifiers constructed in this manner, fit
using gradient descent with a logistic loss, for varying levels of n. We see that this method
finds classifiers with test error that is nearly 1 for all values of n considered.

We are therefore left with an insightful contrast: in Figure 3.2, we observe that, for example,
at n = 350, the set of interpolating mnist classifiers with test accuracy ≥ 95% comprise
a set of measure essentially 1; while in Figure 3.3, we have demonstrated that there exist
interpolating classifiers for this task with test accuracy nearly 0%. Thus, we see that the

1Of course, one could fit a model from a more complicated function class and obtain even better test
performance.
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Figure 3.4: Plotting R̂n(ϵ) for the Gaussian model (B.12) at various levels of d. Blue curves
correspond to SNR = 5, red curves correspond to SNR = 2.

performance of the worst-case classifier gives basically no insight into the performance of the
typical classifier, indicating that a uniform convergence-type analysis is not appropriate in this
setting. This is also information that cannot be gleaned by looking at a summary statistic,
like the expected test error of interpolating classifiers, i.e., E[Em(w) ∣ VS(Sn)], alone—it is
necessary to consider the full distribution.

Evaluation on Synthetic Datasets

For our next set of evaluations, we compute Rn(ε) for synthetic data generated from the
Gaussian mixture distribution

(x, y) ∼
1

2
(N+,1) +

1

2
(N−,−1)., (3.8)

where N+ ∼ N (µ,Σ), N− ∼ N (−µ,Σ) and µ ∈ Rd, Σ ∈ Sd+. The purpose of this synthetic model
is twofold. First, it allows us to demonstrate the ubiquity of the phenomena observed on the
mnist and fashion-mnist tasks. Second, it allows us to investigate the effect of varying the
dimension d, which we could not do on the datasets studied in the previous section, as this
was fixed at d = 784. This reveals that test errors begin to concentrate around a value ε∗ as
the dimension d increases.

For this model, we have that yx ∼ N (µ,Σ), so we can characterize the set {w ∶ E(w) ≤ ε}
with the condition

E(w) ≤ ε ⇐⇒
w⊺µ
√
w⊺Σw

≥ −Φ−1(ε), (3.9)

where Φ(⋅) is the CDF of a N (0,1) distribution. Given a training set Sn and samples
ŵ1, . . . , ŵM ∼ P(⋅ ∣ VS(Sn)), this expression allows us to compute an estimate R̂n(ε) =
1
M ∑

M
j=1 1(E(ŵj) ≤ ε) in a straightforward manner.
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Figure 3.5: Plotting R̂n,m(ϵ) for the random ReLU feature models on mnist (0 vs 1) dataset (blue)
and fashion-mnist (shirt vs pants) dataset (red).

As with many Gaussian models, the signal-to-noise ratio (SNR), which we define as
√
µ⊺Σ−1µ

(or simply ∥µ∥/σ when Σ = σ2I), controls much of the complexity of this task. In Figure 3.4, we
plot R̂n(ε) for d = 50, 100, 500, 1000, and with SNR = 2, 5. For these experiments, we take Σ = I
and, to keep the SNR constant as we vary the dimension, we set µ = (SNR/

√
d, . . . ,SNR/

√
d)⊺.

Observation 3: Concentration at critical value ε∗. Our main observation here is the
existence of a critical value ε∗ around which test errors eventually concentrate. Indeed, we
see in Figure 3.4 that as d grows, the distributions Rn(ε) seem to approach the threshold
function 1(ε ≥ ε∗) at a critical value ε∗, which depends on the aspect ratio α = n/d. Therefore,
in the large d regime, almost all interpolating classifiers have test error exactly ε∗, and so this
critical value almost completely characterizes the distribution of test errors for interpolating
classifiers. We also observe that this value is largely determined by the value of the SNR. In
fact, we can derive a simple lower bound on the value of ε∗:

ε∗ ≥ Φ(−
√
µ⊺Σ−1µ). (3.10)

This corresponds to the error of the optimal Bayes classifier w⋆ = Σ−1µ. In the next section,
we observe a similar phenomenon for image classification tasks with random feature models.

3.4 Random ReLU Features
In this section, we consider the class of random ReLU feature classifiers FRRF = {f(x) =
sign(w⊺ϕ(x)) ∶w ∈ RN}, where ϕ(x) = σ(Ux) ∶ Rd ↦ RN . Here the rows u1, . . . ,uN of U are
drawn from the uniform distribution on the sphere Sd−1 and σ(z) =max(z,0) is the ReLU
activation function. These can be viewed as one-layer ReLU networks with the weights of the
first layer fixed, and they are known to enjoy universal approximation properties [SGT19].
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The benefit in studying such a model is that we can examine the behavior of the test error
distributions as the number of hidden features N grows large, with α = n/N fixed. This
allows us to observe the critical value behavior seen in linear classification with the Gaussian
model (B.12), but this time with the image datasets mnist and fashion-mnist.

In Figure 3.5, we plot the test error distributions for interpolating random ReLU classifiers
on the mnist and fashion-mnist tasks, for various number of hidden features N and ratios
α = n/N . Our main observation from these experiments is that, similar to the Gaussian
model, as the number of features N grows, the test errors begin to concentrate around values
ε∗ ≡ ε∗(α). Like in the Gaussian model, the critical value depends on i) the difficulty of the
task (it is larger for fashion-mnist than for mnist) and ii) the aspect ratio α = n/N . This
finding indicates that the concentration phenomenon observed in Section 3.3 is quite general,
and holds for both real and synthetic datasets.

We remark that the same technique used in Section 3.3 demonstrates that very poor classifiers
also exist for the random ReLU classification models, and hence again verifies that the
worst-case analysis of test errors is inappropriate for these models and datasets.

3.5 Characterizing the Distribution of Test Errors in a
Simple Model

In this section, we present a simple model, and we prove that it exhibits the main qualitative
properties we observed in Sections 3.3 and 3.4.

A full mathematical characterization ofRn,m(ε) and/orRn(ε) is a challenging task. To see why,
let us define the random variables ζi = yiw⊺ϕ(xi) for (xi, yi) ∈ Sn and ζn+h = yn+hw⊺ϕ(xn+h)
for (xn+h, yn+h) ∈ Stest (where we emphasize that the randomness is due to w). Then, for
example, the normalization term P(VS(Sn)) can be expressed as

P(VS(Sn)) = ∫

n

∏
i=1

1(yiw⊺ϕ(xi) ≥ 0)P(dw)

= P(ζ1 ≥ 0, ζ2 ≥ 0, . . . , ζn ≥ 0).
(3.11)

That is, P(VS(Sn)) can be seen as an orthant probability under the distribution P. When
P = N (0, I), we find that ζ = (ζ1, ζ2, . . . , ζn) ∼ N (0,AA⊺), where A is the n × N matrix
whose ith row is (yiϕ(xi))

⊺ and whose (i, j)th entry is yiyjϕ(xi)
⊺ϕ(xj). Computing such

a Gaussian orthant probability for a general covariance matrix is a classical problem, and
explicit formulae for them are known only in dimensions ≤ 5 and in a few other special
cases [DS55, Ste62, Abr64].

Hence, to present a model we can analyze, here we consider a simplified setting where the
testing and training samples have a fixed positive correlation with each other, i.e., for fixed
ρ ∈ (0,1],

(AA⊺)ij = yiyjϕ(xi)
⊺ϕ(xj) = ρ, (3.12)
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for each pair of indices i ≠ j in Sn ∪Stest (where here we assume ϕ(xi) are normalized to have
unit ℓ2 norm, without loss of generality).2 Under this assumption, we can leverage implicit
expressions for the normalizing term P(VS(Sn)), which makes the problem more amenable
to analysis.

We remark that to derive asymptotically valid expressions for Rn(ε) and Rn,m(ε), one may
be tempted to approximate (3.11) using off-the-shelf techniques for approximating high-
dimensional integrals, e.g., Laplace’s method. However, there are a number of pitfalls with
this approach. First, it is difficult to quantify the approximation errors, and results that
do exist are not precise enough for our purposes. Second, certain conditions for Laplace’s
method or other standard integral expansions do not hold in our setting.3 Nevertheless, we
can leverage special properties of the Gaussian distribution and quantile functions to prove
several non-trivial results. Henceforth, for sequences {an} and {bn}, the notation an ∼ bn
means an = bn(1 + o(1)) as n→∞.4

Our first result considers the setting of a single testing point (xn+1, yn+1), and it demonstrates
the effect of a larger correlation ρ on the probability of correctly classifying a new test point.
Furthermore, it shows that, at least for this simple setting, we can expect the probability of
correctly classifying a testing point to converge to 1 at a O(1/n) rate.

Theorem 3.1. Suppose we have a single testing point (xn+1, yn+1), which together with the
training data satisfies the correlation structure (3.12). Then, as nρ→∞,

P(yn+1 = sign(w⊺ϕ(xn+1)) ∣ VS(Sn)) ∼ 1 −
1 − ρ

nρ
. (3.13)

The proof of Theorem 3.1 relies mainly on a new asymptotic formula for the orthant probability
of equicorrelated Gaussian random variables. To the best of our knowledge, this is the first
of its kind, and it may be of independent interest. We state this result below in the following
Lemma.

Lemma 3. Let ρ ∈ [0, 1) and (X1, ...,Xn) ∼ N (0,Σ) with Σij = ρ for i ≠ j and Σii = 1 for all
i. Then as nρ→∞,

P(X1 ≥ 0,X2 ≥ 0, . . . ,Xn ≥ 0) ∼

√
1 − ρ

ρ
Γ(

1 − ρ

ρ
) (4π log(n))

1
2
( 1−ρ

ρ
−1)n−

1−ρ
ρ .

Theorem 3.1 then follows by carefully evaluating the ratio of the above expression at n + 1
and n.

Before stating our next result, we provide a formal definition of a critical value ε∗ which we
will reference therein.

2By correlation between data points, we mean yiyjϕ(xi)
⊺ϕ(xj) for i ≠ j.

3For example, the maximum of the function in the exponent of the integrand occurs at infinity.
4That is, it should not be confused with “has the probability distribution of” which uses the same notation.
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Definition 3.2. We say that ε∗ is a critical value if, for each c > 0, Rn(ε∗ − c) = 0 and
Rn(ε∗ + c)→ 1 as n→∞.

Our next result provides a connection between the critical value ε∗, the number of training
samples, and the correlation ρ.

Theorem 3.2. Suppose the testing and training data satisfies the correlation structure
(3.12). Let U be a gamma random variable with shape and scale parameters (1 − ρ)/ρ and 1,
respectively, i.e., U ∼ Gamma(1−ρρ ,1). Then, as nρ→∞,

Rn(ε) ∼ P(U ≤ nε). (3.14)

In particular, as nρ→∞,

ε∗ =
1 − ρ

nρ
(3.15)

is a critical value.

In this simple setting, n and ρ completely determine the distribution Rn(ε): if ρ is close
to 1, then the data points are nearly parallel, and we will have that the test errors sharply
concentrate around the critical value ε∗, even for n small. Of course, in practice, there will be
a more subtle and complicated relationship between the correlations and the full distribution
Rn(ε), which will likely be difficult to characterize precisely. Nonetheless, we believe that it
may be possible to prove concentration in the general case, without explicitly characterizing
the full distribution Rn(ε). This is captured by the following conjecture.

Conjecture 3.1. For any model class Fϕ, datasets Sn, testing distribution Prx,y (each
potentially satisfying some regularity conditions) and scaling 0 < α < 1, there exists a critical
value ε∗(α) such that limn,N→∞,n/N→αRn(ε) = 1(ε ≥ ε∗(α)) almost surely.

Theorem 3.2 provides such a result in the case when the data is equicorrelated. Previous
work using the statistical mechanics framework also prove similar results under different
simplifying assumptions, namely when the features xik

i.i.d.
∼ Unif({−1,1}), k = 1, . . . , d, and

the labels yi are generated via a teacher model w⋆ s.t. yi = sign(w⊺⋆xi) (see, e.g., Chapter
2 of [EVdB01]). However, these results typically only focus on the n > d case, which is less
relevant to the modern machine learning regime.

3.6 Discussion and Conclusion
In this chapter, we built on previous literature on the statistical mechanics of learning to
develop a framework to study the typical test error of a classifier, and we propose this as
an alternative to the more standard uniform convergence approach. We formally define the
full distribution of test errors among interpolating classifiers and introduce a method to
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compute this distribution accurately on real datasets. One of the most important findings of
our investigation is that, given a particular training and testing setup, there exists a critical
value ε∗ around which almost all interpolating classifiers’ test errors eventually concentrate.
This will not come as a surprise to the statistical physicist: such typical values commonly
appear in physical systems. However, as we have demonstrated, this critical value can differ
significantly from the error εunif, which one would obtain via a uniform convergence analysis,
especially in the interpolating/over-parameterized regime, and which may be more familiar
to the machine learner.

Our results should motivate further research into alternatives to the uniform convergence
framework, either through the lens of statistical physics or some other (likely related) perspec-
tive, and they should ultimately help resolve questions surrounding the good performance
of over-parameterized machine learning models. As a first step, we state a few potential
directions for future work building off of the results presented here.

More general function classes. While encompassing many models of interest, the function
classes Fϕ of course do not include general neural network architectures. In this paper, we
studied random feature models, which can be interpreted as neural networks with internal
weights fixed at a random initialization. Another interesting setting which may be more
tractable to study would be that of linearized networks of the form

f(x) = sign(w⊺∇F (x;w0)) (3.16)

where F is an arbitrary neural network with random initialization w0. A variety of results
have shown that these models coincide with neural networks in the large-width limit via
the neural tangent kernel [JGH18, ADH+19]. While our approach would, in theory, work
out-of-the-box for these models, in practice, these involve a very large number of features
(approximately O(LN2), where L is the number of layers, and N is the width of each
layer). We found that even with the lin-ess algorithm, sampling from P(⋅ ∣ VS(Sn)) was
impractical for these models. However, developing other methods for computation in this
setting could yield interesting insights into the advantages (and disadvantages) of various
network architectures.

Beyond the interpolating regime. The motivation for our studying interpolating clas-
sifiers comprising the version space VS(Sn) was previous work in the statistical mechanics
literature, as well as the well-known worst-case results for these models given by, e.g., Vap-
nik–Chervonenkis theory. However, this is not the only method one could use to study the
distribution of test errors. A promising alternative would be to consider the distribution
over weights w induced by some optimization algorithm, such as stochastic gradient descent
(SGD). Indeed, previous work has shown that under various assumptions, SGD produces
a Gaussian stationary distribution over weights w [MHB17]. Under other (probably more
realistic) assumptions, it leads to heavy-tailed structure in the weights [HM20, GSZ20]. An
intriguing direction for future work would be to study the distribution over test errors E(w)
induced by such a stationary distribution. It is possible that this may even simplify the
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theoretical investigation: whereas we studied weights drawn from P(⋅ ∣ VS(Sn)) (a rather
complicated distribution), it may be easier to study weights drawn from a Gaussian (or some
other tractable) distribution.
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Chapter 4

Generalization in the Best Case:
Estimating the Bayes Error Rate

The contents of this chapter are partially based on the paper "Evaluating
State-of-the-Art Classification Models Against Bayes Optimality", appearing
in NeurIPS 2021, co-authored with Huan Wang, Lav R. Varshney, Caiming
Xiong and Richard Socher [TWV+21].

4.1 Introduction
Benchmark datasets and leaderboards are prevalent in machine learning’s common task
framework [Don19]; however, this approach inherently relies on relative measures of im-
provement. It may therefore be insightful to be able to evaluate state-of-the-art (SOTA)
performance against the optimal performance theoretically achievable by any model [VKS19].
For supervised classification tasks, this optimal performance is captured by the Bayes error
rate which, were it tractable, would not only give absolute benchmarks, rather than just
comparing to previous classifiers, but also insights into dataset hardness [HB02, ZWN+20]
and which gaps between SOTA and optimal the community may fruitfully try to close.

Suppose we have data generated as (X,Y ) ∼ p, where X ∈ Rd, Y ∈ Y = {1, . . . ,K} is a label
and p is a distribution over Rd ×Y . The Bayes classifier is the rule which assigns a label to
an observation x via

y = CBayes(x) ∶= argmax
j∈Y

p(Y = j ∣X = x). (4.1)

The Bayes error is simply the probability that the Bayes classifier predicts incorrectly:

EBayes(p) ∶= p(CBayes(X) ≠ Y ). (4.2)
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The Bayes classifier is optimal, in the sense it minimizes p(C(X) ≠ Y ) over all possible
classifiers C ∶ Rd → Y. Therefore, the Bayes error is a natural measure of ‘hardness’ of a
particular learning task. Knowing EBayes should interest practitioners: it gives a natural
benchmark for the performance of any trained classifier. In particular, in the era of deep
learning, where vast amounts of resources are expended to develop improved models and
architectures, it is of great interest to know whether it is even theoretically possible to
substantially lower the test errors of state-of-the-art models, cf. [CF07].

Of course, obtaining the exact Bayes error will almost always be intractable for real-world
classification tasks, as it requires full knowledge of the distribution p. A variety of works
have developed estimators for the Bayes error, either based on upper and/or lower bounds
[BWHS16] or exploiting exact representations of the Bayes error [NXH19, Nie14]. Most of
these bounds and/or representations are in terms of some type of distance or divergence
between the class conditional distributions,

pj(x) ∶= p(X = x ∣ Y = j), (4.3)

and/or the marginal label distributions πj ∶= p(Y = j). For example, there are exact
representations of the Bayes error in terms of a particular f -divergence [NXH19], and
in a special case in terms of the total variation distance [Nie14]. More generally, there
are lower and upper bounds known for the Bayes error in terms of the Bhattacharyya
distance [BWHS16, Nie14], various f -divergences [MH14], the Henze-Penrose (HP) divergence
[MSGH18, MHD15], as well as others. Once one has chosen a desired representation and/or
bound in terms of some divergence, estimating the Bayes error reduces to the estimation
of this divergence. Unfortunately, for high-dimensional datasets, this estimation is highly
inefficient. For example, most estimators of f -divergences rely on some type of ε-ball approach,
which requires a number of samples on the order of (1/ε)d in d dimensions [NXH19, PXS11].
In particular, for large benchmark image datasets used in deep learning, this approach is
inadequate to obtain meaningful results.

Here, we take a different approach: rather than computing an approximate Bayes error of the
exact distribution (which, as we argue above, is intractable in high dimensions), we propose
to compute the exact Bayes error of an approximate distribution. The basics of our approach
are as follows.

• We show that when the class-conditional distributions are Gaussian qj(z) = N (z;µj,Σ),
we can efficiently compute the Bayes error using a variant of Holmes-Diaconis-Ross
integration proposed in [GKH20b].

• We use normalizing flows [PNR+21, KD18, FJGZ20] to fit approximate distributions
p̂j(x), by representing the original features as x = T (z) for a learned invertible trans-
formation T , where z ∼ qj(z) = N (z;µj,Σ), for learned parameters µj,Σ.
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• Lastly, we prove in Proposition 4.1 that the Bayes error is invariant under invertible
transformation of the features, so computing the Bayes error of the approximants p̂j(x)
can be done exactly by computing it for the Gaussians qj(z).

Moreover, we show that by varying the temperature of a single flow model, we can obtain an
entire class of distributions with varying Bayes errors. This recipe allows us to compute the
Bayes error of a large variety of distributions, which we use to conduct a thorough empirical
investigation of a benchmark datasets and SOTA models, producing a library of trained flow
models in the process. By generating synthetic versions of standard benchmark datasets
with known Bayes errors, and training them on SOTA deep learning architectures, we are
able to assess how well these models perform compared to the Bayes error, and find that in
some cases they indeed achieve errors very near optimal. We then investigate our Bayes error
estimates as a measure of objective difficulty of benchmark classification tasks, and produce
a ranking of these datasets based on their approximate Bayes errors.

We should note one additional point before proceeding. In general the hardness of classification
tasks can be decomposed into two relatively independent components: i) hardness caused by
the lack of samples, and ii) hardness caused by the internal data distribution p. The focus of
this work is about the latter: the hardness caused by p. Indeed, even if the Bayes error of a
particular task is known to be a particular value EBayes, it may be highly unlikely that this
error is achievable given a model trained on only N samples from p. The problem of finding
the minimal error achievable from a given dataset of size N has been called the optimal
experimental design problem [Rit00]. While this is not the focus of the present work, an
interesting direction for future work is to use our methodology to investigate the relationship
between N and the SOTA-Bayes error gap.

