UC Berkeley UC Berkeley Electronic Theses and Dissertations

Title

Understanding the mechanistic crosstalk between endoplasmic reticulum-associated degradation and lipid homeostasis

Permalink

https://escholarship.org/uc/item/62m1253j

Author

To, Milton

Publication Date

2020

Peer reviewed|Thesis/dissertation

Understanding the mechanistic crosstalk between endoplasmic reticulum-associated degradation and lipid homeostasis

By

Milton To

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

In

Comparative Biochemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Olzmann, Chair Professor Sona Kang Professor Daniel Nomura

Spring 2020

Abstract

Understanding the mechanistic crosstalk between endoplasmic reticulum-associated degradation and lipid homeostasis

by

Milton To

Doctor of Philosophy in Comparative Biochemistry

University of California, Berkeley

Professor James Olzmann, Chair

The endoplasmic reticulum (ER) mediates the folding, maturation, and deployment of the secretory proteome. Proteins that fail to achieve their native conformation are retained in the ER and targeted for clearance by ER-associated degradation (ERAD), a sophisticated process that mediates the ubiquitin-dependent delivery of substrates to the 26S proteasome for proteolysis. Recent findings indicate that inhibition of long-chain acyl-CoA synthetases with triacsin C, a fatty acid analogue, impairs lipid droplet (LD) biogenesis and ERAD, suggesting a role for LDs in ERAD. However, whether LDs are involved in the ERAD process remains an outstanding question.

We use chemical and genetic approaches to disrupt diacylglycerol acyltransferase (DGAT)-dependent LD biogenesis. We provide evidence that LDs are dispensable for ERAD in mammalian cells. Instead, our results suggest that triacsin C causes global alterations in the cellular lipid landscape that disrupt ER proteostasis by interfering with the glycan trimming and dislocation steps of ERAD. Prolonged triacsin C treatment activates both the IRE1 and PERK branches of the unfolded protein response and ultimately leads to IRE1-dependent cell death. These findings identify an intimate relationship between fatty acid metabolism and ER proteostasis that influences cell viability.

During ERAD, ubiquitinated substrates are extracted from membrane-embedded dislocation complexes by the AAA ATPase VCP and targeted to the cytosolic 26S proteasome. In addition to its well-established role in the degradation of misfolded proteins, ERAD also regulates the abundance of key proteins such as enzymes involved in cholesterol synthesis. However, due to the lack of generalizable methods, our understanding of the scope of proteins targeted by ERAD remains limited. To overcome this obstacle, we develop a VCP inhibitor substrate trapping approach (VISTA) to identify endogenous ERAD substrates. VISTA exploits the small-molecule VCP inhibitor CB5083 to trap ERAD substrates in a membrane-associated, ubiquitinated form. This strategy, coupled with quantitative ubiquitin proteomics, identified previously validated (e.g., ApoB100, Insig2, and DHCR7) and novel (e.g., SCD1 and RNF5) ERAD substrates in cultured human hepatocellular carcinoma cells. Moreover, our results indicate that RNF5 autoubiquitination on multiple lysine residues targets it for ubiquitin and VCP-dependent

clearance. Thus, VISTA provides a generalizable discovery method that expands the available toolbox of strategies to elucidate the ERAD substrate landscape.

In this dissertation, we discuss the intricacies between disruptions in cellular lipid homeostasis and its effects on ERAD. Furthermore, our development of VISTA enables proteomic profiling of endogenous ERAD substrates, many of which have been previously linked to lipid metabolism. Together, these studies provide novel tools and insight to elucidate a complex relationship between protein quality control in the ER and proper maintenance of the cellular lipid environment.

Dedication

For Pritella

Table of Contents

Chapter 1: Protein quality control and endoplasmic reticulum-associated degradation	1	
1.1 Introduction		
1.2 Endoplasmic reticulum-associated degradation	2	
1.2.1 Substrate recognition	2	
1.2.2 Dislocation	3	
1.2.3 Ubiquitination	3	
1.2.4 A role for deubiquitinating enzymes	4	
1.2.5 Proteasomal degradation	5	
1.3 The unfolded protein response	5	
1.3.1 Canonical activation and response	5	
1.3.2 Activation by lipid perturbations	6	
1.4 ERAD in human health and disease	6	
1.4.1 ERAD in lipid metabolism	7	
1.4.2 Hijacking ERAD	7	
1.4.3 Unknown mechanisms of ERAD in diseases	7	
1.5 Figures	9	
Chapter 2: Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan	1	
trimming and dislocation	12	
2.1 Introduction	13	
2.2 Results	14	
2.2.1 Inhibition of long-chain acyl-CoA synthetases with triacsin C impairs select ERAD		
pathways	14	
2.2.2 Triacsin C does not generally inhibit the ubiquitin-proteasome system	15	
2.2.3 Triacsin C does not impair protein secretion	16	
2.2.4 Triacsin C impairs CD147 glycan trimming	16	
2.2.5 Triacsin C disrupts CD147 delivery to the Hrd1 dislocation complex		
2.2.6 Triacsin C impairs the dislocation of a luminal glycosylated ERAD substrate	18	
2.2.7 Lipid droplets are dispensable for CD147 ERAD	18	
2.2.8 Metabolomic profiling reveals global alterations in the cellular lipid landscape of		
triacsin C treated cells	19	
2.2.9 Triacsin C activation of the PERK and IRE1 arms of the UPR has opposing effects	on	
cell viability	20	
2.3 Discussion	21	
2.4 Materials and Methods	23	
2.4.1 Plasmids, antibodies, and reagents	23	
2.4.2 Cell culture and transfection	23	
2.4.3 Immunoblotting analysis	23	
2.4.4 Immunofluorescence microscopy	24	
2.4.5 Affinity Purifications	24	
2.4.6 Radiolabeling and pulse-chase analysis	24	
2.4.7 SILAC Mass spectrometry	25	
2.4.9 XBP1 splicing assay	26	
2.4.10 Cell viability	26	
2.5 Figures	27	

Chapter 3: A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profi	iling of
endogenous ERAD substrates	44
3.1 Introduction	45
3.2 Results and Discussion	45
3.2.1 VCP Inhibition traps ubiquitinated NHK in complex with the Hrd1 E3 ubiquitir	1 ligase
	45
3.2.2 Global analysis of trapped, ubiquitinated proteins identifies endogenous ERAD	
substrates in HepG2 liver cells	46
3.2.3 Degradation of endogenous SCD1 and RNF5 requires VCP, ubiquitin conjugati	ion, and
the proteasome	47
3.2.4 Autoubiquitination targets RNF5 to the ERAD pathway in HepG2 cells	48
3.3 Materials and methods	50
3.3.1 Plasmids, antibodies, and reagents	50
3.3.2 Cell culture, transfections, and stable cell line generation	50
3.3.3 Differential fractionation	51
3.3.4 Affinity purification	51
3.3.5 Immunoblotting	51
3.3.6 Enrichment of diGly-modified peptides	52
3.3.7 LC-MS/MS analysis	52
3.3.8 Bioinformatic analyses	52
3.3.9 Generation of RNF5 knockout cells	53
3.4 Figures	54
Conclusions	67
References	70
Appendix	87

List of Figures			
Figure 1-1	Overview of ERAD	10	
Figure 1-2	Glycan trimming in protein folding and ERAD	11	
Figure 2-1	Triacsin C inhibits a subset of ERAD pathways	28	
Figure 2-2	Triacsin C does not generally inhibit the ubiquitin-proteasome system or		
	protein secretion	30	
Figure 2-3	Triacsin C impairs ERAD substrate glycan trimming	31	
Figure 2-4	Triacsin C impairs substrate delivery to and dislocation from the Hrd1 complex	33	
Figure 2-5	Lipid droplet biogenesis is dispensable for CD147 ERAD	34	
Figure 2-6	Triacsin C alters the cellular lipid landscape	36	
Figure 2-7	Triacsin C activates opposing arms of the UPR	38	
Figure 2-S1	Analysis of CD147 maturation and NHK secretion	39	
Figure 2-S2	Proteasome inhibition causes accumulation of CD147 in a deglycosylated		
-	form	40	
Figure 2-S3	Analysis of glucosidase and mannosidases in CD147 glycan trimming and		
	degradation	41	
Figure 2-S4	Triacsin C and DGAT1 reduce the amount of PLIN2-positive lipid droplets	42	
Figure 2-S5	Characterization of a CHOP::GFP reporter cell line	43	
Figure 3-1	VCP inhibition traps the ERAD substrate NHK in complex with the E3		
Б. 2.2	ligase Hrdl	22	
Figure 3-2	Global analysis of trapped, ubiquitinated proteins identifies validated and		
г. ээ	candidate ERAD substrates in cultured liver cells	50	
Figure $3-3$	Gene ontology analysis of candidate EKAD substrates	58	
Figure 3-4	Endogenous SCD1 and RNF5 are degraded via a VCP- and ubiquitin-	50	
F irm 2.5	DNE5 esteral institution to a transition EDAD	59	
Figure 3-5	KNF5 autoubiquitination targets it for ERAD	61	
Figure $3-S1$	Immunoblot analysis of the Hrd1-CD14/ Interaction	62	
Figure $3-S_2$	Proteomic analysis of diGly-modified peptides	03	
Figure $3-83$	Analysis of a lower molecular anti-SCD1 immunoreactive band	64	
Figure $3-84$	KINFO Iorms a homo-oligomer	65	
Figure 3-85	KINF5 undergoes cis-molecular autoubiquitination	66	

Acknowledgements

I thank everyone who has been there to share this journey with me. This dissertation would not have been possible without a great many people.

To James Olzmann: You have been a fantastic mentor for me through the years. It has been a privilege being a part of your lab and seeing it grow from the early days into what it is now. You were always there to challenge me and to support me. Thank you for believing in me and giving me more responsibilities than I thought I could handle.

To the members of the Olzmann Lab, past and present: You are the ones who have made my day to day graduate experience. Through long days and late nights, you have been there to share this experience. We shared sweat, tears, food, thoughts, stories, food, smells, laughs, lessons, data, diseases, disappointments, cells, plasmids, reagents, food, drinks, songs, pictures, videos, and so much more. I would not have had it any other way. Hi Truc.

To the wonderful members of the Comparative Biochemistry Program, NST department, and UC Berkeley community (hello, Alyssa Rosenbloom): Thank you for providing such a passionate research environment. I am extremely fortunate to be a surrounded by such a supportive group of people. To the less-wonderful members: Thanks for being there, I guess.

My graduate experience has been a wonderful journey thanks to all of you. Though the future holds many uncertainties, I draw my strength from the experiences I have shared with all of you. You all made the magic real.

Chapter 1: Protein quality control and endoplasmic reticulum-associated degradation

1.1 Introduction

Proper folding of newly synthesized proteins is an essential step of all life. Inevitably, mutations, errors in transcription or translation, or environmental stress can yield terminally misfolded proteins. In order to compensate, cells have evolved complex mechanisms to ensure proper folding and function ^{1,2}. Misfolded proteins are most often degraded by the proteolytic pathway known as the ubiquitin-proteasome system (UPS), which occurs through the sequential actions of an E1 activating enzyme, an E2 conjugating enzyme, and an E3 ubiquitin ligase ^{2–4}. Typically, the C-terminus of ubiquitin, a 76-amino acid protein, is covalently attached to the ε -amine group of a lysine residue on the protein to be degraded. Following monoubiquitination of the misfolded protein, polyubiquitin chains are formed by the successive attachment of ubiquitin to any of the seven lysine residues of the preceding ubiquitin ⁵. While ubiquitination can function in a wide variety of cellular regulation, it is most commonly understood as a marker for protein degradation.

1.2 Endoplasmic reticulum-associated degradation

The endoplasmic reticulum (ER) is a eukaryotic organelle where nearly one-third of the proteome is synthesized, folded, and modified prior to trafficking to downstream cellular compartments. Misfolded proteins in the ER are spatially separated from the UPS machinery in the cytoplasm. In a process known as ER-associated degradation (ERAD), a unique set of proteins in the ER is responsible for recognition of misfolded substrates and their delivery across the lipid bilayer of the ER for degradation by the cytosolic UPS ⁶. ERAD is responsible for degrading a diverse set of substrates, including soluble luminal proteins, transmembrane proteins, and in some cases, cytoplasmic proteins. Although the precise mechanisms from substrate to substrate can vary and are yet to be elucidated, ERAD occurs through a series of spatially and temporally regulated steps: 1) recognition of the substrate across the ER bilayer 3) ubiquitination of the substrate and 4) degradation by the 26S proteasome.

1.2.1 Substrate recognition

The first step of ERAD involves the ability of the system to recognize a substrate for degradation. The vast majority of proteins entering the secretory pathway undergo N-linked glycosylation, the covalent addition of a core oligosaccharide unit containing three glucoses, nine mannoses, and two N-acetyl-glucosamines ^{7,8}. The terminal glucoses of the glycan are then trimmed by α -glucosidase I and α -glucosidase II, leaving a monoglucosylated glycan which can bind to the ER chaperones calnexin and calreticulin to assist in folding ^{6,8}. While progressive trimming of the final glucose residue by α -glucosidase II releases proteins from calnexin and calreticulin, UDP-glucose glycoprotein glucosyltransferase can reglucosylate the glycan, resulting in a folding cycle of binding and release from ER chaperones ^{8,9}. Terminally misfolded proteins in the ER can exit this cycle through the progressive trimming of mannose residues by ER mannosidases, and the trimmed glycans are recognized and bound by the ER lectins OS-9 and XTP-3 for delivery to the dislocation complex and subsequent degradation ^{6,8,10–12}. Although this folding cycle provides an intriguing mechanism by which misfolded proteins can be recognized, ERAD must also recognize proteins that are not glycosylated. While there is evidence for

glycosylation-independent ERAD pathways, ER mannosidases are also able to bind nonglycosylated ERAD substrates and facilitate their degradation ^{13–15}.

1.2.2 Dislocation

Following recognition of an ERAD substrate for degradation, the substrate is then brought to a proteinaceous dislocation complex for access to the cytoplasmic UPS machinery. The dislocation complex appears to be composed of many adapter proteins surrounding a membraneembedded E3 ubiquitin ligase ¹⁶. Integrated proteomics analysis of these E3 complexes show that ERAD networks are organized into functional modules and adapter proteins to help accommodate for the diverse biochemical properties of ERAD substrates, including soluble luminal proteins and membrane proteins with many different topologies ¹⁷. However, the mechanism by which substrates gain cytoplasmic access was unclear, with studies suggesting a role for the Derlin proteins, signal peptide peptidase, the Sec61 translocon, E3 ligases, and even lipid droplets in the dislocation of ERAD substrates ^{18–23}. A later study using reconstituted proteoliposomes found that autoubiquitination of the E3 ubiquitin ligase Hrd1 was sufficient to drive dislocation of an ERAD substrate ²⁴. This study suggested that transmembrane domains of the Hrd1 E3 ubiquitin ligase, and possibly other E3 ubiquitin ligases within the ER membrane, forms a pore by which ERAD substrates can access the cytoplasmic UPS machinery. The formation of the Hrd1 pore was later confirmed by structural analysis using cryo-electron microscopy in which five of eight transmembrane domains of Hrd1 form an aqueous cavity bridging the ER lumen to the cytosol²⁵. Evidence of the Hrd1 pore formation was also supported by high-resolution electrophysiology, which also found a conformational change of the pore that was regulated by the autoubiquitination of Hrd1²⁶. While this model provides an elegant mechanism by which ERAD substrates can gain cytoplasmic access, it does not necessarily exclude the possibility of other mechanisms.

Although Hrd1 allows for cytoplasmic access of a luminal ERAD substrate, physical extraction from the lipid bilayer is catalyzed by p97/VCP, an ATPase associated with diverse cellular activities (AAA+ ATPase). Several ERAD proteins commonly found in complex with E3 ubiquitin ligases contain a variety of VCP-recruitment domains, suggesting that recruitment of p97/VCP is tightly coupled to ERAD by direct interaction with the dislocon ²⁷. p97/VCP drives dislocation through the ER membrane by harnessing energy from the hydrolysis of adenosine triphosphate (ATP)²⁷. Structural studies reveal that p97/VCP forms a hexameric ring-like structure consisting of two stacked rings with a central pore region that contracts from ~61 to ~54 Å following ATP hydrolysis ²⁸. While the pore size is large enough to accommodate ERAD substrates, the relatively small magnitude of the contraction suggests that substrates may not be threaded through the pore itself. However, later biochemical data using site-specific photocrosslinking show that ATP hydrolysis indeed moves ERAD substrates from the D1 ring through the central pore through the D2 ring ²⁹. A later study using cryo-EM showed that the unfolding of ubiquitin allows for the physical processing of substrates through p97/VCP³⁰. Together, this provides an elegant mechanism by which ERAD substrates are fed through the dislocation channel embedded in the ER membrane and pulled from the dislocon into the cytoplasm by p97/VCP using energy derived from the hydrolysis of ATP.

