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Abstract

Information Asymmetries in Data-Driven and Sustainable Operations:
Stochastic Models and Adaptive Algorithms for Strategic Agents

by

Ilgin Dogan

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Co-chair

Associate Professor Anil Aswani, Co-chair

The modern landscape of operations management (OM) has undergone a profound paradigm
shift driven by two surging forces: 1) the integration of expansive real-time data inflow, and
2) the recognition of ambiguity in navigating operational disruptions due to climate crisis.
In this transition to data-driven and sustainable operations, a fundamental challenge lies
in isolating the lack of transparency in collaboration willingness and misaligned economic
motives of strategic agents (i.e., stakeholders) in socio-technical systems.

Motivated by contributing to this breakthrough, this dissertation establishes a foundational
theory that leverages data-driven decision-making to proactively mitigate intricate uncer-
tainties, arising from imperfect model insights and information asymmetries, hindering sus-
tainable OM. The dissertation begins by exploring nonlinear and non-stationary control
systems under imperfect knowledge of the reward function and system dynamics—a nontriv-
ial scenario common in applications like balancing occupant comfort and energy efficiency in
buildings. Expanding on this rigorous control-theoretic learning analysis, the majority of the
dissertation is devoted to devising novel, data-driven, and adaptive incentive frameworks to
tackle unexplored information disparities in the context of repeated principal-agent games.

Inspired by several real-world applications, such as forest conservation incentives in Pay-
ment for Ecosystem Services and renewable energy aggregator contracts for utility grids,
this dissertation introduces the “hidden agent rewards” model within a multi-armed bandit
framework, where: a principal learns to proactively lead an agent’s choices by sequentially
offering menus of incentives which contribute to the agent’s hidden rewards for a finite set of
arms. Designing policies in this setting is challenging, because it entails analyzing dynamic
externalities imposed by two separate learning algorithms trained in parallel by strategic par-
ties. To the best of our knowledge, this dissertation presents i) the first generic stochastic
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sequential model for this widely applicable information imbalance context, and ii) the first
methodological framework that contends with the principal’s trade-off between consistently
learning the agent’s rewards and maximizing their own rewards through adaptive incentives.
We examine two scenarios: one where the agent has perfect knowledge of their reward model
and another where the agent learns their model over time, potentially leading to misleading
choices for the principal. In both cases, solid statistical consistency and regret guaran-
tees are proven to persist without restricting the agent’s algorithm or reward distributions.
Throughout the dissertation, these theoretical results, along with versatile practical insights,
outline a prosperous future research landscape to enhance various incentive practices in OM
confronting the hidden objectives of incentivized agents.
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Chapter 1

Introduction

1.1 Motivation and Vision

Socio-technical systems relevant to Operations Management (OM) operate in dynamic en-
vironments shaped by several components such as information sharing, environmental and
social disruptions, technological advancements, and supply chain complexities. All these
factors interact in an intricate way, which introduces significant uncertainties into decision-
making processes of agents (i.e., decision makers, stakeholders, controllers) within the system.

Various practical OM settings involve sequential problems where agents make decisions
over time by observing stochastic outcomes (i.e., rewards, costs) from the interacted dynamic
system. In these settings, uncertainty arises from numerous sources that can be very broadly
classified into two categories:

i) Imperfect model insight: Imperfect information about the model (rewards and/or dy-
namics) of the interacted system.

ii) Information asymmetries: Unequal distribution of information among agents interact-
ing in the system.

These uncertainties have traditionally been recognized as grand challenges for OM and have
been well studied in the literature for diverse contexts. However, in today’s era, traditional
OM is transforming into data-driven and sustainable OM, primarily by two drivers: 1) the
growing reliance on vast amounts of data to manage operations, and 2) the acknowledgment
of the inevitable need for adopting sustainability practices. Due to this evolving landscape
of data-driven and sustainable operations, information asymmetries are now taking on an
escalated significance and becoming even more pronounced than in the past.
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1.1.1 Information Asymmetries in Data-Driven and Sustainable
Operations Management

In the present landscape, businesses are overflown with information from various sources.
Further, they face the challenge of integrating sustainability into daily operations while si-
multaneously engaging with multiple stakeholders, such as governments, local communities,
and investors, who may have conflicting goals across three key pillars: social equity, en-
vironment, and economy. As a result, it becomes essential to ensure that all stakeholders
have access to accurate and timely data. Nevertheless, significant information disparities are
triggered by limitations in the data shared among these stakeholders.

One example of this case is about transparency of supply chain emissions data, which is a
major complication for companies striving for net-zero commitments. In the retail sector, a
substantial portion of greenhouse gas emissions originates from third party suppliers involved
across entire product cycle, spanning from manufacturing to packaging. Therefore, major
retailers have initiated collaborative programs, such as Walmart’s Project Gigaton (Wal-
mart 2023) and Apple’s Supplier Responsibility Program (Apple 2023), to encourage their
suppliers to disclose emissions data. Yet, this transition to more transparent practices poses
challenges to suppliers’ traditional competitive advantage. Although retailers may ensure vis-
ibility into the specific sustainable input materials or energy-efficient technologies employed
by suppliers, they often lack comprehensive insight into the specific expenses incurred by
suppliers in implementing these practices (e.g., R&D investments, costs of certifications, in-
tegration of emission tracking systems). Addressing this information gap requires designing
smart and adaptive contracts to learn suppliers’ true objectives and incentivize them for
emissions transparency while still maintaining their economic viability in the market.

Another related example is about the information asymmetries between program de-
signers and owners of natural resources involved in Payment for Ecosystem Services (PES)
programs (Salzman et al. 2018). PES programs establish a positive economic incentive mech-
anism by which governments and non-governmental organizations contract local landowners
or service providers, such as private forest owners and farmers, to incentivize them to prevent
environmental degradation, such as deforestation (Warnes et al. 2023). From the perspective
of payment providers, the goal of these incentive mechanisms is to maximize the environ-
mental benefits obtained from the amount of conserved forests while minimizing the required
payments. However, a prevalent obstacle in effectiveness of these contracts is the private in-
formation of forest owners about their opportunity costs and the amount of deforestation
they would choose without any incentives (Engel et al. 2016, Li et al. 2023). One promis-
ing solution to bridge this information gap and reveal the true willingness of forest owners
is to design data-driven and performance-based incentive policies. These policies should
incorporate the effects of learning from the conservation actions of forest owners over time.
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1.1.2 Goals of This Dissertation

As evident from the presented examples, a primary challenge in sustainable OM lies in
isolating the lack of transparency regarding the willingness to collaborate and the hidden
economic drivers of the self-interested strategic agents. This dissertation envisions to tackle
this emerging challenge by devising novel estimation techniques coupled with proactive, intel-
ligent, and learning-based incentive algorithms. The aim is to establish a foundational theory
that neatly navigate information asymmetries hindering sustainability within socio-technical
and data-driven OM systems.

This goal necessitates holistic frameworks where traditional OM techniques are integrated
with recent advances from statistical learning and data-driven decision-making. Through-
out the course of a sequential decision problem, the fundamental trade-off occurs between
a) leveraging the limited data at hand to extract latent information from the environment
of interest (i.e., exploration), and b) making safer choices towards optimizing the ultimate
objective (i.e., exploitation). As described earlier in this chapter, these latencies may mani-
fest as i) imperfect information about the model, and ii) imperfect information about other
agent(s) with whom interactions occur. Studying the exploration/exploitation trade-off re-
quires jointly tackling both sources of uncertainties while proactively accounting for the
potential externalities arising from strategic behaviors of the interacted agent(s).

To address this multi-faceted complexity, this dissertation offers solid theoretical founda-
tions to stochastic data-driven models and computational algorithms developed for specific
information asymmetric contexts, which have remained under-explored in the related liter-
ature. The proposed methodological frameworks revitalizes classical OM theory by drawing
from a rich array of techniques in online sequential learning, statistics, optimization, model
predictive control, multi-armed bandits, and principal-agent theory.

The distinct information asymmetry settings explored in this dissertation appear in real-
world applications across diverse OM domains, including but not limited to healthcare an-
alytics, transportation planning, and inventory management. Despite this wide relevance,
the selected application examples attempt to place a particular emphasis on the domain of
sustainable operations. In each chapter, these examples outline the practical implications
of the proposed analytical frameworks, which are intentionally designed to be generic, ex-
plainable, and intuitively interpretable. This design avoids restrictive specialized technical
assumptions and proves a rigorous theoretical basis along with functional insights. Build-
ing upon this core understanding, this dissertation foresees a trajectory for future research
that can facilitate the extension and customization of the developed approaches for various
settings.
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1.2 Outline and Main Contributions

In light of the fundamental challenges and goals mentioned above, each chapter of this disser-
tation explores unique classes of sequential decision problems within particular contexts of
imperfect model knowledge and asymmetric information. While these scenarios are broadly
applicable, existing literature lacks a thorough examination of their technical complexities,
leading to a limited understanding of regret limits and dynamic trade-offs for strategic agents.

The dissertation begins by (Chapter 2) investigating a nontrivial learning-based con-
trol setting characterized by the uncertainty of a nonlinear model, where both the system
dynamics and reward function are partially-unknown. Building on this rigorous technical
analysis, the subsequent chapters constitute the major focus of the dissertation. Chapters
3 and 4 address the design of data-driven and adaptive incentive mechanisms under novel
information asymmetry settings, layered on top of the uncertainty in the reward model. The
dissertation concludes in Chapter 5 with prosperous future research avenues and includes
three appendices providing detailed proofs of the technical results presented in each chapter.

Each chapter incorporates material that has either been published or is currently under-
going the review process at peer-reviewed journals. The main contributions of each chapter,
along with citation information for the associated papers, are summarized below. As a re-
mark, the first chapter is designed to be self-contained and can be read independently if
desired. The content in the last two chapters is suggested to be covered in sequential order.

• Chapter 2 explores nonlinear and non-stationary systems with imperfect knowledge
of both the reward function and system dynamics, motivated by a number of real-
world applications such as enhancing the energy-efficiency of Heating, Ventilation, Air-
Conditioning (HVAC) systems and optimizing clinical inventory management. For this
setting of partial model insight, this chapter addresses the exploration-exploitation trade-
off by integrating learning and adaptation into the model predictive control (MPC).

Though this trade-off has been extensively studied for linear systems; it is less well-studied
for learning-based control of nonlinear systems. A major challenge in the nonlinear setting
is that, unlike the linear case, there is no explicit characterization of an optimal controller
for a given set of model parameters. We propose the use of a finite-horizon oracle controller
with perfect knowledge of all parameters as a reference for optimal policy. First, this allows
us to propose a new regret notion with respect to this finite-horizon oracle. Second, this
allows us to develop non-myopic policies in the context of learning-based MPC and multi-
armed bandits (MAB’s) that attain low regret (i.e., square-root regret up to a log-squared
factor). The conducted statistical and control-theoretic analyses bridge system stability
and policy regret, further supported by the numerical results on a HVAC model.

Related Paper:

Dogan I, Shen ZJM, and Aswani A (2023) Regret Analysis of Learning-Based MPC
With Partially-Unknown Cost Function. IEEE Transactions on Automatic Control, doi:
10.1109/TAC.2023.3328827.
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• Chapter 3 sheds light on a nontrivial information asymmetry faced in data-driven and
sequential incentive design in the context of repeated principal-agent games. In practice,
unlike previous models, the principal can often only observe the actions, not the rewards,
of a self-interested agent. This arises in numerous applications, such as routing incentives
for sustainable transportation planning and personalized incentives for medical adherence.

Designing policies in this setting is challenging because existing estimation methods can-
not directly learn the agent’s rewards. Existing work often overlook the principal’s trade-
off between consistently learning the agent’s rewards (i.e., exploration) and maximizing
their own rewards through adaptive incentives (i.e., exploitation). As a result, this sce-
nario, as well as similar ones, remains under-explored. To bridge the gap, we introduce
the hidden rewards model within a MAB framework, where: the principal gives a differ-
ent incentive for each bandit arm, the agent picks an arm to maximize its own expected
reward plus incentive, and the principal observes the chosen arm and receives a distinct
reward (from the agent’s). In this chapter, we consider agents with perfect-knowledge
of their own expected rewards for each arm. First, we design a statistically consistent
estimator for the agent’s expected rewards. Since our estimator uses as data the sequence
of incentives offered and subsequently chosen arms, it can be regarded as an analogy of
online inverse optimization in MAB’s. Then, we construct a policy that we prove achieves
a low regret (i.e., square-root regret up to a log factor) and conclude with experiments
demonstrating its applicability to an instance of sustainable route choice problem.

Related Paper: Dogan I, Shen ZJM, and Aswani A (2023) Repeated principal-agent
games with unobserved agent rewards and perfect-knowledge agents. arXiv preprint
arXiv:2304.07407.

• Chapter 4 studies the repeated hidden rewards setting in an even more challenging en-
vironment, where the agent must learn their expected rewards over time by tackling a
MAB problem. Relevant to deforestation incentives in PES and renewable energy ag-
gregation contracts, this setup is considerably more complex due to uncertainty in agent
choices, potentially misleading the principal. We propose a novel theoretical framework
that facilitates the dynamic and sequential externalities between two separate learning
algorithms trained in parallel by these two strategic parties. We present a new estimator
for the agent’s reward expectations in bounded continuous spaces that is formulated as a
tractable optimization model leveraging the agent’s noisy choices. The estimator is then
united with a data-driven incentive policy to address the principal’s trade-off while ensur-
ing high-probability incentive compatibility for the agent. We provide rigorous guarantees
for the estimator’s finite-sample consistency and the policy’s regret bound. These theo-
retical results remain robust without restricting the type of the agent’s algorithm and are
justified by simulations performed in the context of green energy aggregation contracts.

Related Paper:

Dogan I, Shen ZJM, and Aswani A (2023) Estimating and Incentivizing Imperfect-Knowledge
Agents with Hidden Rewards. arXiv preprint arXiv:2308.06717.
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Chapter 2

Regret Analysis of Learning-Based
Model Predictive Control with
Partially-Unknown Cost Function

2.1 Introduction

Model predictive control (MPC) has been used for a wide range of applications, including:
sustainable crop production (Hu and You 2022), carbon tax policies for greenhouse gas
emissions (Chu et al. 2012), chemical process controls (Eaton and Rawlings 1992, Arefi
et al. 2006), power electronics (Vazquez et al. 2014), aerospace systems (Di Cairano and
Kolmanovsky 2018, Eren et al. 2017), and heating, ventilation, and air-conditioning (HVAC)
systems (Aswani et al. 2011, Maasoumy and Sangiovanni-Vincentelli 2012). More recent
work has studied the design of adaptive or learning-based MPC (LBMPC) schemes that
ensure constraint satisfaction in the presence of models that are updated as more system
measurements become available (Negenborn et al. 2004, Aswani et al. 2013, Karnchanachari
et al. 2020, Gros and Zanon 2020).

In the context of learning-based control, the constraint satisfaction and robustness are
often provided by leveraging LBMPC while the performance is optimized by directly utilizing
sequential data-driven approaches, such as reinforcement learning (RL) (Hewing et al. 2020).
However, the related research that have designed RL algorithms for nonlinear discrete-time
control systems are limited (Koller et al. 2018, Wabersich and Zeilinger 2018, Gros and Zanon
2019, Abbasi-Yadkori et al. 2019, Chen et al. 2019, Kakade et al. 2020, Agarwal et al. 2020,
Boffi et al. 2021). Some of them are concerned with asymptotic stability of the closed-loop
system (known as safety in RL), while the others provide finite-time regret bounds. These
bounds quantify the difference between the control performance of the data-driven control
policy and that of an oracle control policy with perfect knowledge of the model uncertainty.

In this line of RL research for nonlinear learning-based control, this chapter aims to
better connect these two areas by jointly presenting a rigorous regret analysis and proving
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stability for the proposed adaptive control policies. There are two main novel aspects of
our work compared to the existing studies. First, we highlight that comparing finite-horizon
policies with different horizon lengths leads to ambiguous regret notions in evaluation of
learning-based control policies. For this reason that we will discuss in detail, we propose a
new regret notion that compares a finite-horizon learning-based policy with a finite-horizon
oracle controller as the benchmark. Second, we bound this regret notion for a class of
learning-based control policies for which we prove constraint satisfaction. An important
aspect of our regret analysis is that we have to consider the stability of our policy when
bounding the regret. In this sense, our analysis draws a connection between stability of the
nonlinear control system and regret performance of the learning policy.

2.1.1 Partially-Unknown Cost Function

The classical MPC setup assumes that the system dynamics are exactly known and that a
cost function that is to be minimized over a finite horizon is also exactly known. However,
there are many real-world applications where the system dynamics or cost function may be
partially-unknown, and it is such systems that motivate the study of integrating learning
or adaptation into the MPC setting. Because such applications motivate this chapter, we
briefly describe some examples.

2.1.1.1 Energy-Efficiency of Heating, Ventilation, Air-Conditioning (HVAC)

Because HVAC systems comprise a substantial portion of overall building energy usage,
there has been a substantial body of work on the use of MPC to improve the energy-
efficiency of HVAC Aswani et al. (2011), Oldewurtel et al. (2012), Ma et al. (2011), Afram
and Janabi-Sharifi (2014), Ostadijafari and Dubey (2019), Bianchini et al. (2019), Chen
et al. (2020), Fang et al. (2020), Kumar et al. (2020), Raman et al. (2020). However, these
past works typically assume that a cost function that precisely characterizes the trade-off
between energy-efficiency and occupant comfort is exactly known. In practice, the quantity
of trade-off is different for each occupant and is a priori unknown to the controller. It then
makes sense from an applications standpoint to try to learn an ideal trade-off from occupant-
reported data Aswani et al. (2018) and then adapt the MPC operation in response, which
is an example of MPC with a partially-unknown cost function.

2.1.1.2 Clinical-Inventory Management

Inventory management in hospitals involves periodically restocking drugs and medical sup-
plies, and MPC approaches to inventory management Velarde et al. (2014), Schildbach and
Morari (2016), Jurado et al. (2016), Maestre et al. (2018), Garcia et al. (2020) are powerful
because they naturally capture the dynamics inherent in consuming and purchasing drugs
and supplies. However, these past works typically assume that the dynamics of consumption
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are completely characterized. But in hospitals, the demand for drugs and supplies is diffi-
cult to characterize because of unforeseeable events like medical emergencies. Considering
the practical implications, it becomes essential to try to learn more information about the
demand arising from such events and then adapt the MPC operation in response, which is
an example of MPC with learning for the partially-unknown dynamics.

2.1.2 Exploration/Exploitation Trade-Off

An inherent challenge in LBMPC is that of dual-control, which is the problem of jointly
optimizing the control to minimize a cost function (of the states and control inputs) and
to steer the system in a way that provides more information about any unknown system
dynamics or cost function parameters (Mesbah 2018). This challenge is often termed the
exploration/exploitation trade-off. This trade-off has been formally studied in the setting of
stationary or weakly-nonstationary multi-armed bandits (MAB’s) (Thompson 1933, Agrawal
and Goyal 2013, Mintz et al. 2017), RL for finite Markov chains (Heger 1994, Pashenkova
et al. 1996, Gaskett 2003, Jaksch et al. 2010, Moldovan and Abbeel 2012, Biyik et al. 2019,
Budd et al. 2020), and RL for linear control systems (Bradtke et al. 1994, Vrabie et al. 2009,
Kiumarsi-Khomartash et al. 2014, Klenske and Hennig 2016, Kiumarsi-Khomartash et al.
2017, Cohen et al. 2019, Lale et al. 2020, Simchowitz and Foster 2020).

Extending these ideas to study the exploration/exploitation trade-off for RL of nonlinear
and non-stationary control systems is nontrivial. Most work on MAB’s assumes stationarity
or weak-stationarity. This is partly because computing the optimal policy for non-stationary
bandits is PSPACE-hard (Papadimitriou and Tsitsiklis 1999). Similarly, in the setting of
RL of control systems, past work on the exploration/exploitation trade-off for nonlinear sys-
tems is limited (Koller et al. 2018, Gros and Zanon 2019, Kakade et al. 2020, Wabersich
and Zeilinger 2020, Fan and Ming 2020, Boffi et al. 2021). The reason is that the optimal
controller for linear systems with a quadratic cost is completely characterized by the Al-
gebraic Ricatti Equation, which allows this body of work to convert the RL problem into
simply a parameter estimation problem. However, for nonlinear control systems there is
no such simple characterization of the optimal controller, and so alternative approaches are
needed. To bridge these gaps, this chapter designs a learning-based controller for nonlinear
and non-stationary systems where the policy explores to improve the estimation methodology
embedded in the learning mechanism.

2.1.3 Main Contributions and Chapter Outline

Sect. 2.2 begins with technical preliminaries. In Sect. 2.3, we define our setup, formalize our
idea of non-myopic exploitation, and prove safety properties for a class of control policies.
Next, in Sect. 2.4, we introduce an oracle finite-horizon control policy as a reasonable sur-
rogate to the optimal finite-horizon control policy for our non-myopic exploitation problem.
We then introduce a new regret notion called as the N-step dynamic regret with respect to
this oracle finite-horizon controller.
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Sect. 2.5 presents our finite sample statistical consistency analysis for the estimation
step of our policy for the unknown cost and system parameters. Then, in Sect. 2.6, we
develop a novel non-myopic ϵ-greedy algorithm that keeps our system stable and safe. We
prove Lipschitzian stability of the best input chosen at each exploitation step and provide a
rigorous proof for the asymptotic O(

√
T (log T )2) bound on the N -step dynamic regret.

In Sect. 2.7, we support our theoretical results with numerical experiments that we
conduct on a model of HVAC systems with partially-unknown cost and system dynamics
functions. Our experiments reveal the effectiveness of performing non-myopic exploitation
and show that our finite-horizon non-myopic policy achieves the proved regret bound.

2.2 Preliminaries

This section introduces the related mathematical definitions and notation used in this chap-
ter. Let U be a polytope in Rn. This set can be represented as intersection of a set of
half-spaces specified by a set of linear inequalities (Borrelli et al. 2017), i.e., U = {x : Pix ≤
qi, i = 1, . . . , d} where Pi ∈ Rd×n and qi ∈ Rd.

Let U ,V be two sets. The linear transformation of U by matrixR is given byRU = {Ru :
u ∈ U}. Their Minkowski sum (Schneider 2013) is defined as U⊕V = {u+v : u ∈ U ; v ∈ V},
and their Pontryagin set difference (Kolmanovsky and Gilbert 1998) is defined as U ⊖ V =
{u : u+V ⊆ U}. Some useful properties of these definitions include: R(U ⊖V) ⊆ RU ⊖RV
and (U ⊖ V)⊕ V ⊆ U .

2.3 Problem Formulation

Let xt ∈ Rn be states and ut ∈ Rq be inputs. We assume xt ∈ X and ut ∈ U are constrained
by (compact) polytopes X ,U . The true system dynamics are

xt+1 = f(xt, ut, θ0) = Axt +But + g(xt, ut, θ0) (2.1)

where A ∈ Rn×n, B ∈ Rn×q, θ0 ∈ Θ for some compact set Θ ⊆ Rp, and the nonlinear function
g(·, ·, θ) : Rn × Rq → Rn is parameterized by θ ∈ Θ. We assume that{

g(x, u, θ0) : x ∈ X , u ∈ U
}
⊆ W , (2.2)

for some bounded polytope W , and A,B, g,W ,Θ are known but θ0 is not known to the
controller. We define wt = g(xt, ut, θ0), and note wt ∈ W by assumption. The intuition is
we have a nominal linear model and a partially-unknown, nonlinear correction.

At each time step t, the controller receives a stochastic reward rt from distribution Pxt,ut,θ0

with probability density function p(r|xt, ut, θ0) and expectation E rt = h(xt, ut, θ0). We
assume h is parametrically unknown (θ0 is unknown). This setup can handle stochastic
costs ct (as opposed to rewards) by setting rt = −ct. We standardize our notation for
rewards.
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The control problem we study in this chapter is to sequentially choose inputs to maximize
expected total reward at the end of a finite time horizon T = {0, . . . , T}. At time t, the
controller has access to all past rewards r0, . . . , rt−1, past control inputs u0, . . . , ut−1, and
past and current states x0, . . . , xt. As a result, any given control policy ut = Λt(Ft) will be
a sequence (with respect to t) of functions of this past information

Ft = {r0, . . . , rt−1, u0, . . . , ut−1, x0, . . . , xt}. (2.3)

We distinguish between different control policies by using different superscripts for the se-
quence of functions Λt for t = 0, . . . , T characterizing the policy.

2.3.1 Learning-Based MPC Formulation

LBMPC maintains two different models of the control system: a learned model to enhance
performance and a nominal model to provide robustness Aswani et al. (2013). Because A,B
are known in our setup, the controller uses as its nominal model dynamics

x̄t+k+1|t = Ax̄t+k|t +But+k|t, (2.4)

where x̄ ∈ Rn is system state of the nominal model. The “|t” notation denotes the initial
condition is taken to be x̄t|t = xt, where xt is the true state at time t. Because g(·, ·, θ) is
also known, the controller uses as its learned model the dynamics

x̃t+k+1|t = Ax̃t+k|t +But+k|t + g(x̃t+k|t, ut+k|t, θ̂t), (2.5)

where x̃ is the system state of the learned model and θ̂t is the controller’s estimate of θ0
at time t. Here, LBMPC learns the true model dynamics by updating its estimate of the
parameters θ0 as more system state measurements from the system becomes available.

Before presenting the formulation, we must first discuss the terminal set used for the
MPC. Assuming that (A,B) is stabilizable, there exists a constant state-feedback matrix
K ∈ Rq×n such that (A + BK) is Schur stable. We assume Ω ⊆ X is a maximal output
admissible disturbance invariant set (Kolmanovsky and Gilbert 1998) meaning that for some
stabilizing K it satisfies: a) Ω ⊆ {x : x ∈ X : Kx ∈ U} (constraint satisfaction) and b)
(A + BK)Ω ⊕ W ⊆ Ω (disturbance invariance). The intuition is that Ω is a set of states
satisfying the constraints X for which there exists a feasible action keeping the true state
within Ω despite the uncertainty of the nominal model. Several algorithms (Kolmanovsky
and Gilbert 1998, Limon et al. 2009, Rakovic and Baric 2010, Wang et al. 2021) can compute
this set, and so we assume Ω is available to the controller.

With the set Ω, we consider an (simplified) LBMPC variant that maximizes the expected
N -step reward. Our results can be generalized straightforwardly to the full formulation
(Aswani et al. 2013), but we do not consider this as it adds substantial notational complexity
that hinders showcasing the stochastic aspects of our setting. The LBMPC formulation of a
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finite-horizon N is

VN(xt, θ, t) =max
∑N

k=0 h(x̃t+k|t, ut+k|t, θ)

s.t. x̄t+k+1|t = Ax̄t+k|t +But+k|t k ∈ ⟨N − 1⟩
x̃t+k+1|t = Ax̃t+k|t +But+k|t + g(x̃t+k|t, ut+k|t, θ) k ∈ ⟨N − 1⟩
x̄t+k|t ∈ X k ∈ [N ]

ut+k|t ∈ U k ∈ ⟨N⟩
x̄t+1|t ∈ Ω⊖W , x̄t|t = x̃t|t = xt (2.6)

where ⟨k⟩ = {0, . . . , k} and [k] = {1, . . . , k}. The difference between this simplified variant
and the full formulation is that here we apply the invariant set Ω at the first time step, an
idea previously used in (Aswani et al. 2012), whereas the full formulation uses a robust tube
framework to apply Ω at the N -th time point. Our results apply to the above LBMPC for-
mulation and may generalize to the similar variants, but it is unclear if they would generalize
to other LBMPC forms without further study.

2.3.2 Safety of Learning-Based MPC Variant

Because applying the invariant set to the first time point in an MPC formulation is nonstan-
dard, we first formally prove that this LBMPC variant ensures recursive properties of robust
constraint satisfaction and robust feasibility.

Theorem 2.1 Suppose {ut|t, . . . , ut+N |t} are feasible for VN(xt, θ, t) for any θ. If Ω is a max-
imal output admissible disturbance invariant set, then choosing ut = ut|t ensures that we have:
a) xt+1 ∈ X (robust constraint satisfaction) and b) there exist values {ut+1|t+1, . . . , ut+N |t+1}
that are feasible for VN(xt+1, θ

′, t+ 1) for any θ′ (robust feasibility).

The complete proof of this theorem is provided in Appendix A.1.1.

Remark 2.1 An important feature of the above result is that there is no required relationship
between the θ and θ′. Since estimates of the θ are updated through learning, this shows that
the safety properties of this LBMPC variant are decoupled from the design of the learning-
process.

2.3.3 Technical Assumptions

Our learning-based control problem is well-posed under certain regularity assumptions. We
will design a policy under the assumptions described below.

Assumption 2.1 The rewards rt are conditionally independent given θ0 and x0, or equiva-
lently, given θ0 and the complete sequence of {u0, . . . , ut, x0, . . . , xt}.
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The above assumption is similar to the assumption of independence of rewards in the sta-
tionary MAB model. This assumption implies that rt|{xt, θ0} is independent of rt′ |{xt′ , θ0}
for any two time points t ̸= t′.

Assumption 2.2 The log-likelihood ratio ℓ(r, x, u; θ, θ′) = log p(r|x,u,θ)
p(r|x,u,θ′) of Px,u,θ is locally

Lℓ,x-Lipschitz continuous with respect to x on the compact set X for θ, θ′ ∈ Θ, u ∈ U .

This ensures continuity of the reward distribution with respect to the parameters. If two
parameter sets are close to each other in value, then the resulting distributions will also be
similar.

Assumption 2.3 The distribution Px,u,θ for all x ∈ X , u ∈ U , and θ ∈ Θ is sub-Gaussian
with parameter σ, and either p(r|x, u, θ) has a finite support or ℓ(r, u;x, θ, x′, θ′) is locally
Lℓ,r-Lipschitz with respect to r.

This assumption ensures sample averages are close to their means and is satisfied by many
distributions (e.g., Gaussian with known variance). Our last condition ensures that the
system dynamics and the reward expectation function are well-behaved and that the states
do not change too rapidly.

Assumption 2.4 Repeated composition of the true dynamics with itself up to N − 1 times,
f t+k(xt, ut|t, . . . , ut+k|t, θ), is Lipschitz continuous with respect to xt ∈ X and ut+k|t ∈ U with
constants Lf,x and Lf,u, respectively. Besides, the expectation h(xt, ut, θ), for ut = Λt(Ft)
in (2.3), is Lipschitz continuous with respect to xt ∈ X and ut ∈ U with constants Lh,x and
Lh,u, respectively, for all θ ∈ Θ.

2.4 The N-Step Dynamic Regret

Our interest is in evaluating the performance of an LBMPC exploitation policy for a given
N ≤ T that is ΛE,N

t (Ft) = u∗
t|t(θ̂t) for the corresponding value from the maximizer of

VN(xt, θ̂t, t) where θ̂t are the control policy’s estimates of the unknown θ0. Data-driven
policies are often evaluated by comparing performance to a benchmark policy, and it is
typical to benchmark using the optimal policy (Garivier and Moulines 2008, Besbes et al.
2014, Bouneffouf and Féraud 2016). In our setting, the optimal policy is a sequence of
functions Λ∗

t (Ft)
T
t=0 maximizing

∑T
t=0 h(xt, ut, θ0) subject to the knowledge available to the

control policy (which does not include θ0). However, computing optimal policies for the
problems we consider is PSPACE-hard (Papadimitriou and Tsitsiklis 1999). Even their
structure is not known for our setup, including for the special case of linear dynamics and
quadratic cost function with unknown coefficients.

An alternative benchmark is an oracle policy that has perfect knowledge of θ0. Specifi-
cally, we will use the LBMPC oracle policy that is ΛO,N

t (Ft) = u∗
t|t(θ0) for the corresponding

value from the maximizer of VN(xt, θ0, t) as defined in (2.6). However, there are two subtleties
that have to be discussed.
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The first subtlety is that the horizon length of the LBMPC oracle policy could poten-
tially be different than the horizon length of the LBMPC policy. However, using different
control horizon lengths can lead to different sums of expected rewards over the entire control
horizon T . Though this behavior is well known within the MPC community, its implication
on evaluating learning-based control policies has not been previously appreciated. The im-
plication is that comparing policies with different horizon lengths leads to a poorly-defined
regret notion, and that we should compare oracle policies and learning-based policies with
the same finite-horizon.

The second subtlety is that the presence of nonlinear dynamics in our setup means the
state trajectory of a system always controlled by a benchmark policy can be very different
than that of a system always controlled by a learning policy, even if the learning policy
converges towards the benchmark policy.

For this reason, we define a regret notion to compare a finite-horizon benchmark policy
to a finite-horizon learning-based policy. We consider an ϵ-greedy policy Λϵ,N

t that uses the
LBMPC policy ΛE,N

t at each greedy exploitation step. Let xt, ut be the state and input for
the system as controlled by the oracle policy ΛO,N

t , and let x′
t, u

′
t be the state and input for

the system as controlled by the ϵ-greedy policy Λϵ,N
t . Then, the expected N-step dynamic

regret is defined as

RN,T =
∑T

t=0 h(xt,Λ
O,N
t (Ft), θ0)− h(x′

t,Λ
ϵ,N
t (F ′

t), θ0) (2.7)

where Ft is as defined in (2.3) and F ′
t is as defined in (2.3) with x′, u′ replacing x, u. This

definition is closely related to the traditional dynamic regret (Zinkevich 2003, Hall and
Willett 2013), and the novel aspect of ours is that it compares two N -step finite-horizon
policies.

2.5 Parameter Estimation

Let the variables {ri}t−1
i=0 be the actual observed values of the rewards up to time t. Using

Assumption 2.1, the joint likelihood p({ri}t−1
i=0|x0, . . . , xt, u0, . . . , ut−1, θ) can be expressed as∏t−1

i=0 p(ri|xi, ui, θ)P (xi|xi−1, θ). Here, the one step transition likelihood P (xi|xi−1, θ) is a
degenerate distribution with all probability mass at xi, by perpetuation of the dynamics
f(xi, ui, θ) with initial conditions xi−1. Thus, the maximum likelihood estimator (MLE) for
θ is

θ̂t ∈ argmin
θ∈Θ

−
∑t−1

i=0 log p(ri|xi, ui, θ)

s.t. xi+1 = f(xi, ui, θ) ∀i ∈ {0, . . . , t− 1}
(2.8)

2.5.1 Solving the MLE Problem

The MLE problem (2.8) can be computed using optimization, dynamic programming, or var-
ious filtering approaches that have been proposed for different problem structures. Since the
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MLE problem has been extensively studied in the literature, we will not study its numerical
computation in this chapter, but rather we give some helpful references in this section.

The Kalman Filter (KF) is a recursive estimator for linear-quadratic (LQ) discrete-time
control systems Kalman (1960). In more complex systems with non-Gaussian distributions
and nonlinear state transitions, the Extended KF is one of the best-known estimators that
is based on linearization of the state equations at each time step Jazwinski (2007), Anderson
and Moore (2012). Another well-known filtering approach is the Particle Filter (PF), also
known as Sequential Monte Carlo (SMC) method, that can deal with non-Gaussian and
nonlinear sequential estimation problems by computing the posterior distributions of the
states Kitagawa (1996), Liu and Chen (1998), Doucet et al. (2000), Durbin and Koopman
(2000), Doucet et al. (2001). Another approach proposed for maximum likelihood parameter
estimation is known as the Expectation-Maximization (EM) Algorithm. It was first intro-
duced in Dempster et al. (1977), and has been used extensively for parameter estimation
Ghahramani and Hinton (1996), Shumway and Stoffer (1982).

For practical purposes, these efficient approaches motivate the use of MLE in our policy.
Further, if the controller did not have perfect state measurements, we could use the noisy
state data to estimate the dynamics in the constraints of (2.8) (Amelin and Granichin 2012,
Kalmuk et al. 2017), which would also alleviate any potential infeasibility issues of the MLE.

2.5.2 Concentration Bounds

We further analyze the concentration properties of the solution to (2.8) and take an approach
to the theoretical analysis that generalizes that of (Mintz et al. 2017). We begin by introduc-
ing the notion of trajectory Kullback–Leibler (KL) divergence. Since this problem includes
the joint distribution of a trajectory of values, the concentration bound for the parameter
estimates is computed with regards to the trajectory KL divergence.

Definition 2.1 The trajectory Kullback–Leibler (KL) divergence between the parameter tra-
jectories θ, θ′ ∈ Θ with the same input sequence ΠT = {ut}Tt=0 is

DΠT
(θ||θ′) =

T∑
i=0

DKL(Pf i(x0,Πi,θ),ui,θ||Pf i(x0,Πi,θ′),ui,θ′) (2.9)

where Πi is the given sequence of control inputs from time 0 to i, f i is the repeated composition
of the dynamics f with itself i times subject to Πi, and DKL is the standard KL-Divergence.

We have an observability assumption with the implication that the distance between two
different parameters θ, θ′ ∈ Θ is bounded proportional to their trajectory KL divergence.

Assumption 2.5 For a given input sequence ΠT and parameters θ ̸= θ′, if DΠT
(θ||θ′) ≤ δ,

then ∥θ − θ′∥ ≤ Cδ for C > 0.
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We next reformulate the MLE problem (2.8) by removing the state dynamics constraints
through repeated composition of f , that is

θ̂t ∈ argmin
θ∈Θ

1

t− 1

t−1∑
i=0

log
p(ri|f i(x0,Πi, θ0), ui, θ0)

p(ri|f i(x0,Πi, θ), ui, θ)
(2.10)

This reformulation is helpful for our theoretical analysis since for fixed θ, the expected value of
the above objective function under Px0,ΠT ,θ0 is simply 1

t−1
DΠT

(θ0||θ). Hence, we can interpret
the MLE problem as minimizing the trajectory KL divergence between the distribution of
potential sets of parameters and that of the true parameter set. This interpretation is helpful
for us to derive our concentration inequalities. For conciseness of the focus of our analysis
in this chapter, we present the final concentration bound for θ̂t and do not include its proof
since it largely follows by the theoretical arguments in Mintz et al. (2017).

Theorem 2.2 For any constant ζ > 0, we have the bound that

P

(
1

t− 1
DΠt(θ0||θ̂t) ≤ ζ +

cf (dx, dθ)√
t− 1

)
≥ 1− exp

(
− ζ2(t− 1)

2L2
ℓ,rσ

2

)
(2.11)

where the constant

cf (dx, dθ) = 8Lf,xLℓ,xdiam(X )
√
π + 48

√
2(2)

1
dx+dθ Lf,xLℓ,xdiam(Θ×X )

√
π(dx + dθ) (2.12)

depends upon dx and dθ (dimensionalities of X and Θ), and diam(X ) = maxx,y∈X ∥x− y∥2.

We will use this concentration inequality to prove the regret bound of our non-myopic ϵ-
greedy policy that we present next.

2.6 Non-Myopic ϵ-Greedy Approach

We develop a non-myopic ϵ-greedy algorithm that can achieve effective regret bounds for
the non-stationary and nonlinear LBMPC model introduced in Section 2.3. Our choice of
algorithm aims to draw a connection between the control and MAB literature. A possible
alternative could be adding additive noise to the control inputs which we leave as a future
work. When compared with the other well-known MAB strategies, Thompson Sampling (TS)
and Upper Confidence Bound (UCB), ϵ-greedy is significantly easier from a computational
standpoint for combining with the LBMPC formulation of our non-myopic exploitation prob-
lem. TS requires characterization of the posterior distribution which is indeed not possible
under the general dynamics considered. Similarly, UCB requires being able to compute the
confidence bounds which is not feasible in this framework. Hence, those strategies are not
practical for the kinds of applications we are interested in.

The pseudocode of the non-myopic ϵ-greedy algorithm can be found in Algorithm 1. Our
algorithm explores randomly according to a non-stationary stochastic process. The initial
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state x0 is an arbitrary point from the state space X . At each time t ∈ T , the algorithm
samples a Bernoulli variable st based on the exploration probability ϵt. If st = 1, it performs
pure exploration by choosing only a single control input ut|t. To ensure robust constraint
satisfaction and feasibility after exploration, this input is uniform randomly chosen from a
set U(xt) = {u : Axt + Bu ∈ Ω ⊖ W , u ∈ U}. We note that choosing the remaining N
inputs ut+k|t for k ∈ [N ] is redundant at an exploration step since they do not affect the
system state and parameter estimation part of our policy. If st = 0, the algorithm performs a
greedy exploitation step by first computing the MLE of the model parameters θ0. Using these
estimates, the algorithm then solves the non-myopic exploitation problem VN(xt, θ̂t, t) (2.6)

to select the sequence of inputs {u∗
t|t(θ̂t), . . . , u

∗
t+N |t(θ̂t)} with the highest MLE estimated

N -step reward at time t. At the end of each time step, the algorithm observes the updated
state xt+1 and realized reward rt after applying the chosen input Λϵ,N

t (Ft) to the system.

