
UCLA
UCLA Electronic Theses and Dissertations

Title
Examining the impact of Neanderthal DNA on modern human biology

Permalink
https://escholarship.org/uc/item/62m0j2q4

Author
Robles, Christopher Raymond

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62m0j2q4
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Examining the impact

of Neanderthal DNA

on modern human biology

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Human Genetics

by

Christopher Raymond Robles

2022



© Copyright by

Christopher Raymond Robles

2022



ABSTRACT OF THE DISSERTATION

Examining the impact

of Neanderthal DNA

on modern human biology

by

Christopher Raymond Robles

Doctor of Philosophy in Human Genetics

University of California, Los Angeles, 2022

Professor Sriram Sankararaman, Co-Chair

Professor Paivi Elisabeth Pajukanta, Co-Chair

Recent genomic studies have revealed that all present-day non-African populations inherit

1− 4% of their genetic ancestry from a population related to the Neanderthals. Due to the

high divergence of Neanderthals and modern humans, this introgression event introduced

many novel mutations into non-African populations. Although introgression between archaic

and modern humans have previously been documented, the biological consequences of these

admixture events on modern humans are not fully understood. In this thesis, we examine

these introgressed mutations to help elucidate the biological differences between Neanderthals

and modern humans, as well as determine the selective forces that have acted on our genomes

in the approximately 50,000 years since Neanderthal introgression occurred.

We first examine the impact Neanderthal introgression has on a single phenotype, Major

Depressive Disorder, in more than 10,000 Han Chinese individuals who were diagnosed using

structured clinical interviews. A recent examination of Neanderthal informative mutations
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(NIMs) among a large cohort of Europeans showed that these markers explained some pro-

portions of the phenotypic risk of depression. Our results found no association between the

NIMs and MDD, as well as a difference in the variance explained by the NIMs upon the phe-

notype vs Europeans. These results demonstrate the impact due to Neanderthal ancestry

on one type of trait, MDD, appears to differ between Han Chinese and Europeans.

We expanded upon a single phenotype by looking at the impact of Neanderthal intro-

gression on wide range of phenotypes in white British individuals in the UK Biobank. We

present a fine mapping strategy for prioritizing causal NIMs that enables the identification of

sets of NIMs that can credibly exert influence on specific phenotypes. We identify NIMs in a

number of functionally important genes, including a premature stop codon in the FCGR2A

gene, and a start codon loss in COQ10, pinpointing introgressed alleles in immune-related

genes that could have and continue to modulate human phenotype.

We then propose a pipeline that is able leverage information from Neanderthal intro-

gressed alleles in order to identify Human-specific mutations that rose to near fixation in

modern human populations, and examine how they impact modern human phenotypes. We

discover two regions of the genome that are confidently fixed-derived and have associations

with a number of phenotypes, and are in close proximity to genes that are related to immu-

nity suggesting that these regions may have importance in development of immune response

in modern humans.

Finally, we look to highlight possible mechanisms for how complex traits evolved in hu-

man history by examining the genetic contribution of Neanderthal ancestry. We performed

forward-in-time population genetic simulations to model the evolution of Neanderthal and

non-Neanderthal alleles according to a demographic model relating modern humans and Ne-

anderthals, to try an understand the evolutionary models that could explain observations of

enriched or depleted contributions of Neanderthal ancestry to phenotypic variance seen in

real data. We develop simulations of models of directional, stabilizing and disruptive selec-

tion, as well as propose two modified directional and stabilizing selection models, and find
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that most models lead to NIM heritability that is comparable or lower than non-introgressed

SNPs, however our two modified models are able to present an increase in NIM heritabil-

ity, suggesting possible mechanisms for how complex traits evolved in human history by

examining the genetic contribution of Neanderthal ancestry.
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(Top Right) Distribution of alternate allele frequency of the novel alleles. For
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3.1 Benchmarking approaches for estimating the heritability components of Nean-

derthal introgression. We group simulations by relationships between minor allele

frequency (MAF) and local linkage disequilibrium at a SNP on effect size (MAF-

LD coupling): BASELINE, COMMON, RARE, HIGH, LOW. In each group, we

perform 12 simulations with varying polygenicity and heritability (see Methods).

Additionally, we combine results from all simulations together as ALL. We plot

the distributions of two Z-scores (y-axis), one on each row: (a) Z-score (=) tests

whether the estimated and true NIM heritability are equal, and (b) Z-score ()

tests whether the estimated per-NIM heritability is the same as the per-SNP her-

itability of MH SNPs (see Methods). In each panel, we present results from a

variance components analysis method (RHE-mc) using four different input anno-

tations: ancestry only where ancestry is either NIM or MH, ancestry + MAF,

ancestry + LD, ancestry + MAF + LD. A calibrated method is expected to have

Z-scores distributed around zero and within 2 (shaded region). Among all tested

approaches, only RHE-mc with ancestry + MAF + LD annotations is calibrated

across simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.2 Distributions of minor allele frequency (MAF) and LD-score in NIMs and MH

SNPs. Empirical cumulative distribution functions of (a) MAF and (b) LD scores

of NIMs (in solid green line) and MH SNPs (in pink dashed line) estimated in

the UK Biobank (UKBB). (c) Boxplots of MAFs of NIMs (on the left filled in

green) and MH SNPs (on the right side filled in pink) while controlling for LD

score (UKBB). (d) Boxplots of LD score (UKBB) of NIMs and MH SNPs while

controlling for MAF. NIMs and MH SNPs are divided by the 20, 40, 60, 80,

100 (c) LD score (UKBB) percentile or MAF percentile (d) based on all QC-ed

SNPs (7,774,235 imputed SNPs with MAF > 0.001). The lower and upper edges

of a box represent the first and third quartile (qu1 and qu3), respectively; the

horizontal red line inside the box indicates median (md); the whiskers extend to

the most extreme values inside inner fences, md± 1.5(qu3− qu1). . . . . . . . . 36

3.4 Comparing heritability analyses with and without controlling for MAF and LD

in UKBB phenotypes. Each phenotype is shown with one dot colored by the

phenotypic category it belongs to, on the y-axis based on its point estimate and

standard error (estimated by RHE-mc with Ancestry annotation) and on the x-

axis based on its point estimate and standard error (estimated by RHE-mc with

ancestry + MAF + LD annotation). Estimates shown are (a) total heritability ĥ2,

(b) NIM heritability ˆh2
NIM , and (c) the difference between per-NIM heritability

and matched MH SNPs heritability ∆h2 . Not controlling for MAF and LD leads

to underestimation of NIM heritability, which leads to false positives when testing

whether heritability at a NIM is elevated or depleted relative to a MH SNP. . . 39
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3.5 Fine mapping of NIMs in simulations and the UKBB. (a) Fine mapping pipeline

to identify NIMs that aims to identify genomic regions at which NIMs are likely

to modulate phenotypic variation (credible NIM regions). (b) Comparison of

approaches for identifying credible NIM regions. For each simulation, False Dis-

covery Proportion (FDP) is computed for association testing compared to our

pipeline (combining association testing and fine-mapping). The distributions of

the FDP are shown across genetic architectures (summarized across groupings of

coupling of effect size, MAF and LD) and summarized across architectures (ALL).

Our approach to identifying credible NIMs decreases FDP in all studied architec-

tures (the LOW LD setting has a median and quartiles of zero across replicates).

(c) The distribution of the length of credible NIM regions across 96 UKBB phe-

notypes. (d) Distribution of the ratio between the number of credible NIMs and

number of tested NIMs (in the example of panel (a), the number of tested NIMs

is the union of NIMs in input to the fine-mapping software (SuSiE) 1 and 2).

This figure shows that our fine mapping approach is effective in prioritizing NIMs

that affect phenotype. (e) The distribution of the number of credible NIM regions

among phenotypes. The number of credible NIM regions is positively correlated

with (f) heritability (g) NIM heritability. . . . . . . . . . . . . . . . . . . . . . . 41
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3.6 Analysis of credible NIMs. (a) Distribution of credible NIMs across the genome

(b) High and moderate impact credible NIMs annotated by SnpEff software ([1]).

A total of 26 credible NIMs have high (marked in bold) or moderate impact effects

on nearby genes (chromosome number and hg19 coordinates). The effect of the

SNP and the gene name are displayed. This plot shows significant associations

of these NIMs with specific phenotypes (color denotes the phenotype category).

(c) Plot of 300kb region surrounding rs60542959 (marked in black diamond; hg19

coordinates), a credible NIM for standing height that results in loss of the start

codon in COQ10A. The plot displays other significantly associated NIMs in the

region along with their LD (r2) to rs60542969 in 1000 Genomes Europeans ([2]). 42

3.7 Benchmarking different methods for estimating the total SNP heritability. We

grouped the simulations by the five different MAF-LD coupling: BASELINE,

COMMON, RARE, HIGH, LOW, as labeled on top of each column. In each

group, there are 12 simulations with different levels of polygenicity and heritabil-

ity (see Methods). Additionally, we combined simulations from all five architec-

tures together as ALL for the sixth column. On the y-axis, Z-score (ĥ2 = h2)

tests whether the estimated and simulated total heritability are equal. In each

panel, the results from RHE-mc with four different annotations, ancestry only,

ancestry + MAF, ancestry + LD, ancestry + MAF + LD are shown on the x-

axis. A calibrated method is expected to have all Z-scores distributed around

zero and within 2 (shaded region). Among all tested methods, only RHE-mc

with annotation ancestry + MAF + LD satisfies this criterion. . . . . . . . . . 43
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3.8 Population structure within white British samples. PC-1 from the whole genome

genotypes (released by UKBB) is shown on the left, and NIM PC-1 is shown on

the right. We used a 20-by-20 grid along the latitude and longitude, dividing

the map into 400 colonies. We then computed the average PC projection as well

as the median longitude and latitude among the individuals belonging to each

colony, if there are at least 10 individuals in a colony. Each color-filled circle

with a 5 kilometer radius represents one colony on the map. To maximize the

visible differences, we sorted the colonies by their PC values and used the rank to

determine the color of the colony. Compared to NIM PC-1, PC-1 shows a much

stronger correlation with geographical location. . . . . . . . . . . . . . . . . . . 44

3.9 Comparing heritability estimates from RHE-mc without controlling for NIM PCs

with Ancestry+MAF+LD annotation and RHE-mc with Ancestry annotation in

UKBB phenotypes. This figure is plotted in the same way as Fig. 4. The trend

that not controlling for MAF and LD lead to underestimation of (a) total heri-

tability ĥ2, (b) NIM heritability ˆh2
NIM , and stronger NIM heritability depletion

(c) ˆδh2 is also apparent when NIM PCs are not controlled for. . . . . . . . . . . 45

3.10 Credible NIM in the FCGR2A gene associated with gamma-glutamyl transferase

levels. Plot of 200kb region surrounding rs9427397 (marked in black diamond;

hg19 coordinates), a credible NIM in FCGR2A that introduces a premature stop

codon and is associated with increased levels of gamma glutamyltransferase (while

also associated with increased levels of aspartate aminotransferase and decreased

total protein). The plot displays other NIMs in the region along with their LD

(r2) to rs9427397 computed in 1000 Genomes Europeans. . . . . . . . . . . . . . 46
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3.11 Credible NIM in the AKR1C4 gene is associated with bilirubin levels. (a) Plot

of 300kb region surrounding rs17134592 (marked in black diamond; hg19 coor-

dinates), a non-synonymous NIM in AKR1C4, that is associated with increased

serum bilirubin levels. The plot displays other NIMs in the region along with their

LD (r2) to rs17134592. (b) rs17134592 is a splicing QTL in liver (AKR1C8P)

and testis (AKR1C4) identified in GTEx v8. . . . . . . . . . . . . . . . . . . . . 47

3.12 Appendix 2 - Figure 1. Benchmarking stratified LDSC regression (S-LDSR) with

in-sample and out-of-sample LD scores. We group the simulations by the MAF-

LD coupling: BASELINE, COMMON, RARE, HIGH, LOW, and ALL, as labeled

on the x-axis. We plot the distributions of three Z-scores (y-axis), one on each

panel: (a) Z-score ( ˆδh2 = 0) tests whether the estimated NIM heritability is

different from the matched MH heritability, (b) Z-score ( ˆh2
NIM = h2

NIM) tests

whether the estimated and expected NIM heritability are equal, and (c) Z-score

(ĥ2 = h2) tests whether the estimated and simulated total heritability are equal.

In each panel, S-LDSR with the out-of-sample LD score from 1000 Genomes

(1KG) is shown in green and S-LDSR with in-sample LD score from UKBB in

pink. In S-LDSR, only ancestry annotation is used. The Z-scores within 2 are

color shaded. S-LDSR (1KG) is not calibrated even for BASELINE architecture. 48

3.13 Appendix 3 - Figure 1. NIM heritability in the 96 UKBB phenotypes without con-

trolling for NIM PCs. This figure is plotted in the same way as Fig. 3. Heritability

estimates are largely similar, but fewer phenotypes are significant. Three pheno-

types have significant positive NIM heritability (Z-score ( ˆδh2
NIM

= 0) > 3): overall

health rating, waist-hip-ratio, and gamma glutamyltransferase. Fourteen pheno-

types (standing height, sitting height, weight, body fat percentage, whole body

fat-free mass, whole body water mass, trunk fat-free mass, trunk predicted mass,

basal metabolic rate, RBC count, apolipoprotein A, HDL cholesterol, triglyc-

erides) are significantly depleted for NIM heritability (Z-score < -3). . . . . . . 49

xvii



4.1 Cartoon depicting how Fixed Derived Mutations are determined . . . . . . . . . 65

4.2 European MAF for mutations that were > 99% for the derived allele in 1000

genomes phase 3 African population. . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 European MAF for mutations that were > 95% for the derived allele in 1000

genomes phase 3 African population. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Number of FDMs (FD95) significantly associated with phenotypes grouped by

Phenotypic category. Each dot in a category represents a unique phenotype. . . 68

4.5 Zoomed in view of the confident credible FDM (FD95) region on chromosome 1 68

4.6 Zoomed in view of the confident credible FDM (FD95) region on chromosome 12 69

5.1 Different models of selection: In each panel, x-axis is the phenotype value and

y-axis is the number of organisms. Group A is the population distribution before

selection and group B is after selection. 1) Directional section, single extreme phe-

notype value is favored to be the QTL optima. 2) Stabilizing selection, where an

intermediate phenotype is favored and 3) Disruptive selection, where an extreme

phenotype on either end is favored. Source: Ealbert17, Genetic Distribution.svg.

CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikime-

dia Commons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Simple demographic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Simple demographic model with stabilizing selection . . . . . . . . . . . . . . . . 84

5.4 Modified stabilizing selection model . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Modified stabilizing selection model produces positive NIM heritability Z-scores 86

5.6 Realistic demographic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Directional selection - modified model . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Modified directional selection model produces NIM heritability Z-scores . . . . . 89

xviii



LIST OF TABLES

2.1 Heritability associated with Neanderthal-informative mutations (NIMs) for MDD 12

2.2 Heritability associated with Neanderthal-informative mutations (NIMs) for Melan-

cholia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 summary of variants discovered per chromosome. Novel variants are the subset of

variants with minor allele count (MAC) ≥ 10 in the current study that are also

monomorphic or not reported in 1KG (phase 3), 1KG EAS, or 1KG CHB+CHS

populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Confident-credible FDMs and their associations with phenotypes . . . . . . . . . 70

4.2 Confident FDMs and their functional effect on genes . . . . . . . . . . . . . . . 71

xix



ACKNOWLEDGMENTS

Graduate school at UCLA has been both a rewarding and trying experience, and I would

like to thank all of the people who have helped me along my journey and seen all the ups

and downs. I would first like to thank my advisor Sriram, who has been the most supportive

advisor I could ever ask for. As Sriram’s first student, I have seen the lab grow from just him

and I in the basement of Boyer hall, to a large group of students in the new Engineering 6

building. I vividly remember my first year working with Sriram, where he stayed late at night

with me in the old lab, going through his CRF code line by line with me, patiently explaining

everything. I started in his lab with a limited knowledge of statistics and machine learning,

and his constant support, patience, and teachings have helped me grow tremendously as a

mathematician, bioinformatician, scientist, and researcher. I have been so lucky to work

with such a great scientist, mentor, and person overall.