4.2 Computing the Bayes error of Gaussian conditional
distributions

Throughout this section, we assume the class conditional distributions are Gaussian: qj(x) =
N (z;µj,Σj). In the simplest case of binary classification with K = 2 classes, equal covariance
Σ1 =Σ2 =Σ, and equal marginals π1 = π2 = 1

2 , the Bayes error can be computed analytically
in terms of the CDF of the standard Gaussian distribution, Φ(⋅), as:

EBayes = 1 −Φ (
1
2∥Σ

−1/2(µ1 −µ2)∥2) . (4.4)

When K > 2 and/or the covariances are different between classes, there is no closed-form
expression for the Bayes error. Instead, we work from the following representation:

EBayes = 1 −
K

∑
k=1

πk ∫ ∏
j≠k

1(qj(z) < qk(z))N (dz;µk,Σk). (4.5)
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Figure 4.1: We compare the Bayes error estimated using HDR integration [GKH20b] with the exact
error in the binary classification with equal covariance case given in (4.4). On the right we show the
relative error from numerical integration. Shaded region on both plots shows the range over 100
runs. We see the integration routine gives highly accurate estimates. Here we use dimension d = 784,
and take µ1,µ2 to be randomly drawn unit vectors, and Σ = τ2I where τ is the temperature.

In the general case, the constraints qj(z) < qk(z) are quadratic, with qj(z) < qk(z) occurring
if and only if:

−(z −µj)
⊺Σ−1j (z −µj) − log detΣj < −(z −µk)

⊺Σ−1k (z −µk) − log detΣk. (4.6)

As far as we know, there is no efficient numerical integration scheme for computing Gaussian
integrals under general quadratic constraints of this form. However, if we further assume the
covariances are equal, Σj = Σ for all j = 1, . . . ,K, then the constraint (4.6) becomes linear, of
the form

a⊺jkz + bjk > 0, (4.7)

where ajk ∶= 2Σ−1(µj − µk) and bjk ∶= µ
⊺
kΣ
−1µk − µ

⊺
jΣ
−1µj. Thus expression (4.5) can be

written as

EBayes = 1 −
K

∑
k=1

πk ∫ ∏
j≠k

1(a⊺jkz + bjk > 0)N (dz;µk,Σ). (4.8)

Computing integrals of this form is precisely the topic of the recent paper [GKH20b], which
exploited the particular form of the linear constraints and the Gaussian distribution to
develop an efficient integration scheme using a variant of the Holmes-Diaconis-Ross method
[DH95]. This method is highly efficient, even in high dimensions1. In Figure 4.1, we show
the estimated Bayes error using this method on a synthetic binary classification problem in

1Note that the integrals appearing in (4.8) are really only (K − 1)-dimensional integrals, since they only
depend on K − 1 variables of the form a⊺jkx + bjk.
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d = 784 dimensions, where we can use closed-form expression (4.4) to measure the accuracy
of the integration. As we can see, it is highly accurate.

This method immediately allows us to investigate the behavior of large neural network
models on high-dimensional synthetic datasets with class conditional distributions qj(z) =
N (z;µj,Σ). However, in the next section, we will see that we can use normalizing flows to
estimate the Bayes error of real-world datasets as well.

4.3 Normalizing flows and invariance of the Bayes error
Normalizing flows are a powerful technique for modeling high-dimensional distributions
[PNR+21]. The main idea is to represent the random variable x as a transformation Tϕ
(parameterized by ϕ) of a vector z sampled from some, usually simple, base distribution
q(z;ψ) (parameterized by ψ), i.e.

x = Tϕ(z) where z ∼ q(z;ψ). (4.9)

When the transformation Tϕ is invertible, we can obtain the exact likelihood of x using a
standard change of variable formula:

p̂(x; θ) = q(T −1ϕ (x);ψ) ∣detJTϕ
(T −1ϕ (x))∣

−1
, (4.10)

where θ = (ϕ,ψ) and JTϕ
is the Jacobian of the transformation Tϕ. The parameters θ can be

optimized, for example, using the KL divergence:

L(θ) =DKL(p(x) ∥ p̂(x; θ)) ≈ −
1

N

N

∑
i=1

log q(T −1ϕ (xi), ψ) + log ∣detJT−1
ϕ
(xi)∣ + const. (4.11)

This approach is easily extended to the case of learning class-conditional distributions by
parameterizing multiple base distributions qj(z;ψj) and computing

p̂j(x; θ) = qj(T
−1
ϕ (x);ψj) ∣detJTϕ

(T −1ϕ (x))∣
−1
. (4.12)

For example, we can take qj(z;µj,Σ) = N (z;µj,Σ), where we fit the parameters µj,Σ
during training. This is commonly done to learn class-conditional distributions, e.g. [KD18].
This is the approach we take in the present work. In practice, the invertible transformation
Tϕ is parameterized as a neural network, though special care must be taken to ensure the
neural network is invertible and has a tractable Jacobian determinant. Here, we use the Glow
architecture [KD18] throughout our experiments, as detailed in Section 4.4.

Invariance of the Bayes Error

Normalizing flow models are particularly convenient for our purposes, since we can prove the
Bayes error is invariant under invertible transformation. This is formalized as follows.
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Proposition 4.1. Let (X,Y ) ∼ p, X ∈ Rd, Y ∈ Y = {1, . . . ,K}, and let EBayes(p) be the
associated Bayes error of this distribution. Let T ∶ Rd → Rd be an invertible map and denote q
the associated joint distribution of Z = T (X) and Y . Then EBayes(p) = EBayes(q).

Proof. For convenience, denote ∣A∣ as the absolute value determinant of a matrix A. Using
the representation derived in [NXH19], we can write the Bayes error as

EBayes(p) = 1 − π1 −
K

∑
k=2
∫ max(0, πk − max

1≤i≤k−1
πi
pi(x)

pk(x)
)pk(x)dx. (4.13)

Then if z = T (x), we have that qk(z) = pk(T (z))∣JT (z)∣, and dx = ∣JT−1(z)∣dz. Hence

EBayes(p) = 1 − π1 −
K

∑
k=2
∫ max(0, πk − max

1≤i≤k−1
πi
pi(x)

pk(x)
)pk(x)dx

= 1 − π1 −
K

∑
k=2
∫ max(0, πk − max

1≤i≤k−1
πi
qi(z)∣JT (z)∣

qk(z)∣JT (z)∣
) qk(z)∣JT (z)∣∣JT−1 ∣(z)dz.

By the Inverse Function Theorem, ∣JT−1(z)∣ = ∣JT (z)∣−1, and so we get

EBayes(p) = 1 − π1 −
K

∑
k=2
∫ max(0, πk − max

1≤i≤k−1
πi
qi(z)∣JT (z)∣

qk(z)∣JT (z)∣
) qk(z)∣JT (z)∣∣JT (z)∣

−1dz

= 1 − π1 −
K

∑
k=2
∫ max(0, πk − max

1≤i≤k−1
πi
qi(z)

qk(z)
) qk(z)dz

= EBayes(q),

which completes the proof.

This result means that we can compute the exact Bayes error of the approximate distribu-
tions p̂j(x; θ) using the methods introduced in Section 4.2 with the Gaussian conditionals
qj(z;µj,Σ). If in addition the flow model p̂j(x; θ) is a good a approximation for the true
class-conditional distribution pj(x), then we expect to obtain a good estimate for the true
Bayes error. In what follows, we will see examples both of when this is and is not the case.

Varying the Bayes error using temperature

An important aspect of the normalizing flow approach is that we can in fact generate
a whole family of distributions from a single flow model. To do this, we can vary the
temperature τ of the model by multiplying the covariance Σ of the base distribution by
τ 2 to get qj,τ(z) ∶= N (z;µj, τ 2Σ). The same invertible map Tϕ induces new conditional
distributions,

p̂j,τ(x; θ) = qj,τ(T
−1
ϕ (x);ψj) ∣detJTϕ

(T −1θ (x))∣
−1
, (4.14)
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as well as the associated joint distribution p̂τ(y = j,x; θ) = πj p̂j,τ(x; θ).

It can easily be seen that the Bayes error of p̂τ is increasing in τ .

Proposition 4.2. The Bayes error of flow models is monotonically increasing in τ . That is,
for 0 < τ ≤ τ ′, we have that EBayes(p̂τ) ≤ EBayes(p̂τ ′).

This fact means that we can easily generate datasets of varying difficulty by changing the
temperature τ . For example, in Figure 4.2 we show samples generated by a flow model (see
Section 4.4 for implementation details) trained on the Fashion-MNIST dataset at various
values of temperature and the associated Bayes error. As τ → 0+, the distribution p̂j,τ
concentrate on the mode of the distributions p̂j , making the classification tasks easy, whereas
when τ gets large, the distributions p̂j,τ become more uniform, making classification more
challenging. In practice, this can be used to generate datasets with almost arbitrary Bayes
error: for any prescribed error ε in the range of the map τ ↦ EBayes(p̂τ), we can numerically
invert this map to find τ for which EBayes(p̂τ) = ε.

4.4 Empirical investigation

Setup

Datasets and data preparation. We train flow models2 on a wide variety of standard
benchmark datasets: MNIST [LBBH98], Extended MNIST (EMNIST) [CATvS17], Fashion
MNIST [XRV17], CIFAR-10 [Kri09], CIFAR-100 [Kri09], SVHN [NWC+11], and Kuzushiji-
MNIST [CBIK+18]. The EMNIST dataset has several different splits, which include splits by
digits, letters, merge, class, and balanced. The images in MNIST, Fashion-MNIST, EMNIST,
and Kuzushiji-MNIST are padded to 32-by-32 pixels.3

We remark that we observe our Bayes error estimator runs efficiently when the input is
of dimension 32-by-32-by-3. However it is in general highly memory intensive to run the
HDR integration routine on significantly larger datasets, e.g. when the input size grows to
64-by-64-by-3. As a consequence, in our experiments we only work on datasets of dimension
no larger than 32-by-32-by-3.

Modeling and training. The normalizing flow model we use in our experiments is a pytorch
implementation [Glo] of Glow [KD18]. In all our the experiments, affine coupling layers are
used, the number of steps of the flow in each level K = 16, the number of levels L = 3, and
number of channels in hidden layers C = 512.

2Code can be found at https://github.com/salesforce/DataHardness.
3Glow implementation requires the input dimension to be power of 2.

https://github.com/salesforce/DataHardness
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(a) τ=0.2, EBayes =1.11e-16 (b) τ=1.0, EBayes =3.36e-2

(c) τ=1.4, EBayes =1.07e-1 (d) τ=3.0, EBayes =4.06e-1

Figure 4.2: Generated Fashion-MNIST Samples with Different Temperatures

During training, we minimize the Negative Log Likelihood Loss (NLL)

NLL({xi, yi}) = −
1

N

N

∑
i=1
(log pyi(xi; θ) + logπyi) . (4.15)

As suggested in [KD18], we also add a classification loss to predict the class labels from the
second-to-last layer of the encoder with a weight of λ. During the experiments we traversed
configurations with λ = {0.01,0.1,1.0,10}, and report the numbers produced by the model
with the smallest NLL loss on the test set. Note here even though we add the classification
loss in the objective as a regularizer, the model is selected based on the smallest NLL loss in
the test set instead of the classification loss or the total loss. The training and evaluation are
done on a workstation with 2 NVIDIA V100 GPUs.

Evaluating SOTA models against generated datasets

In this section, we use our trained flow models to generate synthetic versions of standard
benchmark datasets, for which the Bayes error is known exactly. In particular, we generate
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Figure 4.3: Test errors of synthetic versions of MNIST and Fashion-MNIST, generated at various
temperatures, and their corresponding Bayes error. Here we used 60,000 training samples, and
10,000 testing samples, to mimic the original datasets. The model used in Fashion-MNIST was
a Wide-ResNet-28-10, which attains nearly start of the accuracy on the original Fashion-MNIST
dataset [ZZK+20]. The model used in MNIST is a popular ConvNet [Con].
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Figure 4.4: Errors of various model architectures (from old to modern) on a Synthetic Fashion-MNIST
dataset (τ = 1). We can see that for this task, while accuracy has improved with modern models,
there is still a substantial gap between the SOTA and Bayes optimal.
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synthetic versions of the MNIST and Fashion-MNIST datasets at varying temperatures. As
we saw in Section 4.3, varying the temperature allows us to generate datasets with different
difficulty. Here, we train a Wide-ResNet-28-10 model (i.e. a ResNet with depth 28 and
width multiple 10) [ZK16, Wid] on these datasets, and compare the test error to the exact
Bayes error for these problems. This Wide-ResNet model (together with appropriate data
augmentation) attains nearly state-of-the-art accuracy on the original Fashion-MNIST dataset
[ZZK+20], and so we expect that our results here reflect roughly the best accuracy presently
attainable on these synthetic datasets as well. To make the comparison fair, we use a training
set size of 60,000 to mimic the size of the original MNIST series of datasets.

The Bayes errors as well as the test errors achieved by the Wide-ResNet or ConvNet models
are shown in Figure 4.3. As one would expect, the errors of trained models increase with
temperature. It can be observed that Wide-ResNet and ConvNet are able to achieve close-to-
optimal performance when the dataset is relatively easy, e.g., τ < 1 for MNIST and τ < 0.5 for
Fashion-MNIST. The gap becomes more significant when the dataset is harder, e.g. τ > 1.5
for MNIST and τ > 1 for Fashion-MNIST.

For the Synthetic Fashion-MNIST dataset at temperature τ = 1, in addition to the Wide-
ResNet (WRN-28) considered above, we also trained three other architectures: a simple
linear classifier (Linear), a 1-hidden layer ReLU network (MLP) with 500 hidden units,
and a standard AlexNet convolutional architecture [KSH12]. The resulting test errors, as
well as the Bayes error, are shown in Figure 4.4. We see that while the development of
modern architectures has led to substantial improvement in the test error, there is still
a reasonably large gap between the performance of the SOTA Wide-ResNet and Bayes
optimality. Nonetheless, it is valuable to know that, for this task, the state-of-the-art has
substantial room to be improved.

Dataset Hardness Evaluation

A important application of our Bayes error estimator is to estimate the inherent hardness
of a given dataset, regardless of model. We run our estimator on several popular image
classification corpora and rank them based on our estimated Bayes error. The results are
shown in Table 4.1. As a comparison we also put the SOTA numbers in the table.

Before proceeding, we make two remarks. First, all of the Bayes errors reported here were
computed using temperature τ = 1. This is for two main reasons: 1) setting τ = 1 reflects
the flow model attaining the lowest testing NLL, and hence is in some sense the “best”
approximation for the true distribution, 2) in our experiments, the ordering of the hardness
of classes is unchanged by varying temperature, and so taking τ = 1 is a reasonable default.
Second, the reliability of the Bayes errors reported here as a measure of inherent difficulty
are dependent on the quality of the approximate distribution p̂; if this distribution is not an
adequate estimate of the true distribution p, then it is possible that the Bayes errors do not
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Corpus #classes #samples NLL Bayes Error SOTA Error [Pap]
MNIST 10 60,000 8.00e2 1.07e-4 1.6e-3 [BKD20]
EMNIST (digits) 10 280,000 8.61e2 1.21e-3 5.7e-3 [PNK+20]
SVHN 10 73,257 4.65e3 7.58e-3 9.9e-3 [BKD20]
Kuzushiji-MNIST 10 60,000 1.37e3 8.03e-3 6.6e-3 [Gas17]
CIFAR-10 10 50,000 7.43e3 2.46e-2 3e-3 [FKMN21]
Fashion-MNIST 10 60,000 1.75e3 3.36e-2 3.09e-2 [TKK21]
EMNIST (letters) 26 145,600 9.15e2 4.37e-2 4.12e-2 [KAJ+20]
CIFAR-100 100 50,000 7.48e3 4.59e-2 3.92e-2 [FKMN21]
EMNIST (balanced) 47 131,600 9.45e2 9.47e-2 8.95e-2 [KAJ+20]
EMNIST (bymerge) 47 814,255 8.53e2 1.00e-1 1.90e-1 [CATvS17]
EMNIST (byclass) 62 814,255 8.76e2 1.64e-1 2.40e-1 [CATvS17]

Table 4.1: We evaluate the estimated Bayes error on image data sets and rank them by relative
difficulty. Comparisons with prediction performance of state-of-the-art neural network models shows
that our estimation is highly aligned with empirically observed performance.

accurately reflect the true difficulty of the original dataset. Therefore, we also report the test
NLL for each model as a metric to evaluate the quality of the approximant p̂.

First, we observe that, by and large, the estimated Bayes errors align well with SOTA.
In particular, if we constrain the NLL loss to be smaller than 1000, then ranking by our
estimated Bayes error aligns exactly with SOTA.

Second, the NLL loss in MNIST, Fashion MNIST, EMNIST and Kuzushiji-MNIST is relatively
low, suggesting a good approximation by normalizing flow. However corpora such as CIFAR-
10, CIFAR-100, and SVHN may suffer from a lack of training samples. In general large NLL
loss may be due to either insufficient model capacity or lack of samples. In our experiments,
we always observe the Glow model is able to attain essentially zero error on the training
corpus, so it is highly possible the large NLL loss is caused by the lack of training samples.

Third, for datasets such as MNIST, EMNIST (digits, letters, balanced), SVHN, Fashion-
MNIST, Kuzushiji-MNIST, CIFAR-10, and CIFAR-100 the SOTA numbers are roughly the
same order of magnitude as the Bayes error. On the other hand, for EMNIST (bymerge and
byclass) there is still substantial gap between the SOTA and estimated Bayes errors. This is
consistent with the fact that there is little published literature about these two datasets; as a
result models for them are not as well-developed.

4.5 Conclusions and Future Directions
In this chapter, we have proposed a new approach to benchmarking state-of-the-art models.
Rather than comparing trained models to each other, our approach leverages normalizing
flows and a key invariance result to be able to generate benchmark datasets closely mimicking
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standard benchmark datasets, but with exactly controlled Bayes error. This allows us to
evaluate the performance of trained models on an absolute, rather than relative, scale.
In addition, our approach naturally gives us a method to assess the relative hardness of
classification tasks, by comparing their estimated Bayes errors.

While our work has led to several interesting insights, there are also several limitations at
present that may be a fruitful source of future research. For one, it is possible that the
Glow models we employ here could be replaced with higher quality flow models, which would
perhaps lead to better benchmarks and better estimates of the hardness of classification
tasks. To this end, it is possible that the well-documented label noise in standard datasets
contributes to our inability to learn higher-quality flow models [NAM21]. To the best of our
knowledge, there has not been significant work using normalizing flows to accurately estimate
class-conditional distributions for NLP datasets; this in itself would be an interesting direction
for work. Second, a major limitation of our approach is that there isn’t an immediately
obvious way to assess how well the Bayes error of the approximate distribution EBayes(p̂)
estimates the true Bayes error EBayes(p). Theoretical results which bound the distance between
these two quantities, perhaps in terms of a divergence D(p∥p̂), would be of great interest
here.

As detailed in [VKS19], there may be pernicious impacts of the common task framework
and the so-called Holy Grail performativity that it induces. For example, a singular focus
by the community on the leaderboard performance metrics without regard for any other
performance criteria such as fairness or respect for human autonomy. The work here may
or may not exacerbate this problem, since trying to approach fundamental Bayes limits is
psychologically different than trying to do better than SOTA. As detailed in [Var20], the
shift from competing against others to a pursuit for the fundamental limits of nature may
encourage a wider and more diverse group of people to participate in ML research, e.g. those
with personality type that has less orientation to competition. It is still to be investigated
how to do this, but the ability to generate infinite data of a given target difficulty (yet style of
existing datasets) may be used to improve the robustness of classifiers and perhaps decrease
spurious correlations.
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Chapter 5

Average-Case Improvement Through
Ensembling

The contents of this chapter are partially based on the pre-print, currently
under review, "When are Ensembles Really Effective?", co-authored with
Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson and Michael W. Mahoney
[TKY+23].

5.1 Introduction
The fundamental ideas underlying ensemble methods can be traced back at least two centuries,
with Condorcet’s Jury Theorem among its earliest developments [Con85]. This result asserts
that if each juror on a jury makes a correct decision independently and with the same
probability p > 1/2, then the majority decision of the jury is more likely to be correct with
each additional juror. The general principle of aggregating knowledge across imperfectly
correlated sources is intuitive, and it has motivated many ensemble methods used in modern
statistics and machine learning practice. Among these, tree-based methods like random
forests [Bre01] and XGBoost [CG16] are some of the most effective and widely-used.