Algorithm 1 Non-Myopic ϵ-Greedy Algorithm

1: Set: c > 0 and x0 ∈ X
2: for t ∈ T do
3: Set: ϵt = min

{
1, c/t

}
4: Sample: st ∼ Bernoulli(ϵt)
5: if st = 1 then
6: Randomly select: ut|t ∈ U(xt)

7: Set: Λϵ,N
t (Ft) = ut|t

8: else
9: Compute: θ̂t from (2.8)

10: Compute: u∗
t|t(θ̂t) from VN(xt, θ̂t, t) (2.6)

11: Set: Λϵ,N
t (Ft) = u∗

t|t(θ̂t)

12: Observe: rt and xt+1

Remark 2.2 If W ,X ,U are all polytopes, then Ω can be approximated by a polytope arbi-
trarily well. Then, Ω⊖W is also a polytope. As a result, line 6 involves randomly picking an
element from a polytope that can be done in a computationally efficient way using standard
algorithms.

For clarity, we consider a randomization at the initial system state, and then assume noise-
free transitions for the subsequent states which is common in the line of RL for finite sample
analysis (Bertsekas and Yu 2010, Lazaric et al. 2010, Liu and Wei 2014, Fazel et al. 2018).
Our analysis here provides a strong ground for generalization of our policy to the setting of
imperfect state measurements as an important direction for future work.

We also note that the exploration probability ϵt decays over time. This is critical to reduce
the cost of exploration by ensuring the algorithm makes fewer unnecessary explorations as
more data collected and the estimates of our policy improve.
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2.6.1 Lipschitzian Stability of Non-Myopic Exploitation

The notion of Lipschitzian stability was first introduced in Levy et al. (2000) for finite-
dimensional parametric optimization problems. The Lipschitzian stability of optimal so-
lutions is characterized by their behaviour with respect to perturbations in the parameter
values. When the feasible set is unperturbed (i.e., independent of the parameter values)
Proposition 4.32 in (Bonnans and Shapiro 2013) provides two sufficient conditions for Lips-
chitzian stability of optimal solutions: i) a second order growth condition, and ii) Lipschitzian
continuity of the difference of the perturbed and unperturbed objective functions. To prove
the Lipschitzian stability of the non-myopic exploitation policy ΛE,N

t (Ft) = u∗
t|t(θ̂t) for each

time step t ∈ T , we next present the theoretical results required to show that these two
conditions hold for VN(xt, θ̂t, t). The complete proofs of all results in this section are given
in Appendix A.1.3.

Lemma 2.1 Suppose UN,t = {ut|t, . . . , ut+N |t} is a feasible input sequence for VN(xt, θ̂t, t).

Let JN(xt, UN,t, θ̂t, t) be the estimated N-step reward of this input sequence at time t, i.e.,

JN(xt, UN,t, θ̂t, t) =
∑N

k=0 h(x̃t+k|t, ut+k|t, θ̂t) (2.13)

where x̃t+k+1|t = f(x̃t+k|t, ut+k|t, θ̂t) for k ∈ ⟨N−1⟩ as given in (2.6). Then, JN(xt, UN,t, θ̂t, t)
is (Lf,u · Lh,u)-Lipschitz continuous with respect to UN,t on the compact set UN+1, i.e.,

JN(xt, UN,t, θ̂t, t)− JN(xt, U
′
N,t, θ̂t, t) ≤ Lf,uLh,u||UN,t − U ′

N,t|| (2.14)

for any feasible input sequence U ′
N,t = {u′

t|t, . . . , u
′
t+N |t}.

Lemma 2.1 implies the second order growth condition for VN(xt, θ̂t, t) since it shows that
JN increases at least linearly over a compact set. The proof follows by Assumption 2.4 and
the properties of Lipschitz continuity. We next present the second condition required for the
Lipschitzian stability of the maximizer of VN(xt, θ̂t, t).

Assumption 2.6 Let the input sequences U∗
N,t(θ̂t) = {u∗

t|t(θ̂t), . . . , u
∗
t+N |t(θ̂t)} and U∗

N,t(θ) =

{u∗
t|t(θ), . . . , u

∗
t+N |t(θ)} be maximizers of VN(xt, θ̂t, t) and VN(xt, θ, t), respectively. Then, for

κ ≥ 0, we have∣∣∣[JN(xt, U
∗
N,t(θ̂t), θ̂t, t)− JN(xt, U

∗
N,t(θ̂t), θ, t)]− [JN(xt, U

∗
N,t(θ), θ̂t, t)− JN(xt, U

∗
N,t(θ), θ, t)]

∣∣∣
≤ κ

∥∥θ̂t − θ
∥∥ · ∥∥U∗

N,t(θ̂t)− U∗
N,t(θ)

∥∥ (2.15)

We now give a sufficient condition for Assumption 2.6.

Proposition 2.1 If the property∥∥∥∇uJN(xt, U
∗
N,t(θ̂t), θ̂t, t)−∇uJN(xt, U

∗
N,t(θ̂t), θ, t)

∥∥∥
∞

≤ LJ

∥∥θ̂t − θ
∥∥ (2.16)

holds for any θ ∈ Θ and real constant LJ ≥ 0, then Assumption 2.6 is satisfied.
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This result is proven mainly by utilizing the Fundamental Theorem of Calculus for Line
Integrals and Hölder’s inequality.

Lemma 2.2 If the state dynamics f(x, u, θ) and the expectation function h(x, u, θ) are poly-
nomial functions, then the sufficient condition given in Proposition 2.1 holds.

A specific example where Lemma 2.2 holds is a discrete-time linear time-invariant system
with f(x, u, θ) = Ax+Bu and h(x, u, θ) = xTQx+ uTRu where θ = [Q,R,A,B].

Lemma 2.3 If Assumption 2.6 and Lemma 2.1 hold, then the Lipschitzian stability property
follows by Proposition 4.32 in Bonnans and Shapiro (2013), i.e.,

∣∣∣∣U∗
N,t(θ̂t) − U∗

N,t(θ)
∣∣∣∣ ≤

c−1
u κ∥θ̂t − θ∥ for a constant cu > 0.

Since
∣∣∣∣u∗

t|t(θ̂t) − u∗
t|t(θ)

∣∣∣∣ ≤
∣∣∣∣U∗

N,t(θ̂t) − U∗
N,t(θ)

∣∣∣∣, we conclude that the non-myopic ex-

ploitation policy ΛE,N
t (Ft) = u∗

t|t(θ̂t) corresponding from the maximizer of VN(xt, θ̂t, t) is

c−1
u κ-Lipschitz continuous with respect to θ̂t ∈ Θ.

2.6.2 Regret Analysis

We next characterize the cumulative regret performance of the non-myopic ϵ-greedy approach
with respect to the expected N -step dynamic regret RN,T (2.7) introduced in Sect. 2.4.

By definition, RN,T compares the LBMPC oracle policy ΛO,N
t (Ft) for the system xt, ut

as controlled by the oracle policy to our non-myopic ϵ-greedy policy Λϵ,N
t (F ′

t) for the system
x′
t, u

′
t as controlled by the learning-policy that uses the LBMPC policy ΛE,N

t (F ′
t) at greedy

exploitation steps. Before bounding this regret notion, we first provide an upper bound on
a weaker comparison of these two policies, Λϵ,N

t (F ′
t) and ΛO,N

t (Ft), by comparing the actions
chosen under the states x′

t achieved by Λϵ,N
t (F ′

t).

Theorem 2.3 The non-myopic ϵ-greedy policy Λϵ,N
t (F ′

t) and LBMPC oracle policy ΛO,N
t (F ′

t)
satisfy the following result for the system states x′

t that are achieved by Λϵ,N
t (F ′

t):

T∑
t=0

h(x′
t,Λ

O,N(F ′
t), θ0)−

T∑
t=0

h(x′
t,Λ

ϵ,N(F ′
t), θ0)

≤ M exp

(
c2f (dx, dθ)

2L2
ℓ,rσ

2

)
(C + log T ) +Mc(1− log(c+ 1) + log T )

+
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
T log T (2.17)

where C > 0, cf (dx, dθ) is the constant in Theorem 2.2, and C is a bound on the finite
summation

∑9
t=1 exp(−(log t)2).
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Using the result of Theorem 2.3, we next show the cumulative regret behaviour of our
non-myopic ϵ-greedy policy Λϵ,N(F ′

t) by assuming the stability of the LBMPC oracle policy
ΛO,N

t (Ft) for t ∈ T . If the LBMPC from Sect. 2.3 does not provide stability, the full LBMPC
formulation (Aswani et al. 2013) can achieve stability. Our results in this chapter generalize
to the full formulation but at the expense of substantial notational complexity.

Assumption 2.7 Let xeq ∈ Ω be an equilibrium for the LBMPC system in Sect. 2.3.

For α ∈ [0, 2/3] and Ft as in (2.3), the LBMPC oracle policy ΛO,N
t (Ft) satisfies ∥Axt +

BΛO,N
t (Ft) + g(xt,Λ

O,N
t (Ft), θ0)− xeq∥ ≤ α∥xt − xeq∥ ∀t.

Exponential stability of the nonlinear LBMPC implied by this assumption can be ensured
under certain sufficient conditions established in the literature (Mayne et al. 2000, Pannoc-
chia et al. 2011). Generalizing the results with less restrictive stability notions poses future
research.

Theorem 2.4 For 4 ≤ c ≤ 4
√
T/

√
3, the expected N-step dynamic regret RN,T (2.7) for a

policy Λϵ,N(F ′
t) computed by Algorithm 1 satisfies

RN,T ≤ 2Lh,x

√
Tdiam(X ) +

2Lh,xc(3− α)

1− α
diam(X ) log T +

4Lh,xCc2

α

√
T (log T )3

+M exp(
c2f (dx, dθ)

2L2
ℓ,rσ

2
)(C + log T ) +Mc(1− log(c+ 1) + log T )

+
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
T log T (2.18)

with probability at least

[
1− (T − 2

√
T ) exp

(
−

4c2
(
log e(2

√
T+2

c+1

)2
2c log(2

√
T + 1) + 2c2

2
√
T+1

+ 4c2

3
log e(2

√
T+2)

c+1

)

− exp
(
−

c2
(
log T

2
√
T+1

)2
(4 + 2

3
c2) log T

)]
(2.19)

where C = c−1
u (∥B∥+ Lf,u)κC

√
4L2

ℓ,rσ
2.

Remark 2.3 This instantaneous bound on N-step dynamic regret implies an asymptotic
cumulative regret of order O(

√
T (log T )3) for the non-myopic ϵ-greedy policy with respect to

the expected N-step dynamic regret (2.7).
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2.7 Numerical Experiments

In this section, we conduct numerical experiments to show the effectiveness of our non-myopic
ϵ-greedy approach. We use the cumulative expected N -step dynamic regret (2.7) and the
cumulative expected reward as comparison metrics. All experiments were run using Python
3.7.4 and Anaconda on a laptop computer with 2.3 GHz 8-Core Intel Core i9 processor
and 16GB DDR4 RAM. We use the MOSEK Optimizer API in Python to solve all the
optimization problems MOSEK ApS (2019).

We simulate an HVAC system (see Sect. 2.1.1.1), using a discrete time model from
Aswani et al. (2011) with 15 minutes sampling interval. The system state is monitored by
the interior temperature setpoint of the room at each period and follows the dynamics model
inspired by the physics of convective heat transfer

xt+1 = krxt − kcut + kvvt + qt (2.20)

where xt ∈ [20, 24] in ◦C, kr > 0 is the time constant of the room, kc > 0 is the temperature
change over a 15-minute system delay caused by cooling for an AC duty cycle of ut ∈ [0, 0.5],
kv > 0 is the time constant for heat transfer from the room to the outside, vt is the outside
temperature in ◦C, and qt is the heating load of the occupants and equipment within the
room over a system delay. We note that the time constants kr and kv are dimensionless.

We assume rt = −ct ∼ N (h(xt, ut, θ0), σ
2) for h(xt, ut, θ0) = γ1ptut+(xt−γ2−vt)

2 where
pt is the electricity price assumed to follow a peak-pricing plan between 12-6 p.m. over an
24 hour day. The γ1ptut accounts for energy use, and vt + γ2 indicates a setpoint preference
that adjusts with outside temperature (ASHRAE 2013). We suppose θ0 = [qt, γ1, γ2] are
unknown to the controller, and use σ = 1, kr = 0.64, kc = 2.64, and kv = 0.10 (Aswani
et al. 2011). We assume that the non-stationary parameters vt and qt are generated from a
sinusoidal distribution with a single peak over 24 hours and average values of 6.98 and 17
in ◦C, respectively. The experiments are replicated 1000 times for N ∈ {1, 10} over a time
horizon of length T = 100, 000. All metrics are reported as averages across these replicates.

Figures 2.1 and 2.2 show the expected N -step dynamic regret accrued up to time T =
100, 000 by the policies for N = 1 and N = 10, respectively. As discussed in Sect. 2.4, the
notion of N -step dynamic regret is defined to compare two N -step finite-horizon policies for
a given N . Hence, contrasting policies with varying horizon lengths would lead to a poorly-
defined comparison. However, we observe that these empirical regret curves are compatible
with our theoretical asymptotic regret bound O(

√
T (log T )3) proved in Sect. 3.3.2. We

further observe that the N -step dynamic regret for a given finite-time horizon is not expected
to be monotonic. The reason of this non-monotonic behavior is the choice of the benchmark
policy. We benchmark using the LBMPC oracle policy ΛO,N

t (Ft) that optimizes N -step
ahead under the full knowledge of cost and system parameters as a surrogate for the optimal
policy Λ∗

t (Ft) that optimizes up to the end of time horizon.
Lastly, we compare the cumulative expected costs of the policies for N = 1 and N = 10

by subtracting the expected cost of Λϵ,10
t (F ′

t) from that of Λϵ,1
t (F ′

t). Figure 2.3 shows that
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Figure 2.1: Expected 1-step dynamic regret. The shaded region represents the standard
error over 1000 replications.

we obtain significantly lower costs with higher N value and that this gain increases roughly
linearly as the time horizon gets longer. This implies that non-myopic policies utilizing
information on future improvements in cumulative costs provide better approximations to
optimal policies over a finite-time horizon.

2.8 Conclusions

This chapter proposes a novel learning-based control framework at the intersection of LBMPC
and RL for studying the exploration/exploitation trade-off in nonlinear and non-stationary
systems. A critical issue we consider is stability, which is one of the unique (and not pre-
viously well-studied) issues that arises with RL for nonlinear systems. The developed class
of LBMPC policies embraces a statistically consistent parameter estimation approach and
has been proven to attain low regret in settings with partially-unknown cost function and
system dynamics.
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Figure 2.2: Expected 10-step dynamic regret. The shaded region represents the standard
error over 1000 replications.

Figure 2.3: Difference of cumulative expected costs for N = 1, 10.
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Chapter 3

Repeated Principal-Agent Games
with Hidden Rewards:
Perfect-Knowledge Agents

3.1 Introduction

System designers frequently use the idea of providing incentives to stakeholders as a powerful
means of steering the stakeholders for their own benefit. Operations management includes
many such examples, such as incentivizing suppliers for emissions transparency, vertical
collaboration between shippers and carriers for sustainable route planning, performance-
based bonuses offered to ride-hailing drivers, monetary incentives provided to patients for
medical adherence, and quality-contingent bonus payments for workers in crowdsourcing
platforms.

As discussed in the Introduction chapter, a primary challenge in designing efficient incen-
tives lies in isolating the lack of transparency regarding the true willingness and economic
objectives of the self-interested stakeholders. In many real-world settings, the problem of
designing efficient incentives can be framed as a repeated principal-agent problem where a
primary party (i.e., principal) seeks to optimize their ultimate objective by designing se-
quential incentive policies to lead a self-interested stakeholder (i.e., agent) with a private
decision-making process. This privacy imposes an information asymmetry between the prin-
cipal and the agent that can appear in the form of either an adverse selection, in which the
information about the agent’s true preferences or rewards are hidden from the principal, or a
moral hazard, in which the actions chosen by the agent are hidden from the principal (Bolton
and Dewatripont 2004). For instance, in the context of employment incentives designed by
an employer, the hidden information in an adverse selection setting could be the level of
productivity of an employee whereas a hidden action in the moral hazard setting could be
the total effort level of the employee. More generally, the hidden information in the adverse
selection setting can be seen as an unknown “type” or “preferences” of the agent that directly
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affects the action chosen by the agent, which in turn determines both the agent’s and the
principal’s rewards. These situations require specification of the agent’s private information
and the distributional-knowledge that the principal has concerning that information.

Existing literature on repeated principal-agent models mostly studies the moral hazard
setting, with a more recent focus on the problem of estimating agent’s unknown model
parameters under hidden actions (e.g., Ho et al. 2016, Kaynar and Siddiq 2022). On the
other hand, the adverse selection setting is mostly studied either for single-period static
games (Navabi and Nayyar 2018, Chade and Swinkels 2019, Gottlieb and Moreira 2022) or
else for the repeated dynamic games where restrictive assumptions are made on, for example,
dimension of the agent’s action space, utility function of the agent, and relationship between
principal’s rewards and agent’s unknown type (e.g., Halac et al. 2016, Eső and Szentes 2017,
Maheshwari et al. 2022). Furthermore, the statistical estimation and learning problem has
not previously been explored for the repeated adverse selection setting. However, system
designers in practice require more generic and richer dynamic approaches that leverage data
only on past incentives and the agent’s past actions without necessarily imposing a specific
structure on the reward model or type distribution of the agent.

Our main goal in this chapter is to open a new window to repeated principal-agent models
under adverse selection from the perspective of statistical learning theory. In particular, we
consider an unexplored setting of adverse selection where the principal can only observe the
history of the agent’s actions but remains uninformed about the associated rewards of the
agent. To enhance the practical relevance of our approach, we design a generic and simple
model. We assume that the agent has the perfect knowledge of their reward model and picks
the reward-maximizing action based on the incentives provided by the principal at each
period. Under this repeated hidden rewards setting, we are mainly interested in studying
the following two research questions:

1. How to compute a statistically consistent estimator for a non-parametric reward model
of the agent?

2. How to design data-driven and adaptive incentives that will attain low regret to the
principal?

3.1.1 Motivating Real-Life Applications

3.1.1.1 Sustainable and Collaborative Route Planning with Backhauling

Backhauling is a way of improving the efficiency of shipping vehicles by providing pickup
loads for them on their way back to the origin depot. It has been widely applied in logistics
operations to reduce both the transportation costs of companies and negative environmental
impacts due to fuel consumption and pollutant emissions (Early 2011, Juan et al. 2014,
Turkensteen and Hasle 2017). In the context of collaborative transportation in a supply
chain network, backhauling is a complex, yet powerful, tool for achieving green closed-loop
logistics. Due to the hierarchical relationship between shipper companies and carriers in



CHAPTER 3. REPEATED PRINCIPAL-AGENT GAMES WITH HIDDEN REWARDS:
PERFECT-KNOWLEDGE AGENTS 25

a transportation network, it is often studied as a form of vertical collaboration in which
companies create integrated outbound-inbound routes – instead of dedicated delivery and
dedicated pickup routes – and provide incentives (i.e., side payments) to carriers to induce
these routes (Ergun et al. 2007, Audy et al. 2012, Marques et al. 2020, Santos et al. 2021).

These existing approaches focus on solving the shipper’s single-period static routing and
pricing problems by using techniques mostly from optimization theory. However, in practice,
shippers face these decisions and interact with carriers dynamically and repeatedly at every
shipment request. Therefore, there is clearly a need for designing the vertical collaboration
between a shipper and a carrier as a sequential learning and decision-making process. In
that regard, this incentive design problem can be formulated as a repeated game between a
principal (shipper) and an agent (carrier) under adverse selection. The goal of the shipper is
to initiate the use of pre-planned integrated routes for their linehaul and backhaul customers
to minimize their total transportation costs, whereas the carrier aims to maximize their total
profits from the selected routes. At the end of each shipment request, the shipper observes the
set of routes chosen by the carrier after the provided incentives while the total profit obtained
by the carrier stands as invisible information to the shipper – which makes it more challenging
for the shipper to predict and orient the carrier’s future selections. Taking into account all
these features, the repeated hidden rewards model and the adaptive incentive policy proposed
in this chapter can explicitly account the goals and interactions of both parties and yield
effective incentive plans by leveraging the available data over a given contract period.

3.1.1.2 Personalized Incentive Design for Medical Adherence

The problem of patients not following medication dosing instructions is recognized as a major
and widespread issue around the world. Such lack of adherence to a medication regime leads
to not only poor health outcomes but also substantial financial costs Osterberg and Blaschke
(2005). According to WHO (2003), medication non-adherence is observed 50% of the time,
which may increase up to 80% for relatively asymptomatic diseases such as hypertension
(Brown et al. 2016). Research reveals various reasons for this problem including individual-
level factors (e.g., medication side effects), social factors (e.g., cultural beliefs), and economic
factors (e.g., transportation costs to clinics) (WHO 2003, Bosworth 2010, Long et al. 2011).
To overcome some of these concerns, incentive programs that provide financial rewards to
the patients are commonly employed and shown to effectively improve medical adherence.
There is a related literature in medicine and economics on examining the effects of these
monetary incentives using empirical analyses (Lagarde et al. 2007, Gneezy et al. 2011) and in
operations management on quantitatively designing financial incentives for different market
contexts (Aswani et al. 2018, Ghamat et al. 2018, Guo et al. 2019, Suen et al. 2022).

The design of financial incentives throughout a medication regime with finite length
adequately features a repeated principal-agent problem under the hidden rewards setting
that we introduce in this chapter. Given their personal preferences and characteristics (i.e.,
type), the patient (i.e., agent) exhibits certain adherence behaviors in order to maximize
their total utility which is comprised of benefits obtained through the improvements in their
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health conditions, costs incurred due adherence, and incentives offered by the healthcare
provider. On the other hand, the goal of the healthcare provider (i.e., principal) is to
maximize the clearance rate, that is the rate at which the infected patient is recovered,
by designing motivating payments to improve their adherence actions. This payment design
problem is nontrivial due to scarce clinical resources and the information asymmetry between
the provider and the patient. Although the healthcare provider can often fully observe the
patient’s adherence actions, the realized utilities of the patient often stands as a private
information to the provider. Because the data-driven incentive design framework presented
in this chapter is based on a generic model without restrictive technical assumptions, we
propose that it could be easily leveraged to overcome the problem of medical non-adherence.

3.1.2 Main Contributions and Chapter Outline

We next present the outline and main methodological contributions of this chapter in more
detail.

Consistent estimator. In Section 3.2.1, we provide the details of the principal-agent
setting introduced above. Then, we introduce a novel estimator for a non-parametric reward
model of a reward-maximizing agent with finite set of actions in Section 3.2.2. Our estimator
is formulated exactly as a linear optimization model that estimates the expected rewards of
all actions without assuming any functional form or any specific distributional property. In
accordance with the hidden rewards setting, the only input to our estimator is the data on
past incentives and past actions chosen by the agent. In Section 3.2.3, we give results proving
identifiability and finite-sample statistical consistency of the proposed estimator. Essentially,
we prove probability bounds on the diameter of the random polytope defined by the feasible
space of our estimator in each time period.

Data-driven and low-regret incentives. Section 3.3.1 describes a practical and com-
putationally efficient ϵ-greedy policy for the principal’s adaptive incentives over a finite time
horizon of length T . By utilizing the finite-sample concentration bounds derived for our
estimator, we compute the regret of the proposed policy with respect to an oracle incentive
policy that maximizes the principal’s expected net reward at each time step under the per-
fect knowledge of all reward expectations. Section 3.3.2 presents a rigorous regret bound of
order O(

√
T log T ) for the repeated principal-agent models with hidden agent rewards.

Discussion and Numerical results. Our approach assumes that the agent’s decisions
are consistent with a fixed vector of reward expectations. However, we also consider the
case when there is no guarantee that the agent is truthful about their preferences. In some
cases where the agent might also be knowledgeable about the principal’s model, they can
increase the information rent extracted from the principal by pretending their vector of
reward expectations are different. In Section 3.4, we provide a discussion from the perspective
of the reward-maximizing agent and argue that our incentives are designed in a way that
maximizes the principal’s expected net reward subject to the agent’s information rent. To
support our theoretical results and demonstrate our data-driven incentive framework, we
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conduct simulations on an instance of the sustainable route planning problem outlined earlier.
In Section 3.5, we share the details of our experimental setting and numerical results.

Lastly, we conclude in Section 3.6 by discussing future work that might be steered by
our analyses in this chapter. We include the proofs for all theoretical results provided in the
main text in Appendix B.

3.1.3 Related Literature

3.1.3.1 Repeated Principal-Agent Models

There is a rich and extensive literature on principal-agent models in economics (Holmström
1979, Grossman and Hart 1983, Hart and Holmström 1987) and in operations management
(Martimort and Laffont 2009). For repeated models, most existing studies focuses on the
moral hazard setting (Radner 1981, Rogerson 1985, Spear and Srivastava 1987, Abreu et al.
1990, Plambeck and Zenios 2000, Conitzer and Garera 2006, Sannikov 2008, 2013). Several
of them study the problem of estimating the agent’s model when actions are hidden (Vera-
Hernandez 2003, Misra et al. 2005, Misra and Nair 2011, Ho et al. 2016, Kaynar and Siddiq
2022). On the other hand, related work on the design of incentives under the adverse
selection setting is relatively scarce. In many of them, the agent’s type (e.g., level of effort
or probability of being successful) is considered as an additional, unknown information on
top of a moral hazard setting (Dionne and Lasserre 1985, Sundadam and Banks 1991, Gayle
and Miller 2015, Williams 2015, Halac et al. 2016, Eső and Szentes 2017). Only a few
of these works study the estimation problem for the hidden type setting, and they use
statistical estimation methods such as least squares approximation (Lee and Zenios 2012),
minimization of a sum of squared criterion function (Gayle and Miller 2015), and simulation-
based maximum likelihood estimation (Aswani et al. 2019, Mintz et al. 2023). However, the
adverse selection setting studied in these papers comes with limiting assumptions such as
the assumption that the agent’s type parameter belongs to a discrete set.

Our work differs from these studies in several ways. Although the hidden rewards setting
has various application areas, we are not aware of any other work studying this novel and non-
trivial dynamic principal-agent model. The estimation problem we consider in this setting
involves estimating reward expectation values which belong to a bounded continuous space.
Differently from the existing work summarized above, we solve a practical linear program
and follow a set-based estimation approach to estimate these continuous mean rewards.
Furthermore, regarding the incentive design problem, these past papers do not consider the
exploration-exploitation trade-off faced by the principal, and hence, they are not able to
provide guarantees on how close to optimal their solutions are. In this chapter, we take a
sequential learning approach to compute adaptive and efficient incentives for the principal
and perform a regret analysis for the considered repeated adverse selection models.
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3.1.3.2 Multi-Armed Bandits for Incentive Design

A related line of research from sequential decision-making includes the use of a multi-armed
bandit (MAB) framework for mechanism design. MAB’s are widely applied to dynamic
auction design problems which are closely related with the incentive design in dynamic
principal-agent problems (Nazerzadeh et al. 2008, Devanur and Kakade 2009, Jain et al.
2014, Amin et al. 2014, Biswas et al. 2015, Ho et al. 2016, Braverman et al. 2019, Bhat et al.
2019, Abhishek et al. 2020, Shweta and Sujit 2020, Han et al. 2020, Simchowitz and Slivkins
2021, Wang et al. 2022, Gao et al. 2022).

The principal’s problem in our repeated hidden rewards game is directly applicable to
the MAB framework. At each iteration of the game, the principal offers a set of incen-
tives corresponding to the set of arms (i.e., actions) in the agent’s model and generates a
random reward through the arm selected by the agent. As the interaction between these
two parties proceeds, the principal faces a trade-off between consistently learning the un-
known reward expectations of each agent arm (i.e., exploring the agent’s arm space through
adverse incentives to encourage selection of different arms) and maximizing their own cu-
mulative net reward (i.e., exploiting arms estimated to yield the highest expected rewards
by motivating the agent to select them with the minimal incentives). From this perspec-
tive, the MAB framework is regarded to be useful in effectively navigating the principal’s
exploration-exploitation trade-off while designing efficient data-driven incentives.

3.1.3.3 Inverse Optimization

Inverse optimization is a framework for inferring parameters of an optimization model from
the observed solution data that are typically corrupted by noise (Ahuja and Orlin 2001,
Heuberger 2004). More recent work in this area probes into estimating the model of a
decision-making agent by formulating the agent’s model as a linear or a convex optimization
problem in offline settings (where data are available a priori) (Keshavarz et al. 2011, Bertsi-
mas et al. 2015, Esfahani et al. 2018, Aswani et al. 2018, Chan et al. 2019, 2022) or in online
settings (where data arrive sequentially) (Bärmann et al. 2018, Dong et al. 2018, Dong and
Zeng 2020, Maheshwari et al. 2023). Different from these studies, we do not assume any
specific structure of the agent’s decision-making problem, but instead we consider a reward-
maximizing agent with finite action space. This case of estimating the non-parametric model
of a reward-maximizing agent is also addressed by Kaynar and Siddiq (2022), who study the
offline static setting of the principal-agent problem under moral hazard. A key distinction
is that we study the online dynamic setting of the repeated principal-agent problem under
adverse selection. In the hidden rewards setting that we examine, we design an estimator for
the expected rewards of the agent’s arms, whose only input is the data of reward-maximizing
arms in response to the provided incentives in the past. In that respect, the principal’s es-
timation problem can be regarded as an analogy of online inverse optimization in MAB’s.
Moreover, to prove consistency of the principal’s estimator in this setting, we build upon
initial ideas of statistics with set-valued functions (Aswani 2019).
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3.1.4 Mathematical Notation

We first specify our notational conventions throughout this chapter. All vectors are denoted
by boldfaced lowercase letters. A vector x whose entries are indexed by a set M = [1, . . . ,M ]
is defined as x = (xm)m∈M. If each entry xm belongs to a set X , then we have x ∈ XM . The
ℓ∞-norm of the vector x is defined by ∥x∥∞ = max(|x1|, . . . , |xM |). Further, the cardinality
of a set X is denoted by |X |, and 1(·) denotes the indicator function that takes value 1 when
its argument (·) is true, and 0 otherwise. Lastly, the notations 0n and 1n are used for the
all-zeros and all-ones vectors of size n, respectively, and P(·) is used for probabilities.

3.2 The Repeated Game and Principal’s Estimation

We start this section by introducing our repeated principal-agent model under adverse se-
lection and continue by presenting our novel estimator along with the associated statistical
results.

3.2.1 The Repeated Game with Hidden Rewards

We consider a repeated play between a principal and an agent over a finite time horizon T =
[1, . . . , T ]. At each time step t ∈ T , the principal offers a vector of incentives πt = (πt,a)a∈A
corresponding to the set of all possible actions of the agent A = {1, . . . , n}. Then, the agent
takes the action it(πt) with the maximum expected total reward after the incentives πt, i.e.,

it(πt) := argmax (r0 + πt) = argmax
a∈A

(
r0a + πt,a

)
(3.1)

where r0 = (r0a)a∈A is the true vector of expected rewards of the agent and is only known
by the agent. We assume that r0a,∀a ∈ A belongs to a compact set R = [Rmin, Rmax] ⊂ R
where Rmax − Rmin ≥ 1. Based on the action chosen by the agent, the principal collects a
stochastic reward outcome denoted by µt,it(πt) ∼ Fθ0

it(πt)
,it(πt) with expectation θ0it(πt)

∈ Θ

where Θ is a known compact set.
The true mean reward vectors r0 and θ0 = (θ0a)a∈A are unknown by the principal. The

principal can only observe the selected action it(πt) and their own net reward realization
µt,it(πt) −

∑
a∈A πt,a. In this setting, to ensure that our research problems are well-posed, it

suffices to assume that the range of incentives that the principal is able to provide to the
agent covers the range of the agent’s reward expectations.

Assumption 3.1 The incentives πt,a, ∀a ∈ A belongs to a compact set C = [C,C] where
C = Rmin and C = Rmax + γ for some constant 0 < γ ≤ Rmax −Rmin − 1.

Because the principal’s goal is to provide incentives that will drive the agent’s decisions,
this assumption ensures that the magnitudes of the incentives are large enough to have an
effect on the relative order of the actions with respect to their total rewards after adding the
incentives.
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3.2.2 The Estimator

Due to the information asymmetry in our repeated adverse selection model, the learning
process of the principal comprises estimating the agent’s expected reward vector r0 by solely
watching the actions maximizing the total reward vector r0 + πτ in the past time periods
τ ≤ t. Our fundamental observation of this estimation problem is that the differences of
pairs of entries of r0 is crucial for the statistical analysis, not the individual values of the
entries. With this observation on hand, we must first discuss an ambiguity in this problem
before formulating our estimator.

Suppose the principal offers an incentive vector πτ at time τ . We can trivially find two
different mean reward vectors for which the principal’s estimation problem will be ill-defined.
To see this, we consider the vectors r′ ∈ Rn and r′′ = r′ + m1n, where m is any constant
scalar such that r′′ ∈ Rn. Then, the key is to notice that argmax r′+πτ = argmax r′′+πτ .
Since these two vectors r′ and r′′ yield the same maximizer arm, the principal will not be able
to distinguish them in the considered affine space. To overcome this issue of identifiability,
we remove one redundant dimension from the considered estimation problem by setting all
the differences of pairs of r’s entries with respect to a reference point 0.

Definition 3.1 For a mean reward vector r = (r1, r2, . . . , rn) ∈ Rn, we define s as the
normalized mean reward vector that is without loss of generality defined by s := r− r11n =
(0, r2 − r1, . . . , rn − r1) and belongs to the compact set Sn = [Rmin −Rmax, Rmax −Rmin]

n.

This dimensionality reduction allows us to decrease our degrees of freedom and derive
the identifiability of our estimator. We further note that the maximizer iτ (πτ ) of the total
expected reward vector r0+πτ is also the maximizer of s0+πτ . Thus, we define our estimator
and conduct theoretical analyses with respect to the normalized reward vector s.

Next, we formalize our estimator for s0. Let Πt = {π1, . . . ,πt−1} be the sequence of
incentives offered by the principal and It(Πt) = {i1(π1), . . . , it−1(πt−1)} be the sequence of
actions chosen by the agent up to time t. Then, the principal’s estimate ŝt (It(Πt),Πt) at
time t for the agent’s normalized mean reward vector s0 is formulated as

ŝt (It(Πt),Πt) ∈ argmin 0 (3.2)

s.t. siτ (πτ ) + πτ,iτ (πτ ) ≥ sa + πτ,a ∀a ∈ A, τ = 1, . . . , t− 1 (3.3)

s1 = 0, sa ∈ S ∀a ∈ A (3.4)

This optimization problem can be regarded as the feasibility version of the set-membership
estimation problem (Schweppe 1967, Hespanhol and Aswani 2020). Further, we can refor-
mulate it by defining the loss function

L (s, It(Πt),Πt) =
t−1∑
τ=1

ℓ (s, iτ (πτ ),πτ ) (3.5)



CHAPTER 3. REPEATED PRINCIPAL-AGENT GAMES WITH HIDDEN REWARDS:
PERFECT-KNOWLEDGE AGENTS 31

which is the sum of t− 1 extended real-valued functions given by

ℓ (s, iτ (πτ ),πτ ) =

{
0, if siτ (πτ ) + πτ,iτ (πτ ) ≥ sa + πτ,a, ∀a ∈ A
+∞, otherwise

}
. (3.6)

Now, we reformulate our feasibility estimator as

ŝt (It(Πt),Πt) ∈ argmin
s1=0, sa∈S,∀a∈A

L (s, It(Πt),Πt) (3.7)

Note that we may use the simplified notation ŝt throughout the chapter for conciseness. We
next present the results of our statistical analysis for the estimator in (3.7).

3.2.3 Identifiability and Consistency

The convergence behavior of the sequence of estimates ŝt depends on a characterization of
the loss function known as an identifiability condition (Van der Vaart 2000) that ensures the
loss function is minimized uniquely by the true vector s0. We start our consistency analysis
by proving the identifiability of our estimator (3.7). The identifiability of our estimation
problem requires characterizing the set of incentive vectors that distinguishes between s0

and an incorrect estimate ŝt. We first provide some intermediate results in Propositions 3.1
– 3.3 and then formalize the final identifiability result for our estimator in Proposition 3.4.

Let N (s0, β) ⊂ Sn be an open neighborhood centered around s0 with diameter β > 0
such that N (s0, β) := {s : ∥s− s0∥∞ ≤ β}, and consider the compact set F := Sn \N (s0, β).
We define an open ball B(sj, d) := {s : ∥s − sj∥∞ < d} centered around a vector sj with
diameter d > 0. Since F is compact, for some finite q > 0 and d < β, there is a finite
subcover {B(sj, d) : sj ∈ F}qj=1 of a collection of open balls covering F . Given a normalized
reward vector s ∈ B(sj, d), j ∈ {1, . . . , q}, our arguments in the following propositions will
be based on the following indices:

• K := argmaxa∈A sa (the set of indices corresponding to the maximizers of s)

• K0 := argmaxa∈A s0a (the set of indices corresponding to the maximizers of s0)

• b ∈ argmaxa∈A |s0a−sa| (the index of an entry with the highest absolute value in s0−s)

Proposition 3.1 Suppose that K0 ∩K = ∅ for a given vector s ∈ B(sj, d), j ∈ {1, . . . , q},
and that the principal chooses each incentive πt,a uniformly randomly from the compact set
C, that is πt,a ∼ U(C,C),∀a ∈ A, at time t ∈ T . Then,

P (ℓ (s, it(πt),πt) = +∞) ≥

(
1

2
−
(
C − C − s0κ0 + s0κ

)2
2(C − C)2

)(
1− γ + β − d

C − C

)2(
γ

C − C

)n−2

(3.8)

for any κ ∈ K, κ0 ∈ K0, and γ as introduced in Assumption 3.1.
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Proposition 3.2 Suppose that K0 ∩K ̸= ∅, b /∈ K0 ∩K for a given vector s ∈ B(sj, d), j ∈
{1, . . . , q} and that πt,a ∼ U(C,C),∀a ∈ A at time t ∈ T . We define the quantity ω =
sups∈B(sj ,d) maxa∈A{|s0a|, |sa|} as the largest absolute value among the entries of s0 and of all
the vectors in B(sj, d). Then,

P (ℓ (s, it(πt),πt) = +∞) ≥ β2

(C − C)2

(
1− γ + ω

C − C

)2(
γ

C − C

)n−2

. (3.9)

Proposition 3.3 Suppose that K0 ∩K ̸= ∅, b ∈ K0 ∩K for a given vector s ∈ B(sj, d), j ∈
{1, . . . , q}, and that πt,a ∼ U(C,C),∀a ∈ A at time t ∈ T . Then,

P (ℓ (s, it(πt),πt) = +∞) ≥ β2

(C − C)2

(
1− γ + β − d

C − C

)(
1− γ + ω

C − C

)(
γ

C − C

)n−2

(3.10)

for the constant ω defined in Proposition 3.2.

Propositions 3.1 – 3.3 analyze three mutually exclusive cases for a given reward vector s and
the true reward vector s0. In all cases, these results show that as the distance β between
the considered vector s and the true vector s0 increases, the probability that the estimator
(3.7) will be able to differentiate these two vectors is also increasing proportional to β2, and
that this probability of invalidating an incorrect estimate is always strictly positive. In other
words, they state that the unknown mean reward vector s0 can be learned from the input
data collected by offering randomly chosen incentives that explore the agent’s action space.
Proposition 3.4 combines these results to show that our adverse selection model satisfies an
identifiability property required for a precise inference on the agent’s hidden rewards.

Proposition 3.4 (Identifiability) At time t ∈ T , suppose that πt,a ∼ U(C,C),∀a ∈ A.
Then, for any normalized reward vector s ∈ F , we have

P (ℓ (s, it(πt),πt) = +∞) ≥ αβ2 (3.11)

for some constant α > 0.