I would also like to the thank my committee: Eleazar Eskin, for always encouraging me

and showing me that research can be fun and rewarding. His CGSI community has helped

me build a large network, and allowed me to informally interact with and discuss reserach

problems with many people who I consider to not only be my colleagues, but friends. Paivi

Pajukanta, for always being there for me when I had any sort of problem, she was just a

phone call away. Bogdan, for all the great discussion we had in journal clubs and at different

events, as well as some cool soccer games.

I would also like to thank my lab mates, Alec, Brandon, Leah, Mike, Arun, Ariel, Ali,

Ruthie, Elior, Liat, Brian, Rob Brown, Nadav and Johnson. All those great late nights

shooting hoops around while we were going crazy with trying to figure out our codes.

I would like to thank my partner Sheila Rahimi, whose support during my toughest times

means the world to me. I would also like to thank my friends at UCLA, Cat, Eric, Nate,

Wenting, and Adriana. You guys made me stay sane through all my ups and downs, just

being able to grab a beer a talk at the pub.

xx



I would like to thank my sister, Danielle Robles, she always had my back, its me and you

against the world.

Last and not least, I would like to thank my parents Raymond and Lorraine Robles.

They sacrificed so much for me, just to get me where I am today. Without their love and

support I could never be where I was. I hope to one day pay you guys back for all the

unconditional love, support, and cheering you have provided me with for all time. I love you

both so much.

xxi



VITA

2007–2011 B.S. in Bioengineering cum laude honors, University of California Santa

Cruz, Santa Cruz, CA

2010 Undergraduate Research Assistant, Broad institute of Harvard and MIT,

Cambridge, MA.

2011–2013 NIH Academy Research Fellow, National Human Genome Research Insti-

tute (NHGRI),Bethesda, MD

2013–2014 MHIRT Research Associate, University of Otago, Dunedin, New Zealand

2014–2015 Bioinformatics Analyst, Mount Sinai School of Medicine, New York, NY

2015–2022 Graduate Student Fellow, University of California Los Angeles, Los Ange-

les, California

PUBLICATIONS

Xinzhu Wei*, Christopher R. Robles*, , Ali Pazokitoroudi, Andrea Ganna, Alexander

Gusev, Arun Durvasula, Steven Gazal, Po-Ru Loh, David Reich and Sriram Sankarara-

man.“The lingering effects of Neanderthal introgression on human complex traits". In

submission. *Equally contributed,

https://www.biorxiv.org/content/10.1101/2022.06.07.495223v1.full.pdf

Charleston W. K. Chiang, Serghei Mangul, Christopher R. Robles, Sriram Sankararam“A

comprehensive map of genetic variation in the world’s largest ethnic group - Han Chinese".

xxii

https://www.biorxiv.org/content/10.1101/2022.06.07.495223v1.full.pdf


Molecular Biology and Evolution, Volume 35, Issue 11, 1 November 2018, Pages 2736–2750,

https://doi.org/10.1093/molbev/msy170

Kristina M. Garske, David Z. Pan, Zong Miao, Yash V. Bhagat, Caroline Comenho, Christo-

pher R. Robles, Jihane N. Benhammou, Marcus Alvarez, Arthur Ko, Chun Jimmie Ye,

Joseph R. Pisegna, Karen L. Mohlke, Janet S. Sinsheimer, Markku Laakso, Päivi Pa-

jukanta.“Reverse gene-environment interaction approach to identify variants influencing body

mass index in humans".Nat Metab 1, 630–642 (2019),

https://doi.org/10.1038/s42255-019-0071-6

xxiii

https://doi.org/10.1093/molbev/msy170
https://doi.org/10.1038/s42255-019-0071-6


CHAPTER 1

Introduction

Where did we come from, and where will we go? Throughout history, one of humankind’s

greatest questions is how we came to be, and what might our future hold? The relationship

of modern humans and our archaic hominid ancestors, such as Neanderthals, has been de-

bated for quite some time. Historically, there were two theories of evolution and migration

of modern humans, the multi-regional and out-of-Africa models, with evolutionary research

seeming to favor the latter [3]. Around the time that modern humans left Africa for Eurasia,

archaeological evidence shows that other archaic hominids also inhabited these regions, and

may have come into contact with modern humans [4]. In recent years, advances in genomic

technologies allowed for extraction and analysis of DNA from several of these ancient ances-

tors including Neanderthals [5, 6, 7], illuminating that fact that admixture occurred between

these two species [8]. Further analysis revealed that all present-day non-African populations

inherit 1-4% of their genetic ancestry from a population related to the Neanderthals [5], and

that Neanderthals had lower genetic diversity than any modern human population [7]. Due

to this high divergence between the two species, this introgression event introduced many

novel mutations into the non-African population. Around the time of this introgression event,

archaeological records suggest that modern humans were experiencing behavioral modernity,

or cognitive traits such as abstract thinking, which distinguish humans from closely related

species.

Systematically studying these mutations has the potential to provide clues about the

biological differences between Neanderthals and modern humans, as well as the selective
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forces that have acted on our genomes in the approximately 50,000 years since Neanderthal

introgression occurred. The fact that the period of time since Neanderthal introgression

coincides with the period of behavioral modernity evident in the archaeological record [9]

suggests that studying the evolution of Neanderthal-derived mutations in modern humans

over this period, will give us insight into the nature of natural selection during this critical

period of our species’ evolution.

Analysis of how these Neanderthal segments are distributed in the non-African genome

indicates that Neanderthal variants underwent various types of selective pressures [10, 11].

Genomic regions of reduced Neanderthal ancestry are enriched in genes and imply a negative

selection of Neanderthal genetic material. One such region is the X chromosome which

shows a five-fold reduction of Neanderthal ancestry. This observation is notable as the

X chromosome is a region known to harbor many male hybrid sterility genes suggesting

that Neanderthal alleles caused decreased fertility in males. This is consistent with the

hypothesis that the bulk of Neanderthal variants were deleterious in the modern human

genetic background [10, 11]. On the other hand, the frequency of Neanderthal haplotypes

is substantially elevated in a small number of genomic locations suggesting evidence for

archaic adaptive introgression [10, 11, 12, 13, 14]. Analyses of these genomic locations have

suggested that Neanderthal variants could have had an important impact on immune-related

as well as skin and hair-related traits, However, the effects of these Neanderthal variants on

phenotypes, and selections is still not understood. In principle a powerful approach to

assessing the biological impact of Neanderthal interbreeding is to study Neanderthal-derived

mutations in very large cohorts of individuals measured for diverse phenotypes. A recent

study employed such an approach to analyze electronic medical records and genotypes in

about 28,000 individuals to show that Neanderthal variants modulate risk for disease traits

such as major depression, blood-clotting disorders and tobacco use [15]. A difficulty with

this approach is that variants introgressed from Neanderthals are rare on average (due to the

low proportion of Neanderthal ancestry in present-day genomes) and the genotypes for most
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rare variants cannot be reliably inferred with the arrays typically used in genetic association

studies. Another study analyzed about 112,000 individuals from the interim release of the UK

Biobank and identified Neanderthal variants that are individually associated with skin tone,

hair color, height, sleeping patterns, mood, and smoking [16]. However, beyond identifying

the associations of individual Neanderthal variants, the systematic impact of these variants

on a broad spectrum of phenotypes remains to be rigorously assessed. Knowing this, leads

us to other relevant questions in how these homonid species impacted our modern human

biology. (1) How has neanderthal introgression impacting genetic and phenotypic variation

in modern humans? (2) Do these suggest any functional relevance? (3) Was this genomic

material harmful or beneficial?

In this dissertation, I will discuss how the movement of ancient hominid DNA impacts

the genomic landscape of modern humans and in turn how this impacts our modern human

biology through variation in phenotype. In chapter 2, I present work that looks at how ne-

anderthal introgression impacts a single phenotype that has been extremely well cataloged.

We examined 10,000 Han Chinese individuals that were diagnosed for Major Depressive

Disorder and Melancholia. This chapter contains excerpts of my contributions from a previ-

ously published paper, Chiang et al. [17]. In chapter 3, I present the bulk of my PhD work

in which we examine how Neanderthals ancestry in the modern human genome impacts a

wide range of phenotypes in white British individuals in the UK Biobank. In chapter 4, I

build upon the analysis of this dataset by looking at how modern human specific regions in

the human genome impact our biology. Lastly, in chapter 5, I develop simulated models of

selective forces acting upon a evolutionary history of Neanderthal introgression, aiming to

explain changes in heritbaility we see in previous sections. Taken together, these chapters

elucidate how humankind’s interweaving history with our closest hominid relatives continue

to impact us today.
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CHAPTER 2

Impact of Neanderthal DNA on depression in Han

Chinese individuals

2.1 Introduction

This chapter contains excerpts of a published paper Chiang et al. [17] presented here with per-

mission from the authors. Previous analyses of the locations of Neanderthal segments within

the genomes of non-African individuals indicated that some of the Neanderthal variants were

adaptively beneficial while the bulk of Neanderthal variants were deleterious in the mod-

ern human genetic background [18, 19]. Specifically, a recent examination of Neanderthal-

informative markers (NIMs) among a large cohort of Europeans showed that these markers

explained some proportions of the phenotypic risk of a number of diseases in the electronic

health record [15], including depression. A challenge with these studies is that depression is

a challenging disease to accurately phenotype. We sought to replicate this finding in East

Asians as our data set was originally ascertained as a case-control study of Major Depressive

Disorder (MDD) in Han Chinese women [20]. In this dataset, the depression status was

determined using structured clinical interviews to increase diagnostic accuracy [21].

To date, a range of strategies has been employed to characterize populations across large

numbers of individuals. In Genomes of the Netherlands (GoNL) [22], the trio design allowed

estimation of high-quality genotypes for both single nucleotide and structural variations

with intermediate (∼ 13×) sequencing coverage and enabled the investigation of de novo

mutations. In Sardinian [23] and Icelandic [24] population cohorts, extensive haplotype
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sharing within populations was used to inform accurate genotype calling among low- (∼

4 − 6×) and intermediate- (∼ 20×) coverage sequencing of ∼ 2, 000 − 3, 000 individuals.

In the UK10K project [25], low (∼ 7x) whole-genome sequencing in 3,781 healthy samples

from two British cohorts was combined with deep (80×) exome sequencing in three disease

cohorts to accurately detect low frequency and rare variants associated with quantitative

traits. However, much like the genome-wide association studies preceding the current era of

sequencing studies, most sequencing efforts are biased toward European populations.

The whole-genome sequencing data set of the Han Chinese analyzed here adopted a

different approach. We analyzed genetic variants from very low-coverage whole-genome

sequencing data of 11,670 Han Chinese women, previously generated to study MDD [20].

With a median coverage of 1.7×, this data set is predicted to identify rare (< 0.5%) single

nucleotide polymorphisms (SNPs) with high confidence [23] and obtain accurate estimates

of allele frequencies in a large sample.

2.2 Results

A total of 11,670 Han Chinese women were previously sequenced at a median coverage

of 1.7× per individual, of which 10,640 individuals and 25,057,223 SNPs remained after

quality control (QC) [20, 21]. Despite the low median coverage genome-wide, individual

level genotype calls showed high concordance (> 96 − 97%) in validation experiments [21].

Furthermore, the allele frequencies in this data set are highly correlated (mean r = 0.995

across chromosomes) to those from the East Asian sample in Exome Aggregation Consortium

(ExAC; Lek et al. 2016). This observation suggests that any batch effect due to genotype

calling in very low-coverage sequencing should not impact allele frequency estimates and their

use in downstream analyses. Restricting analysis to variants with minor allele counts (MAC)

≥ 10 (9,888,655 variants), we found that the alternate alleles of 477,792 (4.8%), 567,731

(5.7%), and 868,251 (8.8%) variants are not seen in 1KG (phase 3), 1KG East Asians, and
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1KG CHB+CHS panels, respectively (Table 2.3). We defined three minor allele frequency

(MAF) categories: Common (MAF ≥ 0.05), low frequency (0.005 ≤ MAF < 0.05), and

rare (MAF < 0.005). As expected, a large proportion (66-79%) of novel alleles are rare in

the population, and an additional 11-17% of them are of low frequency (supplementary table

S1, Supplementary Material online). We also identified ∼ 82, 000 variants with MAF ≥ 0.05

in our data set that are not seen in the 1KG CHB+CHS populations. Even though this class

of variants is likely enriched for sequencing errors, a subset of these variants were identified

in limited number of East Asians included in other recent large-scale sequencing efforts [26]

and the frequency estimates are highly concordant (r=0.78 and 0.90 when compared with

ExAC and GNOMAD databases, Fig 2.2). Taken together, these observations suggest that

our data set currently consists of the largest variant map in Han Chinese both in terms of

span of the genome and in sample size.

2.2.1 Genetic Relationship with Archaic Hominin Individuals

Past studies of Neanderthal genomes have shown that the East Asians have inherited ∼ 20%

more Neanderthal ancestry than Europeans and that this excess ancestry may reflect a second

pulse of admixture in East Asians or a dilution of Neanderthal admixture in Europeans [7,

10, 11, 27]. We largely recapitulated the relationship of a number of Neanderthal samples and

Denisovan to the Han Chinese as previously reported (supplementary fig. S9, Supplementary

Material online). We observed subtle differences in allele-sharing pattern and estimated

Neanderthal ancestry ∼ (1.8 − −2%) across China, though the difference is not significant

after correcting for multiple testing (Fig 2.1).

2.2.2 Analysis of introgressed Neanderthal variants

We extracted 75,539 SNPs that were previously identified to tag Neanderthal haplotypes in

East Asian individuals in the 1KG project [10], and assessed the contribution of these NIMs
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to depression in our cohort consisting 5,224 cases of MDD and 5,218 controls. The allele

frequencies of these NIMs are highly correlated (r = 0.951) between our cohort and 1KG,

suggesting that the NIMs are not overt outliers from the rest of the variants in our data

set in terms of data quality. We tested the association between the NIMs and depression

by performing a logistic regression of depression, controlling for age and the first ten PCs,

for MDD and Melancholia. Using the current sample size and sequence data, we found no

association surviving the Bonferroni correction (Fig 2.1) and the QQ plots did not reveal

any systematic inflation nor significant enrichment among top associated SNPs (data were

not shown).

We also calculated the proportion of phenotypic variance explained by these NIMs using

GCTA [28] for MDD. We used a prevalence of 7.5% to transform the heritability to the

liability scale. We found that the variance explained by the NIMs is ∼ 1%, which is different

from that reported in Simonti et al. (∼ 2%) and is not significantly different from 0 (P =

0.12). Repeating the analysis with NIMs with MAF >0.01 as well as with no covariates did

not qualitatively alter the results (Tables 2.1, 2.2). Finally, we found that the heritability

explained by NIMs is not significantly different from that of a background set of SNPs

chosen at random to match the NIMs by derived allele frequency decile and by Linkage

Disequilibrium (LD) scores (P > 0.4). Our analysis may be under-powered given the smaller

sample size and low coverage, but the results could suggest that the impact of Neanderthal

ancestry on MDD differs between European and Han Chinese. Future investigation in larger

cohorts will be informative.