1.2.3 Ubiquitination

In addition to its role in the physical extraction of ERAD substrates, p97/VCP is also implicated in substrate unfolding to assist in degradation. Intriguingly, the unfoldase activity of p97/VCP appears to be dependent on the ubiquitination state of its substrate ²⁹. Ubiquitination of ERAD substrates can be catalyzed by dozens of E3 ubiquitin ligases in the ER membrane ³¹. In some cases, multiple E3 ubiquitin ligases may coordinate to facilitate the degradation of substrates. The E3 ligases gp78 and Trc8 appear to cooperate in the ubiquitination and degradation of HMG-CoA reducatase ³². In the case of a truncated major histocompatibility complex (MHC) class I heavy-chain molecule, Hrd1 is required for ubiquitination and dislocation, but the E3 ubiquitin ligase gp78 functions downstream of Hrd1 in coordination with the BAG6 chaperone complex ³³. Furthermore, cytoplasmic ubiquitination machinery may be involved. A recent genomic screen implicated the recruitment of the cytoplasmic E2 UBE2D3 and E3 ligases UBR4 and KCMF1 in the degradation of Insig-1³⁴. Moreover, the E3 ligases themselves can be ubiquitinated and degraded as a form of self-regulation, either by autoubiquitination or by ubiquitination by another E3 ligase ^{35,36}. Although ubiquitination of the E3 ligases can lead to degradation of the E3, ubiquitination of the lysine residues in the RING-finger domain of Hrd1 is required for proper substrate dislocation ²⁴. The overall interactions and potential compensation among the dozens of E3 ubiquitin ligases remains unclear and warrants further research.

1.2.4 A role for deubiquitinating enzymes

While E3 ubiquitin ligases play crucial roles in accelerating the degradation of ERAD substrates, their activities can be counteracted by the activity of deubiquitinating enzymes (DUBs). The human genome contains approximately 100 DUBs that can deconstruct polyubiquitin chains and remove ubiquitin from a target substrate ³⁷. While autoubiquitination of Hrd1 triggers dislocation of ERAD substrates, the ubiquitination can also drive degradation. Thus, the activity of the DUB must be carefully regulated to maintain proper activity of Hrd1. A recent study showed that deubiquitination of Hrd1 by the membrane-bound DUB Ubp1 stabilized levels of Hrd1, revealing a novel mechanism by which Hrd1 is regulated ³⁸. Furthermore, the activity of Ubp1 can be modulated by many of the interactors of Hrd1.

Removal of ubiquitin chains does not necessarily inhibit degradation of ERAD substrates. Expression of a dominant negative mutant of YOD1, a DUB associated with the p97/VCP dislocation complex, resulted in an impairment in the dislocation of several ERAD substrates, suggesting that trimming of polyubiquitin chains is required for proper dislocation ³⁹. Reconstitution of this process using Otu1 and Cdc48, the yeast homologs of YOD1 and p97/VCP respectively, verified the importance of polyubiquitin chains to recruit p97/VCP, but also the importance of deubiquitination for proper p97/VCP function ⁴⁰. A later study reconciled this apparent paradox ²⁹. In this study, polyubiquitinated substrates bind p97/VCP through the p97/VCP cofactors Ufd1 and Np14, allowing the substrate to be threaded through the central pore of p97/VCP and accounts for the unfoldase activity. Trimming of the polyubiquitinated substrate by Otu1 leaves a shorter oligoubiquitin chain that can be unfolded and threaded through p97/VCP along with the rest of the substrate. Upon release of the substrate from the p97/VCP complex, the unfolded oligoubiquitin chain likely refold and allow for targeting to the proteasome. Together, this provides mechanistic insight for the requirement of both ubiquitination and deubiquitination of a substrate for ERAD.

1.2.5 Proteasomal degradation

ERAD substrates that have undergone dislocation and ubiquitination are ultimately targeted to the 26S proteasome for degradation. The 26S proteasome serves as the primary proteolytic system for protein degradation in eukaryotes and consists of a 20S barrel-like core peptidase and 19S regulatory lids on both ends ⁴¹. Substrates are delivered to the proteasome through the recognition of ubiquitin on the substrate on the lid of the proteasome ⁴². Once the substrate is engaged with the proteasome, it can be deubiquitinated by Rpn11, a DUB within the lid of the proteasome, and fed into the proteolytic core of the proteasome ⁴².

Of note, many ERAD substrates contain hydrophobic domains that become exposed to the cytoplasm following dislocation and unfolding. For Insig-1, a membrane protein degraded by ERAD, dislocation is coupled to proteasomal degradation by recruitment of proteasomes to the substrate prior to extraction from the membrane ⁴³. However, chaperones can also mediate dislocation and degradation in ERAD by maintaining the solubility of proteins during dislocation, and prior to degradation ^{44,45}. Unassembled TCR α chain is targeted for ERAD, and requires the Bag6 chaperone holdase complex to maintain solubility of ubiquitinated TCR α prior to degradation ⁴⁶. In this study, depletion of Bag6 or its cofactor Trc35 resulted in the formation of detergent insoluble aggregates.

Another path to sequester exposed hydrophobic domains of ERAD substrates has been suggested through lipid droplets, an organelle composed of a neutral lipid core bounded by a phospholipid monolayer. Lipidated ApoB-100 in the ER lumen, a key protein of very low density lipoprotein, appears to be dislocated from the lumen onto the surface of lipid droplets for proteasomal degradation ⁴⁷. In addition, lipid droplet proteins such as PLIN2 is degraded by the ERAD E3 ligase MARCH6 ⁴⁸. Together, these studies suggest that an intricate relationship between ERAD and lipid droplets exists, but the dynamics and control of these relationships have yet to be elucidated.

1.3 The unfolded protein response

Accumulation of misfolded proteins in the ER (known as ER-stress) activate a signal transduction pathway known as the unfolded protein response (UPR). The mammalian UPR activates a series of 3 distinct pathways, IRE1, ATF6, and PERK, to compensate for an excess of unfolded proteins and restore normal proteostasis ^{49,50}. Initially, the adaptive response of the UPR slows translation while upregulating genes involved in ER expansion, folding, and ERAD. However, under prolonged ER-stress, the UPR activates apoptosis to remove folding-defective cells ⁵¹.

1.3.1 Canonical activation and response

In yeast, the UPR is controlled by the activity of IRE1, which can directly bind to unfolded proteins, activating kinase and ribonuclease domains, resulting in regulated IRE1-dependent decay of cellular mRNA and noncanonical splicing of the transcription factor HAC1 (XBP1 in mammals) ^{49,52}. To further reduce the protein load of a cell undergoing ER stress, the ER-resident kinase PERK is activated and phosphorylates eukaryotic initiation factor 2α to inhibit general protein

translation ⁵³. Although activation of PERK temporarily inhibits global translation, it allows for the translation of certain genes, such as the transcription factor ATF4, to upregulate genes involving the restoration of cellular proteostasis ⁵⁴. Structural analysis of PERK reveal that the luminal domain is similar to that of IRE1, suggesting that both PERK and IRE1 can sense unfolded proteins using a similar mechanism ⁵⁵. The third branch of the UPR involves the transcription factor ATF6, which is constitutively expressed in the ER membrane. Upon ER stress, ATF6 is transported to the Golgi apparatus, where it is cleaved, released into the cytoplasm, and transported to the nucleus where it can upregulate the transcription of downstream targets ⁵⁶.

Initial activation of the UPR upregulates genes involved in cell survival, such as genes involved in ERAD, expansion of the ER, and chaperones to assist in folding. However, cells unable to adapt to ER stress will eventually undergo UPR-induced apoptosis ⁵⁷. For example, activation of IRE1 can also lead to activation of Jun-N-terminal kinase and p38 MAPK, resulting in the activation of downstream pro-apoptotic factors ⁵⁸. Additionally, IRE1, ATF6, and PERK can all induce the expression of CHOP and induce apoptosis ⁵⁹. While previous work has elucidated the structure and mechanisms driving the transcriptional response of these three pathways, the factors driving the UPR between cell survival and cell death remain poorly understood.

1.3.2 Activation by lipid perturbations

While the UPR was historically studied in the context of unfolded proteins, emerging data reveal that the UPR can be activated to compensate for lipid disruptions in the ER membrane, known as lipid bilayer stress ^{60–62}. Genetic disruptions of phosphatidylcholine and phosphatidylethanolamine induced the UPR and caused severe imbalances in lipid composition in yeast ⁶³. In this study, the effects of the UPR was able to compensate for the otherwise lethal effects of chronic phosphatidylcholine deficiency, acting primarily to restore lipid homeostasis rather than protein homeostasis. Interestingly, uncoupling the lipid bilayer stress from proteotoxic stress reveals that the luminal domain of IRE1 is responsible for sensing proteotoxic stress, while the transmembrane domain of IRE1 senses lipid bilayer stress, and these two stresses result in divergent transcriptional response ⁶⁴. Together, this provides an complex and incompletely understood, relationship between protein quality control and lipid homeostasis.

1.4 ERAD in human health and disease

ERAD in human health and disease reflects a delicate balance between folding and degradation. Impairment of ERAD can lead to the accumulation of misfolded proteins. As demonstrated in the aberrant accumulation of mutant forms of transthyretin, failure of ERAD to degrade certain mutants can lead to amyloidosis ⁶⁵. However, ERAD can also degrade functional proteins as well. In the most common mutation in patients with cystic fibrosis, deletion of a phenylalanine at position 508 in the cystic fibrosis transmembrane conductance regulator (CFTR), the resulting protein is still functional, but is degraded by ERAD before it can reach the plasma membrane ⁶⁶. The search for treatments for this mutation have been focused on both folding of CFTR, as well as selective inhibition of ERAD ^{67,68}. Insight into how and why proteins are degraded can therefore have wide implications in human health and disease.

1.4.1 ERAD in lipid metabolism

The ER is the site of synthesis for many cellular lipids, including cholesterol, phospholipids, and neutral lipids ⁶⁹. In addition to its role in degrading mutant misfolded proteins, ERAD is also responsible for the regulated turnover of endogenous proteins. One of the best-studied cases of ERAD serving in quantity control is in that of cholesterol metabolism. Cholesterol is an essential component for human life and plays vital roles in a wide variety of cellular processes including the maintenance of membrane integrity and biogenesis of steroid hormones, bile acids, and oxysterols ⁷⁰. However, it has also long been known that increased cholesterol levels are a risk factor in cardiovascular disease ⁷¹. For decades, statins have been used to inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and control excess cholesterol levels ⁷². However, ERAD can modulate the activities of several key enzymes to control the overall levels of cellular cholesterol through regulated degradation.

Under high sterol conditions, ERAD degrades HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, in order to decrease the rate of cholesterol biosynthesis ⁷³. Furthermore, at least several other key proteins in the cholesterol synthesis pathway are degraded by different ERAD pathways, including squalene monoxygenase and the Insig proteins ⁷⁴. Regulated degradation of proteins in this pathway shows the potential of ERAD serving as a key regulator of cellular metabolism. In addition to control of cholesterol metabolism through regulated degradation, ERAD proteins can affect triacylglycerol metabolism through non-degradative mechanisms. Under levels of high fatty acids, UBXD8, a p97/VCP recruitment factor essential for ERAD of several proteins, is recruited to the surface of lipid droplets, where it interacts with the lipase ATGL and prevents lipolysis ⁷⁵. However, the mechanism by which UBXD8 senses cellular lipids has yet to be elucidated. The relationship between lipid metabolism and protein quality control will be examined more closely in Chapter 2.

1.4.2 Hijacking ERAD

Although ERAD plays a vital role in both quality and quantity control of healthy cells, ERAD machinery can be manipulated by exogenous factors such as viruses and toxins. Toxins such as cholera and ricin enter the cell via endocytosis. Toxicity of cholera and ricin then depend on ERAD machinery to gain access to the cytoplasm ^{76,77}. Herpesviruses can also take advantage of ERAD as a form of immune evasion. The viral proteins US2 and US11 trigger the degradation of major histocompatibility class I (MHC-I) via recruitment of MHC-I to the TRC8 and TMEM129 E3 ubiquitin ligase complexes respectively ^{78–80}. While yeast use only two E3 ubiquitin ligases for ERAD, mammalian cells have evolved dozens of ER-membrane E3 ubiquitin ligases. Although TRC8 and TMEM129 have potential as therapeutic targets, little is known about their substrates and functions in healthy cells. Understanding the many different E3 ligase complexes and their relationship to normal cellular function is crucial to developing targeted therapeutics.

1.4.3 Unknown mechanisms of ERAD in diseases

While the past decades of research on ERAD have elucidated a general idea of the requisite steps as well as examples of key regulation points, much remains unknown about ERAD and its role in human health and disease. For example, the E3 ubiquitin ligase Hrd1 (also known as

synoviolin) is thought to be a causative factor for arthropathy in synovial cells ⁸¹. However, while studies looking specifically for Hrd1 substrates have identified a large number of candidates, there is still a missing link between the substrates of Hrd1 and a mechanistic cause for arthropathy ^{82,83}.

ERAD has also been implicated in several types of cancers through unknown mechanisms. Levels of the Hrd1 luminal adapter SEL1L were previously found to be significantly correlated with progression of colorectal cancer ⁸⁴. A study of 110 human gliomas also found expression of SEL1L to have a significant role in malignant gliomas ⁸⁵. Although the ER lectins OS-9 and XTP-3 have been implicated in cancer metastasis through regulation of HIF-1 α expression, OS-9 does not play a role in HIF-1 α degradation ^{86,87}.

One proposed hypothesis for the role of ERAD in cancer lies in proteotoxic stress. The increased growth rate of cancer cells may result in more misfolded proteins, by which cells can compensate by inducing the UPR and upregulating ERAD ⁸⁸. Supporting this hypothesis, the proteasome inhibitor bortezomib has been used successfully in treating multiple myeloma ⁸⁹. Inhibition of p97/VCP has also been shown to have anticancer properties ⁹⁰. However, proteasome inhibition appears to have limited antitumor activity in solid tumors, suggesting that compensatory pathways may exist ^{91,92}. A mechanistic understanding of the many pathways within ERAD would allow for more targeted approaches in therapeutic development.

1.5 Figures

Figure 1-1: Overview of ERAD. (A) Proteins in the ER lumen or membrane are recognized by lectins or other adaptors for delivery to the Hrd1 (or potentially other E3 ubiquitin ligase) complex. (B) Substrates can pass through the pore of Hrd1 to gain access to the cytoplasm. Upon gaining access to the cytoplasm, the substrate is polyubiquitinated by one or more E3 ubiquitin ligase. Deubiquitinases trim the polyubiquitin chains on the substrate, leaving a short oligoubiquitin chain. (C) The substrate is physically pulled from the E3 ligase complex by the AAA+ ATPase p97/VCP. The substrate passes through the central pore of the p97/VCP complex, unfolding the attached oligoubiquitin chain. Once through, ubiquitin presumably refolds quickly. Hrd1 can also be extracted and degraded in this manner. While deubiquitinases can stabilize Hrd1, autoubiquitination is required for its activity. (D) Ubiquitinated and unfolded substrates are fed into the 26S proteasome, where ubiquitin chains are removed, and substrates are degraded into short polypeptides.

Figure 1-2: Glycan trimming in protein folding and ERAD. The vast majority of proteins entering the secretory pathway are modified by this core glycan unit. The terminal glucoses are quickly removed by α -glucosidase I and II. When glucose is present on the glycan, it is recognized by the ER chaperones calnexin and calreticulin to assist in protein folding. Progressive trimming of the mannose residues by ER ManI and the EDEMs recruit the ER lectins OS9 and XTP3 for delivery to ERAD. UGGT, UDP-glucose glycoprotein glucosyltransferase; GlcNAc, N-acetylglucosamine.

Chapter 2: Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation

Contents in this chapter are modified with permission from the previously published research article:

To M*, Peterson CW*, Roberts MA, Counihan JL, Wu TT, Forster MS, Nomura DK, Olzmann JA. Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Mol Biol Cell. 2017 Jan 15;28(2):270-284. *These authors contributed equally

2.1 Introduction

As the entry point into the secretory pathway, the endoplasmic reticulum (ER) is host to an extensive cohort of enzymes and chaperones that coordinate the folding, modification, and deployment of a large fraction of the proteome. Failure of secretory proteins to achieve their native structure due to mutations, errors in transcription or translation, protein damage, or inefficient folding can have dire consequences for cellular physiology and has been implicated in the etiology of numerous human diseases ⁹³. Incorrect protein folding not only can result in a reduction in protein activity (i.e., loss of function), but it can also lead to the generation of cytotoxic protein aggregates (i.e., gain of function). To ensure the fidelity of the secretory proteome, the ER has evolved a quality control system that detects terminally misfolded and unoligomerized proteins and targets them for clearance via a process known as ER-associated degradation (ERAD) ^{6,70,94}. The cell also responds to perturbations in ER homeostasis by activating the unfolded protein response (UPR) ^{95,96}, a set of signaling pathways that enhance the overall folding capacity of the ER.