Theorem 3.1 presents the finite-sample concentration behavior for our estimator with respect
to the loss function (3.5). The main sketch of the proof of Theorem 3.1 follows by the
existence of the finite subcover {B(sj, d) : sj ∈ F}qj=1 of an open covering of F and by using
the result of Proposition 3.4 for each of the open balls in this subcover. Then, the final
inequality is obtained by using volume ratios to bound the covering number q. The complete
proof is given in Appendix B.1.1. The intuition behind the upper bound given in (3.12) is
that the learning rate of the principal’s estimator depends on the number of time periods at
which the principal is exploring the action space of the agent.
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Theorem 3.1 Let η(1, t) be the number of time steps that the principal chooses each incen-
tive πt,a uniformly randomly from the compact set C up to time t, that is η(1, t) = |Λ(1, t)|
where Λ(1, t) = {τ : 1 ≤ τ ≤ t− 1, πτ,a ∼ U(C,C), a ∈ A}. Then, we have

P
(
inf
s∈F

L (s, It(Πt),Πt) < +∞
)

≤ exp
(
−α(η(1, t)− 1)β2 − log β + n log(Rmax −Rmin)

)
(3.12)

where F = {s ∈ Sn : ∥s− s0∥∞ > β} as before.

This theorem is useful because it allows us to derive our finite-sample concentration inequality
with respect to the distance between our estimates ŝt and the true reward vector s0. We
conclude this section with an alternative statement of Theorem 3.1.

Corollary 3.1 (Finite-Sample Concentration Bound) The principal’s estimator in
(3.7) satisfies

P
(
∥s0 − ŝt∥∞ > β

)
≤ exp

(
−α(η(1, t)− 1)β2 − log β + n log(Rmax −Rmin)

)
(3.13)

for any β > 0.

Recall that the radius of a polytope is the maximum distance between any two points in
it. Then, because both ŝt and s0 are feasible solutions to (3.7), this corollary can be also
interpreted as a probability bound on the radius of the random polytope defined by the
constraints of our estimation problem.

3.3 Principal’s Adaptive Incentive Framework

In this section, we develop an adaptive incentive policy that yields an efficient regret bound
for the principal in the repeated adverse selection game described in Section 3.2.1. As per
the considered model setting, the principal needs to learn their own expected rewards θ0 in
addition to the agent’s rewards. Because the principal can fully observe the reward outcomes
µt,it(πt) that they get through the agent’s decisions, we consider an unbiased estimator under
the following assumption about the principal’s reward distribution family.

Assumption 3.2 The principal’s rewards µt,a’s for an arm a ∈ A are independent and
follow a sub-Gaussian distribution Fθa,a for all θa ∈ Θ.

This assumption states that the rewards µt,a and µt′,a collected by the principal at any two
time points t, t′ where the agent chooses arm a are independent from each other. Assumption
3.2 is a mild assumption that is commonly encountered in many MAB models.
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Let T (a, t) = |{τ ∈ T : τ ≤ t− 1, iτ (πτ ) = a}| be the number of time points that the
agent selects arm a up to time t. Then, the principal’s estimator for θ0a,∀a ∈ A is given by

θ̂t,a =
1

T (a, t)

t−1∑
τ=1

µτ,a1 (iτ (πτ ) = a) (3.14)

which is the sample mean of the principal’s reward outcomes for agent’s arm a up to time t.
If the principal’s reward distribution Fθ0a,a

for any a ∈ A is an exponential family distribution
where the sufficient statistic is equal to the random variable itself, such as Bernoulli, Poisson,
and the multinomial distributions, then θ̂t,a corresponds to the maximum likelihood estimator
for θ0a.

3.3.1 Principal’s ϵ-Greedy Algorithm

We develop an ϵ-greedy algorithm that integrates the principal’s estimation problem and
the incentive design problem in a practical learning framework. The pseudocode of the
principal’s ϵ-greedy algorithm is given in Algorithm 2.

During the first n = |A| time periods, the principal makes the agent select each of the
n actions once so that the principal will be able to record a reward observation and have
an initial estimate of θ0a for all a ∈ A. To achieve this, the principal offers the maximum
possible incentive (C) for the desired action which is sufficient to make it the agent’s reward-
maximizer action by Assumption 3.1. After this initialization period, at each time point
t ∈ [n+1, . . . , T ], the algorithm first updates the estimate of θ0 for the most recently played
action it−1(πt−1), and then samples a Bernoulli random variable xt based on the exploration
probability ϵt. If xt = 1, then the algorithm performs a pure exploration step by simply
choosing an incentive vector πt = (πt,a)a∈A where each component πt,a is selected uniformly
randomly from the compact set C. On the other hand, if xt = 0, then the principal performs
a greedy exploitation by first updating their estimate ŝt for the unknown mean rewards of
the agent by solving the estimation problem (3.7). Next, the principal computes the vector

of incentives c(θ̂t, ŝt) that maximizes their estimated expected net reward at time t. The
expected net reward of the principal is computed by subtracting the provided total incentives
at that time step from the expected reward that the principal will collect through the action
which will be chosen by the agent. However, since the agent’s true rewards are unknown,
the principal cannot exactly know in advance the action that will be chosen by the agent
after the provided incentives. Therefore, the principal tries to incentivize the agent to select
the action that is estimated to maximize the principal’s expected net reward at that time
step. This is ensured by incrementing the calculated incentive by an additional amount to
account for the uncertainty in the estimates of the agent’s expected rewards.

For that purpose, using θ̂t and ŝt, the principal first estimates the minimum incentives
(denoted by (c̃ja)a∈A) required to make the agent pick an action j ∈ A and the corresponding

expected net reward value (denoted by Ṽ (j, ŝt; θ̂t)) that will be observed after action j is
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Algorithm 2 Principal’s ϵ-Greedy Algorithm

1: Set: m ≥ 4, α > 0
2: for t ∈ [1, . . . , n] do
3: Set: πt = (πt,a)a∈A where πt,a = C for a = t and πt,a = 0 for all a ̸= t

4: if t ≥ 2 then θ̂t,it−1(πt−1) = µt−1,it−1(πt−1)

5: Observe: it(πt) = argmax
a∈A

(s0a + πt,a) and µt,it(πt)

6: for t ∈ [n+ 1, . . . , T ] do

7: Compute: θ̂t,it−1(πt−1) ∈ 1
T (it−1(πt−1),t)

t−1∑
τ=1

µτ,it−1(πt−1)1(iτ (πτ ) = it−1(πt−1))

8: Set: ϵt = min
{
1,m/t

}
9: Sample: xt ∼ Bernoulli(ϵt)
10: if xt = 1 then
11: Sample: πt,a ∼ U

(
C,C

)
for all a ∈ A

12: Set: πt = (πt,a)a∈A
13: else

14: Compute: βt =
√

log(η(1,t)−1)
α(η(1,t)−1)

where η(1, t) =
∣∣{τ : xτ = 1, n+ 1 ≤ τ ≤ t− 1}

∣∣
15: Compute: ŝt ∈ argmin

{
L (s, It(Πt),Πt)

∣∣s1 = 0, sa ∈ S,∀a ∈ A
}

16: for j ∈ A do

17: Compute: Ṽ (j, ŝt; θ̂t) = θ̂t,j −
(
max
a∈A

ŝt,a

)
+ ŝt,j − 2βt

18: Compute: j∗t = argmax
j∈A

Ṽ (j, ŝt; θ̂t)

19: Set: cj∗t (θ̂t, ŝt) =

(
max
a∈A

ŝt,a

)
− ŝt,j∗t + 2βt and ca(θ̂t, ŝt) = 0 for all a ̸= j∗t

20: Set: πt = (ca(θ̂t, ŝt))a∈A

21: Observe: it(πt) = argmax
a∈A

(s0a + πt,a) and µt,it(πt)

taken by the agent:

c̃jj =

(
max
a∈A

ŝt,a

)
− ŝt,j + 2βt (3.15)

c̃ja = 0, ∀a ∈ A, a ̸= j (3.16)

Ṽ (j, ŝt; θ̂t) = θ̂t,j −
∑
a∈A

c̃ja = θ̂t,j −
(
max
a∈A

ŝt,a

)
+ ŝt,j − 2βt (3.17)

where βt > 0,∀t. After computing these values for every action j ∈ A, the principal chooses
the set of incentives corresponding to action j∗t that brings the highest Ṽ (j, ŝt; θ̂t) value. The

chosen vector of incentives is denoted by c(θ̂t, ŝt) = (ca(θ̂t, ŝt))a∈A such that cj∗t (θ̂t, ŝt) =
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(maxa∈A ŝt,a)− ŝt,j∗t + 2βt and ca(θ̂t, ŝt) = 0,∀a ̸= j∗t where j∗t ∈ argmaxj∈A Ṽ (j, ŝt; θ̂t). We
show that the design of these exploitation incentives are purposeful in the sense that they
drive the agent’s reward-maximizer action to be j∗t with high probability. We formalize this
property in Proposition 3.5 in the next subsection.

At the end of each time period, the principal provides the selected incentives πt to the
agent and observes the reward-maximizer arm it(πt) chosen by the agent. As a result, the
principal receives a net reward of µt,it(πt) −

∑
a∈A πt,a, and the agent collects a total reward

of s0it(πt)
+ πt,it(πt). We reiterate that the principal does not observe the agent’s reward

associated with the chosen action.

Remark 3.1 The arithmetic operations performed to compute the exploitation incentives in
lines 16-19 of Algorithm 2 have a complexity of O(n) where n = |A|. This implies that the
computational complexity of the principal’s bandit algorithm is linear in the dimension of the
agent’s model.

3.3.2 Regret Bound

We compute the regret of a policy Πϵ,T = {πt}t∈T generated by Algorithm 2 by comparing it
with an oracle incentive policy with respect to the cumulative expected net reward obtained
by the principal. An oracle incentive policy is defined as the policy with perfect knowledge
of all the reward expectations θ0 and s0. Let c(θ0, s0) be the constant oracle incentives that
maximize the principal’s expected net reward at each time step over the time horizon T .
The oracle incentives are computed in a similar way to the computation of the exploitation
incentives in Algorithm 2. We first solve for the minimum incentives required to make an
action j ∈ A the reward-maximizer action of the agent and compute the associated expected
net reward value Ṽ (j, s0;θ0) as follows:

c̃jj =

(
max
a∈A

s0a

)
− s0j (3.18)

c̃ja = 0, ∀a ∈ A, a ̸= j (3.19)

Ṽ (j, s0;θ0) = θ0j −
∑
a∈A

c̃ja = θ0j −
(
max
a∈A

s0a

)
+ s0j (3.20)

Then, the oracle policy chooses the set of incentives corresponding to the agent action j∗,0

that has the highest Ṽ (j, s0;θ0) value, that is j∗,0 := argmaxj∈A Ṽ (j, s0;θ0). We note that
by construction of the oracle incentives, this action is same as the action that maximizes the
agent’s total reward after the incentives, i.e., j∗,0 = i(c(θ0, s0)) = argmaxa∈A s0a + ca(θ

0, s0)
where

ci(c(θ0,s0))(θ
0, s0) = max

a∈A
s0a − s0i(c0(θ0,s0)) + ς (3.21)

ca(θ
0, s0) = 0, ∀a ̸= i(c(θ0, s0)). (3.22)
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for a sufficiently small constant ς > 0 which helps avoiding the occurrence of multiple
maximizer actions for the agent. Then, the principal’s expected net reward at any time step
under the oracle policy is given as

V (c(θ0, s0);θ0) = θ0i(c(θ0,s0)) −max
a∈A

s0a + s0i(c(θ0,s0)) − ς. (3.23)

Similarly, we compute Vt(πt;θ
0) as the expected net reward of the principal at time t under

the incentives generated by Algorithm 2 as

Vt(πt;θ
0) = θ0it(πt) −

∑
a∈A

πt,a (3.24)

where it(πt) is as given in line (21) of Algorithm 2. Lastly, we define the regret of a policy
Πϵ,T = {πt}t∈T with respect to the cumulative expected net reward obtained by the principal.

Regret (Πϵ,T ) =
∑
t∈T

V (c(θ0, s0);θ0)− Vt(πt;θ
0) (3.25)

We provide a rigorous regret bound for the principal’s ϵ-greedy algorithm in Theorem
3.2. We next present several intermediate theoretical results that will be used to prove our
regret bound.

Lemma 3.1 Let T xplore ∈ T and T xploit ∈ T be the set of random time steps that Algorithm
2 performs exploration (lines 11-12) and exploitation (lines 15-20), respectively. Then, the
following probability bound holds at any t ∈ T xploit:

P
(
max
a∈A

ŝt,a − ŝt,j∗t + 2βt ≥ max
a∈A

s0a − s0j∗t

)
> 1− exp

(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

(3.26)

where η(1, t) = |{τ : 1 ≤ τ ≤ t− 1, τ ∈ T xplore}| as introduced in Theorem 3.1.

The main observation required for the proof of this lemma is that the desired event is
implied by the event ∥s0 − ŝt∥∞ ≤ βt. Hence, the lower bound on the probability that the
desired event holds is directly obtained by using the result of Corollary 3.1.

Proposition 3.5 At any time t ∈ T xploit, the probability that the agent will pick arm j∗t
after the exploitation incentives c(θ̂t, ŝt) is bounded by

P
(
j∗t = it(c(θ̂t, ŝt))

)
> 1− exp

(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)
. (3.27)

We recall that the principal estimates that the action j∗t will yield the highest expected net
reward to themselves, and hence desires that j∗t will be chosen by the agent after observing
the exploitation incentives. From this perspective, the implication of the last result is that
the exploitation incentives are successful in making j∗t the total reward maximizer action for
the agent with high probability. This result is proved in a straightforward way by using the
definition of our exploitation incentives and the result of Lemma 3.1.
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Proposition 3.6 Suppose βt =
√

log(η(1,t)−1)
α(η(1,t)−1)

for all t ∈ T . Then, we have

P
(
i(c(θ0, s0)) ̸= it(c(θ̂t, ŝt))

)
≤ 4n

η(1, t)− 1
+

2n(Rmax −Rmin)
n
√
α√

(η(1, t)− 1) log(η(1, t)− 1)
. (3.28)

This result shows a decreasing (over time) upper bound on the probability that the action

selected by the agent under the exploitation incentives c(θ̂t, ŝt) will not be the true reward-
maximizer action that would be selected by the agent under the oracle incentives c(θ0, s0).
The proof follows by mainly using the finite-sample concentration bounds for the principal’s
estimates θ̂t and ŝt and the result of Proposition 3.5.

Theorem 3.2 (Finite-Sample Regret Bound) The regret of a policy Πϵ,T computed
by the Principal’s ϵ-Greedy Algorithm (2) is bounded by

Regret (Πϵ,T ) ≤
8√
α

√
T log T + 8n

(
C − C + diam(Θ)

)
(Rmax −Rmin)

n
√
α
√
T

+
(
n(C − C)(m+ 8) + diam(Θ)m

)
log T

+m
(
n(C − C) + diam(Θ)

)
+B1 +B2 (3.29)

where B1 + B2 = 4√
α

√
log(m−1)

m−1
+

2n(2(C−C)+diam(Θ))(Rmax−Rmin)
n√α

√
m−2

+
4n(C−C+diam(Θ))

m−1
and

diam(Θ) = maxa,a′∈A θ0a − θ0a′ are finite and strictly positive constants.

Remark 3.2 This finite-sample regret bound corresponds to an asymptotic regret at a rate
of order O(

√
T log T ) for the proposed adaptive incentive design framework.

The proof details for all the results in this section can be found in Appendix B.1.2.

3.4 Agent’s Information Rent

In this section, we present a discussion of our repeated principal-agent model from the agent’s
perspective. According to the information structure that we study in this chapter, the only
observable information to the principal are the actions taken by the reward-maximizing
agent. The principal needs to estimate the agent’s true preferences and rewards under this
information asymmetry. Our data-driven framework assumes that the agent acts truthfully,
so that the sequence of their actions is selected in a consistent way with their true expected
reward vector s0. In spite of that, there exists an unavoidable information rent given to the
agent due to the information asymmetry in our model as in every other adverse selection
model. This strictly positive information rent always presents and is an inherent part of our
hidden rewards setting. However, the principal’s goal is to minimize the amount they pay
to the agent on top of this minimal amount of information rent. The way we design the
principal’s exploitation incentives given in (3.15)-(3.17) allows the principal to achieve this
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goal. Assuming that the agent picks their actions with respect to a fixed expected reward
vector (that is only known by the agent), we implicitly induce incentive compatibility when
we optimize the principal’s incentives such that they will make the agent pick the arm that
the principal wants them to pick. However, the agent could just pretend that their true
rewards s0 are different from the beginning of the sequential game, and pick all their actions
in accordance with these “pretended” rewards in order to extract a higher information rent
from the principal and maximize their total rewards. Under the hidden rewards setting,
there is no way for the principal to prohibit the agent from this misbehavior which allows
them to maximize the information rent they collect from the principal as we show in this
section. We also note that avoiding this extra information rent could be possible in other
principal-agent designs where more information about the agent’s reward model is accessible
by the principal. For instance, the principal could know in advance the discrete set of the
agent’s mean reward values without necessarily knowing which value belongs to which action.
Analyzing such settings in which the principal would be able to offer incentives that get the
agent to reveal their true preferences is beyond the scope of this chapter, yet it stands as an
interesting future research direction.

From the standpoint of the reward-maximizer agent, we can formalize the agent’s prob-
lem as an optimization model that maximizes the information rent they are extracting from
the principal. The main observation here is that the maximum possible value of the agent’s
information rent is finite and can be achieved by a sophisticated agent who is also knowl-
edgeable about the principal’s rewards. Recall that the principal offers the incentives that
will induce the agent to pick the action which would yield the highest net expected reward
to the principal. Assuming that the agent is informed about θ0 and s0, they could demand
extra payment from the principal by taking their actions with respect to a fixed “pretended”
mean reward vector š(s0,θ0) throughout the entire time horizon. We next formalize this
idea in the following optimization problem.

š(s0,θ0) ∈ argmax
s,π

s0a + πa

s.t. a = argmax
a′∈A

θ0a′ − πa′

πa > 0, πa ∈ C, πa′ = 0 ∀a′ ∈ A \ {a}
b = argmax

a′∈A
sa′ + πa′

a = b

(3.30)

The objective function of this optimization problem maximizes the agent’s true expected
reward (after the incentives) obtained from selecting action a which is further specified by
the constraints. The first constraint implies that action a maximizes the principal’s expected
net reward when the incentives π are selected as given in the second set of constraints. Then,
the third and last constraints ensure that the incentives are designed in such a way that action
a is also the reward-maximizer for the agent who pretend their rewards as š.
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Proposition 3.7 The agent’s optimization problem (3.30) is feasible, and the agent can
maximize their information rent by choosing its solution š(s0,θ0) as their “pretended” fixed
mean reward vector during the course of their repeated play with the principal.

The complete proof of this proposition is provided in Appendix B.1.3. Recall that in
Section 3.3.2, we show that when the agent plays truthfully in accordance with their true
mean reward vector s0 and the principal follows the oracle incentive policy c(θ0, s0), then
the agent gets their minimum possible expected total reward. We start the proof by showing
that this solution is feasible to the problem (3.30), yet it yields the worst-case result for
the agent. We continue by proving the existence of other feasible solutions which use mean
reward vectors that are different than s0 and return higher information rents to the agent.
These feasible solutions are proposed for two mutually exclusive cases based on whether the
maximizer actions of the principal’s and the agent’s mean rewards, θ0 and s0, are the same
with each other or not. We next present two numerical examples that illustrate the feasible
solutions proposed in the proof for each of these two cases.

Example 3.1 Consider a model with three actions A = {1, 2, 3}. Let the agent’s true mean
reward vector be s0 = (s01, s

0
2, s

0
3) = (0, 4, 3) and the principal’s true mean reward vector be

θ0 = (θ01, θ
0
2, θ

0
3) = (1, 8, 2). Notice that the principal does not need to incentivize the agent

in this case because the reward-maximizer actions for both parties are the same with each
other. The principal can just offer the incentives π = (0, 0, 0) that yield the highest possible
expected net reward to them (which is 8) and the worst-case expected total reward to the agent
(which is 4). Now, suppose that the agent is untruthful and playing according to the rewards
s = (0, 4, 9.5). In that case, if the principal offers the same incentives π, then the agent will
pick the third action and the principal’s expected net reward will be 2. However, the principal
can obtain a relatively higher expected net reward by offering a different set of incentives that
will get the agent to pick the second action. Suppose that the principal gives the incentives
π̃ = (0, 5.9, 0), which is a feasible solution to the agent’s optimization problem together with
the chosen s. Then, the expected net reward of the principal becomes θ02 − π̃2 = 2.5 whereas
the agent’s expected total reward jumps to s02 + π̃2 = 9.5. As a result, the agent collects an
extra information rent of 9.5 − 4 = 5.5 which is the difference between their expected total
rewards when they are truthfully playing with s0 and when they are pretending their rewards
are s.

Example 3.2 Consider a model with four actions A = {1, 2, 3, 4}. Let the agent’s true mean
reward vector be s0 = (s01, s

0
2, s

0
3, s

0
4) = (0, 4, 3, 6) and the principal’s true mean reward vector

be θ0 = (θ01, θ
0
2, θ

0
3, θ

0
4) = (1, 8, 7, 2). If the agent plays in accordance with their true rewards,

then s = s0 and π = (0, 2.1, 0, 0) will yield a feasible solution to (3.30) with a = b = 2. With
this solution, the principal’s expected net reward will be θ02−π2 = 8−2.1 = 5.9 and the agent’s
expected total reward will be s02+π2 = 4+2.1 = 6.1. On the other hand, consider the rewards
s = (0, 4, 3, 7.8) and the incentives π̃ = (0, 3.9, 0, 0). These vectors result in another feasible
solution in which the principal’s expected net reward decreases to θ02 − π̃2 = 8 − 3.9 = 4.1
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whereas the agent’s expected total reward rises to s02 + π̃2 = 4 + 3.9 = 7.9. As can be seen,
the agent gains a higher information rent in this case by pretending their rewards are s and
capturing an extra amount of 1.8 from the principal’s expected profits.

As stated before, achieving the maximum information rent would require a significant amount
of sophistication from the agent, which may not be the case in practice. As the agent is less
knowledgeable about the principal’s model, they will get less information rent. However,
regardless of the knowledge level, the agent’s behavior needs to be based on a fixed vector of
mean rewards. Whether it is the true vector or a “pretended” vector, the taken actions will
be essentially consistent with the same reward vector throughout the entire time horizon ––
aligning with the underlying assumption in our repeated principal-agent model. Therefore,
we highlight that our framework is designed to maximize the principal’s expected net reward
subject to the information rent that the agent takes.

3.5 Numerical Experiments

We aim to support our theoretical results for the repeated principal-agent models with
hidden agent rewards by conducting simulation experiments in which the proposed data-
driven incentives are compared with the derived oracle incentives. Our experimental setting
is based on an instance of the sustainable and collaborative transportation planning problem
introduced in Section 3.1.1.1.

Consider a transportation network composed of the linehaul and backhaul customers of a
shipper who acknowledges that their total carbon emissions and cost of logistics operations
can be reduced by the use of pre-planned integrated outbound-inbound routes. Let A =
{1, . . . , n} be the discrete set of all possible pure inbound routes, pure outbound routes,
and the offered outbound-inbound routes for the given network. Each route a ∈ A brings
a stochastic cost to the shipper with an expectation ζ0a . Note that our setup can handle
stochastic costs (as opposed to rewards) by setting the expected reward as the negative
of the expected cost, i.e., θ0a = −ζ0. Thus, we will continue using our standard notation.
Suppose the shipper works with a carrier who wants to maximize their total expected profit
(note that the s0a’s are invisible to the shipper) and may be also serving to other shippers.
The goal of the shipper is to motivate the carrier to collaborate with them and perform
the most efficient (for the shipper) outbound-inbound routes over a sequence of shipment
requests, {1, . . . , T}.

We run our experiments for multiple combinations of the parameters n ∈ {5, 10} (i.e.,
total number of alternative routes) and T ∈ {102, 103, 104, 2 · 104, 4 · 104} (i.e., total number
of shipment requests). Each setting is replicated five times, and the average and standard
deviation of our regret metric (3.25) are reported across these replicates. We assume that
the feasible range of incentives is given by C = [−20, 60], and the principal’s stochastic costs
for each route a ∈ A follow a Gaussian distribution N (θ0a, 5). The input parameter m for
Algorithm 2 is chosen as m = 30 in all settings which implies that the principal explores
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during the first 30 periods of the considered contract horizon after the initialization period
(see lines 2-4). The values selected for the vectors θ0 and r0 are presented in Table B.1 in
Appendix B.2.

Figure 3.1 shows the cumulative regret accrued by the principal’s ϵ-greedy algorithm for
different values of n and T . As expected, our approach achieves a sublinear regret that
matches with the asymptotic order O(

√
T log T ) proven by our theoretical analyses.

A significant theoretical challenge in the shipper’s problem is that they need to compute
an incentive amount for each and every route as accurately as possible in order to optimize
their own profits. The shipper has to estimate the expected profits consistently not only for
the desired integrated outbound-inbound routes but also for all the separate outbound and
inbound routes. Thus, the difficulty level of the shipper’s problem increases as the size of
the carrier’s action space increases. To highlight this challenge, we present a more direct
measure of how close the menu of incentives designed by Algorithm 2 gets to the oracle menu
of incentives at the end of a finite contract horizon. As highlighted, because every alternative
route matters the same, we measure the distance between the two sets of incentives by using
the ℓ1 norm – in which all the entries of the vectors are weighted equally. As can be seen
in Figure 3.2, the proposed incentive design mechanism is able to consistently converge to
the oracle incentive policy, and it achieves a better convergence as the length of the contract
horizon gets longer. Further, a comparison of Figures 3.2a and 3.2b reveals that our data-
driven framework is able to achieve the same accuracy even when the size of action space is
doubled.

(a) Regret for n = 5 (b) Regret for n = 10

Figure 3.1: The cumulative regret of the policies generated by Algorithm 2. The shaded
regions represent the standard error over all replications.
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(a) ∥πT − c(θ0, s0)∥1 for n = 5 (b) ∥πT − c(θ0, s0)∥1 for n = 10

Figure 3.2: The ℓ1 distance between the oracle incentives and the incentives reached by
Algorithm 2 at the end of the time horizon. For any two vectors x,y ∈ RK , the ℓ1 distance
is defined by ∥x− y∥1 =

∑K
k=1 |xk − yk|.

3.6 Conclusions

We conclude by summarizing this chapter’s primary contributions to the principal-agent
theory and data-driven contract design literature. In this chapter, we introduce a novel
repeated principal-agent setting which has not been explored in earlier studies even though
it is applicable to many real-life problems. In particular, we analyze an adverse selection
model where the principal can solely observe the agent’s decisions while the agent’s true
preferences and rewards stay hidden from the principal. To enhance the practical relevance
of our theoretical studies, we keep our model as generic as possible.

The two integrated dimensions of the considered research problem are: i) estimation of
the agent’s unknown reward model, and ii) design of adaptive incentives that will maximize
the principal’s cumulative net rewards over a finite time horizon. We first introduce our
novel estimator and prove its identifiability and finite-sample concentration bound. Then,
we formalize the principal’s data-driven incentives and unite them with our estimator in an
ϵ-greedy bandit algorithm. We conduct a rigorous regret analysis for this algorithm and
support our theoretical results by demonstrating the performance of our approach in the
simulations of a sustainable route planning model.

In the hidden rewards model herein, we assume that the reward-maximizing agent has
full knowledge of their reward model and is able to take the true reward-maximizer action at
every period. A more challenging model would consider an agent with imperfect knowledge
of their model. In that case, our analyses will also need to involve the learning process of
the agent who trains their algorithm on top of the principal’s learning process. As can be
expected, the dynamic interactions between these two learning parties will add substantial
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complexity both to the estimation and the incentive design problems. In the next chapter,
we will extend our model and analyses to address this intricate scenario, and we will also
highlight possible future directions for further work building upon our contributions.
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Chapter 4

Repeated Principal-Agent Games
with Hidden Rewards: Learning
Agents

4.1 Introduction

In practice, incentive providers (i.e., principals) often cannot observe the reward realizations
of incentivized agents, which is in contrast to many principal-agent models that have been
previously studied. This information asymmetry challenges the principal to consistently
estimate the agent’s hidden rewards by solely watching the agent’s decisions, which becomes
even more challenging when the agent also has to learn its own rewards. This intricate
setting offers not only wide practical relevance but also poses interesting open theoretical
questions, which are intended to be addressed by this chapter.

This chapter analyzes the hidden rewards game introduced in Chapter 3 in a more com-
plex environment, where: there is a learning agent that tackles a multi-armed bandit (MAB)
problem to acquire the knowledge of their true reward-maximizers under the offered incen-
tives. In this repeated principal-agent game, the main theoretical challenge is sourced from
the dynamic and sequential interactions taking place between the two strategic decision-
makers. In each play of the game, first the principal offers a menu of incentives to the agent,
and then the learning agent makes a choice from a finite set of actions, which in turn deter-
mines the rewards collected by both players. In other words, there is a two-sided sequential
externality in this setting, whereby the agent’s imperfect knowledge imposes additional costs
on the principal and the principal’s incentives impose a more challenging decision-making
environment for the agent with imperfect knowledge. This chapter considers that both the
principal and the agent observe stochastic rewards with unknown (to both) expectations,
and that both parties aim to maximize their own cumulative expected rewards at the end of
the game.
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For this complex setting, we jointly tackle the two coupled facets of the principal’s prob-
lem:

i) learning the agent’s hidden reward expectations by training a consistent estimator,

ii) designing an incentive mechanism to lead the agent’s learning algorithm in favor of
the principal.

The statistical and regret analyses in this chapter show that this setup yields substantially
higher complexity and necessitates a distinct theoretical analysis compared to the “perfect
agent” setting in Chapter 3. The implication is that the principal’s learning algorithm is
trained on top of the agent’s learning process, and the major complication arises from the
uncertainty in the agent’s choices. There is now no guarantee that these choices are the
true maximizers of the agent’s rewards. Both the estimation errors and cost of explorations
incurred by the agent directly contribute to the cumulative regret of the principal over the
considered time horizon. By marrying classical principal-agent theory with statistics and
online learning, we offer a robust data-driven incentive design framework without necessarily
restricting the type of the agent’s MAB algorithm and prove that the proposed policy attains
sublinear regret for the principal.

4.1.1 Motivating Real-Life Applications

4.1.1.1 Adaptive Contracts for Sustainable Energy Aggregation

Among many attempts to address the devastating and growing impact of the climate crisis,
transition to clean green energy stands as one of the most effective and widespread processes.
Today, there is a rising awareness on the value of renewable and large-scale distributed energy
storage for the clean energy transition. With this motivation, the so-called “aggregators”
have started to play a key role in electricity markets. An aggregator is a company operating a
grid-scale virtual power plant that pools energy supply available in their distributed battery
systems and sells this capacity in electricity markets during peak demand or emergency
periods (International Renewable Energy Agency 2019, Kennedy 2021, Berntzen et al. 2021).
This aggregation operation provides substantial advantages to the market stakeholders, the
utility companies, and the independent aggregator firms on the supply side and the residential
and commercial customers on the demand side. The primary benefits can be summarized
as reducing costs for utilities and communities, decreasing carbon emissions, and improving
power reliability. To achieve these benefits, the aggregator has to motivate the customers to
be flexible and allow the aggregator to use the backup power available in their electric vehicles
or solar energy storage systems (Bindra and Revankar 2018, Biggins et al. 2022). For this
purpose, the aggregator offers benefits to the participating customers such as a compensation
for their contribution to the energy supply in the grid. On the higher level, it falls to the
utility company to encourage the aggregator to initiate flexibility in their storage capacity
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through increasing their investments and managing voluntary customer participation in the
aggregation program.

The sequential game between the utility company (i.e., principal) and independent ag-
gregator company (i.e., agent) can be effectively modeled as a repeated unobserved rewards
setting with two strategic and learning players. In this model, the actions of the aggrega-
tor is defined as the amount of storage capacity (MW/h) (sourced from electric vehicles or
household heat pumps) reserved for the use of utility grid, and the payments of the utility
company are defined as the service fees offered for purchased storage (MW/h) in an ag-
gregation contract (which is organized typically on an hourly basis). The realized profits
of the utility and the aggregator observed as a result of these contracts depend on several
sources of uncertainty including variations in renewable energy generation (e.g., wind, solar,
hydro, etc.), electricity demand, and market prices. Such contracts are utilized in recent
applications such as the Emergency Load Reduction program launched by Tesla and PG&E
(McCarthy 2022) and the Resilient Home program initiated by Sunrun and East Bay Com-
munity Energy in California (East Bay Community Energy 2020). Taking into account the
conflicting objectives of multiple stakeholders and unknown stochastic components in these
systems, we believe that the adaptive incentive policies proposed in this chapter can help the
utility company to offer smart contracts that explicitly considers their sequential interactions
with the aggregator and expands the participation of the aggregator.

4.1.1.2 Deforestation Incentives for Payment for Ecosystem Services

According to the UN Food and Agriculture Organization, deforestation since 1990 is esti-
mated to have reached 420 million hectares worldwide, with an annual rate of around 10
million hectares every year since then, the majority of which belongs to tropical forests
(Food and FAO). However, the rate of forest loss is reported to have declined substantially
in the last five years due to various interventions, such as Payment for Ecosystem Services
(PES) (Busch and Ferretti-Gallon 2017, Seymour and Harris 2019). PES programs establish
a positive economic incentive mechanism by which governments and non-governmental or-
ganizations contract owners of natural resources (i.e., local landowners or service providers,
such as private forest owners and farmers) to incentivize them to prevent environmental
degradation, such as deforestation (Warnes et al. 2023).

From the perspective of payment providers, the goal of these incentive mechanisms is to
maximize the environmental benefits obtained from the amount of conserved forests with the
minimal amount of payments. However, a prevalent obstacle in effectiveness of these con-
tracts involves the information disparities between program designers and the forest owners
(Salzman et al. 2018). Typically, the forest owners hold private information about their
opportunity costs and the amount of deforestation they would choose without any incentives
(Engel et al. 2016). Only a few papers in the literature have studied the contract design
problem in the PES context by using a principal-agent framework in which the agent has
a privately-known baseline conservation level for a known initial forest area (Mason and
Plantinga 2013, Li et al. 2023). These studies characterize the optimal contracts for static
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one-shot games between providers and forest owners, while leaving the analysis open for
dynamic performance-based incentive policies. To bridge this gap, we suggest that PES
incentives should incorporate the effects of learning from forest owners’ conservation actions
over time. Our hidden rewards model can be effectively extended to formalize this informa-
tion asymmetric setup, and the proposed data-driven incentive design framework can help
reveal the true willingness of forest owners for their land use.

4.1.2 Main Contributions and Chapter Outline

We next present an outline of this chapter by featuring our main contributions to the theory
and applications in the related literature areas, which are summarized in Section 3.1.3 of
Chapter 3.

Consistent estimator fed by the agent’s MAB. We start by introducing our re-
peated principal-agent game with hidden rewards of a learning agent in Section 4.2.1. In
accordance with this model, in Section 4.2.2, we propose a novel estimator for the agent’s
expected reward for each bandit arm – which uses as data the sequence of incentives offered
and subsequently chosen arms by the agent’s MAB algorithm. Our estimator is formulated
exactly as a linear optimization model without assuming any functional form or any specific
distributional property. Using this formulation, we next prove an identifiability property and
a finite-sample concentration bound of the proposed estimator under a mild assumption on
the probability that the agent’s MAB algorithm does not select the true reward-maximizer
arms in response to the offered incentives. We present these statistical results in Sections
4.2.3 and 4.2.4.

Robust, data-driven incentive policy. Section 4.3.1 embeds our consistent estima-
tor into a MAB framework and presents the principal’s adaptive and data-driven incentive
policy using a practical and computationally efficient ϵ-greedy approach. By utilizing the
finite-sample consistency results we derived for our estimator, we compute the regret of the
proposed policy with respect to an oracle incentive policy that maximizes the principal’s
expected net reward at each time step under perfect knowledge of all reward expectations.
Section 4.3.2 presents a rigorous sublinear regret bound for the principal under the sequential
uncertainty imposed through the agent’s choices.

Agent’s behavior. In Section 4.4, we present a theoretical analysis and a discussion
from the perspective of the selfish learning agent. We highlight that our statistical consis-
tency and regret bound results for the principal are proven without restricting the type or
structure of the agent’s MAB algorithm. As mentioned above, our only assumption about
the agent’s behavior is a probability bound associated with the inaccuracy of the arms chosen
by their algorithm. In Section 4.4.1, we show the mildness of our assumption by proving
that it is satisfied when the agent uses a naive ϵ-greedy algorithm to make their decisions
throughout the sequential game. Furthermore, in Section 4.4.2, we discuss that the learning
framework proposed for the principal considers a self-interested agent with particular so-
phistication where they are not knowledgeable about or attempting to learn the principal’s
model. In that respect, our approach can be regarded as the worst case bound for the cir-
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cumstances in which the agent has enough sophistication to maximize their information rent.
However, regardless of the level of agent’s complexity, our data-driven incentive mechanism
is designed in a way that maximizes the principal’s cumulative expected net reward subject
to the existence of the agent’s information rent.

Numerical results. Lastly, we conduct simulation experiments in the context of se-
quential aggregator contracts for the green energy storage operations described above. In
Section 4.5, we share details of our experimental setting and numerical results supporting
our finite-sample bounds on concentration of the proposed estimator and regret of the pro-
posed incentive policy. We demonstrate the applicability and efficiency of our framework in
enhancing a renewable, reliable, and smart utility grid for communities.

We conclude this chapter in Section 4.6 by discussing promising future directions. The
proofs of all theoretical results provided in the main text are included in Appendix C.

4.2 Principal’s Consistent Estimator

This section presents the studied repeated adverse selection model, our novel estimator, and
the associated statistical consistency results. We note that this chapter follows the same
conventions for mathematical notation as those given in Section 3.1.4 of Chapter 3.

4.2.1 The Repeated Game with Hidden Rewards of Learning
Agents

We consider a sequential game between an incentive-provider principal and an incentivized
agent over a finite time horizon T = [1, . . . , T ]. The agent solves a MAB problem with a
discrete set of arms (or actions) A = {1, . . . , n}. At each time step t ∈ T , the principal first
chooses an incentive amount πt,a for each bandit arm of the agent and offers the vector of
incentives πt = (πt,a)a∈A. Then, the agent’s MAB algorithm selects the arm υt(πt) which
brings i) a stochastic reward outcome to the principal denoted by µt,υt(πt) that follows a
distribution Fpr

θ0
υt(πt)

,υt(πt)
associated with the arm υt(πt) with expectation θ0υt(πt)

∈ Θ where Θ

is a known compact set, and ii) a stochastic reward outcome to the agent denoted by ρt,υt(πt)

that follows a distribution Fag

r0
υt(πt)

,υt(πt)
associated with the arm υt(πt) with expectation

r0υt(πt)
∈ R where R = [Rmin, Rmax] ⊂ R is a known compact set such that Rmax −Rmin ≥ 1.

We highlight that the principal can only observe the selected arm υt(πt) and their own net
reward realization µt,υt(πt) −

∑
a∈A πt,a at the end of each period.

In this setting, the ground truth mean reward vectors r0 = (r0a)a∈A and θ0 = (θ0a)a∈A are
unknown both to the agent and to the principal. To ensure that our research problems are
well-posed, it suffices to assume that the feasible range of the principal’s incentives subsumes
the range of the agent’s reward expectations.

Assumption 4.1 The incentives πt,a for all a ∈ A belongs to a compact set C = [C,C]
where C = Rmin and C = Rmax + γ for some constant 0 < γ ≤ Rmax −Rmin − 1.
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Similar to Assumption 3.1 in the previous chapter, Assumption 4.1 ensures that the
magnitudes of the principal’s incentives can be chosen sufficiently large to change the relative
ordering of the bandit arms with respect to their expected rewards after adding the incentives.
This assures that the principal is able to provide incentives that will steer the agent’s decisions
into the desirable ones.

4.2.2 The Consistent Estimator

The problem of designing adaptive incentives throughout the described repeated principal-
agent play involves a fundamental challenge for the principal: estimating the agent’s mean
rewards r0 by only using the data of past incentives offered and chosen arms in response to
these incentives. Because we consider an imperfect-knowledge agent, the agent also trains
their own estimator to predict r0 and chooses their arms by following a sequential learning
algorithm that aims to maximize their estimated total mean reward after incentives. This
suggests that the principal indeed tries to estimate a certain reward vector, such that the
sequence of chosen arms are the maximizers of that vector plus the incentive vectors offered
at the corresponding time periods. Because of this structure, the principal’s estimation in
this setting entails the same ambiguity discussed in Section 3.2.2.