With the growing popularity of deep learning, a number of approaches have been proposed
for ensembling neural networks. Perhaps the simplest of them are so-called deep ensembles,
which are ensembles of neural networks trained from independent initializations [ABP+22,
ABPC22, FHL19]. In some cases, it has been claimed that such deep ensembles provide
significant improvement in performance [FHL19, OFR+19, ALMV20]. Such ensembles have
also been used to obtain uncertainty estimates for prediction [LPB17] and to provide more
robust predictions under distributional shift. However, the benefits of deep ensembling are
not universally accepted. Indeed, other works have found that ensembling is less necessary for
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larger models, and that in some cases a single larger model can perform as well as an ensemble
of smaller models [HVD+15, BCNM06, GJS+20, ABP+22]. Similarly mixed results, where
empirical performance does not conform with intuitions and popular theoretical expectations,
have been reported in the Bayesian approach to deep learning [INLW21]. Furthermore,
an often-cited practical issue with ensembling, especially of large neural networks, is the
constraint of storing and performing inference with many distinct models.

In light of the increase in computational cost, it is of great value to understand exactly when
we might expect ensembling to improve performance non-trivially. In particular, consider the
following practical scenario: a practitioner has trained a single (perhaps large and expensive)
model, and would like to know whether they can expect significant gains in performance from
training additional models and ensembling them. This question lacks a sufficient answer,
both from the theoretical and empirical perspectives, and hence motivates the main question
of this chapter:

When are ensembles really effective?

The present work addresses this question, both theoretically and empirically, under very
general conditions. We focus our study on the most popular ensemble classifier—the majority
vote classifier (Definition 5.1), which we denote by hMV—although our framework also covers
variants such weighted majority vote methods.

Theoretical results. Our main theoretical contributions, contained in Section 5.3, are
as follows. First, we formally define the ensemble improvement rate (EIR, Definition 5.3),
which measures the decrease in error rate from ensembling, on a relative scale. We then
introduce a new condition called competence (Assumption 5.1) that rules out pathological
cases, allowing us to prove stronger bounds on the ensemble improvement rate. Specifically,
1) we prove (in Theorem 5.1) that competent ensembles can never hurt performance, and
2) we prove (in Theorem 5.2) that the EIR can be upper and lower bounded by linear
functions of the disagreement-error ratio (DER, Definition 5.4). Our theoretical results
predict that ensemble improvement will be high whenever disagreement is large
relative to the average error rate (i.e., DER > 1). Moreover, we show (in Appendix
D.1) that as Corollaries of our theoretical results, we obtain new bounds on the error rate
of the majority vote classifier that significantly improve on previous results, provided the
competence assumption is satisfied.

Empirical results. In light of our new theoretical understanding of ensembling, we perform
a detailed empirical analysis of ensembling in practice. In Section 5.4, we evaluate the
assumptions and predictions made by the theory presented in Section 5.3. In particular,
we verify on a variety of tasks that the competence condition holds, we verify empirically
the linear relationship between the EIR and the DER, as predicted by our bounds, and
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we suggest directions through which our theoretical results might be improved. In Section
5.5, we provide significant evidence for distinct behavior arising for ensembles in and out
of the “interpolating regime,” i.e., when each of the constituent classifiers in an ensemble
has sufficient capacity to achieve zero training error. We show 1) that interpolating
ensembles exhibit consistently lower ensemble improvement rates, and 2) that
this corresponds to ensembles transitioning (sometimes sharply) from the regime
DER > 1 to DER < 1. Finally, we also show that tree-based ensembles represent a unique
exception to this phenomenon, making them particularly well-suited to ensembling.

In addition to the results presented in the main text, we provide supplemental theoretical
results (including all proofs) in Appendix D.1, as well as supplemental empirical results in
Appendix D.2.

5.2 Background and preliminaries
In this section, we present some relevant background and setup.

Setup

In this work, we focus on theK-class classification setting, wherein the data (X,Y ) ∈ X×Y ∼ D
consist of features x ∈ X and labels y ∈ Y = {1, . . . ,K}. Classifiers are then functions h ∶ X → Y
that belong to some set H. To measure the performance of a single classifier h on the data
distribution D, we use the usual error rate:

LD(h) = EX,Y ∼D[1(h(X) ≠ Y )].

For notational convenience, we drop the explicit dependence on D whenever it is apparent
from context.

A central object in our study is a distribution ρ over classifiers. Depending on the context,
this distribution could represent a variety of different things. For example, ρ could be:

i) A discrete distribution on a finite set of classifiers {h1, . . . , hM} with weights ρ1, . . . , ρM ,
e.g., representing normalized weights in a weighted ensembling scheme;

ii) A distribution over parameters θ of a parametric family of models, hθ, determined, e.g.,
by a stochastic optimization algorithm with random initialization;

iii) A Bayesian posterior distribution.

The distribution ρ induces two error rates of interest. The first is the average error rate
of any single classifier under ρ, defined to be Eh∼ρ[L(h)]. The second is the error rate
of the majority vote classifier , hMV, which is defined for a distribution ρ as follows.
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Definition 5.1 (Majority vote classifier). Given ρ, the majority vote classifier is the
classifier which, for an input x, predicts the most probable class for this input among classifiers
drawn from ρ,

hMV(x) = argmax
j

Eh∼ρ[1(h(x) = j)].

In the Bayesian context, ρ = ρ(h ∣ Xtrain, ytrain) is a posterior distribution over classifiers.
In this case, the majority vote classifier is often called the Bayes classifier, and the error
rate L(hMV) is called the Bayes error rate. In such contexts, the average error rate is often
referred to as the Gibbs error rate associated with ρ and D.

Finally, we will present results in terms of the disagreement rate between classifiers drawn
from a distribution ρ, defined as follows.

Definition 5.2 (Disagreement). The disagreement rate between two classifiers h,h′
is given by DD(h,h′) = EX∼D[1(h(X) ≠ h′(X))]. The expected disagreement rate is
Eh,h′∼ρ[DD(h,h′)], where h,h′ ∼ ρ are drawn independently.

Prior work

Ensembling theory. Perhaps the simplest general relation between the majority vote error
rate and the average error rate guarantees only that the majority vote classifier is no worse
than twice the average error rate [LMRR17, MLIS20]. To see this, let Wρ ≡ Wρ(X,Y ) =
Eh∼ρ[1(h(X) ≠ Y )] denote the proportion of erroneous classifiers in the ensemble for a
randomly sampled input-output pair (X,Y ) ∼ D, and note that E[Wρ] = E[L(h)]. Then, by
a “first-order” application of Markov’s inequality, we have that

0 ≤ L(hMV) ≤ P(Wρ ≥ 1/2) ≤ 2E[Wρ] = 2Eh∼ρ[L(h)]. (5.1)

This bound is almost always uninformative in practice. Indeed, it may seem surprising that
an ensemble classifier could perform worse than the average of its constituent classifiers, much
less a factor of two worse. Nonetheless, the first-order upper bound is, in fact, tight: there
exist distributions ρ (over classifiers) and D (over data) such that the majority vote classifier is
twice as erroneous as any one classifier, on average. As one might expect, however, this tends
to happen only in pathological cases; we give examples of such ensembles in Appendix D.3.

To circumvent the shortcomings of the simple first-order bound, more recent approaches
have developed bounds incorporating “second-order” information from the distribution ρ
[MLIS20]. One successful example of this is given by a class of results known as C-bounds
[GLL+15, LMRR17]. The most general form of these bounds states, provided E[Mρ(X,Y )] > 0,
that

L(hMV) ≤ 1 −
E[Mρ(X,Y )]2

E[M2
ρ (X,Y )]

, (5.2)
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where Mρ(X,Y ) = Eh∼ρ[1(h(X) = Y )] −maxj≠Y Eh∼ρ[1(h(X) = j)] is called the margin. In
the binary classification case, the condition E[Mρ(X,Y )] > 0 is equivalent to the assumption
Eh∼ρ[L(h)] < 1/2. Hence, it can be viewed as a requirement that individual classifiers are
“weak learners.” The same condition is used to derive a very similar bound for random forests
in [Bre01], which is then further upper bounded to obtain a more intuitive (though weaker)
bound in terms of the “c/s2” ratio. Relatedly, [MLIS20] obtains a bound on the error rate of
the majority-vote classifier, in the special case of binary classification, directly in terms of the
disagreement rate, taking the form 4E[L(h)]−2E[D(h,h′)]. We note that our theory improves
this bound by factor of 2 (see Appendix D.1). Other results obtain similar expressions, but
in terms of different loss functions, e.g., cross-entropy loss [ABP+22, OCnM22].

Other related studies. In addition to theoretical results, there have been a number of
recent empirical studies investigating the use of ensembling. Perhaps the most closely related
is [ABPC22], which shows, perhaps surprisingly, that ensembles do not benefit significantly
from encouraging diversity during training. In contrast to the present work, [ABPC22] focuses
on the cross entropy loss for classification (which facilitates somewhat simpler theoretical
analysis), whereas we focus on the more intuitive and commonly used classification error rate.
Moreover, while [ABPC22] study the ensemble improvement gap (i.e., the difference between
the average loss of a single classifier and the ensemble loss), we focus on the gap in error rates
on a relative scale. As we show, this provides much finer insights into ensembles improvement.
To complement this, [FHL19] study ensembling from a loss landscape perspective, evaluating
how different approaches to ensembling, such as deep ensembles, Bayesian ensembles, and
local methods like Gaussian subspace sampling compare in function and weight space diversity.
Other recent work has studied the use of ensembling to provide uncertainty estimates for
prediction [LPB17], and to improve robustness to out-of-distribution data [OFR+19], although
the ubiquity of these findings has recently been questioned in [ABP+22].

5.3 Ensemble improvement, competence, and the
disagreement-error ratio
In this section, our goal is to characterize theoretically the rate at which ensembling improves
performance. To do this, we first need to formalize a metric to quantify the benefit from
ensembling. One natural way of measuring this improvement would be to compute the gap
Eh∼ρ[L(h)] − L(hMV). A similar gap was the focus of [ABPC22], although in terms of the
cross-entropy loss, rather than the classification error rate. However, the unnormalized gap
can be misleading—in particular, it will tend to be small whenever the average error rate
itself is small, thus making it impractical to compare, e.g., across tasks of varying difficulty.
Instead, we work with a normalized version of the average-minus-ensemble error rate gap,
where the effect of the normalization is to measure this error in a relative scale. We call this
the ensemble improvement rate.
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Definition 5.3 (Ensemble improvement rate). Given distributions ρ over classifiers and
D over data, provided that Eh∼ρ[L(h)] ≠ 0, the ensemble improvement rate (EIR) is
defined as

EIR =
Eh∼ρ[L(h)] −L(hMV)

Eh∼ρ[L(h)]
.

In contrast to the unnormalized gap, the ensemble improvement rate can be large even
for very easy tasks with a small average error rate. Recall the simple first-order bound on
the majority-vote classifier: L(hMV) ≤ 2E[L(h)]. Rearranging, we deduce that EIR ≥ −1.
Unfortunately, in the absence of additional information, this first-order bound is in fact tight:
one can construct ensembles for this L(hMV) = 2E[L(h)] (see Appendix D.3). However, this
bound is inconsistent with how ensembles generally behave and practice, and indeed it tells
us nothing about when ensembling can improve performance. In the subsequent sections, we
derive improved bounds on the EIR that do.

Competent ensembles never hurt

Surprisingly, to our knowledge, there is no known characterization of the majority-vote
error rate that guarantees it can be no worse than the error rate of any individual classifier,
on average. Indeed, it turns out this is the result of strange behavior that can arise for
particularly pathological ensembles rarely encountered in practice (see Appendix D.3 for a
more detailed discussion of this). To eliminate these cases, we introduce a mild condition
that we call competence.

Assumption 5.1 (Competence). Let Wρ ≡Wρ(X,Y ) = Eh∼ρ[1(h(X) ≠ Y )]. The ensemble ρ
is competent if for every 0 ≤ t ≤ 1/2,

P(Wρ ∈ [t,1/2)) ≥ P(Wρ ∈ [1/2,1 − t]).

The competence assumption guarantees that the ensemble is not pathologically bad, and in
particular it eliminates the scenarios under which the naive first-order bound (5.1) is tight.
As we will show in Section 5.4, the competence condition is quite mild, and it holds broadly
in practice. Our first result uses competence to improve non-trivially the naive first-order
bound.

Theorem 5.1. Competent ensembles never hurt performance, i.e., EIR ≥ 0.

Translated into a bound on the majority vote classifier, Theorem 5.1 guarantees that L(hMV) ≤

E[L(h)], improving on the naive first-order bound (5.1) by a factor of two. To the best of
our knowledge, the competence condition is the first of its kind, in that it guarantees what is
widely observed in practice, i.e., that ensembling cannot hurt performance. However, it is
insufficient to answer the question of how much ensembling can improve performance. To
address this question, we turn to a "second-order" analysis involving the disagreement rate.
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Quantifying ensemble improvement with the disagreement-error
ratio

Our central result in this section will be to relate the EIR to the ratio of the disagreement to
average error rate, which we define formally below.

Definition 5.4 (Disagreement-error ratio). Given the distributions ρ over classifiers and D
over data, provided that Eh∼ρ[L(h)] ≠ 0, the disagreement-error ratio (DER) is defined
as

DER =
Eh,h′∼ρ[D(h,h′)]

Eh∼ρ[L(h)]
.

Our next result relates the EIR to a linear function of the DER.

Theorem 5.2. For any competent ensemble ρ of K-class classifiers, provided Eh∼ρ[L(h)] ≠ 0,
the ensemble improvement rate satisfies

DER ≥ EIR ≥
2(K − 1)

K
DER −

3K − 4

K
.

Note that neither Theorem 5.1 nor Theorem 5.2 is uniformly stronger. In particular, if
DER < (3K − 4)/(2K − 2) then the lower bound provided in Theorem 5.1 will be superior to
the one in Theorem 5.2.

Theorem 5.2 predicts that the EIR is fundamentally governed by a linear relationship with
the DER — a result that we will verify empirically in Section 5.4. Importantly, we note
that there are two distinct regimes in which the bounds in Theorem 5.2 provide non-trivial
guarantees.

DER small (< 1). In this case, by the trivial bound (5.1), EIR ≤ 1, and thus the upper
bound in Theorem 5.2 guarantees ensemble improvement cannot be too large whenever
DER < 1, that is, whenever disagreement is small relative to the average error rate.

DER large (> 1). In this case, the lower bound in Theorem 5.2 guarantees ensemble
improvement whenever disagreement is sufficiently large relative to the average error
rate, in particular when DER ≥ (3K − 4)/(2K − 2) ≥ 1.

In our empirical evaluations, we will see that these two regimes (DER > 1 and DER < 1)
strongly distinguish between situations in which ensemble improvement is high, and when
the benefits of ensembling are significantly less pronounced.

Moreover, Theorem 5.2 captures an important subtlety in the relationship between ensemble
improvement and predictive diversity. In particular, while general intuition—and a significant
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body of prior literature, as discussed in Section 5.2—suggests that higher disagreement leads
to high ensemble improvement, this may not be the case if the disagreement is nominally
large, but small relative to the average error rate.

Remark 5.1 (Corollaries of Theorems 5.1 and 5.2). Using some basic algebra, the upper and
lower bounds presented in Theorems 5.1 and 5.2 can easily be translated into upper and lower
bounds on the error rate of the majority vote classifier itself. For the sake of space, we defer
discussion of these Corollaries to Appendix D.1, although we note that the resulting bounds
constitute significant improvements on existing bounds, which we verify both analytically
(when possible) and empirically.

5.4 Evaluating the theory
In this section, we investigate the assumptions and predictions of the theory proposed in
Section 5.3. In particular we will show 1) that the competence assumption holds broadly in
practice, across a range of architectures, ensembling methods and datasets, and 2) that the
EIR exhibits a close linear relationship with the DER, as predicted by Theorem 5.2.

Before presenting our findings, we first briefly describe the experimental settings analyzed
in the remainder of the paper. Our goal is to select a sufficiently broad range of tasks and
methods so as to demonstrate the generality of our conclusions.

Setup for empirical evaluations

In Table 5.1 we provide a brief description of our experimental setup; more extensive
experimental details can be found in Appendix D.2.

Table 5.1: Datasets and ensembles used in empirical evaluations, where C denotes the number of
classes, and M denotes the number of classifiers.

Datasets
Dataset C Reference
MNIST (5K subset) 10 [Den12]
CIFAR-10 10 [KH+09]
IMDB 2 [MDP+11]
QSAR 2 [BGCT19]
Thyroid 2 [QCHL87]
GLUE (7 tasks) 2-3 [WSM+19]

Ensembles
Base classifier Ensembling M Reference
ResNet20-Swish Bayesian Ens. 100 [IVHW21]
ResNet18 Deep Ens. 5 [KH+09]
CNN-LSTM Bayesian Ens. 100 [IVHW21]
BERT (fine-tune) Deep Ens. 25 [DCLT19, SYT+22]
Random Features Bagging 30 N/A
Decision Trees Random Forests 100 [PVG+11, Bre01]

Verifying competence in practice.

Our theoretical results in Section 5.3 relied on the competence condition. One might wonder
whether competent ensembles exist, and if so how ubiquitous they are. Here, we test that
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Figure 5.1: Verifying the competence assumption in practice. Wρ(X,Y ) in Assumption 5.1
is estimated using hold-out data. Across all tasks, > , supporting Assumption 5.1.

Figure 5.2: EIR is linearly correlated with the DER. We plot the EIR against the DER across
a variety of experimental settings, and we observe a close linear relationship between the EIR and
DER, as predicted by our theoretical results. In the legend, we also report the equation for the line
of best fit within each setting, as well as the Pearson correlation.

assumption. (That is, we test not just the predictions of our theory, but also the assumptions
of our theory.)

We have observed that the competence assumption is empirically very mild, and that in
practice it applies very broadly. In Figure 5.1, we estimate both P(Wρ ∈ [t,1/2)) and
P(Wρ ∈ [1/2,1 − t]) on test data, validating that competence holds for various types of
ensembles across a subset of tasks. To do this, given a test set of examples {(xj, yj)}mj=1 and
classifiers h1, . . . , hN drawn from ρ, we construct the estimator

Ŵ
(j)
ρ =

1

N

N

∑
n=1

1(hn(xj) ≠ yj),

and we calculate P(Wρ ∈ [t,1/2)) and P(Wρ ∈ [1/2,1 − t]) from the empirical CDF of
{Ŵ

(j)
ρ }

m
j=1. In Appendix D.2, we provide additional examples of competence plots across

more experimental settings (and we observe substantially the same results).
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The linear relationship between DER and EIR.

Theorem 5.2 predicts a linear relationship between the EIR and the DER; here we verify that
this relationship holds empirically. In Figure 5.2, we plot the EIR against the DER across
several experimental settings, varying capacity hyper-parameters (width for the ResNet18
models, number of random features for the random feature classifiers, and number of leaf
nodes for the random forests), reporting the equation of the line of best fit, as well as
the Pearson correlation between the two metrics. Across 6 of the 8 experimental settings
evaluated, we find a very strong linear relationship – with the Pearson R ≥ 0.96. The two
exceptions are found for the Thyroid classification dataset (though there is still a strong
trend between the two quantities, with R ≈ 0.8).

Interestingly, we can compare the lines of best fit to the theoretical linear relationship
predicted by Theorem 5.2. In the case of the binary classification datasets (QSAR and
Thyroid), the bound predicts that EIR ≈ DER − 1; while for the 10-class problems (MNIST
and CIFAR-10), the equation is EIR ≈ 1.8DER − 2.6. While for some examples (e.g., random
forests on MNIST), the equations are close to those theoretically predicted, there is a clear gap
between theory and the experimentally measured relationships for other tasks. In particular,
we notice a significant difference in the governing equations for the same datasets between
random forests and the random feature ensembles, suggesting that the relationship is to some
degree modulated by the model architecture – something our theory cannot capture. We
therefore see refining our theory to incorporate such information as an important direction
for future work.