ERAD involves a series of spatially and temporally coupled steps that mediate substrate recognition, dislocation (also known as retrotranslocation) across the ER membrane into the cytoplasm, ubiquitination, and targeting to the proteasome for proteolysis ^{6,70,94}. Although the mechanism by which substrates are triaged for degradation is incompletely understood, it is clear that the structure of substrate-conjugated N-linked glycans provides a "molecular code" that plays a determining role in the fate of secretory proteins ⁹⁷. During insertion into the ER, the majority of the secretory proteome is modified by covalent attachment of a triantennary glycan moiety ⁹⁸. Progressive trimming by ER-resident mannosidases exposes an α-1,6–linked mannose, which acts as a signal for ERAD and is recognized by the mannose 6-phosphate receptor homology (MRH) domain of the ER lectin, OS-9, and possibly a second ER lectin, XTP3-B ¹². These two ER lectins interact with the Hrd1 luminal adaptor SEL1L ^{99–101}, facilitating substrate delivery for dislocation. Most models posit that the AAA ATPase VCP (also known as p97) then extracts substrates from proteinaceous pores in the membrane, possibly formed by the E3 ubiquitin ligase Hrd1 ^{23,24,40}, the derlin family of proteins ^{19,102–104}, or in some cases, the Sec 61 translocon ^{21,105}.

In addition to its role as a protein-folding compartment, the ER functions as a major site of lipid metabolism, mediating the synthesis of important lipids (e.g., phospholipids, sterols, and neutral lipids) and the biogenesis of lipid storage organelles called lipid droplets (LDs)^{106–108}. LDs are ubiquitous, conserved organelles composed of a neutral lipid core (e.g., triacylglycerol [TAG] and sterol esters) encircled by a phospholipid monolayer. Whereas the hydrophobic core of LDs is devoid of proteins, the bounding phospholipid monolayer is decorated with a unique proteome that regulates LD growth, breakdown, and trafficking. LDs function as dynamic repositories of lipids, protecting the cell from fatty acid–induced toxicity ¹⁰⁹ and providing the cell with an "on demand" source of lipids for membrane biogenesis ¹¹⁰, energy production via β -oxidation ¹¹¹, and use as ligands in lipid signaling pathways ^{112,113}. Several unexpected roles have also been identified for LDs, such as the regulation of the hepatitis C life cycle ^{114,115}, the sequestration of histones ^{116,117}, and the control of cytosolic inclusion body clearance ¹¹⁸.

Reports have identified a number of intriguing links between ERAD and LDs. A subset of proteins implicated in ERAD, including UBXD8, UBXD2, VCP, AUP1, and Ube2g2, were

identified in proteomic analyses of buoyant, LD-enriched biochemical fractions ^{119–121} and the localization of these proteins to the LD surface was confirmed by fluorescence microscopy ^{47,75,100,122–125}. This subset of ERAD factors has been implicated in the regulation of LD abundance, size, and clustering ^{47,75,100,122–125}, but whether these effects on LDs are related to their functions in ERAD remains to be determined. ERAD substrates have also been observed on the LD surface (e.g. ApoB100 ^{47,126}) and in ER subdomains that are closely juxtaposed to LDs (e.g., 3-hyd¬roxy-3-methylglutaryl-coenzyme A reductase (HMGCR) ¹²⁷). In addition, ER stress induces LD biogenesis ^{128,129} and loss of LDs activates the UPR ^{130–133}.

Indirect experimental evidence supporting a functional role for LDs in ERAD came from studies employing triacsin C, a polyunsaturated fatty acid analogue that inhibits long-chain acyl-CoA synthetases (ACSLs)^{134,135} and blocks LD biogenesis^{136,137}. These studies found that triacsin C impaired the degradation kinetics of several ERAD substrates, including the null Hong Kong (NHK) mutant of α -1 antitrypsin ¹²⁵, a truncated variant of ribophorin I ¹²⁵, class I MHC heavy chain ¹²⁵, and HMGCR ^{124,127}. Together these findings led to multiple models of how LDs might be involved in ERAD ^{18,47,124,125,127,129}: 1) LD biogenesis is coupled to the dislocation of luminal ERAD substrates via the formation of transient pores in the membrane or the dislocation of integral membrane ERAD substrates via capture in the membrane of an exiting LD, 2) ERAD substrate dislocation and ubiquitination preferentially occur in LD-associated ER subdomains, and/or 3) ERAD substrates are sequestered on the surface of LDs as an intermediate step en route to the proteasome. Although these models are attractive, triacsin C is not a specific inhibitor of LD biogenesis, as it also affects unrelated processes that require activated fatty acids (e.g., de novo phospholipid synthesis ¹³⁴). Moreover, the degradation kinetics of several ERAD substrates was unaffected in a strain of yeast lacking LDs ^{130,138}, indicating either that LD formation is not essential for ERAD or that there are unrecognized differences between the ERAD process in yeast and mammalian cells. Thus, the functional relationship between ERAD and LDs remains unresolved.

In this study, we focused our attention on the effect of triacsin C on ERAD and the potential requirement of LDs for ERAD in mammalian cells. Our results demonstrate that, as in yeast ^{130,138}, LDs are dispensable for ERAD in mammalian cells. However, our data indicate that triacsin C causes widespread changes in the cellular lipid composition, impairs ERAD substrate glycan trimming and dislocation, and induces the UPR, culminating in cell death. These findings support a fundamental connection between fatty acid metabolism and ER proteostasis.

2.2 Results

2.2.1 Inhibition of long-chain acyl-CoA synthetases with triacsin C impairs select ERAD pathways

To examine the effect of triacsin C on ERAD, we analyzed the degradation kinetics of a panel of substrates that reflect a range of topologies and use distinct degradation pathways (Figure 2-1A). The panel included an endogenous ERAD substrate, CD147, which is a glycosylated type I transmembrane protein that is recognized as an unassembled subunit of an oligomeric complex and is constitutively degraded by a Hrd1/SEL1L pathway ¹⁰¹. We also tested two exogenously expressed mutant substrates: the NHK mutant of α -1 antitrypsin — a soluble, luminal substrate

degraded by a Hrd1/SEL1L pathway 99,139) — and the Δ F508 mutant cystic fibrosis transmembrane conductance regulator (CFTR Δ F508) — a polytopic integral membrane substrate degraded by multiple E3 ligase pathways $^{140-142}$.

To determine the kinetics of triacsin C treatment on ERAD disruption, we performed a time course of triacsin C incubation and analyzed the degradation of CD147 during emetine translation shutoff (Figure 2-1, B–D). As expected ^{101,143}, CD147 migrated as two primary species: a high-molecular weight plasma membrane form bearing complex glycans (CD147(mature [Mat.])) and a lower-molecular weight ER form bearing the core-glycan structure (CD147(CG); Figure 2-1C). CD147(CG) was degraded during the 6-h emetine chase (Figure 2-1, C and D). Addition of triacsin C at time 0 of the emetine chase had no effect on CD147(CG) degradation (Figure 2-1, C and D). Increasing stabilization of CD147(CG) was observed as the triacsin C preincubation time was lengthened, with a maximal stabilization occurring after a 16-h triacsin C pretreatment (Figure 2-1, C and D). Using the 16-h triacsin C pretreatment, we analyzed the degradation kinetics of our full panel of ERAD substrates (Figure 2-1, E-J). The Hrd1 substrate CD147(CG) was stabilized by triacsin C pretreatment (Figure 2-1, E and F). Although the majority of newly synthesized CD147 is degraded by ERAD, a small fraction can correctly assemble and mature by trafficking through the Golgi to the plasma membrane ^{101,143}. To account for both fates of CD147, we performed radioactive pulse-chase experiments (Supplemental Figure 2-S1A). Over the 6-h time course of our experiment, no CD147 maturation was detected, and triacsin C pretreatment stabilized CD147(CG). These results indicate that the effect of triacsin C is due to impairment of CD147 degradation rather than maturation. The Hrd1 luminal substrate NHK-green fluorescent protein (GFP) was also stabilized by triacsin C pretreatment (Figure 2-1, G and H). No secretion of NHK-GFP was observed in this cell line (Supplemental Figure 2-S1B). In contrast to CD147 and NHK-GFP, CFTRAF508 degradation kinetics was unaffected by the triacsin C pretreatment (Figure 2-1, I and J). These data demonstrate that treatment with the ACSL inhibitor triacsin C impairs select ERAD pathways.

2.2.2 Triacsin C does not generally inhibit the ubiquitin-proteasome system

Our finding that triacsin C inhibits the degradation of a subset of ERAD substrates suggests that triacsin C treatment does not generally inhibit the ubiquitin-proteasome system (UPS). In agreement with this notion, ubiquitinated proteins accumulated in cells treated with the proteasome inhibitor MG-132, but not with triacsin C (Figure 2-2A). To assess more directly the effect of triacsin C on the degradation of cytosolic proteins, we used flow cytometry to measure the degradation kinetics of a cytosolic UPS reporter (Figure 2-2B). This reporter consists of the Venus fluorescent protein fused to a destabilized domain (Venus-DD), a variant FK506-binding domain from FKBP12 that, in the absence of the small molecule shield-1, is misfolded and rapidly degraded via the UPS ^{144–146}. Triacsin C had no significant effect on the constitutive degradation of Venus-DD (Figure 2-2B), indicating that triacsin C does not generally affect the degradation of cytosolic UPS substrates.

After dislocation, ERAD substrates are deglycosylated by the cytosolic peptide:N-glycanase (PNGase) and cleared by the UPS ^{6,97}. Thus, the presence and accumulation of a deglycosylated form of ERAD substrates reflect inefficient coupling of dislocation with proteasomal degradation. Incubation with the proteasome inhibitor MG-132 during an emetine

chase resulted in the accumulation of deglycosylated CD147 (CD147(-CHO)), indicating the buildup of cytosolically dislocated CD147 (Figure 2-2C). CD147 deglycosylated in vitro by incubation with the glycosidase PNGase F resolved at the same molecular weight as the CD147 band that accumulated in MG-132–treated cells, and no additional lower–molecular weight forms appeared (Supplemental Figure 2-S2), confirming the identity of the CD147(-CHO) species. A portion of CD147 also migrated in a high–molecular weight smear, likely representing ubiquitinated CD147 (Figure 2-2C). In contrast to MG-132, triacsin C pretreatment solely stabilized CD147(CG); deglycosylated CD147 and ubiquitinated CD147 were absent (Figure 2-2C). Together, these data indicate that triacsin C impairs ERAD upstream of the proteasome and does not cause a global defect in the UPS.

2.2.3 Triacsin C does not impair protein secretion

Dysregulated lipid metabolism can alter organelle morphology and function ^{63,147,148}, and disruptions in ER-to-Golgi trafficking reduce the degradation of some ERAD substrates ^{149–151}. To examine the function of the secretory pathway, we analyzed the secretion of hemagglutinin-tagged transthyretin (TTR-HA), a tetrameric protein that is normally secreted into the serum, where it functions as a carrier of the thyroid hormone thyroxine. Similar levels of TTR-HA were immunoprecipitated from media isolated from cells incubated in the presence or absence of triacsin C (Figure 2-2, D and E), indicating that triacsin C pretreatment does not affect TTR secretion. Furthermore, the overall morphology of the ER (Figure 2-2F) and Golgi complex (Figure 2-2G) remained unperturbed by a triacsin C pretreatment at the resolution of fluorescence deconvolution microscopy. Together, these results indicate that the secretory system remains functionally and morphologically intact after a 16-h triacsin C treatment.

2.2.4 Triacsin C impairs CD147 glycan trimming

Our initial results indicated that triacsin C affects ERAD upstream of the proteasome (Figure 2-2). To determine more precisely the steps in ERAD that are compromised, we focused our attention on the degradation of the endogenous substrate CD147, which was strongly stabilized by triacsin C (Figure 2-1). Glycan trimming is often believed to be one of the most upstream events in ERAD, potentially acting as a timing mechanism that releases a substrate from futile calnexin/calreticulin folding cycles and facilitates targeting for degradation by enabling direct interactions with the ERAD-implicated lectins ⁹⁷. The various trimmed CD147(CG) glycoforms are not resolved on small SDS–PAGE gels. Therefore, to examine a potential effect of triacsin C on CD147(CG) glycan trimming, we separated CD147 on large-format SDS–PAGE gels (Figure 2-3A). On these larger gels, the variety of CD147 glycoforms becomes evident, and CD147(CG) is resolved as approximately five bands (Figure 2-3A). Treatment of lysates in vitro with PNGase F collapsed all CD147 forms into a single band of ~29 kDa (Figure 2-3D), consistent with the conjecture that the variations in the CD147 banding pattern reflect the diversity of CD147 glycoforms.

During the course of an emetine translation shutoff experiment, the upper CD147(CG) bands were rapidly lost (Figure 2-3, A and B, vehicle), whereas the lower bands displayed a slight lag period before clearance (Figure 2-3, A and C, vehicle). These results are consistent with the conversion of CD147(CG) from a slower-migrating, untrimmed form into a faster-migrating,

trimmed form before degradation. Treatment with the mannosidase inhibitor kifunensine (Figure 2-3, A–C, kifunensine) or the glucosidase inhibitor deoxynojirimycin (Supplemental Figure 2-S3) stabilized CD147(CG) in the slower-migrating form, providing evidence that these bands represent an untrimmed form of CD147(CG). It is worth noting that CD147(CG) continued to be degraded in the presence of kifunensine (Figure 2-3A, kifunensine), albeit at a slower rate, indicating either that glycan trimming is not a strict requirement for CD147(CG) degradation or that kifunensine inhibition of glycan trimming is incomplete. Cotreatment with kifuensine and deoxynojirimycin did not result in additional stabilization (Supplemental Figure 2-S3). Analysis of CD147(CG) in cells pretreated with triacsin C revealed a significantly reduced rate of CD147(CG) conversion from untrimmed to the trimmed glycoform (Figure 2-3, A–C, triacsin C), similar to the effect of kifunensine. In contrast, blocking CD147(CG) degradation at a downstream step with the VCP inhibitor CB-5083 resulted in the accumulation of a lower–molecular weight, presumably highly trimmed form of CD147(CG) (Figure 2-3, A–C, CB-5083). These data suggest that triacsin C impairment in ERAD is caused, at least in part, through inhibition of substrate glycan trimming.

2.2.5 Triacsin C disrupts CD147 delivery to the Hrd1 dislocation complex

CD147 is degraded via an ERAD pathway that requires Hrd1, SEL1L, and, to some extent, the lectins OS-9 and XTP3-B¹⁰¹. The Hrd1 dislocation complex is a membrane-embedded, macromolecular complex 17,100. Several properties of membrane lipids can influence the interactions and functions of membrane-embedded protein complexes ^{152,153}. To determine whether ACSL inhibition affects the composition of the Hrd1 dislocation complex, we used a quantitative triple stable isotope labeling with amino acids in cell culture (SILAC) strategy to measure the dynamics of Hrd1 interactions in response to triacsin C treatment (Figure 2-4A and Supplemental Tables 1-S1 and 1-S2). The results from this experiment are displayed in a twodimensional plot (Figure 2-4A), which groups nonspecific background, as well as constitutive and dynamic interactors. Of the 145 proteins detected, 15 passed our criteria for high-confidence interactors (SILAC ratio M:L > 2-fold). In addition to the identification of Hrd1 itself (the bait), the strongest interactors (SILAC ratio M:L > 20-fold) were known members of the Hrd1 complex-SEL1L, FAM8A1, ERLIN2, OS-9, and XTP3-B. Other noteworthy interactors that were captured included proteins involved in protein folding and degradation, such as VCP, PDI, GRP94, Hsp47, calnexin, and ubiquitin. The significance of Hrd1 association with RPN1 (also known as ribophorin I), PGRC1, and EMD is unknown. These proteins are not known to be involved in protein quality control and may represent endogenous substrates of the Hrd1 complex. Several previously reported Hrd1 complex members (UBXD8, AUP1, derlin-1, derlin-2) were not detected in our SILAC experiment, possibly due to their lower abundance. Therefore, we examined the association of these interactors with Hrd1 by immunoblotting of affinity purified S-tagged Hrd1 complexes (Figure 2-4B). Analysis of the results from both the SILAC (Figure 2-4A) and immunoblotting (Figure 2-4B) experiments indicate that few Hrd1 interactions were affected by triacsin C treatment. The core Hrd1 complex, characterized by SEL1L, FAM8A1, XTP3-B, OS-9, and ERLIN2, remained intact after triacsin C treatment. There were minor trends toward increased associations with VCP and ubiquitin, as well as decreased association with Hsp47.

To examine a potential effect of triacsin C on the delivery of CD147 to the Hrd1 complex, we analyzed endogenous Hrd1 complexes immunoprecipitated from vehicle- and triacsin C– treated cells. Hrd1 bound only the ER-localized core glycosylated form of CD147 (Figure 2-4, C

and D), supporting the specificity of the interaction with CD147. Of interest, triacsin C treatment caused a pronounced decrease in the amount of CD147(CG) that coprecipitated with Hrd1 (Figure 2-4, C and D). Thus, our results indicate that whereas the overall composition of the Hrd1 dislocation complex is mostly unaffected, triacsin C treatment reduces the delivery of the substrate CD147 to the Hrd1 complex.