2.3 Discussion

We demonstrated how the impact due to Neandertal ancestry on one type of trait, MDD and

Melancholia, appears to differ between Han Chinese and Europeans. In general, these unique

histories undoubtedly contributed to the variation of phenotype within Han Chinese as well
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as between Han Chinese and other global populations. Therefore, a better understanding of

Han Chinese history will help in conducting and interpreting future medical genetic studies

within the largest ethnic group of mankind. On the other hand, our analysis also provides

a starting point to investigate systematically the contribution of archaic introgression to

clinically relevant disease phenotypes.
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2.4 Figures

Figure 2.1: Manhattan plot for association of Neandertal-informative markers (NIMs) and
MDD. We find no NIMs significantly associate with MDD. The blue line represents the
Bonferroni correction threshold.
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Figure 2.2 (Caption on next page.)
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Figure 2.2: Variant density, frequency spectra, and allele frequency comparisons for novel
variants. We defined novel variants with respect to three increasing level of inclusiveness:
those with called alternative alleles that are not found among 1KG (phase3) CHB+CHS
populations, 1KG EAS super-population, and all 1KG populations. Note that if the alter-
native allele identified in our dataset represents a previously unobserved allele in 1KG, it is
considered a novel variant, even if the site is otherwise variable in 1KG. (Top Left) Density
of novel alleles discovered per 1000 bp, per chromosome. Chromosome 23 signifies the X
chromosome. (Top Right) Distribution of alternate allele frequency of the novel alleles. For
each novel allele that was common (MAF ≥ 0.05) in our dataset, we compared its frequency
to that estimated from ExAC (Bottom Left) and GNOMAD (Bottom Right) if the same
allele passed quality control filters and was called in at least 2,000 (out of 8,654) or 800
(out of 1,622) East Asian chromosomes in ExAC and GNOMAD, respectively. In total, out
of 82,626 common novel alleles not found in 1KG CHB+CHS, frequency comparisons were
made for 644 alleles in ExAC and 40,544 alleles in GNOMAD (random 10% of these alleles
are shown here). The correlations were 0.78 and 0.90, respectively.
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2.5 Tables

H2
NIM Standard error p-value

All NIM 0.009455 0.008175 0.1177

MAF ≥ 0.01 0.008081 0.007664 0.1386

MAF ≥ 0.01, no covariates 0.013443 0.007650 0.0295

Table 2.1: Heritability associated with Neanderthal-informative mutations (NIMs) for MDD

H2
NIM Standard error p-value

All NIM 0.010055 0.008867 0.1223

MAF ≥ 0.01 0.006631 0.008247 0.2051

MAF ≥ 0.01, no covariates 0.010721 0.008249 0.086

Table 2.2: Heritability associated with Neanderthal-informative mutations (NIMs) for
Melancholia.
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Chr

FREQ
(0,

0.005]

FREQ
(0.005,
0.05]

FREQ
(0.05,
0.5]

MAC
≥ 10

Novel
1KG

Novel
EAS

Novel
CHB+
CHS

1 1,343,061 163,396 400,089 746,698 35,854 42,022 63,290
2 1,489,539 170,075 420,949 793,269 34,855 41,666 65,670
3 1,212,220 146,233 372,469 685,664 28,081 33,632 54,029
4 1,155,002 145,299 383,272 690,219 28,936 34,813 53,651
5 1,091,572 129,719 331,457 610,644 36,821 42,802 60,665
6 1,044,524 137,817 360,191 652,006 29,219 35,802 55,266
7 962,541 113,402 310,643 556,322 26,689 30,905 46,405
8 961,513 104,469 286,434 519,804 23,278 27,624 43,402
9 732,741 89,897 227,055 418,914 19,519 23,029 35,290
10 837,611 99,357 267,928 484,979 22,215 27,179 41,506
11 851,586 91,851 260,208 466,401 20,793 24,230 38,504
12 792,885 100,571 248,101 457,006 20,327 23,264 36,063
13 593,970 73,948 190,863 345,579 15,415 18,237 27,483
14 552,395 67,394 173,684 320,535 15,551 18,346 28,421
15 506,764 62,374 153,593 286,766 15,794 18,335 26,796
16 571,041 60,257 161,897 297,775 16,521 18,633 27,761
17 484,841 53,251 136,736 258,266 14,421 16,463 26,634
18 475,960 57,359 149,977 273,187 12,392 14,085 21,350
19 373,806 48,412 119,786 224,128 13,998 15,854 22,261
20 395,775 43,630 112,815 210,807 10,641 12,990 19,724
21 222,299 25,482 76,266 133,070 7,369 8,492 12,446
22 232,448 30,142 71,407 136,040 7,461 9,005 14,299
X 720,083 69,725 153,166 320,576 21,642 30,323 47,335
Tot 17,604,177 2,084,060 5,368,986 9,888,655 477,792 567,731 868,251

Table 2.3: summary of variants discovered per chromosome. Novel variants are the subset of
variants with minor allele count (MAC) ≥ 10 in the current study that are also monomorphic
or not reported in 1KG (phase 3), 1KG EAS, or 1KG CHB+CHS populations.
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CHAPTER 3

Impact of Neanderthal DNA on UK Biobank Phenotypes

This chapter contains excerpts of a published paper Wei and Robles et al. [29] presented here

with permission from the authors.

3.1 Introduction

Genomic analyses have revealed that present-day non-African human populations inherit

1-4% of their genetic ancestry from introgression with Neanderthals [5, 7]. This introgres-

sion event introduced uniquely Neanderthal variants into the ancestral out-of-Africa human

gene pool, which may have helped this bottleneck population survive the new environments

they encountered [30, 31, 10, 11, 14, 32]. On the other hand, the bulk of Neanderthal vari-

ants appear to have been deleterious in the modern human genetic background leading to a

reduction in Neanderthal ancestry in conserved genomic regions [10, 11, 18, 19, 33]. System-

atically studying these variants can provide insights into the biological differences between

Neanderthals and modern humans and the evolution of human phenotypes in the 50,000

years since introgression.

In principle, studying Neanderthal-derived mutations in large cohorts of individuals mea-

sured for diverse phenotypes can help understand the biological impact of Neanderthal intro-

gression. Previously, Dannemann and Kelso [16] showed that some Neanderthal introgressed

variants are significantly associated with traits such as skin tone, hair color, and height

based on Genome-Wide Association Studies (GWAS) in British samples. However, using
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data from Iceland, Skov et al. [34] found that most of the significantly associated Nean-

derthal introgressed SNPs are in the proximity of strongly associated non-archaic variants.

They suggested that these associations at Neanderthal introgressed SNPs were driven by the

associations at linked non-archaic variants, indicating a limited contribution to modern hu-

man phenotypes from Neanderthal introgression. In contrast to these attempts to associate

individual introgressed variants with a trait, studies have attempted to measure the aggre-

gate contribution of introgressed Neanderthal SNPs to trait variation [15, 35]. A recent study

by McArthur and colleagues [35] estimated the proportion of heritable variation that can be

attributed to introgressed variants though their approach is restricted to common variants

(minor allele frequency > 5%) that represent a minority of introgressed variants. Despite

these attempts, assessing the contribution of introgressed Neanderthal variants towards spe-

cific phenotypes remains challenging. The first challenge is that variants introgressed from

Neanderthals are rare on average (due to the low proportion of Neanderthal ancestry in

present-day genomes). The second challenge arises from the unique evolutionary history of

introgressed Neanderthal variants resulting in distinct population genetic properties at these

variants which can, in turn, confound attempts to characterize their effects. As a result, at-

tempts to characterize the systematic impact of introgressed variants on complex phenotypes

need to be rigorously assessed.

To enable analyses of genome-wide introgressed Neanderthal variants in large sample

sizes, we selected and added Single Nucleotide Polymorphism (SNPs) that tag introgressed

Neanderthal variants to the UKBiobank Axiom Array that was used to genotype the great

majority of the approximately 500,000 individuals in the UK Biobank (UKBB) [36]. We

used a previously compiled map of Neanderthal haplotypes in the 1000 Genomes European

populations [10] to identify introgressed SNPs that tag these haplotypes. After removing

SNPs that are well-tagged by those previously present on the UK Biobank (UKBB) array, we

used a greedy algorithm to select 6,027 SNPs that tag the remaining set of introgressed SNPs

at r2 > 0.8 which were then added to the UKBB genotyping array to better tag Neanderthal
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ancestry. These SNPs allow variants of Neanderthal ancestry to be confidently imputed and

allow us to identify a list of 235,592 mutations that are likely to be Neanderthal-derived

(termed Neanderthal Informative Mutations or NIMs) out of a total of 7,774,235 QC-ed

SNPs in UKBB (see Sections 3.3.1, 3.7.1).

The goals of our study are threefold: 1) to estimate the contribution of NIMs to pheno-

typic variation in modern humans, 2) to test the null hypothesis that a NIM has the same

contribution to phenotypic variation as a non-introgressed modern human SNP, and 3) to

pinpoint regions of the genome at which NIMs are highly likely to modulate phenotypic

variation. We develop rigorous methodology for each of these goals which we validate in

simulations. We then applied these methods to 96 distinct phenotypes measured in about

300,000 unrelated white British individuals in UKBB.

3.2 Results

3.2.1 The contribution of Neanderthal introgressed variants to trait heritability

To understand the contribution of Neanderthal introgressed variants to trait variation, we

aim to estimate the proportion of phenotypic variance attributed to NIMs (NIM heritability)

and to test the null hypothesis that per-NIM heritability is the same as the heritability of a

non-introgressed modern human (MH) SNP. We first annotated each of the 7,774,235 QC-ed

SNPs in UKBB as either a NIM or a MH SNP (see Sections 3.3.2, 3.3.3). NIMs include SNPs

created by mutations which likely originated in the Neanderthal lineage after the human-

Neanderthal split. SNPs that are not defined as NIMs are annotated as MH SNPs which

likely originated in the modern human lineage or the human-Neanderthal common ancestor.

To estimate NIM heritability, we used a recently proposed method (RHE-mc) that can

partition the heritability of a phenotype measured in large samples across various genomic

annotations [37]. We applied RHE-mc with genomic annotations that correspond to the

ancestry of each SNP (NIM vs MH) to estimate NIM heritability (h2
NIM). We also attempted
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to estimate whether per-NIM heritability is the same as the per-SNP heritability of MH SNPs

(∆h2). A positive (negative) value of ∆h2 indicates that, on average, a NIM makes a larger

(smaller) contribution to phenotypic variation relative to a MH SNP.

To assess the accuracy of this approach, we performed simulations where NIMs are nei-

ther enriched nor depleted in heritability (true ∆h2 = 0). Following previous studies of the

genetic architecture of complex traits [38, 39], we simulated phenotypes (across 291,273 un-

related white British individuals and 7,774,235 SNPs) with different architectures where we

varied heritability, polygenicity, and how the effect size at a SNP is coupled to its population

genetic properties (the minor allele frequency or MAF at the SNP and the linkage dise-

quilibrium or LD around a SNP). We explored different forms of MAF-LD coupling where

BASELINE assumes that SNPs with phenotypic effects are chosen randomly, RARE (COM-

MON) assumes that rare (common) variants are enriched for phenotypic effects, and HIGH

(LOW) assumes that SNPs with high (low) levels of LD (as measured by the LD score [40])

are enriched for phenotypic effects (see Section 3.3.5). Estimates of h2
NIM and ∆h2 tend to

be miscalibrated (Fig 3.1). The miscalibration is particularly severe when testing ∆h2 so

that a test of the null hypothesis has a false positive rate of 0.55 across all simulations (at a

p-value threshold of 0.05).

To understand these observations, we compared the Minor Allele Frequencies (MAF) and

LD scores at NIMs to MH SNPs. We observe that NIMs tend to have lower MAF (Fig 3.2

a) and higher LD scores compared to MH SNPs (Fig 3.2 b) (the average MAF of NIMs and

MH SNPs are 3.9% and 9.9%, respectively while their average LD scores are 170.6 and 64.9).

Among the QC-ed SNPs, 76.9% of NIMs have MAF > 1%, and 27.7% have MAF > 5%,

in contrast to 61.6% and 41.6% of MH SNPs. Distinct from MH SNPs, the MAF and LD

score of NIMs tend not to increase with each other (Fig 3.2 c,d).

To account for the differences in the MAF and LD scores across NIMs and MH SNPs, we

applied RHE-mc with annotations corresponding to the MAF and the LD score at each SNP

(in addition to the ancestry annotation that classifies SNPs as NIM vs. MH) to estimate
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NIM heritability (h2
NIM) and to test whether per-NIM heritability is the same as the per-

SNP heritability of MH SNPs i.e., ∆h2 = 0 (see Section 3.3.6, 3.7.4). Our simulations show

that RHE-mc with SNPs assigned to annotations that account for both MAF and LD (in

addition to the ancestry annotation that classifies SNPs as NIM vs. MH) is accurate both in

the estimates of h2
NIM (Fig 3.1 a,c) and in testing the null hypothesis that ∆h2 = 0 (the false

positive rate of a test of ∆h2 = 0 is 0.017 at a p-value threshold of 0.05; Fig 3.1 b,d). On

the other hand, not accounting for either MAF or LD leads to poor calibration (Fig 3.1; we

observe qualitatively similar results when estimating genome-wide SNP heritability; Fig 3.7).

We then applied RHE-mc with ancestry+MAF+LD annotations to analyze a total of

96 UKBB phenotypes that span 14 broad categories (Data S2). In all our analyses, we

include the top five PCs estimated from NIMs (NIM PCs) as covariates in addition to the

top twenty genetic PCs estimated from common SNPs, sex, and age (see Section 3.3.7).

The inclusion of NIM PCs is intended to account for stratification at NIMs that may not

be adequately corrected by including genotypic PCs estimated from common SNPs (we also

report concordant results from our analyses when excluding NIM PCs; Section 3.7.3 and

Fig 3.9 and Fig 3.10).

We first examined NIM heritability to find six phenotypes with significant NIM heritabil-

ity (Z-score ( ˆh2
NIM = 0) > 3 ): body fat percentage, trunk fat percentage, whole body fat

mass, overall health rating, gamma glutamyltransferase (a measure of liver function), and

forced vital capacity (FVC) (Fig 3.5). Meta-analyzing within nine categories that contain

at least four phenotypes, we find that meta − ˆh2
NIM is significantly larger than zero for

anthropometry, blood biochemistry, bone densitometry, kidney, liver, and lung but not for

blood pressure, eye, lipid metabolism (p < 0.05 accounting for the number of hypotheses

tested). Meta-analyzing across all phenotypes with low correlation, we obtain overall NIM

heritability estimates (meta− ˆh2
NIM)= 0.1% (one-sided p = 9.59× 10−9). The estimates of

NIM heritability are modest as would be expected from traits that are highly polygenic and

given that NIMs account for a small percentage of all SNPs in the genome (see Section 3.3.1).
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We next tested whether the average heritability at a NIM is larger or smaller compared

to a MH SNP (∆̂h2 = 0). We find seventeen phenotypes with significant evidence of de-

pleted NIM heritability that include standing height, body mass index, and HDL cholesterol

(Z − score < −3; Fig 3.5 b,d). Five phenotypic categories show significant NIM heritability

depletion (anthropometry, blood biochemistry, blood pressure, lipid metabolism, lung) in

meta-analysis. Meta-analyzing across phenotypes, we find a significant depletion in NIM

heritability (meta − ∆̂h2 = −1.4 × 10−3, p = 2.55 × 10−11). On average, we find that heri-

tability at NIMs is reduced by about 57% relative to a modern human variant with matched

MAF and LD characteristics. In contrast to the evidence for depletion in NIM heritability,

we find no evidence for traits with elevated NIM heritability across the phenotypes ana-

lyzed. Despite the observation that NIMs have been primarily under purifying selection for

thousands of generations [18, 33], they still make a substantial contribution to phenotypic

variation in present-day humans.