To resolve this issue and ensure that our estimator satisfies an identifiability property,
we apply a dimensionality reduction to the agent’s model and define the normalized mean
reward vector s as before.

Definition 4.1 For a mean reward vector r = (r1, r2, . . . , rn) ∈ Rn, we define s as the
normalized mean reward vector that is without loss of generality defined by s := r− r11n =
(0, r2 − r1, . . . , rn − r1) and belongs to the compact set Sn = [Rmin −Rmax, Rmax −Rmin]

n.

We recall that this normalization does not change the accuracy of our estimation because
the maximizer entries of r0 + πτ and s0 + πτ are the same with each other. It essential to
observe that what matters for the consistency of the principal’s estimation is the differences
of pairs of entries of r0, rather than its individual entries. This observation will allow as to
derive the identifiability result for our estimator in the next subsection.

As highlighted before, the principal’s estimator has only two sequences of inputs: Πt =
{π1,π2, . . . ,πt−1} is the sequence of the incentives chosen by the principal up to time t and
Υt(Πt) = {υ1(π1), υ2(π2), . . . , υt−1(πt−1)} is the sequence of the arms chosen by the agent
up to time t. As we stated above, these chosen arms are based on the agent’s own estimator
which is trained in parallel to the principal’s estimator, and hence, there is no guarantee
that these arms are the true maximizers for the agent under the offered incentives. The
implication of this case is that there is an additional source of uncertainty carried to the
principal’s estimator through the arms chosen by the agent’s learning algorithm. Taking
into account this uncertainty in the behaviors of the agent, we formalize the principal’s
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estimate ŝprt (Υt(Πt),Πt) at time t for the agent’s true normalized mean reward vector s0:

ŝprt (Υt(Πt),Πt) ∈ argmin
t−1∑
τ=1

yτ (4.1)

s.t. sυτ (πτ ) + πτ,υτ (πτ ) + yτ ≥ sa + πτ,a ∀a ∈ A, τ = 1, . . . , t− 1 (4.2)

yτ ∈ R τ = 1, . . . , t− 1 (4.3)

s1 = 0, sa ∈ S ∀a ∈ A (4.4)

where yτ ’s are the slack variables used to contend with the agent’s unknown behavior. By
introducing the loss function

L (s,Υt(Πt),Πt) =
t−1∑
τ=1

ℓ (s, υτ (πτ ),πτ ) (4.5)

where ℓ (s, υτ (πτ ),πτ ) = maxa∈A
(
sa + πτ,a − sυτ (πτ ) − πτ,υτ (πτ )

)
, we can reformulate the

linear optimization problem above as

ŝprt (Υt(Πt),Πt) ∈ argmin
s1=0, sa∈S,∀a∈A

L (s,Υt(Πt),Πt) (4.6)

For notational simplicity, we use the simplified notation ŝprt throughout the rest of this
chapter.

4.2.3 Identifiability

The first step of our finite-sample convergence analysis for the principal’s estimator (4.6) is
to prove that our estimator satisfies an identifiability property that ensures the loss function
(4.5) is minimized uniquely by the true reward vector s0 (Van der Vaart 2000). The implica-
tion of this condition is that our estimator should be able to distinguish between s0 and an
incorrect estimate ŝprt for a given set of incentives. As pointed out in the previous subsection,
the characterization of such incentives is based on the differences of pairs of entries of s0.

With this observation on hand, we give our identifiability result in Proposition 4.4 that
is proven using intermediate results in Propositions 4.1 – 4.3. Though these intermediate
results may superficially look similar to the ones in Section 3.2.3, the results here differ in
a fundamental way because we must take into account the unknown decision rule of the
“imperfect-knowledge agent”. Before presenting these results, we clarify that our statistical
analysis employs the sets

(
N (s0, β),F , {B(sj, d)}qj=1

)
and the indices (K,K0, b) exactly as

defined in the previous chapter.
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Proposition 4.1 Suppose that K0 ∩K = ∅ for a given vector s ∈ B(sj, d), j ∈ {1, . . . , q}.
Consider the incentives chosen uniformly randomly from the compact set C, i.e., πt,a ∼
U(C,C),∀a ∈ A. Then, we bound the following probability conditioned on the case that the
agent chooses the true maximizer arm at time t ∈ T .

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
≥
(
(s0κ0 − s0κ)

2 − o2

2(C − C)2

)(
1− γ + β − d

C − C

)2(
γ

C − C

)n−2

(4.7)

which holds for any two indices κ0 ∈ K0, κ ∈ K, and any constant o ∈ (0, δ) where δ :=
maxa∈A s0a − maxa∈A\{K0} s

0
a is the difference between the largest and second largest entries

of s0.

Proposition 4.2 Suppose that K0 ∩K ̸= ∅, b /∈ K0 ∩K for a given vector s ∈ B(sj, d), j ∈
{1, . . . , q}. Consider that πt,a ∼ U(C,C),∀a ∈ A and the agent chooses the true maximizer
arm at time t ∈ T . Then,

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
≥ (β − o)2

(C − C)2

(
1− γ + ω

C − C

)2(
γ

C − C

)n−2

(4.8)

for any constant o ∈ (0, β) where ω = sups∈B(sj ,d)maxa∈A(|s0a|, |sa|) is the largest absolute
value observed among the entries of s0 and of all the vectors in B(sj, d).

Proposition 4.3 Suppose that K0 ∩K ̸= ∅, b ∈ K0 ∩K for a given vector s ∈ B(sj, d), j ∈
{1, . . . , q}. Consider that πt,a ∼ U(C,C),∀a ∈ A and the agent chooses the true maximizer
arm at time t ∈ T . Then,

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
≥ (β − o)2

(C − C)2

(
1− γ + β − d

C − C

)(
1− γ + ω

C − C

)(
γ

C − C

)n−2

(4.9)

for any constant o ∈ (0, β).

Our goal in these propositions is to show that the principal’s estimator (4.6) is able to
differentiate between the true mean reward vector s0 and a different reward vector s that
is at least β away from s0 in terms of the ℓ∞ norm. Due to the structure of our model, we
prove this property separately for three mutually exclusive cases defined based on the sets
of indices K and K0 and the index b introduced earlier. However, each of these results are
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proven for the event that the agent’s algorithm picks the true maximizer arm in response
to the given random incentives. As we aim to offer a generic approach without limiting
the type of the algorithm used by the agent, we need to consider a mild assumption on
the learning behavior of the agent. In particular, we need to assume that after a transient
period of learning, the agent’s algorithm will choose an incorrect (i.e., different than the true
maximizer) arm at a decreasing rate as the game move forwards over the considered time
horizon. We now specify this rate in the following statement.

Assumption 4.2 Let pt := P (υt(πt) ̸= argmaxa∈A (s0a + πt,a)) be the probability that the
agent does not select the true reward-maximizer arm at time t. There exists a constant

k ≥ 1 such that pt ≤ k

√
log 2t√
t

at any time step t ∈ [k̃, T ] where k̃ ≥ 2 is the minimum value

satisfying k

√
log 2k̃ <

√
k̃.

We later provide a validation of this assumption by showing that it is satisfied when
the agent uses a classical MAB algorithm and the principal uses the proposed data-driven
incentive policy presented in the next section. Now, we unite the results in Propositions 4.1
– 4.3 and obtain our final identifiability statement.

Proposition 4.4 At time t ∈ [k̃, T ], suppose that πt,a ∼ U(C,C),∀a ∈ A. Then, for any
normalized reward vector s ∈ F , we have

P (ℓ (s, υt(πt),πt) ≥ o) ≥ α(β − o)2
(
1− k

√
log 2t√
t

)
(4.10)

for any constant o ∈ (0, β) and α > 0.

This result proves that our estimator (4.6) can identify and refute an incorrect estimate
s ∈ F with a strictly positive probability whose rate is proportional to the square of the
estimation error β. Therefore, as the game progresses and the agent learns its own reward
model, the principal is also capable of effectively learning s0 from the arms chosen by the
agent in response to the random incentives offered to explore the agent’s bandit model.

4.2.4 Finite-Sample Concentration Bound

We derive our statistical consistency result for the principal’s estimator (4.6) in several
intermediate steps. In these steps, we prove finite-sample concentration inequalities with
respect to the behavior of the loss function (4.5) evaluated at any incorrect reward vector
s ∈ F and the loss function evaluated at the true reward vector s0.

Proposition 4.5 Let η(k̃, t) be the number of time steps that the principal chooses each

incentive πt,a uniformly randomly from the compact set C within the time interval [k̃, t− 1],
i.e.,

η(k̃, t) =
∣∣∣Λ(k̃, t)∣∣∣ where Λ(k̃, t) := {τ : k̃ ≤ τ ≤ t− 1, πτ,a ∼ U(C,C), ∀a ∈ A} (4.11)
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For the given sequences of incentives Πt and chosen arms Υt(Πt), the total estimation loss
over these time steps is defined as

LΛ(k̃,t) (s,Υt(Πt),Πt) =
∑

τ∈Λ(k̃,t)

ℓ (s, υτ (πτ ),πτ ) (4.12)

and satisfies

P
(∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)

∣∣∣ ≥ ν
)

≤ 2 exp

(
− 2ν2

(η(k̃, t)− 1)n (6Rmax − 6Rmin + 2γ)2

)
(4.13)

for any constant ν > 0 and mean reward vector s ∈ S.

The proof of this result follows by using the bounded differences inequality (i.e., McDi-
armid’s inequality) (Boucheron et al. 2013) and the definition of our single-step loss function
ℓ (s, υτ (πτ ),πτ ).

Proposition 4.6 For the given sequences of incentives Πt and chosen arms Υt(Πt), the

concentration of the loss function LΛ(k̃,t) (s,Υt(Πt),Πt) in (4.12) within the the compact set
F = {s ∈ Sn : ∥s− s0∥∞ > β} is given as

P
(
sup
s∈F

∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)
∣∣∣ ≥ ν

)
≤ 2 exp

(
− 2ν2

(η(k̃, t)− 1)n(6Rmax − 6Rmin + 2γ)2
− log β + n log(Rmax −Rmin)

)
(4.14)

for any constant ν > 0.

This proposition is proven by using the result of Proposition 4.5 and bounding the cov-
ering number q for F by volume ratios. We now compute a lower bound for the minimum
possible expected loss over Λ(k̃, t) achieved within F , i.e., the set of feasible reward vectors
that are at least β away from s0.

Lemma 4.1 We define the minimizer of the loss (4.12) within the compact set F as sFt :=

arg infs∈F LΛ(k̃,t) (s,Υt(Πt),Πt). Then, given the sequences of incentives Πt and chosen arms
Υt(Πt), we have

ELΛ(k̃,t)
(
sFt ,Υt(Πt),Πt

)
≥

4α

(
1− k

√
log 2k̃/

√
k̃

)2

27
β3Eη(k̃, t) (4.15)

for any t ∈ [k̃, T ].
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We prove this result by using Assumption 4.2 and our identifiability result in Proposition
4.4. We continue by deriving an upper bound for the expected total loss up to time t
evaluated at the true mean reward vector s0.

Lemma 4.2 The expectation of the total loss of the principal’s estimator (4.6) computed for
the true mean reward vector s0 is bounded by

EL
(
s0,Υt(Πt),Πt

)
≤ 3k (3(Rmax −Rmin) + γ)

√
t log(2t) (4.16)

In the last lemma of this section, we present the concentration inequality for s0.

Lemma 4.3 For the given sequences of incentives Πt and chosen arms Υt(Πt), the concen-
tration of the total loss of the principal’s estimator evaluated at s0 is given as

P
(
L
(
s0,Υt(Πt),Πt

)
− EL

(
s0,Υt(Πt),Πt

)
≥ ν

)
≤ exp

(
− 2ν2

(t− 1) (3Rmax − 3Rmin + γ)2

)
(4.17)

for any ν > 0.

This lemma is proven by first observing that the loss for s0 at any time step becomes 0
when the agent selects the true maximizer arm, and thus, it suffices to only consider the time
steps where the agent’s algorithm makes an inaccurate decision. Then, the proof follows by
using Hoeffding’s Inequality (Boucheron et al. 2013).

The last step is to combine Proposition 4.6 and Lemmas 4.1-4.3 to obtain the final
finite-sample concentration bound for the principal’s estimator with respect to the total loss
function (4.5).

Theorem 4.1 We introduce the quantity

λt =
4α
(
1− k

√
log 2k̃/

√
k̃
)2

27
β3Eη(k̃, t)− 3k (3(Rmax −Rmin) + γ)

√
t log(2t). (4.18)

Given the sequences of incentives Πt and agent’s choices Υt(Πt), we show that

P
(
inf
s∈F

L (s,Υt(Πt),Πt) ≤ L
(
s0,Υt(Πt),Πt

))
≤ 2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log β + n log(2Rmax − 2Rmin)

)
(4.19)

for t ∈ [k̃, T ].

Alternatively, we can reinterpret Theorem 4.1 and obtain a concentration with respect
to the ℓ∞ distance between our estimates ŝt and the true reward vector s0.
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Corollary 4.1 (Finite-Sample Concentration Bound) The principal’s estimator in
(4.6) satisfies

P
(
∥s0 − ŝprt ∥∞ > β

)
≤ 2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log β + n log(2Rmax − 2Rmin)

)
(4.20)

for any β > 0 and t ∈ [k̃, T ] where λt is as defined in (4.18).

It is important to note that in this bound the learning rate of the principal directly
depends on η(k̃, t), which is the number of periods at which they offer random incentives

from an offset time k̃ and beyond to explore the arm space of the agent. More importantly,
the existence of this offset point shows that the rate that the principal explores the agent’s
bandit model must be greater than the agent’s exploration rate. Recall that we consider a
selfish agent who is only interested in learning their own reward model whereas the principal
needs to learn both their own rewards and the agent’s rewards to be able to design effective
incentives. Because the principal’s learning process is fed by the agent’s decisions over the
considered repeated game, the principal’s learning will be possible if and only if the agent’s
learning is successful. To restate, the principal has to wait for a sufficient time after which
the agent will start playing the right arm the most fraction of the time. That is why our
finite-sample concentration bound holds for the time periods t ≥ k̃ where k̃ is an increasing
function of the agent’s parameter k as given in Assumption 4.2. (We note that the offset

point of time k̃ can be computed numerically when k is known.) The implication of this
result is that for higher k values, it will take a longer time for the agent to start playing
correctly in a consistent way and for the principal’s estimator to converge to s0. We conclude
this section by emphasizing this discussion in the following remark.

Remark 4.1 The rationale behind the condition t ≥ k̃ in Corollary 4.1 relies on an essential
dynamic of the repeated adverse selection games we study in this chapter. It reflects the
fact that the finite-sample consistency of the principal’s estimator is attainable only after a
transient learning period of the agent’s algorithm.

This fundamental observation once again brings us back to the main theoretical challenge
we highlighted in the introduction of the chapter. The adverse impact of the agent’s learning
process on the principal’s inferences immensely accumulates the costs of the principal, as we
will show in our regret analysis in the next section.
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4.3 The Robust Data-Driven Incentive Policy

Our novel and consistent estimator allows the principal to design an adaptive and easy to
compute menu of incentives for the agent’s bandit arms. We propose a MAB framework for
the principal within which we unify the principal’s estimator and the data-driven incentives
we design in this section.

Before we present the details of the proposed learning framework, we recall that the
principal’s problem involves estimating their own reward expectations θ0 in addition to the
agent’s rewards. However, the former estimation is a more manageable problem than the
latter because the principal can fully observe their own reward outcomes µt,υt(πt) realized
through the arms chosen by the agent.

Assumption 4.3 For each agent arm a ∈ A, the principal observes independent reward
realizations µt,a, t ∈ T from a sub-Gaussian distribution Fpr

θ0a,a
for all θ0a ∈ Θ. Similarly,

the agent’s rewards ρt,a, t ∈ T are independent from each other and follow a sub-Gaussian
distribution for all r0a ∈ R.

This assumption about the reward distribution families of the principal and the agent is a
mild and common condition encountered in many MAB models. Under this assumption, we
define the quantity T (a, t) = |{τ : 1 ≤ τ ≤ t− 1, υτ (πτ ) = a}| as the number of time points
when the agent selects arm a up to time t. Then, we consider the sample mean of the
principal’s reward outcomes up to time t as the principal’s estimate for θ0a,∀a ∈ A.

θ̂t,a =
1

T (a, t)

t−1∑
τ=1

µτ,a1 (υτ (πτ ) = a) (4.21)

We note that θ̂t,a is an unbiased estimator and is the same as the maximum likelihood estima-
tor for many common exponential family distributions where the sufficient statistic is equal
to the random variable itself, including the Gaussian, Bernoulli, Poisson, and multinomial
distributions.

4.3.1 Principal’s ϵ-Greedy Policy

We next present a sequential learning framework that utilizes the principal’s estimators ŝprt
and θ̂t to compute an adaptive and efficient incentive policy. Keeping in mind practicality,
we develop an ϵ-greedy algorithm for which we provide pseudocode in Algorithm 3.

To initiate the principal’s and agent’s learning processes, we consider an initialization
period over the first n = |A| time periods throughout which the agent is induced to pick
each of the n arms once to observe a reward realization and compute a starting estimate
of the associated reward expectation. To achieve this, the principal offers the maximum
possible incentive (C) for the desired arm in each step that would be sufficient to make that
arm reward-maximizer for the agent by Assumption 4.1.
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At each time step t ∈ [n + 1, . . . , T ] after the initialization period, the principal first
updates their estimate for their own mean reward associated with the most recently chosen
arm θ0υt−1(πt−1)

. Then, the principal samples a Bernoulli random variable xpr
t with success

probability ϵprt which corresponds to the principal’s exploration probability. In accordance
with our observation highlighted in Remark 4.1 following our statistical analysis in Section
4.2.4, here we clarify that the principal’s rate of the exploration is designed to be greater
than the agent’s learning rate in accordance with Assumption 4.2.

If xpr
t = 1, then the principal performs an exploration step where they offer incentives

πt = (πt,a)a∈A that are uniformly randomly selected from the feasible range of incentives
C = [C,C]. Otherwise, for xpr

t = 0 the principal prefers a less-risky, greedy exploitation play
to maximize their expected net reward in that period. They update their estimate ŝprt for the

agent’s mean rewards by solving (4.6) and use it to compute the incentives c(θ̂t, ŝ
pr
t ) maxi-

mizing their estimated expected net reward at time t. Recall that the principal’s expected
net reward in a period is equal to their fixed expected reward for the chosen arm minus the
sum of incentives offered for each bandit arm. Therefore, our goal in an exploitation period
is to compute the minimum vector of incentives that will steer the agent’s choice into the
desired arm (that is estimated to yield the highest expected net reward to the principal)
in that period while inducing the agent’s incentive compatibility. Using the most recent
estimates θ̂t and ŝprt , for each arm j ∈ A, we compute the minimum amount of incentives
(c̃ja)a∈A that make j the maximizer arm for the agent and the corresponding expected net

reward Ṽ (j, ŝprt ; θ̂t) of the principal in case j is actually chosen by the agent in response to
these incentives. Further, to contend with the principal’s estimation error in ŝprt and the
unknown behavior of the learning agent, we add a buffer amount to the computed minimum
incentives and obtain

c̃jj =

(
max
a∈A

ŝprt,a

)
− ŝprt,j + 2βt (4.22)

c̃ja = 0, ∀a ∈ A, a ̸= j (4.23)

Ṽ (j, ŝprt ; θ̂t) = θ̂t,j −
∑
a∈A

c̃ja = θ̂t,j −
(
max
a∈A

ŝprt,a

)
+ ŝprt,j − 2βt (4.24)

where βt = B
√
log 2t
tw/3 with B = 3k(3(Rmax−Rmin)+γ)n 6√32n

1−k
√

log 2k̃/
√

k̃
. After computing these values for each

arm j ∈ A, the principal chooses the set of incentives corresponding to the arm j∗t that is

estimated to yield the highest Ṽ (j, ŝprt ; θ̂t) to the principal. To reiterate, the exploitation
incentives are purposefully designed to make the desired arm j∗t reward-maximizer for the
agent with high probability by leveraging the statistically consistent estimator proposed
in Section 4.2. Lastly, we clarify that the principal only observes the arm υt(πt) chosen
by the agent in response to the offered incentives and their own net reward realization
µt,υt(πt) −

∑
a∈A πt,a at the end of each period t. The total reward collected by the agent

ρt,υt(πt) + πt,υt(πt) remains as private knowledge in the considered hidden rewards setting.
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Remark 4.2 Computation of the exploitation incentives through lines 16–19 in Algorithm 3
includes arithmetic operations with a linear computational complexity O(n) in terms of the
dimension of the agent’s bandit model n = |A|.

Algorithm 3 Principal’s ϵ-Greedy Algorithm

1: Set: mpr ≥ 1 and w ∈ (0, 1/4)
2: for t ∈ [1, . . . , n] do
3: Set: πt = (πt,a)a∈A where πt,a = C for a = t and πt,a = 0 for all a ̸= t
4: Observe: υt(πt) = t and µt,υt(πt)

5: if t ≥ 2 then θ̂t,υt−1(πt−1) = µt−1,υt−1(πt−1)

6: for t ∈ [n+ 1, . . . , T ] do

7: Compute: θ̂t,υt−1(πt−1) ∈
1

T (υt−1(πt−1), t)

t−1∑
τ=1

µτ,υt−1(πt−1)1(υτ (πτ ) = υt−1(πt−1))

8: Set: ϵprt = min

{
1,

mpr

t1/2−w

}
9: Sample: xpr

t ∼ Bernoulli(ϵprt )
10: if xpr

t = 1 then
11: Sample: πt,a ∼ U

(
C,C

)
for all a ∈ A

12: Set: πt = (πt,a)a∈A
13: else

14: Compute: βt = B

√
log 2t

tw/3

15: Compute: ŝprt ∈ argmin
{
L (s,Υt(Πt),Πt)

∣∣s1 = 0, sa ∈ S ∀a ∈ A
}

16: for j ∈ A do

17: Compute: Ṽ (j, ŝprt ; θ̂t) = θ̂t,j −
(
max
a∈A

ŝprt,a

)
+ ŝprt,j − 2βt

18: Compute: j∗t = argmax
j∈A

Ṽ (j, ŝprt ; θ̂t)

19: Set: cj∗t (θ̂t, ŝ
pr
t ) =

(
max
a∈A

ŝprt,a

)
− ŝprt,j∗t + 2βt and ca(θ̂t, ŝ

pr
t ) = 0 for all a ̸= j∗t

20: Set: πt = (ca(θ̂t, ŝ
pr
t ))a∈A

21: Observe: υt(πt) and µt,υt(πt)

4.3.2 Principal’s Finite-Sample Regret

To show the efficiency and effectiveness of the designed incentive mechanism, we conduct a
rigorous regret analysis where regret is defined in terms of the expected net reward of the
principal accumulated over a finite time horizon.
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4.3.2.1 Oracle Incentive Policy

As a benchmark to the proposed incentive policy, we define an oracle incentive policy that
maximizes the principal’s expected net reward under full knowledge of all reward expec-
tations s0 and θ0. In other words, the oracle policy computes the exploitation incentives
by using the true mean reward values and assuming a perfect-knowledge agent, as used in
Chapter 3. Similar to the procedure described above, for each arm j ∈ A, we solve for the
minimum incentives (c̃ja)a∈A required to make j ∈ A maximizer of the agent’s total reward

and compute the corresponding expected net reward of the principal Ṽ (j, s0;θ0) as follows.

c̃jj =

(
max
a∈A

s0a

)
− s0j (4.25)

c̃ja = 0, ∀a ∈ A, a ̸= j (4.26)

Ṽ (j, s0;θ0) = θ0j −
∑
a∈A

c̃ja = θ0j −
(
max
a∈A

s0a

)
+ s0j (4.27)

Then, the oracle policy chooses the set of incentives corresponding to desired arm j∗,0 :=
argmaxj∈A Ṽ (j, s0;θ0). The computed oracle incentives are denoted by c(θ0, s0) and given
as

cj∗,0(θ
0, s0) =

(
max
a∈A

s0a

)
− s0j∗,0 + ς (4.28)

ca(θ
0, s0) = 0, ∀a ̸= j∗,0 (4.29)

where ς > 0 is an arbitrarily small constant that helps avoiding the occurrence of multi-
ple maximizer arms for the agent. Because the oracle policy fully knows the agent’s ex-
pected rewards and hence the true reward-maximizer arm, the main difference between
oracle incentives and the exploitation incentives computed by Algorithm 3 is the absence
of the buffer amount βt. Further, we observe that the desired arm j∗,0 of the oracle pol-
icy is equal to the agent’s true maximizer arm in response to the oracle incentives, i.e.,
j∗,0 = υ(c(θ0, s0)) = argmaxa∈A s0a + ca(θ

0, s0).

4.3.2.2 Regret Bound

At any time period t ∈ T , the expected net reward of the principal under the oracle incentive
policy is given as

V (c(θ0, s0);θ0) = θ0j∗,0 −max
a∈A

s0a + s0j∗,0 − ς (4.30)

and under the proposed incentive policy generated by Algorithm 3 is given as

Vt(πt;θ
0) = θ0υt(πt) −

∑
a∈A

πt,a. (4.31)
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Accordingly, we define the regret of the proposed ϵ-greedy incentive policy Πϵ,T = {πt}t∈T
with respect to the oracle incentive policy over a finite time horizon T as

Regret (Πϵ,T ) =
∑
t∈T

V (c(θ0, s0);θ0)− Vt(πt;θ
0). (4.32)

Before we present our upper bound for this regret notion, we first prove a useful theoretical
result showing a probability bound on the accuracy of the arm j∗t that is estimated by
Algorithm 3 to yield the maximum expected net reward to the principal at time t.

Proposition 4.7 The probability that the estimated best arm (j∗t ) for the principal in an
exploitation step of Algorithm 3 (see lines 16–19) is the same as the true best arm (j∗,0)
chosen by the oracle policy is bounded from above by

P
(
j∗t ̸= j∗,0

)
≤ n

t
+

n5/62n+1

3n+1k 6
√
32

1√
t log 2t

(4.33)

for t ∈ [k̃, T ] where k̃ is as introduced in Assumption 4.2.

This probability bound on the accuracy of our estimate for the principal’s desired arm
at each period has two main components corresponding to the estimation gap of ŝprt and

the error in θ̂t. Therefore, the proof follows by mainly using our finite-sample concentration
bound for ŝprt given in Corollary 4.1 and Hoeffding’s Inequality (Boucheron et al. 2013) for

the consistency of θ̂t.
Lastly, we combine this result with the results of our statistical analysis and prove a

rigorous regret bound for the proposed incentive design framework of the principal.

Theorem 4.2 (Finite-Sample Regret Bound) The finite-sample regret bound of a pol-
icy Πϵ,T computed by the Principal’s ϵ-Greedy Algorithm (3) is proven to be

Regret (Πϵ,T ) ≤
12B

3− w
T 1−w/3

√
log 2T + 2kΘmax

√
T log 2T + n2

(
C − C +Θmax

)
log T

+Θmaxk̃ +
2n+1

(
Θmax(2n11/6 + 1/ 6

√
n) + n5/6(C − C) (1 + 2n)

)
3n+1k 6

√
32

√
T

+mpr
(
n(C − C) + Θmax

)( 2

2w + 1
Tw+1/2 +

2w − 1

2w + 1

)
(4.34)

where Θmax is defined as the upper bound on θ0a’s.

Remark 4.3 The finite-sample regret bound proved for the proposed data-driven and adap-
tive incentive policy implies an asymptotic regret bound of order O

(
T 11/12+σ

√
log T

)
where

σ can be made arbitrarily close to 0.
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We emphasize that the principal’s regret also comprises the agent’s regret through the
uncertainty in the arms chosen over the course of the repeated hidden rewards game. Our
regret bound reflects the substantial complexity and adverse impact resulting from the two
parallel learning algorithms that are dynamically interacting with each other throughout the
considered time horizon. For this challenging setting, our generic and practically relevant
incentive mechanism is able to achieve a sublinear regret performance, that remain robust
without restricting the type of the learning algorithm used by the incentivized agent.

4.4 The Learning Agent’s Behavior

Although our goal in this chapter is to mainly address the estimation and incentive design
problems faced by the principal in the considered repeated hidden rewards game, this section
provides a further theoretical analysis of the agent’s learning behavior and a discussion on
the information rent gained by the self-interested agent.

4.4.1 Validation of Assumption 4.2

As discussed earlier and highlighted in Remark 4.1, convergence of the principal’s learning
policy is only attainable after convergence of the agent’s learning policy. Therefore, our
theoretical analysis for statistical consistency of the proposed estimator in Section 4.2 and
regret bound of the proposed incentive policy in Section 4.3 needed to assume a probability
bound on the learning behavior of the agent. We specified this bound in Assumption 4.2,
and here we show the mildness of this assumption by proving that it is satisfied by a naive
ϵ-greedy algorithm that could be used by the agent to make their decisions throughout the
sequential game.

We consider the ϵ-greedy algorithm presented in Algorithm 4. The first n = |A| time
steps constitute the initialization period where the agent selects each of their n arms to
obtain a random reward realization and have an initial estimate for their associated mean
reward. Because the agent can fully observe their own rewards, we consider the sample mean
of their random reward outcomes as their estimate ŝagt for the mean rewards s0. We note
that this corresponds to an unbiased estimator under Assumption 4.3.

After that period, at each time step t ∈ [n+1, . . . , T ], the agent first observes the menu of
incentives πt offered by the principal and updates their estimate for their own mean reward
associated with the most recently chosen arm ŝagt,υt−1(πt−1)

. Then, the algorithm samples a

Bernoulli random variable xag
t based on the agent’s exploration probability ϵagt . If xag

t = 1,
the agent explores their MAB model by randomly selecting an arm for the current time step.
Otherwise, the agent performs a greedy exploitation by picking the arm that maximizes
their estimated expected reward plus the offered incentive. At the end of each play, the
self-interested agent only observes the stochastic reward they collect from the chosen arm.
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Algorithm 4 Agent’s ϵ-Greedy Algorithm

1: Set: mag ≥ 1
2: for t ∈ [1, . . . , n] do
3: Observe: πt

4: Set: υt(πt) = t
5: Observe: ρt,υt(πt)

6: if t ≥ 2 then ŝagt,υt−1(πt−1)
= ρt−1,υt−1(πt−1)

7: for t ∈ [n+ 1, . . . , T ] do
8: Observe: πt

9: Compute: ŝagt,υt−1(πt−1)
∈ 1

T (υt−1(πt−1), t)

t−1∑
τ=1

ρτ,υt−1(πt−1)1(υτ (πτ ) = υt−1(πt−1))

10: Set: ϵagt = min

{
1,

mag

√
t

}
11: Sample: xag

t ∼ Bernoulli(ϵagt )
12: if xag

t = 1 then Sample: υt(πt) ∈ A
13: else Set: υt(πt) = argmaxa∈A ŝagt,a + πt,a

14: Observe: ρt,υt(πt)

We show that Algorithm 4 is consistent with Assumption 4.2 by first proving two useful
lemmas and then combining them in Proposition 4.8. For notational convenience, we let
T pr−xplore ∈ T and T pr−xploit ∈ T be the set of random time steps that the principal’s
algorithm (3) performs exploration (lines 11–12) and exploitation (lines 14–20), respectively.
Similarly, we define T ag−xplore, T ag−xploit ∈ T as the set of random time steps that the agent’s
algorithm (4) performs exploration and exploitation, respectively.

Lemma 4.4 Consider a time step t ∈ [k̃, T ] where the principal offers the exploitation in-
centives computed according to Algorithm 3 and the agent performs a greedy exploitation by
picking the reward-maximizer arm according to Algorithm 4. Then, the probability that the
agent does not select the true reward-maximizer arm at time t is bounded by

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xploit
)

≤
2n3

(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1

+ 8n2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log

βt

2
+ n log(2Rmax − 2Rmin)

)
(4.35)

where λt is as defined in (4.18) and βt is as specified in (14).
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Lemma 4.5 Consider a time step t ∈ T where the principal offers random exploration
incentives according to Algorithm 3 and the agent performs a greedy exploitation by picking
the reward-maximizer arm according to Algorithm 4. Then, the probability that the agent
does not select the true reward-maximizer arm at time t is bounded by

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xplore

)
≤ 4n2

√
n
√
log 2t√

mag 4
√
t

+
2n2(exp(2mag) + 1)

t− 1
(4.36)

In our analysis for the agent’s learning process, we need to take into account the exter-
nality imposed by the principal’s incentives in each period which requires considering the
principal’s exploration/exploitation plays separately. Lemmas 4.4 and 4.5 correspond to our
results for each of these cases, and their detailed proofs are provided in Appendix C.1.3.
Next, we combine these intermediate results and obtain our final proposition.

Proposition 4.8 The probability that the agent’s algorithm (4) does not select the true

reward-maximizer arm at time t ∈ [k̃, T ] satisfies

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

)
= O

(√
log 2t√
t

)
(4.37)

Proposition 4.8 is proven by using the mathematical induction technique. Our theoretical
analysis in this section shows that the probability bound associated with the inaccuracy of
the arms chosen by the agent directly depends on: i) exploration rates of the agent and the
principal, ii) the agent’s estimation gap between ŝagt and s0, and iii) the principal’s estimation
gap between ŝprt and s0. The complete proof is provided in Appendix C.1.3.

Remark 4.4 Proposition 4.8 demonstrates the validity and feasibility of Assumption 4.2 by
establishing its satisfaction with a classical MAB algorithm.

4.4.2 Agent’s Information Rent

As in every adverse selection model, there is an unavoidable information rent that the agent
extracts from the principal due to the information asymmetry inherent in the considered
hidden rewards setting. Our data-driven incentive design framework aims to minimize the
extra amount principal the pays to the agent on top of this minimal amount of information
rent by inducing the agent’s incentive compatibility. We implicitly ensure this when we
optimize the principal’s exploitation incentives (16)–(19) which are designed to drive the
agent pick the arm that the principal wants them to pick. However, our analysis assumes
that the incentivized agent acts truthfully in the sense that their choices are made in a
consistent way with their estimated expected reward vector ŝagt – which may not be the case
in practice.
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From the standpoint of the self-interested agent, even though the agent is able to consis-
tently learn their true rewards throughout the sequential game, we observe that they could
just pretend that their learned rewards are different and make their choices in accordance
with these “pretended” rewards to extract a higher information rent from the principal and
maximize their total rewards. In that regard, as also discussed in Section 3.4, the agent’s
problem can be formalized as an optimization model that maximizes their information rent.
The optimum objective value can be achieved when the agent is knowledgeable about the
principal’s rewards as well, enabling them to misinform the principal and demand extra pay-
ment. It is essential to notice that there is no way for the principal to prohibit the agent
from this misbehavior in the hidden rewards settings studied in the previous and current
chapters, whereas it could be possible in other adverse selection models where the principal
has access to more information about the agent’s reward model. Analyzing such models
remains an interesting future research direction.

Our framework considers a self-interested agent with particular sophistication who is
not attempting to learn the principal’s rewards. Therefore, our solution can be regarded as
yielding the worst-case result for an agent with higher sophistication. On the other hand,
in most of the real-life applications that we consider, the incentivized agents do not have
enough elaboration on learning the principal’s model. Further, as their knowledge level
decreases, they can only get smaller amounts of information rent from the principal. In
any case, our approach is designed to minimize the principal’s payments and maximize their
cumulative expected net reward subject to any amount of information rent that the agent
takes regardless of their level of complexity.

4.5 Numerical Experiments

This section presents the numerical results supporting our theoretical bounds on the finite-
sample concentration of the proposed estimator and on the convergence of the proposed
incentive policy. We conduct simulation experiments on an instance of the contract design
problem described in Section 4.1.1.1 for grid-scale distributed storage and aggregation of
renewable energy.

Consider an independent aggregator company that operates distributed rechargeable bat-
tery storage systems to offer an affordable and environmentally sustainable alternative to
the utility grid, and a utility company that acknowledges that it can reduce its costs and
carbon footprint, as well as improve the reliability of its service, by contracting the extra
supply capacity available in the aggregator’s battery systems during peak demand or extreme
weather emergency periods. These contracts are done by participation of the aggregator in
the day-ahead energy market that allows the aggregator generate income by sharing their
battery capacities with the utility. In this context, the utility needs to consistently esti-
mate the aggregator’s profits to design smart and efficient payments that will expand the
aggregator’s participation in the market.
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We model this problem by leveraging the repeated adverse selection model given in
Section 4.2.1. The day-ahead market operates on an hourly basis where the utility company
(i.e., principal) offers a price for energy delivered (dollar/MW) by the aggregator (i.e., agent)
for each hour of the next day. Consistent with the related literature (e.g. Bessa et al.
2011, Zhao et al. 2015, Rahimiyan and Baringo 2015), the aggregator is assumed to be
a price-taker that only decides the shared energy quantities. Their decisions are assumed
to have no effect on the marginal electricity price, given that most electricity markets are
still dominated by large conventional generators. Each time step t in our sequential model
corresponds to an hourly session over the entire period T of contract between the aggregator
and the utility. The aggregator’s problem is formalized as a MAB model where each arm
a ∈ A corresponds to a different range of power capacity (MW) they provide for the use
of the utility. The supply capacity is bounded by the maximum total amount of energy
that can be consumed by the aggregator’s entire battery systems. For example, if an electric
vehicle is consuming 2 kW in an hour and the aggregator owns one thousand electric vehicles
connected in residential charging points of the clients who allow the aggregator to control
their charging processes, then the aggregator can provide a capacity of up to 2 MW per hour
(Bessa et al. 2011). In this scenario, we can divide this feasible interval of shared capacity
[0, 2] into a discrete number of subintervals to define the aggregator’s arms, for example
A = {[0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2]}. In each session, the aggregator chooses an arm υt(πt)
in response to the payment scheme πt offered by the utility company. This choice, along with
several sources of uncertainty such as variations in renewable energy generation, observed
electricity demand in the community, and market prices, is uncontrollable by the utility.
These factors collectively determine the realized profits of the aggregator (ρt,υt(πt)) and the
utility (µt,υt(πt)) in each session.

We run our experiments for multiple combinations of the dimension of the aggregator’s
MAB model n ∈ {5, 10} and the length of the contract period T ∈ {103, 5 · 103, 10 · 103, 20 ·
103, 40 · 103} in hours. Each setting is replicated five times, and the average and standard
deviation of our performance metrics are reported across these replicates. The realizations
of the profits of the aggregator and those of the utility company are assumed to follow
Gaussian distributions, N (r0, 10) and N (θ0, 10), respectively, where the values used for the
expectations r0 and θ0 are given in Table B.1 in Appendix C.2. Further, we take the compact
set to which the aggregator’s expected profits belong as R = [−20, 50] and the feasible range
of the utility’s payments as C = [−20, 60] (which makes γ = 10 as introduced in Assumption
4.1). The input parameters for the utility’s algorithm (3) are chosen as mpr = 5 and w = 1/5
in all settings, implying that the utility explores with probability one during the first 214−n
sessions after the initialization period (lines 2-5). To simulate the aggregator’s choices, we
use Algorithm (4) with parameter mag = 10, which implies that the aggregator explores with
probability one during the first 100− n sessions after the initialization period (lines 2-6).

We consider three main metrics to demonstrate the performance of our approach in the
considered experimental setting: 1) concentration of our estimator towards the true expected
profit vector s0, 2) convergence of our payment policy to the oracle payment policy introduced
in Section 4.3.2.1, and 3) cumulative regret of the proposed united data-driven framework.
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(a) ∥s0 − ŝprT ∥∞ for n = 5 (b) ∥s0 − ŝprT ∥∞ for n = 10

Figure 4.1: Estimator concentration measured in terms of the ℓ∞ distance between the true
mean profit vector s0 and the final mean profit vector ŝprT obtained by the proposed estimator.

First, we provide a direct measure of the accuracy of the proposed estimator (4.6) for
the aggregator’s mean profits to support our finite-sample concentration results proven in
Section 4.2. In Figure 4.1, we present the ℓ∞-distance between the final estimated mean
profit vector ŝprT and the true mean profit vector s0. These results display the consistency
of our novel estimator and the achieved accuracy, even when the size of the MAB model is
doubled.

Second, we measure the convergence of the payment policy generated by Algorithm 3 to
the oracle payment policy. A significant challenge in the utility’s contract design problem
is that the inherent learning problem gets harder as the number of arms (i.e., the supply
capacity) of the aggregator gets larger. That is because they need to compute a payment
amount for each possible arm (not only for the desired one) as accurately as possible in order
to steer the aggregator’s participation in the sequential day-ahead sessions. Because every
alternative arm matters the same, we measure the distance between the proposed payment
vector and the oracle payment vector in terms of the ℓ1 norm metric which weights all the
entries of the vectors equally. As seen in Figure 4.2, the proposed payment mechanism is
able to consistently converge to the oracle mechanism, and it achieves a better convergence
as the length of the contract horizon gets longer. Further, a comparison of Figures 4.2a and
4.2b reveals the highlighted challenge regarding the relation between the difficulty of the
contract design problem and the dimension of the considered MAB model.

