UC Davis
IDAV Publications

Title
Progressive Color Block Coding of Bilevel Scanned Documents

Permalink
https://escholarship.org/uc/item/62{8h06\

Authors
Algazi, Ralph
Estes, Robert R.
Ford, Gary

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/62j8h06v
https://escholarship.org/uc/item/62j8h06v#author
https://escholarship.org
http://www.cdlib.org/

PROGRESSIVE COLOR BLOCK CODING OF
BILEVEL SCANNED DOCUMENTS*

V. R. Algazi, R. R. Estes, G. E. Ford and P. L. Kelly
CIPIC — Center for Image Processing and Integrated Computing
University of California, Davis

Abstract

The efficient coding of scanned documents is a problem of growing
importance. The international facsimile transmission standards of 200
dpi, as well as 300 dpi high quality document scanning for computer use,
are of interest. We present, and discuss, a progressive coding technique,
building upon color shrinking, i.e. the gross, data dependent localization
of the black portions of an image, that we have presented previously. We
propose two intermediate quality standards, 100 dpi binary, and 100 dpi
grey scale, which provide high compression, as well as a readable version
of documents, specially suited for a computer workstation display.

1 Introduction!

The efficient coding of scanned documents is a problem of growing importance.
The encoding of facsimile documents for transmission has been extensively stud-
ied and a number of techniques have been adopted as international transmission
standards by the CCITT [3]. With the widespread use of document scanners
interfaced to personal computers, the local storage of such scanned documents
has also become common. While in facsimile the international standards of 100
and 200 dots per inch (dpi) allow for marginal quality and legibility, at the local
level, 300 dpi is usually required to achieve the desired quality.

In this paper, first we determine the effectiveness of the standard CCITT
codes (modified Huffman and READ [3]) as a function of document resolution.
Then we examine extensions to the technique of color shrinking, i.e. the gross,
data dependent localization of the black portions of an image, that we have

*This research was supported by Pacific Bell, Hewlett Packard, and the University
of California MICRO program.

IThere were several erros in the original version of this paper — no attempt has been made
to correct them all, so that the paper is close in content to that presented at the ICASSP90.
The most significant changes occur in section 6, where most of the numbers have been changed.

presented previously for facsimile, to the case of high resolution scanned docu-
ments [4]. For a 200 dpi document, we have shown that the PCSE code, which
combines morphological preprocessing, color shrinking and edge point labeling
can outperform the CCITT READ code by 30%, on the average [1, 4]. The
edge point labeling scheme transforms the original source into a sparse source
consisting of the vertical and/or horizontal ends of runs. Thus, the edge la-
beled source has a high percentage of white that increases with resolution. For
higher resolution scanning, e.g. 300 dpi, we propose a pyramid of the infor-
mation source which allows for a trade—off between the compression achieved
and the quality of the representation. A progressive code is then proposed that
first generates a color block image that may be useful for identification of the
document. Progression in quality corresponds to 100 dpi binary images, 100 dpi
grey scale images, 300 dpi binary images, and finally 300 dpi grey scale images.
Each stage in the progressive code is based on the data available at the previous
stage. We examine the performance possible with such a progressive code.

2 Evaluation of CCITT Standard Codes versus
Resolution

We have applied the CCITT standard codes for documents over a range of
scanning resolutions. We started with the seven standard CCITT documents
and decreased the resolution by subsampling. Thus, for a 200 dpi document,
we produce a 100 dpi version by subsampling a 2 x 2 block to a single pixel. A
2 x 2 block is mapped to black if any of the 4 pixels is black. The compression
ratios obtained using the modified Huffman code (MHC) and the READ code
with k = 4 are shown in figure 1 for standard CCITT documents 1 and 7, for
subsampling factors of 1.0 to 6.0.

A figure of merit (F),) that can be used to compare performance as the
resolution changes is the compression ratio times the subsampling factor. If
the coding technique scaled ideally with the resolution, then the number of bits
would increase linearly with resolution, since the further resolution is used to
improve the boundaries of characters and graphics, which grow linearly in length
with resolution. Evaluation of F,, provides two interesting results. The first is
that neither the MHC or the READ code are perfectly efficient. Comparing the
performance at 100 and 200 dpi, we have % of 83.5% for the MHC, 93% for

,100

the READ code. Second, a progressive code providing high efficiency at lower
resolutions would be very useful in transmitting and displaying lower quality
previews.

20

N — MHC ccitt1
\ == MHC ccitt7
\ - - READ ccitt1
\ — READ ccitt7

—
)]
T

Compression ratio
o

[6))

1 2 3 4 5 6
Subsampling factor

Figure 1: Efficiency of CCITT codes versus document resolution.