5.5 Ensemble improvement is low in the interpolating
regime

In this section, we will show that the DER behaves qualitatively differently for interpolating
versus non-interpolating ensembles, in particular exhibiting behavior associated with phase
transitions. Such phase transitions are well-known in the statistical mechanics approach to
learning [EdB01, MM17, TKM21, YHT+21], but they have been viewed as surprising from
the more traditional approach to statistical learning theory [BHMM19a]. We will use this
to understand when ensembling is and is not effective for deep ensembles, and to explain
why tree-based methods seem to benefit so much from ensembling across all settings. We
say that a model is interpolating if it achieves exactly zero training error, and we say that it
is non-interpolating otherwise; we call an ensemble interpolating if each of its constituent
classifiers is interpolating. Note that for methods that involve resampling of the training data
(e.g., bagging methods), we define the training error as the “in-bag” training, i.e., the error
evaluated only on the points a classifier was trained on.
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Figure 5.3: Bagged random feature classi-
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Figure 5.5: Large scale studies of deep ensembles on ResNet18/CIFAR-10. We plot the
DER, EIR, average error and majority vote error rate across a range of hyper-parameters, for two
training settings: one with learning rate decay, and one without. The black dashed line indicates the
interpolation threshold, i.e., the curve below which individual models achieve exactly zero training
error. Observe that interpolating ensembles attain distinctly lower EIR than non-interpolating
ensembles, and correspondingly have low DER (< 1), compared to non-interpolating ensembles with
high DER (> 1).

Interpolating random feature classifiers. We first look at the bagged random feature
ensembles on the MNIST, Thyroid, and QSAR datasets. In Figure 5.3, we plot the EIR,
DER and training error for each of these ensembles (recall that for ensembles which use
bagging, the training error is computed as the in-bag training error). We observe the same
phenomenon across these three tasks: as a function of model capacity, the EIR and DER
are both maximized at the interpolation threshold, before decreasing thereafter. This indicates
that much higher-capacity models, those with the ability to easily interpolate the training
data, benefit significantly less from ensembling. In particular, observe that for sufficiently
high-capacity ensembles, the DER become less than 1, entering the regime in which our theory
guarantees low ensemble improvement.

Interpolating deep ensembles. We next consider the DER, EIR, average test error, and
majority vote test error rates for large-scale empirical evaluations on ResNet18/CIFAR-10
models in batch size/width space, both with and without learning rate decay. See Figure
5.5 for the results. Note that the use of learning rate decay facilitates easier interpolation
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Figure 5.7: Ensembles of fine-tuned BERT on
GLUE tasks. Here the models are large relative to
the dataset size, and consequently they exhibit low
DER (< 1) and EIR across all tasks.

of the training data during training, hence broadening the range of hyper-parameters for
which interpolation occurs. The figures are colored so that ensembles in the regime DER < 1
are in red, while ensembles with DER > 1 are in grey. The black dashed line indicates the
interpolation threshold, i.e., the curve in hyper-parameter space below which ensembles achieve
zero training error (meaning every classifier in the ensemble has zero training error). Observe
in particular that, across all settings, all models in the regime DER < 1 are interpolating
models; and, more generally, that interpolating models tend to exhibit much smaller DER than
non-interpolating models. Observe moreover that there can be a sharp transition between
these two regimes, wherein the DER is large just at the interpolation threshold, and then it
quickly decreases beyond that threshold. Correspondingly, ensemble improvement is much
less pronounced for interpolating versus more traditional non-interpolating ensembles. This
is consistent with results previously observed in the literature, e.g., [GJS+20]. We remark
also that the behavior observed in Figure 5.5 exhibits the same phases identified in [YHT+21]
(an example of phase transitions in learning more generally [EdB01, MM17]), although the
DER itself was not considered in that previous study.

Bayesian neural networks. Next, we show that Bayesian neural networks benefit signifi-
cantly from ensembling. In Figure 5.6, we plot the DER and EIR for Bayesian ensembles
on the CIFAR-10 and IMDB tasks, using the ResNet20 and CNN-LSTM architectures,
respectively. The samples we present here are provided by [INLW21], who use Hamiltonian
Monte Carlo to sample accurately from the posterior distribution over models. For both
tasks, we observe that both ensembles exhibit DER > 1 and high EIR. In light of our findings
regarding ensemble improvement and interpolation, we note that the Bayesian ensembles by
design do not interpolate the training data (when drawn at non-zero temperature), as the
samples are drawn from a distribution not concentrated only on the modes of the training loss.
While we do not perform additional experiments with Bayesian neural networks in the present
work, evaluating the DER/EIR as a function of posterior temperature for these models is
an interesting direction for future work. We hypothesize that the qualitative effective of
decreasing the sampling temperature will be similar to that of increasing the batch size in
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the plots in Figure 5.5.

Fine-tuned BERT ensembles. Here, we present results for ensembles of BERT models
fine-tuned on the GLUE classification tasks. These provide examples of a very large model
trained on small datasets, on which interpolation is easily possible. For these experiments, we
use 25 BERT models pre-trained from independent initializations provided in [SYT+22]. Each
of these 25 models is then fine-tuned on the 7 classification tasks in the GLUE [WSM+19]
benchmark set and evaluated on relatively small test sets, ranging in size from 250 (RTE) to
40,000 (QQP) samples. In Figure 5.7, we plot the EIR and DER across these benchmark
tasks and observe that, as predicted, the ensemble improvement rate is low and DER is
uniformly low (< 1).

The unique case of random forests. Random forests are one of the most widely-used
ensembling methods in practice. Here, we show that the effectiveness of ensembling is much
greater for random forest models than for highly-parameterized models like the random
feature classifiers and the deep ensembles. Note that for random forests, interpolation of
the training data is possible, in particular whenever the number of terminal leaf nodes is
sufficiently large (where here we again compute the average training error using on the in-bag
training examples for each tree), but it is not possible to go “into” the interpolating regime.
In Figure 5.4, we plot the DER, EIR, and training error as a function of the max number
of leaf nodes (a measure of model complexity). Before the interpolation threshold, both
the EIR and DER increase as a function of model capacity, in line with what is observed
for the random feature and deep ensembles. However, we observe distinct behavior at the
interpolation threshold: both EIR and DER become constant past this threshold. This is
fundamental to tree-based methods, due to the method by which they are fit, e.g., using a
standard procedure like CART [BFSO84]. As soon as a tree achieves zero training error, any
impurity method used to split the nodes further is saturated at zero, and therefore the models
cannot continue to grow. This indicates that trees are particularly well-suited to ensembling
across all hyper-parameter values, in contrast to other parameterized types of classifiers.

5.6 Discussion and conclusion
To help answer the question of when ensembling is effective, we introduce the ensemble im-
provement rate (EIR), which we then study both theoretically and empirically. Theoretically,
we provide a comprehensive characterization of the EIR in terms of the disagreement-error
ratio DER. The results are based on a new, mild condition called competence, which we
introduce to rule out pathological cases that have hampered previous theoretical results.
Using a simple first-order analysis, we show that the competence condition is sufficient to
guarantee that ensembling cannot hurt performance—something widely observed in practice,
but surprisingly unexplained by existing theory. Using a second-order analysis, we are able
to theoretically characterize the EIR, by upper and lower bounding it in terms of a linear
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function of the DER. On the empirical side, we first verify the assumptions of our theory
(namely that the competence assumption holds broadly in practice), and we show that our
bounds are indeed descriptive of ensemble improvement in practice. We then demonstrate that
improvement decreases precipitously for interpolating ensembles, relative to non-interpolating
ones, providing a very practical guideline for when to use ensembling.

Our work leaves many directions to explore, of which we name a few promising ones. First,
while our theory represents a significant improvement on previous results, there are still
directions to extend our analysis. For example, Figure 5.2 suggests that the relationship
between EIR and DER can be even more finely characterized. Is it possible to refine our
analysis further to incorporate information about the data and/or model architecture? Second,
can we formalize the connection between ensemble effectiveness and the interpolation point,
and relate it to similar ideas in the literature?
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Chapter 6

Final Thoughts and Outlook

In this thesis, we introduced the problem of generalization in modern machine learning,
and various approaches designed to address it. In Chapter 2, we saw classical worst-case
analyses that produce PAC-style bounds on the generalization gap. However, the practical
utility of the worst-case approach is challenged in Chapter 3, in which we observed that
the vast majority of large-scale, interpolating models behave nothing like the worst-case
model. Indeed, in Chapter 4, we saw that many models appear to perform much closer to
the best possible model than to the worst-case. In Chapter 5, we saw that we can closely
characterize the behavior of ensemble classifiers in terms of the disagreement-error ratio.
Perhaps surprisingly, we find that ensembles exhibit very different behavior when in or out of
the interpolating regime.

As the field of machine learning has developed, and become a more important part of
society, the desire to understand its workings has become increasingly important. Impressive
efforts have been made on both from the theoretical and experimental perspectives, yielding
significant progress. The work contained in this thesis represents but a small effort towards
designing a functional theory of modern machine learning systems, and there is much work
left to do.

As the field advances, we suspect that the community will rely more heavily on carefully
designed, large-scale experimental studies to help guide it forward—much like any other
science. The scientific approach has already seen great success in providing a practically
useful understanding of how and when large machine learning systems can be expected to
work. However, we see the scientific approach developing alongside theoretical analysis of
simpler models, providing complementary insights. In this way, machine learning seems to be
converging to a paradigm that shares many similarities with physics.
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[BCNM06] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-
pression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 535–541, 2006.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classifica-
tion and Regression Trees. Chapman and Hall/CRC, 1984.

[BFT17] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized
margin bounds for neural networks. In 31st Conference on Neural Information
Processing Systems, 2017.

[BGCT19] Davide Ballabio, Francesca Grisoni, Viviana Consonni, and Roberto Todeschini.
Integrated qsar models to predict acute oral systemic toxicity. Molecular
Informatics, 38(8-9):1800124, 2019.

[BHLM19] Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-
tight vc-dimension and pseudodimension bounds for piecewise linear neural
networks. Journal of Machine Learning Research, 20(63):1–17, 2019.

[BHMM19a] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proc. Natl. Acad. Sci. USA,
116:15849–15854, 2019.

[BHMM19b] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling
modern machine-learning practice and the classical bias–variance trade-off.
Proceedings of the National Academy of Sciences of the United States of America,
116(32):15849–15854, 8 2019.

[BHX19] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak
features. Technical Report arXiv preprint: 1903.07571, 2019.

[BK18] Andrew R. Barron and Jason M. Klusowski. Approximation and Estimation
for High-Dimensional Deep Learning Networks. 2018.

[BKD20] Adam Byerly, Tatiana Kalganova, and Ian Dear. A branching and merging
convolutional network with homogeneous filter capsules. arXiv:2001.09136
[cs.CV]., January 2020.



BIBLIOGRAPHY 70

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zde-
borová. Optimal errors and phase transitions in high-dimensional generalized
linear models. Proceedings of the National Academy of Sciences, 116(12):5451–
5460, 2019.

[BLG+19] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela
Rus. Data-Dependent Coresets for Compressing Neural Networks with Appli-
cations to Generalization Bounds. In International Conference on Learning
Representations, 2019.

[BLLT20] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign
overfitting in linear regression. Proceedings of the National Academy of Sciences,
117(48):30063–30070, 2020.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[BWHS16] Visar Berisha, Alan Wisler, Alfred O. Hero, III, and Andreas Spanias. Em-
pirically estimable classification bounds based on a nonparametric divergence
measure. IEEE Transactions on Signal Processing, 64(3):580–591, February
2016.

[CATvS17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. EM-
NIST: An extension of MNIST to handwritten letters. In Proceedings of the 2017
International Joint Conference on Neural Networks (IJCNN), pages 2921–2926,
May 2017.

[CBIK+18] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki
Yamamoto, and David Ha. Deep learning for classical japanese literature, 2018.

[CF07] Daniel J. Costello, Jr. and G. David Forney, Jr. Channel coding: The road to
channel capacity. Proceedings of the IEEE, 95(6):1150–1177, June 2007.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794, 2016.

[CHM+15a] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and
Yann Lecun. The Loss Surfaces of Multilayer Networks. In 18th International
Conference on Artificial Intelligence and Statistics, 2015.

[CHM+15b] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and
Yann LeCun. The Loss Surfaces of Multilayer Networks. In 18th International
Conference on Artificial Intelligence and Statistics, 2015.



BIBLIOGRAPHY 71

[CL20] Niladri S. Chatterji and Philip M. Long. Finite-sample analysis of interpolating
linear classifiers in the overparameterized regime. Technical Report arXiv
preprint: 2004.12019, 4 2020.

[CLH+23] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao
Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and
Quoc V. Le. Symbolic discovery of optimization algorithms, 2023.

[Con] Basic mnist example. https://github.com/pytorch/examples/tree/
master/mnist. Accessed: 2021-05-08.

[Con85] Marquis de Condorcet. Essay on the application of analysis to the probability
of majority decisions. Paris: Imprimerie Royale, 1785.

[CS18] Emmanuel J. Candes and Pragya Sur. The phase transition for the existence
of the maximum likelihood estimate in high-dimensional logistic regression.
Technical Report arXiv preprint: 1804.09753, 2018.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
pages 4171–4186, June 2019.

[DDN+20] Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajku-
mar, Ethan Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M Roy.
In search of robust measures of generalization. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 11723–11733. Curran Associates, Inc.,
2020.

[Den12] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[DH95] Persi Diaconis and Susan Holmes. Three examples of Monte-Carlo Markov
chains: At the interface between statistical computing, computer science, and
statistical mechanics. In David Aldous, Persi Diaconis, Joel Spencer, and
J. Michael Steele, editors, Discrete Probability and Algorithms, pages 43–56.
Springer, New York, NY, 1995.

[DKT19] Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A Model of Double
Descent for High-dimensional Binary Linear Classification. Technical report,
2019.

https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/mnist


BIBLIOGRAPHY 72

[DKT20] Z. Deng, A. Kammoun, and C. Thrampoulidis. A model of double descent for
high-dimensional logistic regression. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4267–
4271, 2020.

[DLM19] Michał Dereziński, Feynman Liang, and Michael W Mahoney. Exact expressions
for double descent and implicit regularization via surrogate random design.
Technical Report arXiv preprint: 1912.04533, 2019.

[Don19] David Donoho. Comments on Michael Jordan’s essay “the AI revolution hasn’t
happened yet”. Harvard Data Science Review, June 2019.

[DR17] Gintare Karolina Dziugaite and Daniel M Roy. Computing Nonvacuous Gen-
eralization Bounds for Deep (Stochastic) Neural Networks with Many More
Parameters than Training Data. In Uncertainty in Artificial Intelligence (UAI),
2017.

[DS55] C. W. Dunnett and M. Sobel. Approximations to the Probability Integral and
Certain Percentage Points of a Multivariate Analogue of Student’s t-Distribution.
Biometrika, 42(1/2):258, 6 1955.

[Dui00] R. W. Duin. Classifiers in almost empty spaces. In Pattern Recognition,
International Conference on, volume 2, page 2001, 2000.

[DZ11] Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsifi-
cation via a matrix-valued Bernstein inequality. Information Processing Letters,
111(8):385–389, 3 2011.

[EdB01] A. Engel and C. P. L. Van den Broeck. Statistical mechanics of learning.
Cambridge University Press, 2001.

[EVdB01] A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge
University Press, 3 2001.

[FDP+20] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani,
Daniel M. Roy, and Surya Ganguli. Deep learning versus kernel learning: an
empirical study of loss landscape geometry and the time evolution of the neural
tangent kernel. In NeurIPS, 2020.

[Fel68] William Feller. An introduction to probability theory and its applications. Wiley,
1968.

[FHL19] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A
loss landscape perspective. arXiv preprint arXiv:1912.02757, 2019.



BIBLIOGRAPHY 73

[FJGZ20] Ethan Fetaya, Jörn-Henrik Jacobsen, Will Grathwohl, and Richard Zemel.
Understanding the limitations of conditional generative models. In Proceedings
of the International Conference on Learning Representations (ICLR), April
2020.

[FKMN21] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-
aware minimization for efficiently improving generalization. In Proceedings of
the International Conference on Learning Representations (ICLR), May 2021.

[FS18] Thomas Fung and Eugene Seneta. Quantile Function Expansion Using Regu-
larly Varying Functions. Methodology and Computing in Applied Probability,
20(4):1091–1103, 12 2018.

[Gas17] Xavier Gastaldi. Shake-shake regularization. CoRR, abs/1705.07485, 2017.

[GJS+20] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun,
Stéphane d’Ascoli, Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scal-
ing description of generalization with number of parameters in deep learning.
Journal of Statistical Mechanics: Theory and Experiment, 2020(2):023401, 2020.

[GKH20a] Alexandra Gessner, Oindrila Kanjilal, and Philipp Hennig. Integrals over Gaus-
sians under Linear Domain Constraints. In Proceedings of Machine Learning
Research, 2020.

[GKH20b] Alexandra Gessner, Oindrila Kanjilal, and Philipp Hennig. Integrals over
Gaussians under linear domain constraints. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 2764–2774, August 2020.

[GLL+15] Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario March, and Jean-
Francis Roy. Risk bounds for the majority vote: From a PAC-Bayesian analysis
to a learning algorithm. Journal of Machine Learning Research, 16(26):787–860,
2015.

[Glo] Glow in PyTorch. https://github.com/chrischute/glow. Accessed: 2021-
05-08.

[GRS18] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-Independent Sample
Complexity of Neural Networks. In 31st Conference On Learning Theory, 2018.

[GSZ20] M. Gurbuzbalaban, U. Simsekli, and L. Zhu. The heavy-tail phenomenon in
SGD. Technical Report Preprint: arXiv:2006.04740, 2020.

[GWB+18] Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur,
and Nathan Srebro. Implicit regularization in matrix factorization. In 2018

https://github.com/chrischute/glow


BIBLIOGRAPHY 74

Information Theory and Applications Workshop, ITA 2018. Institute of Electrical
and Electronics Engineers Inc., 10 2018.

[GWWM23] Margalit Glasgow, Colin Wei, Mary Wootters, and Tengyu Ma. Max-margin
works while large margin fails: Generalization without uniform convergence. In
The Eleventh International Conference on Learning Representations, 2023.

[HB02] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification
problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(3):289–300, March 2002.

[HBM+22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training
compute-optimal large language models, 2022.

[HD19] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robust-
ness to common corruptions and perturbations. Proceedings of the International
Conference on Learning Representations, 2019.

[HDMR21] Mahdi Haghifam, Gintare Karolina Dziugaite, Shay Moran, and Dan Roy. To-
wards a unified information-theoretic framework for generalization. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages
26370–26381. Curran Associates, Inc., 2021.

[HKSST96] David Haussler, Michael Kearns, H. Sebastian Seung, and Naftali Tishby.
Rigorous learning curve bounds from statistical mechanics. Machine Learning,
25(2-3):195–236, 1996.

[HM20] L. Hodgkinson and M. W. Mahoney. Multiplicative noise and heavy tails in
stochastic optimization,. Technical Report Preprint: arXiv:2006.06293, 2020.

[HMRT19] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani.
Surprises in High-Dimensional Ridgeless Least Squares Interpolation. Technical
Report arXiv preprint: 1903.08560, 2019.

[HNK+20] Mahdi Haghifam, Jeffrey Negrea, Ashish Khisti, Daniel M Roy, and
Gintare Karolina Dziugaite. Sharpened generalization bounds based on condi-
tional mutual information and an application to noisy, iterative algorithms. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 9925–9935.
Curran Associates, Inc., 2020.



BIBLIOGRAPHY 75

[HRSG21] Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, and Aram Galstyan.
Information-theoretic generalization bounds for black-box learning algorithms.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[HVD+15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[INLW21] Pavel Izmailov, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson. Dan-
gers of Bayesian model averaging under covariate shift. Advances in Neural
Information Processing Systems, 34:3309–3322, 2021.

[IVHW21] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gor-
don Wilson. What are Bayesian neural network posteriors really like? In
Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 4629–4640. PMLR,
18–24 Jul 2021.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J
Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein
structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

[JFY+20] Yiding Jiang, Pierre Foret, Scott Yak, Daniel M. Roy, Hossein Mobahi,
Gintare Karolina Dziugaite, Samy Bengio, Suriya Gunasekar, Isabelle Guyon,
and Behnam Neyshabur. Neurips 2020 competition: Predicting generalization
in deep learning, 2020.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel:
Convergence and Generalization in Neural Networks. In Advances in Neural
Information Processing Systems, 2018.

[JNM+20] Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, and
Samy Bengio. Fantastic generalization measures and where to find them. In
International Conference on Learning Representations, 2020.



BIBLIOGRAPHY 76

[KAJ+20] Hussain Mohammed Dipu Kabir, Moloud Abdar, Seyed Mohammad Jafar
Jalali, Abbas Khosravi, Amir F. Atiya, Saeid Nahavandi, and Dipti Srinivasan.
SpinalNet: Deep neural network with gradual input. arXiv:2007.03347 [cs.CV].,
September 2020.