2.2.6 Triacsin C impairs the dislocation of a luminal glycosylated ERAD substrate

Given the effects of triacsin C on CD147 glycan trimming (Figure 2-3) and association with Hrd1 (Figure 2-4, C and D), we predicted that triacsin C would affect substrate dislocation. The accumulation of deglycosylated CD147 in response to MG-132 treatment provides one potential method to assess dislocation. However, MG-132 also stabilized CD147(CG), and the appearance of deglycosylated CD147 was minimal and difficult to detect (Figure 2-2C). Therefore, to assess quantitatively the effects of triacsin C on dislocation, we used a more sensitive and robust fluorescent ERAD dislocation assay based on the reconstitution of split Venus (Figure 2-4E) ¹⁵⁴. In this assay, the N-terminal half of deglycosylation-dependent Venus is fused to the H2-Kb signal sequence (SS-dgdV1Z), targeting it to the ER lumen ¹⁵⁴ SS-dgdV1Z is glycosylated, recognized as an aberrant protein, and dislocated into the cytosol for degradation ¹⁵⁴. In the presence of MG-132, SS-dgdV1Z accumulates in the cytosol and associates with the C-terminal half of Venus (VZ2), reconstituting the mature fluorescent protein and enabling dislocation to be measured by flow cytometry ¹⁵⁴. Of importance, the fluorescence is deglycosylation dependent ¹⁵⁴, ensuring that any fluorescence detected results from the dislocation of dgdV1Z from the ER lumen into the cytosol.

Incubation of 293T.FluERAD cells stably expressing SS-dgdV1Z and VZ2 with MG-132 resulted in a large increase in Venus fluorescence (Figure 2-4F, 16.4-fold increase). In agreement with a role for VCP in SS-dgdV1Z dislocation ¹⁵⁴,), coincubation with CB-5083 and MG-132 nearly completely blocked the increase in fluorescence (Figure 2-4F, 1.6-fold increase). Similar to the effect of kifunensine treatment (Figure 2-4F, 7.6-fold), triacsin C treatment partially blocked the increase in fluorescence in response to MG-132 (Figure 2-4F, 7.3-fold). Thus, triacsin C significantly reduces the dislocation of a luminal glycosylated ERAD substrate.

2.2.7 Lipid droplets are dispensable for CD147 ERAD

The observation that triacsin C inhibits ERAD ^{124,125,127} (Figure 2-1) is in agreement with a role for LDs in ERAD; however, triacsin C is not a selective inhibitor of LD biogenesis (Figure 2-5A). Although a selective inhibitor of LD biogenesis has not been identified, ablation of the diacylglycerol acyltransferase (DGAT) enzymes (DGAT1 and DGAT2), which catalyze the final and committed step in TAG synthesis (Figure 2-5A), causes a complete blockade of LD biogenesis in adipocytes ¹⁵⁵. Therefore, to examine a role for LDs in ERAD, we exploited a recently developed DGAT1 inhibitor, T863 (DGAT1i) ¹⁵⁶, and mouse embryonic fibroblast (MEF) cell lines lacking DGAT2 (DGAT2-/-) ^{155,157} to simultaneously disrupt both DGAT enzymes. The DGAT2-/- MEFs exhibited a low amount of LDs under basal conditions, which increased dramatically after a 6-h treatment with 200 µM oleate (Figure 2-5, B and C), indicating that DGAT2-/- MEFs are still able to generate LDs in response to an oleate challenge, due to the presence of DGAT1. Treatment with either triacsin C or DGAT11 reduced the amount of LDs in non–oleate-treated cells and completely blocked the increase in LD biogenesis in response to oleate (Figure 2-5, B and C). The levels of

the LD protein perilipin-2 (PLIN2) are known to correlate with LD abundance, and, in the absence of LDs, PLIN2 is degraded by the ubiquitin-proteasome system ^{158–160}. Analysis of PLIN2 levels and cellular distribution indicate that triacsin C and DGAT1i treatments block oleate-induced increases in PLIN2 levels and PLIN2-immunoreactive LDs (Supplemental Figure 2-S4). Together these data demonstrate that the DGAT2-/- MEFs provide a facile means to acutely manipulate LD biogenesis at an upstream step (i.e., with triacsin C) or a downstream step (i.e., with DGAT1 inhibitor).

As observed in HEK293 cells, CD147(CG) was degraded in DGAT2-/- MEFs during an emetine translation shutoff experiment and was stabilized by a triacsin C pretreatment (Figure 2-5, D and E). The rate of CD147(CG) degradation was greater in the DGAT2-/- MEFs than in the HEK293 cells (half-life ~25 min vs. ~2 h). DGAT1i pretreatment, despite inhibiting LD biogenesis (Figure 2-5, B and C), had no effect on the kinetics of CD147 degradation (Figure 2-5, D and E). These results argue against a requirement for LDs in CD147 degradation and suggest that triacsin C affects ERAD through a mechanism independent of LDs.

2.2.8 Metabolomic profiling reveals global alterations in the cellular lipid landscape of triacsin C treated cells

To understand the effects of triacsin C on cellular lipid homeostasis, we performed targeted single reaction monitoring (SRM)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) steady-state lipidomic profiling of >100 lipid metabolites, encompassing a wide array of lipid classes, including neutral lipids, fatty acids, acyl carnitines (ACs), N-acyl ethanolamines, sterols, phospholipids, sphingolipids, lysophospholipids, and ether lipids (Figure 2-6 and Supplemental Table 2-S3). Among the 118 lipids, 71 exhibited significant changes (p < 0.05) after a 16-h triacsin C treatment (Figure 2-6, A-K). As expected, we observed a prominent decrease in the levels of many neutral lipids-monoacylglycerols (MAGs), diacylglycerols (DAGs), and TAGs (Figure 2-6, B and C). Not all species of TAG were reduced (e.g., C16:0/C20:4/C16:0 TAG and C18:0/C18:0/C18:0 TAG; Figure 2-6, B and C), suggesting that there may be protected pools of TAGs or that some ACSLs that are incompletely inhibited mediate the formation of these specific TAGs ¹³⁴. We also observed an anticipated decrease in AC levels, particularly in C16:0 AC (Figure 2-6, B and E). Although free fatty acids might be expected to accumulate due to the inhibition of ACSLs and consequent lack of conversion into the CoA intermediate for cellular use, no changes in fatty acid levels were detected (Figure 2-6B). This may be due to a compensatory efflux of free fatty acids ¹³⁴, which could result in an underestimate of total free fatty acid levels, or increased flux through ACSL enzymes that are not inhibited.

Broad changes in additional cellular lipids were also observed, including decreases in many phospholipids, phospholipid ethers, neutral ether lipids, and lysophospholipid ethers (Figure 2-6, B–K). The decreases in lipid levels presumably resulted from impairments in synthesis caused by the inability of ACSLs to activate fatty acids, a requirement for conjugation. Particularly striking was the general decrease in nearly all phosphatidylinositol and phosphatidylinositol ether lipids (Figure 2-6, B, F, and J). This is interesting, given the recent finding that phosphatidylinositol maintains ER homeostasis in yeast by sequestering fatty acids when LD biogenesis is inhibited ¹³¹. Our results suggest that phosphatidylinositol may represent an especially dynamic phospholipid pool that reflects the levels of fatty acid flux.

Several lipid species displayed significant increases, including many lysophospholipids (Figure 2-6, B, D, and H), which can act as signaling molecules, and several phospholipids (Figure 2-6, B–K). The increase in some lipids is consistent with the possible increased flux of fatty acids through ACSL enzymes that are not inhibited or are incompletely inhibited by triacsin C. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) has been implicated in ER homeostasis ^{63,161,162}, and although we observed alterations in PC and PE levels (Figure 2-6, B and F), the ratio between the two lipid species was relatively unchanged. An increase in ceramides (C16:0 ceramide and C18:0 ceramide) was detected (Figure 2-6, B and G), which is notable, given their role in cellular stress responses and UPR activation ¹⁶³. Together our results indicate that triacsin C treatment not only affects the levels of neutral lipids sequestered in LDs, but it also causes widespread alterations in the cellular lipid landscape (Figure 2-6). The levels of several of the altered lipids have been suggested to affect ER homeostasis (e.g., phosphatidylinositol and ceramides).

2.2.9 Triacsin C activation of the PERK and IRE1 arms of the UPR has opposing effects on cell viability

Disruptions in ERAD and in lipid homeostasis can activate the UPR 163,164. Inositolrequiring enzyme-1 (IRE1), an ER transmembrane serine/threonine kinase and endonuclease, is a primary mediator of the UPR that splices XBP1 mRNA to enable the translation of the XBP1 transcription factor ⁹⁵. Analysis using reverse transcription PCR revealed that incubation with triacsin C induced XBP1 splicing (Figure 2-7A). The spliced form of XBP1 was detectable at low levels as early as 8 h, and it became much more prominent at 16 and 24 h (Figure 2-7A). A second arm of the UPR is controlled by the ER-resident kinase PKR-like ER kinase (PERK), which phosphorylates the α subunit of eukaryotic translation-initiation factor 2 (eIF2 α). Phosphorylation of eIF2a represses global translation while simultaneously promoting the translation of the ATF4 transcription factor to up-regulate stress-responsive genes such as the proapoptotic transcription factor C/EBP homologous protein (CHOP)¹⁶⁵. To examine the potential effect of triacsin C on PERK induction of stress-responsive genes, we exploited a clonal HEK293 reporter cell line expressing an 8.5-kb CHOP gene fragment fused to GFP (CHOP::GFP) ^{166,167}. Treatment with tunicamycin, an inhibitor of N-linked glycosylation that induces the UPR, resulted in a robust and rapid accumulation in GFP fluorescence (Figure 2-7C and Supplemental Figure 2-S5). Treatment with triacsin C also caused an increase in GFP fluorescence but with different temporal dynamics. During the first 8 h, no increase in GFP fluorescence was observed (Figure 2-7C). This lag period was followed by an increase in GFP fluorescence levels at 16 and 24 h (Figure 2-7C).

The IRE1 and PERK arms of the UPR play well-characterized protective roles through the induction of genes involved in protein folding and membrane expansion and through the repression of translation ⁹⁵. Of note, UPR up-regulation protected yeast from ER trafficking and ERAD defects induced by lipid disequilibrium ⁶³. However, persistent activation of IRE1 or PERK can lead to cell death ^{168,169}. To determine the role of the IRE1 and PERK pathways in the cellular response to triacsin C treatment, we analyzed the effects of the IRE1 inhibitor 4µ8c (IRE1i) and PERK inhibitor GSK2606414 (PERKi). IRE1i completely blocked triacsin C–induced XBP1 cleavage (Figure 2-7, A and B), and PERKi significantly attenuated the induction of the CHOP::GFP reporter (Figure 2-7D). Inhibition of PERK increased the amounts of cell death

induced by triacsin C at 8, 16, and 24 h (Figure 2-7E), indicating that PERK plays a predominantly protective role under these conditions. In contrast, inhibition of IRE1 had little effect during triacsin C treatment and increased the amount of cell death at 24 h (Figure 2-7E). These findings indicate that both the IRE1 and PERK arms of the UPR are induced by triacsin C, but that the outputs of these two signaling pathways have opposing effects on cell viability.

2.3 Discussion

Although there are several intriguing connections between LDs and ERAD, whether LDs are directly involved in the ERAD mechanism has remained an outstanding question. Our data argue that LD biogenesis is not a fundamental requirement for ERAD. Instead, our results support a model (Figure 2-7F) in which triacsin C inhibition of ACSLs causes widespread changes in the cellular lipid composition that impair specific steps in ERAD, resulting in disruptions in ER proteostasis, activation of the UPR, and eventual cell death. Thus, dysregulated fatty acid metabolism negatively affects ER homeostasis and protein quality control independently of LDs. To inhibit LD biogenesis but avoid the broad effects that ACSL inhibition has on lipid homeostasis, we pursued an approach that would disrupt a downstream step in TAG synthesis. To this end, we characterized a combined chemical (DGAT1 inhibition) and genetic (DGAT2-/-) approach to inhibit both of the DGAT enzymes, which are required for the conversion of DAG to TAG and the generation of LDs ^{155,170}. This strategy enabled acute disruption of LD biogenesis, reducing LD abundance under basal and oleate-stimulated conditions as effectively as triacsin C does. In contrast to triacsin C, disruption of LD biogenesis by inhibiting the DGATs had no effect on the kinetics of CD147 ERAD. These results are consistent with previous analyses of ERAD in yeast models of LD disruption ^{130,138}, which together demonstrate that LD biogenesis is not integral to the ERAD mechanism in yeast or mammalian cells. The possibility that LDs may function in the degradation of specific substrates or in ERAD under specific conditions is still worth consideration. For example, for ApoB100, an extremely large, hydrophobic protein, the association with LDs might provide a specialized ERAD mechanism to reduce aggregation ^{47,126}. LDs may also contribute to ERAD only under particular conditions, such as periods of disrupted proteostasis. Under conditions in which proteasomal capacity is limiting, the LD surface could act as a transient site for the sequestration of ERAD and other UPS substrates ^{126,129}.

Our findings are in agreement with previous reports that triacsin C impairs ERAD ^{124,125,127}. Indeed, we found that triacsin C inhibited the degradation of two glycosylated Hrd1 substrates the luminal substrate NHK and the endogenous integral membrane substrate CD147. The highest amount of substrate stabilization required a 16-h pretreatment with triacsin C, suggesting that ACSL activity is not required acutely during ERAD but instead that ACSL activity is required to establish a particular cellular environment conducive for ERAD. To define more precisely the step in ERAD that is affected by triacsin C, we tested individual steps of ERAD in the context of triacsin C treatment. Our results indicate that the triacsin C–induced defect in protein degradation is upstream of the proteasome and is confined to a subset of ERAD pathways. This conclusion is supported by several findings: 1) ubiquitinated proteins did not accumulate in response to triacsin C, 2) triacsin C did not stabilize a cytosolic UPS substrate, 3) triacsin C affected a subset of ERAD substrates—CD147 and NHK—but not CFTR Δ F508, and 4) triacsin C impaired the dislocation of a luminal glycosylated substrate. Moreover, analyses of the glycosylation state of CD147 during degradation indicate that triacsin C treatment impaired CD147 glycan trimming and delivery to the Hrd1 complex, suggesting that the primary impairment in ERAD is due to the failure to expose the trimmed glycan structure necessary for degradation commitment. Our proteomics data indicate that the composition of the Hrd1 complex is largely unaltered in triacsin C–treated cells; however, it is possible that alterations in the ER lipid composition could modulate the structure and/or function of the complex. The enzymes involved in the trimming of CD147's glycans are unknown, but this step is most likely catalyzed by ER-resident mannosidases ERManI and/or EDEM1-3. Disruptions in lipid composition could influence substrate localization to ERManI-containing ER subdomains ¹⁷¹ or could affect EDEM membrane association, which is known to affect EDEM glycan trimming activity toward certain substrates ¹⁷². It is also possible that the inhibition of ACSLs could influence protein acylation, and both calnexin ^{173–175} and the ERAD E3 ligase gp78 ¹⁷⁶ have been reported to be palmitoylated. Whether other ERAD factors are regulated by lipid modifications is unknown.

Activation of the UPR initiates signaling pathways with opposing outputs, a protective response that seeks to reestablish ER homeostasis and an apoptotic response that promotes cell death in the face of persistent ER stress ^{50,51,168,177}. Consistent with disruptions in ER homeostasis, treatment with triacsin C induced XBP1 splicing (IRE1 arm) and CHOP::GFP expression (PERK arm) and eventually caused cell death. Treatment of cells with the UPR inducer tunicamycin causes a rapid and transient up-regulation of IRE1 signaling that is paralleled by a slower increase in apoptotic PERK signaling at later times ¹⁶⁸. Of interest, in response to triacsin C, we see very different temporal dynamics and effects of UPR induction. Both the PERK and IRE1 arms exhibited similar activation kinetics and, after an initial lag period, steadily increased until the end of our experiments. Despite increasing CHOP reporter expression, PERK actions were overall protective in response to triacsin C. This finding indicates that CHOP expression alone is not conclusive evidence of a proapoptotic signaling output, consistent with the observation that forced CHOP expression was insufficient to induce cell death ¹⁷⁸. In contrast to PERK, IRE1 signaling appeared to promote cell death, and the inhibition of IRE1 attenuated triacsin C-induced apoptosis, possibly by inhibiting excessive regulated Ire1-dependent decay (RIDD) of important secretory transcripts ¹⁶⁹ or activation of a JNK apoptotic signaling pathway ¹⁷⁹. These results highlight the complex relationship between the UPR and cell death and reveal that the mode of UPR activation (e.g., tunicamycin vs. triacsin C) has a profound effect on the ultimate effects of each UPR branch. Alterations in phospholipids can directly induce UPR signaling ^{60,163}, and whether the changes in the lipid environment, the defects in ER protein quality control, or both are responsible for triacsin C activation of the UPR is unclear. In addition, how the UPR is customized to fit a particular ER stressor is not evident. It is possible that the temporal coordination of individual UPR branches influences the end output (i.e., protection vs. cell death) or that different ER stressors provide a unique "second hit" (e.g., disruptions in lipid homeostasis or depletion in ER calcium pools) that sensitizes cells to IRE1- or PERK-dependent cell death pathways.