3 Progressive Representation

We now consider the progressive representation of documents, either binary or
grey scale. Some of the techniques used here are extensions, and specializations,
of the methods proposed in [5]. We consider documents, containing text and
graphics, which are scanned at 300 dpi. For this scanning resolution, we have
2550 x 3300, or 8.4 Million, pixels in an 8% x 11 inch digitized document. This
translates into 4.2 Megabytes of data if 4 bits per pixel are used.

Our first objective in the representation and coding of such a scanned docu-
ment is to develop a set of techniques that trade standards of quality for the total
number of bits. A second objective is to provide low resolution, low bit rate,
representations of the document, which can be used to determine its content, to
read it, to analyze it with some degradation, or to display it on a low resolution
display. A final objective is to have a progressive representation in the sense
that we begin with the low quality, low bit rate representation and then provide
incremental, or progressive, data that updates to improve the representation,
Thus, each update complements the previously transmitted data.

We have adopted four resolution and display standards for 300 dpi1 docu-
ments, as shown if table 1, that provide a 36:1 range in the number of represen-

tation bytes. As compression techniques are applied to these representations,

Quality Standard Raw Data Rate (Megabytes)
1 300 dpi, 4 bit grey scale 4.208
2 300 dpi, binary 1.052
3 100 dpi, 10 level grey scale 0.468
4 100 dpi, binary 0.117

Table 1: Raw data requirements of our quality standards.

the number of bytes required will decrease significantly. We illustrate these four
quality standards in figure 2.

" . | | |
Figure 2: Quality Standards. From left to right, original 300 dpi 4 bit grey

scale, 300 dpi with 4 bit grey scale used only on boundaries, 300 dpi binary, 100
dpi 10 level grey, 100 dpi binary

Note that the choice of the 100 dpi, 10 levels of grey standard is quite
appropriate for display on computer workstations, where several bits of grey
scale are commonly available, but which do not provide the 2550 x 3300 pixels
needed for a 300 dpi scanned document.

4 Alternate Coding Strategies

We consider three different types of coding strategies to achieve high, progressive
compression.

4.1 Gross Activity Coders

By localizing the gross activity (color) in a scanned document, the large, con-
tiguous inactive, or white areas can be encoded efficiently. We consider color
shrinking, that, for the case of documents, performs better than the classical
quad-tree decomposition [1].

4.2 Binary Local Codes

Given that we localize the activity, or color; in a document, the standard CCITT
run length and READ codes are less attractive as local codes, because within
the color blocks all runs are short and the probability of black and white pixels
are much closer to each other than in the original document. For local codes,
we have made use, principally, of small block codes, such as a 3 x 3 block code.
When these codes are used in active subareas of a scanned document, they
provide, with a fixed code, good and consistent performance, independently of
the specific document [1].

4.3 Progressive, or Conditional Codes

We postulate a progressive representation and encoding scheme in which a lower
quality image is available and incremental encoding can generate a higher quality
representation. For such a strategy, we examine several conditional codes, which
are conditioned on the available image. They parallel the designation of quality
standards discussed earlier.

¢ Conditional code C3 4
C'3,4 18 a code for the representation of a 100 dpi, 10 level grey scale image
(values 0—9), given that the 100 dpi, binary image is available. Thus,
the code only considers the grey scale for the pixels previously labeled as

black.

¢ Conditional code C 3
(3 is a code for the representation of a 300 dpi binary image, given a
100 dpi, 10 level grey scale image. Since the grey scale level is the total
number of black pixels in a 3 x 3 array, the conditional code C5 3 describes
the specific configuration of black pixels, given their number.

¢ Conditional code Cf 2
(1,2 1s a code for the representation of a 300 dpi, grey scale image given the
300 dpi, binary image. For high resolution document scanning, such as 300
dpi, the grey scale pixels i.e., other than full white or black, will only occur
at the boundaries of characters and other black on white contours in the
original document. Thus, we study a conditional code, C », which detects
boundaries and then only generates gray scale codes at these boundaries

5 Performance of Progressive Coders versus Res-
olution

We consider a progressive coder based on color shrinking, followed by 3 x 3
block encoding within the color blocks and then conditional codes to update

the image to improve resolution. In this section, we discuss the performance
of each of the sub-codes, or steps, of a total composite code as a function of
resolution.

5.1 Color Shrinking

We denote by color shrinking the simple localization of the activity, or color; of
a document within bounding rectangles. We have found that this generalized
white skipping technique provides; simply, a substantial reduction in the total
area to be encoded, and is specially applicable to scanned documents [1].