Last, we present the overall performance of our adaptive incentive framework where we
unite our consistent estimator with the proposed policy. Figure 4.3 shows the cumulative
regret accrued by the utility company for different n and T values. As expected, our approach
achieves a sublinear regret that matches with the proven asymptotic order in Remark 4.3.
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(a) ∥πT − c(θ0, s0)∥1 for n = 5 (b) ∥πT − c(θ0, s0)∥1 for n = 10

Figure 4.2: Policy convergence measured in terms of the ℓ1 distance between the oracle
payments c(θ0, s0) and the payments πT reached by Algorithm 3 at the end of the contract
horizon.

(
For any two vectors x,y ∈ RM , the ℓ1 distance is defined by ∥x−y∥1 =

∑M
m=1 |xm−

ym|.
)

(a) Regret for n = 5 (b) Regret for n = 10

Figure 4.3: The average cumulative regret of the policies generated by Algorithm 3.

4.6 Conclusions and Future Directions

Motivated by a variety of unexplored incentive design applications, the analyses in this chap-
ter aim to bridge the well-established principal-agent theory with recent advances in online
sequential learning theory. We model a generic and practically relevant repeated adverse
selection game within a MAB framework where a principal incentivizes a self-interested
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learning agent by only watching the agent’s decisions in response to the offered incentives
over a finite time horizon. To effectively lead the agent and ensure incentive compatibility,
the principal must consistently adapt their incentives by learning the agent’s true reward
expectations (which are also unknown to the agent), without observing the agent’s random
reward realizations in each play of the game.

Because we consider an imperfect-knowledge agent, we engage with two algorithms
trained in parallel by the principal and the agent through a two-way dynamic interaction
over the course of the game. Within this complex scenario, we address both the estima-
tion/learning and the sequential incentive design problems that the principal faces. We
primarily focus on their exploration/exploitation trade-off and provide rigorous convergence
guarantees that are independent of the type of the agent’s algorithm.We also provide insights
from the perspective of the selfish agent, who seeks to maximize their rewards by extracting
higher information rents from the principal. Lastly, we reinforce our theoretical findings with
numerical experiments, justifying the effectiveness and efficiency of the proposed framework
in managing aggregated renewable energy supply for smart and reliable community grids.

The hidden agent rewards setting remains mostly unexplored in the literature due to the
analytical intricacy of jointly studying the learning and incentive design problems. However,
we believe our contributions in this dissertation can channel promising future work for data-
driven contract design within the sustainable OM literature. One interesting direction would
be to consider a multi-agent setting where a principal gets to collaborate with multiple
reward-maximizer selfish agents. We suppose that our model and integrated framework is
applicable to scenarios where the agents collectively work as a team and the principal provides
team incentives based on the observed team-level decisions. On the other hand, studying a
scenario where the incentives need to be designed separately for each individual selfish-agent
(who might be also communicating with other agents) would require a completely different
approach and theoretical analysis. Furthermore, the repeated adverse selection models that
we introduce in Chapters 3 and 4 are designed purposefully to be as generic and simple
as possible to improve practical relevance for various domains. Our models can be further
extended and specialized to accommodate features of a particular incentive application that
may attract the OM practitioners.
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Chapter 5

Concluding Remarks and Foresight

It is evident that a seismic and unprecedented paradigm shift has emerged in the management
of operations within the contemporary socio-technical systems. This shift is propelled by the
dual forces of an increasing dependence on extensive data flow and the challenge of surviving
unpredictable disruptions stemming from the climate crisis. Motivated by contributing to
this breakthrough, this dissertation introduces novel approaches that leverage flowing data
to derive sustainable and collaborative operational solutions, with a focus on mitigating
externalities associated with incomplete information about the system model and stakeholder
strategies.

An essential aspect of this mitigation is to strike a balance in the trade-off of allocating
resources between exploring potential better alternatives for long-term profits and exploiting
current knowledge to maximize short-term gains. Each chapter of this dissertation examines
this exploration/exploitation trade-off under distinct externality settings with model uncer-
tainty and information asymmetry, which have not been thoroughly explored in the literature
due to their analytical complexities. The major portion is devoted to designing data-driven
and adaptive incentive mechanisms that assist a strategic learner consistently guide another
self-interested agent to extract latent information about their true rewards while proactively
mitigating their adversarial actions. The developed frameworks unify tools from classical and
advanced methodologies to analyze the trade-offs faced by both parties concurrently over a
finite-horizon game. This generic context caters to different OM applications, ranging from
renewable energy aggregation contracts for utility grids to forest conservation incentives in
PES programs.

The methodological contributions of this dissertation prove a rigorous theoretical basis
for bridging information gaps in data-driven and sustainable decision-making across diverse
OM domains. This theory serves as the essence for future research, which could be developed
to enhance its applicability and confront various business constraints. To further advance
this prosperous research landscape, one can address an additional layer of information imbal-
ance through environmental data monitoring mechanisms. In many sustainability practices,
asymmetry arises not only from the unknown true rewards of incentivized parties but also
from a significant lacuna in observing their actual actions. In this regard, an open research
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question emerges: How can modern monitoring technologies and novel forms of environmen-
tal data be incorporated to inform adaptive incentive structures? For instance, the incentive
policies employed in forest conservation projects could be reinforced through the utilization
of high-resolution canopy height maps generated by artificial intelligence and remote sens-
ing technologies for the incentivized land areas (e.g. Lang et al. 2023). Similarly, emission
transparency contracts between retailers and suppliers should be shaped by data gathered
from continuous/predictive emissions monitoring systems (CEMS/PEMS) and other perti-
nent technologies. Towards this direction, aligning these new environmental data types with
the practical implications of this dissertation holds substantial potential to yield intelligent
incentive frameworks. We foresee that these data-driven advanced frameworks will promote
responsive, profitable, and sustainable OM practices in our ever-changing and disruptive
world.
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Appendix A

Appendix for Chapter 2

A.1 Proofs of Theoretical Results

A.1.1 Results in Section 2.3

Proof of Theorem 2.1. We first prove the robust constraint satisfaction property.
Since {ut|t, . . . , ut+N |t} are feasible for VN(xt, θ, t), then we have xt+1|t = Axt + But|t ∈
Ω⊖W by (2.6). By relating the true dynamics to the nominal model, the true next state is
xt+1 = xt+1|t + wt for some wt ∈ W . This means xt+1 ∈ (Ω⊖W)⊕W ⊆ Ω ⊆ X where the
last set inclusion follows from the constraint satisfaction property in the definition of Ω.

We next prove the robust feasibility property. By the definition (2.6) of VN(xt+1, θ
′, t+1),

we have that x̄t+1|t+1 = xt+1. However, we just showed that xt+1 ∈ Ω. Hence x̄t+1|t+1 ∈ Ω.
Now set ut+1|t+1 = Kxt+1, and note that the constraint satisfaction property of Ω means
ut+1|t+1 ∈ U . Since xt+2|t+1 = Axt+1|t+1 +But+1|t+1 = (A+BK)xt+1|t+1, we have

xt+2|t+1 ∈ (A+BK)Ω ⊆ ((A+BK)Ω⊕W)⊖W ⊆ Ω⊖W (A.1)

where the last set inclusion follows by the disturbance invariance property of Ω. So x̄t+2|t+1 ∈
Ω ⊖W ⊆ Ω ⊆ X by the constraint satisfaction property of Ω. We can sequentially repeat
this argument with ut+k+1|t+1 = Kxt+k+1|t+1 to show this choice results in ut+k+1|t+1 ∈ U and
xt+k+1|t+1 ∈ X for k ∈ [N−1]. Thus {ut+1|t+1, . . . , ut+N |t+1} are feasible for VN(xt+1, θ

′, t+1).
□

A.1.2 Results in Section 2.5

Proof of Theorem 2.2. Omitted. Refer to Section 3 of Mintz et al. (2017). □

A.1.3 Results in Section 2.6

Proof of Lemma 2.1. By Assumption 2.4, f t+k(xt, ut|t, . . . , ut+k|t, θ̂) is Lf,u-Lipschitz

continuous and h(x̃t+k|t, ut+k|t, θ̂t) is Lh,u-Lipschitz continuous with respect to ut+k|t ∈ U .
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Then, by preservation of Lipschitz continuity across functional compositions and addition,
we have the desired condition. □

Proof of Proposition 2.1. Let s(τ) = U∗
N,t(θ̂t)+ τ · (U∗

N,t(θ)−U∗
N,t(θ̂t)). This implies

s(0) = U∗
N,t(θ̂t) and s(1) = U∗

N,t(θ). Then,

[JN(xt, U
∗
N,t(θ̂t), θ̂t, t)− JN(xt, U

∗
N,t(θ̂t), θ, t)]− [JN(xt, U

∗
N,t(θ), θ̂t, t)− JN(xt, U

∗
N,t(θ), θ, t)]

=

∫ 1

0

∇UJ(xt, s(τ), θ̂t, t)
T (U∗

N,t(θ)− U∗
N,t(θ̂t))dτ

−
∫ 1

0

∇UJ(xt, s(τ), θ, t)
T (U∗

N,t(θ)− U∗
N,t(θ̂t))dτ (A.2)

where the last equality follows by the Fundamental Theorem of Calculus for Line Integrals.
Then, we continue as

=

∣∣∣∣∫ 1

0

[∇UJ(xt, s(τ), θ̂t, t)−∇UJ(xt, s(τ), θ, t)]
T (U∗

N,t(θ)− U∗
N,t(θ̂t))dτ

∣∣∣∣ (A.3)

≤
∫ 1

0

∥∥∥∇UJ(xt, s(τ), θ̂t, t)−∇UJ(xt, s(τ), θ, t)
∥∥∥
∞

∥∥∥U∗
N,t(θ)− U∗

N,t(θ̂t)
∥∥∥
1
dτ (A.4)

≤ LJ

∥∥∥θ̂t − θ
∥∥∥ · ∥∥∥U∗

N,t(θ)− U∗
N,t(θ̂t)

∥∥∥
1

(A.5)

≤
√
NLJ

∥∥∥θ̂t − θ
∥∥∥ · ∥∥∥U∗

N,t(θ)− U∗
N,t(θ̂t)

∥∥∥
2

(A.6)

where (A.4) follows by Hölder’s inequality, and (A.5) follows by the assumed property in
Proposition 2.1. This gives us the desired result in Assumption 2.6 by setting κ =

√
NLJ .

□

Proof of Lemma 2.2. Since (2.13) is the average of compositions of two polynomials
f and h, it is polynomial. Then, ∇uJN(x, U, θ, t) is polynomial on the bounded domain
X × UN+1 ×Θ.

Hence, by Corollary 8.2 in Estep (2010), ∇uJN(x, U, θ, t) is locally Lipschitz with respect
to θ ∈ Θ for any x ∈ X , U ∈ UN+1, t ∈ T . □

Proof of Theorem 2.3. For notational convenience, let

E[Mt] = h(x′
t,Λ

O,N(F ′
t), θ0)− h(x′

t,Λ
ϵ,N(F ′

t), θ0) (A.7)

Let T xit ∈ T and T xre ∈ T be the set of random time points that Algorithm (1) performs
exploitation and exploration, respectively. Noticing that the cardinalities #T xit, #T xre are
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random variables, we have

T∑
t=0

E[Mt] =
∑

t∈T xit h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0)

+
∑

t∈T xre

h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, ut|t, θ0) (A.8)

We note that E[Mt] is a bounded value since X ,Θ,U are all compact sets and h(x, u, θ) is a
bounded continuous function on this domain. Then, assuming E[Mt] ≤ M, we obtain[

T∑
t=0

E[Mt]
∣∣∣T xit

]
≤ ME[#T xre] +

∑
t∈T xit

h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0) (A.9)

We can rewrite each term inside the summation above as

h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0)

= E[Mt|DΠt(θ0||θ̂t) ≤ δθ̂t , xt, θ0, θ̂t]P (DΠt(θ0||θ̂t) ≤ δθ̂t)

+ E[Mt|DΠt(θ0||θ̂t) ≥ δθ̂t , xt, θ0, θ̂t]P (DΠt(θ0||θ̂t) ≥ δθ̂t)

= (13, a) + (13, b) (A.10)

Let ε(δθ̂t) = max{∥θ0 − θ̂t∥ : DΠt(θ0||θ̂t) ≤ δθ̂t},∀t ∈ T xit.∑
t∈T xit

(13, a) =
∑
t∈T xit

h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0) (A.11)

≤
∑
t∈T xit

Lh,u

∥∥∥u∗
t|t(θ0)− u∗

t|t(θ̂t)
∥∥∥ (A.12)

≤
∑
t∈T xit

Lh,u

∥∥∥U∗
N |t(θ0)− U∗

N |t(θ̂t)
∥∥∥ (A.13)

≤ Lh,uκ

cu

∑
t∈T xit

∥∥∥θ0 − θ̂t

∥∥∥ (A.14)

≤ Lh,uκ

cu

∑
t∈T xit

ε(δθ̂t) (A.15)
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where (A.12) follows by Assumption 2.4 and (A.14) follows by Lemma 2.3. Now, we have
ε(δθ̂t) = Cδθ̂t for a constant C > 0 by Assumption 2.5 and let η(t) = |{s ∈ T xit : s ≤ t}|.
Then, for δθ̂t =

√
4L2

ℓ,rσ
2 log η(t)/

√
η(t), we obtain

≤
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
#T xit log#T xit (A.16)

≤
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
T log T (A.17)

To bound the second term in (A.10), recall E[Mt] ≤ M. Then,∑
t∈T xit

(13, b) ≤ M
∑
t∈T xit

exp

(−(δθ̂t
√
t− 1− cf (dx, dθ))

2

2L2
ℓ,rσ

2

)
(A.18)

≤ M
∑
t∈T xit

exp

(−δ2
θ̂t
(t− 1)/2 + c2f (dx, dθ)

2L2
ℓ,rσ

2

)
(A.19)

≤ M exp

(
c2f (dx, dθ)

2L2
ℓ,rσ

2

)( 9∑
t=1

exp(−(log t)2
)
+

∑
t∈T xit,t≥10

exp(− log t)) (A.20)

≤ M exp

(
c2f (dx, dθ)

2L2
ℓ,rσ

2

)
(C + log T ) (A.21)

where (A.18) follows by Theorem 2.2 and C can be approximated as 2.2232. Lastly, we
bound the first term in (A.9): ME[#T xre] = M

∑T
t=0min{1, c

t
} ≤ M(c +

∑T
t=c+1

c
t
) ≤

Mc(1− log(c+ 1) + log T ). Substituting these into (A.9):[ T∑
t=0

E[Mt]
∣∣∣T xit

]
≤ M exp

(
c2f (dx, dθ)

2L2
ℓ,rσ

2

)
(C + log T )

+Mc(1− log(c+ 1) + log T ) +
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
T log T

and taking the expectation gives us the desired result. □

Proof of Theorem 2.4. By Assumption 2.4 and the upper bound in (2.17),

RN,T =
T∑
t=0

h(xt,Λ
O,N
t (Ft), θ0)− h(x′

t,Λ
O,N
t (F ′

t), θ0)

+
T∑
t=0

h(x′
t,Λ

O,N
t (F ′

t), θ0)− h(x′
t,Λ

ϵ,N
t (F ′

t), θ0)
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≤ Lh,x

T∑
t=0

∥xt − x′
t∥ + (2.17) (A.22)

Algorithm (1) performs exploration at random times according to a non-stationary stochastic
process over T . We divide T into “inter-explore intervals” composed of an exploration and
the subsequent exploitations until the next one is reached. Let Ik = [Ik, Ik] be the kth sub-
interval such that I−1 = [0, 2⌈

√
T ⌉], I0 = [2⌈

√
T ⌉ + 1, txre1 − 1], Ik = [txrek , txrek+1 − 1] for k ∈

[1, K−1] where txrek is the kth exploration step after time 2⌈
√
T ⌉, and IK = [txreK , T ] whereK =∑T

t=2⌈
√
T ⌉+1 st and st ∼ Bernoulli

(
min

{
1, c/t

})
. Then,

∑T
t=0 ∥xt − x′

t∥ =
∑K

k=−1

∑
t∈Ik ∥xt −

x′
t∥. The key idea is that regret over each Ik, k ∈ [0, K] is bounded above by the regret over

Sk = [Sk, Sk] = [Ik, T ] that includes a single exploration at time Ik followed by exploitation
steps thereafter up to T .

Suppose Algorithm 1 uses ΛO,N
t (Ft) at all greedy exploitation steps of Sk, k ∈ [0, K].

Since xt ∈ X for t ∈ T xre and X is compact, ∥xt − xeq∥ ≤ diam(X ), t ∈ T xre. Then, by
Assumption 2.7,

∑
t∈Ik

∥xt − xeq∥ ≤
∑
t∈Sk

∥xt − xeq∥ = ∥xtxrek
− xeq∥+

Sk∑
t=Sk+1

∥xt − xeq∥ (A.23)

≤ diam(X ) +

Sk∑
t=Sk+1

αt−Skdiam(X ) ≤ diam(X )

(1− α)
(A.24)

Next, suppose instead ΛE,N
t (F ′

t) is used at all greedy exploitation steps of Sk, k ∈ [0, K].
Observe the convergence of ΛE,N(F ′

t):∥∥∥Ax′
t +BΛE,N

t (F ′
t) + g(x′

t,Λ
E,N
t (F ′

t), θ0)− xeq

∥∥∥
≤
∥∥∥Ax′

t +BΛO,N
t (F ′

t) + g(x′
t,Λ

O,N
t (F ′

t), θ
o)− xeq

∥∥∥
+
∥∥∥BΛE,N

t (F ′
t) + g(x′

t,Λ
E,N
t (F ′

t), θ0)−BΛO,N
t (F ′

t)− g(x′
t,Λ

O,N
t (F ′

t), θ0)
∥∥∥ (A.25)

≤ α∥x′
t − xeq∥+

∥∥∥BΛE,N
t (F ′

t) + g(x′
t,Λ

E,N
t (F ′

t), θ0)−BΛO,N
t (F ′

t)− g(x′
t,Λ

O,N
t (F ′

t), θ0)
∥∥∥

(A.26)

where (A.25) follows by the triangle inequality and (A.26) follows by Assumption 2.7. Recall

that ∥ΛE,N
t (F ′

t) − ΛO,N
t (F ′

t)∥ ≤ κC
√

4L2
ℓ,rσ

2

cu

log η(t)√
η(t)

as followed from (A.12) to (A.16). By

Assumption 2.4, we have (A.26) ≤ α∥x′
t − xeq∥ + C log η(t)√

η(t)
, where C =

(∥B∥+Lf,u)κC
√

4L2
ℓ,rσ

2

cu
.

Then, for k ∈ [0, K],∑
t∈Ik

∥x′
t − xeq∥ ≤

∑
t∈Sk

∥x′
t − xeq∥ (A.27)
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= ∥x′
txrek

− xeq∥+
Sk∑

t=Sk+1

∥x′
t − xeq∥ (A.28)

≤ diam(X ) +
T∑

t=txrek +1

[
αt−txrek diam(X ) + C

t−1∑
i=txrek +1

αt−1−i log η(i)√
η(i)

]
(A.29)

≤ 2− α

1− α
diam(X ) + C

T∑
t=txrek +1

t−1∑
i=txrek +1

αt−1−i log η(i)√
η(i)

(A.30)

Recall η(i) = i−
∑i

j=1 sj where sj ∼ Bernoulli(min{1, c/j}) and E
∑i

j=1 sj ≤ c +
∫ i

j=c
c
j
dj =

c log ei
c
. By conditioning on the event Ei = {

∑i
j=1 sj ≤ 3E

∑i
j=1 sj}, we get η(i) ≥ i −

3E
∑i

j=1 sj ≥ i−3c log ei
c
≥ i

c2
where the last inequality holds for all i ≥ 2⌈

√
T ⌉+1 ≥ 6c2+1.

Then, for α ∈ [0, 2/3],

≤ 2− α

1− α
diam(X ) + Cc

T∑
t=txrek +1

t−1∑
i=txrek +1

αt−i−1 log i√
i

(A.31)

≤ 2− α

1− α
diam(X ) +

Cc

α

T∑
t=txrek +1

t−1∑
i=txrek +1

log i

(t− i)
√
i

(A.32)

≤ 2− α

1− α
diam(X ) +

2Cc

α

T∑
t=txrek +1

(log t)2√
t

(A.33)

≤ 2− α

1− α
diam(X ) +

2Cc

α

√
T (log T )2 (A.34)

Note E
∑i

j=1 sj ≥ c log e(i+1)
c+1

and Var(
∑i

j=1 sj) =
∑i

j=1
c
j
· j−c

j
≤ c log i + c2

i
. Then, by

Bernstein’s inequality (Corollary 2.11 in Boucheron et al. (2013)), it follows that (A.34)
holds with probability

P
( T⋂

i=txrek +1

Ei
)

≥ 1−
T∑

i=txrek +1

P (E i) (A.35)

≥ 1−
T∑

i=txrek +1

exp

(
−

4c2
(
log e(i+1)

c+1

)2
2c log i+ 2c2

i
+ 4c2

3
log e(i+1)

c+1

)
(A.36)

≥ 1− (T − 2
√
T ) exp

(
−

4c2
(
log e(2

√
T+2

c+1

)2
2c log(2

√
T + 1) + 2c2

2
√
T+1

+ 4c2

3
log e(2

√
T+2)

c+1

)
(A.37)



APPENDIX A. APPENDIX FOR CHAPTER 2 90

The above bounds for ΛO,N(Ft) and (A.34) for Λϵ,N(F ′
t) allow us to bound the deviation of

the system trajectory under the learning policy from the one under the oracle policy over
I−1 as

∑
t∈I−1

∥xt − x′
t∥ ≤ 2

√
Tdiam(X ) and over Ik, k ≥ 0 as

∑
t∈Ik

∥xt − x′
t∥ ≤

∑
t∈Sk

∥xt − xeq∥+
∑
t∈Sk

∥x′
t − xeq∥ ≤ 3− α

1− α
diam(X ) +

2Cc

α

√
T (log T )2

(A.38)

Combining this with (A.22), we obtain

RN,T ≤ 2Lh,x

√
Tdiam(X ) + Lh,xK

(3− α

1− α
diam(X ) +

2C
√
c

α

√
T (log T )2

)
+ (2.17) (A.39)

and it remains to bound K. Note EK ≥ c log T+1
2
√
T+1

, Var(K) ≤ 2 log T , and Bernstein’s

inequality yields P(K ≤ 2EK) ≥ 1 − exp(−
c2(log T

2
√
T+1

)2

(4+ 2
3
c2) log T

). Bounding K by 2EK ≤ 2c log T

gives the desired result. □
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Appendix B

Appendix for Chapter 3

B.1 Proofs of Theoretical Results

B.1.1 Results in Section 3.2

Proof of Proposition 3.1. We first note that ℓ (s, it(πt),πt) = +∞ is obtained when
the action selected by the agent (the maximizer of s0 + πt) is not the same as the maxi-
mizer of s + πt. Since now we consider the case that K0 ∩ K = ∅, we already observe
different indices for the largest entries of the true normalized rewards s0 and the considered
normalized rewards s before adding the incentives. Hence, we can observe the desired event
(ℓ (s, it(πt),πt) = +∞) by simply choosing the incentive amounts in such a way that the
new maximizers after adding the incentives will still belong to the sets K and K0. Suppose
we have

πt,a < Rmin + γ + β − d for all a ∈ A \ {κ, κ0} (B.1)

πt,a ≥ Rmin + γ + β − d for a ∈ {κ, κ0} (B.2)

Note that (B.1) and (B.2) are valid conditions according to Assumption 3.1. Now, recall that
a vector s ∈ B(sj, d) satisfies ∥s0−s∥∞ > β by definition. We define s̃j := arg infs∈B(sj ,d) ∥s0−
s∥∞ as the closest vector (with respect to the ℓ∞-norm) in ball B(sj, d) to the true reward
vector s0. Then, we have ∥s0 − s̃j∥∞ ≥ β − d by construction, and it follows that

P (ℓ (s, it(πt),πt) = +∞)

≥ P

( ⋃
x∈A,y∈A,y ̸=x

x = argmax
a∈A

(
s0a + πt,a

)
, y = argmax

a∈A
(sa + πt,a)

)
(B.3)

≥ P
(
κ = argmax

a∈A
(sa + πt,a), κ

0 = argmax
a∈A

(s0a + πt,a)

)
for any κ ∈ K, κ0 ∈ K0 (B.4)

≥ P
(
κ = argmax

a∈A
(sa + πt,a), κ

0 = argmax
a∈A

(s0a + πt,a)

∣∣∣∣(B.1), (B.2)

)
P ((B.1), (B.2)) (B.5)
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= P
(
sκ0 − sκ < πt,κ − πt,κ0 < s0κ0 − s0κ

)
·
∏

a∈{κ,κ0}

P (πt,a ≥ Rmin + γ + β − d)

·
∏

a∈A\{κ,κ0}

P (πt,a < Rmin + γ + β − d) (B.6)

≥ P
(
sκ0 − sκ < πt,κ − πt,κ0 < s0κ0 − s0κ

)
·
∏

a∈{κ,κ0}

P (πt,a ≥ Rmin + γ + β − d)

·
∏

a∈A\{κ,κ0}

P (πt,a ≤ Rmin + γ) (B.7)

= P
(
sκ0 − sκ < πt,κ − πt,κ0 < s0κ0 − s0κ

)
·
∏

a∈{κ,κ0}

(
1− Rmin + γ + β − d− C

C − C

)
·

∏
a∈A\{κ,κ0}

Rmin + γ − C

C − C
(B.8)

= P
(
sκ0 − sκ < πt,κ − πt,κ0 < s0κ0 − s0κ

) ∏
a∈{κ,κ0}

(
1− γ + β − d

C − C

) ∏
a∈A\{κ,κ0}

γ

C − C
(B.9)

where (B.6) follows since πt,a’s are considered to be independent random variables, (B.8)
follows since πt,a ∼ U(C,C), ∀a ∈ A, and (B.9) follows since C = Rmin by Assumption 3.1.
For the first term in (B.9), notice that the case that sκ0−sκ = s0κ0−s0κ = 0 cannot occur. This
can only happen if κ0 ∈ K and κ ∈ K0 which contradicts with the condition K0 ∩Kt = ∅.
Similarly, s0 cannot be the all-zeros vector under the given condition K0∩Kt = ∅. Thus, the
following always holds under the given condition: s0κ0 − s0κ > 0, sκ0 − sκ < 0, and s0 ̸= 0n.
Then, we obtain

(B.9) ≥ P
(
0 ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)(
1− γ + β − d

C − C

)2(
γ

C − C

)n−2

(B.10)

The probability term in the last inequality can be computed by using the cumulative distribu-
tion function (cdf) of πt,a−πt,a′ – which is the difference of two identically and independently
distributed (iid) Uniform random variables. The difference πt,a − πt,a′ follows a triangular
distribution whose cdf can be explicitly computed as follows.

P (πt,a − πt,a′ ≤ ∆) =



0, for ∆ < C − C
C+∆∫
C

C∫
πt,a−∆

1
(C−C)2

dπt,adπt,a′ , for C − C ≤ ∆ < 0

1−
C∫

C+∆

πt,a−∆∫
C

1
(C−C)2

dπt,adπt,a′ , for 0 ≤ ∆ ≤ C − C

1, for ∆ ≥ C − C


(B.11)
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=


0, for ∆ < C − C
(∆+C−C)2

2(C−C)2
, for C − C ≤ ∆ < 0

1− (∆+C−C)
2

2(C−C)2
, for 0 ≤ ∆ ≤ C − C

1, for ∆ ≥ C − C

 (B.12)

Since by construction we have R ⊆ [C,C], we know that 0 < s0κ0 − s0κ ≤ C −C holds. Thus,
we have

P
(
0 ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)
= 1−

(
s0κ0 − s0κ + C − C

)2
2(C − C)2

− 1

2
(B.13)

=
1

2
−
(
C − C − s0κ0 + s0κ

)2
2(C − C)2

> 0 (B.14)

Combining this last result with (B.10), we obtain the desired result and conclude. □

Proof of Proposition 3.2. Recall that the event ℓ (s, it(πt),πt) = +∞ is observed
when the maximizer entries of the total reward vectors s0 + πt and s + πt are different
from each other. Hence, to prove the lower bound in (3.9), we will consider the case when
argmaxa∈A (sa + πt,a) = 1 and argmaxa∈A (s0a + πt,a) = b because we know that b ̸= 1. As
we have s1 = s01 = 0 by construction, having b = 1 would imply that s0 = s = 0n. However,
this contradicts with the fact that s ∈ B(sj, d) ∈ F which means ∥s0 − s∥∞ = |s0b − sb| > β
must be satisfied.

With this consideration, let ω = sups∈B(sj ,d) maxa∈A{|s0a|, |sa|} be the largest absolute
value observed among the entries of s0 and of all vectors in B(sj, d). Then, suppose we have

πt,a < Rmin + γ + β − d for all a ∈ A \ {1, b} (B.15)

πt,a ≥ Rmin + γ + ω for a ∈ {1, b}. (B.16)

Note that (B.15) and (B.16) are consistent with Assumption 3.1. Further, they imply that
the indices in the sets K0 and K are no more maximizers after adding the incentives in
(B.15)-(B.16). To restate, we now have s0κ0 + πt,κ0 < s0a + πt,a and sκ + πt,κ < sa + πt,a for
any κ0 ∈ K0, κ ∈ K, a ∈ {1, b}. Further, if the events s01 + πt,1 < s0b + πt,b and sb + πt,b <
s1 + πt,1 also hold, then we will obtain the desired case (that is argmaxa∈A(sa + πt,a) = 1
and argmaxa∈A(s

0
a + πt,a) = b). Our proof will be based on this observation.

Since |s0b − sb| > β by definition, we know that |s0b − sb| > |s01 − s1| = 0. Suppose that
without loss of generality, we have s0b − sb > s01 − s1 = 0 and s0b − sb > β. Then, we get

P (ℓ (s, it(πt),πt) = +∞)

≥ P

( ⋃
x∈A,y∈A,y ̸=x

x = argmax
a∈A

(
s0a + πt,a

)
, y = argmax

a∈A
(sa + πt,a)

)
(B.17)
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≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a)

)
(B.18)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a)

∣∣∣∣(B.15), (B.16)

)
P ((B.15), (B.16))

(B.19)

= P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)
·
∏

a∈{1,b}

P (πt,a ≥ Rmin + γ + ω)

·
∏

a∈A\{1,b}

P (πt,a < Rmin + γ + β − d) (B.20)

≥ P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)
·
∏

a∈{1,b}

P (πt,a ≥ Rmin + γ + ω)

·
∏

a∈A\{1,b}

P (πt,a ≤ Rmin + γ) (B.21)

= P
(
sb − s1 < πt,1 − πt,b < s0b − s01

) ∏
a∈{1,b}

(
1− γ + ω

C − C

) ∏
a∈A\{1,b}

γ

C − C
(B.22)

where (B.21) and (B.22) follow since C = Rmin by Assumption 3.1 and πt,a’s are independent
random variables with πt,a ∼ U(C,C), ∀a ∈ A.

We next compute a lower bound for the first term in (B.22).

P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)
= P

(
sb − s1 + s0b − s0b < πt,1 − πt,b < s0b − s01

)
(B.23)

≥ P
(
s0b − β − s1 < πt,1 − πt,b < s0b − s01

)
(B.24)

= P
(
s0b − β < πt,1 − πt,b < s0b

)
(B.25)

We can compute the probability in the last line above by using the cdf derived in (B.12).
Since the cdf is a piecewise function, we need to consider the two disjoint cases given as:

– Case 1: C − C ≤ s0b < 0

– Case 2: 0 ≤ s0b ≤ C − C

We also consider the following subcases to derive the probability bounds for the two cases
above.

– Subcase 1: C − C ≤ s0b < 0 and C − C ≤ s0b − β < 0

– Subcase 2: 0 ≤ s0b ≤ C − C and 0 ≤ s0b − β ≤ C − C

We can bound P (s0b − β < πt,1 − πt,b < s0b) from below under Subcase 1 and Subcase 2 as
follows.

P
(
s0b − β ≤ πt,1 − πt,b < s0b , Subcase 1

)
=

(s0b + C − C)2

2(C − C)2
− (s0b − β + C − C)2

2(C − C)2
(B.26)



APPENDIX B. APPENDIX FOR CHAPTER 3 95

=
(s0b)

2 − (s0b − β)2 + 2(s0b − (s0b − β))(C − C)

2(C − C)2

(B.27)

=
(s0b)

2 − (s0b − β)2 + 2β(C − C)

2(C − C)2
(B.28)

=
−β2 + 2β(s0b + C − C)

2(C − C)2
(B.29)

≥ −β2 + 2β2

2(C − C)2
(B.30)

=
β2

2(C − C)2
(B.31)

where second to the last line follows since we have 0 < β ≤ s0b + C − C in this subcase.

P
(
s0b − β ≤ πt,1 − πt,b < s0b , Subcase 2

)
= 1− (s0b + C − C)2

2(C − C)2
− 1 +

(s0b − β + C − C)2

2(C − C)2

(B.32)

=
(C − C − s0b + β)2

2(C − C)2
− (C − C − s0b)

2

2(C − C)2
(B.33)

=
β2 + 2β(C − C − s0b)

2(C − C)2
(B.34)

≥ β2

2(C − C)2
(B.35)

where the last inequality follows since we have C−C−s0b ≥ 0 and β > 0 by definition. Now,
since Case 1 and Case 2 are mutually exclusive events, we combine everything and obtain

P
(
s0b − β ≤ πt,1 − πt,b < s0b

)
= P

(
s0b − β ≤ πt,1 − πt,b < s0b ,Case 1

)
+ P

(
s0b − β ≤ πt,1 − πt,b < s0b ,Case 2

)
(B.36)

≥ P
(
s0b − β ≤ πt,1 − πt,b < s0b , Subcase 1

)
+ P

(
s0b − β ≤ πt,1 − πt,b < s0b , Subcase 2

)
(B.37)

≥ β2

(C − C)2
(B.38)

Combining this last result with (B.22), we obtain

P (ℓ (s, it(πt),πt) = +∞) ≥ β2

(C − C)2

(
1− γ + ω

C − C

)2(
γ

C − C

)n−2

(B.39)

□
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Proof of Proposition 3.3. We follow a mainly similar argument as in the proof of
Proposition 3.2. Recall that we know b ̸= 1 since ∥s0 − s∥∞ > β by construction as ex-
plained in the previous proof, and that either sb > 0 or s0b > 0 holds. We also have
ω = sups∈B(sj ,d) maxa∈A{|s0a|, |sa|} as before. Now, consider the following conditions on the
incentives

πt,a < Rmin + γ + β − d for all a ∈ A \ {1, b} (B.40)

πt,b ≥ Rmin + γ + β − d (B.41)

πt,1 ≥ Rmin + γ + ω (B.42)

which are compatible with Assumption 3.1. Now, since |s0b − sb| > β by definition of s,
we know that |s0b − sb| > |s01 − s1| = 0. Suppose that without loss of generality, we have
s0b − sb > s01 − s1 = 0 and s0b − sb > β. Then, we obtain

P (ℓ (s, it(πt),πt) = +∞)

≥ P

( ⋃
x∈A,y∈A,y ̸=x

x = argmax
a∈A

(
s0a + πt,a

)
, y = argmax

a∈A
(sa + πt,a)

)
(B.43)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a)

)
(B.44)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a)

∣∣∣∣(B.40)− (B.42)

)
P ((B.40)− (B.42))

(B.45)

= P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)
P (B.41)P (B.42)

∏
a∈A\{1,b}

P (πt,a < Rmin + γ + β − d)

(B.46)

≥ P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)
P (B.41)P (B.42)

∏
a∈A\{1,b}

P (πt,a ≤ Rmin + γ) (B.47)

= P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)(
1− γ + β − d

C − C

)(
1− γ + ω

C − C

) ∏
a∈A\{1,b}

γ

C − C

(B.48)

where (B.46) follows as πt,a’s are independent random variables and (B.48) follows since
C = Rmin by Assumption 3.1 and πt,a ∼ U(C,C),∀a ∈ A. Then, we obtain the following
lower bound for the first term in (B.48)

P
(
sb − s1 < πt,1 − πt,b < s0b − s01

)
≥ P

(
s0b − β < ct,1 − ct,b < s0b

)
≥ β2

(C − C)2
(B.49)
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by using similar arguments as in (B.23)-(B.38) from the proof of Proposition 3.2. Lastly,
combining this result with (B.48), we obtain

P (ℓ (s, it(πt),πt) = +∞) ≥ β2

(C − C)2

(
1− γ + β − d

C − C

)(
1− γ + ω

C − C

)(
γ

C − C

)n−2

(B.50)

□

Proof of Proposition 3.4. Notice that the following three conditions are mutually
exclusive events:

i. K0 ∩K = ∅

ii. K0 ∩K ̸= ∅ and b /∈ K0 ∩K

iii. K0 ∩K ̸= ∅ and b ∈ K0 ∩K

Hence, we can unite the results of Propositions 3.1, 3.2, and 3.3 and obtain

P (ℓ (s, it(πt),πt) = +∞) =
∑

j∈{i,ii,iii}

P (ℓ (s, it(πt),πt) = +∞, j) (B.51)

≥ αβ2 (B.52)

for some constant α > 0. □

Proof of Theorem 3.1. Recall that we define an open ball B(sj, d) := {s : ∥s−sj∥∞ <
d} centered around a vector sj with diameter d > 0. Since F = {s ∈ Sn : ∥s − s0∥∞ > β}
is compact, there is a finite subcover {B(sj, d) : sj ∈ F}qj=1 of a collection of open balls

covering F where d < β. Further, we define sjt := arg infs∈B(sj ,d) L (s, It(Πt),Πt). Now, since
F ⊆

⋃q
j=1 B(sj, d), we have

inf
s∈F

L (s, It(Πt),Πt) = inf
s∈F

t−1∑
τ=1

ℓ (s, iτ (πτ ),πτ ) ≥ min
j∈[q]

inf
s∈B(sj ,d)

t−1∑
τ=1

ℓ (s, iτ (πτ ),πτ ) (B.53)

≥ min
j∈[q]

t−1∑
τ=1

ℓ
(
sjt , iτ (πτ ),πτ

)
(B.54)

≥ min
j∈[q]

∑
τ∈Λ(1,t)

ℓ
(
sjt , iτ (πτ ),πτ

)
(B.55)

where [q] = {1, . . . , q}. We then follow by

P
(
inf
s∈F

L (s, It(Πt),Πt) < +∞
)

≤ P

min
j∈[q]

∑
τ∈Λ(1,t)

ℓ
(
sjt , iτ (πτ ),πτ

)
< +∞

 (B.56)
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≤ P

⋃
j∈[q]

∑
τ∈Λ(1,t)

ℓ
(
sjt , iτ (πτ ),πτ

)
< +∞

 (B.57)

≤
∑
j∈[q]

P

 ∑
τ∈Λ(1,t)

ℓ
(
sjt , iτ (πτ ),πτ

)
< +∞

 (B.58)

=
∑
j∈[q]

P
(
ℓ
(
sjt , iτ (πτ ),πτ

)
< +∞, ∀τ ∈ Λ(1, t)

)
(B.59)

=
∑
j∈[q]

∏
τ∈Λ(1,t)

P
(
ℓ
(
sjt , iτ (πτ ),πτ

)
< +∞

)
(B.60)

=
∑
j∈[q]

∏
τ∈Λ(1,t)

[
1− P

(
ℓ
(
sjt , iτ (πτ ),πτ

)
= +∞

)]
(B.61)

≤
∑
j∈[q]

∏
τ∈Λ(1,t)

(
1− αβ2

)
(B.62)

where the first inequality follows by (B.55), (B.58) follows by the Boole’s inequality (a.k.a.
union bound), (B.60) follows by the assumption of independence of the time steps, and
(B.62) follows by the identifiability condition provided in Proposition 3.4. Note that we
prove Proposition 3.4 for any vector s ∈ B(sj, d), and hence, it also holds for sjt . We
continue as

(B.62) =
∑
j∈[q]

(
1− αβ2

)η(1,t)−1
(B.63)

=
∑
j∈[q]

exp
(
(η(1, t)− 1) log

(
1− αβ2

))
(B.64)

≤
∑
j∈[q]

exp
(
−α(η(1, t)− 1)β2

)
(B.65)

= q exp
(
−α(η(1, t)− 1)β2

)
(B.66)

where (B.65) follows by an upper bound on natural logarithm: log x ≤ x−1 for x > 0, which
can be proven by the Mean Value Theorem and works by selecting x = 1− αβ2 in our case.