Our study reveals an intimate relationship between cellular lipid homeostasis and ER protein quality control. Our findings raise the possibility that certain lipid environments and/or modifications may affect ER proteostasis by regulating specific steps of the ERAD process. It is worth noting that a multitude of diseases, ranging from obesity to neurodegenerative diseases, are associated with altered lipid homeostasis and upregulated UPR ¹⁸⁰. In addition, targeting lipid metabolic enzymes to decrease fatty acid availability (e.g., inhibition of FASN) is being actively pursued as a therapeutic strategy for the treatment of cancer ^{181–183}. Therefore, elucidating the

connections between ER lipid and protein homeostasis could have significant ramifications for our understanding of the pathogenic mechanisms underlying a wide number of diseases.

2.4 Materials and Methods

2.4.1 Plasmids, antibodies, and reagents

The pcDNA3.1(-) plasmids for expression of TTR-HA, the null Hong Kong mutant of α -1 antitrypsin (NHK-HA and NHK-GFP), and S-tagged Hrd1 (Hrd1-S) were previously described ^{17,99}. The CFTR Δ F508 plasmid was kindly provided by Doug Cyr (University of North Carolina at Chapel Hill, Chapel Hill, NC).

Antibodies employed in this study include anti-CD147 (A-12, G-19, 8D6; Santa Cruz Biotechnology), anti-Hrd1 (A302-946A; Bethyl), anti-HA (HA7; Sigma-Aldrich), anti–S-peptide (EMD Millipore), anti-tubulin (Abcam), anti–glyceraldehyde-3-phosphate dehydrogenase (EMD Millipore), anti-GFP (Roche), anti-CFTR (University of North Carolina at Chapel Hill, CFTR Antibodies Distribution Program), anti–ubiquitin conjugates (FK2; EMD Millipore), anti-AUP1 (Proteintech), anti-SEL1L (T-17; Santa Cruz Biotechnology) and anti-KDEL (Enzo). Anti–derlin-1 and anti–derlin-2 antibodies were kind gifts from Yihong Ye (National Institutes of Health, Bethesda, MD). Rabbit polyclonal anti-UBXD8 antibodies were generated against a histidine-tagged fragment of UBXD8 (amino acids 97–445) by Proteintech Group. All IRDye680- and IRDye800-conjugated secondary antibodies for Western blotting were obtained from LI-COR. Alexa Fluor–conjugated secondary antibodies for immunofluorescence microscopy were obtained from Thermo Fisher Scientific.

Reagents employed in this study include triacsin C (Enzo Life Sciences), emetine dihydrochloride hydrate (Sigma-Aldrich), CB-5083 ⁹⁰ (Cleave Biosciences), oleate (Sigma-Aldrich), kifunensine (Cayman Chemical), deoxynojirimycin (Sigma-Aldrich), MG-132 (Selleck Chemicals), T863 (Sigma-Aldrich), 4µ8C (EMD Millipore), GSK2606414 (EMD Millipore), tunicamycin (Cayman Chemical), and PNGase F (New England Biolabs).

2.4.2 Cell culture and transfection

HEK293, HEK293T, MEF, HeLa, and U2OS cells were cultured in DMEM containing 4.5 g/l glucose and l-glutamine (Corning) supplemented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific and Gemini Bio Products) at 37°C and 5% CO2. 293T.FluERAD cells stably expressing a split-Venus system for the analysis of the dislocation step of ERAD ¹⁵⁴ were kindly provided by Peter Cresswell (Yale University, New Haven, CT). U2OS cells stably expressing Venus-DD ¹⁴⁶ and HEK293 cells stably expressing the CHOP::GFP reporter were kindly provided by Ron Kopito (Stanford University, Stanford, CA). DGAT2-/- MEF cells were kindly provided by Robert Farese, Jr. (Harvard University, Cambridge, MA). All plasmid transfections were performed using X-tremeGENE HP (Roche) transfection reagent according to the manufacturer's instructions.

2.4.3 Immunoblotting analysis

Cells were washed extensively in phosphate-buffered saline (PBS) and lysed in 1% SDS. Protein amounts were normalized using a bicinchoninic acid (BCA) protein assay (Thermo Fisher Scientific). Proteins were separated on 4–20% polyacrylamide gradient gels (Bio-Rad) and transferred onto low-fluorescence polyvinylidene fluoride or nitrocellulose membranes (Bio-Rad). Large-format gel electrophoresis was performed using 10% acrylamide gels made with acrylamide/bis 19:1. Membranes were incubated in 5% nonfat milk in PBS plus 0.1% Tween-20 (PBST) for 30 min to reduce nonspecific antibody binding. Membranes were then incubated for at least 2 h in PBST containing 5% milk or 1% bovine serum albumin (BSA; Sigma-Aldrich) and primary antibodies, followed by incubation for at least 1 h in PBST containing 1% BSA and fluorescence-conjugated secondary antibodies. Immunoblots were visualized on a LI-COR imager (LI-COR Biosciences), and ImageJ ¹⁸⁴ was used for quantification.

2.4.4 Immunofluorescence microscopy

HeLa and MEF cells were plated on poly-l-lysine–coated coverslips. Cells were treated the next day, washed with PBS, and fixed at room temperature with 4% paraformaldehyde in PBS for 10 min. Cells were washed three times with PBS and permeabilized with 0.1% Triton X-100 plus 1% BSA in PBS at room temperature for 30 min. Cells were washed three times with 1% BSA in PBS and incubated for 2 h in primary antibodies, washed three times, and incubated for 1 h with Alexa Fluor–conjugated secondary antibodies, BODIPY493/503 (LD staining; Thermo Fisher Scientific), and 4',6-diamidino-2-phenylindole (DAPI; nuclei staining; Thermo Fisher Scientific). Cells were washed three times and mounted using Fluoromount-G (SouthernBiotech). Cells were visualized using a DeltaVision Elite microscope and acquired images deconvolved and analyzed using SoftWoRx. The abundance of LDs per cell was determined by measuring the area of BODIPY493/503–stained LDs per cell using ImageJ ¹⁸⁴.

2.4.5 Affinity Purifications

HEK293 cells were harvested, washed with PBS, and lysed in immunoprecipitation (IP) buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% digitonin, and protease inhibitor tablets [Thermo Fisher Scientific]) at 4°C for 30 min. Lysates were clarified by centrifugation at 20,000 × g for 10 min. Protein concentrations were measured using the BCA assay. For the affinity purification of S-tagged protein complexes, lysates were loaded onto S-protein agarose beads (EMD Millipore) at a concentration of 25 μ l beads per 1 mg of lysate. For endogenous Hrd1 IPs, 2 mg of lysate was incubated with anti-Hrd1 antibodies for 1 h and then loaded onto 25 μ l of protein G agarose beads (EMD Millipore). Lysates were incubated with the beads rotating at 4°C for 2 h, washed three times with lysis buffer containing 0.1% digitonin, and eluted in loading buffer.

2.4.6 Radiolabeling and pulse-chase analysis

HEK293 cells plated on poly-l-lysine–coated plates were washed twice with "cold" medium, which lacked l-methionine and l-cysteine and contained 10% dialyzed FBS, and then starved in this medium for 30 min. Cells were radiolabeled in medium containing 125 μ Ci/ml 35S-labeled cysteine/methionine (Easytag Express Protein Labeling Mix 35S; PerkinElmer) for 30 min, washed twice with Hanks' buffered saline solution, and then chased in complete medium

containing 75 μ M emetine for the indicated times. Cells were harvested, collected by centrifugation, washed in PBS, and lysed in pulse-chase IP buffer (25 mmol/l 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.4, 150 mmol/l NaCl, 5 mmol/l MgCl2, 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate detergent, and protease inhibitors). Lysates were cleared by centrifugation at 20,000 × g for 15 min at 4°C and protein concentrations determined using the BCA assay. Lysates were precleared with protein G beads (EMD Millipore). CD147 was immunoprecipitated from lysates by incubation with anti-CD147 antibody (8D6; Santa Cruz biotechnology) for 4 h at 4°C with mixing, followed by incubation with protein G beads (EMD Millipore) for an additional 2 h at 4°C with mixing. Immunoprecipitated proteins were washed thrice with the pulse-chase IP buffer and then separated by SDS–PAGE. Gels were dried and exposed to a Storage Phosphor Screen (GE Healthcare Life Sciences) for 16 h at room temperature. Radioactive signals corresponding to CD147(Mat.) and CD147(CG) were detected using a Typhoon 9400 Molecular Imager (GE Healthcare Life Sciences).

2.4.7 SILAC Mass spectrometry

Parental HEK293 cells or HEK293 cells expressing S-tagged Hrd1 were grown in DMEM lacking l-arginine and l-lysine supplemented with 10% dialyzed FBS (Life Technologies) and the appropriate SILAC amino acids: light, 1-arginine (Arg0) and 1-lysine (Lys0); medium, 13C6-1arginine (Arg6) and 4,4,5,5-D4-l-lysine (Lys4); and heavy, 13C615N4-l-arginine (Arg10) and 13C615N2-l-lysine (Lys8). Cells were cultured for at least seven cell doublings to allow for complete incorporation of the stable isotope-labeled amino acids (Cambridge Isotope Laboratories). Parental HEK293 control cells were light SILAC labeled, and S-tagged Hrd1 cells were either medium or heavy labeled. At 16 h before harvest, the S-tagged Hrd1 cells were incubated with either vehicle (medium SILAC labeled) or 1 µg/ml triacsin C (heavy SILAC labeled). After several washes in PBS, cells were lysed in IP buffer, and 3 mg of protein lysate was loaded onto 75 µl of S-protein agarose beads (EMD Millipore). Lysates were rotated at 4°C for 2 h and washed three times with IP buffer containing 0.1% digitonin and twice with 50 mM ammonium bicarbonate. Beads were resuspended in 75 µl of 0.2% RapiGest SF (Waters) in 50 mM ammonium bicarbonate for 15 min at 65°C, followed by incubation with 2.5 µg of trypsin (Thermo Fisher Scientific) overnight at 37°C. The affinity purification for each condition was performed separately to prevent exchange of interaction partners during the incubations. After the proteolysis step, equal volumes of digested peptides were combined and acidified with HCl to pH 2.0. Rapigest SF precipitate was removed by centrifugation at 20,000 \times g for 30 min and the peptide solution concentrated to 40 µl using a SpeedVac. Digested peptides were analyzed by LC-MS/MS on a Thermo Scientific Q Exactive Orbitrap Mass spectrometer in conjunction with a Proxeon Easy-nLC II HPLC (Thermo Fisher Scientific) and Proxeon nanospray source at the University of California, Davis, Proteomics Core Facility. The digested peptides were loaded onto a 100 μ m × 25 mm Magic C18 100-Å 5U reverse-phase trap, where they were desalted online before being separated using a 75 µm × 150 mm Magic C18 200-Å 3U reverse-phase column. Peptides were eluted using a 180-min gradient with a flow rate of 300 nl/min. An MS survey scan was obtained for the m/z range 300-1600, and MS/MS spectra were acquired using a top 15 method, in which the top 15 ions in the MS spectra were subjected to high-energy collisional dissociation. An isolation mass window of 1.6 m/z was used for the precursor ion selection, and a normalized collision energy of 27% was used for fragmentation. A 5-s duration was used for the dynamic exclusion. The acquired MS/MS spectra were searched against a full UniProt database of human protein sequences, and SILAC ratios were determined using MaxQuant. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD005633.

2.4.8 Lipidomic profiling

HEK293 cells were grown to 70% confluence in a 10-cm dish and treated for 16 h with vehicle or 1 μ g/ml triacsin C. Cells were washed twice with PBS and harvested, and cell pellets were stored at -80° C. Lipid metabolite extraction and analysis by SRM-based LC-MS/MS was performed as previously described ^{181,185,186}. Briefly, nonpolar lipid metabolites were extracted in 2:1:1 chloroform/methanol/PBS supplemented with internal standards C12:0 dodecylglycerol (10 nmol) and pentadecanoic acid (10 nmol). The organic and aqueous layers were collected after separation by centrifugation at 1000 × g for 5 min. The aqueous layer was acidified by addition of 0.1% formic acid and subjected to a second chloroform extraction. The resulting organic layers were combined and mixed, dried down under N2, and dissolved in 120 µl of chloroform. A 10-µl aliquot was analyzed by SRM LC-MS/MS. Metabolites were separated using a Luna reverse-phase C5 column (Phenomenex), and MS analysis was performed on an Agilent 6430 QQQ LC-MS/MS. Quantification of metabolites was performed by integrating the area under the peak, normalized to internal standard values, adjusted based on external standard curves, and expressed as relative levels compared with the control sample.

2.4.9 XBP1 splicing assay

RNA was isolated using TRIzol Reagent (Life Technologies) and cDNA generated using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's directions. XBP1 was amplified using the primers 5'-AAACAGA¬GT¬AGCAGC-TCAGACTGC-3' 5'and TCCTTCTGGGTAGACCTCT-GGGAG-3'. Amplified products were separated on a 2.5% agarose gel at 80 V for 2 h and visualized using a Gel Doc imaging system (Bio-Rad).

2.4.10 Cell viability

Cells were trypsinized, pelleted by centrifugation at $500 \times g$ for 5 min, washed in PBS, and resuspended in 100 µl of PBS containing 2.5 µg/ml propidium iodide (BD Biosciences). After a 5-min incubation, cells were diluted with PBS to a final volume of 1 ml and analyzed using a BD Biosciences LSRFortessa. Cell suspensions were stored on ice throughout the procedure. Subsequent data analysis was performed using FlowJo software.
2.5 Figures

Figure 2-1: Triacsin C inhibits a subset of ERAD pathways. (A) ERAD substrate panel, indicating substrate topology and degradation pathway(s). Substrates are indicated in blue and ERAD components in green. Yellow triangles indicate N-linked glycans. (B) Triacsin C treatment time course. Triacsin C was added for the indicated times (blue bars) and maintained in the medium throughout the emetine chase. (C) HEK293 cells were pretreated with 1 µg/ml triacsin C for the indicated times (as depicted in B), followed by addition of 75 µM emetine for 6 h. CD147 levels were assessed by immunoblotting of SDS lysates. (D) The relative CD147(CG) levels in C were quantified and are presented as percentage of the levels at time 0 h (n = 3). Asterisk indicates significant stabilization (p < 0.05). (E) HEK293 cells were pretreated with vehicle or 1 μ g/ml triacsin C for 16 h, followed by 75 µM emetine for the indicated times. CD147 levels were assessed by immunoblotting of SDS lysates. (F) The relative levels of CD147(CG) in E were quantified and are presented as percentage of the levels at time 0 h (n = 3). (G) HEK293 cells expressing NHK-GFP were pretreated with vehicle or 1 µg/ml triacsin C for 16 h, followed by 75 µM emetine for the indicated times. NHK-GFP levels were assessed by immunoblotting of SDS lysates. (H) The relative levels of NHK-GFP in G were quantified and are presented as percentage of the levels at time 0 h (n = 3). (I) HEK293 cells expressing CFTR Δ F508 were pretreated with vehicle or 1 µg/ml triacsin C for 16 h, followed by 75 μM emetine for the indicated times. CFTRΔF508 levels were assessed by immunoblotting of SDS lysates. (J) The relative levels of CFTRAF508 in I were quantified and are presented as percentage of the levels at time 0 h (n = 4). Mat., mature; CG, core glycosylated. Error bars indicate SEM.

Figure 2-2: Triacsin C does not generally inhibit the ubiquitin-proteasome system or protein secretion. (A) SDS lysates from HEK293 cells incubated with 1 µg/ml triacsin C for 16 h or 10 µM MG-132 for 6 h were analyzed by immunoblotting. (B) U2OS cells stably expressing Venus-DD were incubated with vehicle or 1 µg/ml triacsin C for 16 h, followed by emetine treatments for the indicated times. Venus fluorescence levels were monitored by flow cytometry and quantified as the percentage of the levels at time 0 h (n = 3). (C) HEK293 cells were incubated with vehicle or 1 μ g/ml triacsin C for 16 h and then treated with 75 μ M emetine for the indicated times. Where indicated, 10 µM MG-132 was added at the beginning of the emetine chase. The levels of the different forms of CD147 were assessed by immunoblotting of SDS lysates. (D) HEK293 cells expressing TTR-HA were treated with vehicle or 1 µg/ml triacsin C for 16 h. Cells were washed with PBS, and the medium was replaced with serum-free OPTI-MEM containing vehicle or 1 µg/ml triacsin C for the remaining 6 h. Lysates and TTR-HA immunoprecipitated from the media were analyzed by immunoblotting. (E) The levels of TTR-HA in the media were quantified from D and are presented as percentage of the levels in the control sample (n = 3). (F, G) The morphology of the ER, anti-KDEL (green) and the Golgi complex, anti-GM130 (green), in HeLa cells treated with vehicle or 1 µg/ml triacsin C for 16 h was analyzed by immunofluorescence microscopy. Nuclei were stained with DAPI (blue). Scale bar, 10 µm. Mat., mature; CG, core glycosylated; -CHO, deglycosylated. Error bars indicate SEM.