Run-length encoding is an efficient method for segmentation of white and
black regions in one dimension, but the READ code does not extend this effi-
ciency to two dimensions as well as we would like. Of the many possible ways of
representing the blocks in two dimensions, all of which perform the localization
of black fairly well, and at low cost, we chose one that would emphasize the
natural boundaries in the document. A brief explanation of the color shrinking
algorithm used is given below. For a more detailed description, see [1]. Our
color shrinking algorithm can be broken into three steps.

Local connectivity. We do not wish to preserve all natural boundaries be-
tween characters, symbols, and lines — small gaps can be absorbed into
color blocks, and by reducing the number of blocks, we reduce the color
blocking overhead. To reduce the number of natural boundaries, we fill
all gaps that are within p pixels of each other, either horizontally, or ver-
tically. The parameter, p, depends on the resolution and is taken to be 4

at 100 dpi, and 12 at 300 dpi.

Squaring by projections. To further refine the blocks, we compute horizon-
tal and vertical projections of the black areas within each 64 x 64 pixel,
non-overlapping block. The intersection of these two projections defines
rectangular sub-blocks that enclose the color. This process is iterated on
each sub-block until tightly bounding rectangles are obtained. See figure 3.

Removing vertices. The last step involves analyzing the image generated by
the squaring step , and removing any vertices, from a small set of possibili-
ties, that will improve the final code. Vertices are deleted if their encoding
requires more bits than the encoding of the white area they remove (see
figure 3). This step typically reduces the number of vertices by 30%.

An example of color shrinking is shown in figure 4.

Color shrinking differs in two ways from a quad-tree decomposition, which
also locates the active regions of an image in a progressively finer fashion [2].
Firstly, in color shrinking, the partitioning of the image is driven by the data
itself and not by the binary representation of tree nodes, as used in the quad-
tree. Secondly, a quad-tree leads to a complete representation of the image to

= L

Case 1 Case 2

T
olrler LA L1

Case 3 Case 4

Figure 3: Color shrinking. Squaring by projections (left) and removing vertices

(right).

its finest level of resolution. On the other hand, color shrinking is only a partial
decomposition, which removes, with a limited overhead to represent the vertices
of color block boundaries, a large portion of the white area in a document.

As a first step in a progressive code, color shrinking provides approximately
the same compression ratio at all resolutions. That 1s to say that the same
fraction of the total number of pixels will be contained within the color blocks.
There are a few second order effects.

1. The number of bits used to describe color block boundaries, n, increases
as logo N, where N is a measure of resolution, in dots per inch. But, n 1s
generally a small fraction of the total number of bits in the code.

2. The relative area of color blocks decreases slightly with increasing N. This
is because subsampling, which preserves all black pixels, will encompass,
within color blocks, all 3 x 3 blocks with at least one black pixel. Thus a
white border 2 pixels wide, at the original resolution, may be included in
a subsampled area.

3. The color shrinking process can be performed at several levels of resolution,
or detail. As resolution decreases, due to subsampling, some details may
be merged, and the same level of color shrinking detail cannot be achieved.

5.2 Binary Coding within Color Blocks

Within the color block, the technique we have developed encodes 3 x 3 blocks of
pixels, considered as the information source. We now examine briefly the effect
of changing the scanning resolution, N.

With increasing resolution, the number of 3 x 3 blocks will increase as N2,
The number of all-white, and all-black, 3 x 3 blocks will also increase as N?,
and because they are on the boundary of solid black areas, the number of 3 x 3

The Emerging FDDI Standard

The Flber Distributed Data Inter-
face (FDDI} standard has become
a focal point for optical technology
application In a local ansa network-
Ing emvironment. FDD) is the result
of American National Standards
Commitive X3T8.

FDDI grew from the need for n-

At the time of FDDI's inceplion,

herent noise immuniy, and eacurity
offeredt by fiber.

FDOI's initial application a5 a
"back-and™ Interconnect for high-
powered computing devices re-
quired a high degree of fault toler-
ance and dats . Ag
development procesded, it becama
obvious the FDD! was alno well-suit-
ed for high-speed front-end applica-
tions as well.