Next, we provide an upper bound for the covering number q by using the volume ratios.
Recall that S = [Rmin −Rmax, Rmax −Rmin] by definition, and hence,

q = N (d,F , ∥ · ∥) ≤ vol(F)

vol(B(sj, d))
≤ vol(Sn)

vol(B(sj, d))
≤ (Rmax −Rmin)

n

dn
(B.67)

Suppose we have d = n
√
β. Then, combining everything, we obtain

P
(
inf
s∈F

L (s, It(Πt),Πt) < +∞
)

≤ (Rmax −Rmin)
n

β
exp

(
−α(η(1, t)− 1)β2

)
(B.68)
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= exp
(
−α(η(1, t)− 1)β2 − log β + n log(Rmax −Rmin)

)
(B.69)

□

Proof of Corollary 3.1. We first highlight that the result of Theorem 3.1 is proven
for any normalized reward vector s ∈ F ⊂ Sn that satisfies ∥s0 − s∥∞ > β by definition.
Also, recall that the principal’s estimator ŝt ∈ Sn is defined in (3.7) such that it satisfies
L (ŝt, It(Πt),Πt) < +∞. Then, we have the following implication{

∥s0 − ŝt∥∞ > β
}
⊆
{
∃s : ∥s0 − s∥∞ > β and L (s, It(Πt),Πt) < +∞

}
(B.70)

which gives us the desired bound as

P
(
∥s0 − ŝt∥∞ > β

)
≤ P

(
inf
s∈F

L (s, It(Πt),Πt) < +∞
)

(B.71)

≤ exp
(
−α(η(1, t)− 1)β2 − log β + n log(Rmax −Rmin)

)
(B.72)

where the last inequality follows by Theorem 3.1. □

B.1.2 Results in Section 3.3

Proof of Lemma 3.1. We start by defining the indices κt ∈ argmaxa∈A ŝt,a and κ0 ∈
argmaxa∈A s0a for notational convenience. Then, we can rewrite the given probability as

P
(
max
a∈A

ŝt,a − ŝt,j∗t + 2βt ≥ max
a∈A

s0a − s0j∗t

)
= P

(
ŝt,κt − ŝt,j∗t + 2βt ≥ s0κ0 − s0j∗t

)
(B.73)

= P
(
2βt ≥ s0κ0 − ŝt,κt + ŝt,j∗t − s0j∗t

)
(B.74)

= P
(
2βt ≥ s0κ0 − ŝt,κt + ŝt,j∗t − s0j∗t + ŝt,κ0 − ŝt,κ0

)
(B.75)

= P
(
2βt ≥

(
s0κ0 − ŝt,κ0

)
+
(
ŝt,κ0 − ŝt,κt

)
+
(
ŝt,j∗t − s0j∗t

))
(B.76)

where the second term inside the parenthesis satisfies

0 ≥ ŝt,κ0 − ŝt,κt (B.77)

Further, if ∥s0 − ŝt∥∞ ≤ βt, then we have

βt ≥ s0κ0 − ŝt,κ0 (B.78)

βt ≥ ŝt,j∗t − s0j∗t (B.79)
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Hence, we have

(B.77)− (B.79) =⇒ 2βt ≥
(
s0κ0 − ŝt,κ0

)
+
(
ŝt,κ0 − ŝt,κt

)
+
(
ŝt,j∗t − s0j∗t

)
(B.80)

when ∥s0 − ŝt∥∞ ≤ βt holds. Combining this result with Corollary 3.1, we conclude the
proof.

P
(
2βt ≥

(
s0κ0 − ŝt,κ0

)
+
(
ŝt,κ0 − ŝt,κt

)
+
(
ŝt,j∗t − s0j∗t

))
(B.81)

≥ P
(
∥s0 − ŝt∥∞ ≤ βt

)
(B.82)

> 1− exp
(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

(B.83)

□

Proof of Proposition 3.5. By construction of Algorithm 2, the arm that the agent
picks at time t ∈ T xploit is defined as it(c(θ̂t, ŝt)) = argmaxa∈A s0a + ca(θ̂t, ŝt). This implies

s0
it(c(θ̂t ,̂st))

+ cit(c(θ̂t ,̂st))
(θ̂t, ŝt) > s0a + ca(θ̂t, ŝt) ∀a ∈ A \

{
it(c(θ̂t, ŝt)

}
(B.84)

Then, the probability that the agent picks arm j∗t at time t is bounded by

P
(
j∗t = it(c(θ̂t, ŝt))

)
= P

(
s0j∗t + cj∗t (θ̂t, ŝt) > s0a + ca(θ̂t, ŝt), ∀a ∈ A \ {j∗t }

)
(B.85)

= P
(
s0j∗t +

(
max
a∈A

ŝt,a

)
− ŝt,j∗t + 2βt > s0a, ∀a ∈ A \ {j∗t }

)
(B.86)

≥ P
(
s0j∗t +

(
max
a∈A

ŝt,a

)
− ŝt,j∗t + 2βt ≥ max

a∈A
s0a

)
(B.87)

> 1− exp
(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

(B.88)

where the last inequality follows by Lemma 3.1. □

Proof of Proposition 3.6. First, recall that we define the true reward-maximizer ac-
tion under the oracle incentives in Section 3.3.2 as

i(c(θ0, s0)) = argmax
j∈A

Ṽ (j, s0;θ0) = argmax
j∈A

θ0j −
(
max
a∈A

s0a

)
+ s0j (B.89)

Then, we introduce the set At = A \ {it(c(θ̂t, ŝt))} for notational convenience and obtain

P
(
i(c(θ0, s0)) ̸= it(c(θ̂t, ŝt))

)
≤
∑
a∈At

P
(
Ṽ (it(c(θ̂t, ŝt)), s

0;θ0) < Ṽ (a, s0;θ0)
)

(B.90)

=
∑
a∈At

P
(
θ0
it(c(θ̂t ,̂st))

− θ0a < s0a − s0
it(c(θ̂t ,̂st))

)
(B.91)
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We continue by conditioning on whether the action picked by the agent under the exploitation
incentives is same as the action with the highest estimated net reward to the principal (j∗t ).

(B.91) =
∑
a∈At

P
(
θ0
it(c(θ̂t ,̂st))

− θ0a < s0a − s0
it(c(θ̂t ,̂st))

∣∣∣j∗t = it(c(θ̂t, ŝt))
)
P
(
j∗t = it(c(θ̂t, ŝt))

)
+ P

(
θ0
it(c(θ̂t ,̂st))

− θ0a < s0a − s0
it(c(θ̂t ,̂st))

∣∣∣j∗t ̸= it(c(θ̂t, ŝt))
)
P
(
j∗t ̸= it(c(θ̂t, ŝt))

)
(B.92)

≤
∑
a∈At

P
(
θ0
it(c(θ̂t ,̂st))

− θ0a < s0a − s0
it(c(θ̂t ,̂st))

∣∣∣j∗t = it(c(θ̂t, ŝt))
)
+ P

(
j∗t ̸= it(c(θ̂t, ŝt))

)
(B.93)

≤
∑
a∈At

P
(
θ0j∗t − θ0a < s0a − s0j∗t

)
+ exp

(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

(B.94)

where the last inequality follows by Proposition 3.5. Now, by definition of j∗t , we have

Ṽ (a, ŝt; θ̂) < Ṽ (j∗t , ŝt; θ̂), ∀a ∈ A, a ̸= j∗t which implies θ̂t,a−θ̂t,j∗t < ŝt,j∗t −ŝt,a,∀a ∈ A, a ̸= j∗t .
Combining this inequality with the first term in (B.94), we have

P
(
θ0j∗t − θ0a < s0a − s0j∗t

)
= P

(
(θ0j∗t − θ̂t,j∗t ) + (θ̂t,a − θ0a) < (s0a − ŝt,a) + (ŝt,j∗t − s0j∗t )

)
(B.95)

= P
(
(θ0j∗t − θ̂t,j∗t ) + (θ̂t,a − θ0a) < (s0a − ŝt,a) + (ŝt,j∗t − s0j∗t )

∣∣∣∥s0 − ŝt∥∞ ≤ βt

)
· P
(
∥s0 − ŝt∥∞ ≤ βt

)
+ P

(
(θ0j∗t − θ̂t,j∗t ) + (θ̂t,a − θ0a) < (s0a − ŝt,a) + (ŝt,j∗t − s0j∗t )

∣∣∣∥s0 − ŝt∥∞ > βt

)
· P
(
∥s0 − ŝt∥∞ > βt

)
(B.96)

≤ P
(
(θ0j∗t − θ̂t,j∗t ) + (θ̂t,a − θ0a) < (s0a − ŝt,a) + (ŝt,j∗t − s0j∗t )

∣∣∣∥s0 − ŝt∥∞ ≤ βt

)
+ P

(
∥s0 − ŝt∥∞ > βt

)
(B.97)

≤ P
(
(θ0j∗t − θ̂t,j∗t ) + (θ̂t,a − θ0a) < 2βt

)
+ exp

(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

(B.98)

where the last line follows by the finite-sample concentration bound in Corollary 3.1. Next,
we bound the first term above as follows.

P
(
θ0j∗t − θ̂t,j∗t < 2βt − (θ̂t,a − θ0a)

)
= P

(
θ0j∗t − θ̂t,j∗t < 2βt − (θ̂t,a − θ0a)

∣∣∣θ̂t,a − θ0a < 3βt

)
P
(
θ̂t,a − θ0a < 3βt

)
+ P

(
θ0j∗t − θ̂t,j∗t < 2βt − (θ̂t,a − θ0a)

∣∣∣θ̂t,a − θ0a ≥ 3βt

)
P
(
θ̂t,a − θ0a ≥ 3βt

)
(B.99)
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≤ P
(
θ̂t,j∗t − θ0j∗t > βt

)
+ P

(
θ̂t,a − θ0a ≥ 3βt

)
(B.100)

≤ P
(
θ̂t,j∗t − θ0j∗t > βt

)
+ P

(
θ̂t,a − θ0a ≥ βt

)
(B.101)

Notice that we bound the two probability terms in the last line in the same way by definition
of θ̂t,a’s (3.14). For any a ∈ A, let T (a, t) = |{τ ∈ Λ(1, t) : iτ (πτ ) = a}| be the number of
exploration steps up to time t at which the agent’s reward-maximizer arm is action a. Thus,
T (a, t) is the sum of η(1, t) independent Bernoulli random variables with success probabilities
P (a = argmaxa′∈A s0a′ + πτ,a′). Then,

ET (a, t) =
∑

τ∈Λ(1,t)

P
(
a = argmax

a′∈A
s0a′ + πτ,a′

)
≥

∑
τ∈Λ(1,t)

[∑
a′∈A

(s0a − s0a′ + C − C)2

2(C − C)2

]
(B.102)

= n
(s0a + γ)2

2(C − C)2
η(1, t) (B.103)

where the term in the square brackets in (B.102) follows by using the cdf derived in (B.12).
Since the cdf is defined as a piecewise function, it suffices to only consider the case when C−
C ≤ s0a−s0a′ < 0 holds to find a lower bound on the probability P (a = argmaxa′∈A s0a′ + πτ,a′).
Further, (B.103) follows since by definition we know that s0a′ ≤ Rmax − Rmin = C − C − γ
for all a′ ∈ A.

Now, observing that T (a, t) ≤ T (a, t), we can use Hoeffding’s Inequality (Boucheron et al.
2013) to proceed. For any a ∈ A,

P
(
θ̂t,a − θ0a > βt

)
= P

(
θ̂t,a − θ0a > βt

∣∣T (a, t) > ET (a, t)
4α(Rmax −Rmin)

2(C − C)2

n(s0a + γ)2

)
· P
(
T (a, t) > ET (a, t)

4α(Rmax −Rmin)
2(C − C)2

n(s0a + γ)2

)
+ P

(
θ̂t,a − θ0a > βt

∣∣T (a, t) ≤ ET (a, t)
4α(Rmax −Rmin)

2(C − C)2

n(s0a + γ)2

)
· P
(
T (a, t) ≤ ET (a, t)

4α(Rmax −Rmin)
2(C − C)2

n(s0a + γ)2

)
(B.104)

≤ P
(
θ̂t,a − θ0a > βt

∣∣T (a, t) > ET (a, t)
4α(Rmax −Rmin)

2(C − C)2

n(s0a + γ)2

)
+ P

(
T (a, t) ≤ ET (a, t)

4α(Rmax −Rmin)
2(C − C)2

n(s0a + γ)2

)
(B.105)

≤ exp

(
−

24α(Rmax−Rmin)
2(C−C)2

n(s0a+γ)2
ET (a, t)β2

t

4α(Rmax −Rmin)2

)
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+ exp

(
−2η(1, t)

(4α(Rmax −Rmin)
2(C − C)2

n(s0a + γ)2

)2
ET (a, t)2

)
(B.106)

≤ exp

(
− η(1, t)

log(η(1, t)− 1)

η(1, t)− 1

)
+ exp

(
− η(1, t)3

)
(B.107)

≤ 1

η(1, t)− 1
+

1

η(1, t)3
(B.108)

≤ 2

η(1, t)− 1
(B.109)

where (B.107) follows by substituting the lower bound in (B.103) and βt =
√

log(η(1,t)−1)
α(η(1,t)−1)

.

Lastly, we combine this result with (B.94), (B.98), and (B.101) and conclude our proof.

P
(
i(c(θ0, s0)) ̸= it(c(θ̂t, ŝt))

)
≤ 4n

η(1, t)− 1
+ 2n exp

(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

(B.110)

=
4n

η(1, t)− 1
+ 2n exp

(
− log(η(1, t)− 1)− log

√
log(η(1, t)− 1)

α(η(1, t)− 1)
+ n log(Rmax −Rmin)

)
(B.111)

=
4n

η(1, t)− 1
+

2n(Rmax −Rmin)
n
√
α√

(η(1, t)− 1) log(η(1, t)− 1)
(B.112)

□

Proof of Theorem 3.2. The expected net reward of the principal defined in (3.24) has
two main components: cost incurred due to the offered incentives and mean reward collected
through the arm chosen by the agent. Accordingly, we decompose our regret notion (3.25)
into two main parts as follows.

Regret (Πϵ,T ) =
∑
t∈T

V (c(θ0, s0);θ0)− Vt(πt;θ
0) (B.113)

=
∑
t∈T

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
+
∑
t∈T

[
θ0i(c(θ0,s0)) − θ0it(πt)

]
(B.114)

First, we provide an upper bound for the first part of (B.114).∑
t∈T

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
≤

∑
t∈T xplore

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
+
∑

t∈T xploit

∑
a∈A

[
ca(θ̂t, ŝt)− ca(θ

0, s0)
]

(B.115)

Notice that the cardinalities |T xplore| and |T xploit| are random variables. Then,

E
[ ∑

t∈T xplore

∑
a∈A

[
πt,a − ca(θ

0, s0)
] ∣∣∣T xplore

]
≤ n(C − C)|T xplore| (B.116)
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Taking the expectation of both sides of the last inequality, we obtain the following upper
bound for the first summation term in (B.115).

∑
t∈T xplore

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
≤ n(C − C)E|T xplore| = n(C − C)

T∑
t=1

min
{
1,

m

t

}
(B.117)

≤ n(C − C)
T∑
t=1

m

t
(B.118)

≤ n(C − C)

(
m+

∫ T

t=1

m

t

)
(B.119)

= nm(C − C)(1 + log T ) (B.120)

where the last equality follows by the finite sum formula of the harmonic series. Next, we
bound the second part of (B.115) as follows.

E

[ ∑
t∈T xploit

∑
a∈A

[
ca(θ̂t, ŝt)− ca(θ

0, s0)
] ∣∣∣T xploit

]
=

∑
t∈T xploit

∑
a∈A

E
[
ca(θ̂t, ŝt)− ca(θ

0, s0)
∣∣∣∥s0 − ŝt∥∞ ≤ βt

]
P
(
∥s0 − ŝt∥∞ ≤ βt

)
+

∑
t∈T xploit

∑
a∈A

E
[
ca(θ̂t, ŝt)− ca(θ

0, s0)
∣∣∣∥s0 − ŝt∥∞ > βt

]
P
(
∥s0 − ŝt∥∞ > βt

)
(B.121)

≤
∑

t∈T xploit

∑
a∈A

E
[
ca(θ̂t, ŝt)− ca(θ

0, s0)
∣∣∣∥s0 − ŝt∥∞ ≤ βt

]
+

∑
t∈T xploit

(
C − C

)
exp

(
−α(η(t)− 1)β2

t − log βt + n logRmax

)
(B.122)

where the last line follows by Corollary 3.1. To compute an upper bound for the first term
in the last inequality, we proceed as∑
t∈T xploit

∑
a∈A

E
[
ca(θ̂t, ŝt)− ca(θ

0, s0)
∣∣∣∥s0 − ŝt∥∞ ≤ βt

]
=
∑

t∈T xploit

∑
a∈A

E
[
ca(θ̂t, ŝt)− ca(θ

0, s0)
∣∣∣∥s0 − ŝt∥∞ ≤ βt, j

∗
t = i(c(θ0, s0))

]
P
(
j∗t = i(c(θ0, s0))

)
+ E

[
ca(θ̂t, ŝt)− ca(θ

0, s0)
∣∣∣∥s0 − ŝt∥∞ ≤ βt, j

∗
t ̸= i(c(θ0, s0))

]
P
(
j∗t ̸= i(c(θ0, s0))

)
(B.123)

≤
∑

t∈T xploit

(
max
a∈A

ŝt,a − ŝt,j∗t + 2βt −max
a∈A

s0a + s0i(c(θ0,s0))

∣∣∣∥s0 − ŝt∥∞ ≤ βt, j
∗
t = i(c(θ0, s0))

)
+
(
C − C

)
P
(
j∗t ̸= i(c(θ0, s0))

)
(B.124)
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As before, we use the indices κt ∈ argmaxa∈A ŝt,a and κ0 ∈ argmaxa∈A s0a for notational
convenience.

=
∑

t∈T xploit

(
ŝt,κt − ŝt,j∗t + 2βt − s0κ0 + s0i(c(θ0,s0))

∣∣∣∥s0 − ŝt∥∞ ≤ βt, j
∗
t = i(c(θ0, s0))

)
+
(
C − C

)
P
(
j∗t ̸= i(c(θ0, s0))

)
(B.125)

=
∑

t∈T xploit

(
(ŝt,κt − s0κt

) + (s0κt
− s0κ0) + (s0i(c(θ0,s0)) − ŝt,j∗t ) + 2βt∣∣∣∥s0 − ŝt∥∞ ≤ βt, j

∗
t = i(c(θ0, s0))

)
+
(
C − C

)
P
(
j∗t ̸= i(c(θ0, s0))

)
(B.126)

≤
∑

t∈T xploit

4βt +
(
C − C

)
P
(
j∗t ̸= i(c(θ0, s0))

)
(B.127)

At this step, we continue by observing that

P
(
j∗t = i(c(θ0, s0))

)
≥ P

(
j∗t = it(c(θ̂t, ŝt)), it(c(θ̂t, ŝt)) = i(c(θ0, s0))

)
(B.128)

which implies

P
(
j∗t ̸= i(c(θ0, s0))

)
≤ 1− P

(
j∗t = it(c(θ̂t, ŝt)), it(c(θ̂t, ŝt)) = i(c(θ0, s0))

)
(B.129)

= 1−
[
1− P

(
j∗t ̸= it(c(θ̂t, ŝt))

⋃
it(c(θ̂t, ŝt)) ̸= i(c(θ0, s0))

)]
(B.130)

≤ P
(
j∗t ̸= it(c(θ̂t, ŝt))

)
+ P

(
it(c(θ̂t, ŝt)) ̸= i(c(θ0, s0))

)
(B.131)

≤ exp
(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)

+
4n

η(1, t)− 1
+

2n(Rmax −Rmin)
n
√
α√

(η(1, t)− 1) log(η(1, t)− 1)
(B.132)

where (B.130) follows by the fact that P(∩iAi) = 1−P(∪iAi) for a set of events Ai’s, (B.131)
follows by the Boole’s inequality (a.k.a. union bound), and the last inequality follows by
Propositions 3.5 and 3.6.

Combining the last result with (B.122) and (B.127) for βt =
√

log(η(1,t)−1)
α(η(1,t)−1)

, we obtain

E

[ ∑
t∈T xploit

∑
a∈A

[
ca(θ̂t, ŝt)− ca(θ

0, s0)
] ∣∣∣T xploit

]

≤
∑

t∈T xploit

4βt +
(
C − C

)(
2 exp

(
−α(η(1, t)− 1)β2

t − log βt + n log(Rmax −Rmin)
)
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+
4n

η(1, t)− 1
+

2n(Rmax −Rmin)
n
√
α√

(η(1, t)− 1) log(η(1, t)− 1)

)
(B.133)

=
∑

t∈T xploit

4

√
log(η(1, t)− 1)

α(η(1, t)− 1)
+

∑
t∈T xploit

4n
(
C − C

)
(Rmax −Rmin)

n
√
α√

(η(1, t)− 1) log(η(1, t)− 1)
+

∑
t∈T xploit

4n
(
C − C

)
η(1, t)− 1

(B.134)

≤
∑

t∈T xploit

4

√
log(η(1, t)− 1)

α(η(1, t)− 1)
+

∑
t∈T xploit

4n
(
C − C

)
(Rmax −Rmin)

n
√
α√

η(1, t)− 2
+

∑
t∈T xploit

4n
(
C − C

)
η(1, t)− 1

(B.135)

where the second term in (B.135) follows by the following bound on the natural logarithm:
1− 1/x ≤ log x for x > 0. Now, recall that the principal’s ϵ-Greedy Algorithm (2) performs
pure exploration over the first m steps of the finite time horizon T . This implies η(1, t) ≥ m
and t ≥ m + 1 for any t ∈ T xploit. Then, because the terms of the three summations in
(B.135) are monotone decreasing functions of η(1, t) for m ≥ 4, we can bound these finite
summations with the corresponding definite integrals plus the first terms of these series.

(B.135)

≤ 4√
α

∫ |T xploit|

x=m

√
log(x− 1)

x− 1
dx+

∫ |T xploit|

t=m

4n
(
C − C

)
(Rmax −Rmin)

n
√
α

√
x− 2

dx

+

∫ |T xploit|

t=m

4n
(
C − C

)
x− 1

dx+B1 (B.136)

where B1 =
4√
α

√
log(m−1)

m−1
+

4n(C−C)(Rmax−Rmin)
n√α

√
m−2

+
4n(C−C)

m−1
,

≤ 8√
α

√
(|T xploit| − 1) log(|T xploit| − 1)

+ 8n
(
C − C

)
(Rmax −Rmin)

n
√
α
√
|T xploit| − 2 + 4n

(
C − C

)
log(|T xploit| − 1) +B1

(B.137)

≤ 8√
α

√
T log T + 8n

(
C − C

)
(Rmax −Rmin)

n
√
α
√
T + 4n

(
C − C

)
log T +B1 (B.138)

By taking the expectation of the last result, we have

∑
t∈T xploit

∑
a∈A

[
ca(θ̂t, ŝt)− ca(θ

0, s0)
]
≤ 8√

α

√
T log T + 8n

(
C − C

)
(Rmax −Rmin)

n
√
α
√
T

+ 4n
(
C − C

)
log T +B1 (B.139)



APPENDIX B. APPENDIX FOR CHAPTER 3 107

Combining the results in (B.120) and (B.139) with (B.115), we obtain the following upper
bound for the first part of our regret bound in (B.114).∑
t∈T

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
≤ nm(C − C)(1 + log T ) +

8√
α

√
T log T

+ 8n
(
C − C

)
(Rmax −Rmin)

n
√
α
√
T + 4n

(
C − C

)
log T +B1

(B.140)

Next, we consider the second part of our regret bound in (B.114).∑
t∈T

[
θ0i(c(θ0,s0)) − θ0it(πt)

]
=

∑
t∈T xplore

[
θ0i(c(θ0,s0)) − θ0it(πt)

]
+

∑
t∈T xploit

[
θ0i(c(θ0,s0)) − θ0

it(c(θ̂t ,̂st))

]
(B.141)

We recall that the principal’s reward expectations θ0a belong to a known compact set Θ and
define diam(Θ) := maxa,a′∈A θ0a − θ0a′ . As earlier, we consider that |T xplore| and |T xploit| are
random variables, and bound the first term in (B.141) by following a similar argument as in
(B.117)-(B.120).∑

t∈T xplore

[
θ0i(c(θ0,s0)) − θ0it(πt)

]
≤ diam(Θ)E|T xplore| ≤ diam(Θ)m(1 + log T ) (B.142)

We continue by deriving the upper bound for the second term in (B.141).

E

[ ∑
t∈T xploit

[
θ0i(c(θ0,s0)) − θ0

it(c(θ̂t ,̂st))

] ∣∣∣T xploit

]
=

∑
t∈T xploit

E
[
µt,i(c(θ0,s0)) − µt,it(c(θ̂t ,̂st))

∣∣∣i(c(θ0, s0)) ̸= it(c(θ̂t, ŝt))
]

· P
(
i(c(θ0, s0)) ̸= it(c(θ̂t, ŝt))

)
(B.143)

≤ diam(Θ)
∑

t∈T xploit

P
(
i(c(θ0, s0)) ̸= it(c(θ̂t, ŝt))

)
(B.144)

≤ diam(Θ)
∑

t∈T xploit

4n

η(1, t)− 1
+

2n(Rmax −Rmin)
n
√
α√

(η(1, t)− 1) log(η(1, t)− 1)
(B.145)

which follows by Proposition 3.6. By following similar arguments as in (B.133) - (B.138), we
obtain

≤ 8ndiam(Θ)(Rmax −Rmin)
n
√
α
√
T + 4n

(
C − C

)
log T +B2 (B.146)
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where B2 = 2ndiam(Θ)(Rmax−Rmin)
n√α√

m−2
+ 4ndiam(Θ)

m−1
. We then take the expectation of this result

and get∑
t∈T xploit

[
θ0i(c(θ0,s0)) − θ0

it(c(θ̂t ,̂st))

]
≤ 8ndiam(Θ)(Rmax −Rmin)

n
√
α
√
T + 4n

(
C − C

)
log T +B2 (B.147)

Together (B.142) and (B.147) gives the following upper bound for the second part of our
regret.∑

t∈T

[
θ0i(c(θ0,s0)) − θ0it(πt)

]
≤ diam(Θ)m(1 + log T ) + 8ndiam(Θ)(Rmax −Rmin)

n
√
α
√
T

+ 4n
(
C − C

)
log T +B2 (B.148)

Finally, we join the upper bounds in (B.140) and (B.148) to achieve the regret bound pre-
sented in Theorem 3.2.

Regret (Πϵ,T ) ≤
8√
α

√
T log T + 8n

(
C − C + diam(Θ)

)
(Rmax −Rmin)

n
√
α
√
T

+
(
n(C − C)(m+ 8) + diam(Θ)m

)
log T

+m
(
n(C − C) + diam(Θ)

)
+B1 +B2 (B.149)

□

B.1.3 Results in Section 3.4

Proof of Proposition 3.7. First, recall that in Section 3.3.2, we show that if the
agent behaves truthfully in accordance with their true mean reward vector s0 and the princi-
pal follows the oracle incentive policy c(θ0, s0), then the agent gets their minimum possible
expected total reward (which is equal to maxa′∈A s0a′ + ς for a sufficiently small constant
ς > 0).

In this proof, we start by demonstrating this result again by using the agent’s opti-
mization problem (3.30). To recall, the oracle incentive policy first computes the max-
imum net expected reward that the principal can get from the selection of each action
j ∈ A. This amount was computed as: Ṽ (j, s0;θ0) = (principal’s expected reward from
j) − (the minimum total incentives to make j agent’s reward-maximizer action) = θ0j −(
maxa′∈A s0a′ − s0j

)
. Then, we denoted the action corresponding to the highest of these

values as j∗,0 = argmaxj∈A Ṽ (j, s0;θ0) and the agent’s true reward maximizer action as

i(c(θ0, s0)) = argmaxj∈A
(
s0j + cj(θ

0, s0)
)
.

Now, in the optimization problem (3.30), we let s = s0 and π = c(θ0, s0) where c(θ0, s0)
is as given in (3.21)-(3.22). Then, we have a = j∗,0 satisfying the first and second constraints
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and b = i(c(θ0, s0)) satisfying the third constraint. As discussed in Section 3.3.2, the oracle
incentives are designed such that j∗,0 = i(c(θ0, s0)), and thus they also satisfy the last
constraint of (3.30). This shows that s0 and the oracle incentive policy c(θ0, s0) together
yield a feasible solution to the agent’s optimization problem. Under this feasible solution, the
principal’s expected net reward is θ0j∗,0 − cj∗,0(θ

0, s0) = θ0j∗,0 −maxa′∈A s0a′ + s0j∗,0 − ς, and the

agent’s expected total reward (i.e., the value of the objective function) is s0j∗,0 + c∗,0j (θ0, s0) =

maxa′∈A s0a′ + ς.
Second, we show that there exists a different feasible solution to the agent’s optimization

problem (3.30) and that this solution yields a higher profit to the agent than the truthful
(and worst-case) solution above. To show this, we need to consider two mutually exclusive
cases based on the maximizer actions of the principal and the agent: κ0 := argmaxa′∈A s0a′
and q0 := argmaxa′∈A θ0a′ .

Case 1: κ0 = q0. In this case, notice that the principal does not need to incentivize the
agent at all to get them pick the desired action, and thus we have j∗,0 = q0. However, the
agent can pretend that they have a different reward vector whose reward-maximizer action
is different than j∗,0. This way, the agent can oblige the principal to offer them positive
incentives for selecting j∗,0. Let q0 = argmaxa′∈A\{q0} θ

0
a′ be the action associated with the

second highest true mean reward of the principal. We define the quantity Q1 := θ0q0 − θ0
q0
.

Then, we consider the solution (s,π) where s is such that sq0 = s0q0 + Q1 − 2ς and sj =

s0j , ∀j ̸= q0 and π is such that πq0 = Q1 − ς and πj = 0, ∀j ̸= q0, for a sufficiently small
constant ς > 0. For a = b = q0, this solution is feasible to the agent’s problem (3.30) and
yields an expected net reward θ0q0 −πq0 = θ0q0 −Q1+ ς to the principal and an expected total

reward s0q0 + πq0 = maxa′∈A s0a′ + Q1 − ς to the agent (which is the value of the objective
function for this solution). This result shows that the agent can increase their expected total
reward by using the considered reward vector s and extracting an extra amount of Q1 − 2ς
from the principal.

Case 2: κ0 ̸= q0. Now, we define a new quantity corresponding to the difference between
the highest and second highest Ṽ (j, s0;θ0). Let this quantity be Q2 := Ṽ (j∗,0, s0;θ0) −
maxj∈A\{j∗,0} Ṽ (j, s0;θ0). Then, we consider the solution (s,π) where s is such that sκ0 =
sκ0 + Q2 − 2ς and sa = s0a, ∀a ̸= κ0 and π is such that πj∗,0 = s0κ0 − s0j∗,0 + Q2 − ς and

πa = 0, ∀a ̸= j∗,0 for a sufficiently small constant ς > 0. Note that this solution is feasible
to the agent’s problem (3.30) for a = b = j∗,0. Then, the principal’s expected net reward
becomes θ0j∗,0 −πj∗,0 = θ0j∗,0 −maxa∈A s0a+s0j∗,0 −Q2+ ς and the agent’s expected total reward

(i.e., the value of the objective function) becomes s0j∗,0 +πj∗,0 = maxa∈A s0a+Q2− ς. In other
words, there is a feasible solution of (3.30) that increases the agent’s expected reward (and
decreases the principal’s expected net reward) by Q2 − 2ς as compared to the worst-case
solution above.

These example solutions prove that the optimization problem given in (3.30) is feasible
and designed to maximize the agent’s information rent by the use of an untrue mean reward
vector. □
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B.2 Parameters for Numerical Experiments

In our simulations, we demonstrate the performance of our data-driven approach for different
values of n (i.e., the cardinality of the carrier’s action space). The parameter intervals are
set to Θ = [0, 100] and R = [−20, 50], and the entries of the vectors θ0 and r0 are randomly
generated from these sets as reported below.

n θ0 r0

5 (29, 1, 14, 26, 15) (14, -24, -4, 19, 29)
10 (0, 44, 51, 65, 9, 35, 69, 91, 51, 44) (-4, 8, 22, -12, -2, 46, -8, 16, 38, 14)

Table B.1: Experimental parameters for different numbers of alternative carrier routes
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Appendix C

Appendix for Chapter 4

C.1 Proofs of Theoretical Results

C.1.1 Results in Section 4.2

Proof of Proposition 4.1. Given that the agent selects the true reward-maximizer
arm in the considered period t, i.e., υt(πt) = argmaxa∈A (s0a + πt,a), the construction of
our estimator (4.6) implies that the one-stage loss function ℓ (s, υt(πt),πt) can be strictly
positive if and only if the selected arm satisfies υt(πt) ̸= argmaxa∈A (sa + πt,a) for the given
vector s ∈ B(sj, d), j ∈ {1, . . . , q}.

Because we consider the scenario when K0 ∩K = ∅, we already observe different maxi-
mizer indices for the true rewards s0 and the considered rewards s before adding the incen-
tives. Therefore, we can simply choose a set of incentives such that the new maximizers after
adding the incentives will still belong to the sets K and K0. For that purpose, we consider
the incentives

πt,a < Rmin + γ + β − d for all a ∈ A \ {κ, κ0} (C.1)

πt,a ≥ Rmin + γ + β − d for a ∈ {κ, κ0} (C.2)

for any κ ∈ K, κ0 ∈ K0 where γ is as introduced in Assumption 4.1. We note that (C.1)
and (C.2) are valid conditions based on Assumption 4.1.

For the rest of our analysis, we define s̃j := arg infs∈B(sj ,d) ∥s0 − s∥∞ as the closest vector
(with respect to the ℓ∞-norm) in ball B(sj, d) to the true reward vector s0. Then, we have
∥s0 − s̃j∥∞ ≥ β − d by construction, and we obtain

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
= P

(
max
a∈A

(sa + πt,a)− sυt(πt) − πt,υt(πt) ≥ o
∣∣∣υt(πt) = argmax

a∈A

(
s0a + πt,a

))
(C.3)
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≥ P
( ⋃

x∈A,y∈A,y ̸=x

x = argmax
a∈A

(
s0a + πt,a

)
, y = argmax

a∈A
(sa + πt,a) , sy + πt,y − sx − πt,x ≥ o

)
(C.4)

≥ P
(
κ = argmax

a∈A
(sa + πt,a), κ

0 = argmax
a∈A

(s0a + πt,a), sκ + πt,κ − sκ0 − πt,κ0 ≥ o

)
(C.5)

≥ P
(
κ = argmax

a∈A
(sa + πt,a), κ

0 = argmax
a∈A

(s0a + πt,a), sκ + πt,κ − sκ0 − πt,κ0 ≥ o∣∣∣(C.1), (C.2)) · P ((C.1), (C.2))

(C.6)

= P
(
sκ0 − sκ + o ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)
·
∏

a∈{κ,κ0}

P (πt,a ≥ Rmin + γ + β − d)

·
∏

a∈A\{κ,κ0}

P (πt,a < Rmin + γ + β − d) (C.7)

≥ P
(
sκ0 − sκ + o ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)
·
∏

a∈{κ,κ0}

P (πt,a ≥ Rmin + γ + β − d)

·
∏

a∈A\{κ,κ0}

P (πt,a ≤ Rmin + γ) (C.8)

= P
(
sκ0 − sκ + o ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)
·
∏

a∈{κ,κ0}

(
1− Rmin + γ + β − d− C

C − C

)
·

∏
a∈A\{κ,κ0}

Rmin + γ − C

C − C
(C.9)

= P
(
sκ0 − sκ + o ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)
] ·

∏
a∈{κ,κ0}

(
1− γ + β − d

C − C

)
·

∏
a∈A\{κ,κ0}

γ

C − C

(C.10)

where (C.7) follows since πt,a’s are considered to be independent random variables, (C.9)
follows since πt,a ∼ U(C,C),∀a ∈ A, and (C.10) follows since C = Rmin by Assumption 4.1.

For the first term in (C.10), notice that the case that sκ0−sκ = s0κ0−s0κ = 0 cannot occur.
This can only happen if κ0 ∈ K and κ ∈ K0 which contradicts with the conditionK0∩Kt = ∅.
Similarly, s0 cannot be the all-zeros vector under the given condition K0 ∩Kt = ∅. Further,
since 0 < o < δ = s0κ0−maxa∈A\{K0} s

0
a by definition, we know that sκ0−sκ+o < s0κ0−s0κ holds.

This implies that the first probability term in (C.10) has a nonzero value and can be bounded
by using the cumulative distribution function (cdf) of πt,a − πt,a′ which is the difference of
two identically and independently distributed (iid) Uniform random variables. The difference
πt,a − πt,a′ follows a triangular distribution whose cdf can be explicitly computed as in B.12
from Appendix B.1.1. Using this cdf, we derive a strictly positive lower bound for the first
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term in (C.10).

P
(
sκ0 − sκ + o ≤ πt,κ − πt,κ0 < s0κ0 − s0κ

)
≥ P

(
sκ0 − sκ + o ≤ πt,κ − πt,κ0 < s0κ0 − s0κ, sκ0 − sκ + o < 0

)
(C.11)

= 1−
(s0κ0 − s0κ + C − C)2

2(C − C)2
− (sκ0 − sκ + o+ C − C)2

2(C − C)2
(C.12)

= 1−
(s0κ0 − s0κ)

2 + (sκ0 − sκ + o)2 + 2(C − C)2 + 2(C − C)(sκ0 − sκ + o− s0κ0 + s0κ)

2(C − C)2

(C.13)

=
−(s0κ0 − s0κ)

2 − (sκ0 − sκ + o)2 + 2(C − C)(sκ − sκ0 − o+ s0κ0 − s0κ)

2(C − C)2
(C.14)

≥
−(s0κ0 − s0κ)

2 − (sκ0 − sκ + o)2 + 2(C − C)(s0κ0 − s0κ)

2(C − C)2
(C.15)

where the last line follows since we consider the case sκ0 − sκ + o < 0 for this lower bound.
Then,

≥
(s0κ0 − s0κ)

2 − o2

2(C − C)2
> 0 (C.16)

which follows since s0κ0 − s0κ ≤ C −C by definition and sκ0 − sκ < 0 based on the considered
case. Combining this last result with (C.10), we obtain the following nonzero lower bound
for the desired probability.

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
≥
(
(s0κ0 − s0κ)

2 − o2

2(C − C)2

)(
1− γ + β − d

C − C

)2(
γ

C − C

)n−2

(C.17)

□

Proof of Proposition 4.2. Similar to our observation in the proof of Proposition 4.1,
the construction of our estimator (4.6) implies that the one-stage loss function ℓ (s, υt(πt),πt)
can be strictly positive if and only if we have υt(πt) ̸= argmaxa∈A (sa + πt,a) for the given
vector s ∈ B(sj, d), j ∈ {1, . . . , q} under the condition of υt(πt) = argmaxa∈A (s0a + πt,a).
Therefore, to prove the lower bound in (4.8), we will consider the event where argmaxa∈A(sa+
πt,a) = 1 and argmaxa∈A(s

0
a+πt,a) = b because of the fact that b ̸= 1. As we have s1 = s01 = 0

by construction, having b = 1 would imply that s0 = s = 0n, and that would contradict with
the definition of s which implies ∥s0 − s∥∞ = |s0b − sb| > β.
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Let ω = sups∈B(sj ,d) maxa∈A{|s0a|, |sa|} be the largest absolute value observed among the
entries of s0 and of all vectors in B(sj, d). Then, we suppose

πt,a < Rmin + γ + β − d for all a ∈ A \ {1, b} (C.18)

πt,a ≥ Rmin + γ + ω for a ∈ {1, b}. (C.19)

which are consistent with Assumption 4.1. These conditions imply that s0κ0 +πt,κ0 < s0a+πt,a

and sκ + πt,κ < sa + πt,a hold for any κ0 ∈ K0, κ ∈ K, a ∈ {1, b}, and that the indices in the
setsK0 andK are no more maximizers after adding the incentives in (C.18)-(C.19). Thus, we
will obtain the desired case (that is argmaxa∈A(sa+πt,a) = 1 and argmaxa∈A(s

0
a+πt,a) = b)

if the events s01 + πt,1 < s0b + πt,b and sb + πt,b < s1 + πt,1 hold.
Further, because |s0b − sb| > β by definition, we know that |s0b − sb| > |s01 − s1| = 0.