Figure 2-3: Triacsin C impairs ERAD substrate glycan trimming. (A) HEK293 cells were pretreated with vehicle or 1 µg/ml triacsin C for 16 h, followed by 75 µM emetine for the indicated times. Where indicated, 5 µg/ml kifunensine and 5 µM CB-5083 were added at the beginning of the emetine chase. SDS lysates were separated on large-format SDS–PAGE gels and analyzed by immunoblotting to visualize the different CD147 glycoforms. A darker exposure of the CD147(CG) bands is provided to facilitate visualization of the different trimmed glycoforms. (B, C) The relative levels of untrimmed CD147(CG) (B) and trimmed CD147(CG) (C) were quantified from A and are presented as percentage of the levels at time 0 h (n = 3). (D) Lysates from cells treated as in A were incubated with PNGase F as indicated and analyzed by immunoblotting. Mat., mature; CG, core glycosylated; -CHO, deglycosylated. Error bars indicate SEM.

Figure 2-4: Triacsin C impairs substrate delivery to and dislocation from the Hrd1 complex. (A) Two-dimensional plot representing the proteomic analysis of Hrd1-S interactors from a triple SILAC experiment. The ratio of Hrd1-S/control on the x-axis indicates the strength of the interaction under basal conditions. The ratio of Hrd1-S + triacsin C/Hrd1-S on the y-axis indicates the change in the interaction in response to triacsin C treatment. Gray filled circles are nonspecific interactors, and blue filled circles are high-confidence interactors. (B) HEK293 cells expressing an empty vector or S-tagged Hrd1 were pretreated with vehicle or 1 μ g/ml triacsin C for 16 h. Affinity-purified complexes were analyzed by immunoblotting with the indicated antibodies. (C) HEK293 cells were pretreated with vehicle or 1 µg/ml triacsin C for 16 h. Endogenous Hrd1 complexes were immunoprecipitated and analyzed by immunoblotting with the indicated antibodies. (D) The fold change in Hrd1-associated CD147(CG) in C was quantified and is presented as a bar graph (n = 3). (E) The split-Venus dislocation assay. See text for description. (F) 293T.FluERAD cells, which stably express the deglycosylation-dependent Venus dislocation system, were pretreated with 1 µg/ml triacsin C for 16 h, followed by a 0- or 6-h treatment with 10 µM MG-132. Where indicated, 5 µg/ml kifunensine or 5 µM CB-5083 was added together with $10 \,\mu\text{M}$ MG-132 for 0 or 6 h. Venus fluorescence levels were quantified by flow cytometry and are represented as the fold change relative to the 0 h. Asterisk indicates a significant decrease in the fold change in fluorescence levels (p < 0.05). AP, affinity purification; CG, core glycosylated; endo., endogenous; IP, immunoprecipitation; Mat., mature; Sprot, S-protein agarose. Error bars indicate SEM

Figure 2-5: Lipid droplet biogenesis is dispensable for CD147 ERAD. (A) The Kennedy pathway of TAG synthesis indicating the enzymes (blue boxes) and metabolites. Select additional pathways that use acyl-CoA are also depicted. Approaches to disrupt LD biogenesis through the inhibition of ACSLs (triacsin C) or the DGAT enzymes (DGAT1i and DGAT2-/-) are indicated in red. (B) DGAT2-/- MEFs were pretreated with 1 μ g/ml triacsin C or 20 μ M DGAT1i for 3 h and then incubated with 200 μ M oleate for 0 or 6 h as indicated. Fluorescence microscopy was employed to visualize LDs (green) and nuclei (blue). Scale bar, 5 μ m. (C) The abundance of LDs was quantified from cells treated as shown in B. Asterisk indicates a significant increase in LD amount

relative to untreated cells (p < 0.05). (D) DGAT2-/- MEFs were pretreated with vehicle, 1 μ g/ml triacsin C, or 20 μ M DGAT1i for 16 h, followed by 75 μ M emetine for the indicated times. CD147 levels were assessed by immunoblotting of SDS lysates. (E) The relative levels of CD147(CG) in D were quantified and are presented as percentage of the levels at time 0 h (n = 3). ACSL, long-chain acyl-CoA synthetase; AGPAT, acylglycerolphosphate acyltransferase; DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase; GPAT, glycerol-phosphate acyltransferase; LPA, lysophosphatidic acid; PA, phosphatidic acid; PAP, phosphatidic acid phosphatase; TAG, triacylglycerol. Error bars indicate SEM.

Figure 2-6: Triacsin C alters the cellular lipid landscape. Targeted metabolomic analysis of the nonpolar metabolome of cells treated with 1 µg/ml triacsin C for 16 h revealed alterations in 71 lipid species, illustrated as a volcano plot (A) and a heat map organized by lipid class (B). Red text in B indicates a significant change (p < 0.05). (C–K) Quantification showing the relative levels of significantly altered lipids (n = 4 or 5). *p < 0.05, **p < 0.01. White bars, vehicle; black bars, triacsin C. (L) Pathway map depicting the general effects of triacsin C on neutral lipids and phospholipids. DAG, diacylglycerol; FFA, free fatty acid; MAG, monoacylglycerol; NAE, N-acylethanolamine; PA, phosphatidic acid; PC, phosphatidylcholine; PE phosphatidylethanolamine; PG, phosphatidy¬lglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; TAG, triacylglycerol. "L" before a lipid phospholipid designation indicates lyso-; "e" after a lipid designation indicates SEM.

Figure 2-7: Triacsin C activates opposing arms of the UPR. (A) Reverse transcription PCR assay of XBP1 mRNA from HEK293 cells treated with 1 µg/ml triacsin C for the indicated times in the presence and absence of 100 µM IRE1 inhibitor 4µ8c (IRE1i). XBP1 amplicons were separated on an agarose gel and imaged. XBP1u, unspliced XBP1; XBP1s, spliced XBP1. (B) Quantification of the percentage of spliced XBP1 in A (n = 3). (C) HEK293 cells stably expressing a CHOP::GFP construct were treated with vehicle, 1 µg/ml triacsin C, or 5 µg/ml tunicamycin as indicated and GFP levels measured using flow cytometry. The fold change in GFP fluorescence relative to time 0 h is shown (n = 3). (D) HEK293 cells stably expressing a CHOP::GFP construct were treated with vehicle or 1 μ g/ml triacsin C for 0 and 16 h in the presence and absence of 1 μ M PERK inhibitor GSK2606414 (PERKi). GFP levels were measured using flow cytometry. The fold change in GFP fluorescence relative to time 0 h is shown (n = 3). (E) HEK293 cells were treated with 1 µg/ml triacsin C and vehicle, 100 µM IRE1i, or 1 µM PERKi for the indicated times and stained with propidium iodide to identify apoptotic cells. The percentage of apoptotic cells relative to time 0 h is shown (n = 3). (F) A model depicting the relationship between fatty acid metabolism and ER proteostasis. Disruptions in fatty acid metabolism result in lipid disequilibrium, causing impairments in ER quality control by inhibiting specific steps in ERAD (independent of LDs). The disruption in ER homeostasis activates the UPR, which protects cells via the PERK pathway and eventually kills cells via the IRE1 pathway. Error bars indicate SEM.

Figure 2-S1. Analysis of CD147 maturation and NHK secretion. (A) HEK293 cells were pretreated with vehicle or 1 μ g/mL triacsin C for 16 hr, pulse labeled, and samples collected at 0 hr and 6 hr. CD147 was immunoprecipitated, separated by SDS-PAGE, and radioactivity detected using a Typhoon 9400. (B) HEK293 cells expressing NHK-GFP were treated with vehicle or 1 μ g/mL triacsin C for 16 hr. Cells were washed with PBS, and the media was replaced with serum-free OPTI-MEM containing vehicle or 1 μ g/mL triacsin C for the remaining 6 hr. Lysates and NHK-GFP immunoprecipitated from the media were analyzed by immunoblotting.

Figure 2-S2. Proteasome inhibition causes accumulation of CD147 in a deglycosylated form. HEK293 cells incubated with vehicle or 10 μ M MG-132 for 6 hr were lysed in 1% SDS. Lysates were then incubated in the presence and absence of PNGase F for 30 min at 370 C. Proteins were separated by SDS-PAGE and analyzed by immunoblotting.

Figure 2-S3. Analysis of glucosidases and mannosidases in CD147 glycan trimming and degradation. HEK293 cells were incubated with 75 μ M emetine in the presence and absence of 5 μ g/mL kifunensine and 50 μ M deoxynojirimycin as indicated. SDS lysates were separated on large format SDS-PAGE gels and analyzed by immunoblotting to visualize the different CD147 glycoforms.

B BODIPY493 + PLIN2

Figure 2-S4. Triacsin C and DGAT1 reduce the amount of PLIN2-positive lipid droplets. (A) DGAT2-/- MEFs were pretreated with 1 μ g/mL triacsin C or 20 μ M DGAT1i for 3 hr and then incubated with 200 μ M oleate for 0 hr or 6 hr as indicated. Cells were lysed in 1% SDS and PLIN2 levels were analyzed by immunoblotting. (B) Cells were treated as in panel A and immunofluorescence microscopy employed to visualize PLIN2 (red), LDs (green), and nuclei (blue). Scale bar = 10 μ m.

Figure 2-S5. Characterization of a CHOP::GFP reporter cell line. (A) Untransfected HEK293 cells or HEK293 cells stably expressing the CHOP::GFP reporter plasmid were incubated in the presence or absence of 5 μ g/mL tunicamycin as indicated. GFP levels were analyzed by immunoblotting. (B) HEK293 cells stably expressing a CHOP::GFP construct were treated with increasing concentrations of tunicamycin. GFP levels were measured using flow cytometry and are represented as a histogram normalized to the mode. (C) The fold change in GFP fluorescence levels relative to time 0 hr from cells treated as in panel B is shown.

Chapter 3: A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates

Contents in this chapter are modified with permission from the previously published research article:

Huang EY*, To M*, Tran E, Dionisio LTA, Cho HJ, Baney KLM, Pataki CI, Olzmann, JA. A VCP inhibitor substrate trapping approach (VISTA) identifies endogenous ERAD substrates. Mol Biol Cell. 2018 May 1;29(9):1021-1030. *These authors contributed equally

3.1 Introduction

The endoplasmic reticulum (ER) mediates the folding, modification, and deployment of one-third of the cellular proteome. Proteins that fail to fold or lack requisite oligomeric binding partners are degraded through ER-associated degradation (ERAD), a ubiquitin-dependent process that targets substrates to the 26S proteasome for proteolysis ^{6,94,187}. A modular network of ERAD machinery coordinates substrate recognition and dislocation (also known as retrotranslocation) from the ER lumen or membrane into the cytoplasm ^{17,188}. ER-resident E3 ubiquitin ligases mediate substrate ubiquitination, which serves both as a proteasomal targeting signal and a binding interface that facilitates substrate extraction by the homohexameric AAA ATPase VCP (also known as p97) and its associated ubiquitin-binding cofactors (e.g., UFD1L and NPLOC4^{6,189}. VCP-mediated ATP hydrolysis generates the necessary force for the extraction of the ubiquitinated substrate, which is partially unfolded as it is threaded through the VCP central pore ^{29,190,191}.

A canonical role of ERAD is the clearance of misfolded proteins (i.e., quality control), such as the Δ F508 mutant cystic fibrosis transmembrane conductance regulator in cystic fibrosis and the truncated null Hong Kong (NHK) variant of α -1 antitrypsin in α -1 antitrypsin deficiency ⁹³. The identification of disease-associated mutant proteins as ERAD substrates has provided useful tools to study the mechanisms of ERAD ¹⁹². A less appreciated role of ERAD is in regulating the levels of endogenous proteins (i.e., quantity control) ^{70,193,194}. For example, ERAD controls the flux through the cholesterol synthesis pathway by facilitating the sterol-regulated degradation of HMG CoA reductase ¹⁹⁵ and squalene monooxygenase ^{196,197}. ERAD quantity control has also been implicated in a wide variety of pathological conditions, such as cancer, hepatic steatosis, obesity, diabetes insipidus, and immune system function, through its ability to degrade ER-resident proteins (e.g., HMG CoA reductase, Insig1/2), secreted proteins (e.g., ApoB100, proAVP), and plasma membrane proteins (e.g., KAI1, CD147, pre–B cell receptor, SLC1A5, SLC38A2) ^{101,195,198–205}. Thus, by influencing the abundance of ER-resident proteins and secreted proteins, ERAD impacts both cell autonomous and noncell autonomous processes.

Despite the importance of ERAD in protein quantity control, our understanding of the endogenous substrates targeted by ERAD remains limited. This surprising dearth of knowledge is in part due to the lack of generalizable methods to identify endogenous ERAD substrates in human cells. Here, we describe a quantitative ubiquitin proteomics strategy termed VCP inhibitor substrate trapping approach (VISTA) to identify endogenous ERAD substrates.

3.2 Results and Discussion

3.2.1 VCP Inhibition traps ubiquitinated NHK in complex with the Hrd1 E3 ubiquitin ligase

A principal function of VCP is to extract ubiquitinated ERAD substrates from the ER into the cytosol for proteasomal degradation ^{189,206}. CB5083 is a small-molecule VCP inhibitor that impairs the degradation of several integral membrane ERAD substrates, including CD147 ²⁰⁰, c18orf32 ²⁰⁷, and overexpressed TCR α -GFP ⁹⁰. In addition, incubation with CB5083 results in the accumulation of ubiquitinated proteins ^{90,208}. We reasoned that acute pharmacological inhibition

of VCP with CB5083 could be exploited to stabilize or "trap" ERAD substrates in a ubiquitinated, membrane-bound form (Figure 3-1A).

As a first test of the utility of CB5083 to trap ERAD substrates, we examined the impact of CB5083 treatment on the well-characterized luminal ERAD substrate NHK. In a translation shut-off assay, the half-life HA-tagged NHK (NHK-HA) was greatly extended in the presence of CB5083 (Figure 3-1, B and C), demonstrating that incubation with CB5083 impairs the degradation of a luminal ERAD substrate. Dislocation and ubiquitination of NHK are mediated by a membrane-embedded, macromolecular complex containing the E3 ubiquitin ligase Hrd1^{99,139}. Thus, we sought to test the hypothesis that VCP inhibition traps polyubiquitinated NHK in complex with Hrd1. CB5083 treatment led to both an increase in ubiquitinated proteins in cell lysates (i.e., Input) as well as an increased association of NHK-HA and ubiquitinated proteins with S-tagged Hrd1 (Hrd1-S), consistent with impaired clearance of ubiquitin-conjugated proteins (Figure 3-1D). A portion of NHK-HA associated with Hrd1-S migrated as a high-¬molecularweight smear that was sensitive to incubation with the catalytic core of the deubiquitinating enzyme USP2 (USP2cc; Figure 3-1D), indicating that this fraction of NHK-HA in complex with Hrd1-S is ubiquitinated. Furthermore, immunoprecipitations of NHK-HA indicate that CB5083 increases the association of NHK-HA with components of the Hrd1 complex, including Hrd1, SEL1L, OS-9, and XTP3-B (Figure 3-1E). These proof-of-principle experiments demonstrate that CB5083 treatment traps a known ERAD substrate in a ubiquitinated form, in complex with its membrane-embedded degradation apparatus. We also observed that CB5083 treatment resulted in the accumulation of the core glycosylated form of integral membrane protein CD147 (CD147[CG]), an endogenous ERAD substrate ^{101,200}, but it caused only a small increase in the association of CD147(CG) with Hrd1-S (Supplemental Figure 3-S1). This may reflect differences in the mode of interaction between Hrd1 and its luminal and integral membrane substrates. For example, under periods of VCP impairment, an integral membrane substrate may be preferentially released into the surrounding membrane to prevent prolonged occupancy of the Hrd1 ubiquitination complex.