Front-and applications are config-
urafions whera the LAN is usad fo
sham rescArces of communicate
with othor stations. In a large nat-
work, the aggregate demand for net-
work reggurces from enginesrdng

the predicted de- workstations can fax
cline and incraased the LAN's perdor-
availabllity of optical manca. FDDI can re-
components) lleve this botilanack
openad tha door for ry with an order of mag-
a fioer-based LAN. é nitute increase in
The optical data natwork daia rate,

oo oy | o[\ ot
the same type of se- t"“\‘ fing could serve as a
fal Interconnaction o back-bone. Wih its
provided by most high throughput,

rooi FDDI could be used
o tie skawer-speed

high bandwidth, in- FDOI skancarde activily LANS Irio a cohesiva

Figure 4: An example of color shrinking. Color blocked version (right) of the
original (left).

colored blocks will increase as N. This implies that the probability of a color

block decreases as +-.

N

We now evaluate the entropy of the 3 x 3 block source as a function of N.
Let b, w, by and wy designate the all black, and all white, blocks at resolutions

N, and Ny, respectively. We have,

Expressing H in terms of Ny, by and wy,

H(s) = - ZPklngpk

= —puwlogspw — pelogaps — Y prlogaps. (1)

kZw,b

Ny
H(s) 2= —puslogapus = Prologapro — —~ > prologapro,

koZwo,bo

N N,
= ¥ [H<So> + [(pso + puo) = 1loga7
N,
* (WO - 1) [prlngpr +pw010g2pw0] (2)

Although H(s) depends on the specific document, which determines H(sg),

some numerical evaluations of (2), for pp, + puw, = 1, leads to the conclusion

that, to the first order approximation, H(s) scales as %

5.3 Composite Code

If we use, successively, color shrinking, followed by 3 x 3 block encoding within
the color blocks, then the total compression will depend on the partial perfor-

mance. If Cy is the compression factor for color shrinking, then CM is the total

number of pixels within the color blocks, where M 1s the total number of pixels

in the document. The total number of 3 x 3 blocks within color blocks 1s 9MTS'

The total number of bits to encode these blocks is then %H(s), and the total
M 9C,
codebits — H(s)"
the PCSE code, will thus scale approximately as N, since C; is independent of

N and H(s) varies as %

compression is then Cy = The compression of this code, denoted

5.4 Conditional Codes
5.4.1 The C34 Code

For a C3,4 code, the resolution of 100 dpi is not enough to confine grey scale
pixels to boundaries of black areas. This is due to the fact that gaps between
characters can be less than 3 dots. Thus, there appears to be no merit to deter-
mining boundaries as a preliminary processing step. We use a simple conditional
code. Since we have the binary 100 dpi document, we need to determine whether
the black pixels were grey instead of black, and then encode the grey scale value.
To indicate that a pixel 1s black, or grey, will require 1 bit. For grey pixels, we
have only 8 possible values, since black and white are ruled out; therefore, they
require 3 bits each. This code is essentially an optimum memoryless code if
there is a preponderance of black pixels among the binary black pizels, and the
grey values are equally likely.

5.4.2 The C33 Code

Given that we have decoded a 100 dpi image with grey scale, we would like
to update this image by the information needed to generate a 300 dpi binary
image. Thus, the process is to convert all 100 dpi single pixels into a 3 x 3
pixel array. For all black, or all white, pixels nothing else needs to be done. For
grey scale pixels, we need to devise the conditional code C' 3, which specifies

the configuration of black pixels within the 3 x 3 array, given their number. We
enumerate the possible configurations which requires [loga(C})] bits, where [e]
stands for the smallest integer greater than e. Assuming that all ten grey scales
values are equally likely, we compute the average number of bits N 3,

Nag = 11—0];flogz(cgﬂ — 48, 3)

This is an upper bound on the average number of bits, which is actually much
smaller for the actual data. Without the grey level information, a similar simple
representation of the 3 x 3 binary array would require 9 bits.

5.4.3 The C; > Code

We now assume that a 300 dpi binary image has been decoded. We would like
to provide grey scale information for such an image. For a scanned black and
white document, the grey scale pixels are localized on the boundary of black
areas. Therefore, we first determine the boundary pixels using the standard
morphological, 8—connected boundary operation. Since the boundary locations
can be found from the original image, no locational information must be stored.

6 An Illustrative Example

We consider, as an illustrative example, the simple document shown in figure 4
which has been scanned at 300 dpi, with 4 bits of grey scale. This document
has 2.87 Million pixels.

6.1 Performance of CCITT codes and the PCSE code at
100 and 300 dpi (binary).

We evaluated the performance of the modified Huffman code (MHC), the READ
code (k=4) and the PCSE code for both 100 and 300 dpi. The resulting com-

pression ratios are shown in table 2.

Resolution | MHC READ PCSE
100 dpi 2.21 2.81 2.95
300 dp1 4.40 7.40 7.49

Table 2: Relative performance of binary codes.