Suppose that without loss of generality, we have s0b −sb > s01−s1 = 0 and s0b −sb > β. Then,
our proof follows as

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
= P

(
max
a∈A

(sa + πt,a)− sυt(πt) − πt,υt(πt) ≥ o
∣∣∣υt(πt) = argmax

a∈A
{s0a + πt,a}

)
(C.20)

≥ P
( ⋃

x∈A,y∈A,y ̸=x

x = argmax
a∈A

(
s0a + πt,a

)
, y = argmax

a∈A
(sa + πt,a) , sy + πt,y − sx − πt,x ≥ o

)
(C.21)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a), s1 + πt,1 − sb − πt,b ≥ o

)
(C.22)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a), s1 + πt,1 − sb − πt,b ≥ o∣∣∣(C.18), (C.19))P ((C.18), (C.19))

(C.23)

= P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
·
∏

a∈{1,b}

P (πt,a ≥ Rmin + γ + ω)

·
∏

a∈A\{1,b}

P (πt,a < Rmin + γ + β − d) (C.24)

≥ P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
·
∏

a∈{1,b}

P (πt,a ≥ Rmin + γ + ω)

·
∏

a∈A\{1,b}

P (πt,a ≤ Rmin + γ) (C.25)

= P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
·
∏

a∈{1,b}

(
1− γ + ω

C − C

)
·
∏

a∈A\{1,b}

γ

C − C
(C.26)
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where (C.25) and (C.26) follow since C = Rmin by Assumption 4.1 and πt,a’s are independent
random variables with πt,a ∼ U(C,C), ∀a ∈ A. Next, we bound the first term in (C.26).

P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
= P

(
sb − s1 + s0b − s0b + o ≤ πt,1 − πt,b < s0b − s01

)
(C.27)

≥ P
(
s0b − β − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
(C.28)

= P
(
s0b − β + o ≤ πt,1 − πt,b < s0b

)
(C.29)

We can further bound the last probability by using the cdf (B.12) that is defined as a
piecewise function. For that purpose, we consider the following two mutually exclusive
cases.

– Case 1: C − C ≤ s0b < 0

– Case 2: 0 ≤ s0b ≤ C − C

We also consider the following subcases to bound the two cases above.

– Subcase 1: C − C ≤ s0b < 0 and C − C ≤ s0b − β + o < 0

– Subcase 2: 0 ≤ s0b ≤ C − C and 0 ≤ s0b − β + o ≤ C − C

and compute the lower bounds for these subcases as follows.

P
(
s0b − β + o ≤ πt,1 − πt,b < s0b , Subcase 1

)
=

(s0b + C − C)2

2(C − C)2
− (s0b − β + o+ C − C)2

2(C − C)2
(C.30)

=
(s0b)

2 − (s0b − β + o)2 + 2(s0b − (s0b − β + o))(C − C)

2(C − C)2
(C.31)

=
(s0b)

2 − (s0b − β + o)2 + 2(β − o)(C − C)

2(C − C)2
(C.32)

=
(s0b)

2 − (s0b)
2 − (β − o)2 + 2(β − o)s0b + 2(β − o)(C − C)

2(C − C)2
(C.33)

=
−(β − o)2 + 2(β − o)(s0b + C − C)

2(C − C)2
(C.34)

≥ −(β − o)2 + 2(β − o)2

2(C − C)2
(C.35)

=
(β − o)2

2(C − C)2
(C.36)

where second to the last line follows since we have 0 < β − o ≤ s0b + C − C in this subcase.

P
(
s0b − β + o ≤ πt,1 − πt,b < s0b , Subcase 2

)
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= 1− (s0b + C − C)2

2(C − C)2
− 1 +

(s0b − β + o+ C − C)2

2(C − C)2
(C.37)

=
(C − C − s0b + β − o)2

2(C − C)2
− (C − C − s0b)

2

2(C − C)2
(C.38)

=
(β − o)2 + 2(β − o)(C − C − s0b)

2(C − C)2
(C.39)

≥ (β − o)2

2(C − C)2
(C.40)

where the last inequality follows since we have C − C − s0b ≥ 0 and β − o > 0 by definition.
Next, we use the lower bounds for Subcase 1 and Subcase 2 to bound Case 1 and Case 2.

P
(
s0b − β + o ≤ πt,1 − πt,b < s0b

)
= P

(
s0b − β + o ≤ πt,1 − πt,b < s0b ,Case 1

)
+ P

(
s0b − β + o ≤ πt,1 − πt,b < s0b ,Case 2

)
(C.41)

≥ P
(
s0b − β + o ≤ πt,1 − πt,b < s0b , Subcase 1

)
+ P

(
s0b − β + o ≤ πt,1 − πt,b < s0b , Subcase 2

)
(C.42)

≥ (β − o)2

(C − C)2
(C.43)

We conclude our proof by combining the last result with (C.26) which yields

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
≥ (β − o)2

(C − C)2

(
1− γ + ω

C − C

)2(
γ

C − C

)n−2

(C.44)

□

Proof of Proposition 4.3. Our proof mainly follows arguments similar to those in the
proof of Proposition 4.2. Recall that b ̸= 1 (because s is defined such that ∥s0−s∥∞ > β) and
that either sb > 0 or s0b > 0 holds. We use the definition of ω = sups∈B(sj ,d) maxa∈A{|s0a|, |sa|}
and consider the following set of incentives.

πt,a < Rmin + γ + β − d for all a ∈ A \ {1, b} (C.45)

πt,b ≥ Rmin + γ + β − d (C.46)

πt,1 ≥ Rmin + γ + ω (C.47)

which are compatible with Assumption 4.1.
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By construction of s, we know that |sb − s0b | > |s1 − s01| = 0. Then, without loss of
generality, we suppose that s0b − sb > s01 − s1 = 0 and s0b − sb > β.

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
= P

(
max
a∈A

(sa + πt,a)− sυt(πt) − πt,υt(πt) ≥ o
∣∣∣υt(πt) = argmax

a∈A
{s0a + πt,a}

)
(C.48)

≥ P
( ⋃

x∈A,y∈A,y ̸=x

x = argmax
a∈A

(
s0a + πt,a

)
, y = argmax

a∈A
(sa + πt,a) , sy + πt,y − sx − πt,x ≥ o

)
(C.49)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a), s1 + πt,1 − sb − πt,b ≥ o

)
(C.50)

≥ P
(
1 = argmax

a∈A
(sa + πt,a), b = argmax

a∈A
(s0a + πt,a), s1 + πt,1 − sb − πt,b ≥ o∣∣∣(C.45)− (C.47)

)
· P ((C.45)− (C.47))

(C.51)

= P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
· P (C.46) · P (C.47)

·
∏

a∈A\{1,b}

P (πt,a < Rmin + γ + β − d)

(C.52)

≥ P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
· P (C.46) · P (C.47) ·

∏
a∈A\{1,b}

P (πt,a ≤ Rmin + γ)

(C.53)

= P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)(
1− γ + β − d

C − C

)(
1− γ + ω

C − C

)
·
∏

a∈A\{1,b}

γ

C − C

(C.54)

where (C.52) follows as πt,a’s are independent random variables and (C.54) follows since we
assume that C = Rmin by Assumption 4.1 and πt,a ∼ U(C,C), ∀a ∈ A.

Then, by using similar arguments as in (C.27)-(C.43) from the proof of Proposition 4.2,
we get the following lower bound for the first term in (C.54)

P
(
sb − s1 + o ≤ πt,1 − πt,b < s0b − s01

)
≥ P

(
s0b − β + o ≤ πt,1 − πt,b < s0b

)
≥ (β − o)2

(C − C)2

(C.55)
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and obtain the desired result.

P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(
s0a + πt,a

))
≥ (β − o)2

(C − C)2

(
1− γ + β − d

C − C

)(
1− γ + ω

C − C

)(
γ

C − C

)n−2

(C.56)

□

Proof of Proposition 4.4. We derive the desired lower bound by conditioning on the
case when the imperfect-knowledge agent selects the true maximizer arm at time t ∈ T .

P (ℓ (s, υt(πt),πt) ≥ o)

≥ P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(s0a + πt,a)

)
P
(
υt(πt) = argmax

a∈A
(s0a + πt,a)

)
(C.57)

= P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(s0a + πt,a)

)
(1− pt) (C.58)

≥ P
(
ℓ (s, υt(πt),πt) ≥ o

∣∣∣υt(πt) = argmax
a∈A

(s0a + πt,a)

)(
1− k

√
log 2t√
t

)
(C.59)

where the last inequality follows by Assumption 4.2. Then, we observe that the following
three conditions are mutually exclusive events

i. K0 ∩K = ∅

ii. K0 ∩K ̸= ∅ and b /∈ K0 ∩K

iii. K0 ∩K ̸= ∅ and b ∈ K0 ∩K

which allows us to combine the results of Propositions 4.1-4.3 and obtain

(C.59) =
∑

j∈{i,ii,iii}

P
(
ℓ (s, υt(πt),πt) ≥ o, j

∣∣∣υt(πt) = argmax
a∈A

(s0a + πt,a)

)(
1− k

√
log 2t√
t

)
(C.60)

≥ α(β − o)2
(
1− k

√
log 2t√
t

)
(C.61)

for some constant α > 0. □

Proof of Proposition 4.5. We derive the given concentration bound by using the
bounded differences inequality (i.e., McDiarmid’s inequality) (Boucheron et al. 2013). So,
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we begin by showing that the loss function LΛ(k̃,t) (s,Υt(Πt),Πt) has the bounded differences
property.

We first note that the single-step loss function

ℓ (s, υτ (πτ ),πτ ) = max
a∈A

(
sa + πτ,a − sυτ (πτ ) − πτ,υτ (πτ )

)
(C.62)

is bounded from below and above as

(2Rmin −Rmax)− (2Rmax + γ −Rmin) ≤ ℓ (s, υτ (πτ ),πτ )

≤ (2Rmax + γ −Rmin)− (2Rmin −Rmax)
(C.63)

3Rmin − 3Rmax − γ ≤ ℓ (s, υτ (πτ ),πτ ) ≤ 3Rmax − 3Rmin + γ (C.64)

since sa ∈ S = [Rmin −Rmax, Rmax −Rmin] and πτ,a ∈ C = [Rmin, Rmax + γ] for all a ∈ A, τ ∈
T by definition.

Now, recall that the sequence of incentives Πt = {π1, . . . ,πτ̃ , . . . ,πt−1} ∈ Cn×(t−1) in-
cludes (t− 1) vectors of dimension n = |A| by definition. For a particular τ̃ ∈ {1, . . . , t− 1},
we define π′

τ̃ = {πτ̃ ,1, . . . , π
′
τ̃ ,p, . . . , πτ̃ ,n} such that it has the same components with πτ̃ except

the value at index p. Then, for Π′
t = {π1, . . . ,π

′
τ̃ , . . . ,πt−1}, we have∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− LΛ(k̃,t) (s,Υt(Π

′
t),Π

′
t)
∣∣∣

=

∣∣∣∣∣ ∑
τ∈Λ(k̃,t)

ℓ (s, υτ (πτ ),πτ )− ℓ (s, υτ (π
′
τ ),π

′
τ )

∣∣∣∣∣ (C.65)

=
∣∣∣ℓ (s, υτ̃ (πτ̃ ),πτ̃ )− ℓ (s, υτ̃ (π

′
τ̃ ),π

′
τ̃ )
∣∣∣ (C.66)

≤ 6Rmax − 6Rmin + 2γ (C.67)

where the last result follows by (C.64). Because this result holds for any τ̃ ∈ {1, . . . , t− 1}
and any index p ∈ {1, . . . , n}, it shows that the bounded differences property holds for

LΛ(k̃,t) (s,Υt(Πt),Πt). Therefore, we can directly use the bounded differences inequality
(Boucheron et al. 2013) to obtain

P
(
LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt) ≥ ν

)
≤ exp

(
− 2ν2

(η(k̃, t)− 1)n (6Rmax − 6Rmin + 2γ)2

)
(C.68)

for any ν > 0. Because the bounded differences property (C.67) is symmetric, the loss

LΛ(k̃,t) (s,Υt(Πt),Πt) also satisfies the lower-tail inequality

P
(
LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt) ≤ −ν

)
≤ exp

(
− 2ν2

(η(k̃, t)− 1)n (6Rmax − 6Rmin + 2γ)2

)
(C.69)
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for any ν > 0. Lastly, combining the last two inequalities gives us desired the concentration
bound and completes our proof. □

Proof of Proposition 4.6. First, we recall the finite subcover {B(sj, d) : sj ∈ F}qj=1

of a collection of open balls covering F for finite q > 0 and d < β. Now, we also define the

vector sjt = arg sups∈B(sj ,d)

∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)
∣∣∣. Then, we have

sup
s∈F

∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)
∣∣∣

≤ max
j∈[q]

sup
s∈B(sj ,d)

∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)
∣∣∣ (C.70)

= max
j∈[q]

∣∣∣LΛ(k̃,t)
(
sjt ,Υt(Πt),Πt

)
− ELΛ(k̃,t)

(
sjt ,Υt(Πt),Πt

)∣∣∣ (C.71)

where [q] = {1, . . . , q}, and the first inequality follows because F ⊆
⋃q

j=1 B(sj, d) by con-
struction. We then follow by

P
(
sup
s∈F

∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)
∣∣∣ ≥ ν

)
≤ P

(
max
j∈[q]

∣∣∣LΛ(k̃,t)
(
sjt ,Υt(Πt),Πt

)
− ELΛ(k̃,t)

(
sjt ,Υt(Πt),Πt

)∣∣∣ ≥ ν

)
(C.72)

≤ P
( ⋃

j∈[q]

∣∣∣LΛ(k̃,t)
(
sjt ,Υt(Πt),Πt

)
− ELΛ(k̃,t)

(
sjt ,Υt(Πt),Πt

)∣∣∣ ≥ ν

)
(C.73)

≤
∑
j∈[q]

P
(∣∣∣LΛ(k̃,t)

(
sjt ,Υt(Πt),Πt

)
− ELΛ(k̃,t)

(
sjt ,Υt(Πt),Πt

)∣∣∣ ≥ ν
)

(C.74)

≤
∑
j∈[q]

2 exp

(
− 2ν2

(η(k̃, t)− 1)n(6Rmax − 6Rmin + 2γ)2

)
(C.75)

= 2q exp

(
− 2ν2

(η(k̃, t)− 1)n(6Rmax − 6Rmin + 2γ)2

)
(C.76)

where (C.74) follows by Boole’s inequality (i.e., union bound) and (C.75) follows by Propo-
sition 4.5. Note that Proposition 4.5 holds for any vector s ∈ S, and hence, it also holds for
sjt .

Lastly, it remains to provide an upper bound for the covering number q. We compute this
bound by using the volume ratios and definition of the set S = [Rmin −Rmax, Rmax −Rmin].

q = N (d,F , ∥ · ∥) ≤ vol(F)

vol(B(sj, d))
≤ vol(Sn)

vol(B(sj, d))
≤ (Rmax −Rmin)

n

dn
(C.77)
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Suppose that we have d = n
√
β. Then, combining (C.76) and (C.77) gives us the desired

result.

P
(
sup
s∈F

∣∣∣LΛ(k̃,t) (s,Υt(Πt),Πt)− ELΛ(k̃,t) (s,Υt(Πt),Πt)
∣∣∣ ≥ ν

)
≤ 2

(Rmax −Rmin)
n

β
exp

(
− 2ν2

(η(k̃, t)− 1)n(6Rmax − 6Rmin + 2γ)2

)
(C.78)

= 2 exp

(
− 2ν2

(η(k̃, t)− 1)n(6Rmax − 6Rmin + 2γ)2
− log β + n log(Rmax −Rmin)

)
(C.79)

□

Proof of Lemma 4.1. The given lower bound can be derived by considering the time
steps τ ∈ Λ(k̃, t) where the agent selects a reward-maximizer arm υτ (πτ ) = argmaxa∈A s0a +

πτ,a. Further, recall that the set Λ(k̃, t) consists of random time points which makes η(k̃, t)
a random variable. Thus, we start by computing a lower bound for the conditional expected
loss given the set Λ(k̃, t).

E
[
LΛ(k̃,t)

(
sFt ,Υt(Πt),Πt

) ∣∣∣Λ(k̃, t)] (C.80)

= E
[ ∑

τ∈Λ(k̃,t)

ℓ
(
sFt , υτ (πτ ),πτ

) ∣∣∣Λ(k̃, t)] (C.81)

≥ E
[ ∑

τ∈Λ(k̃,t)

ℓ
(
sFt , υτ (πτ ),πτ

)
· 1
{
υτ (πτ ) = argmax

a∈A
s0a + πτ,a

}∣∣∣Λ(k̃, t)] (C.82)

≥
∑

τ∈Λ(k̃,t)

oP
(
ℓ
(
sFt , υτ (πτ ),πτ

)
≥ o
)
(1− pτ ) (C.83)

≥ αo(β − o)2
∑

τ∈Λ(k̃,t)

(
1− k

√
log 2τ√
τ

)2

(C.84)

≥ αo(β − o)2
∑

τ∈Λ(k̃,t)

(
1− k

√
log 2k̃/

√
k̃

)2

(C.85)

= α

(
1− k

√
log 2k̃/

√
k̃

)2

o(β − o)2η(k̃, t) (C.86)

where (C.83) follows by considering whether the single-step loss function ℓ
(
sFt , υτ (πτ ),πτ

)
is zero or strictly positive, and (C.84) follows by Assumption 4.2 and Proposition 4.4 for any
o ∈ (0, β).
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Next, we take the expectation of both sides of the last inequality and get

E
[
E
[
LΛ(k̃,t)

(
sFt ,Υt(Πt),Πt

) ∣∣∣Λ(k̃, t)]] = ELΛ(k̃,t)
(
sFt ,Υt(Πt),Πt

)
≥ α

(
1− k

√
log 2k̃/

√
k̃

)2

o(β − o)2Eη(k̃, t)

(C.87)

Lastly, we substitute o = β/3 to maximize the lower bound that we have in the last line
above and conclude our proof by

ELΛ(k̃,t)
(
sFt ,Υt(Πt),Πt

)
≥

4α
(
1− k

√
log 2k̃/

√
k̃
)2

27
β3Eη(k̃, t) (C.88)

□

Proof of Lemma 4.2. First, we recall that the single-step loss ℓ (s0, υτ (πτ ),πτ ) be-
comes 0 when the agent selects the true maximizer arm (i.e., υτ (πτ ) = argmaxa∈A s0a+πτ,a).
Thus, in this proof, it suffices to consider only the time steps where the agent selects an
arbitrary non-maximizer arm υτ (πτ ) ∈ A. Because υτ (πτ ) is not the true maximizer arm,
we have s0υτ (πτ )

+ πτ,υτ (πτ ) < s0a + πτ,a for some a ∈ A \ {υτ (πτ )}. Further, we know that by
definition

ℓ
(
s0, υτ (πτ ),πτ

)
= max

a∈A

(
s0a + πτ,a

)
− s0υτ (πτ ) − πτ,υτ (πτ ) ≤ 3(Rmax −Rmin) + γ (C.89)

since sa ∈ S = [Rmin −Rmax, Rmax−Rmin] and πτ,a ∈ C = [Rmin, Rmax+ γ] for all a, τ . Then,
we have

EL
(
s0,Υt(Πt),Πt

)
=

t−1∑
τ=1

Eℓ
(
s0, υτ (πτ ),πτ

)
(C.90)

=
t−1∑
τ=1

Eℓ
(
s0, υτ (πτ ),πτ

)
1
{
υτ (πτ ) ̸= argmax

a∈A
s0a + πτ,a

}
(C.91)

≤ (3(Rmax −Rmin) + γ)
t−1∑
τ=1

pτ (C.92)

≤ (3(Rmax −Rmin) + γ)
t−1∑
τ=1

k

√
log 2τ√
τ

(C.93)

≤ k (3(Rmax −Rmin) + γ)

(√
log 2 +

∫ t−1

τ=1

√
log 2τ√
τ

dτ

)
(C.94)

= k (3(Rmax −Rmin) + γ)
(√

log 2 +
√
2
√

(2t− 2) log(2t− 2)
)

(C.95)
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≤ k (3(Rmax −Rmin) + γ)
(√

log 2 + 2
√

t log(2t)
)

(C.96)

≤ 3k (3(Rmax −Rmin) + γ)
√
t log(2t) (C.97)

where (C.93) follows by Assumption 4.2. □

Proof of Lemma 4.3. Similar to our argument in the proof of Lemma 4.2, we note
that the single-step loss ℓ (s0, υτ (πτ ),πτ ) becomes 0 when the agent selects the true reward-
maximizer arm, υτ (πτ ) = argmaxa∈A s0a + πτ,a. Therefore, we only need to bound the
single-step loss at the time steps where the agent selects an arbitrary non-maximizer arm
υτ (πτ ) ∈ A.

L
(
s0,Υt(Πt),Πt

)
=

t−1∑
τ=1

ℓ
(
s0, υτ (πτ ),πτ

)
1
{
υτ (πτ ) ̸= argmax

a∈A
s0a + πτ,a

}
(C.98)

=
t−1∑
τ=1

max
a∈A

{
s0a + πτ,a − s0υτ (πτ ) − πτ,υτ (πτ )

}
1
{
υτ (πτ ) ̸= argmax

a∈A
s0a + πτ,a

}
(C.99)

We next compute the concentration inequality for the sum of identity functions in the last
expression above which are independent Bernoulli variables.

P

(
t−1∑
τ=1

1
{
υτ (πτ ) ̸= argmax

a∈A
s0a + πτ,a

}
− E

t−1∑
τ=1

1
{
υτ (πτ ) ̸= argmax

a∈A
s0a + πτ,a

}
≥ ν

)

≤ exp

(
− 2ν2

t− 1

)
(C.100)

where the last inequality follows by Hoeffding’s Inequality (Boucheron et al. 2013) for any

ν > 0. Here, we note that maxa∈A

{
s0a + πτ,a − s0υτ (πτ )

− πτ,υτ (πτ )

}
for all τ ≤ t − 1 is

a constant value for a given sequence of incentives Πt = {π1,π2, . . . ,πt−1}. Further, we

know that maxa∈A

{
s0a + πτ,a − s0υτ (πτ )

− πτ,υτ (πτ )

}
≤ 3Rmax − 3Rmin + γ since sa ∈ S =

[Rmin − Rmax, Rmax − Rmin] and πτ,a ∈ C = [Rmin, Rmax + γ] for all a ∈ A, τ ∈ T . Then, the
last result implies

P
(
L
(
s0,Υt(Πt),Πt

)
− EL

(
s0,Υt(Πt),Πt

)
≥ (3Rmax − 3Rmin + γ) ν

)
≤ exp

(
− 2ν2

t− 1

)
(C.101)

Last, replacing ν = (3Rmax − 3Rmin + γ) ν for any ν > 0, we obtain the concentration
inequality for L (s0,Υt(Πt),Πt) as

P
(
L
(
s0,Υt(Πt),Πt

)
− EL

(
s0,Υt(Πt),Πt

)
≥ ν

)
≤ exp

(
− 2ν2

(t− 1) (3Rmax − 3Rmin + γ)2

)
(C.102)
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for any ν > 0. □

Proof of Theorem 4.1. We let sFt = arg infs∈F L(s,Υt(Πt),Πt) for notational conve-
nience. Then, we begin by considering any constant ν > 0 such that

3ν < ELΛ(k̃,t)(sFt ,Υt(Πt),Πt)− EL(s0,Υt(Πt),Πt) (C.103)

where LΛ(k̃,t)(sFt ,Υt(Πt),Πt) is as introduced in (4.12). For the ν being considered,

If L(s0,Υt(Πt),Πt) < EL(s0,Υt(Πt),Πt) + ν

and LΛ(k̃,t)(sFt ,Υt(Πt),Πt) > ELΛ(k̃,t)(sFt ,Υt(Πt),Πt)− ν

then it follows that L(s0,Υt(Πt),Πt) < LΛ(k̃,t)(sFt ,Υt(Πt),Πt). Now, we take the contra-
positive of this ‘if’ statement:

If we have LΛ(k̃,t)(sFt ,Υt(Πt),Πt) ≤ L (s0,Υt(Πt),Πt), then either L(s0,Υt(Πt),Πt) ≥
EL(s0,Υt(Πt),Πt) + ν or LΛ(k̃,t)(sFt ,Υt(Πt),Πt) ≤ ELΛ(k̃,t)(sFt ,Υt(Πt),Πt) − ν will hold
for the ν being considered.

Further, we know that LΛ(k̃,t) (s,Υt(Πt),Πt) ≤ L (s,Υt(Πt),Πt) for any s ∈ S and all
t ∈ T by definition. Thus, we have

P
(
L(sFt ,Υt(Πt),Πt) ≤ L(s0,Υt(Πt),Πt)

)
≤ P

(
LΛ(k̃,t)(sFt ,Υt(Πt),Πt) ≤ L(s0,Υt(Πt),Πt)

)
(C.104)

≤ P
(
L(s0,Υt(Πt),Πt) ≥ EL(s0,Υt(Πt),Πt) + ν

)
+ P

(
LΛ(k̃,t)(sFt ,Υt(Πt),Πt) ≤ ELΛ(k̃,t)(sFt ,Υt(Πt),Πt)− ν

)
(C.105)

≤ exp

(
− 2ν2

(t− 1) (3Rmax − 3Rmin + γ)2

)
+

(Rmax −Rmin)
n

β
exp

(
− 2ν2

(η(k̃, t)− 1)n(6Rmax − 6Rmin + 2γ)2

)
(C.106)

≤ exp

(
− 2ν2

(t− 1)n (6Rmax − 6Rmin + 2γ)2

)
+

(Rmax −Rmin)
n

β
exp

(
− 2ν2

(t− 1)n(6Rmax − 6Rmin + 2γ)2

)
(C.107)

= exp

(
− 2ν2

(t− 1)n (6Rmax − 6Rmin + 2γ)2

)(
1 +

(Rmax −Rmin)
n

β

)
(C.108)

≤ exp

(
− 2ν2

(t− 1)n (6Rmax − 6Rmin + 2γ)2

)(
1 +

(2Rmax − 2Rmin)
n

β

)
(C.109)
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where (C.106) follows by Lemma 4.3 and Proposition 4.6. Notice that β < 2Rmax − 2Rmin

by construction.

≤ 2 exp

(
− 2ν2

(t− 1)n(6Rmax − 6Rmin + 2γ)2

)
(2Rmax − 2Rmin)

n

β
(C.110)

= 2 exp

(
− 2ν2

(t− 1)n(6Rmax − 6Rmin + 2γ)2
− log β + n log(2Rmax − 2Rmin)

)
(C.111)

for the ν being considered. Suppose ν = (ELΛ(k̃,t)(sFt ,Υt(Πt),Πt) − EL(s0,Υt(Πt),Πt))/4.
Then,

= 2 exp

(
− 2(ELΛ(k̃,t)(sFt ,Υt(Πt),Πt)− EL(s0,Υt(Πt),Πt))

2

(t− 1)16n(6Rmax − 6Rmin + 2γ)2

− log β + n log(2Rmax − 2Rmin)

)
(C.112)

≤ 2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log β + n log(2Rmax − 2Rmin)

)
(C.113)

where the last inequality follows since ELΛ(k̃,t)
(
sFt ,Υt(Πt),Πt

)
−EL (s0,Υt(Πt),Πt) ≥ λt >

0 by Lemma 4.1 and Lemma 4.2 for t ∈ [k̃, T ]. □

Proof of Corollary 4.1. We first recall that the principal’s estimator ŝprt (4.6) is de-
fined such that it satisfies L (ŝprt ,Υt(Πt),Πt) ≤ L (s0,Υt(Πt),Πt). Then, we have the fol-
lowing implication{

∥s0 − ŝprt ∥∞ > β
}
⊆
{
∃s : ∥s0 − s∥∞ > β and L (s,Υt(Πt),Πt) ≤ L

(
s0,Υt(Πt),Πt

)}
(C.114)

⊆
{
inf
s∈F

L (s,Υt(Πt),Πt) ≤ L
(
s0,Υt(Πt),Πt

)}
(C.115)

which gives us the desired bound as follows.

P
(
∥s0 − ŝprt ∥∞ > β

)
≤ P

(
inf
s∈F

L (s,Υt(Πt),Πt) ≤ L
(
s0,Υt(Πt),Πt

))
(C.116)

≤ 2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log β + n log(2Rmax − 2Rmin)

)
(C.117)

where the last inequality follows by Theorem 4.1. □
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C.1.2 Results in Section 4.3

Proof of Proposition 4.7. We start by recalling the definition of j∗t in Algorithm 3
(line 18) which implies

P
(
j∗t ̸= j∗,0

)
≤ P

( ⋃
j∗t ∈A

Ṽ (j∗,0, ŝprt ; θ̂t) < Ṽ (j∗t , ŝ
pr
t ; θ̂t)

)
(C.118)

≤
∑
j∗t ∈A

P
(
Ṽ (j∗,0, ŝprt ; θ̂t) < Ṽ (j∗t , ŝ

pr
t ; θ̂t)

)
(C.119)

=
∑
j∗t ∈A

P
(
θ̂t,j∗,0 − θ̂t,j∗t < ŝprt,j∗t − ŝprt,j∗,0

)
(C.120)

Observe that by definition of j∗,0 = argmaxj∈A Ṽ (j, s0;θ0) = argmaxj∈A θ0j − (maxa∈A s0a)+
s0j , it follows that θ

0
j∗t
− θ0j∗,0 ≤ s0j∗,0 − s0j∗t . Then,

(C.120)

=
∑
j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) + (θ0j∗t − θ̂t,j∗t ) < (ŝprt,j∗t − s0j∗t ) + (s0j∗,0 − ŝprt,j∗,0)

)
(C.121)

=
∑
j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) + (θ0j∗t − θ̂t,j∗t ) < (ŝprt,j∗t − s0j∗t ) + (s0j∗,0 − ŝprt,j∗,0)

∣∣∣∥s0 − ŝprt ∥∞ ≤ βt

)
· P
(
∥s0 − ŝprt ∥∞ ≤ βt

)
+ P

(
(θ̂t,j∗,0 − θ0j∗,0) + (θ0j∗t − θ̂t,j∗t ) < (ŝprt,j∗t − s0j∗t ) + (s0j∗,0 − ŝprt,j∗,0)

∣∣∣∥s0 − ŝprt ∥∞ > βt

)
· P
(
∥s0 − ŝprt ∥∞ > βt

)
≤
∑
j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) + (θ0j∗t − θ̂t,j∗t ) ≤ 2βt

)
+ nP

(
∥s0 − ŝprt ∥∞ > βt

)
(C.122)

≤
∑
j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) + (θ0j∗t − θ̂t,j∗t ) ≤ 2βt

)
+ 2n exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log βt + n log(2Rmax − 2Rmin)

)
(C.123)

where the last inequality follows by Theorem 4.1. Then, we can bound the first term in the
last result as follows.∑

j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) ≤ 2βt − (θ0j∗t − θ̂t,j∗t )

)
=
∑
j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) ≤ 2βt − (θ0j∗t − θ̂t,j∗t )

∣∣∣θ0j∗t − θ̂t,j∗t < 3βt

)
P
(
θ0j∗t − θ̂t,j∗t < 3βt

)



APPENDIX C. APPENDIX FOR CHAPTER 4 127

+ P
(
(θ̂t,j∗,0 − θ0j∗,0) ≤ 2βt − (θ0j∗t − θ̂t,j∗t )

∣∣∣θ0j∗t − θ̂t,j∗t ≥ 3βt

)
P
(
θ0j∗t − θ̂t,j∗t ≥ 3βt

)
(C.124)

≤
∑
j∗t ∈A

P
(
θ̂t,j∗,0 − θ0j∗,0 ≤ −βt

)
+ P

(
θ̂t,j∗t − θ0j∗t ≤ −3βt

)
(C.125)

≤
∑
j∗t ∈A

P
(
θ̂t,j∗,0 − θ0j∗,0 ≤ −βt

)
+ P

(
θ̂t,j∗t − θ0j∗t ≤ −βt

)
(C.126)

Note that bounding the two probability terms in the right-hand side of the last inequality
follows a very similar approach to each other due to the definition of θ̂t,a’s given in (4.21).

For any a ∈ A, let T (a, t) be the number of time steps τ ∈ [k̃, t − 1] where: the agent
picks the true reward-maximizer arm, the principal explores, and arm a is the true reward-
maximizer arm for the agent. Then, T (a, t) is the sum of t − k̃ − 1 independent indicator
variables that are independent Bernoulli random variables with success probabilities given
as (1−pτ ) ·ϵprτ ·P (a = argmaxa′∈A s0a′ + πτ,a′). Further, we note that T (a, t) ≥ T (a, t). Then,
for any a ∈ A, we have

P
(
θ̂t,a − θ0a ≤ −βt

)
≤ P

(
θ̂t,a − θ0a ≤ −βt

∣∣∣T (a, t) > ET (a, t)/2
)
P
(
T (a, t) > ET (a, t)/2

)
+ P

(
θ̂t,a − θ0a ≤ −βt

∣∣∣T (a, t) ≤ ET (a, t)/2
)
P
(
T (a, t) ≤ ET (a, t)/2

)
(C.127)

≤ P
(
θ̂t,a − θ0a ≤ −βt

∣∣∣T (a, t) > ET (a, t)/2
)
+ P

(
T (a, t) ≤ ET (a, t)/2

)
(C.128)

Next, we use Hoeffding’s Inequality (Boucheron et al. 2013) and obtain.

≤ exp

(
−ET (a, t)β2

t

(C − C)2

)
+ exp

(
−t

(
ET (a, t)

)2
4

)
(C.129)

We recall that our research problems are well-posed by Assumption 4.1 which ensures that
the principal is able to provide incentives whose magnitudes are sufficiently large to steer
the agent’s decisions. This further implies that the rewards of the principal should be large
enough to compensate these incentives. Therefore, in the denominator of the first term
above, we take the range of µτ,a as [C,C] in in accordance with Assumption 4.1.

The next step is to derive a lower bound for ET (a, t) by using the definition of T (a, t)
and Assumption 4.2.

ET (a, t) =
t−1∑
τ=k̃

(1− pτ ) · ϵprτ · P
(
a = argmax

a′∈A
s0a′ + πτ,a′

)
(C.130)

≥
t−1∑
τ=k̃

(
1− k

√
log 2τ√
τ

)
mpr

τ (1/2−w)
P
(
a = argmax

a′∈A
s0a′ + πτ,a′

)
(C.131)
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We compute a lower bound on the probability P (a = argmaxa′∈A s0a′ + πτ,a′) by using the
cdf derived in (B.12). Since the cdf is a piecewise function, we can consider the case C−C ≤
s0a − s0a′ < 0 to derive a lower bound.

P
(
a = argmax

a′∈A
s0a′ + πτ,a′

)
= P

(
s0a′ + πτ,a′ < s0a + πτ,a, ∀a′ ∈ A \ {a}

)
(C.132)

=
∏

a′∈A\{a}

P
(
πτ,a′ − πτ,a < s0a − s0a′

)
(C.133)

≥
∏

a′∈A\{a}

P
(
πτ,a′ − πτ,a < s0a − s0a′ , C − C ≤ s0a − s0a′ < 0

)
(C.134)

=
∏

a′∈A\{a}

(s0a − s0a′ + C − C)2

2(C − C)2
(C.135)

≥
∏

a′∈A\{a}

(s0a + γ)2

2(C − C)2
(C.136)

=
(s0a + γ)2n−2

2n−1(C − C)2n−2
(C.137)

where the last inequality follows since s0a′ ≤ Rmax − Rmin for all a′ ∈ A and C − C =
Rmax −Rmin + γ by definition. Then, we have

ET (a, t) ≥ (s0a + γ)2n−2

2n−1(C − C)2n−2

t−1∑
τ=k̃

(
1− k

√
log 2τ√
τ

)
mpr

τ (1/2−w)
(C.138)

≥ (s0a + γ)2n−2

2n−1(C − C)2n−2

(
1− k

√
log 2k̃√

k̃

)
mpr

t−1∑
τ=k̃

1

τ (1/2−w)
(C.139)

≥ (s0a + γ)2n−2

2n−1(C − C)2n−2

(
1− k

√
log 2k̃√

k̃

)
mpr

∫ t

τ=k̃

1

τ (1/2−w)
dτ (C.140)

=
(s0a + γ)2n−2

2n−1(C − C)2n−2

(
1− k

√
log 2k̃√

k̃

)
mpr

2
(
tw+1/2 − k̃w+1/2

)
2w + 1

(C.141)

≥ (s0a + γ)2n−2

2n−1(C − C)2n−2

(
1− k

√
log 2k̃√

k̃

)
mpr2− 2w − 1

2w + 1
tw+1/2 (C.142)

where the last inequality always holds for t ≥ k̃ since 0 < w < 1/4 by definition. Combining
this last result with (C.129), we get
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P
(
θ̂t,a − θ0a ≤ −βt

)

≤ exp

−

(s0a+γ)2n−2

2n−1(C−C)2n−2

(
1− k

√
log 2k̃√

k̃

)
mpr 2−2w−1

2w+1
tw+1/2β2

t

(C − C)2

+
1

t2w+2
(C.143)

We now substitute βt = B

√
log 2t

tw/3
as given in Algorithm 3.

≤ exp

−

(s0a+γ)2n−2

2n−1(C−C)2n−2

(
1− k

√
log 2k̃√

k̃

)
mpr 2−2w−1

2w+1
tw+1/2 9k

2(Rmax−Rmin+γ)2n 3√32n(
1−k

√
log 2k̃/

√
k̃

)2 tw+1/2 log 2t
t2w/3

(C − C)2


(C.144)

≤ exp

−(s0a + γ)2n−2

2n−1
mpr2− 2w − 1

2w + 1

9k2 3
√
32n(

1− k

√
log 2k̃/

√
k̃
)tw+1/2 log 2t

t2w/3

 (C.145)

where the last inequality follows since C − C = Rmax −Rmin + γ with γ > 0 by definition.
Now, notice that we can bound each of the constant terms in the last line from below by

1 since we have n ≥ 2, mpr ≥ 1, 0 < γ ≤ Rmax − Rmin − 1, s0a ≥ Rmin − Rmax, 0 < w < 1/4,

k ≥ 1, and k

√
log 2k̃ <

√
k̃ by definition. Then,

P
(
θ̂t,a − θ0a ≤ −βt

)
≤ exp

(
−tw+1/2 log 2t

t2w/3

)
≤ exp(− log 2t) =

1

2t
(C.146)

Substituting this upper bound in (C.126), we obtain∑
j∗t ∈A

P
(
(θ̂t,j∗,0 − θ0j∗,0) + (θ0j∗t − θ̂t,j∗t ) ≤ 2βt

)
≤ n

t
(C.147)

Next, we compute an upper bound for the second part of (C.123). We recall the definition
of λt as given in (4.18).

λt =

4α

(
1− k

√
log 2k̃/

√
k̃

)2

27
β3
tEη(k̃, t)− 3k (3(Rmax −Rmin) + γ)

√
t log(2t) (C.148)



APPENDIX C. APPENDIX FOR CHAPTER 4 130

where η(k̃, t) is defined in (4.11) as the number of time steps within the time interval [k̃, t−1]
where the principal chooses each incentive πt,a uniformly randomly from the compact set C.
By this definition, we can compute a lower bound for Eη(k̃, t) as follows.