[KD14] Abhisek Kundu and Petros Drineas. A Note on Randomized Element-wise
Matrix Sparsification. Technical report, 2014.

[KD18] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invert-
ible 1 × 1 convolutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 10215–10224. Curran Associates, Inc., 2018.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[KKB19] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in
Deep Learning. Technical report, MIT, 2019.

[KMH+20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models, 2020.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, April 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25:1097–1105, 2012.

[LBBH98] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, November 1998.

[LCM20] Z. Liao, R. Couillet, and M. W. Mahoney. A random matrix analysis of random
Fourier features: beyond the Gaussian kernel, a precise phase transition, and
the corresponding double descent. Technical report, 2020. arXiv preprint:
2006.05013.

[LFK+22] Sanae Lotfi, Marc Anton Finzi, Sanyam Kapoor, Andres Potapczynski, Micah
Goldblum, and Andrew Gordon Wilson. PAC-bayes compression bounds so
tight that they can explain generalization. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.



BIBLIOGRAPHY 77

[LMRR17] François Laviolette, Emilie Morvant, Liva Ralaivola, and Jean-Francis Roy. Risk
upper bounds for general ensemble methods with an application to multiclass
classification. Neurocomputing, 219:15–25, 2017.

[LNR22] Mufan Bill Li, Mihai Nica, and Daniel M. Roy. The neural covariance SDE:
Shaped infinite depth-and-width networks at initialization. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. Advances in
neural information processing systems, 30, 2017.

[LPRS19] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-
Rao Metric, Geometry, and Complexity of Neural Networks. In 22nd Interna-
tional Conference on Artificial Intelligence and Statistics, 2019.

[LSC22] Fanghui Liu, Johan Suykens, and Volkan Cevher. On the double descent of
random features models trained with SGD. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[LSdP+18] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam
Schoenholz, and Yasaman Bahri. Deep neural networks as gaussian processes.
In International Conference on Learning Representations, 2018.

[Mah12] M. W. Mahoney. Approximate computation and implicit regularization for
very large-scale data analysis. In Proceedings of the 31st ACM Symposium on
Principles of Database Systems, pages 143–154, 2012.

[MDP+11] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y.
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142–150, June 2011.

[MH14] Kevin R. Moon and Alfred O. Hero, III. Multivariate f -divergence estimation
with confidence. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2420–2428. Curran Associates, Inc., 2014.

[MHB17] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic Gradient
Descent as Approximate Bayesian Inference. Journal of Machine Learning
Research, 18:1–35, 2017.



BIBLIOGRAPHY 78

[MHD15] Kevin R. Moon, Alfred O. Hero, III, and Véronique Delouille. Meta learning of
bounds on the Bayes classifier error. In Proceedings of the 2015 IEEE Signal
Processing and Signal Processing Education Workshop (SP/SPE), pages 13–18,
August 2015.

[MLIS20] Andres Masegosa, Stephan Lorenzen, Christian Igel, and Yevgeny Seldin. Second
order PAC-Bayesian bounds for the weighted majority vote. In Advances in
Neural Information Processing Systems, volume 33, pages 5263–5273, 2020.

[MM17] C. H. Martin and M. W. Mahoney. Rethinking generalization requires revisiting
old ideas: statistical mechanics approaches and complex learning behavior.
Technical Report Preprint: arXiv:1710.09553, 2017.

[MM18] Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in
deep neural networks: Evidence from random matrix theory and implications
for learning, 2018.

[MM20] Charles H. Martin and Michael W. Mahoney. Heavy-tailed universality predicts
trends in test accuracies for very large pre-trained deep neural networks, 2020.

[MM22] Charles H. Martin and Michael W. Mahoney. Post-mortem on a deep learning
contest: a simpson’s paradox and the complementary roles of scale metrics
versus shape metrics, 2022.

[MPDM10] Iain Murray, Ryan Prescott, Adams David, and J C Mackay. Elliptical slice sam-
pling. In 13th International Conference on Artificial Intelligence and Statistics,
2010.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. MIT Press, second edition, 2018.

[MSGH18] Kevin R. Moon, Kumar Sricharan, Kristjan Greenewald, and Alfred O. Hero,
III. Ensemble estimation of information divergence. Entropy, 20(8):560, 2018.

[MWCC20] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit Regularization
in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for
Phase Retrieval, Matrix Completion, and Blind Deconvolution. Foundations of
Computational Mathematics, 20(3):451–632, 6 2020.

[NAM21] Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in
test sets destabilize machine learning benchmarks. arXiv:2103.14749 [stat.ML].,
March 2021.

[NBMS17] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro.
Exploring generalization in deep learning. In I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances



BIBLIOGRAPHY 79

in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[NBS18] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian
Approach to Spectrally-Normalized Margin Bound for Neural Networks. In
International Conference on Learning Representations, 2018.

[Nie14] Frank Nielsen. Generalized Bhattacharyya and Chernoff upper bounds on Bayes
error using quasi-arithmetic means. Pattern Recognition Letters, 42:25–34, June
2014.

[NK19] Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable
to explain generalization in deep learning. In Advances in Neural Information
Processing Systems, 2019.

[NKB+20] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak,
and Ilya Sutskever. Deep double descent: Where bigger models and more data
hurt. In International Conference on Learning Representations, 2020.

[NSS15] Behnam Neyshabur, Ruslan R. Salakhutdinov, and Nati Srebro. Path-SGD:
Path-Normalized Optimization in Deep Neural Networks. In 28th Conference
on Neural Information Processing Systems, 2015.

[NTS15] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-Based Capacity
Control in Neural Networks. In 28th Conference on Learning Theory, 2015.

[NWC+11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y. Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, December 2011.

[NXH19] Morteza Noshad, Li Xu, and Alfred Hero. Learning to benchmark: Determining
best achievable misclassification error from training data. arXiv:1909.07192
[stat.ML]., September 2019.

[OCnM22] Luis A. Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and general-
ization in neural network ensembles. In Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings
of Machine Learning Research, pages 11720–11743, 28–30 Mar 2022.

[OFR+19] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you
trust your model’s uncertainty? evaluating predictive uncertainty under dataset
shift. Advances in neural information processing systems, 32, 2019.



BIBLIOGRAPHY 80

[OH91] Manfred Opper and David Haussler. Calculation of the Learning Curve of Bayes
Optimal Classiication Algorithm for Learning a Perceptron With Noise. In
Proceedings of the Fourth Annual Workshop on Computational Learning Theory,
pages 75–87, 1991.

[Pap] Paper with code for image classification datasets. https://paperswithcode.
com/task/image-classification. Accessed: 2021-05-08.

[PM80] G. Pisier and B. Maurey. Remarques sur un résultat non publié de B. Maurey.
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz"), pages 1–12, 1980.

[PNK+20] Pedram Pad, Simon Narduzzi, Clement Kundig, Engin Turetken, Siavash A.
Bigdeli, and L. Andrea Dunbar. Efficient neural vision systems based on
convolutional image acquisition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 12285–12294,
June 2020.

[PNR+21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic
modeling and inference. Journal of Machine Learning Research, 22(57):1–64,
2021.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[PXS11] Barnabás Póczos, Liang Xiong, and Jeff Schneider. Nonparametric divergence
estimation with applications to machine learning on distributions. In Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence
(UAI’11), pages 599–608, July 2011.

[QCHL87] J. R. Quinlan, P. J. Compton, K. A. Horn, and L. Lazarus. Inductive knowledge
acquisition: A case study. In Proceedings of the Second Australian Conference
on Applications of Expert Systems, page 137–156, USA, 1987. Addison-Wesley
Longman Publishing Co., Inc.

[Rit00] K. Ritter. Average-Case Analysis of Numerical Problems. Number no. 1733 in
Average-case Analysis of Numerical Problems. Springer, 2000.

[RRSS19] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.
Do ImageNet classifiers generalize to ImageNet? In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5389–5400. PMLR, 09–15 Jun 2019.

https://paperswithcode.com/task/image-classification
https://paperswithcode.com/task/image-classification


BIBLIOGRAPHY 81

[RSR+20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020.

[SGd+19] S Spigler, M Geiger, S d’Ascoli, L Sagun, G Biroli, and M Wyart. A jamming
transition from under- to over-parametrization affects generalization in deep
learning. Journal of Physics A: Mathematical and Theoretical, 52(47):474001,
oct 2019.

[SGT19] Yitong Sun, Anna Gilbert, and Ambuj Tewari. On the Approximation Properties
of Random ReLU Features. Technical Report arXiv preprint: 1810.04374, 2019.

[SHS18] Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gra-
dient descent on separable data. In International Conference on Learning
Representations, 2018.

[SQDC21] Yair Schiff, Brian Quanz, Payel Das, and Pin-Yu Chen. Predicting deep neural
network generalization with perturbation response curves. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 21176–
21188. Curran Associates, Inc., 2021.

[Sri] Karthik Sridharan. Note on Refined Dudley Integral Covering Number Bound.

[SST92] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning
from examples. Physical Review A, 45(8):6056–6091, 1992.

[Ste62] G.P. Steck. Orthant Probabilities for the Equicorrelated Multivariate Normal
Distribution. Biometrika, 49(3/4):433–445, 1962.

[SYT+22] Thibault Sellam, Steve Yadlowsky, Ian Tenney, Jason Wei, Naomi Saphra,
Alexander D’Amour, Tal Linzen, Jasmijn Bastings, Iulia Raluca Turc, Jacob
Eisenstein, Dipanjan Das, and Ellie Pavlick. The multiBERTs: BERT re-
productions for robustness analysis. In International Conference on Learning
Representations, 2022.

[SZ20] Thomas Steinke and Lydia Zakynthinou. Reasoning About Generalization via
Conditional Mutual Information. In Jacob Abernethy and Shivani Agarwal,
editors, Proceedings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages 3437–3452. PMLR,
09–12 Jul 2020.

[TB23] Alexander Tsigler and Peter L. Bartlett. Benign overfitting in ridge regression.
Journal of Machine Learning Research, 24(123):1–76, 2023.



BIBLIOGRAPHY 82

[TKK21] Muhammad Suhaib Tanveer, Muhammad Umar Karim Khan, and Chong-Min
Kyung. Fine-tuning DARTS for image classification. In Proceedings of the 25th
International Conference on Pattern Recognition (ICPR), pages 4789–4796,
January 2021.

[TKM21] Ryan Theisen, Jason Klusowski, and Michael Mahoney. Good classifiers are
abundant in the interpolating regime. In Arindam Banerjee and Kenji Fuku-
mizu, editors, Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 3376–3384. PMLR, 13–15 Apr 2021.

[TKW+19] Ryan Theisen, Jason M. Klusowski, Huan Wang, Nitish Shirish Keskar, Caiming
Xiong, and Richard Socher. Global capacity measures for deep relu networks
via path sampling, 2019.

[TKY+23] Ryan Theisen, Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson, and Michael W.
Mahoney. When are ensembles really effective?, 2023.

[TWV+21] Ryan Theisen, Huan Wang, Lav R Varshney, Caiming Xiong, and Richard
Socher. Evaluating state-of-the-art classification models against bayes optimal-
ity. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, vol-
ume 34, pages 9367–9377. Curran Associates, Inc., 2021.

[Var20] Lav R. Varshney. Addressing difference in orientation toward competition
by bringing fundamental limits to AI challenges. In NeurIPS workshop, ML
Competitions at the Grassroots (CiML 2020), December 2020.

[VCR89] F. Vallet, J.-G. Cailton, and Ph Refregier. Linear and nonlinear extension of
the pseudo-inverse solution for learning boolean functions. Europhysics Letters,
9(4):315, jun 1989.

[VKS19] Lav R. Varshney, Nitish Shirish Keskar, and Richard Socher. Pretrained
AI models: Performativity, mobility, and change. arXiv:1909.03290 [cs.CY].,
September 2019.

[VPL20] Guillermo Valle-Pérez and Ard A. Louis. Generalization bounds for deep
learning, 2020.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.



BIBLIOGRAPHY 83

[VWB16] Andreas Veit, Michael J. Wilber, and Serge Belongie. Residual Networks Behave
Like Ensembles of Relatively Shallow Networks. In 29th Conference on Neural
Information Processing Systems, 2016.

[Wid] WideResnet in PyTorch. https://github.com/meliketoy/wide-resnet.
pytorch. Accessed: 2021-05-08.

[WM19] Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural
networks via lipschitz augmentation. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[WRB93] T. L. H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a
rule. Rev. Mod. Phys., 65(2):499–556, 1993.

[WSM+19] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform
for natural language understanding. In International Conference on Learning
Representations, 2019.

[WZ17] Lei Wu and Zhanxing Zhu. Towards Understanding Generalization of Deep
Learning: Perspective of Loss Landscapes. In ICML 2017 Workshop on Princi-
pled Approaches to Deep Learning, 2017.

[XR17] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization
capability of learning algorithms. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms. arXiv:1708.07747
[cs.LG]., September 2017.

[XSC19] Yue Xing, Qifan Song, and Guang Cheng. Benefit of Interpolation in Nearest
Neighbor Algorithms. Technical Report arXiv preprint: 1909.11720, 2019.

[YHT+21] Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez,
Kannan Ramchandran, and Michael W Mahoney. Taxonomizing local versus
global structure in neural network loss landscapes. In Advances in Neural
Information Processing Systems, volume 34, pages 18722–18733, 2021.

[YTH+23] Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E. Gonzalez, Kannan
Ramchandran, Charles H. Martin, and Michael W. Mahoney. Evaluating natural
language processing models with generalization metrics that do not need access
to any training or testing data, 2023.

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch


BIBLIOGRAPHY 84

[ZBH+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. In International
Conference on Learning Representations, 2017.

[Zha02] Tong Zhang. Covering Number Bounds of Certain Regularized Linear Function
Classes. Journal of Machine Learning Research, 2:527–550, 2002.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Richard C.
Wilson, Edwin R. Hancock, and William A. P. Smith, editors, Proceedings of
the British Machine Vision Conference (BMVC), pages 87.1–87.12. September
2016.

[ZLX20] Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural
network with multiplex graph for molecular structures, 2020.

[ZTL22] Ruida Zhou, Chao Tian, and Tie Liu. Stochastic chaining and strengthened
information-theoretic generalization bounds. In 2022 IEEE International Sym-
posium on Information Theory (ISIT), pages 690–695, 2022.

[ZVA+19] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter
Orbanz. Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-
Bayesian Compression Approach. In International Conference on Learning
Representations, 2019.

[ZWN+20] Peiliang Zhang, Huan Wang, Nikhil Naik, Caiming Xiong, and Richard Socher.
DIME: An information-theoretic difficulty measure for AI datasets. In NeurIPS
2020 Workshop DL-IG Blind Submission, December 2020.

[ZZK+20] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random
erasing data augmentation. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(07):13001–13008, Apr. 2020.



85

Appendix A

Chapter 2 Appendices

A.1 Proofs of main results
Theorem A.1. Let f(x;W ) be an L-layer ReLU network, S a dataset, and let 1 ≤ q ≤ 2. If
p̃ is the Markov distribution formed from M samples from p

(q)
j0,j1,...,jL

, then

Ep̃[
1

n
∑
x∈S
∥f(x; W̃ ) − f(x;W )∥22] ≤ (

VqζqL
√
M
)
2

, (A.1)

where f(x; W̃ ) = Vqf(x; p̃).

Proof. The proofs are the same for each p(q), so we write p for a generic path distribution,
and V for a generic path variation (with the understanding that in the spectral case, we are
considering ℓ2 control on the inputs).

We can decompose the difference f(x;p) − f(x; p̃) into a telescoping sum

f(x;p) − f(x; p̃) =
L

∑
ℓ=1
[f ℓ+1(x;p, p̃) − f ℓ(x;p, p̃)] (A.2)

in which f ℓ+1(x;p, p̃) and f ℓ(x;p, p̃) differ only on layer ℓ, the former using pjℓ−1∣jℓ and the
later using p̃jℓ−1∣jℓ . That is, for each output unit jL we let

f ℓ(x;p, p̃)jL = ∑
jL−1

p̃jL p̃jL−1∣jLϕ( ∑
jL−2

p̃jL−2∣jL−1ϕ(

⋯ϕ(∑
jℓ−1

p̃jℓ−1∣jℓϕ(∑
jℓ−2

pjℓ−2∣jℓ−1(⋯ϕ(∑
j0

pj0∣j1xj0)))))).

In other words, f ℓ(x;p, p̃) is a network with weight matrices (P1, . . . , Pℓ−1, P̃ℓ, P̃ℓ+1, . . . , P̃L),
where Pℓ[jℓ, jℓ−1] = pjℓ−1∣jℓ and P̃ℓ[jℓ, jℓ−1] = p̃jℓ−1∣jℓ are transition matrices for the Markov
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distributions p and p̃, respectively. Now let PS be the empirical distribution for the sample S.
Then using the triangle inequality for the L2 norm associated with the joint distribution of p̃
and PS, we observe

Ep̃[
1

n
∑
x∈S
∥f(x;p) − f(x; p̃)∥22] = Ep̃,PS

[∥f(x;p) − f(x; p̃)∥22] ≤ (∑
ℓ

Eℓ)
2

(A.3)

where
Eℓ = (Ep̃[

1

n
∑
x∈S
∥f ℓ+1(x;p, p̃) − f ℓ(x;p, p̃)∥22])

1/2
.

We are therefore interested in bounding

Ep̃[
1

n
∑
x∈S
∑
jL

∣f ℓ+1(x;p, p̃)jL − f
ℓ(x;p, p̃)jL ∣

2]

for each ℓ. For ℓ = L we have
1

n
∑
x∈S
∑
jL

∣fL+1(x;p, p̃)jL − f
L(x;p, p̃)jL ∣

2 =
1

n
∑
x∈S
∑
jL

∣ ∑
jL−1

(p̃jL,jL−1 − pjL,jL−1)xjL−1(x)∣
2

,

where xjL−1(x) is the output of the network at the jL−1th node entering the last layer.
Then noticing that p̃jL,jL−1 =

1
M ∑

M
i=1 1((ȷ̃, ȷ̃′) = (jL, jL−1)), where 1((ȷ̃, ȷ̃′) = (jL, jL−1)) ∼

Bern(pjL,jL−1), we may calculate

1

n
∑
x∈S
∑
jL

E [∣ ∑
jL−1

(p̃jL,jL−1 − pjL,jL−1)xjL−1(x)∣
2

]

=
1

n
∑
x∈S
∑
jL

([ ∑
jL−1

pjL,jL−1(xjL−1(x
′) − zjL)

2] + (1 − pjL)z
2
jL
)

≤
1

n
∑
x∈S

1

M
∑
jL

∑
jL−1

pjL,jL−1x
2
jL−1
(x′)

where the last inequality follows from the fact that the MSE is minimized at the mean (so
we can upper bound this term by plugging in zjL = 0). Using the Lipschitz property of ϕ, we
have

1

n
∑
x∈S

x2jL−1(x
′) ≤

1

n
∑
x∈S
( ∑
jL−2,jL−3,...,j0

pjL−2,...,j0∣jL−1 ∣x
′
j0 ∣)

2

=
1

n
∑
x∈S
(∑
j0

pj0∣jL−1 ∣x
′
j0 ∣)

2

≤
1

n
∑
x∈S
(∑
j0

pj0∣jL−1 ∣x
′
j0 ∣

q∗)2/q
∗

≤ (
1

n
∑
x∈S
∑
j0

pj0∣jL−1 ∣x
′
j0 ∣

q∗)
2/q∗
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where the last two inequalities follow from Jensen’s inequality (since for 1 ≤ q ≤ 2, we have
q∗ ≥ 2, and hence zq∗ is convex and z2/q∗ is concave).

Next, we observe
1

n
∑
x∈S
∑
j0

pj0∣jL−1 ∣x
′
j0 ∣

q∗ ≤
1

n
max
j0
∑
x∈S
∣x′j0 ∣

q∗ = 1.

Hence we have
1

n
∑
x∈S

1

M
∑
jL

∑
jL−1

pjL,jL−1x
2
jL−1
(x′) ≤

1

n
∑
x∈S

1

M
∑
jL

∑
jL−1

pjL,jL−1 =
1

M
.