Finally, we investigated the impact of controlling for MAF and LD on our findings in

UKBB. Analyses that do not control for MAF and LD tend to broadly correlate with our

results that control for both (Pearson’s r = 0.96, 0.68, and 0.65 and p < 10− 12 among ĥ2,
ˆh2

NIM , and ∆̂h2). However, these analyses underestimate both heritability (Fig 3.4 a) and

NIM heritability (Fig 3.4 b), resulting in apparent NIM heritability depletion (Z − score <

−3) in 83 of the 96 phenotypes (Fig 3.4 c). While yielding qualitatively similar conclusions

about the depletion in heritability at NIMs relative to MH SNPs, prior knowledge that per

SNP heritability of complex traits can be MAF and LD dependent [38] coupled with our

extensive simulations lead us to conclude that controlling for MAF and LD lead to more

accurate results.
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3.2.2 Identifying genomic regions at which introgressed variants influence phe-

notypes

Having documented an overall contribution of NIMs to phenotypic variation, we focus on

identifying individual introgressed variants that modulate variation in complex traits. We

first tested individual NIMs for association with each of 96 phenotypes (controlling for age,

sex, twenty genetic PCs (estimated from common SNPs), and five NIM PCs (that account

for potential stratification that is unique to NIMs). We obtained a total of 13,075 significant

NIM-phenotype associations in 64 phenotypes with 8,018 unique NIMs (p < 10−10 that

accounts for the number of SNPs and phenotypes tested) from which we obtain 348 significant

NIM-phenotype associations with 294 unique NIMs after clumping associated NIMs by LD

(see Section 3.3.8).

A limitation of the association testing approach is the possibility that a NIM might

appear to be associated with a phenotype simply due to being in LD with a non-introgressed

variant [34]. We formally assessed this approach in simulations of phenotypes with diverse

genetic architectures described previously where the identities of causal SNPs are known.

A NIM that was found to be associated with a phenotype (p < 10−10) was declared a true

positive if the 200 kb region surrounding the associated NIM contains any NIM with a non-

zero effect on the phenotype and a false positive otherwise. Averaging across all genetic

architectures, the False Discovery Proportion (FDP; the fraction of false positives among

the significant NIMs) of the association testing approach is around 30% (Fig 3.5). Hence,

finding NIMs that are significantly associated with a phenotype does not confidently localize

regions at which introgressed variants affect phenotypes.

To improve our ability to identify NIMs that truly modulate phenotype, we designed a

customized pipeline that combines association testing with a fine-mapping approach that

integrates over the uncertainty in the identities of causal SNPs to identify sets of NIMs that

plausibly explain the association signals at a region (Fig 3.5 a)). Our pipeline starts with a
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subset of significantly associated NIMs that are relatively independent (p < 10−10) followed

by the application of a statistical fine-mapping method (SuSiE [41]) within the 200kb window

around each NIM signal and additional post-processing to obtain a set of NIMs that have an

increased probability of being causal for a trait. We term the NIMs within this set credible

NIMs while the shortest region that contains all credible NIMs in a credible set is termed

the credible NIM region (see Section 3.3.9; Fig 3.5 a).

We employed the same simulations as previously described to evaluate our fine-mapping

approach. The fine mapping approach yields a reduction in the FDP relative to association

mapping (FDP of 15.6% on average; Fig 3.5 b) while attributing the causal effect to a few

dozen NIMs within the credible NIM set (mean: 79, median: 54 NIMs across all simula-

tions). Applying our pipeline to the set of 96 UKBB phenotypes, we identified a total of 112

credible NIM regions containing 4,303 unique credible NIMs across 47 phenotypes (Fig 3.6).

The median length of credible NIM regions, 65.7kb (95% CI: [4.41kb, 469.3 kb]) is close to

the expected length of Neanderthal introgressed segments [34] suggesting that the resolution

of our approach is that of an introgressed LD block (Fig 3.5 c). While fine mapping gen-

erally attributes the causal signal to a subset of the tested NIMs (mean: 55.8, median: 37

NIMs across phenotypes), the degree of this reduction varies across regions likely reflecting

differences in the LD among NIMs (Fig 3.5 d). We do not detect any credible NIM in 49 out

of 96 phenotypes potentially due to the limited power of our procedure that aims to control

the FDR (Fig 3.5 e). The sensitivity of our method is affected by both total heritability

(Fig 3.5 f, Pearson’s r = 0.49, p = 3.3 × 10−7) and NIM heritability (Fig 3.5 g, Pearson’s

r = 0.36, p = 3.3 × 10−4). A linear model that uses both total heritability and NIM heri-

tability to predict the number of credible sets yields r2 = 0.29, p = 1.3 × 10−5 and 0.015,

respectively), while linear models with only total heritability or only NIM heritability result

in statistically lower r2 (0.24 and 0.13, respectively).
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3.2.3 Examination of the functional impact of credible NIMs

We annotated all 4,303 unique credible NIMs using SnpEff [1] to identify a total of 26

NIMs with high (e.g., start codon loss, stop codon gain) or moderate impact (nonsynony-

mous variants) on genes (Fig 3.6, SI Data S7). We identified two credible NIMs, rs9427397

(1 : 161, 476, 204C > T ) and rs60542959 (12:56,660,905 G > T ), that have a high impact

on protein sequences. The 1:161,476,204 C>T mutation, a NIM that is associated with

increased gamma glutamyltransferase and aspartate aminotransferase (enzymes associated

with liver function) and decreased total protein levels in blood, introduces a premature stop

codon in the FCGR2A gene (Fig. S7). FCGR2A codes for a receptor in many immune

cells, such as macrophages and neutrophils, and is involved in the process of phagocytosis

and clearing of immune complexes. This NIM is in a region that contains SNPs shown in

several GWAS linked to rheumatoid arthritis [42, 43]. The other high impact mutation,

12 : 56, 660, 905

G > T (rs60542959), results in the loss of the start codon in COQ10A, and this SNP is a cred-

ible NIM for both mean platelet volume and standing height (Fig 3.6 c) . COQ10 genes (A

and B) are important in respiratory chain reactions. Deficiencies of CoQ10 (MIM 607426)

have been associated with encephalomyopathy, infantile multisystemic disease; cerebellar

ataxia, and pure myopathy [44]. The start codon in COQ10A is conserved among mam-

mals with its loss having a potentially significant effect on COQ10A expression in immune

cells [45].

In addition, we detect 24 credible NIMs that function as missense mutations in 19 genes.

Seven out of the 19 genes are known to have immune related functions (FCGR2A, PCDHG

(A8, A9, B7, C4), STAT2, and IKZF3). The NIM in STAT2 (rs2066807, 12:56,740,682 C >

G) was the first adaptive introgression locus to be identified [30]. The STAT2 introgressed

variant segregates at 0.066 frequency in the UKBB white British and leads to an I594M amino

acid change in the corresponding protein. STAT2 gene and COQ10A are neighboring genes

thereby providing an example of an introgressed region that potentially impacts function at
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multiple genes (Fig 3.6 c).

At least seven of the 12 genes not known to be immune related have other impor-

tant functions documented in the literature, such as DNA replication/damage (FANCA,

CCDC8), transition in meiosis (FBXO34), detoxification/metabolism (AKR1C4), and neuro-

logical/developmental (ZNF778, ANKRD11, TBC1D32) functions. rs17134592 (10:5260682

C > G) is a non-synonymous mutation in AKR1C4, a gene that is involved in the metabolism

of ketone-containing steroids in the liver. The NIM is associated with increased serum biliru-

bin levels (p = 3e − 11) (Fig. S7a) while also being associated with increased levels of al-

kaline phosphatase, insulin-like growth factor 1 (IGF1) and decreased apolipoprotein A, sex

hormone binding globulin (SHBG) and triglyceride levels. rs17134592 has been identified

to be a splicing QTL that is active in the liver and testis in the GTeX data (Fig. S7b).

This NIM alters Leucine to Valine (L311V) which, in combination with the tightly-linked

non-synonymous variant rs3829125 (S145C) in the same gene, have been shown to confer

a three-to-five-fold reduction in catalytic activity of the corresponding enzyme (3-alpha hy-

droxysteroid dehydrogenase) in human liver [46]). Interestingly, the single amino acid change

S145C did not significantly alter enzyme activity suggesting the importance of the amino

acid residue at position 311 for the substrate binding of the enzyme.

3.3 Methods

3.3.1 Identification and design of SNPs that tag Neanderthal ancestry on the

UK Biobank Axiom array

We chose a subset of SNPs to add to the UKBiobank Axiom array that would tag introgressed

Neanderthal alleles segregating in present-day European populations.

We began with a list of 95,462 SNPs that are likely to be Neanderthal-derived from

Sankararaman et al. 2014 [10]. These SNPs were identified to tag confidently inferred

Neanderthal haplotypes in the European individuals identified in the 1000 Genomes Phase
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1 data (Note S1).

We winnowed down this list to 43,026 SNPs after removing ones already tagged at r2 > 0.8

by SNPs on the UKBiLEVE array. We then designed a greedy algorithm to capture the

remaining untagged SNPs that could still be accommodated on the array (we determined

the number of oligonucleotide features that would be needed to genotype each SNP as well

as the total number of features available on the array through discussions with UKBiobank

Axiom array design team).

Specifically, we computed LD between all pairs of Neanderthal-derived SNPs and then

iteratively picked SNPs with the highest score to add to the array where the score was

computed as:

ScoreSNPj =

∑n
i=1[δr2>0.80(i, j)Derived frequencySNPi

[Features required to genotype SNPj]

Here, δr2>0.80(i, j) is an indicator variable that is 1 if the squared correlation coefficient

between SNPs i and j is > 0.80 and zero otherwise. Thus, SNP j is scored higher if it

tags other untagged SNPs on the array. The other two terms upweight SNPs that tag other

Neanderthal-derived SNPs with high derived allele frequency in Europeans and downweight

SNPs by the number of oligonucleotide features required to genotype the SNP.

We iteratively chose SNPs until we obtained 6,027 SNPs (requiring 16,674 features) that

fully tagged the remaining set of Neanderthal-derived SNPs. These 6,027 SNPs were then

added to the UKBiobank Axiom array.

3.3.2 UK Biobank (UKBB) genotype QC

We restricted all our analyses to a set of high-quality imputed SNPs (with a hard call

threshold of 0.2 and an info score greater than or equal to 0.8), which, among the 291,273

imputed genotypes of UKBB unrelated white British individuals, 1) have MAF higher than

0.001, 2) are under Hardy-Weinberg equilibrium (p > 10−7), and 3) are confidently imputed

in more than 99% of the genomes. Additionally, we excluded SNPs in the MHC region,
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resulting in a total of 7,774,235 SNP which we refer to as QC-ed SNPs.

3.3.3 Identification of Neanderthal Informative Mutations

We intersected the 95,462 Neanderthal-derived SNPs identified in the 1000 Genomes Eu-

ropean individuals with UKBB QC-ed SNPs, resulting in 70,374 mutations that we term

confident Neanderthal Informative Mutations (NIM). SNPs in high Linkage Disequilibrium

(LD) with this set are likely introduced through Neanderthal introgression. We expanded

this set by including all QC-ed SNPs, which 1) have an r2 of 0.99 or higher with any confident

NIM, and 2) are located in the proximal neighborhood of any confident NIM (within 200kb).

We term this set of SNPs as expanded NIMs. On average, 80.58% of expanded NIMs match

the corresponding Altai Neanderthal allele, in contrast to 2.18% of the remaining SNPs,

suggesting that these SNPs are also highly informative about Neanderthal ancestry. This

treatment expands the number of NIMs in the UKBB QC-ed SNPs from 70,374 (confident

NIMs) to 235,592 (expanded NIMs). We primarily use this more inclusive set of SNPs in

our analyses, and refer to them as NIMs in the main results. SNPs that were not part of the

expanded NIMs are termed modern human (MH) SNPs.

3.3.4 Annotating QC-ed SNPs by MAF and LD

In addition to ancestry (Neanderthal vs MH), we annotate each QC-ed SNP by its minor

allele frequency (MAF) and LD. We define five MAF-based annotations by dividing all

QC-ed SNPs into five equal-sized bins by their MAFs. We similarly define five LD-based

annotations by dividing all QC-ed SNPs into five equal-sized bins based on their LD-score

computed from 291,273 imputed unrelated white British genotypes. In-sample LD-score is

computed on QC-ed genotypes using GCTA (https://cnsgenomics.com/software/gcta/) with

flags “–ld-score –ld-wind 10000”.

After each QC-ed SNP is annotated with three properties – ancestry (NIMs vs MH),
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MAF, and LD, we use them to construct three additional sets of annotations: ancestry +

MAF, ancestry + LD, and ancestry + MAF + LD annotations, by intersecting MAF an-

notation with ancestry annotation, LD annotation with ancestry annotation, and all three

annotations, respectively. For example, for ancestry + MAF annotation, we intersect the

previously defined MAF annotation with the ancestry annotation and divide SNPs into ten

non-overlapping bins – from low to high MAF with Neanderthal ancestry (five bins) and from

low to high MAF with modern human ancestry (five bins). Similarly, when SNPs are anno-

tated with LD + ancestry, we have five LD bins with Neanderthal ancestry corresponding

to five LD groups with modern human ancestry.

Because NIMs tend to have low MAF and high LD-score (Fig 3.2), the sizes of the

annotation bins are highly uneven. To enable reliable downstream heritability analyses,

we remove the annotation bins in their entirety if they include fewer than 30 SNPs. Such

exceptions only occur when SNPs are annotated based on all three annotations, i.e., ancestry

+ MAF + LD.

3.3.5 Whole-genome simulations

We simulated phenotypes based on QC-ed UKBB genotypes with the same sample size

(291,273) and number of SNPs (7,774,235). In each simulation, either 10,000 variants (mim-

icking moderate polygenicity) or 100,000 (mimicking high polygenicity) are sampled from

the QC-ed SNPs to have causal phenotypic effects while the rest of the variants have zero

effect. Causal effects and phenotypes are simulated with GCTA assuming either a high SNP

heritability of 0.5 or a moderate SNP heritability of 0.2.

With the simulated causal NIM variants, true NIM heritability h2
NIM can be computed

as

h2
NIM =

∑
i

β2
NIM,i/V ar(y)

where phenotypes y are simulated based on a set of standardized genotype data with a simple
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additive genetic model

yj =
∑
i

wijβi + ϵj

and

wij = (xij − 2pi)/
√
2pi(1− pi)

with xij being the number of reference alleles for the ith causal variant of the jth individual

and pi being the frequency of the ith causal variant, βi is the allelic effect of the ith causal

variant and ϵj is the residual effect generated from a normal distribution with mean 0 and

variance V ar(
∑

i wijβi)/(1/h
2 − 1).