We note that the performance is rather low for all three codes. In this case
the PCSE code does only slightly better than the READ code, but for sparser

10

images it is approximately 30% better, as noted for the CCITT documents [1].
The scaling of compression ratio with resolution is slightly less than N for all
codes, with the worst case for the MHC, as expected.

6.2 Performance of the Progressive Code

We evaluate the performance of the progressive code described in this paper.
We thus consider the four standards of quality discussed earlier. For each, we
determined the incremental and absolute performance, shown in table 3.

100 dpi binary For this readable, lower resolution document, the compression
ratio of the PCSE code of 2.95 is with respect to the 100 dpi original. This
code thus requires 107,879 bits to code the entire document. With respect
to the original 300 dpi binary, the compression ratio is 26.6:1. Note that
the color blocks themselves, which allow recognition of the document,
require approximately one fifth the number of bits of this code.

100 dpi grey scale This standard provides a very good quality display on a
CRT, with 10 levels of grey. Given the 100 dpi binary image, we incremen-
tally provide grey scale information for all the black pixels. As discussed
in section 5, we use a simple conditional code. We find here, that for the
71,445 black pixels of the 100 dpi binary document, we need 200,118 bits
to specify the grey scale, or 2.80 bits/pixel. The compression ratio from
the 300 dpi binary to 100 dpi grey scale is now 9.31:1.

300 dpi binary the 300 dpi binary image is obtained from the 100 dpi, grey
scale image by specification of the 3 x 3 binary pattern for each of the grey
scale pixels. The analysis of the conditional code C5 3, of section 5, gives
an upper bound of 4.8 bits/3 x 3 block. We have found that the conditional
pattern of binary pixels within a 3 x 3 block, given their total number,
are not equally likely. In fact, the favored patterns are for groupings of
black pixels, or white pixels, around the borders of the 3 x 3 blocks. We
have evaluated the total number of additional bits needed at 121,517. The
composite compression ratio from the original 300 dpi, binary image is now
6.67. This 1s lower than what can be achieved by a simple one step coding,
as shown in table 2, but allows for intermediate and useful standards for
images.

300 dpi grey scale We also considered providing grey scale for the 300 dpi
binary image. As discussed, we confined the grey scale to boundary pix-
els determined by morphological operations. We found that the 300 dpi
image image has 190,768 boundary pixels. Thus, we require an additional
190,768 x L bits, where L is the number of grey level bits. For L = 4,
and 2,866,500 pixels in the original image represented at 4 bits, we find
a compression ratio of 3.04, if grey scale pixels are only specified at the

11

boundaries of black areas in the original scanned document, and 9.61 if
all pixels in the original allow for 4 bits of grey scale.

Original document
100 dp1i 300 dpi
binary | greyj | binary | grey
100 dpi, binary | 2.95 5.60 26.6 | 33.6
Encoded 100 dpi, grey — 1.96 9.31 11.8
300 dp1, binary — — 6.67 8.45
300 dpa, grey — — — 3.04

Table 3: Progressive coder results. }We assume that only black, or grey, pixels
are represented with 4 bits. The total number of grey scale bits is then 604,280.

7 Discussion

We have presented some preliminary results on a simple progressive code for
scanned 300 dpi documents. The 100 dpi binary, and grey scale, are useful
intermediate quality standards which can be obtained with a low number of
bits and are thus useful for previews of documents and good quality display on
CRT’s. The method of color shrinking, which localizes activity, is a promising
method which is related to the quad-tree decomposition. We are currently
studying a more general strategy for color shrinking, closer to the formulation
of the quad-tree representation, but better suited to the structure and encoding
of scanned documents, which have natural horizontal and vertical boundaries,
as well as diagonal structures within graphics.

References

[1] V. Ralph Algazi, Phillip L. Kelly, and Robert R. Estes. Compression of
binary facsimile images by preprocessing and color shrinking. IFEE Trans-
actions on Commaunications, 38(9):1592-8, September 1990.

[2] Y. Cohen, M. S. Landy, and M. M. Pavel. Hierarchal coding of binary
images. [EEE Trans. Pattern Analysis and Machine Intelligence, 7:284-98,
1985.

[3] R. Hunter and A. H. Robinson. International digital facsimile coding stan-

dards. Proceedings of the IEEE, 68(7):854-67, July 1980.

12

[4]

P. Kelly and V. R. Algazi. Two step color shrinking algorithm for the
encoding of graphics. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 48.3.1-48.3.4, December
1984.

K. Knowlton. Progressive transmission of grey—scale and binary pictures by
simple, efficient, and lossless encoding schemes. Proceedings of the IEFE,

68(7):885-96, July 1980.

13