For ℓ = 1,2, . . . , L − 1, repeated application of the Lipschitz property of ϕ permits bounding
each difference ∑jL ∣f

ℓ+1
jL
(x;p, p̃) − f ℓ

jL
(x;p, p̃)∣2 by

∑
jL

( ∑
jL−1,...,jℓ+1

p̃jL,...,jℓ+1 ∣∑
jℓ

p̃jℓ∣jℓ+1(ϕ(z̃jℓ) − ϕ(zjℓ))∣)
2

=∑
jL

(∑
jℓ+1

p̃jL,jℓ+1 ∣∑
jℓ

p̃jℓ∣jℓ+1(ϕ(z̃jℓ) − ϕ(zjℓ))∣)
2

where zjℓ = ∑jℓ−1 pjℓ−1∣jℓxjℓ−1 and z̃jℓ = ∑jℓ−1 p̃jℓ−1∣jℓxjℓ−1 . Since the quantities on the inside of
the square are non-negative, and the sum of squares is less than the square of the sum, we
have that this is at most

(∑
jL

∑
jℓ+1

p̃jL,jℓ+1 ∣∑
jℓ

p̃jℓ∣jℓ+1(ϕ(z̃jℓ) − ϕ(zjℓ))∣)
2 = (∑

jℓ+1

p̃jℓ+1 ∣∑
jℓ

p̃jℓ∣jℓ+1(ϕ(z̃jℓ) − ϕ(zjℓ))∣)
2

Using the triangle inequality and marginalizing, we get the further upper bound of

(∑
jℓ

p̃jℓ ∣ϕ(z̃jℓ) − ϕ(zjℓ)∣)
2

It is shown in [BK18] that

1

n
∑
x∈S

Ep̃(∑
jℓ

p̃jℓ ∣ϕ(z̃jℓ) − ϕ(zjℓ)∣)
2 ≤

1

M
(∑
jℓ

σjℓ
√
pjℓ)

2,

where
σ2
jℓ
=
1

n
∑
x∈S

σ2
jℓ
(x′) =

1

n
∑
x∈S
∑
jℓ−1

pjℓ−1∣jℓ(xjℓ−1(x
′) − zjℓ)

2

and zjℓ = ∑jℓ−1 pjℓ−1∣jℓxjℓ−1 are the variance and mean, respectively, of xȷ̃ℓ−1 resulting from a
single draw ȷ̃ℓ−1 ∼ pjℓ−1∣jℓ . Bounding the latter term further using Jensen’s inequality, we get

σ2
jℓ
≤
1

n
∑
x∈S

x2jℓ−1(x
′)

≤
1

n
∑
x∈S
(∑
j0

pj0∣jℓ−1 ∣x
′
j0 ∣)

2

≤ (
1

n
∑
x∈S
∑
j0

pj0∣jℓ−1 ∣x
′
j0 ∣

q∗)
2/q∗
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which is at most 1 by the same reasoning as in the case of ℓ = L. Hence we obtain

E2
ℓ ≤

1

M
(∑
jℓ

√
pjℓ)

2 =
1

M
(e

1
2
H1/2(pℓ))2

Substituting this (as well as the bound of 1
M in the ℓ = L case) into (A.3), we obtain

Ep̃[
1

n
∑
x∈S
∥f(x;p) − f(x; p̃)∥22] ≤ (∑

ℓ

Eℓ)
2

≤ (
1
√
M
+

L−1
∑
ℓ=1

e
1
2
H1/2(pℓ)
√
M

)
2

=
L2ζ2

M

Hence, multiplying both sides by V2, we get

Ep̃[
1

n
∑
x∈S
∥f(x;W ) − f(x; W̃ )∥22] ≤

V2ζ2L2

M
.

Theorem A.2. Suppose k = 1, L = 2, x ∈ {−1,+1}d, and P(xȷ̃0 = +1∣j1) = ∑j0∶xj0
=+1 pj0∣j1 = 1/2

and P(xȷ̃0 = −1∣j1) = ∑j0∶xj0
=−1 pj0∣j1 = 1/2 for all j1. Then, for sufficiently large M ,

Ep̃[∣f(x;p) − f(x; p̃)∣
2] ≥

ζ21
32M

,

where ξ1 = 1
2(1 +∑j1

√
pj1).

Remark A.1. Note that the assumptions are satisfied if, for example, d is even, pj0∣j1 = 1/d,
and half of the coordinates of x are +1 and the other half are −1 (there are ( d

d/2) ways of
choosing x in this way).

Proof. By the bias-variance decomposition,

Ep̃[∣f(x;p) − f(x; p̃)∣
2] = ∣f(x;p) − Ep̃[f(x; p̃)]∣

2 +VARp̃[f(x; p̃)].

The assumptions imply that f(x;p) = 0. Hence,

Ep̃∣f(x;p) − f(x; p̃)∣
2 ≥ ∣Ep̃[f(x; p̃)]∣

2

Using the identity ϕ(z) = (z + ∣z∣)/2 and unbiasedness, we have

Ep̃[f(x; p̃)] =∑
j1

Ep̃[p̃j1ϕ(∑
j0

p̃j0∣j1xj0)] =
1

2
∑
j1

Ep̃[p̃j1 ∣∑
j0

p̃j0∣j1xj0 ∣].
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Next, using P(xȷ̃0 = +1∣j1) = P(xȷ̃0 = −1∣j1) = 1/2, we have

E[∣∑
j0

p̃j0∣j1xj0 ∣∣Kj1] =
1

Kj1

E[∣
Kj1

∑
i=1
ϵi∣],

where ϵi
iid
∼ Unif{−1,1}. By Khintchine’s inequality,

E[∣
Kj1

∑
i=1
ϵi∣] ≥

√
Kj1/2.

Thus, since p̃j1 =Kj1/M , we have

Ep̃[p̃j1 ∣∑
j0

p̃j0∣j1xj0 ∣] ≥
1
√
2M

E[
√
Kj1].

Using a Taylor expansion of z ↦
√
z, it can be shown that E[

√
Kj1] ≥

√
Mpj1 −

1−pj1
2
√
Mp1

. The
lower bound on Ep̃[f(x; p̃)] is then

1

2
∑
j1

Ep̃[p̃j1 ∣∑
j0

p̃j0∣j1xj0 ∣] ≥
1

2
√
2M
(∑

j1

√
pj1 −

1

2M
∑
j1

1 − pj1
√
p1
).

For M sufficiently large, this expression is at least ζ1
4
√
2M

, thus proving the claim.

Theorem A.3. The number of networks f(x; p̃) that arise from the sampling scheme is at most
8ML(de)M . Thus, the log-cardinality of the representor set is bounded by M(log(de)+L log(8)).

Proof. The proof makes use of the following fact. Let I(k) denote the number of integer
partitions of integers equal to k. Then I(k) ≤ 2k.

We will prove the claim by induction. Let L = 2. In this case, x̃j2 = f(x; p̃)j2 has the form

x̃j2 = ϕ(∑
j1

p̃j2 p̃j1∣j2x̃j1), (A.4)

where x̃j1 = ϕ(∑j0 p̃j0∣j1xj0). Let us now count the number of vectors (x̃j1). Note that for
each j1, the number of outputs x̃j1 is the number of nonnegative integers Kj0,j1 that sum to
Kj1 , or (Kj1

+d0−1
Kj1

). Thus, for a fixed sequence of integers (Kj1) that sum to M , there are

∏
j1

(
Kj1 + d0 − 1

Kj1

)

vectors (x̃j1). Summing over all integers Kj1 that sum to M yields that the number of vectors
(x̃j1) is

N1 = ∑
(Kj1

)∶∑j1
Kj1
=M
∏
j1

(
Kj1 + d0 − 1

Kj1

).
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Next, note that each p̃j2 p̃j1∣j2 = p̃j1,j2 is built from counts Kj1,j2 that sum to Kj2 for each fixed
j2. By permutation invariance of the sum (A.4), for a fixed nonnegative integer Kj2 and
vector (x̃j1), each output x̃j2 provides at most I(Kj2) different networks. Hence, for a fixed
vector (x̃j1), since the Kj2 sum to M , the number of vectors (x̃j2) is

N2 = ∑
(Kj2

)∶∑j2
Kj2
=M
∏
j2

I(Kj2).

Hence the total number of vectors (x̃j2) is N1N2.

For general L, consider x̃jL = f(x; p̃)jL , i.e.,

x̃jL = ϕ( ∑
jL−1

p̃jL p̃jL−1∣jLx̃jL−1). (A.5)

Note that each p̃jL p̃jL−1∣jL = p̃jL−1,jL is built from counts KjL−1,jL that sum to KjL for each
fixed jL. By permutation invariance of the sum in (A.5), for a fixed nonnegative integer KL

and vector (x̃jL−1), each output x̃jL provides at most I(KjL) different networks. Hence, for a
fixed vector (x̃jL−1), since the KjL sum to M , the number of vectors (x̃jL) is

NL = ∑
(KjL

)∶∑jL
KjL

=M
∏
jL

I(KjL).

By the induction step, the number of vectors (x̃jL−1) (each vector (x̃jL−1) is a depth L − 1
network with dL−1 output nodes) is N1N2⋯NL−1. Hence, the total count is N1N2⋯NL.

Since at most M of the p̃jℓ∣jℓ+1 are nonzero, by relabeling the indices jℓ in each layer ℓ =
1,2, . . . , L, we can assume that dℓ =M . This means that

N ∶= N2 = N3 = ⋯ = NL = ∑
(Kj)∶∑M

j=1 Kj=M
∏
j

I(Kj).

Next, note that I(Kj) ≤ 2Kj and hence ∏j I(Kj) ≤ 2M . Furthermore, ∑(Kj)∶∑M
j=1 Kj=M 1 =

(
2M−1
M
) ≤ 4M . Thus, N ≤ 8M . As for N1, we note that (Kj1

+d0−1
Kj1

) ≤ (2ed0)
Kj1 and hence

N1 ≤ 4M(2ed0)M = (8ed0)M . This shows that

N1N2⋯NL ≤ 8
M(L−1)(8ed0)

M = 8ML(d0e)
M .

The following Corollary, mentioned in the main text, allows us to remove dependence on d
when we have ℓ2 constraints on the data.
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Corollary A.1. Let S = span(S) denote the subspace spanned by S. Let W ′
1 = projS(W1)

denote the orthogonal projection of the rowspace of W1 onto S. Let p′ denote the path
distribution induced by weight matrices (W ′

1,W2, . . . ,WL). The number of networks f(x; p̃′)
evaluated at the training data S is at most 8ML(ne)M . Thus, the log-cardinality of the
representor set is bounded by M(log(ne) +L log(8)).

Proof. The effective input dimension of f(x;p′), acted on n data points S, is at most n.
Hence, we obtain the conclusion from the previous lemma.

To get the metric entropy bound that removes dependence on d, we first note that f(x;p′) =
f(x;p) for x ∈ S. Furthermore, because an orthogonal projection is a bounded operator, if
∥x∥2 ≤ r, then V2 defined in terms of (W ′

1,W2, . . . ,WL) can be bounded by the same quantities
in terms of (W1,W2, . . . ,WL), i.e., ∥WL⋯W2W ′

1w0∥ ≤ r∥WL⋯W2W1∥. These facts imply that
an empirical cover of V ′f(x;p′) is also an empirical cover of Vf(x;p) for x ∈ S.

Corollary A.2. Let ϵ, γ > 0, 1 ≤ q ≤ 2. Then

logN2(ϵ,Fγ(Vq, ζq), S) ≤
9V2

qζ
2
qL

2(L + log(de))

γ2ϵ2
(A.6)

Proof. We first observe that Rγ is 1
γ Lipschitz. Moreover, Lemma A.2 in [BFT17] shows

that for any j,M(⋅, j) is 2-Lipschitz with respect to ∥ ⋅ ∥∞. Then for any network f(x;W ) ∈
F(Vq, ζq), by Theorem A.1, we have that there exists f(x; W̃ ) such that n−1∑x∈S ∥f(x;W )−

f(x; W̃ )∥22 ≤ (
VqζqL√

M
)
2

. Then

1

n
∑

(x,y)∶x∈S
∣Rγ(−M(f(x;W ), y)) −Rγ(−M(f(x; W̃ ), y))∣

2

≤
1

n
∑

(x,y)∶x∈S

1

γ2
∣M(f(x;W ), y) −M(f(x; W̃ ), y)∣2

≤
1

n
∑

(x,y)∶x∈S

4

γ2
∥f(x;W ) − f(x; W̃ )∥22

≤ (
2VqζqL

γ
√
M
)
2

The results is thus an immediate consequence of Theorem A.3 with Mϵ = (
2VqζqL

γϵ
)
2
. Note

that the factor of 9 arises from the additional factor of log(8) in the cardinality bound.
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Theorem A.4. Let f(x;W ) be an L-layer positive homogeneous network and let δ ∈ (0,1).
For any 1 ≤ q ≤ 2 and γ > 0, with probability at least 1 − δ over the training set S, the
generalization error ℓ(f) − ℓ̂γ(f) is bounded by

Õ(
VqζqL

√
L + log(d)

γ
√
n

+

√
log(1/δ)

n
), (A.7)

where Vq, ζq are the q- path variation and path complexity of f .

To prove this, we first prove the generalization bound for the classes Fγ(Vq, ζq) with a priori
bounded path variation and path complexity, and then take a union bound to obtain a post
hoc guarantee.

We first recall the empirical Rademacher complexity of a class of real-valued functions G with
respect to a dataset S = {x1, ..., xn}:

R̂S(G) = Eϵ[ sup
g∈G

1

n

n

∑
i=1
ϵig(x

i)]

where ϵi
iid
∼ Unif{−1, 1}. For our purposes, the utility of the empirical Rademacher complexity

is captured by the following standard result.

Lemma 4 ([MRT18]). Let G be a class of functions with values in [0, 1]. Then for any δ > 0,
with probability at least 1 − δ over S, for all g ∈ G we have

E[g(x)] ≤
1

n

n

∑
i=1
g(xi) + 2R̂S(G) + 3

√
log(2/δ)

2n

To bound to empirical Rademacher complexity, we use a standard bound via a Dudley entropy
integral.

Lemma 5 (Dudley entropy integral; see e.g. note by [Sri]). For a class of functions G with
values in [0,1] and a dataset S of n points, we have

R̂S(G) ≤ inf
α≥0

⎡
⎢
⎢
⎢
⎢
⎣

4α + 12∫
1

α

√
logN (ϵ,G, S)

n
dϵ

⎤
⎥
⎥
⎥
⎥
⎦

Using these results with Lemma A.2, we may obtain the following.
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Lemma 6. Let δ ∈ (0,1), γ > 0, 1 ≤ q ≤ 2. Then with probability at least 1 − δ over an i.i.d.
draw of S , we have for all f ∈ Fγ(Vq, ζq)

ℓ(f) ≤ ℓ̂γ(f) +
8

n
+
48VqζqL

√
L + log(ed) log(n)

γ
√
n

+ 3

√
log(2/δ)

2n
(A.8)

Proof. Define

A2 =
4V2

qζ
2
qL

2(L + log(ed))

γ2n

so that logN2(ϵ,Fγ(Vq, ζq), S)/n =
A2

ϵ2 . Then by Lemma 5, we have that

R̂S(Fγ(Vq, ζq)) ≤ inf
α≥0
[4α + 12A∫

1

α

1

ϵ
dϵ] = inf

α≥0
[4α + 12A log(1/α)]

It is easy to verify that the above expression is minimized at α = 3A, though to keep the
expression somewhat cleaner, we use to choice α = 1

n , which produces the bound

R̂S(Fγ(Vq, ζq)) ≤
4

n
+A log(n) =

4

n
+
24VqζqL

√
L + log(ed) log(n)

γ
√
n

.

The result follows from Lemma 4 together with the fact that ℓ(f) ≤ E[Rγ(f(x;W ), y)] and
1
n ∑(x,y)∶x∈S Rγ(f(x;W ), y) ≤ ℓ̂γ(f).

The above gives a generalization guarantee for the class Fγ(Vq, ζq) with a priori bounded
path variation and path complexity, and given γ > 0. Namely, it gives a statement of the form

∀ classes Fγ(Vq, ζq) we have with probability at least 1 − δ over the training set S that ∀
f ∈ Fγ(Vq, ζq) the bound (A.8) holds.

However, in practice, we do not have such guarantees on the on the size of these quantities
before seeing the data. In order to obtain post hoc guarantees for a network f(x;W ), we
need to prove a statement of the form

With probability at least 1 − δ over the training set S, ∀ classes Fγ(Vq, ζq) we have that ∀
f ∈ Fγ(Vq, ζq) the bound (A.8) holds.

To prove a statement of the latter form, we must instead instantiate the above bound for
many values of V, ζ, γ and take a union bound. The below approach to doing so is similar to
that of [BFT17].
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Proof of Theorem A.4. Given integers (j1, j2, j3), define the instances

B(j1, j2, j3) = {(γ,S,W ) ∶ 0 <
1

γ
<

2j1
√
n
, Vq(W ) ≤ j2, ζq(W ) ≤ j3}

And for δ ∈ (0,1), divide δ as

δ(j1, j2, j3) =
δ

2j1j2(j2 + 1)j3(j3 + 1)

so that by construction ∑j1,j2,j3∈N δ(j1, j2, j3) = δ. Then by Lemma 6, we have that for
every (j1, j2, j3) ∈ N3, we have with probability at least 1 − δ(j1, j2, j3) that for all instances
(γ,S,W ) ∈ B(j1, j2, j3),

ℓ(f) ≤ ℓ̂γ(f) +
8

n
+
48 ⋅ 2j1 ⋅ j2 ⋅ j3 ⋅L

√
L + log(ed) log(n)

n
+ 3

√
log(2/δ(j1, j2, j3))

2n
(A.9)

≤ ℓ̂γ(f) +
8

n
+
48 ⋅ 2j1 ⋅ j2 ⋅ j3 ⋅L

√
L + log(ed) log(n)

n
(A.10)

+ 3

√
log(2/δ) + log(2j1) + 2 log(j2 + 1) + 2 log(j3 + 1)

2n
(A.11)

Then taking a union bound over the integers (j1, j2, j3), we have that (A.9-A.11) holds
simultaneously over all B(j1, j2, j3) with probability at least 1− δ. Then for a given γ,X, and
f(x;W ) with path variation and complexity Vq, ζq, Let j∗1 , j∗2 , j∗3 be the smallest integers such
that 1

γ ≤
2j
∗
1√
n
,Vq ≤ j∗2 , and ζq ≤ j∗3 . Then we have by definition that 2j

∗
1 ≤

2
√
n

γ , j∗2 ≤ Vq + 1 and
j∗3 ≤ ζq + 1. Plugging these values in and cleaning up with the notation Õ yields the stated
result.

A.2 Additional results mentioned in the main text

Bounding normalizing constants

Lemma 7 (Induced norms as normalizing constants). Let 1 ≤ q ≤ ∞ and define wj0 =

(n−1∑x∈S ∣xj0 ∣
q)1/q. Then

∑
j0,j1,...,jL

wj0wj0,j1,...,jL ≤ (max
x∈S
∥x∥q)k

1−1/q∥WLWL−1⋯W1∥q

where ∥ ⋅ ∥q is the matrix norm induced by the vector q norm.

Proof. We observe that this is the same as showing that

∥WLWL−1⋯W1w0∥1 ≤ rk
1−1/q∥WLWL−1⋯W1w0∥q
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where w0 = [w1,w2, ...,wd]
⊺ (the vector containing the values wj0). Notice that

WLWL−1⋯W1w0

is simply a vector in Rk, and hence by an application of Hölder’s inequality, we have

∥WLWL−1⋯W1w0∥1 ≤ k
1−1/q∥WLWL−1⋯W1w0∥q

Since the vector q norm induces the mstrix q norm, we have that this is at most

k1−1/q∥WLWL−1⋯W1∥q∥w0∥q ≤ rk
1−1/q∥WLWL−1⋯W1∥q.

Lemma 8 ((q, 1) norms as normalizing constants). Let 1 ≤ q ≤∞, and let q∗ be its conjugate
exponent. Then

Vq ≤ (max
x∈S
∥x∥q∗)∥

L

∏
1

∣Wℓ∣∥
q,1
.

Proof. We observe from Hölder’s inequality,

Vq =∑
jL

∑
j0

wj0 ∑
j1,...,jL−1

wj0,...,jL

≤∑
jL

(∑
j0

( ∑
j1,...,jL−1

wj0,...,jL)
q

)
1/q
(∑

j0

wq∗

j0
)
1/q∗

≤ (max
x∈S
∥x∥q∗)∥

L

∏
1

∣Wℓ∣∥
q,1
.