Following previous work (Evans 2018), we chose causal variants according to five different

MAF and LD-dependent genetic architecture : 1) BASELINE: baseline architecture, where

SNPs are randomly selected to be causal variants, 2) COMMON: common SNPs are enriched

for phenotypic effects so that SNPs with MAF > 0.05 contribute 90% of causal variants while

rare SNPs contribute 10%, 3) RARE: rare variants are enriched for phenotypic effects such

that SNPs with MAF <= 0.05 contribute to 90% of causal variants while the rest contribute

10%, 4) LOW: low LD SNPs are enriched for phenotypic effects, realized as SNPs whose

LD-score <= 10 contribute 90% of causal variants, and the rest contribute 10%, and 5)

HIGH: high LD SNPs are enriched for phenotypic effects, such that SNPs with LD-score

> 10 contribute 90% causal variants while the rest contribute 10%. We simulated three

replicates, for each genetic architecture with two different values of SNP heritability (0.2

and 0.5) and two different levels of polygenicity (10,000 and 100,000 causal variants). Thus,

we simulated a total of 60 genetic architectures.

3.3.6 Estimating NIM heritability with RHE-mc

We are interested in estimating the proportion of phenotypic variance attributed to NIMs

(true NIM heritability h2
NIM) and evaluating if the heritability at a NIM (per-NIM heri-

tability) is larger or smaller than that of a background MH SNP. To this end, we used a
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variance components model that partitions phenotypic variance across genomic annotations

that include ancestry (NIM vs MH) as one of the input annotations.

We use RHE-mc, a method that can partition genetic variance across large sample sizes,

to estimate NIM heritability [37]. For each phenotype, we run RHE-mc, in turn, with four

types of input annotations: ancestry alone, ancestry + MAF, ancestry + LD, and ancestry

+ MAF + LD as described above. The ancestry+ MAF, ancestry + LD, and ancestry +

MAF + LD annotations are intended to account for the differences in the MAF and LD

properties of NIMs compared to MH SNPs.

To estimate NIM heritability, ˆh2
NIM , we combine the heritability of each bin correspond-

ing to Neanderthal ancestry:

ˆh2
NIM =

∑
i

ˆh2
NIM,i

and the heritability estimates for any bins with modern human ancestry are used to compute

the total heritability from MH. Thus, when we estimate NIM heritability from RHE-mc run

with ancestry + MAF annotations, we add the heritability estimates from five bins of low

to high MAF NIMs.

To compare the average heritability at a NIM to the heritability of a background MH

SNP that is chosen to match the NIM in terms of MAF and LD profiles, we compute the

following statistic:

∆̂h2 = ˆh2
NIM − ˆh2

MH

where ˆh2
MH =

∑
i
MNIM,i

MMH,i

ˆh2
MH,i, is the heritability of the background set matched for the

MAF and LD profile of the set of NIMs. Here MMH,i denotes the number of MH SNPs in

bin i (defined according to MAF and/or LD of the MH SNPs) while MNIM,i denotes the

number of NIMs in the corresponding bin. A more detailed justification of this statistic is

provided in Section 3.7.4.
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The standard errors (s.e.) of these statistics are computed using 100 jackknife blocks using

an extension of RHE-mc that takes into account the covariance among different annotations.

This new version of the RHE-mc is now available at https://github.com/alipazokit/RHEmc-

coeff.

3.3.7 NIM heritability and META-analysis using UKBB phenotypes

We applied RHE-mc to a total of 96 UKBB phenotypes. These phenotypes fall into 14

broader phenotypic categories (Data S1): anthropometry, autoimmune disorders, blood bio-

chemistry, blood pressure, bone densitometry, environmental factors, eye, general medical

information, glucose metabolism, kidney, lipid metabolism, liver, lung, and skin and hair.

For each phenotype, we use RHE-mc to estimate the NIM heritability ˆh2
NIM and the dif-

ference between per-NIM heritability and the per-SNP heritability of MH SNPs ∆̂h2 while

controlling for age, sex, the first 20 genetic Principal Components (PCs) estimated from

common SNPs, and the first five PCs estimated from NIMs (NIM PCs). The five NIM PCs

are computed using all NIMs in unrelated white British samples with ProPCA (Agrawal

2020).

To improve power to detect patterns that are shared across groups of phenotypes, we

combined analyses across groups of phenotypes and across all phenotypes analyzed. We

performed random effect meta-analysis on each phenotypic category containing at least four

phenotypes. We assume that the phenotypes within each category i have their ˆh2
NIM drawn

from the same distribution so that we can estimate the mean (meta − h2
NIM) and variance

of distribution i, based on the sampled ˆh2
NIMand the s.e.( ˆh2

NIM). From there, we computed

the meta analysis Z-score to test if the meta − h2
NIM is equal to zero. Similarly, we assume

the phenotypes within each category i have their ∆̂h2 drawn from the same distribution,

and compute the Z-score to test if the meta − ∆h2 is equal to zero. In addition to the

meta-analysis within the phenotypic category, we also performed meta-analysis across all

phenotypes where we used a subset of 32 phenotypes that were chosen to have low correlation
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(Pearson’s r2 ≤ 0.25 ).

3.3.8 Identifying individual NIMs associated with phenotype

To identify individual NIMs associated with a phenotype, we fit a linear regression model

using plink 2.0 –glm and included covariates controlling for age, sex and the first 20 genotypic

PCs, and first five NIM PCs. We used a stringent p-value threshold of 10-10 to correct for

the number of NIMs and phenotypes tested. For each phenotype, we clumped all significant

NIMs that lie within 250 kb and with an LD threshold (r2) of 0.5 using a significance

threshold for the index SNP of 10−10.

3.3.9 Identifying NIMs that modulate phenotype

To assess our ability to identify introgressed variants that truly modulate a phenotype, we

first tested each NIM for association with the simulated phenotype. A challenge with such an

approach is the possibility that a NIM can be found to be associated with a phenotype due to

being in LD with a non-introgressed variant. To exclude settings where the association signal

at a NIM might be driven by LD with a non-introgressed variant, we applied a Bayesian sta-

tistical fine-mapping method (SuSiE, https://stephenslab.github.io/susie-paper/index.html)

that analyzes both NIM and MH SNPs in the region surrounding an associated NIM to out-

put a set of SNPs that can explain the association signal at the region. Furthermore, we

processed these credible sets to obtain a set of credible NIMs.

We performed simulations to test the accuracy of such an approach in identifying truly

causal NIMs. In particular, we first ran an association test with plink (https://www.cog-

genomics.org/plink/) to identify significant NIMs (p-value < 10-10). We then LD-pruned

significant NIMs to get a subset of NIMs which are approximately uncorrelated with each

other (using the plink flag “–indep-pairwise 100kb 1 0.99”). For each LD-pruned significant

NIM, we considered all the QC-ed SNPs in its 200kb neighborhood as input to fine mapping.
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We ran SuSiE with ρ = 0.95 and L = 10, such that it returns credible sets that have at

least 0.95 probability to contain one causal variant and outputs at most ten credible sets

for each tested region. If there are more than one credible set for a tested region, we merge

them into one set. We then removed the credible sets which have 50% or more MH SNPs in

their credible set. The remaining credible sets all have majority NIMs (i.e. positive results),

and they are further merged together with other such regions it overlaps with, resulting in

distinct regions with evidence of NIM causal effects. We termed the set of all resulting NIMs

as the credible NIM set and all NIMs that lie in the credible set as credible NIMs. The

region containing the credible NIM set is termed credible NIM region. If there is at least

one true causal NIM within the set of credible NIMs, this credible NIM region is counted

as a True Positive (TP). If there is no causal NIM in the credible NIMs, this credible NIM

region is counted as a False Positive (FP).

We adopted the same approach when analyzing UKBB phenotypes while incorporating

covariates. Because the SuSiE package does not directly incorporate covariates, we used

regression residuals from linear regression between each UKBB phenotype and UKBB co-

variates (age, sex, 20 regular PCs, 5 NIM PCs), as the input phenotype to SuSiE.

3.3.10 Annotating NIMs

We annotated all unique credible NIMs using SnpEff [1] which uses Sequence Ontology

(http://www.sequenceontology.org/) to assign standardized terminology for assessing se-

quence change and impact. We primarily focused on examining the high (e.g., start codon

loss, stop codon gain) and moderate impact SNPs (nonsynonymous variants) which are cod-

ing variants that alter protein sequences.

31



3.4 Discussion

Our analysis demonstrates the complex influence of Neanderthal introgression on complex

human phenotypes. The assessment of the overall contribution of introgressed Neanderthal

alleles to phenotypic variation indicates a pattern where, taken as a group, these alleles

tend to be depleted in their impact on phenotypic variation (with about a third of the

studied phenotypes showing evidence of depletion). This pattern is consistent with these

alleles having entered the modern human population roughly 50,000 years ago and being

subject to purifying selection. Selection to purify deleterious introgressed variants, coupled

with stabilizing selection on human complex traits, could result in introgressed heritability

depletion such that the remaining introgressed variants in present-day humans tend to have

smaller phenotypic effects compared to other modern human variants.

Nevertheless, we document a modest but significant contribution of introgressed alleles

to variation in a number of phenotypes. In contrast to the previous heritability analyses by

McArthur et al. [35], we did not find any NIM heritability enrichment in the 96 phenotypes.

This discrepancy could be due to the different methods and NIMs used in the two studies.

McArthur et al. estimate the heritability associated with common NIMs (NIMs with MAF >

5%) using stratified LD Score Regression (S-LDSR) with LD scores computed from 1KG (see

Section 3.7.2). Because more than 70% of NIMs have MAF < 5%, this approach may not

extrapolate to understand the heritability from all NIMs. An additional potential concern

with analyses of NIMs is the possibility of confounding due to population structure among

these introgressed variants. Typical approaches to account for population stratification based

on the inclusion of principal components (PCs) may not be adequate as these PCs are

computed from common SNPs on the UK Biobank genotyping array and may not account

for stratification at the NIMs that tend to be rare on average (Mathieson 2012). Since our

analyses work directly on individual genotype data, we are able to control for stratification

specific to NIMs by including PCs estimated from NIMs in addition to PCs estimated from
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common SNPs. Our analyses are broadly consistent when including NIM PCs than without

(see Section 3.7.3).

Beyond characterizing aggregate effects of NIMs, we also attempted to identify individual

NIMs that modulate phenotypic variation. A challenge in identifying such variants comes

from the fact that NIMs tend to have lower MAF and higher LD compared to MH SNPs.

Lower MAF tends to limit the power to detect a genetic effect while higher LD makes it

harder to identify the causal variant. These challenges led us to design a fine mapping

strategy for prioritizing causal NIMs that enables the identification of sets of NIMs that can

credibly exert influence on specific phenotypes. Using this approach, we identified credible

NIMs in a number of functionally important genes, including a premature stop codon in the

FCGR2A gene, and a start codon loss in COQ10A. In addition, mutations in STAT2 are

found to be highly pleiotropic. As many of the genes are relevant to immune, metabolic, and

developmental disorders, with functions relevant to the transition to new environments, the

credible NIMs reported in our study offer a starting point for detailed investigation of the

biological effects of introgressed variants. Greenbaum et al. hypothesized that introgression-

based transmission of alleles related to the immune system could have helped human out-

of-Africa expansion in the presence of new pathogens [47]. While our results do not directly

support this hypothesis, they pinpoint introgressed alleles in immune-related genes that

could have and continue to modulate human phenotypes. Although we identified a number

of likely causal NIMs in fine mapping, our strategy likely only picks up a small fraction of the

functional NIMs suggesting that additional NIMs that are causal for specific traits remain

to be discovered.

Our study has several limitations due to the current availability of data and statistical

methods. First, all of our analyses focus on the white British individuals in the UKBB due to

the large sample size that permits the interrogation of low-frequency NIMs and our choice of

NIMs based on introgressed mutations segregating in European populations. Whole-genome

sequencing data in diverse populations can potentially elucidate the impact of Neanderthal
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introgression in other out-of-African populations that harbor substantial Neanderthal ances-

try. Alternatively, designing arrays that have SNPs informative of archaic ancestry followed

by genotype imputation could be a fruitful strategy to leverage large Biobanks to systemati-

cally explore the contribution of archaic introgression. Second, while our approach to localize

credible NIMs yields a list of NIMs that are highly likely to modulate variation in a trait,

our method only identifies a subset of causal variants. The design of fine mapping meth-

ods to study introgressed mutations while taking into account the ancestry (as well as better

incorporating other measures such as posterior inclusion probabilities) is an important direc-

tion for future work. More broadly, the unique evolutionary history of introgressed variants

motivate the development of methods tailored to their population genetic properties. While

our results suggest potential evolutionary models that explain our observations of depleted

heritability at introgressed alleles, evolutionary models that can comprehensively explain our

observations are lacking. A major challenge is the large space of potential models that need

to be explored. Nevertheless, proposing and validating such models will be an important

direction for future work.
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3.5 Figures

Figure 3.1: Benchmarking approaches for estimating the heritability components of Nean-
derthal introgression. We group simulations by relationships between minor allele frequency
(MAF) and local linkage disequilibrium at a SNP on effect size (MAF-LD coupling): BASE-
LINE, COMMON, RARE, HIGH, LOW. In each group, we perform 12 simulations with
varying polygenicity and heritability (see Methods). Additionally, we combine results from
all simulations together as ALL. We plot the distributions of two Z-scores (y-axis), one
on each row: (a) Z-score (=) tests whether the estimated and true NIM heritability are
equal, and (b) Z-score () tests whether the estimated per-NIM heritability is the same as the
per-SNP heritability of MH SNPs (see Methods). In each panel, we present results from a
variance components analysis method (RHE-mc) using four different input annotations: an-
cestry only where ancestry is either NIM or MH, ancestry + MAF, ancestry + LD, ancestry
+ MAF + LD. A calibrated method is expected to have Z-scores distributed around zero
and within 2 (shaded region). Among all tested approaches, only RHE-mc with ancestry +
MAF + LD annotations is calibrated across simulations.
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Figure 3.2: Distributions of minor allele frequency (MAF) and LD-score in NIMs and MH
SNPs. Empirical cumulative distribution functions of (a) MAF and (b) LD scores of NIMs
(in solid green line) and MH SNPs (in pink dashed line) estimated in the UK Biobank
(UKBB). (c) Boxplots of MAFs of NIMs (on the left filled in green) and MH SNPs (on the
right side filled in pink) while controlling for LD score (UKBB). (d) Boxplots of LD score
(UKBB) of NIMs and MH SNPs while controlling for MAF. NIMs and MH SNPs are divided
by the 20, 40, 60, 80, 100 (c) LD score (UKBB) percentile or MAF percentile (d) based on
all QC-ed SNPs (7,774,235 imputed SNPs with MAF > 0.001). The lower and upper edges
of a box represent the first and third quartile (qu1 and qu3), respectively; the horizontal red
line inside the box indicates median (md); the whiskers extend to the most extreme values
inside inner fences, md± 1.5(qu3− qu1).
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Figure 3.3(Caption on next page.)
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Figure 3.3: NIM heritability in UKBB phenotypes. (a) Estimates of NIM heritability ( ˆh2
NIM)

and (c) the Z-score of ˆh2
NIM (testing the hypothesis that NIM heritability is positive) for

each UKBB phenotype. Analogously, (b) estimates of ∆h2 and Z-score (d) of ∆h2 (testing
the hypothesis that per-NIM heritability is equal to per-SNP heritability at MH SNPs after
controlling for MAF and LD). Phenotypic categories are shown in alphabetical order and
listed on the top of panel (a) in the same color and alphabetical order (from top to bottom,
and left to right) as they are in the figure. The estimate for each phenotype is shown as
one colored dot, on the x-axis based on its phenotypic category, and on the y-axes based
on its Z-score (( ˆh2

NIM = 0) and Z-score (∆h2 = 0), for panels (c) and (d) respectively. For
each phenotypic category with at least four phenotypes, their Z-scores from random effect
meta-analysis are plotted with the flat colored lines (see Methods). The color shades cover
Z-scores around zero and within ±2.
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Figure 3.4: Comparing heritability analyses with and without controlling for MAF and
LD in UKBB phenotypes. Each phenotype is shown with one dot colored by the phenotypic
category it belongs to, on the y-axis based on its point estimate and standard error (estimated
by RHE-mc with Ancestry annotation) and on the x-axis based on its point estimate and
standard error (estimated by RHE-mc with ancestry + MAF + LD annotation). Estimates
shown are (a) total heritability ĥ2, (b) NIM heritability ˆh2

NIM , and (c) the difference between
per-NIM heritability and matched MH SNPs heritability ∆h2 . Not controlling for MAF and
LD leads to underestimation of NIM heritability, which leads to false positives when testing
whether heritability at a NIM is elevated or depleted relative to a MH SNP.
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Figure 3.5 (Caption on next page.)
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Figure 3.5: Fine mapping of NIMs in simulations and the UKBB. (a) Fine mapping pipeline
to identify NIMs that aims to identify genomic regions at which NIMs are likely to modulate
phenotypic variation (credible NIM regions). (b) Comparison of approaches for identify-
ing credible NIM regions. For each simulation, False Discovery Proportion (FDP) is com-
puted for association testing compared to our pipeline (combining association testing and
fine-mapping). The distributions of the FDP are shown across genetic architectures (sum-
marized across groupings of coupling of effect size, MAF and LD) and summarized across
architectures (ALL). Our approach to identifying credible NIMs decreases FDP in all studied
architectures (the LOW LD setting has a median and quartiles of zero across replicates).
(c) The distribution of the length of credible NIM regions across 96 UKBB phenotypes. (d)
Distribution of the ratio between the number of credible NIMs and number of tested NIMs
(in the example of panel (a), the number of tested NIMs is the union of NIMs in input to the
fine-mapping software (SuSiE) 1 and 2). This figure shows that our fine mapping approach
is effective in prioritizing NIMs that affect phenotype. (e) The distribution of the number of
credible NIM regions among phenotypes. The number of credible NIM regions is positively
correlated with (f) heritability (g) NIM heritability.
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Figure 3.6 (Caption on next page.)