3.2.2 Global analysis of trapped, ubiquitinated proteins identifies endogenous ERAD substrates in HepG2 liver cells

To identify endogenous ERAD substrates, VCP inhibition was coupled with quantitative ubiquitin proteomics in a method we refer to as ERAD-VISTA (Figure 3-2A). Cells were labeled by stable isotope labeling with amino acids in cell culture (SILAC) and treated with vehicle (light) or CB5083 (heavy). Beads conjugated with antibodies that recognize peptides bearing diglycine (diGly)-modified lysine residues (i.e., a tryptic ubiquitin remnant) ^{208,209}) were used to affinity purify ubiquitin-modified peptides from membrane fractions for proteomic analysis. Consistent with the trapping of ubiquitinated proteins, CB5083 treatment resulted in greater levels of polyubiquitinated proteins in cell lysate and the ER-enriched membrane fractions identified a total of 5573 diGly-modified peptides across four independent experiments, corresponding to 478 proteins (Supplemental Table S1). There was some variability in the number of unique diGly peptides identified (Figure 3-2C and Supplemental Table 3-S1), which may be due to different batches of diGly beads. Experiments 3 and 4 were performed with the same batch of beads and were very similar with respect to the number of unique diGly peptides identified in each

experiment (Figure 3-2C and Supplemental Table 3-S1). diGly-modified peptides with SILAC ratios greater than 2.0 (123 proteins), indicating an accumulation of the ubiquitinated peptide during VCP inhibition, were considered candidate ERAD substrates (Supplemental Figure 3-S2 and Supplemental Table 3-S1). A single diGly modification was identified for the majority of proteins (68.2% for all proteins, 59.2% for proteins with SILAC ratio > 2), but a fraction of the proteins were also observed that contained two diGly modifications (18.8% for all proteins, 20.8% for proteins with SILAC ratio > 2) or three diGly modifications (9.6% for all proteins, 12.5% for proteins with SILAC ratio > 2; Figure 3-2D). As expected, a large number of ubiquitin diGly peptides were identified, most of which corresponded to K48 and K63 diGly-modified peptides (Figure 3-2E). In all four experiments, K11, K33, and K48 diGly peptides showed a strong increase, consistent with a role in protein degradation (Figure 3-2F). In contrast, the amount of K63 diGly peptide was mostly unchanged and the amount of K27 diGly peptide showed a decrease (Figure 3-2F).

Among the list of candidate substrates (Supplemental Table 3-S1), three bona fide endogenous ERAD substrates were detected: Apolipoprotein B100 (ApoB100) ^{70,210}, 7dehydrocholesterol reductase (DHCR7) ²¹¹, and insulin-induced gene 2 (Insig2) ²⁰⁴. Following CB5083 treatment, increases in the levels of two diGly peptides in ApoB100 (K196, 13.805-fold increase; K2697, 9.249-fold increase), a cluster of three diGly peptides in DHCR7 (K4, 3.602-fold increase; K11, 3.497-fold increase; K13, 3.861-fold increase), and one diGly peptide in Insig2 (K221, 7.27-fold increase) were detected (Figure 3-2, G–L), suggesting that modification of these lysines by ERAD E3 ligases targets these substrates to the proteasome. Other reported endogenous ERAD substrates may not have been identified due to their low abundance in HepG2 cells or their regulated degradation under specific conditions, such as IP3 receptor degradation following ligand binding ²¹² or HMG CoA reductase degradation following sterol accumulation in ER membranes ²¹³. Although it is unlikely to be a comprehensive list, these data demonstrate the ability of ERAD-VISTA to detect known and candidate endogenous ERAD substrates.

Gene ontology (GO) enrichment analysis of candidate ERAD substrates revealed an expected enrichment in proteins that are known to localize to cell membranes (e.g., ER and plasma membrane) as well as complexes associated with various components of the ERAD network (Figure 3-3A and Supplemental Table 3-S2). Indeed, analysis of the annotated localizations revealed that 59.2% of the candidate substrates were predicted to be present in, or transit through, the secretory pathway (Supplemental Table 3-S3). A smaller portion of the candidate substrates are annotated as mitochondrial (8.3%), lysosomal (0.8%), and vesicular (1.7%; Supplemental Table 3-S3), indicating a high degree of enrichment in ubiquitinated secretory proteins. We observed an enrichment in proteins involved amino acid transport, protein catabolism, protein folding, and cholesterol and fatty acid biosynthesis (Figure 3-3B and Supplemental Table 3-S2). This functional diversity reflects the wide array of potential ERAD substrates transiting the early secretory pathway and is consistent with a broad cellular role for ERAD through its regulation of a multitude of targets.

3.2.3 Degradation of endogenous SCD1 and RNF5 requires VCP, ubiquitin conjugation, and the proteasome

We next sought to validate select putative ERAD substrates from our candidate list. Two candidate substrates were selected for further analysis. Stearoyl-CoA desaturase (SCD1) is an ERlocalized enzyme that catalyzes the production of monounsaturated fatty acids from saturated fatty acids ²¹⁴. Levels of a diGly-modified lysine in the cytosolic C-terminus of SCD1 increased in response to CB5083 (K341, 10.621-fold increase; Figure 3-4, A and B). Overexpressed SCD1 in CHO-K1 and HeLa cells as well as endogenous SCD1 in NIH3T3-L1 cells are degraded by the proteasome ^{215,216}. However, whether VCP is required for SCD1 degradation and whether endogenous SCD1 is degraded in HepG2 cells remains unknown. Consistent with SCD1 being a direct substrate of VCP, CB5083 treatment increased the amount of VCP associated with S-tagged SCD1 (SCD1-S; Figure 3-4C). Moreover, the degradation of SCD1 was impaired by CB5083, the proteasome inhibitor MG132, and an inhibitor of the E1 ubiquitin-activating enzyme MLN7243 (Figure 3-4, D and E). We observed an anti-SCD1 immunoreactive, lower-molecular-weight band that was partially degraded in control cells and exhibited a modest accumulation in the presence of the inhibitors (Figure 3-4D). This band was depleted by multiple small interfering RNAs (siRNAs) targeting SCD1 (Supplemental Figure 3-S3), confirming that it is a fragment of SCD1, but its functional significance is unclear at this time. Our data suggest that SCD1 is constitutively degraded by a VCP-dependent ERAD pathway in HepG2 cells. This is similar to the SCD1 yeast orthologue OLE1, which undergoes degradation through an ERAD pathway that requires the VCP orthologue CDC48²¹⁷. Future experiments will explore if SCD1 degradation is regulated by the metabolic state of the cell, such as fluctuations in the ratio of unsaturated to saturated fatty acids.

Another candidate ERAD substrate identified using VISTA is RNF5, an ERAD E3 ligase that mediates the clearance of misfolded proteins ^{141,142,218} and controls the stability of proteins involved in a variety of cellular processes such as autophagy ²¹⁹, amino acid transport ¹⁹⁸, and viral immunity ²²⁰. We identified four diGly-modified lysines that clustered within the cytosolic N-terminus of RNF5 and increased following CB5083 treatment (K68, 4.029-fold increase; K75, 7.038-fold increase; K86, 6.307-fold increase; K93, 8.339-fold increase; Figure 3-4, F and G). Similar to SCD1-S, CB5083 treatment increased the amount of VCP that coprecipitated with S-RNF5 (Figure 3-4H). Translation shut-off experiments indicated that the degradation of endogenous RNF5 was impaired by CB5083, MG132, and MLN7243 (Figure 3-4, I and J). Together, our findings indicate that two of the candidate ERAD substrates in HepG2 cells identified by ERAD-VISTA, SCD1 and RNF5, are constitutively degraded by a VCP- and ubiquitin-dependent ERAD pathway.

3.2.4 Autoubiquitination targets RNF5 to the ERAD pathway in HepG2 cells

Maltose-binding protein (MBP)-tagged RNF5 autoubiquitinates in vitro through an intramolecular reaction that requires an intact RING finger domain ²²¹. However, whether RNF5 autoubiquitinates in cells and whether this activity contributes to its proteasomal clearance has not been examined. We generated an S-tagged RNF5 construct containing a cysteine-to-alanine substitution (C42A), which disrupts the RING finger and abrogates its catalytic activity ²²¹. When transfected into HepG2 cells, S-RNF5(WT) overexpression was low (Supplemental Figure 3-S4A) and the S-RNF5(C42A) exhibited a threefold increase in protein levels relative to its wild-type counterpart (Figure 3-5, A and B). Inhibitors of ERAD increased the steady-state levels of wild-type RNF5, but not S-RNF5(C42A) (Figure 3-5, A and B), indicating that RNF5 ubiquitination activity is required for its degradation. Affinity purification of S-RNF5(WT) revealed a laddering

of RNF5 bands, with three to four particularly prominent bands that were separated by ~8 kDa (i.e., the size of ubiquitin) and that increased following CB5083 treatment (Figure 3-5, C and D). These bands were greatly reduced by incubation with USP2cc, indicating that these represent ubiquitinated forms of RNF5 (Figure 3-5, C and D). The ubiquitinated RNF5 species were mostly absent in the C42A mutant RNF5 (Figure 3-5, C and D). We considered that the small amount of ubiquitinated S-RNF5(C42A) may be due to ubiquitination S-RNF5(C42A) by endogenous RNF5. Indeed, FLAG-HA-RNF5 coprecipitated with S-RNF5, indicating the presence of RNF5 homooligomers (Supplemental Figure 3-S4B). To examine the possibility of trans-molecular RNF5 autoubiquitination, we expressed S-RNF5(C42A) in RNF5 knockout (KO) cells generated using CRISPR/Cas9 (Supplemental Figure 3-S5). Similar to the control cells, S-RNF5(C42A) still exhibited a small amount of laddering in the RNF5 KO cells, indicating that the endogenous RNF5 does not contribute to the ubiquitination of S-RNF5(C42A) (Supplemental Figure 3-S5B). Our data are in very good agreement with previous in vitro studies ²²¹ and suggest RNF5 autoubiquitination is a cis-molecular reaction. The residual ubiquitination of S-RNF5(C42A) must be mediated by an unknown E3 ligase.

Our proteomics results indicate that all four lysines in RNF5 are ubiquitinated and are sensitive to VCP inhibition (Figure 3-4, F and G, and Supplemental Table 3-S1). To explore the contribution of these lysines to RNF5 degradation we generated constructs harboring lysine-toarginine substitutions. Although there was a small decrease in the ubiquitination of S-RNF5(K75R) and S-RNF(K86R), all S-RNF5 single lysine mutants were still ubiquitinated (Figure 3-5E). Therefore, we generated an S-RNF5 construct in which all four lysines were substituted with arginine (4K-R). The 4K-R mutant exhibited a dramatic reduction in ubiquitination (Figure 3-5, F and G). A very small amount of ubiquitinated S-RNF5(4K-R) was visible, suggesting that RNF5 may either ubiquitinate noncanonical residues (e.g., serine) or one of the lysines in the S-tag. Although the S-tag contains two lysine residues, the ubiquitination of RNF5 was nearly abolished in the 4K-R mutant. This may indicate a structural preference for the cluster of 4-lysine residues over the lysines in the N-terminal S-tag. It is notable that S-RNF5(4K-R), despite being no longer ubiquitinated, still coprecipitated ubiquitinated proteins in the presence of CB5083 (Figure 3-5F). This was in contrast to the inactive S-RNF5(C42A), which did not coprecipitate ubiquitinated proteins (Figure 3-5C). These results suggest that the S-RNF5(4K-R) mutant uncouples RNF5 catalytic activity and autoubiquitination. This uncoupling mutant could be useful for exploring the functional importance of RNF5 degradation.

In summary, we have developed a new global approach for the identification of endogenous ERAD substrates. This approach identified known (ApoB100, DHCR7, and Insig2) and novel (SCD1 and RNF5) substrates. ERAD-VISTA has several important benefits over previous strategies to study ubiquitinated substrates: 1) The method uses endogenous ubiquitin and does not require overexpression of tagged ubiquitin (e.g., his-ubiquitin) ^{222–224}. 2) The method does not require in-depth knowledge and/or genetic manipulation of the degradation pathway (e.g., proteomic analyses of tagged E3 ligase complexes) ^{225–228} or tagged substrate delivery factors ¹⁰¹. 3) The method does not require expression of chimeric proteins that could affect function (e.g., fusions of E3 ligases to tandem ubiquitin-binding domains) ^{229,230} or to ubiquitin ²³¹. 4) The method measures changes in substrate ubiquitination rather than steady-state protein levels (e.g., steady-state SILAC) ²³² or GFP-based global protein profiling ^{233,234}, thereby facilitating substrate identification even when only a small fraction is ubiquitinated and degraded. A limitation of

ERAD-VISTA is that it relies on diGly ubiquitin proteomics which may impact reproducibility due to stochastic sampling, especially for low-abundance targets ²³⁵. Thus, achieving comprehensive assessments of the ERAD substrate landscape is a challenge. However, depth and coverage may be improved by employing recent improvements in diGly methodologies involving the fractionation of peptides using strong cation exchange chromatography before immunoaffinity purification ^{236,237}. It is also important to note that because the diGly approach is specific to diGly-modified lysines, it will not identify ubiquitination on nonlysine residues such as serine ²³⁸. An additional limitation of ERAD-VISTA is that some CB5083-sensitive ubiquitination events might not target the modified protein for degradation and may instead reflect regulatory ubiquitination, such as the ubiquitin-dependent regulation of protein complexes ^{239–241}. Thus, the candidate ERAD substrate must be validated with traditional approaches. ERAD-VISTA expands the available toolbox of strategies for probing the ERAD substrate landscape in different cell types and under different conditions (e.g., ER stress).

3.3 Materials and methods

3.3.1 Plasmids, antibodies, and reagents

The NHK-HA and Hrd1-S plasmids used were previously described ²⁰⁰. The S-RNF5 plasmid in a pcDNA3.1(+) backbone was a kind gift from Ron Kopito (Stanford University), and the FLAG-HA-RNF5 plasmid in a pcDNA5/FRT/TO backbone was a kind gift from John Christianson (Ludwig Institute for Cancer Research, University of Oxford). S-RNF5 lysine-to-arginine and cysteine-to-alanine substitutions were generated by site-directed mutagenesis and confirmed by sequencing. To generate the SCD1-S expression plasmid, SCD1 was PCR amplified from pANT7_cGST-SCD1 (DNASU Plasmid Repository, HsCD00631016) and ligated into a pcDNA3.1(–) vector bearing an in frame C-terminal S-tag.

The primary antibodies used for immunoblotting include anti-S peptide (EMD Millipore), anti-HA (Sigma-Aldrich), anti-ubiquitin (FK2; EMD Millipore), anti-tubulin (Abcam), anti-Hrd1 (Bethyl Laboratories), anti-SEL1L (Santa Cruz), anti-CD147 (Santa Cruz), anti-VCP (Novus Biologicals), anti-calnexin (Proteintech Group), anti-UBXD8 (Proteintech Group), anti-AUP1 (Proteintech Group), anti-GAPDH (EMD Millipore), anti-SCD1 (Cell Signaling Technology), and anti-RNF5 (Abcam). Anti-OS-9 and anti-XTP3-B were kind gifts from Ron Kopito (Stanford University). Secondary antibodies used were Alexa Fluor 680 goat anti-mouse (Life Technologies) and IRDye 800 goat anti-rabbit (LI-COR Biosciences).

Chemical reagents used include emetine (Sigma-Aldrich), CB5083 (Cleave Biosciences and Cayman Chemical), MLN7243 (Chemietek), MG132 (Selleck Chemicals), and Bortezomib (Cell Signaling Technologies).

3.3.2 Cell culture, transfections, and stable cell line generation

HepG2 cells (American Type Culture Collection) were cultured in Roswell Park Memorial Institute 1640 (RPMI; Thermo Fisher Scientific) or DMEM containing 4.5 g/l glucose and lglutamine (Corning) supplemented with 10% fetal bovine serum (FBS; Thermo Fisher Scientific and Gemini Bio Products) at 37°C and 5% CO2. Stable HEK293 cells expressing S-tagged Hrd1 ²⁰⁰ were grown in DMEM supplemented with 10% FBS at 37°C and 5% CO₂.

Cells at 60–80% confluence were transfected with the indicated plasmids using XtremeGENE HP DNA transfection reagent (Sigma-Aldrich) following the manufacturer's protocols. Depletion of SCD1 in HepG2 cells was accomplished by transfection of SCD1-targeting siRNAs from Sigma-Aldrich using RNAiMAX Lipofectamine reagent (Thermo Fisher Scientific). siRNA sequences targeting SCD1 include 5'-GAUAUGCUGUGGUGCUUAA-3' (siRNA1), 5'-GAUAUCGUCCUUAUGACAA-3' (siRNA2), 5'-GACGAUAUCUCUAGCUCCU-3' (siRNA3), and 5'-GUGAGUACCGCUGGCACAU-3' (siRNA4). MISSION siRNA Universal Negative Control #1 (SIC001) was used as the control siRNA.

3.3.3 Differential fractionation

Cultured cells were collected, washed with ice-cold phosphate-buffered saline (PBS), and incubated in hypotonic lysis medium (HLM: 20 mM Tris-HCl, pH 7.4, 1 mM EDTA) supplemented with 10 mM N-ethylmaleimide (NEM; Thermo Fisher Scientific) on ice for 10 min. Cells were then transferred to a 7-ml chilled glass dounce homogenizer and dounced using a tight pestle for 40 strokes. Samples were centrifuged ($500 \times g$, 5 min, two times) to remove unbroken cells. The remaining supernatant was then centrifuged ($20,000 \times g$, 30 min at 4°C) to separate heavy membrane and cytosolic fractions. The resulting pellet (membrane) was then reconstituted to its corresponding cytosolic fraction volume using either HLM buffer (for immunoblotting) or 8M urea lysis buffer (for diGly enrichment, details below). For immunoblotting, SDS was then added to achieve a final detergent concentration of 1% and equal volumes were analyzed.