Lemma 9. We have
V2 ≤∑

jL

( ∑
j0,j1,...,jL−1

w2
j0,j1,...,jL

)
1/2

where in the single output case, the right-hand side is equal to the 2−path norm ϕ2 from
[NTS15].

Proof. This can be seen by repeated application of the Cauchy-Schwarz inequality, as follows.
Assume, without loss of generality, that r = 1, so that S ⊆ B2(1). Then we have

∑
(j0,j1,...,jL)

wj0wj0,j1,...,jL = ∑
(j1,j2,...,jL)

wj1,j2,...,jL∑
j0

wj0wj0,j1 .

Then, for each j1, we apply the Cauchy-Schwarz inequality to the sum ∑j0 wj0wj0,j1 , yielding
the bound

∑
(j1,j2,...,jL)

wj1,j2,...,jL(∑
j0

w2
j1,j0)

1/2(∑
j0

w2
j0)

1/2.
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By the ℓ2 condition on the inputs, (∑j0 w
2
j0
)1/2 ≤ r. Continuing similarly, we have for each

ℓ = 1,2, . . . , L,

∑
(jℓ,jℓ+1,...,jL)

wjℓ,jℓ+1,...,jL( ∑
(j0,j1,...,jℓ−1)

w2
j0,j1,...,jℓ

)1/2

= ∑
(jℓ+1,jℓ+2,...,jL)

wjℓ+1,jℓ+2,...,jL ×∑
jℓ

wjℓ+1,jℓ( ∑
(j0,j1,...,jℓ−1)

w2
j0,j1,...,jℓ

)1/2.

As before, for each jℓ+1, we apply the Cauchy-Schwarz inequality to the sum

∑
jℓ

wjℓ+1,jℓ( ∑
(j0,j1,...,jℓ−1)

w2
j0,j1,...,jℓ

)1/2,

yielding the bound

∑
(jℓ+1,jℓ+2,...,jL)

wjℓ+1,jℓ+2,...,jL( ∑
(j0,j1,...,jℓ)

w2
j0,j1,...,jℓ+1

)1/2.

Repeating this procedure to ℓ = L − 1, we may obtain the stated bound.

Details of pooling case

We begin with some basic properties of the max/average pooling operator PZ ∶ X → Y , where
X ,Y are vector spaces with dimension dX , dY and Z is a collection of subsets {Z1, ..., ZdY}

where Zi ⊂ {1, ..., dX}. For a given input X ∈ X , PZ computes [PZ(X)1, ...,PZ(X)dY ]T where

Pmax
Z (X)i =max

j∈Zi

Xj.

for max pooling and

P
avg
Z (X)i =

1

∣Zi∣
∑
j∈Zi

Xj.

for average pooling. The argument is the same for both, so we simply use P to denote
either max or average pooling. Now given weight matrices Wℓ+1,Wℓ with Wℓ+1 ∈ Rdℓ+1,dℓ and
Wℓ ∈ Rd′ℓ,dℓ−1 with positive entries, a pooling layer can be written as

zjℓ+1(x) =∑
jℓ

wjℓ+1,jℓPjℓ(ϕ(∑
jℓ−1

wj′
ℓ
,jℓ−1xjℓ−1(x)))

To handle the signs of wjℓ+1,jℓ , we may now double the number of units dℓ and have Pℓ(X)
compute [Pℓ(X)1, ...,Pℓ(X)dℓ ,−Pℓ(X)1, ...,−Pℓ(X)dℓ] and adjust weights accordingly. A
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typical term in the analysis of Theorem A.1 with pooling will now look like

∑
jL

∣f ℓ+1(x;p, p̃)jL − f
ℓ(x;p, p̃)jL ∣

≤∑
jL

∑
jL−1,...,jℓ+1

p̃jL,jL−1,...,jℓ+1 ∣∑
jℓ

p̃jℓ∣jℓ+1(Pjℓ(ϕ(z̃jℓ(x))) −Pjℓ(ϕ(zjℓ(x))))∣

≤∑
jL

∑
jℓ

p̃jL,jℓ ∣Pjℓ(ϕ(z̃jℓ(x))) −Pjℓ(ϕ(zjℓ(x)))∣

=∑
jℓ

p̃jℓ ∣Pjℓ(ϕ(z̃jℓ(x))) −Pjℓ(ϕ(zjℓ(x)))∣

≤∑
j′
ℓ

p̃j′
ℓ
∣Aj′

ℓ
(x)∣

where now Aj′
ℓ
(x) = ∑jℓ−1(p̃jℓ−1∣j′ℓ − pjℓ−1∣j′ℓ)zjℓ−1(x), which is the same as the term appearing

in the case without pooling. [Note we just need to define Kjℓ = ∑j′
ℓ
∈Zjℓ

Kj′
ℓ

in our counts.]

Computational aspects of sampling

As we mention briefly in the main text, to generate samples from Multinomial(M,p) directly,
we would need to store and sample from the full path distribution pj0,j1,...,jL , which quickly
becomes unwieldy as L grows, since it involves storing a (potentially dense) L-tensor. It
turns out, however, that we can store only the conditional distributions, which are just
matrices, and can be computed easily from the collection of successive matrix products
{WℓWℓ−1⋯W1 ∶ ℓ = 1,2, . . . , L} (the collection itself can be inductively constructed), since

pjℓ∣jℓ+1 = wjℓ+1,jℓ

∥Wℓ[jℓ, ]Wℓ−1⋯W1∥1

∥Wℓ+1[jℓ+1, ]Wℓ⋯W1∥1

and
pjL =

∥WL[jL, ]WL−1⋯W1∥1

V
,

where Wℓ[jℓ, ] (resp. Wℓ[, jℓ−1]) is row (resp. column) jℓ (resp. jℓ−1) of Wℓ. Thus, the
conditional probabilities are reweighted versions of the weight matrices. Given these matrices,
a sample K ∼ Multinomial(M,p) can be generated in O(LM) time by repeating the following
M times:

• Sample ȷ̃L ∼ pjL

• Sample ȷ̃L−1 ∼ pjL−1∣ȷ̃L
⋮

• Sample ȷ̃0 ∼ pj0∣ȷ̃1



98

Appendix B

Chapter 3 Appendices

B.1 Technical Results
Here, we provide proofs of our main results.

Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. The assumption (3.12) on the correlation structure of the data implies
that

ζi
d
=
√
1 − ρZi +

√
ρZ, (B.1)

for i = 1,2, . . . , n +m, where Z,Z1, Z2, . . . , Zn+m are i.i.d. N (0,1). Let a =
√

ρ
1−ρ . According

to (11), P(VS(Sn)) can be expressed as

P(ζ1 ≥ 0, ζ2 ≥ 0, . . . , ζn ≥ 0) = EZ∼N(0,1)[(Φ(aZ))
n]

= ∫

∞

−∞
(Φ(az))nϕ(z)dz, (B.2)

where ϕ(⋅) is the density of a N (0,1) distribution. Make the change of variables u =
n(1 −Φ(az)). Then the integral (B.2) becomes

(2π)
1
2
( 1
a2
−1)

na ∫

n

0
(1 − u/n)n(ϕ(Φ−1(1 − u/n)))

1
a2
−1du, (B.3)

where Φ−1(⋅) is the quantile function of N (0, 1). Next, consider the so-called “density quantile
function” ϕ(Φ−1(v)). Using a standard asymptotic expression for Mills’ ratio [Fel68], we have

1 −Φ(x)

ϕ(x)
=
1

x
(1 +O(

1

x2
)), x→∞. (B.4)
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Furthermore, the quantile function Φ−1(v) has the following asymptotic expression [FS18]

Φ−1(v) =
√
2 log(1/(1 − v))(1 +O(

log log(1/(1 − v))

log(1/(1 − v))
)), (B.5)

as v ↑ 1. Combining these two facts ((B.4) and (B.5)) yields

ϕ(Φ−1(v)) = (1 − v)
√
2 log(1/(1 − v))×

(1 +O(
log log(1/(1 − v))

log(1/(1 − v))
)), v ↑ 1.

Using this asymptotic expression for ϕ(Φ−1(v)), we find that

∫

n

0
(1 − u/n)n(ϕ(Φ−1(1 − u/n)))

1
a2
−1du

from (B.3) is asymptotically

n1−1/a2(2 log(n))
1
2
( 1
a2
−1)
×

∫

n

0
(1 +

log(1/u)

log(n)
)

1
2
( 1
a2
−1)
u1/a

2−1e−udu.
(B.6)

Finally, by the dominated convergence theorem, ∫
n

0 (1 +
log(1/u)
log(n) )

1
2
( 1
a2
−1)u1/a

2−1e−udu is asymp-
totically

∫

∞

0
u1/a

2−1e−udu = Γ(1/a2).

Therefore, (B.6) is asymptotically

n1−1/a2(2 log(n))
1
2
( 1
a2
−1)Γ(1/a2). (B.7)

Combining (B.3) and (B.7), we have

P(ζ1 ≥ 0, ζ2 ≥ 0, . . . , ζn ≥ 0) ∼

Γ(1/a2)

a
(4π log(n))

1
2
( 1
a2
−1)n−1/a

2

.
(B.8)

Having given an asymptotic expression for the orthant probabilities, we turn our attention to
the ratio P(yn+1 = f(xn+1) ∣ VS(Sn)), which equals

P({yn+1 = f(xn+1)} ∩VS(Sn))

P(VS(Sn))
. (B.9)

Next, we recognize that the set {yn+1 = f(xn+1)} ∩ VS(Sn) is another version space with
n + 1 sample points and the same correlation structure as before, per the assumption of the
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theorem. Therefore, using the above asymptotic formula (B.8) for P(ζ1 ≥ 0, ζ2 ≥ 0, . . . , ζn ≥ 0),
we have that (B.9) is asymptotically

Γ(1/a2)
a (4π log(n + 1))

1
2
( 1
a2
−1)
(n + 1)−1/a

2

Γ(1/a2)
a (4π log(n))

1
2
( 1
a2
−1)n−1/a2

= 1 −
1/a2

n
+

1/a2 − 1

2n log(n)
+O(1/n2),

thus completing the proof.

Proof of Theorem 3.2. To begin, note that by definition,

Rn,m(ε) =
P({Em(f) ≤ ε} ∩VS(Sn))

P(VS(Sn))
. (B.10)

Using the representation (B.1) of ζi in terms of Z and Zi, we have Em(f)
d
= 1

m ∑
m
i=1 1(Zi <

−aZ) and E(f) d
= limm

1
m ∑

m
i=1 1(Zi < −aZ), where a =

√
ρ

1−ρ . Henceforth, we take these
distributional equivalents as the definitions of Em(f) and E(f). Now,

P({Em(f) ≤ ε} ∩VS(Sn)) =

EZ∼N(0,1)[P(Em(f) ≤ ε ∣ Z)Φn(aZ)].

By the strong law of large numbers, given Z, 1
m ∑

m
i=1 1(Zi < −aZ) converges almost surely

(with respect to the test data Stest and Z1, Z2, . . . ) to its mean Φ(−aZ) = 1−Φ(aZ). Thus, by
the dominated convergence theorem, almost surely, limm P(Em(f) ≤ ε ∣ Z) = 1(1−Φ(aZ) ≤ ε).
Therefore, it follows that, almost surely, P(E(f) ≤ ε ∣ Z) = 1(1 −Φ(aZ) ≤ ε). Next,

Rn(ε) =
P({E(f) ≤ ε} ∩VS(Sn))

P(VS(Sn))

=
EZ∼N(0,1)[1(1 −Φ(aZ) ≤ ε)Φn(aZ)]

EZ∼N(0,1)[Φn(aZ)]

=
∫

εn

0 (1 − u/n)
n(ϕ(Φ−1(1 − u/n)))

1
a2
−1du

∫
n

0 (1 − u/n)
n(ϕ(Φ−1(1 − u/n)))

1
a2
−1du

, (B.11)

where for the final equality, we use (B.3) from the proof of Theorem 3.1. Using the same
techniques as Theorem 3.1 to derive asymptotic integral expressions therein (in fact, the
integrands of the integrals are identical), (B.11) is asymptotically equivalent to

∫
εn

0 u1/a
2−1e−udu

∫
∞
0 u1/a2−1e−udu

= P(U ≤ nε),

which proves the first claim (3.14).

To prove the second claim (3.15) about the critical value, let c > 0 be arbitrary. Then,

P(U ≤ n(ϵ∗ + c))→ 1,

provided nρ→∞. On the other hand, for nρ large enough, (1 − ρ)/ρ − nc < 0 and hence,

P(U ≤ n(ϵ∗ − c)) = 0.
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A new asymptotic formula for the orthant probability of
equicorrelated Gaussians

A consequence of the proof of Theorem 3.1 is the following asymptotic expression for the
orthant probability of an equicorrelated Gaussian which, to the best of our knowledge, is
new. This is referred to as Lemma 3 in the main text.

Corollary B.1 (Asymptotic expression for orthant probability in equicorrelated case). Let
ρ ∈ [0,1) and (X1, ...,Xn) ∼ N (0,Σ) with Σij = ρ for i ≠ j and Σii = 1 for all i. Then as
nρ→∞,

P(X1 ≥ 0,X2 ≥ 0, . . . ,Xn ≥ 0) ∼

√
1 − ρ

ρ
Γ(

1 − ρ

ρ
) (4π log(n))

1
2
( 1−ρ

ρ
−1)n−

1−ρ
ρ .

Lower bound on test error for Gaussian model

Recall the Gaussian data model:

(x, y) ∼
1

2
(N+,1) +

1

2
(N−,−1) (B.12)

where N+ ∼ N (µ,Σ), N− ∼ N (−µ,Σ) and µ ∈ Rd, Σ ∈ Sd+. For this model, we have the lower
bound

E(w) ≥ ε∗ ≥ Φ(−
√
µ⊺Σ−1µ) (B.13)

To see this, define the norm ∥x∥2Σ = x⊺Σx. The value ε∗ satisfies

−Φ−1(ε∗) = ess sup
w∈VS

w⊺µ
√
w⊺Σw

≤ sup
w∈VS

w⊺µ
√
w⊺Σw

= sup
w∈VS, ∥w∥Σ=1

w⊺µ

≤ sup
∥w∥Σ=1

w⊺µ = ∥µ∥Σ−1 =
√
µ⊺Σ−1µ

where we use the fact that ∥ ⋅ ∥Σ−1 is the dual norm to ∥ ⋅ ∥Σ. Hence solving for ε∗, we get the
lower bound

ε∗ ≥ Φ(−
√
µ⊺Σ−1µ).

When Σ = σ2I, this lower bound reduces to the usual signal-to-noise ratio Φ(− ∥µ∥σ ).

B.2 Review of LIN-ESS Algorithm and Additional
Empirical Results

Review of LIN-ESS

In this section, we briefly review the lin-ess algorithm introduced in [GKH20a], which is the
main computational tool we use in our empirical evaluation. lin-ess builds on the Elliptical
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Figure B.1: Test error distributions for linear classifiers, similar to Figure 2 in the main text. Here
we try four different binary problems; 0 vs 1 classification for mnist, T-shirt vs Shirt classification
for fashion-mnist, 1 vs 7 classification for mnist and Trouser vs Sneaker classification for fashion-
mnist. While we observe similar qualitative behavior as in the main text, we do note substantial
differences in the location of the distributions based on the difficulty of the task. For example, note
that T-shirt vs Shirt classification is significantly more difficult than 0 vs 6 classification, while
Trouser vs Sneaker classification is easier that 0 vs 1 classification.

Slice Sampling algorithm [MPDM10], which can be used to sample from a posterior under
a N (µ,Σ) prior and generic likelihood L. The generic algorithm works as follows: given a
starting point x0 and a new sample x′ ∼ N (µ,Σ), construct an ellipse passing through these
two points:

x(θ) = x0 cos(θ) +x
′ sin(θ).

We then sample an angle θ̂ randomly and accept x(θ̂) if the likelihood at this point L(x(θ̂))
is sufficiently large. Otherwise, we sample a new angle in a narrower band of feasible values.
While a general and provably valid1 algorithm, this procedure can be slow, as many samples
may be rejected before finding an acceptable sample.

The key insight of [GKH20a] is that when the likelihood has the form L(x) =∏
n
i=1 1(a⊺ix+bi ≥

0), the region of feasible angles θ can be obtained analytically, avoiding the need to reject
infeasible θ̂. This results in significantly faster computation, even in high dimensions.

Additional empirical results

In Figures B.1-B.4 we provide additional empirical results, complementing the results presented
in the main text.

1Meaning, it can be shown to have the true posterior as a unique stationary distribution.
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Figure B.2: Test error distributions for random ReLU feature classifiers on mnist. Here we plot
PDFs, similar to Figure 3.1, which we fit using a Gaussian kernel density estimator. These plots are
not as precise as the CDF plots shown in the main text, but are more usually for seeing visually the
concentration phenomenon as N →∞.

Figure B.3: Example of worst case test errors for random ReLU feature models, for N = 1000 random
features. We observe again that bad classifiers do indeed exist, despite an abundance of classifiers
with low test error.

Figure B.4: As an additional example, here we plot the test error distribution for linear classification
on the plane vs car task on the cifar10 dataset.
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Appendix C

Chapter 4 Appendices

C.1 Proof of Proposition 4.2
Proposition 2. (From main text) The Bayes error of flow models is monotonically increasing
in τ . That is, for 0 < τ ≤ τ ′, we have that EBayes(p̂τ) ≤ EBayes(p̂τ ′).

Proof. Note that at temperature τ , the Bayes error is given by

EBayes(p̂τ) = 1 −
K

∑
k=1

πk ∫ ∏
j≠k

1(a⊺jkz + bjk > 0)N (dz;µk, τ
2Σ) (C.1)

= 1 −
K

∑
k=1

πk ∫ ∏
j≠k

1(ã⊺jkz +
b̃jk
τ
> 0)N (dz;0, I) (C.2)

where ãjk = 2Σ−1/2(µk −µj), b̃jk = (µk −µj)
⊺Σ−1(µk −µj) ≥ 0. Then it easy to see that for

0 < τ ≤ τ ′ and z ∈ Rd, we have that

∏
j≠k

1(ã⊺jkz +
b̃jk
τ
> 0) ≥∏

j≠k
1(ã⊺jkz +

b̃jk
τ ′
> 0) (C.3)

which implies that EBayes(p̂τ) ≤ EBayes(p̂τ ′).

C.2 Further empirical results

Hardness of Classes

In addition to measuring the difficulty of classification tasks relative to one another, it
also may be of interest to evaluate the relative difficulty of individual classes within a
particular task. A natural way to do this is by looking at the error of one-vs-all classification
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tasks. Specifically, for a given class j ∈ K, we consider (x,1) drawn from the distribution
p−j(x) =

1
1−πj
∑i≠j πipi(x), and (x, 0) from pj(x). The optimal Bayes classifier in this task is

CBayes(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if − log pj(x) ≤ − log p−j(x),
1 otherwise

.

Unfortunately, in this case, the Bayes error cannot be computed with HDR integration,
since p−j is now a mixture of Gaussians. However, we can get a reasonable approximation
for the error (though less accurate than exact integration would be) in this case using a
simple Monte Carlo estimator: ÊBayes =

1
m ∑

m
l=1 1(CBayes(xl) ≠ yl), where yl ∼ Unif{0,1} and

xl ∣ yl ∼ ylp−j + (1 − yl)pj as prescribed above.

The one-vs-all errors by class on CIFAR are shown in Figure C.1. It is observed that the
errors between the hardest class and the easiest class is huge. On CIFAR-100 the error of the
hardest class, squirrel, is almost 5 times that of the easiest class, wardrobe.

(a) CIFAR-10 (b) CIFAR-100

Figure C.1: Classes Ranked by Hardness

Additional samples and Bayes errors from flow models

Below we include examples generating by the trained flow models, and additional datasets
generated at different temperatures, and hence Bayes errors.
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(a) τ=0.2, EBayes =1.11e-16 (b) τ=1.0, EBayes =1.07e-4

(c) τ=1.4, EBayes =7.00e-3 (d) τ=3.0, EBayes =2.91e-1

Figure C.2: Generated MNIST Samples with Different Temperatures
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(a) τ=0.2, EBayes =1.11e-16 (b) τ=1.0, EBayes =8.03e-3

(c) τ=1.4, EBayes =7.21e-2 (d) τ=3.0, EBayes =4.80e-1

Figure C.3: Generated Kuzushiji-MNIST Samples with Different Temperatures

(a) airplane (b) automobile (c) bird (d) cat (e) deer

(f) dog (g) frog (h) horse (i) ship (j) truck

Figure C.4: Samples generated from conditional GLOW model trained on CIFAR-10.
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(a) apple (b) aquarium fish (c) camel (d) chair (e) man

(f) baby (g) palm tree (h) forest (i) whale (j) television

Figure C.5: Samples generated from conditional GLOW model trained on CIFAR-100.
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Figure C.6: Samples generated from conditional GLOW model trained on EMNIST (balanced).
Estimated Bayes Error is 0.09472.
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Appendix D

Chapter 5 Appendices

D.1 Proofs of our main results
In this section, we provide proofs for our main results. Throughout the section, we denote
Ph,h′∼ρ2 , Ph∼ρ, Eh∼ρ by Ph,h′ , Ph, Eh, respectively. We also denote Wρ(X,Y ) simply by Wρ.
We typically omit explicit dependence on the data distribution D when it is apparent from
context.