Figure 3.6: Analysis of credible NIMs. (a) Distribution of credible NIMs across the genome
(b) High and moderate impact credible NIMs annotated by SnpEff software ([1]). A total
of 26 credible NIMs have high (marked in bold) or moderate impact effects on nearby genes
(chromosome number and hg19 coordinates). The effect of the SNP and the gene name are
displayed. This plot shows significant associations of these NIMs with specific phenotypes
(color denotes the phenotype category). (c) Plot of 300kb region surrounding rs60542959
(marked in black diamond; hg19 coordinates), a credible NIM for standing height that results
in loss of the start codon in COQ10A. The plot displays other significantly associated NIMs
in the region along with their LD (r2) to rs60542969 in 1000 Genomes Europeans ([2]).
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3.6 Supplement

3.6.1 Supplementary Figures

Figure 3.7: Benchmarking different methods for estimating the total SNP heritability. We
grouped the simulations by the five different MAF-LD coupling: BASELINE, COMMON,
RARE, HIGH, LOW, as labeled on top of each column. In each group, there are 12 simu-
lations with different levels of polygenicity and heritability (see Methods). Additionally, we
combined simulations from all five architectures together as ALL for the sixth column. On
the y-axis, Z-score (ĥ2 = h2) tests whether the estimated and simulated total heritability
are equal. In each panel, the results from RHE-mc with four different annotations, ancestry
only, ancestry + MAF, ancestry + LD, ancestry + MAF + LD are shown on the x-axis.
A calibrated method is expected to have all Z-scores distributed around zero and within 2
(shaded region). Among all tested methods, only RHE-mc with annotation ancestry + MAF
+ LD satisfies this criterion.
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Figure 3.8: Population structure within white British samples. PC-1 from the whole genome
genotypes (released by UKBB) is shown on the left, and NIM PC-1 is shown on the right.
We used a 20-by-20 grid along the latitude and longitude, dividing the map into 400 colonies.
We then computed the average PC projection as well as the median longitude and latitude
among the individuals belonging to each colony, if there are at least 10 individuals in a
colony. Each color-filled circle with a 5 kilometer radius represents one colony on the map.
To maximize the visible differences, we sorted the colonies by their PC values and used the
rank to determine the color of the colony. Compared to NIM PC-1, PC-1 shows a much
stronger correlation with geographical location.
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Figure 3.9: Comparing heritability estimates from RHE-mc without controlling for NIM
PCs with Ancestry+MAF+LD annotation and RHE-mc with Ancestry annotation in UKBB
phenotypes. This figure is plotted in the same way as Fig. 4. The trend that not controlling
for MAF and LD lead to underestimation of (a) total heritability ĥ2, (b) NIM heritability
ˆh2

NIM , and stronger NIM heritability depletion (c) ˆδh2 is also apparent when NIM PCs are
not controlled for.
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Figure 3.10: Credible NIM in the FCGR2A gene associated with gamma-glutamyl trans-
ferase levels. Plot of 200kb region surrounding rs9427397 (marked in black diamond; hg19
coordinates), a credible NIM in FCGR2A that introduces a premature stop codon and is
associated with increased levels of gamma glutamyltransferase (while also associated with
increased levels of aspartate aminotransferase and decreased total protein). The plot displays
other NIMs in the region along with their LD (r2) to rs9427397 computed in 1000 Genomes
Europeans.
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Figure 3.11: Credible NIM in the AKR1C4 gene is associated with bilirubin levels. (a) Plot
of 300kb region surrounding rs17134592 (marked in black diamond; hg19 coordinates), a
non-synonymous NIM in AKR1C4, that is associated with increased serum bilirubin levels.
The plot displays other NIMs in the region along with their LD (r2) to rs17134592. (b)
rs17134592 is a splicing QTL in liver (AKR1C8P) and testis (AKR1C4) identified in GTEx
v8.
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Figure 3.12: Appendix 2 - Figure 1. Benchmarking stratified LDSC regression (S-LDSR)
with in-sample and out-of-sample LD scores. We group the simulations by the MAF-LD
coupling: BASELINE, COMMON, RARE, HIGH, LOW, and ALL, as labeled on the x-axis.
We plot the distributions of three Z-scores (y-axis), one on each panel: (a) Z-score ( ˆδh2 = 0)
tests whether the estimated NIM heritability is different from the matched MH heritability,
(b) Z-score ( ˆh2

NIM = h2
NIM) tests whether the estimated and expected NIM heritability are

equal, and (c) Z-score (ĥ2 = h2) tests whether the estimated and simulated total heritability
are equal. In each panel, S-LDSR with the out-of-sample LD score from 1000 Genomes
(1KG) is shown in green and S-LDSR with in-sample LD score from UKBB in pink. In
S-LDSR, only ancestry annotation is used. The Z-scores within 2 are color shaded. S-LDSR
(1KG) is not calibrated even for BASELINE architecture.
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Figure 3.13: Appendix 3 - Figure 1. NIM heritability in the 96 UKBB phenotypes without
controlling for NIM PCs. This figure is plotted in the same way as Fig. 3. Heritability
estimates are largely similar, but fewer phenotypes are significant. Three phenotypes have
significant positive NIM heritability (Z-score ( ˆδh2

NIM
= 0) > 3): overall health rating, waist-

hip-ratio, and gamma glutamyltransferase. Fourteen phenotypes (standing height, sitting
height, weight, body fat percentage, whole body fat-free mass, whole body water mass,
trunk fat-free mass, trunk predicted mass, basal metabolic rate, RBC count, apolipoprotein
A, HDL cholesterol, triglycerides) are significantly depleted for NIM heritability (Z-score <
-3).
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3.6.2 Supplementary Data

Supplementary data include 10 items, Data S1-S10 are available at:

https://github.com/AprilWei001/NIM

1. Data S1. UKBB phenotype annotation.

2. Data S2: RHE-mc results in simulated data.

3. Data S3: RHE-mc results with Ancestry+MAF+LD annotations and NIM PCs in-

cluded in covariates applied to 96 UKBB phenotypes

4. Data S4: RHE-mc results with Ancestry only annotation and NIM PCs included in

covariates applied to 96 UKBB phenotypes

5. Data S5: RHE-mc results with Ancestry+MAF+LD annotation without NIM PC in

covariates applied to 96 UKBB phenotypes

6. Data S6: Fine mapping FDP in simulated data.

7. Data S7: 112 credible NIM sets and credible NIMs

8. Data S8: SnpEff annotation of all unique credible NIMs

9. Data S9. Stratified LD score regression results in simulated data using LD score from

1KG

10. Data S10. Stratified LD score regression results in simulated data using LD score from

UKBB
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3.7 Appendix

3.7.1 Appendix 1: Identification of SNPs that tag Neanderthal ancestry on the

UK Biobank Axiom array

Starting with the confidently inferred Neanderthal haplotypes identified in Sankararaman et

al. 2014 [10], we identified whether a SNP segregating in a target modern human population

owes its origin to the Neanderthal gene flow event as follows: 1. We identified sets of

haplotypes that are confidently labeled as Neanderthal, N by the Conditional Random Field

(CRF) method proposed in Sankararaman et al. 2014 scanning for runs of consecutive

SNPs with marginal probability of Neanderthal ancestry ≥ 0.90. We also identified sets of

haplotypes that are confidently labeled as non-Neanderthal, MH by scanning for SNPs with

marginal probability ≥ 0.1). We also required the Neanderthal haplotype to be at least 0.02

cM long. 2. For each SNP called in the 1000 Genomes dataset, we required that none of

the derived alleles at this SNP falls on one of the modern human haplotypes in the set MH

and all of the haplotypes in N carry the derived allele. This procedure allows for some false

negatives in the predictions of the CRF. 3. We ran this procedure on the combined calls from

the European ancestry populations (CEU, GBR, FIN, IBS and TSI) in the 1000 Genomes

Project.

This procedure yielded a total of 95,462 SNPs that are likely to be Neanderthal-derived.

We winnowed down this list to 43,026 SNPs after removing ones already tagged at r2 > 0.8

by SNPs on the UKBiLEVE array. We then designed a greedy algorithm to capture the

remaining untagged SNPs that could still be accommodated on the array (we determined

the number of oligonucleotide features that would be needed to genotype each SNP as well

as the total number of features available on the array through discussions with UKBiobank

Axiom array design team).

Specifically, we computed LD between all pairs of Neanderthal-derived SNPs and then

iteratively picked SNPs with the highest score to add to the array where the score was
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computed as:

ScoreSNPj =

∑n
i=1[δr2>0.80(i, j)][Derived frequencySNPi]

Features required to genotype SNP j

Here δr2>0.80(i, j) is an indicator variable that is 1 if the squared correlation coefficient

between SNPs i and j is > 0.80 and zero otherwise. Thus, SNP j is scored higher if it tags

other untagged SNPs on the array. The other two terms upweight SNPs that tag other

SNPs with high derived allele frequency in Europeans and downweight SNPs by the number

of oligonucleotide features required to genotype it.

We iteratively chose SNPs until we obtained 6,027 SNPs (requiring 16,674 features) that

fully tagged the remaining set of Neanderthal-derived SNPs. These 6,027 SNPs were then

added to the UKBiobank Axiom array.

3.7.2 Appendix 2: Estimating NIM heritability with partitioned LD-score re-

gression

We considered two candidate methods for estimating the NIM heritability in large datasets

and testing the related hypotheses to NIM heritability, S-LDSR [40] and RHE-mc (see Main

text) [37]. S-LDSR can speedily estimate partitioned heritability given GWAS statistics and

LD scores without any individual-level data. S-LDSR can be used with either in-sample

LD scores (i.e., computed from the same data as for GWAS) or out-of sample LD scores

(i.e., computed from an external and often much smaller data set). Out-of-sample LD scores

from 1000 Genomes (1KG) is often used in S-LDSR (McArthur 2021, Koller 2021 ) because

1) it is computationally much cheaper to compute than using the GWAS cohorts, and 2)

individual-level data from GWAS cohorts are not always accessible; despite that, S-LDSR

with in-sample LD scores is more accurate in theory.

Previous studies [35] used S-LDSR to estimate the heritability from archaic ancestries.

They computed the stratified LD scores using the 1000 Genomes (1KG) EUR and EAS
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samples and performed LD score regression against the GWAS statistics from a different

cohort. If the ancestry from 1KG samples does not match well with the GWAS cohort,

it could lead to biased heritability estimates. Additionally, the LD score distribution and

MAF distributions of NIMs are very different from the distributions of MH SNPs (Fig 3.2),

which might also affect the heritability estimates if not taken into account. Finally, LD score

regression is restricted to a subset of SNPs (typically with MAF > 5%) which substantially

reduces the number of NIMs analyzed. Here, we benchmarked S-LDSR on the simulated

data with both out-of-sample LD scores from 1KG and the in-sample LD scores from all

UKBB QC-ed data, stratified by ancestry (NIM vs MH).

First, we used the aforementioned simulations to evaluate the partitioned LD score re-

gression in estimating NIM heritability. We downloaded the 1KG EUR data (from this

site) that is typically used for LD score regression. There are 9,997,231 SNPs in the data,

and 5,789,471 of them are shared with the UKBB QC-ed SNPs. Out of the 235,592 ex-

panded NIMs defined in UKBB QC-ed data, 210,962 are present in 1KG EUR, and we

refer to these SNPs as the 1KG NIMs. We defined the 9,786,269 SNPs in 1KG EUR that

are not expanded NIMs as 1KG MH SNPs. We then computed the stratified LD score

using GCTA software with flags –ld-score –ld-wind 10000 for all the 1KG SNPs, all the

1KG NIMs, and all the 1KG MH SNPs. From here, we computed the stratified LD score

with ldscSNP = ldscNIM + ldscMH , such that each SNP has two stratified LD scores, one

due to its LD with NIMs and another due to its LD with MH SNPs. We then intersected

the 1KG SNPs with UKBB QC-ed SNPs, and used the shared 5,789,471 SNPs to perform

stratified LD score regression. The S-LDSR is then performed with all SNPs that overlap

between 1KG and UKBB. For each simulation, we ran S-LDSR to estimate h2
NIM , h2

MH ,∆h2 ,

and their standard errors from 200 jackknife blocks. We found that the results from using

out-of-sample LD are biased even when heritability does not depend on MAF and LD (i.e.,

BASELINE) (Fig 3.12).

As a comparison, we computed the in-sample stratified LD score using the UKBB QC-ed
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data and applied S-LDSR with these in-sample LD scores. In contrast to the previous results,

the results are well calibrated for BASELINE, suggesting that the previous biases observed

with BASELINE are due to the disagreement between the out-of-sample LD score and the

in-sample LD score (Fig 3.12). Not surprisingly, the results for MAF and LD-dependent

architectures are still biased, as these factors are not taken into account. We caution that

our simulations are based on UKBB QC-ed SNPs, where non QC-ed SNPs do not have an

impact on the simulated phenotypes. This setting will favor S-LDSR based on UKBB QC-ed

SNPs more than in actual settings, and disfavor S-LDSR 1KG more than in actual settings.

It is possible that in reality, the biases with in-sample LD score will become larger, and the

biases with out-of-sample LD score will become smaller. Nonetheless, because it is often

expensive to compute in-sample LD scores, the accuracy will largely depend on how well the

external panel resembles the GWAS cohort.

The out-of-sample LD score could be particularly biased for low MAF SNPs, hence S-

LDSR recommends not using annotations with fewer than 5% of SNPs as best practice.

This practice will necessarily exclude more than 70% of NIMs and about half of the MH

SNPs, and the heritability estimates from high MAF SNPs may not extrapolate to low MAF

SNPs. Therefore, S-LDSR, under the best practice, is not suitable for studying Neanderthal

introgressed variants.