Eη(k̃, t) =
t−1∑
τ=k̃

min

{
1,mpr 1

τ (1/2−w)

}
≥ mpr

t−1∑
τ=m̃

1

τ (1/2−w)
≥ mpr

∫ t

τ=m̃

1

τ (1/2−w)
dτ (C.149)

=
2mpr

2w + 1

(
tw+1/2 − m̃w+1/2

)
(C.150)

≥ 2mpr − 2w − 1

2w + 1
tw+1/2 (C.151)

where m̃ ≥ k̃ is the minimum value satisfying mpr ≤ m̃(1/2−w). Then, the last inequality
always holds for t ≥ m̃, 0 < w < 1/4, and mpr ≥ 1. Using this lower bound for Eη(k̃, t), we
obtain

λt

≥
√
t

(
4α
(
1− k

√
log 2k̃/

√
k̃
)2
(2mpr − 2w − 1)

27(2w + 1)
β3
t t

w − 3k (3(Rmax −Rmin) + γ)
√
log 2t

)
(C.152)

For the specified choice of βt, we further have

≥ 3k (3(Rmax −Rmin) + γ)
√
t log 2t

(
4α(2mpr−2w−1)k2(3(Rmax−Rmin)+γ)3n−1

√
32n

3(2w+1)
(
1−k

√
log 2k̃/

√
k̃
) log(2t)− 1

)
(C.153)

≥ 3k (3(Rmax −Rmin) + γ)
√

t log 2t
(√

32n log(2t)− 1
)

(C.154)

≥ 3k (3(Rmax −Rmin) + γ)
√

t log 2t

(√
32n log(2t)−

√
32n

3
log(2t)

)
(C.155)

≥ 2
√
32nk (3(Rmax −Rmin) + γ)

√
t log 2t log(2t) (C.156)

where (C.154) follows by the fact that we can bound each constant term that appears in the
coefficient of log(2t) from below by 1 since we have n ≥ 2, k ≥ 1, 0 < w < 1/4, mpr ≥ 1,

k

√
log 2k̃ <

√
k̃, and α = constant/ (Rmax −Rmin + γ)n for some constant > 0 as introduced

in Proposition 4.4. Also, second to the last inequality above follows for all t ≥ 1 since n ≥ 2
by definition. Then,

exp

(
− 2λ2

t

16n(6Rmax − 6Rmin + 2γ)2(t− 1)
− log βt + n log(2Rmax − 2Rmin)

)
≤ exp

(
− λ2

t

32n(3Rmax − 3Rmin + γ)2t
− log βt + n log(2Rmax − 2Rmin)

)
(C.157)
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≤ exp

(
− 4k2(log 2t)3 − log

(
3k (3(Rmax −Rmin) + γ)n 6

√
32n

1− k

√
log 2k̃/

√
k̃

√
log 2t

tw/3

)

+ n log(2Rmax − 2Rmin)

)
(C.158)

≤ exp

(
− (log 2t)3 − log

(
3k (3(Rmax −Rmin) + γ)n 6

√
32n

1− k

√
log 2k̃/

√
k̃

√
log 2t

tw/3

)

+ n log(2Rmax − 2Rmin)

)
(C.159)

≤
(2Rmax − 2Rmin)

n

(
1− k

√
log 2k̃/

√
k̃

)
3k (3(Rmax −Rmin) + γ)n 6

√
32n

1

tw/3+1/2

tw/3

√
log 2t

(C.160)

=
2n

3n+1k 6
√
32n

1√
t log 2t

(C.161)

where second to the last inequality holds since for all t ≥ 1 and 0 < w < 1/4 it holds that

exp(−(log 2t)3) ≤ exp(−(log 2t)) =
1

t
≤ 1

tw/3+1/2
.

Lastly, substituting the upper bounds in (C.147) and (C.161) into (C.123), we get

P
(
j∗t ̸= j∗,0

)
≤ n

t
+

n5/62n+1

3n+1k 6
√
32

1√
t log 2t

(C.162)

□

Proof of Theorem 4.2. We start by recalling the definition of our regret notion given
in (4.32) and decompose it into two main parts: 1) total costs incurred due to the offered
incentives, 2) total expected rewards collected through the arms chosen by the agent.

Regret (Πϵ,T ) =
∑
t∈T

V (c(θ0, s0);θ0)− Vt(πt;θ
0) (C.163)

=
∑
t∈T

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
+
∑
t∈T

[
θ0υ(c(θ0,s0)) − θ0υt(πt)

]
(C.164)

We let T pr−xplore ∈ T and T pr−xploit ∈ T be the set of random time steps that the principal’s
algorithm (3) performs exploration (lines 11-12) and exploitation (lines 14-20), respectively.
First, we bound the first part of (C.164) as follows.∑

t∈T

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
=

∑
t∈T pr−xplore

∑
a∈A

[
πt,a − ca(θ

0, s0)
]

+
∑

t∈T pr−xploit

∑
a∈A

[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
]

(C.165)
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Notice that the cardinalities of the defined random sets, |T pr−xplore| and |T pr−xploit|, are
random variables. Then, the first part of (C.165) is bounded by considering the following
conditional expectation.

E
[ ∑

t∈T pr−xplore

∑
a∈A

πt,a − ca(θ
0, s0)

∣∣∣T pr−xplore

]
≤ n(C − C)|T pr−xplore| (C.166)

Taking the expectation of both sides in the last inequality, we obtain∑
t∈T pr−xplore

∑
a∈A

πt,a − ca(θ
0, s0) ≤ n(C − C)E|T pr−xplore|

= n(C − C)
T∑
t=1

ϵprt (C.167)

= n(C − C)
T∑
t=1

min

{
1,

mpr

t(1/2−w)

}
(C.168)

≤ nmpr(C − C)
T∑
t=1

1

t1/2−w
(C.169)

≤ mprn(C − C)

(
1 +

∫ T

t=1

1

t1/2−w
dt

)
(C.170)

= mprn(C − C)

(
2

2w + 1
Tw+1/2 +

2w − 1

2w + 1

)
(C.171)

Next, we bound the second part of (C.165) again by considering a conditional expectation.

E
[ ∑

t∈T pr−xploit

∑
a∈A

ca(θ̂t, ŝ
pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit

]
=

∑
t∈T pr−xploit

∑
a∈A

E
[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt

]
P
(
∥s0 − ŝprt ∥∞ ≤ βt

)
+

∑
t∈T pr−xploit

∑
a∈A

E
[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ > βt

]
P
(
∥s0 − ŝprt ∥∞ > βt

)
(C.172)

≤
∑

t∈T pr−xploit

∑
a∈A

E
[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt

]
+ 2n(C − C)

∑
t∈T pr−xploit

exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2

− log βt + n log(2Rmax − 2Rmin)

)
(C.173)
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where the last inequality follows by Corollary 4.1. For the first term in (C.173), we have∑
t∈T pr−xploit

∑
a∈A

E
[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt

]
=

∑
t∈T pr−xploit

∑
a∈A

E
[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt, j∗t = j∗,0

]
· P
(
j∗t = j∗,0

)
+ E

[
ca(θ̂t, ŝ

pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt, j∗t ̸= j∗,0

]
· P
(
j∗t ̸= j∗,0

)
(C.174)

≤
∑

t∈T pr−xploit

E
[
max
a∈A

ŝprt,a − ŝprt,j∗t + 2βt −max
a∈A

s0a + s0j∗,0∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt, j∗t = j∗,0
]

+ n(C − C)P
(
j∗t ̸= j∗,0

)
(C.175)

For convenience, we continue with the notation κt ∈ argmaxa∈A ŝprt,a and κ0 ∈ argmaxa∈A s0a.

=
∑

t∈T pr−xploit

E
[
ŝprt,κt

− ŝprt,j∗t + 2βt − s0κ0 + s0j∗,0
∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt, j∗t = j∗,0

]
+ n(C − C)P

(
j∗t ̸= j∗,0

)
(C.176)

=
∑

t∈T pr−xploit

E
[
(ŝprt,κt

− s0κt
) + (s0κt

− s0κ0) + (s0j∗,0 − ŝprt,j∗t ) + 2βt∣∣∣T pr−xploit, ∥s0 − ŝprt ∥∞ ≤ βt, j∗t = j∗,0
]

+ n(C − C)P
(
j∗t ̸= j∗,0

)
(C.177)

≤
∑

t∈T pr−xploit

4βt + n(C − C)P
(
j∗t ̸= j∗,0

)
(C.178)

≤
∑

t∈T pr−xploit

4βt +
n2(C − C)

t
+

n11/62n+1(C − C)

3n+1k 6
√
32

1√
t log 2t

(C.179)

where the last inequality follows by Proposition 4.7. Substituting βt = B

√
log 2t

tw/3
, we have

=
∑

t∈T pr−xploit

4B

√
log 2t

tw/3
+

n2(C − C)

t
+

n11/62n+1(C − C)

3n+1k 6
√
32

1√
t log 2t

(C.180)

=
12B

3− w
B|T pr−xploit|(1−w/3)

√
log 2|T pr−xploit|+ n2(C − C) log |T pr−xploit|
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+
n11/62n+2(C − C)

3n+1k 6
√
32

√
|T pr−xploit| (C.181)

≤ 12B

3− w
T 1−w/3

√
log 2T + n2(C − C) log T +

n11/62n+2(C − C)

3n+1k 6
√
32

√
T (C.182)

Now, for the same choice of βt, we can bound the second term in (C.173) by following the
same arguments as in (C.148)-(C.161) and obtain

2n(C − C)
∑

t∈T pr−xploit

exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2

− log βt + n log(2Rmax − 2Rmin)

)
≤ 2n+1n5/6(C − C)

3n+1k 6
√
32

∑
t∈T pr−xploit

1√
t log 2t

(C.183)

≤ 2n+1n5/6(C − C)

3n+1k 6
√
32

√
|T pr−xploit| (C.184)

≤ 2n+1n5/6(C − C)

3n+1k 6
√
32

√
T (C.185)

Combining these upper bounds with (C.173), we get

E
[ ∑

t∈T pr−xploit

∑
a∈A

ca(θ̂t, ŝ
pr
t )− ca(θ

0, s0)
∣∣∣T pr−xploit

]

≤ 12B

3− w
T 1−w/3

√
log 2T + n2(C − C) log T +

2n+1n5/6(C − C) (1 + 2n)

3n+1k 6
√
32

√
T (C.186)

Taking the expectation of both sides in the last inequality, we obtain∑
t∈T pr−xploit

∑
a∈A

ca(θ̂t, ŝ
pr
t )− ca(θ

0, s0)

≤ 12B

3− w
T 1−w/3

√
log 2T + n2(C − C) log T +

2n+1n5/6(C − C) (1 + 2n)

3n+1k 6
√
32

√
T (C.187)

Substituting this last result and the result in (C.171) into (C.165), we provide the upper
bound for the first part of our regret notion as follows.∑

t∈T

∑
a∈A

[
πt,a − ca(θ

0, s0)
]
≤ mprn(C − C)

(
2

2w + 1
Tw+1/2 +

2w − 1

2w + 1

)
+

12B

3− w
T 1−w/3

√
log 2T + n2(C − C) log T
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+
2n+1n5/6(C − C) (1 + 2n)

3n+1k 6
√
32

√
T (C.188)

Next, we compute an upper bound for the second part of the regret decomposed in (C.164).∑
t∈T

[
θ0υ(c(θ0,s0)) − θ0υt(πt)

]
=

∑
t∈T pr−xplore

[
θ0υ(c(θ0,s0)) − θ0υt(πt)

]
+

∑
t∈T pr−xploit

[
θ0υ(c(θ0,s0)) − θ0υt(πt)

]
(C.189)

Because the principal’s expected rewards belong to a known compact set Θ, we let Θmax to
be the upper bound on θ0a’s. Then, we can bound the first term in the last inequality above
by following a similar argument as in (C.166)-(C.171).∑

t∈T pr−xplore

[
θ0υ(c(θ0,s0)) − θ0υt(πt)

]
≤ ΘmaxE|T pr−xplore| (C.190)

≤ Θmaxmpr

(
2

2w + 1
Tw+1/2 +

2w − 1

2w + 1

)
(C.191)

To bound the second term in (C.189), we again start by considering a conditional expectation.

E

[ ∑
t∈T pr−xploit

θ0υ(c(θ0,s0)) − θ0υt(πt)

∣∣∣T pr−xploit

]

= E

[ ∑
t∈T pr−xploit

θ0υ(c(θ0,s0)) − θ0υt(πt)

∣∣∣T pr−xploit

]
P
(
υt(πt) ̸= υ(c(θ0, s0))

)
(C.192)

≤ Θmax
∑

t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

)
(C.193)

Now, we need to derive an upper bound for the probability that the arm chosen by the
agent in response to the principal’s exploitation incentives is different than the arm cho-
sen by the perfect-knowledge agent in response to the oracle incentives. Recall that the
perfect-knowledge agent always picks the true reward-maximizer arm, i.e., υ(c(θ0, s0)) =
argmaxa∈A s0a + c0a(θ

0, s0) by construction. On the other hand, for an imperfect-knowledge
learning agent, we need to take into account whether the agent picks the true reward-
maximizer arm or not at a certain time step.∑

t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

)
=

∑
t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

∣∣∣υt(πt) ̸= argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
pt

+ P
(
υt(πt) ̸= υ(c(θ0, s0))

∣∣∣υt(πt) = argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
(1− pt) (C.194)
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≤
∑

t∈T pr−xploit

pt +
∑

t∈T pr−xploit

P
(
υ(c(θ0, s0))

∣∣∣υt(πt) = argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
(C.195)

≤ k̃ +
∑

t∈T pr−xploit,t≥k̃

k

√
log 2t√
t

+
∑

t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

∣∣∣υt(πt) = argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
(C.196)

where the last inequality follows by Assumption 4.2.

≤ k̃ + 2k
√

|T pr−xploit| log 2|T pr−xploit|

+
∑

t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

∣∣∣υt(πt) = argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
(C.197)

≤ k̃ + 2k
√

T log 2T

+
∑

t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

∣∣∣υt(πt) = argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
(C.198)

We now compute an upper bound for the summation in the last line above by recalling that
υ(c(θ0, s0)) = j∗,0 as introduced in Section 4.3.2.1.∑

t∈T pr−xploit

P
(
υt(πt) ̸= υ(c(θ0, s0))

∣∣∣υt(πt) = argmax
a∈A

s0a + ca(θ̂t, ŝ
pr
t )

)
=

∑
t∈T pr−xploit

P
(
argmax

a∈A
s0a + ca(θ̂t, ŝ

pr
t ) ̸= j∗,0

)
(C.199)

=
∑

t∈T pr−xploit

P

 ⋃
a∈A\{j∗,0}

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗,0 + cj∗,0(θ̂t, ŝ

pr
t )

 (C.200)

=
∑

t∈T pr−xploit

P

 ⋃
a∈A\{j∗,0}

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗,0 + cj∗,0(θ̂t, ŝ

pr
t )
∣∣∣j∗t = j∗,0

P
(
j∗t = j∗,0

)

+ P

 ⋃
a∈A\{j∗,0}

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗,0 + cj∗,0(θ̂t, ŝ

pr
t )
∣∣∣j∗t ̸= j∗,0

P
(
j∗t ̸= j∗,0

)
(C.201)
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≤
∑

t∈T pr−xploit

P

 ⋃
a∈A\{j∗,0}

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗,0 + cj∗,0(θ̂t, ŝ

pr
t )
∣∣∣j∗t = j∗,0


+

∑
t∈T pr−xploit

∑
a∈A\{j∗,0}

n

t
+

n5/62n+1

3n+1k 6
√
32

1√
t log 2t

(C.202)

≤
∑

t∈T pr−xploit

P

 ⋃
a∈A\{j∗,0}

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗,0 + cj∗,0(θ̂t, ŝ

pr
t )
∣∣∣j∗t = j∗,0


+ n2 log T +

n11/62n+2

3n+1k 6
√
32

√
T (C.203)

where second to the last line follows by Proposition 4.7 and the last line follows by repeating
the same arguments we had in lines (C.180)-(C.182) at the first part of this proof. To bound
the first term of the last inequality, we use the definition of the exploitation incentives
ca(θ̂t, ŝ

pr
t ) introduced in Algorithm 3.

∑
t∈T pr−xploit

P

 ⋃
a∈A\{j∗,0}

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗,0 + cj∗,0(θ̂t, ŝ

pr
t )
∣∣∣j∗t = j∗,0


=

∑
t∈T pr−xploit

P

 ⋃
a∈A\{j∗t }

s0a + ca(θ̂t, ŝ
pr
t ) > s0j∗t + cj∗t (θ̂t, ŝ

pr
t )

 (C.204)

=
∑

t∈T pr−xploit

P

 ⋃
a∈A\{j∗t }

s0a > s0j∗t +max
a′∈A

ŝprt,a − ŝprt,j∗t + 2βt

 (C.205)

Recall the indices κt ∈ argmaxa∈A ŝprt,a, κ
0 ∈ argmaxa∈A s0a defined earlier for notational

convenience.

≤
∑

t∈T pr−xploit

P
(
s0κ0 > s0j∗t + ŝprt,κt

− ŝprt,j∗t + 2βt

)
(C.206)

=
∑

t∈T pr−xploit

P
(
(s0κ0 − ŝprt,κ0) + (ŝprt,κ0 − ŝprt,κt

) + (ŝprt,j∗t − s0j∗t ) > 2βt

)
(C.207)

Notice that ŝprt,κ0 − ŝprt,κt
≤ 0 by definition. Then,

≤
∑

t∈T pr−xploit

P
(
2max

a∈A
|s0a − ŝprt,a| > 2βt

)
(C.208)

=
∑

t∈T pr−xploit

P
(
∥s0 − ŝprt ∥∞ > βt

)
(C.209)
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≤ 2
∑

t∈T pr−xploit

exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log βt + n log(2Rmax − 2Rmin)

)
(C.210)

which follows by Corollary 4.1. Then, we follow the same arguments as in (C.148)-(C.161)
and continue as

≤ 2n+1

3n+1k 6
√
32n

∑
t∈T pr−xploit

1√
t log 2t

(C.211)

≤ 2n+1

3n+1k 6
√
32n

√
|T pr−xploit| (C.212)

≤ 2n+1

3n+1k 6
√
32n

√
T (C.213)

We substitute this upper bound into first (C.203), then (C.198), and lastly (C.193). Then,
taking the expectation of both sides of the obtained inequality in (C.193) gives us∑

t∈T pr−xploit

θ0υ(c(θ0,s0)) − θ0υt(πt)

≤ Θmax

(
k̃ + 2k

√
T log 2T +

2n+1

3n+1k 6
√
32n

√
T + n2 log T +

n11/62n+2

3n+1k 6
√
32

√
T

)
(C.214)

= Θmax

(
k̃ + 2k

√
T log 2T +

2n+1
(
2n11/6 + 1/ 6

√
n
)

3n+1k 6
√
32

√
T + n2 log T

)
(C.215)

This result together with (C.191) gives us the upper bound for the second part of the regret.
We conclude by combining everything with (C.164) and get the desired regret bound.

Regret (Πϵ,T )

≤ 12B

3− w
T 1−w/3

√
log 2T +mpr

(
n(C − C) + Θmax

)( 2

2w + 1
Tw+1/2 +

2w − 1

2w + 1

)
(C.216)

+ 2kΘmax
√

T log 2T +
2n+1

(
Θmax(2n11/6 + 1/ 6

√
n) + n5/6(C − C) (1 + 2n)

)
3n+1k 6

√
32

√
T (C.217)

+ n2
(
C − C +Θmax

)
log T +Θmaxk̃ (C.218)

□
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C.1.3 Results in Section 4.4

Proof of Lemma 4.4. According to the proposed algorithms (3) and (4), the arm
chosen by the agent at time t ∈ T ag−xploit is defined as υt(πt) = argmaxa∈A ŝagt,a + πt,a and

the incentives provided by the principal at time t ∈ T pr−xploit is given by πt = c(θ̂t, ŝ
pr
t ). We

start our proof by using these definitions.

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xploit
)

= P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣υt(πt) = argmax
a∈A

ŝagt,a + πt,a, πt = c(θ̂t, ŝ
pr
t )

)
(C.219)

= P

(⋃
a′∈A

⋃
a∈A

s0a + ct,a(θ̂t, ŝ
pr
t ) > s0a′ + ct,a′(θ̂t, ŝ

pr
t )
∣∣∣a′ = argmax

a′′∈A
ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )

)
(C.220)

≤
∑
a′∈A

∑
a∈A

P

(
s0a + ct,a(θ̂t, ŝ

pr
t ) > s0a′ + ct,a′(θ̂t, ŝ

pr
t )
∣∣∣a′ = argmax

a′′∈A
ŝag
t,a

′′ + ct,a′′ (θ̂t, ŝ
pr
t )

)
(C.221)

where (C.221) follows by the Boole’s inequality (a.k.a. union bound). We further condition
on whether the chosen arm υt(πt) is same as the desired arm by the principal (j∗t ) or not.

=
∑
a′∈A

∑
a∈A

P
(
ct,a(θ̂t, ŝ

pr
t )− ct,a′(θ̂t, ŝ

pr
t ) > s0a′ − s0a

∣∣∣j∗t = a′, a′ = argmax
a′′∈A

ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

· P
(
j∗t = a′

∣∣∣a′ = argmax
a′′∈A

ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

+ P
(
ct,a(θ̂t, ŝ

pr
t )− ct,a′(θ̂t, ŝ

pr
t ) > s0a′ − s0a

∣∣∣j∗t ̸= a′, a′ = argmax
a′′∈A

ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

· P
(
j∗t ̸= a′

∣∣∣a′ = argmax
a′′∈A

ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

(C.222)

≤
∑
a′∈A

∑
a∈A

P
(
ct,a(θ̂t, ŝ

pr
t )− ct,j∗t (θ̂t, ŝ

pr
t ) > s0j∗t − s0a

)
+ P

(
j∗t ̸= a′

∣∣∣a′ = argmax
a′′∈A

ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

(C.223)
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We can bound the first term in (C.223) from above by using the definition of the principal’s

exploitation incentives c(θ̂t, ŝ
pr
t ) introduced in Algorithm 3.∑

a′∈A

∑
a∈A

P
(
ct,a(θ̂t, ŝ

pr
t )− ct,j∗t (θ̂t, ŝ

pr
t ) > s0j∗t − s0a

)
=
∑
a′∈A

∑
a∈A

P
(
ŝprt,j∗t − s0j∗t + s0a − 2βt > max

a′′∈A
ŝprt,a′′

)
(C.224)

≤
∑
a′∈A

∑
a∈A

P
(
ŝprt,j∗t − s0j∗t + s0a − 2βt > ŝprt,a

)
(C.225)

= n
∑
a∈A

P
(
ŝprt,j∗t − s0j∗t + s0a − ŝprt,a > 2βt

)
(C.226)

We continue by conditioning the last probability on the intersection of the two events A =
{ŝprt,j∗t − s0j∗t ≤ βt} and B = {s0a − ŝprt,a ≤ βt}. Recall that the complement of A ∩ B is equal

to the union of their complements A ∪B.

(C.226) = n
∑
a∈A

P
(
ŝprt,j∗t − s0j∗t + s0a − ŝprt,a > 2βt

∣∣A ∩B
)
P
(
A ∩B

)
+ n

∑
a∈A

P
(
ŝprt,j∗t − s0j∗t + s0a − ŝprt,a > 2βt

∣∣A ∪B
)
P
(
A ∪B

)
(C.227)

≤ n
∑
a∈A

P
(
A ∪B

)
(C.228)

≤ n
∑
a∈A

P
(
ŝprt,j∗t − s0j∗t > βt

)
+ P

(
ŝprt,a − s0a < −βt

)
(C.229)

≤ 2n2P
(
∥ŝprt − s0∥∞ > βt

)
(C.230)

≤ 4n2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log βt + n log(2Rmax − 2Rmin)

)
(C.231)

where the last result follows by Corollary 4.1. Next, we bound the second term in (C.223).∑
a′∈A

∑
a∈A

P
(
j∗t ̸= a′

∣∣∣a′ = argmax
a′′∈A

ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

≤ n2P
(
j∗t ̸= argmax

a′′∈A
ŝag
t,a′′

+ ct,a′′ (θ̂t, ŝ
pr
t )
)

(C.232)

= n2P
( ⋃

a∈A

ŝagt,a + ct,a(θ̂t, ŝ
pr
t ) > ŝagt,j∗t + ct,j∗t (θ̂t, ŝ

pr
t )
)

(C.233)

≤ n2
∑
a∈A

P
(
ŝagt,a + ct,a(θ̂t, ŝ

pr
t ) > ŝagt,j∗t + ct,j∗t (θ̂t, ŝ

pr
t )
)

(C.234)

= n2
∑
a∈A

P
(
ŝprt,j∗t + ŝagt,a − ŝagt,j∗t − 2βt > max

a′∈A
ŝprt,a′
)

(C.235)



APPENDIX C. APPENDIX FOR CHAPTER 4 141

≤ n2
∑
a∈A

P
(
ŝprt,j∗t + ŝagt,a − ŝagt,j∗t − 2βt > ŝprt,a

)
(C.236)

= n2
∑
a∈A

P
(
ŝprt,j∗t + ŝagt,a − ŝagt,j∗t − ŝprt,a + s0a − s0a + s0j∗t − s0j∗t > 2βt

)
(C.237)

= n2
∑
a∈A

P
((

ŝprt,j∗t − s0j∗t

)
+
(
ŝagt,a − s0a

)
+
(
s0j∗t − ŝagt,j∗t

)
+
(
s0a − ŝprt,a

)
> 2βt

)
(C.238)

where (C.233) follows by the Boole’s inequality (a.k.a. union bound) and (C.235) follows

by definition of c(θ̂t, ŝ
pr
t ) as in Algorithm 3. We next condition the last probability on the

intersection of the two events C = {ŝprt,j∗t −s0j∗t ≤ βt/2, ŝ
ag
t,a−s0a ≤ βt/2} and D = {s0j∗t − ŝagt,j∗t ≤

βt/2, s0a − ŝprt,a ≤ βt/2}.

(C.238)

= n2
∑
a∈A

P
((

ŝprt,j∗t − s0j∗t

)
+
(
ŝagt,a − s0a

)
+
(
s0j∗t − ŝagt,j∗t

)
+
(
s0a − ŝprt,a

)
> 2βt

∣∣∣C ∩D
)
P
(
C ∩D

)
+ P

((
ŝprt,j∗t − s0j∗t

)
+
(
ŝagt,a − s0a

)
+
(
s0j∗t − ŝagt,j∗t

)
+
(
s0a − ŝprt,a

)
> 2βt

∣∣∣C ∪D
)
P
(
C ∪D

)
(C.239)

≤ n2
∑
a∈A

P
(
C ∪D

)
(C.240)

≤ n2
∑
a∈A

P
(
ŝprt,j∗t − s0j∗t > βt/2

)
+ P

(
ŝprt,a − s0a < −βt/2

)
+ n2

∑
a∈A

P
(
ŝagt,a − s0a > βt/2

)
+ P

(
ŝagt,j∗t − s0j∗t < −βt/2

)
(C.241)

≤ 2n2P
(
∥ŝprt − s0∥∞ > βt/2

)
+ n2

∑
a∈A

P
(
ŝagt,a − s0a > βt/2

)
+ P

(
ŝagt,j∗t − s0j∗t < −βt/2

)
(C.242)

≤ 4n2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log

βt

2
+ n log(2Rmax − 2Rmin)

)
+ n2

∑
a∈A

P
(
ŝagt,a − s0a > βt/2

)
+ P

(
ŝagt,j∗t − s0j∗t < −βt/2

)
(C.243)

where the last inequality follows by Corollary 4.1. We can bound the first probability term
in (C.243) by recalling that s0a = Eŝagt,a by definition as given in (9). Further, we observe that
T (a, t) ≥ T ag−xplore(a, t) for any a ∈ A, and obtain

n2
∑
a∈A

P
(
ŝagt,a − s0a > βt/2

)
= n2

∑
a∈A

P
(
ŝagt,a − s0a > βt/2

∣∣∣T ag−xplore(a, t) > ET ag−xplore(a, t)− 2(mag)2

n

)
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· P
(
T ag−xplore(a, t) > ET ag−xplore(a, t)− 2(mag)2

n

)
+ n2

∑
a∈A

P
(
ŝagt,a − s0a > βt/2

∣∣∣T ag−xplore(a, t) ≤ ET ag−xplore(a, t)− 2(mag)2

n

)
· P
(
T ag−xplore(a, t) ≤ ET ag−xplore(a, t)− 2(mag)2

n

)
(C.244)

≤ n2
∑
a∈A

P
(
ŝagt,a − s0a > βt/2

∣∣∣T ag−xplore(a, t) > ET ag−xplore(a, t)− 2(mag)2

n

)
+ n2

∑
a∈A

P
(
T ag−xplore(a, t) ≤ ET ag−xplore(a, t)− 2(mag)2

n

)
(C.245)

Now, we can use Hoeffding’s Inequality (Boucheron et al. 2013) to bound the the first
probability term in the last inequality above. For the second probability term, we notice
that by construction of Algorithm 4, we have T ag−xplore(a, t) =

∑t−1
τ=1 1(υτ (πτ ) = a) where

indicator variables 1(υτ (πτ ) = a)’s are defined as independent Bernoulli random variables
with success probabilities ϵagτ /n. Hence, Hoeffding’s Inequality can also be used for the
second term.

(C.245) ≤ n2
∑
a∈A

exp

(
−
(
ET ag−xplore(a, t)− 2(mag)2/n

)
β2
t

8(Rmax −Rmin)2

)

+ n2
∑
a∈A

exp

(
−4(mag)4

n2
(t− 1)

)
(C.246)

≤ n2
∑
a∈A

exp

(
−
(
ET ag−xplore(a, t)− 2(mag)2/n

)
β2
t

8(Rmax −Rmin)2

)
+

n3

t− 1
(C.247)

Now, we need to compute a lower bound for ET ag−xplore(a, t).

ET ag−xplore(a, t) =
t−1∑
τ=1

ϵagτ
n

=
1

n

t−1∑
τ=1

min

{
1,

mag

√
τ

}
≥ mag

n

t−1∑
τ=(mag)2

1√
τ

(C.248)

≥ mag

n

∫ t

(mag)2

1√
τ
dτ (C.249)

=
2mag

n
(
√
t−mag) (C.250)

Using this lower bound on ET ag−xplore(a, t), we obtain

(C.247) ≤ n3 exp

(
−mag

n

√
tβ2

t +
2(mag)2

n
β2
t

4(Rmax −Rmin)2

)
+

n3

t− 1
(C.251)
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Recall βt = B
√
log 2t
tw/3 with B = 3k(3(Rmax−Rmin)+γ)n 6√32n

1−k
√

log 2k̃/
√

k̃
. Then,

= n3 exp

−mag

n
B2

√
t
log 2t

t2w/3
+ 2(mag)2

n
B2 log 2t

t2w/3

4(Rmax −Rmin)2

+
n3

t− 1
(C.252)

≤ n3 exp

(
−
√
t
log 2t

t2w/3
+

2(mag)2B2

4n(Rmax −Rmin)2

)
+

n3

t− 1
(C.253)

≤
n3
(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1
(C.254)

where the second to the last inequality holds for all t ≥ 2. This gives us

n2
∑
a∈A

P
(
ŝagt,a − s0a > βt/2

)
≤

n3
(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1
(C.255)

Similarly, we have

n2
∑
a∈A

P
(
ŝagt,j∗t − s0j∗t < −βt/2

)
≤

n3
(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1
(C.256)

Substituting these upper bounds into (C.243) and combining everything, we conclude as

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xploit
)

≤
2n3

(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1

+ 8n2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log

βt

2
+ n log(2Rmax − 2Rmin)

)
(C.257)

□

Proof of Lemma 4.5. By construction of the principal’s algorithm (3) and agent’s
algorithm (4), at any time point t ∈ T ag−xploit ∩ T pr−xplore, we know that the arm chosen
by the agent is given as υt(πt) = argmaxa∈A ŝagt,a + πt,a and the incentives provided by the
principal are uniformly randomly selected from set C. Then, we start with

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xplore

)
= P

(
υt(πt) ̸= argmax

a∈A
s0a + πt,a
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∣∣∣υt(πt) = argmax
a∈A

ŝagt,a + πt,a, πt,a ∼ U(C,C) ∀a ∈ A
)
(C.258)

= P

( ⋃
a′′∈A

⋃
a′∈A

s0a′′ + πt,a′′ < s0a′ + πt,a′∣∣∣∣ŝagt,a + πt,a ≤ ŝagt,a′′ + πt,a′′ ∀a ∈ A, πt,a ∼ U(C,C) ∀a ∈ A

)
(C.259)

≤
∑
a′′∈A

∑
a′∈A

P
(
s0a′′ + πt,a′′ < s0a′ + πt,a′∣∣∣ŝagt,a + πt,a ≤ ŝagt,a′′ + πt,a′′ ∀a ∈ A, πt,a ∼ U(C,C) ∀a ∈ A

)
(C.260)

≤
∑
a′′∈A

∑
a′∈A

P
(
ŝagt,a′ − ŝagt,a′′ ≤ πt,a′′ − πt,a′ < s0a′ − s0a′′

∣∣∣πt,a ∼ U(C,C),∀a ∈ A
)

(C.261)

where (C.260) follows by the Boole’s inequality (a.k.a. union bound).



APPENDIX C. APPENDIX FOR CHAPTER 4 145

Now, we recall that s0a = Eŝagt,a for any a ∈ A by definition given in (9) and continue our
derivation by conditioning on the intersection of the two events E = {ŝagt,a′′ − Eŝagt,a′′ < φt}
and F = {Eŝagt,a′ − ŝagt,a′ < φt} for some φt > 0.

=
∑
a′′∈A

∑
a′∈A

P
(
ŝagt,a′ − ŝagt,a′′ ≤ πt,a′′ − πt,a′ < Eŝagt,a′ − Eŝagt,a′′

∣∣∣πt,a ∼ U(C,C), ∀a ∈ A, E ∩ F
)

· P(E ∩ F )

+
∑
a′′∈A

∑
a′∈A

P
(
ŝagt,a′ − ŝagt,a′′ ≤ πt,a′′ − πt,a′ < Eŝagt,a′ − Eŝagt,a′′

∣∣∣πt,a ∼ U(C,C),∀a ∈ A, E ∪ F
)

· P(E ∪ F )
(C.262)

≤
∑
a′′∈A

∑
a′∈A

P
(
ŝagt,a′ − ŝagt,a′′ ≤ πt,a′′ − πt,a′ < Eŝagt,a′ − Eŝagt,a′′

∣∣∣πt,a ∼ U(C,C),∀a ∈ A, E ∩ F
)

+
∑
a′′∈A

∑
a′∈A

P(E) + P(F ) (C.263)

For the first term in (C.263), we recall that the difference of the two Uniform random
variables, πt,a′′−πt,a′ , follows a triangular distribution whose cdf is derived in (B.12). Because
the cdf is in the form of a piecewise function, we can compute an upper bound to the first
term above by considering the case with the highest probability, that is ŝagt,a′ − ŝagt,a′′ < 0 and
Eŝagt,a′ − Eŝagt,a′′ ≥ 0 for any a′, a′′ ∈ A. Then, it follows that∑

a′′∈A

∑
a′∈A

P
(
ŝagt,a′ − ŝagt,a′′ ≤ πt,a′′ − πt,a′ < Eŝagt,a′ − Eŝagt,a′′

∣∣∣πt,a ∼ U(C,C), ∀a ∈ A, E ∩ F
)

≤
∑
a′′∈A

∑
a′∈A

[
1−

(Eŝagt,a′ − Eŝagt,a′′ + C − C)2

2(C − C)2
−

(ŝagt,a′ − ŝagt,a′′ + C − C)2

2(C − C)2

∣∣∣E ∩ F

]
(C.264)

=
∑
a′′∈A

∑
a′∈A

[−(Eŝagt,a′ − Eŝagt,a′′)2 − (ŝagt,a′ − ŝagt,a′′)
2 + 2(C − C)(Eŝagt,a′ − Eŝagt,a′′ − ŝagt,a′ + ŝagt,a′′)

2(C − C)2 ∣∣∣E ∩ F

]
(C.265)

≤
∑
a′′∈A

∑
a′∈A

[Eŝagt,a′ − Eŝagt,a′′ − ŝagt,a′ + ŝagt,a′′

C − C

∣∣∣E ∩ F

]
(C.266)

≤
∑
a′′∈A

∑
a′∈A

2φt

C − C
(C.267)

=
2n2φt

C − C
(C.268)

For the second and third terms in (C.263) (which are essentially same with each other),
we follow the same arguments as in between (C.244)-(C.251) from the proof of Lemma 4.4.
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Then, we get∑
a′′∈A

∑
a′∈A

P(E) + P(F ) =
∑
a′′∈A

∑
a′∈A

P
(
ŝagt,a′′ − Eŝagt,a′′ ≥ φt

)
+ P

(
Eŝagt,a′ − ŝagt,a′ ≥ φt

)
(C.269)

≤ 2n2 exp

(
−mag

n

√
tφ2

t +
2(mag)2

n
φ2
t

4(Rmax −Rmin)2

)
+

2n2

t− 1
(C.270)

Suppose φt =
2
√
n(Rmax −Rmin)

√
log 2t√

mag 4
√
t

. Then,

≤ 2n2 exp
(
− log 2t+ 2mag log 2t√

t

)
+

2n2

t− 1
(C.271)

≤ 2n2 exp
(
− log 2t+ 2mag

)
+

2n2

t− 1
(C.272)

= 2n2 (exp(2m
ag) + 1)

t− 1
(C.273)

For the same choice of φt above, we combine the last result with (C.268) and obtain

P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xplore

)
≤ 4n2

√
n(Rmax −Rmin)

√
log 2t√

mag(C − C) 4
√
t

+
2n2(exp(2mag) + 1)

t− 1
(C.274)

≤ 4n2
√
n
√
log 2t√

mag 4
√
t

+
2n2(exp(2mag) + 1)

t− 1
(C.275)

where the last inequality follows since Rmax −Rmin < C − C by Assumption 4.1. □

Proof of Proposition 4.8. We prove this result by using the induction technique.
Base Case: Consider t = 1. We have 1 ≤ (constant)

√
log 2 for any (constant) ≥ 1.2.

Then, since p1 ≤ 1 by definition, it trivially satisfies Proposition 4.8.
Induction Step: Consider any t ∈ [k̃, T ]. Suppose that Proposition 4.8 holds for all pτ

such that τ ∈ [1, t− 1]. Then, we have

pt = P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

)
(C.276)

= P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xploit

)
P
(
t ∈ T ag−xploit ∩ T pr−xploit

)
+ P

(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣t ∈ T ag−xploit ∩ T pr−xplore

)
P
(
t ∈ T ag−xploit ∩ T pr−xplore

)
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+ P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣t ∈ T ag−xplore

)
P
(
t ∈ T ag−xplore

)
(C.277)

≤ P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣∣t ∈ T ag−xploit ∩ T pr−xploit

)
+ P

(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

∣∣t ∈ T ag−xploit ∩ T pr−xplore

)
P
(
t ∈ T pr−xplore

)
+ P

(
t ∈ T ag−xplore

)
(C.278)

≤
2n3

(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1

+ 8n2 exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log

βt

2
+ n log(2Rmax − 2Rmin)

)
+

(
4n2

√
n
√
log 2t√

mag 4
√
t

+
2n2(exp(2mag) + 1)

t− 1

)
mpr

t1/2−w
+

mag

√
t

(C.279)

where the last inequality follows by the results of Lemma 4.4 and Lemma 4.5 and by the
constructions of Algorithm 3 and Algorithm 4.

Further, we can bound the second term in the right-hand side of the last inequality by
following the same arguments as in between (C.148)-(C.161) and obtain

exp

(
− 2λ2

t

(t− 1)16n(6Rmax − 6Rmin + 2γ)2
− log

βt

2
+ n log(2Rmax − 2Rmin)

)
≤ 2n+1

3n+1k 6
√
32n

1√
t log 2t

(C.280)

Combining this upper bound with (C.279), we obtain the following upper bound on pt.

pt = P
(
υt(πt) ̸= argmax

a∈A
s0a + πt,a

)
(C.281)

≤
2n3

(
exp

(
2(mag)2B2

4n(Rmax−Rmin)2

)
+ 1
)

t− 1
+

2n+4n11/6

3n+1k 6
√
32

1√
t log 2t

+

(
4n2

√
n
√
log 2t√

mag 4
√
t

+
2n2(exp(2mag) + 1)

t− 1

)
mpr

t1/2−w
+

mag

√
t

(C.282)

which implies pt = O
(√log 2t√

t

)
.

Conclusion: As both the base case and the inductive step have been proven as true,
Proposition 4.8 is established by mathematical induction. □
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C.2 Parameters for Numerical Experiments

In our numerical experiments, we test the performance of our data-driven incentive policy
for different values of the cardinality of the aggregator’s MAB model (n = |A|). The closed
intervals that the expected profits of the aggregator and the utility company are set to
Θ = [0, 100] and R = [−20, 50], respectively, and the entries of the expected profit vectors
r0 and θ0 are uniformly randomly generated from these intervals as reported below.

n θ0 r0

5 (29, 1, 14, 26, 15) (14, -24, -4, 19, 29)
10 (0, 44, 51, 65, 9, 35, 69, 91, 51, 44) (-4, 8, 22, -12, -2, 46, -8, 16, 38, 14)

Table C.1: Expected profits in different settings of the size of the aggregator’s MAB model
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