Proof of Theorem 5.1

We first state and prove two lemmas that will be used in the proof of Theorem 5.1. Our first
lemma states that majority-vote error LD[hMV] is upper bounded by probability of Wρ(X,Y )
being large.

Lemma 10. There is the inequality LD[hMV] ≤ PD(Wρ(X,Y ) ≥ 1/2), where LD(h) =
ED[1(h(X) ≠ Y )], hMV(x) = argmaxj Eh[1(h(x) = j)] and Wρ(X,Y ) = Eh[1(h(X) ≠ Y )].

Proof. For given data point x, Wρ < 1/2 implies that we are predicting the true label correctly
more than half of the time. Thus, the majority vote classifier will correctly predict the label
on the data point.

Our next lemma states a property of competent classifiers which plays a crucial role in the
main proof.

Lemma 11. Under Assumption 5.1 (competence), for any increasing function h satisfying
h(0) = 0,

ED[h(Wρ)1Wρ<1/2] ≥ ED[h(W̄ρ)1W̄ρ≤1/2],

where W̄ρ = 1 −Wρ.
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Proof. For every x ∈ [0,1],

PD(Wρ1Wρ<1/2 ≥ x) = PD(Wρ ∈ [x,1/2))1x≤1/2,

PD(W̄ρ1W̄ρ≤1/2 ≥ x) = PD(W̄ρ ∈ [x,1/2])1x≤1/2 = PD(Wρ ∈ [1/2,1 − x])1x≤1/2.

From Assumption 5.1, this implies that PD(Wρ1Wρ<1/2 ≥ x) ≥ PD(W̄ρ1W̄ρ≤1/2 ≥ x) for all x ∈
[0, 1]. Therefore, for any increasing function h satisfying h(0) = 0, since h(x1x≤c) = h(x)1x≤c,

PD(h(Wρ)1Wρ<1/2 ≥ x) ≥ PD(h(W̄ρ)1W̄ρ≤1/2 ≥ x).

As Wρ is non-negative, the equality EX = ∫
∞
0 P(X ≥ x)dx concludes the proof.

With these two lemmas, we now provide the proof of Theorem 5.1.

Proof of Theorem 5.1. From Lemma 10 and the relation Eh[LD(h)] = ED[Wρ] (Fubini’s
theorem), it suffices to show that PD(Wρ ≥ 1/2) ≤ ED[Wρ]. To do so, observe

ED[(Wρ − 1)1Wρ≥1/2] + ED[W̄ρ1W̄ρ≤1/2] = ED[(Wρ − 1)1Wρ≥1/2] + ED[(1 −Wρ)1Wρ≥1/2] = 0.

Applying Lemma 11 with h(x) = x,

ED[Wρ] − PD(Wρ ≥ 1/2) ≥ ED[(Wρ − 1)1Wρ≥1/2] + ED[Wρ1Wρ<1/2]

≥ ED[(Wρ − 1)1Wρ≥1/2] + ED[W̄ρ1W̄ρ≤1/2] = 0.

which proves
LD[hMV] ≤

Lemma10
PD(Wρ ≥ 1/2)≤ED[Wρ] = Eh[LD(h)]. (D.1)

This implies EIR ≥ 0.

Proof of Theorem 5.2

Lower bound of EIR

To prove the lower bound, we first define the tandem loss, as used in [MLIS20].

Definition D.1 (Tandem loss). Define the tandem loss to be L(h,h′) = ED[1(h(X) ≠
Y )1(h′(X) ≠ Y )].

We also rely on the following lemma, which appears as Lemma 2 in [MLIS20]. It provides
the connection between the average error rate for each data point, Wρ and the tandem loss,
L(h,h′).

Lemma 12. The equality ED[Wρ
2
] = Eh,h′[L(h,h′)] holds.
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We first state and prove the following lemma, which provides an upper bound on the tandem
loss.

Lemma 13. For the K-class problem,

Eh,h′[L(h,h
′)] ≤

2(K − 1)

K
(Eh[L(h)] −

1

2
Eh,h′[D(h,h

′)]) .

Proof. We denote Ph(h(X) ≠ Y ) by h̄Y (X). Note that ED(1 − h̄Y (X)) = Eh[L(h)] and

Eh,h′[L(h,h
′)] = ED[Ph(h(X) ≠ Y )Ph′(h

′(X) ≠ Y )]

= ED[(1 − h̄Y (X))2].

Then we get

Eh,h′[L(h,h
′)] = ED[(1 − h̄Y (X))2]

= 1 − ED[h̄Y (X)] − ED[h̄Y (X)(1 − h̄Y (X))]

= Eh[L(h)] − ED[h̄Y (X)(1 − h̄Y (X))].

Now we will derive a lower bound of the second term. Since

Eh,h′[1(h(X) ≠ h′(X))] =∑
j

h̄j(X)(1 − h̄j(X)),

it follows that

h̄Y (X)(1 − h̄Y (X)) = Eh,h′[1(h(X) ≠ h′(X))] −∑
j≠Y

h̄j(X)(1 − h̄j(X)).

By maximizing ∑j≠Y h̄j(X)(1 − h̄j(X)) subject to ∑j≠Y h̄j(X) = 1 − h̄Y (X), we get h̄j(X) =
1−h̄Y (X)

K−1 , which yields the upper bound

∑
j≠Y

h̄j(X)(1 − h̄j(X)) ≤
K − 2

K − 1
(1 − h̄Y (X)) +

1

K − 1
h̄Y (X)(1 − h̄Y (X)).

It follows that

ED[h̄Y (X)(1 − h̄Y (X))] ≥
K − 1

K
Eh,h′[D(h,h

′)] −
K − 2

K
Eh[L(h)],

and thus that

Eh,h′[L(h,h
′)] = Eh[L(h)] − ED[h̄Y (X)(1 − h̄Y (X))]

≤ Eh[L(h)] − (
K − 1

K
Eh,h′[D(h,h

′)] −
K − 2

K
Eh[L(h)])

=
2(K − 1)

K
(Eh[L(h)] −

1

2
Eh,h′[D(h,h

′)]) .
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We now provide the proof for the lower bound of EIR in Theorem 5.2.

Proof. We first claim that PD(Wρ ≥ 1/2) ≤ 2ED[Wρ
2
]. Then, we have

ED[(2Wρ
2
− 1)1Wρ≥1/2] = ED[(2(1 − W̄ρ)

2 − 1)1W̄ρ≤1/2]

= ED[(1 − 4W̄ρ + 2W̄ρ
2
)1W̄ρ≤1/2],

where W̄ρ = 1 −Wρ. Therefore,

ED[(2Wρ
2
− 1)1Wρ≥1/2] + ED[2W̄ρ

2
1W̄ρ≤1/2] = ED[(1 − 4W̄ρ + 4W̄ρ

2
)1W̄ρ≤1/2] ≥ 0.

Now we apply Lemma 11 with h(x) = 2x2, to obtain

ED[2Wρ
2
] − PD(Wρ ≥ 1/2) ≥ ED[(2Wρ

2
− 1)1Wρ≥1/2] + ED[2Wρ

21Wρ<1/2]

≥ ED[(2Wρ
2
− 1)1Wρ≥1/2] + ED[2W̄ρ

2
1W̄ρ≤1/2] ≥ 0,

(D.2)

which proves the claim, PD(Wρ ≥ 1/2) ≤ 2ED[Wρ
2
].

Now we put the claim together with Lemmas 10, 12, and 13 to conclude the proof.

L(hMV) ≤
Lemma 10

PD(Wρ ≥ 1/2) ≤ 2ED[Wρ
2
] =

Lemma 12
2Eh,h′[L(h,h

′)]

≤
Lemma 13

4(K − 1)

K
(Eh[L(h)] −

1

2
Eh,h′[D(h,h

′)])
(D.3)

Rearranging the terms, we obtain

Eh[LD(h)] −L(hMV) ≥
2(K − 1)

K
Eh,h′[D(h,h

′)] −
3K − 4

K
Eh[L(h)]. (D.4)

Dividing the both terms by Eh[L(h)] gives the lower bound 2(K−1)
K DER − 3K−4

K .

Upper bound of EIR

We denote Ph(h(X) = Y ) by h̄Y (X). We have

Eh[L(h)] −L(hMV) = Eh,D[1(h(X) ≠ Y ) − 1(hMV(X) ≠ Y )].

Now

1(h(X) ≠ Y ) − 1(hMV(X) ≠ Y ) = 1(hMV(X) = Y ) − 1(h(X) = Y )

= 1(h(X) ≠ hMV(X)) (1(hMV(X) = Y ) − 1(h(X) = Y ))

≤ 1(h(X) ≠ hMV(X)).
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Now notice Eh,D[1(h(X) ≠ hMV(X))] = 1 − ED[maxk h̄k(X)]. Moreover, by Hölder’s inequal-
ity,

∥h̄(X)∥22 ≤max
k
h̄k(X),

and so
Eh[L(h)] −L(hMV) ≤ 1 − ED[max

k
h̄k(X)]

≤ 1 − ED[∥h̄(X)∥2] = Eh,h′[D(h,h
′)].

(D.5)

Dividing the both terms by Eh[L(h)] gives the upper bound DER.

Upper and lower bounds on the error rate of the majority vote
classifier

We now present upper and lower bound on the majority vote classifier that follow from the
bounds in Theorem 5.1 and 5.2, and compare them with existing bounds in the literature.

Theorem D.1. For any competent ensemble ρ of K-class classifiers, the majority vote error
rate satisfies

L(hMV) ≤min{
4(K − 1)

K
(Eh∼ρ[L(h)] −

1

2
Eh,h′∼ρ[D(h,h

′)]) ,Eh∼ρ[L(h)]}

L(hMV) ≥ Eh∼ρ[L(h)] − Eh,h′∼ρ[D(h,h
′)].

Proof. The upper bound follows from inequality (D.1) and (D.3). The lower bound follows
from inequality (D.5).

We have already discussed that the bound L(hMV) ≤ E[L(h)] represents an improvement by
a factor of 2 over the naive first-order bound (5.1). Here, we further compare the bound

L(hMV) ≤
4(K − 1)

K
(Eh∼ρ[L(h)] −

1

2
Eh,h′∼ρ[D(h,h

′)]) (D.6)

to other known results in the literature. The closest in form is a bound specialized to binary
case from [MLIS20], which gives

L(hMV) ≤ 4Eh∼ρ[L(h)] − 2Eh,h′∼ρ[D(h,h
′)]. (D.7)

Note that plugging in K = 2 to (D.6), we obtain the bound 2Eh∼ρ[L(h)] − Eh,h′∼ρ[D(h,h′)],
immediately improving on (D.7) by a factor of 2 (interestingly, the same factor that we save
on the first-order bound). Hence, provided the competence assumption holds, our bound
is a direct improvement on this bound, and furthermore generalizes directly to the K-class
setting.
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RF/Thyroid RF/QSAR RF/MNIST CNN-LSTM/IMDB
(Deep Ensemble)

CNN-LSTM/IMDB
(Bayes)

ResNet20/CIFAR-10
(Deep Ensemble)

ResNet20/CIFAR-10
(Bayes)

0.0

0.1

0.2

0.3

0.4
C-bound
Our bound
MV Error

Figure D.1: Our bound (D.6) versus the multi-class C-bound (D.8).

To our knowledge, the sharpest known upper bound on the majority-vote classifier is the
general form of the C-bound given in [LMRR17], which states, provided E[Mρ(X,Y )] > 0,

L(hMV) ≤ 1 −
E[Mρ(X,Y )]2

E[M2
ρ (X,Y )]

, (D.8)

where Mρ(X,Y ) = Eh∼ρ[1(h(X) = Y )] − maxj≠Y Eh∼ρ[1(h(X) = j)] is called the margin.
Unfortunately, the use of the margin function makes direct analytical comparison to our
bound difficult. However, the bounds can be compared empirically, where the relevant
quantities are estimated on hold-out data. In Figure D.1, we compare the value of our
bound against the value of the multi-class C-bound, on tasks for which we have verified
the competence assumption holds. We find that in all but one case (random forests with
MNIST), our bound is superior empirically, sometimes significantly. Interestingly, we observe
that our bound does particularly well on tasks with only a few classes. This behavior might
be attributed to the constant 4(K−1)

K in the upper bound (D.6) which increases as the number
of classes K grows.

D.2 Additional empirical results

Experimental details

Bagged random feature classifiers. We consider ensembles of random ReLU feature
classifiers, constructed as follows. For each classifier, we draw a random matrix U ∈ RN×d,
whose rows uj are drawn from the uniform distribution on the sphere Sd−1. For a given
input x ∈ Rd, we compute the feature z(x) = σ(Ux) where σ(t) = max(t,0) is the ReLU
function. We then fit a multi-class logistic regression model in scikit-learn [PVG+11]
using these (random) features. To form an ensemble of these classifiers, we additionally
perform bagging, by sampling a different set of size n with replacement from the training set
of size n, independently for each individual classifier. Thus, each classifier is subject to two
different types of randomness: the randomness from the sampling of the feature matrix U ;
and the randomness from the bootstrapping of the training data. For the models shown in
the competence plot in Figure 5.1, we use 500 random features and M = 100 classifiers.
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Random forests. We consider random forest (RF) models as implemented in scikit-learn
[PVG+11], each made up of 20 individual decision trees. We vary the maximum number of
leaf nodes in each tree to construct models with varying performance. For the single-ensemble
results presented, we use the default parameters implemented in scikit-learn. For the
random forests, we use a small version of the MNIST dataset with 5000 randomly selected
training examples (500 from each of the 10 classes). We also use two binary classification
datasets retrieved from the UCI repository [DG17]: the QSAR oral toxicity dataset (7.2k train,
1.8k test examples, 1024 features) [BGCT19]; and the Thyroid disease dataset (2.5k train,
633 test examples, 21 features) [QCHL87]. For the models shown in the competence plot in
Figure 5.1, we use the default settings of the random forest implementation in scikit-learn.

Deep ensembles. We consider four different architectures for our deep ensembles. We use
a standard ResNet18 models [HZRS16] trained on the CIFAR-10 dataset [KH+09], using 100
epochs of SGD with momentum 0.9, weight decay of 5× 10−4 and a learning rate of 0.1, while
varying the batch size and width hyper-parameters. We report results from two variants
of this empirical evaluation: one in which we employ learning rate decay (by dropping the
learning rate to 0.01 after 75 epochs); and another in which we disable learning rate decay.
For each setting, we train 5 models from independent initialization to form the respective
ensembles. We also evaluate these models on two out-of-distribution databases: CIFAR-10.1
and CIFAR-10-C [RRSS19, HD19] (the latter is itself comprised of 19 different datasets
employing various types of data corruption). Finally, we evaluate deep ensembles of 25
standard BERT models [DCLT19], provided with the paper [SYT+22], fine-tuned on the
GLUE classification tasks [WSM+19].

Bayesian ensembles. For the Bayesian ensembles used in this paper, we consider samples
provided in [IVHW21], obtained via large-scale sampling from a Bayesian posterior using
Hamiltonian Monte Carlo. To our knowledge, these samples are the most precisely representa-
tive of a theoretical Bayesian neural network posterior publicly available. In particular, we use
samples on the CIFAR-10 datasets with a ResNet20 architecture, and the IMDB dataset on
the CNN-LSTM architecture. We defer to the original paper [IVHW21] for additional details.

More competence plots

In this section, we provide additional empirical results. To further verify that the competence
assumption holds broadly in practice, here we include several more examples of competence
plots for experiments presented in the main text.

ResNet18 on CIFAR-10 OOD variants. In Figures D.2 and D.3, we plot competence
plots for the ResNet18 ensembles on the CIFAR-10, CIFAR-10.1 and a subset of the CIFAR-
10-C datasets [RRSS19, HD19]. We find that the competence assumption holds across all
examples.
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Fine-tuned BERT models. In Figure D.4, we provide competence plots for the BERT/GLUE
fine-tuning tasks. For the RTE, CoLA, MNLI, QQP and QNLI tasks, we find that the compe-
tence assumption holds. However, we find two examples here where it does not: the MRPC
and SST-2 tasks, although the extent to which the assumption is violated in minor. Since
these are particularly small datasets, this may also be a product of noise from low sample
size.
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Figure D.2: Competence for ResNet18/CIFAR-10 variants (models with learning rate
decay). We observe that the competence assumption holds across all tasks.

D.3 Pathological ensembles satisfying L(hMV) = 2E[L(h)]

In this section, we provide two pathological examples of ensembles that makes the “first-order”
upper bound tight. In particular, the second example shows that positive margin condition,
i.e., E[Mρ(X,Y )] > 0 where Mρ(X,Y ) = Eh∼ρ[1(h(X) = Y )] −maxj≠Y Eh∼ρ[1(h(X) = j)],
from existing literature is not enough to rule out pathological cases. Recall that the first-order
bound introduced in section 5.2 is the following:

0 ≤ L(hMV) ≤ P(Wρ ≥ 1/2) ≤ 2E[Wρ] = 2Eh∼ρ[L(h)].

Example D.1 (The first-order upper bound is tight). Consider a classification problem with
two classes. For given ϵ > 0, suppose slightly less than half, 0.5 − ϵ, fraction of classifiers
are the perfect classifier, correctly classifying test data with probability 1, and the other
0.5 + ϵ fraction of classifiers are completely wrong, incorrectly predicting on test data with
probability 1. With this composition of classifiers, the average error rate is 0.5 + ϵ and the
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Figure D.3: Competence for ResNet18/CIFAR-10 variants (models without learning rate
decay). We observe that the competence assumption holds across all tasks.
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Figure D.4: Competence for BERT/GLUE fine-tuning tasks. The competence assumption
holds for the RTE, CoLA, MNLI, QQP and QNLI tasks, though interestingly, we find that the
competence assumption is (to a small degree) violated for two of the tasks: MRPC and SST-2.

majority vote error rate is 1. Taking ϵ→ 0 concludes that the first-order upper bound (5.1)
is tight. A visual illustration of the composition of classifiers is given in Figure D.5a.

The condition E[Mρ(X,Y )] > 0 rules out the ensemble described in Example D.1. Nonetheless,
the first-order bound 2E[L(h)] is tight even when E[Mρ(X,Y )] > 0 is satisfied, as we show
with the following example.

Example D.2 (The first-order upper bound is tight even when the margin is large). We
again consider a classification problem with two classes. For given ϵ > 0, as in Example D.1,
slightly less than half, 0.5 − ϵ, fraction of classifiers are the perfect classifier. All of the other
0.5+ ϵ fraction of classifiers, on the contrary, now correctly predict on the same 1− 2δ fraction
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(a) Composition of classifiers in Example D.1 (b) Composition of classifiers in Example D.2

Figure D.5: Illustration of the composition of classifiers given in Examples D.1 and D.2.
On each plot, the area of the white box equals to the average test error rate. On Figure D.5a, the
majority vote error rate is 1, while the average test error rate is 0.5+ ϵ. On Figure D.5b, the majority
vote error rate is 2δ (Rightmost 2δ test data) while the average test error rate is δ(1 + 2ϵ). The
margin of each composition of classifiers is 2ϵ→ 0 and 1 − 2δ(1 + 2ϵ) > 0, respectively.

of the test data and incorrectly predict on the other 2δ fraction of the test data. With this
composition of classifiers, the majority vote error rate is 2δ even when the average error rate
is δ(1 + 2ϵ). In addition, unlike the composition of classifiers in Example D.1, the margin of
which is 2ϵ, the margin of the new composition of classifiers is 1 − 2δ(1 + 2ϵ), which can be
any value smaller than 1. Taking ϵ→ 0 concludes that the first-order upper bound (5.1) is
also tight when the margin is arbitrarily high. A visual illustration of the composition of
classifiers is given in Figure D.5b.
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