3.7.3 Appendix 3: The impact of inclusion of NIM PCs on NIM heritability

estimates

We computed the first five NIM PCs using all NIMs in unrelated white British samples with

ProPCA (Agrawal 2020). Compared to the regular genetic PCs (estimated from common

SNPs), NIM PCs are only weakly correlated with birth GPS locations (Fig 3.8), consistent

with the fact that Neanderthal introgression occurred soon after the out-of-African migration

before population expansion.

When NIM PCs were not being controlled for (with remaining regular covariates still
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used), we found three phenotypes with significant NIM heritability (Z-score ( ˆh2
NIM = 0) > 3):

overall health rating, waist-hip-ratio (WHR), and gamma glutamyltransferase (a measure

of liver function). We also combined phenotypes into broader phenotypic categories and

performed random effect meta-analysis on the nine categories that contain at least four phe-

notypes (see Methods). We found that meta− ˆh2
NIM is significantly larger than zero (Z-score

> 2.53 for one-tail p = 0.05 level) for all but two categories (eye, lipid metabolism), meaning

that NIMs heritability is generally nonzero (Fig 3.13 a,c). We then tested whether NIM

heritability is larger or smaller compared to MH SNPs (∆̂h2 = 0). Fourteen phenotypes

(standing height, sitting height, weight, body fat percentage, whole body fat-free mass,

whole body water mass, trunk fat-free mass, trunk predicted mass, basal metabolic rate,

RBC count, apolipoprotein A, HDL cholesterol, triglycerides) remain significantly depleted

(Z-score < −3), among which eight are anthropometric phenotypes, and three are related

to lipid metabolism. This is in contrast to seventeen phenotypes when NIM PCs are con-

trolled for (body mass index, hip circumference, waist circumference, standing height, sitting

height, weight, whole body fat-free mass, whole body water mass, whole body impedance,

trunk fat mass, trunk fat-free mass, trunk predicted mass, basal metabolic rate, RBC count,

apolipoprotein A, HDL cholesterol, triglycerides).

Four phenotypic categories show significant NIM heritability depletion (anthropometry,

blood biochemistry, blood pressure, lipid metabolism), and five are not significantly different

with meta analysis (Appendix 3 - Figure 1bd). In contrast to the evidence for depletion in

NIM heritability, we found no evidence for traits with elevated NIM heritability even when

excluding NIM PCs (Fig 3.13 d).

3.7.4 Appendix 4: Statistic to compare per-NIM heritability to per-SNP heri-

tability at a set of background MH SNPs

In this note, we provide additional intuition behind our statistic to compare difference be-

tween the heritability at a NIM (per-NIM heritability) and the per-SNP heritability of a
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background set of MH SNPs:

∆̂h2 = ˆh2
NIM − ˆh2

MH

Let σ2
a,i =

h2
a,i

Ma,i
where a ∈ {NIM,MH}, i denotes one of the annotations (MAF,LD), h2

a,i

denotes the heritability attributed to annotation (a,i) , and Ma,i denotes the number of SNPs

in annotation (a,i). Thus σ2
a,i denotes the per-SNP heritability associated with annotation

(a,i).

The per-SNP heritability associated with NIMs is given by:

σ2
NIM =

∑
i

σ2
NIM,iMNIM,i

MNIM

=
∑
i

h2
NIM,i

MNIM

=
1

MNIM

∑
i

h2
NIM,i

where MNIM denotes the total number of NIMs.

To choose a background set of MH SNPs that match the NIMs in terms of their MAF

and LD distribution, we would pick a given bin i with probability MNIM,i

MNIM
. The per-SNP

heritability associated with this background set of MH SNPs is then given by:

σMH =
∑
i

σ2
MH,iMNIM,i

MNIM

=
1

MNIM

∑
i

h2
MH,i

MNIM,i

MMH,i

Thus, we are interested in testing the null hypothesis that the per-NIM heritability is

equal to the per-SNP heritability of the background set of MH SNPs.

σ2
NIM − σ2

MH = 0

⇒ 1

MNIM

∑
i

h2
NIM,i −

1

MNIM

∑
i

h2
MH,i

MNIM,i

MMH,i

= 0

⇒
∑
i

h2
NIM,i −

∑
i

MNIM,i

MMH,i

h2
MH,i = 0

Defining our parameter of interest: ∆h2 =
∑

i h
2
NIM,i−

∑
i
MNIM,i

MMH,i
h2
MH,i our null hypothesis
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is that ∆h2 = 0.

We estimate the relative reduction in NIM heritability as:

δh2 =
σ2
NIM − σ2

MH

σ2
MH

=

∑
i h

2
NIM,i −

∑
i
MNIM,i

MMH,i
h2
MH,i∑

i
MNIM,i

MMH,i
h2
MH,i
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CHAPTER 4

Impact of human specific variants on modern human

biology

4.1 Introduction

Uncovering genetic changes that make anatomically modern humans unique is critical for a

comprehensive understanding of human evolution. Recent genomic advances have began to

elucidate the nuances of human evolution and how humankind relates to some of our closest

hominid relatives. These advances are starting to reveal how intermixing between species

has shaped modern human biology. Research has been done examining how regions of DNA

that have been passed into homosapiens from our closest relatives, suggesting that some of

this introgressed DNA may be adaptively beneficial or undergoing negative selection. On

the other hand, there have been studies showing variant regions of DNA that are human-

specific, or lacking in our closest relatives, suggesting that these mutations may have been

important in developing modern human biology. One study uses ancestral recombination

graphs to determine regions of the genome that are uniquely human [48]. Another study

used massively parallel reporter assays to look at regulatory effects of modern human specific

variants [49] in embryonic stem cells, neural progenitor cells, and bone osteoblasts finding

(13%) of sequences containing these variants showed active regulatory activity, and (23%)

of these drove differential expression between human groups. However, there hasn’t been

a comprehensive analysis determining and analysing the effect these mutations have on a

broad range of human traits. By analyzing genome sequences from our closest evolution-
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ary relatives, Neanderthals and Denisovans, we can functionally characterize these genetic

changes. Towards this end, we identified 50,505 mutations that are nearly fixed for the

derived allele in African individuals from the 1000 Genomes project (> 99% derived allele

frequency) but are absent in all of the deeply sequenced Altai and Vindija Neanderthal and

Denisovan genomes. Here we look at some of these human specific regions and how they

impact modern human phenotypes.

To understand the phenotypic impact of these fixed derived mutations (FDMs), we lever-

age the observation that interbreeding with Neanderthals likely re-introduced the ancestral

allele at a number of these sites. We estimate that 39% of FDMs are polymorphic in Eu-

ropean populations so that their phenotypic impact can be analyzed by genotyping these

mutations in large cohorts with phenotypic information. These Fixed Derived alleles (FDs)

are mutations that rise to high frequency in modern humans since the split from archaic

humans, and may give us clues to the biology that cause modern humans to differ from our

closest relatives.

4.2 Results

4.2.1 Identifying genomic regions at which fixed derived mutations influence

phenotypes

To understand how human specific mutations influence trait variation we first annotated the

fixed derived mutations in the UK biobank. One approach we can use is to look at genetic

components of traits that modern humans share, and our archaic relatives, such as the

Neanderthal, don’t. In other words, we wanted to identify derived mutations in the modern

human genome that differed from our ancient relatives, and rose to high frequency. These

mutations occur after modern humans split from Archaic individuals such as Neanderthals,

and then rise to a high frequency in modern humans. In order to overcome the problem of

these mutations becoming fixed, or at nearly 100 % allele frequency, we leverage the fact that
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introgression may have reintroduced variation into these mutations in European individuals

(Figure 4.1). We first identified 25,448 (50,505) mutations that were > 99%(> 95%) for

the derived allele in 1000 genomes phase 3 African populations and ancestral in the Altai

Neanderthal or Denisovan and deemed Fixed Derived mutations (FD99 and FD95). These

mutations are heterozygous in a number of White British individuals in the UK Biobank (4.2

4.3). After identifying the FDMs > 99%, we used plink2 to run GLM on 96 phenotypes to

find 464 FDMs associated with 39 phenotypes at a p-value threshold of p < 10−10. For each

phenotype, we clumped all significant FDMs that lie within 250 kb and with an LD threshold

(r2) of 0.5 using a significance threshold for the index SNP of 10−10. After clumping analysis

we find 70 independent FD99-phenotype associations of the 39 phenotypes. We repeated

clumping analysis on FDMs > 95% and found 1457 FD95-phenotype associations over 67

phenotypes (Figure 4.4). We find that FDMs are associated with a wide range of phenotypic

categories including Anthropomery, Blood-related, Bone Density, Metabolism, Kidney, Liver,

Lung, Skin and Hair phenotypes.

4.2.2 Finemapping and functional annotation of FDMs

We then applied our finemapping protocol as referenced in the Section 3.3.1. Our pipeline

starts with a subset of significantly associated FDMs that are relatively independent (p <

10−10) followed by the application of a statistical fine-mapping method (SuSiE) within the

200kb window around each NIM signal (Wang 2020) and additional post-processing to obtain

a set of NIMs that have an increased probability of being causal for a trait. In our post

processing step, we removed the credible regions that have >50% non-FDMs in their credible

set. The remaining credible sets all have majority FDMs (i.e. positive results), and they

are further merged together with other such regions it overlaps with, resulting in distinct

regions with evidence of FDMs causal effects. We termed the set of all resulting FDMs

as the confident-credible FDM set and all FDMs that lie in the credible set as credible

FDMs. There were two confident-credible FDM sets containing 11 confident-credible FDMs
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that associated with 6 phenotypes (Table 4.1). The first confident-credible FDM set region

(chr1:161378366-161579657) was associated with gamma-glutamyl transferase (GGT) and

contained 5 confident-credible FDMs associated with GGT and Aspartate aminotransferase.

The second confident-credible FDM set region (chr12:56764867-56967108) was associated

with albumin, urea, and urate and contained 3 confident credible FDMs that were associated

with all three phenotypes. We then sought to determine functional effect of the confident

credible FDMs. We first looked at genes nearby to our loci of interest and found that our first

locus (chr1:161378366-161579657) was in proximity to FCGR2A and RP11-25K21.6 genes

(Figure 4.5). We looked at functional effects of our specific FDMs, however found that they

were downstream and upstream gene variants of the two genes respectively 4.2. The FCGR2A

codes for a receptor in many immune cells, such as macrophages and neutrophils, and is

involved in the process of phagocytosis and clearing of immune complexes. Interestingly,

this gene was also found to be of importance in our previous chapter. We next looked

at the locus in chromosome 12 (chr12:56764867-56967108) and found that it was in close

proximity to SPRYD4 and GLS2 genes (Figure 4.6). One study shows that SPRY-domain

containing protein 4 (SPRYD4) inhibits tumor progression in hepatocellular carcinoma by

inducing apoptotic cell death [50]. The SPRY-domain has been proposed to act as a protein-

interaction module that is present in multiple proteins with diverse functions in different

biological processes. Mutations in SPRY domain-containing genes have been reported in

diseases like Opitz syndrome and familial Mediterranean fever, but as yet limited information

is available on their association with the onset and progression of cancer. The GLS2 encodes

a protein that regulates the metabolism of glutamine, a regulatory process that activates

white blood cells. One study shows that variation in GLS2 is associated with development of

complicated Staphylococcus aureus bacteremia [51]. Another study shows that the GLS2 also

has tumor suppression activity in human hepatocellular carcinoma [52] similar to SPRYD4

gene. Theses genes are in close proximity providing an example of a region that potentially

impacts function at multiple genes.
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4.3 Methods

4.3.1 UK Biobank (UKBB) genotype QC

We restricted all our analyses to a set of high-quality imputed SNPs (with a hard call

threshold of 0.2 and an info score greater than or equal to 0.8), which, among the 291,273

imputed genotypes of UKBB unrelated white British individuals, 1) have MAF higher than

0.001, 2) are under Hardy-Weinberg equilibrium (p > 10−7), and 3) are confidently imputed

in more than 99% of the genomes. Additionally, we excluded SNPs in the MHC region,

resulting in a total of 7,774,235 SNP which we refer to as QC-ed SNPs.

4.3.2 Identifying Fixed Derived Mutations

We first determined derived allele frequencies from 504 African individuals in the 1000

genomes project phase3. We combined allele frequencies from ESN, GWD, LWK, MSL,

YRI individuals in 1000 genomes in order to determine an African derived allele frequency

for. We then determine the allele frequency in archaic individuals combining Vindija, and

Altai neanderthals as well as the Denisovan individual. Combining the datasets, we exam-

ined 41,864,101 SNPs. We then filtered out SNPs with an African derived allele frequency

>0.99 and >0.95 to find 25,448 and 50,505 mutations that are likely human specific. We

then intersected these variants with those QC-ed SNPs in the UK Biobank to find 19,632

and 9,407 confident fixed derived mutations able to be tested. We expanded this set by

including all QCed SNPs that were withing 200kb of a FDM95 and had an r2 > 0.8, 0.9 or

0.99 to get 73,129, 71,280 and 62,933 expanded FDMs.

4.3.3 Association Testing

To identify individual FDMs associated with a phenotype, we fit a linear regression model

using plink 2.0 –glm and included covariates controlling for age, sex and the first 20 genotypic
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PCs. We used a stringent p-value threshold of 10−10 to correct for the number of FDMs and

phenotypes tested. We found 6573, 6411, and 5804 for expanded sets with r2 > 0.8, 0.9 or

0.99. For each phenotype, we clumped all significant FDMs that lie within 250 kb and with

an LD threshold (r2) of 0.5 using a significance threshold for the index SNP of 10−10.

4.3.4 Annotating FDMs

We annotated all unique credible FDMs using SnpEff [1] which uses Sequence Ontology

(http://www.sequenceontology.org/) to assign standardized terminology for assessing se-

quence change and impact.

4.4 Discussion

Our research shows that we are able to use the effect of Neanderthal introgression on the

modern human genome to determine how fixed derived mutations impact modern human

phenotypes. We present a new pipeline able to identify these fixed derived mutations and

exploit their heterozygosity in Europeans to determine a signal of association in a wide

range of phenotypes. We also use our fine mapping pipeline to discover two regions of the

genome that are confidently fixed-derived and have associations with a number of phenotypes.

We find that the two regions are in close proximity to genes that are related to immunity

suggesting that these regions may have importance in development of immune response in

modern humans, thus leading to fixation. In addition, literature review of the two genes

in one of the regions are related to tumor suppression activity in human hepatocellular

carcinoma, which is interesting considering the relationship between cancers and the immune

response. One limitation of our study is that many regions containing significantly associated

FDMs were removed potentially due to the limited power of our procedure that aims to

control the FDR. Our current ongoing work involves fine-tuning our procedure to determine

if can more accurately represent what is defined as “fixed derived”. One approach is to
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run evolutionary simulations to determine how the genetic architecture of these variants

may evolve under a demography representing neanderthal introgressed DNA and fixation of

variants. We can then fine tune the parameters of our pipeline of what levels of frequency

might be needed to be considered “fixed” in African populations. Further work is also needed

to determine the effect these fixed derived mutations have on heritability of modern human

phenotypes.
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4.5 Figures

Figure 4.1: Cartoon depicting how Fixed Derived Mutations are determined
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Figure 4.2: European MAF for mutations that were > 99% for the derived allele in 1000
genomes phase 3 African population.
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Figure 4.3: European MAF for mutations that were > 95% for the derived allele in 1000
genomes phase 3 African population.
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Figure 4.4: Number of FDMs (FD95) significantly associated with phenotypes grouped by
Phenotypic category. Each dot in a category represents a unique phenotype.

Figure 4.5: Zoomed in view of the confident credible FDM (FD95) region on chromosome 1
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Figure 4.6: Zoomed in view of the confident credible FDM (FD95) region on chromosome
12
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4.6 Tables

CHR POS REF A1 BETA P Phenotype
12 56863770 G C 0.0312767 1.69E-18 albumin
12 56865040 G T 0.0313671 1.34E-18 albumin
12 56865056 G C 0.0318923 3.58E-19 albumin
1 161476533 T C 0.0385679 7.71E-22 asp_at
1 161476949 C G 0.0382341 1.58E-21 asp_at
1 161478708 G A 0.0386901 4.62E-22 asp_at
1 161479352 G A 0.0383936 8.03E-22 asp_at
1 161479438 C T 0.0382705 1.06E-21 asp_at
12 56863770 G C -0.0222723 9.99E-11 c_reactive_prot
12 56865056 G C -0.0225582 5.72E-11 c_reactive_prot
1 161476533 T C 0.0282701 3.37E-13 ggt
1 161476949 C G 0.0282119 3.58E-13 ggt
1 161478708 G A 0.0284026 2.30E-13 ggt
1 161479352 G A 0.0284242 2.00E-13 ggt
1 161479438 C T 0.0283498 2.27E-13 ggt
12 56863770 G C 0.0206617 2.17E-12 urate
12 56865040 G T 0.0205196 3.03E-12 urate
12 56865056 G C 0.0202435 5.92E-12 urate
12 56863770 G C 0.0332519 1.24E-23 urea
12 56865040 G T 0.0332406 1.25E-23 urea
12 56865056 G C 0.0330631 2.17E-23 urea

Table 4.1: Confident-credible FDMs and their associations with phenotypes
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CHR POS REF ALT Annotaion Gene
1 161476533 T C downstream_gene_variant FCGR2A
1 161476949 C G downstream_gene_variant FCGR2A
1 161478708 G A upstream_gene_variant RP11-25K21.6
1 161479352 G A upstream_gene_variant RP11-25K21.6
1 161479438 C T upstream_gene_variant RP11-25K21.6
12 56863770 G C 3_prime_UTR_variant SPRYD4
12 56865040 G T 3_prime_UTR_variant GLS2
12 56865056 G C 3_prime_UTR_variant GLS2

Table 4.2: Confident FDMs and their functional effect on genes
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CHAPTER 5

Evolutionary modeling of the differential contribution of

Neanderthal ancestry to complex traits provides insights

into selective forces that shape trait variation

5.1 Introduction

We recently developed a methodology to assess whether Neanderthal ancestry is over- or

under-represented in the genetic component of complex phenotypes compared to random

genetic variation. Based on 500,000 individuals from the UK Biobank, we found the esti-

mated contribution of Neanderthal alleles (NIMs) to phenotypic variation (NIM heritability)

is significantly depleted in the great majority of the phenotypes. This is consistent with the

observation that in general, natural selection has acted to remove Neanderthal alleles since

introgression.

To understand the evolutionary models that could explain these observations, we per-

formed forward-in-time population genetic simulations to model the evolution of Neanderthal

and non-Neanderthal alleles according to a demographic model relating modern humans and

Neanderthals. We chose parameters used in a previous study [33] analyzing the fitness cost

of Neanderthal introgression. Specifically, an ancestral population of size 10,000 diploid in-

dividuals splits into a human population and a Neanderthal population, each one evolves

separately before a single pulse of Neanderthal admixture followed by subsequent random

mating. Under this demography, we modeled evolution of phenotypes subject to differ-
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ent forces including directional, stabilizing, and disruptive selection. We estimated a NIM

heritability Z-score, a measure of whether NIM heritability deviates significantly from the

background non-introgressed alleles. We found under most models of selection, the NIM

heritability Z-score is near zero or negative, indicating NIM heritability is neutral or de-

pleted. Interestingly, we were able to recreate a positive NIM heritability Z-score, indicating

an elevated Neanderthal contribution to heritability in two separate models of stabilizing

and directional selection. In the stabilizing selection model, the optimal value of the trait is

decreased in the human branch during the split between humans and Neanderthals leading

to a positive NIM heritability Z-score. We also observe a positive NIM heritability Z-score in

a directional selection model in which the parameter that couples SNP effect size and fitness

is reduced after introgression. This observation highlights possible mechanisms for how com-

plex traits evolved in human history by examining the genetic contribution of Neanderthal

ancestry.

5.2 Results

Our goal was to examine how different evolutionary models affect NIMs and their contribu-

tion to phenotypic heritability. Specifically we sought to determine if variants of Neanderthal

ancestry contribute to an enriched amount of heritability (NIM heritability) compared to a

background set of MAF and LD matching SNPS under different conditions. To determine

this we ran population genetic simulations to model evolution of phenotypes under several

evolutionary forces including directional, stabilizing, and disruptive selection.

5.2.1 Examining how models of stabilizing, directional and disruptive selection

impact NIM heritability

We first created a simple demographic model to quickly test different types of selection (Fig-

ure 5.1). We used forward-in-time simulation software SLiM 3.0 [53] in order to create a
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demographic model of a common ancestral population followed by a split between Nean-

derthals and modern humans and finally a single pulse of introgression. Using this model,

we were able to simulate how selective forces impacted evolution of polygenic phenotypes

by looking at the quantitative trait loci (QTLs). We then examined the QTLs in order to

quantify how they were affecting heritability of a phenotype.

We first examined how the evolutionary force of stabilizing selection impacted heritability

in our simple demographic model. Under the force of stabilizing selection extreme values of

a phenotype are not favored, while there is an optimum value of said quantitative phenotype

(Fig 5.1 panel 2). We used a model of stabilizing selection developed by Lande et al. [54]

in which each phenotype (y) has an optimum value (ω) which would impact fitness (f(y))

(Fig 5.2,5.3). We then ran our forward-in-time simulations under the simple demographic

model and examined the QTLs to see how they would impact heritability in modern hu-

mans. We partitioned the QTLs into those of Neanderthal ancestry (NIMs) or those not of

neanderthal ancestry (see chapter 3 for full definition). We calculated heritability of NIMs

and compared them to a matching background set matched by MAF and LD to determine

enrichment of NIM heritability or a positive NIM heritability Z-score. Under this model of

stabilizing selection, we were not able to see any significant enrichment in NIM heritability.

(as defined in chapter 3 ).

We then examined how directional selection impacts NIM heritability in our simple de-

mography. Directional selection occurs when selection favours the phenotype at one extreme

of the range of phenotypes increasing the fitness of those individuals with phenotypes nearer

to that extreme (Fig 5.1 panel 1). We used a previously published model of directional

selection by Eyre-Walker et al. [55] in which SNP effect size β and fitness (S) are coupled

by a parameter Tau (τ). We again performed forward in time simulations under our simple

demography to calculate a NIM heritability Z-score. We saw no significant enrichment in

NIM heritability. Finally we looked at how disruptive selection impacts NIM heritability in

a disruptive selection setting. Disruptive selection occurs when extreme values for a trait
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are favored over intermediate values (Fig 5.1 panel 3). We based our simulation off a model

from Zeng et al. [56] that examines disruptive selection for a quantitative trait by relating

the normally distributed phenotype (y) to fitness (S) through a hypothetical function. After

performing simulations under our simple demography and modeling disruptive selection, we

found no significant enrichment in NIM heritability Z-score.

5.2.2 Modified models of stabilizing and directional selection present enriched

NIM heritability

After we observed no enrichment of NIM heritability, we wanted to see if we modified the

models by adjusting different parameters at different times in the Neanderthal introgres-

sion demography would allow us to see enrichment. We developed a model of stabilizing

selection that relaxed the parameter of a constant QTL optima (ω) at different stages in

the evolutionary history. We created several different cases where the optima would shift

at different branches of our demographic model following the split of modern humans and

neanderthals. We defined ωA as the optima in the shared common ancestors, and shifted

the optima immediately after the split between humans (ωH) and Neanderthals (ωN) and

immediately after introgression into modern humans ωMH . We explored many different com-

binations of changing that parameters to be constant, have a positive or negative change

in value, and/or a reversal in sign (−ω) of the optima (Fig 5.3). We found that a decrease

in QTL optima value in the human population (Neanderthal optima unchanged) after the

split between Neanderthals and modern humans produced an enrichment in NIM heritabil-

ity (i.e., ωA = ωN > ωH ; Fig 5.4). Under this modified model of directional selection, we

observed a positive NIM heritability Z-score indicating an enrichment of NIM heritability in

our simulated phenotype (Fig 5.5).

We next modified the previously stated model of directional selection that relaxed the

assumption of a constant relationship between SNP effect size β and fitness S throughout

an evolutionary history. In the previous model, β and S are coupled through a parameter τ ,
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quantifying the relationship between the two. In our modified model, we allowed for the value

of τ to change before (τa) and immediately after (τi) introgression (Fig 5.6 and Fig 5.7). We

found that a reduction in the value of the initial coupling parameter (τa) to a smaller value

after introgression (τi) produces a positive NIM heritability Z-score (i.e. τa > τi) (Fig 5.8).

This positive NIM heritability Z-score again indicates that under this specific evolutionary

scenario, we observe an enrichment of NIM heritability in our simulated phenotype.

We repeated these experiments under a more realistic demography than our simple de-

mographic model based on parameters from a previously published model by Harris and

Nielsen [18]. In this model, there is a development of genetic background in a common

ancestor for a number of generations, a split between neanderthals and modern humans, a

second split within modern humans simulating the out of Africa movement, followed imme-

diately by introgression into a non-African population (Fig 5.3). Under this more realistic

model, both results of NIM heritability enrichment in our modified directional and selection

models persist. Lastly, we explored variations in several demographic parameters to observe

how they may impact NIM heritability. We simulated models in which there is (1) changes

in values of effective population sizes of Neanderthals or modern humans (2) changes in

genomic element size (3) changes in admixture proportion and (4) changes in causal variant

proportion. In all of these demographic models, we observe no significant enrichment of NIM

heritability.

5.3 Methods

5.3.1 Simple demographic model

We created a simple demographic model to simulate Neanderthal introgression into mod-

ern humans. We used SLiM 3.0 [53] to run a forward in time simulations in a normally

distributed phenotype with quantitative trait loci. The mutation rate was set to 10−7 and

the chromosome size was set to 100 kb with neutral and QTL mutations occurring at equal
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proportions with a rate of 10−7. In our model we begin with an ancestral population size of

NA = 10, 000 and allowed this population to develop over 3,980 generations. From here, we

had the population split into two separate sized populations of humans (NH = 10, 000) and

Neanderthals (NN = 1, 000). These two populations randomly mated separately for 10,000

generations followed by an introgression event of 20%. Finally, modern humans evolved for

another 2,000 generations and effect sizes of QTLs were observed.

5.3.2 Stabilizing selection model

We used a model of stabilizing selection previous published by Lande et al.[54] in which a nor-

mally distributed continuous phenotype (y) had an optimum value of (ω) and a phenotypic

variance of (σ2). The fitness of an individual f(y) can be determined by the equation:

f(y) = 10 ∗ 1

σ
√
2π

exp

{
−(ω − y)2

2σ2

}
We used this calculation of fitness in the simulation mentioned in section 5.3.1

5.3.3 Modified model of stabilizing selection

We relaxed the assumption of a constant phenotype optima ω in the section above and

allowed it to vary at different points in the evolutionary history. We let ωi be the phenotypic

optima occurring in ancestral population, humans and neanderthals after split, and modern

humans i.e. i = {A,H,N,MH} representing different values in those populations. Our new

model of fitness for individuals in a population i can be determined:

f(y) = 10 ∗ 1

σ
√
2π

exp

{
−(ωi − y)2

2σ2

}
We used this calculation of fitness in the simulation mentioned in section 5.3.1
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5.3.4 Directional selection model

We used a model of directional selection previously published by Eyre-Walker [55] in which

a the effect size of a QTL (β) is coupled with fitness (S) by a parameter τ where S = 4NEs

and ϵ is normally distributed with a mean 0 and a SD σ. In this model δ transforms the

distribution of effects such that mutations have equal probabilities of increasing or decreasing

the trait.

β(S, ϵ, δ, t) = δSτ (1 + ϵ)

In this model the strength of association between the effects of mutations on the trait

and fitness is dependent upon the parameter τ . We used this calculation of fitness in the

simulation mentioned in section 5.3.1.

5.3.5 Modified directional selection model

We relaxed the assumption of a constant coupling parameter τ in the model of directional

selection above and allowed the value to change immediately following introgression (Fig 5.7).

In our model, the strength of association (τj) between effect size β and selection S changes

in a population i before introgression and after introgression i.e. j = {a, i}. Our new model

can be determined:

β(S, ϵ, δ, t) = δSτj(1 + ϵ)

We used this model of fitness and effect size in the simulation mentioned in section 5.3.1.
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5.3.6 Realistic demographic model

We created a more realistic demographic model to simulate Neanderthal introgression into

modern humans based on a model previously published by Harris and Nielsen [18]. We used

SLiM 3.0 [53] to run a forward in time simulations in a normally distributed phenotype with

quantitative trait loci. The mutation rate was set to 10−8 and the chromosome size was set to

100kb with neutral and QTL mutations occurring at equal proportions with a rate of 10−8.

In our model we begin with an ancestral population size of NA = 10, 000 and allowed this

population to burn in for 70,000 generations. From here, we had the population split into

two separate sized populations of humans (NH = 10, 000) and Neanderthals (NN = 1, 000).

These two populations randomly mated separately for 17,800 generations followed followed by

a splitting of modern humans into two equal sized populations of Africans (NAFR = 10, 000)

and Europeans (NEUR = 10, 000). One generation after the split, there was an introgression

event of 10%. Finally, modern humans evolved for another 2,200 generations and effect sizes

of QTLs were observed. We used this model to simulate the same forces of selection in

previous sections.

5.4 Discussion

Our research provides new insights into how selective forces acting upon the genetic ar-

chitecture of modern human and Neanderthal populations can affect phenotypes under an

introgressed demography. Looking at phenotypic variance data in modern humans, parti-

tioned by modern human and neanderthal introgressed DNA, may allow us to determine

what selective forces might be acting upon a population. We can compare and contrast

the partitioned heritability estimates in real data and compare them to simulated evolution-

ary models to determine how these genetic architectures may have evolved over time and

their influence on phenotypic heritability. In general, we find that most models of selection

(including stabilizing and directional selection) lead to NIM heritability that is compara-
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ble or lower than non-introgressed SNPs consistent with our empirical results in Chapter 3

that document that across a large number of phenotypes, their NIM heritability is depleted

relative to matched non-introgressed SNPs.
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5.5 Figures
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Figure 5.1: Different models of selection: In each panel, x-axis is the phenotype value
and y-axis is the number of organisms. Group A is the population distribution before
selection and group B is after selection. 1) Directional section, single extreme pheno-
type value is favored to be the QTL optima. 2) Stabilizing selection, where an inter-
mediate phenotype is favored and 3) Disruptive selection, where an extreme phenotype
on either end is favored. Source: Ealbert17, Genetic Distribution.svg. CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.
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Figure 5.2: Simple demographic model
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Figure 5.3: Simple demographic model with stabilizing selection
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Figure 5.4: Modified stabilizing selection model
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Figure 5.5: Modified stabilizing selection model produces positive NIM heritability Z-scores
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Figure 5.6: Realistic demographic model
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Figure 5.7: Directional selection - modified model
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Figure 5.8: Modified directional selection model produces NIM heritability Z-scores
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