3.3.4 Affinity purification

Cells were collected and washed twice using ice-cold PBS. Cells were resuspended in immunoprecipitation (IP) lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% digitonin [EMD Millipore]) containing protease inhibitor tablets (Thermo Fisher Scientific) and gently rotated for 30 min at 4°C. Lysates were centrifuged ($20,000 \times g$, 10 min) and soluble protein (supernatant) transferred to new tubes. Supernatant protein concentration was then determined using the BCA assay (Thermo Fisher Scientific) according to the manufacturer's instructions.

S-protein agarose bead slurry (25 μ l bead bed/mg lysate; EMD Millipore) was washed two times with IP lysis buffer followed by one time with IP buffer containing 1% digitonin. Beads were then mixed with equivalent amounts of supernatant (2 h rotating, 4°C), washed three times with IP lysis buffer containing 0.1% digitonin, and proteins eluted with Laemmli buffer for immunoblotting. Where indicated, affinity-purified proteins were treated with 1 μ g of USP2cc (Boston Biochem) for 1 h at 37°C before elution from the beads.

3.3.5 Immunoblotting

Cells were washed with PBS and lysed in 1% SDS. Protein quantity was determined using a bicinchoninic acid assay (Thermo Fisher Scientific). Normalized cell lysates in Laemmli sample buffer were heated at 65°C for 5 min and resolved on 4–20% SDS–PAGE gradient gels (Bio-Rad

Laboratories). Gels were transferred to nitrocellulose membrane (Bio-Rad Laboratories), blocked in PBS containing 0.1% Tween-20 (PBST) and 5% milk, and then incubated with primary antibody for either 2 h at room temperature or overnight at 4°C. Blots were then washed and incubated with secondary antibodies in PBST. Following washing PBST, blots were visualized using the LI-COR Odyssey Imaging System. Densitometry analyses were performed using the UN-SCAN-IT gel analysis (version 6.1; Silk Scientific) or ImageJ (version 1.49b; National Institutes of Health, Bethesda, MD) software.

3.3.6 Enrichment of diGly-modified peptides

Cells were cultured in SILAC DMEM lacking lysine and arginine, supplemented with 10% dialyzed FBS and the appropriate amino acids: light media—l-arginine (Arg0) and l-lysine (Lys0; Sigma-¬Aldrich) or heavy media—l-arginine (Arg0) and 13C615N2-l-lysine (Lys8; Cambridge Isotope Laboratories). Samples were then processed for diGly immunopurification ^{208,209}. Following a 6 h treatment with DMSO (light) or 5 µM CB5083 (heavy), membrane fractions were collected, solubilized in urea lysis buffer (8 M urea, 50 mM Tris-HCl, pH 8.0, 50 mM NaCl), reduced with 10 mM dithiothreitol (Thermo Fisher Scientific), and alkylated with 25 mM iodoacetamide (Thermo Fisher Scientific). Equal amounts of protein totaling 5-10 mg from the membrane fractions were combined, diluted with 50 mM Tris-HCl, pH 8.0, 4 M urea, and digested overnight with 2 µg/mg LysC (Wako Laboratory Chemicals). Proteins were further diluted to 1.6 M urea and digested for 24 h with 10 µg/mg mass spectrometry grade trypsin (Thermo Fisher Scientific). Digested peptides were desalted via Sep-Pak C18 6-cc cartridges (Waters) and lyophilized. Samples were then immunoprecipitated using a PTMScan Ubiquitin remnant Motif (K-ε-GG) Kit (Cell Signaling Technologies) according to the manufacturer's protocols. Briefly, lyophilized peptides were dissolved in IAP buffer (50 mM MOPS/NaOH, pH 7.2, 10 mM Na2HPO4, and 50 mM NaCl) and cleared by centrifugation at $10,000 \times g$ for 5 min. For each independent experiment, one tube of K-ε-GG antibody bead conjugates were washed four times with PBS, and clarified peptides were incubated with the beads for at least 2 h with gentle agitation. Beads were washed two times with IAP buffer and three times with MilliQ water and eluted twice with 0.15% trifluoroacetic acid. Eluted peptides were desalted using C18 StageTips (Thermo Fisher Scientific), dried using a Speedvac, and resuspended in 0.1% formic acid (Sigma-Aldrich) for analysis by tandem mass spectrometry (LC-MS/MS).

3.3.7 LC-MS/MS analysis

Digested peptides were analyzed by LC-MS/MS on a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific) in conjunction with Proxeon Easy-nLC II HPLC (Thermo Fisher Scientific) and a Proxeon nanospray source at the UC Davis Proteomics Core Facility as described ²⁰⁰. The resulting MS/MS raw spectral data were analyzed using the MaxQuant software platform (version 1.5.1.0) ²⁴², employing the full UniProt human protein sequence database to obtain diGly-modified peptide SILAC ratios. A reversed-protein decoy search strategy was also employed to minimize false discovery rate. All mass spectrometry files are available through the Proteomics Identifications (PRIDE) database (Project accession: PXD008842).

3.3.8 Bioinformatic analyses

GO analysis of candidate ERAD substrates was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 (Supplemental Table 3-S3)²⁴³. REVIGO ²⁴⁴ was then used to simplify and visualize the GO terms and the Benjamini corrected p values. GO networks were exported from REVIGO and the final networks generated using Cytoscape ²⁴⁵. Protein localization and topology listed in Supplemental Table 3-S2 were based on UNIPROT annotations.

3.3.9 Generation of RNF5 knockout cells

RNF5 knockout lines were generated using the targeting sequence 5'-CGCTCGCGATTTGGCCCTTC-3' cloned into PX459 (Addgene; plasmid #48139) transfected into HEK293 cells. PX459 without a targeting sequence was transfected as a control. Transfected cells were selected with 1 μ g/ml puromycin (Sigma-Aldrich) for at least 1 wk. Clonal cell lines were isolated by limited dilution and screened for knockout by immunoblotting.

3.4 Figures

Figure 3-1: VCP inhibition traps the ERAD substrate NHK in complex with the E3 ligase Hrd1. (A) Schematic of VISTA. Pharmacological inhibition of VCP with CB5083 prevents the dislocation of ubiquitinated ERAD substrates. (B) HEK293 cells expressing NHK-HA were incubated with 75 μ M emetine and either vehicle or 5 μ M CB5083 for the indicated time points. SDS lysates were analyzed by immunoblotting for the indicated targets. (C) The relative levels of NHK-HA (panel B) were quantified and presented as a percentage of the levels at time 0 h ± SEM (n = 3). (D) HEK293 cells stably expressing Hrd1-S were transiently transfected with NHK-HA, treated with vehicle or 5 μ M CB5083, subject to affinity purification with S-protein (S-prot) agarose, and SDS lysates analyzed by immunoblotting; n = 3. (E) HEK293 cells stably expressing NHK-HA were treated with vehicle or 5 μ M CB5083, subject to affinity purification with anti-HA–conjugated agarose, and SDS lysates analyzed by immunoblotting; n = 3. (E) HEK293 cells stably expressing NHK-HA were treated with vehicle or 5 μ M CB5083, subject to affinity purification with anti-HA–conjugated agarose, and SDS lysates analyzed by immunoblotting; n = 3. (E) HEK293 cells stably expressing NHK-HA were treated with vehicle or 5 μ M CB5083, subject to affinity purification with anti-HA–conjugated agarose, and SDS lysates analyzed by immunoblotting. Asterisk indicates a USP2cc-reactive band. AP, affinity purification; IP, immunoprecipitation; S-prot, S-protein; Ubn, ubiquitinated; endo, endogenous; Em., emetine.

Figure 3-2: Global analysis of trapped, ubiquitinated proteins identifies validated and candidate ERAD substrates in cultured liver cells. (A) Schematic of ERAD-VISTA experimental workflow. (B) HepG2 cells treated with vehicle or 5 μ M CB5083 were fractionated by differential centrifugation and equal volumes analyzed by immunoblotting; n = 3. (C) Venn diagram comparing unique diGly-modified peptides identified from the four independent

experiments. (D) Bar graph indicating the number of unique diGly sites identified for all proteins (blue) and for proteins with a SILAC ratio > 2 (red). (E) Pie chart illustrating the relative abundance of diGly-modified ubiquitin peptides, based on total spectral counts. (F) Log2 SILAC peptide ratios for individual diGly-modified peptides from ubiquitin. (G–I) Protein domain structure and the identified diGly-modified lysine residues for three validated endogenous ERAD substrates (ApoB100, DHCR7, and Insig2). TM: transmembrane domain. (J–L) Log2 SILAC peptide ratios for individual diGly-modified peptides from ApoB100 (J), DHCR7 (K), and Insig2 (L). Colors indicate the experiment from which the diGly peptide was identified, as in panel F. Mem., membrane; Ubn, ubiquitinated; Exp., experiment; TSC, total spectral counts. Asterisk indicates that the diGly peptide was not detected in that experiment. See also Supplemental Table 3-S1.

Figure 3-3: Gene ontology analysis of candidate ERAD substrates. (A, B) DAVID and REVIGO were used to identify enriched GO terms, cellular component (A) or biological function (B), within the candidate ERAD substrate list. Cytoscape networks were generated by REVIGO. Circle size indicates the frequency of the GO term in the GO annotation database, edge thickness is proportional to the degree of GO term similarity, and color indicates the p value (red being more significant). See also Supplemental Table S2.

Figure 3-4: Endogenous SCD1 and RNF5 are degraded via a VCP- and ubiquitin-dependent proteasomal pathway. (A) Diagram of SCD1 protein structure, with detected diGly-modified lysine residue indicated. (B) Log2 SILAC peptide ratios for individual diGly-modified peptides from SCD1. (C) HepG2 cells expressing SCD1-S were treated with vehicle or 5 μ M CB5083, subject to affinity purification with S-protein (S-prot) agarose, and SDS lysates analyzed by

immunoblotting; n = 3. (D, E) HepG2 cells were treated with 75 μ M emetine and 5 μ M CB5083, 10 μ M MG132, or 10 μ M MLN7243 to disrupt various components of ERAD. SCD1 protein stability was assessed via immunoblotting (D) and relative levels quantified (E). Graphical data are expressed as mean \pm SEM (n = 3–6 per group). (F) Diagram of RNF5 protein structure, with detected diGly-modified lysine residues indicated. (G) Log2 SILAC peptide ratios for individual diGly-modified peptides from RNF5. (H) HepG2 cells expressing S-RNF5 were treated with vehicle or 5 μ M CB5083, subject to affinity purification with S-protein (agarose, and SDS lysates analyzed by immunoblotting) (n = 3). (I, J) HepG2 cells were treated with 75 μ M emetine and 5 μ M CB5083, 10 μ M MG132, or 10 μ M MLN7243 to disrupt various components of ERAD. RNF5 protein stability was assessed via immunoblotting (I) and relative levels quantified (J). Graphical data are expressed as mean \pm SEM (n = 3–6 per group). TM: transmembrane domain. S-prot, S-protein; Exp., experiment; Em., emetine. Asterisk indicates that the diGly peptide was not detected in that experiment. See also Supplemental Table 3-S1.

Figure 3-5: RNF5 autoubiquitination targets it for ERAD. (A) HepG2 cells transfected with S-RNF5(WT) and S-RNF5(C42A) were treated as indicated and lysates analyzed by immunoblotting. (B) Densitometric quantification of S-RNF5 (panel A). Data are expressed as mean \pm SEM (n = 4 per group). (C) HepG2 cells transfected with S-RNF5(WT) and S-RNF5(C42A) were treated for 6 h with vehicle or 5 μ M CB5083. S-tagged proteins were affinity purified, incubated in the presence and absence of USP2cc, and analyzed by immunoblotting. (D) Densitometric quantification of S-RNF5 (panel C). (E) HepG2 cells expressing S-RNF5(WT) or S-RNF5(C42A) were treated for 6 h with vehicle or 5 μ M CB5083. S-tagged proteins were affinity purified, incubated in the presence or absence of USP2cc, and analyzed by immunoblotting. (F) HepG2 cells expressing S-RNF5(WT) or S-RNF5(4K-R) were treated for 6 h with vehicle or 5 μ M CB5083. S-tagged proteins were affinity purified, incubated in the presence or absence of USP2cc, and analyzed by immunoblotting. (F) HepG2 cells expressing S-RNF5(WT) or S-RNF5(4K-R) were treated for 6 h with vehicle or 5 μ M CB5083. S-tagged proteins were affinity purified, incubated in the presence of USP2cc, and analyzed by immunoblotting. (F) HepG2 cells expressing S-RNF5(WT) or S-RNF5(4K-R) were treated for 6 h with vehicle or 5 μ M CB5083. S-tagged proteins were affinity purified, incubated in the presence of USP2cc, and analyzed by immunoblotting. (G) Densitometric quantification of S-RNF5 affinity purified from CB5083 treated HepG2 cells (panel F). Btz: bortezomib; Ubn, ubiquitinated; S-prot, S-protein. AU: arbitrary units. Asterisk indicates a USP2cc-reactive band.

Figure 3-S1. Immunoblot analysis of the Hrd1-CD147 interaction. HEK293 cells stably expressing Hrd1-S were treated with vehicle or 5 μ M CB5083, subject to affinity purification with S-protein (S-prot) agarose, and SDS lysates analyzed by immunoblotting. CG, core glycosylated, Mat, mature.

Figure 3-S2. Proteomic analysis of diGly-modified peptides. (A-D) Scatterplot of diGly-modified peptide SILAC H/L (CB5083:vehicle) ratios identified from four independent experiments. Detected diGly-modified peptides with SILAC ratios >2.0 are candidate ERAD substrates of interest (red box)

Figure 3-S3. Analysis of a lower molecular anti-SCD1 immunoreactive band. HepG2 cells were transfected with control or SCD1-targeted siRNAs, incubated in the presence or absence of CB5083 for 6 hr, and analyzed by immunoblotting with the indicated antibodies. NT: non-targeting siRNA control.

Figure 3-S4. RNF5 forms a homo-oligomer. (A) HepG2 cells were transfected with S-RNF5 in triplicate and analyzed by immunoblotting. (B) HepG2 cells were transfected with FLAG-HA-RNF5 and S-RNF5 and treated for 6 hrwith vehicle or 5 μ M CB5083 as indicated. Cells were lysed, subjected to affinity purification with S-protein agarose, and SDS lysates analyzed by immunoblotting. AP, affinity purification; S-prot, S-protein; Endog., endogenous.

Figure 3-S5. RNF5 undergoes cis-molecular autoubiquitination. (A) SDS lysates from control and RNF5 KO cells were analyzed by immunoblotting. (B) Control and RNF5 KO cells were transiently transfected with the indicated S-RNF5 constructs and incubated in the presence and absence of 5 μ M CB5083. Cells were lysed, subjected to affinity purification with S-protein agarose, and SDS lysates analyzed by immunoblotting.AP, affinity purification; S-prot, S-protein; KO, knockout.Ubn, ubiquitinated.

Conclusions

Endoplasmic reticulum-associated degradation (ERAD) plays a vital role in maintaining cellular homeostasis for proteins as well as lipids. Intricate mechanisms exist for ERAD to control lipid metabolism, yet lipid metabolism can in turn affect ERAD. In Chapter 2, we show that inhibition of long chain acyl CoA synthetases (ACSLs) using the chemical inhibitor triacsin C leads to broad disruptions in lipid homeostasis. Furthermore, these disruptions inhibit ERAD through inhibition of glycan trimming and delivery of CD147 to the Hrd1 dislocon. While treatment with triacsin C inhibits the formation of lipid droplets (LDs), we use genetics and small-molecule inhibition to show that the ERAD of CD147 is not dependent on the formation of LDs. Prolonged exposure to triacsin C results in activation of the unfolded protein response (UPR) to restore cellular homeostasis. However, cells failing to restore triacsin-induced UPR eventually undergo IRE1-dependent cell death.

Recent studies uncoupling lipid bilayer stress from proteotoxic stress in the UPR have found diverging responses ^{64,246}. Our study has shown that treatment with triacsin C results in broad disruptions in the cellular lipid environment, a defect in ERAD, and activation of the UPR. However, it is not yet clear if activation of the UPR in this case is primarily driven by lipid bilayer stress, proteotoxic stress, or a mix of both. Treatment with tunicamycin results in rapid upregulation of IRE1 and a slower upregulation of PERK, and treatment with triacsin C results in a slow increase in both. Because of this, it is unlikely that the downstream response after treatment with triacsin C is driven by proteotoxic stress alone. However, further studies are needed to determine the factors driving the UPR and how the downstream response may differ from proteotoxic stress and/or lipid bilayer stress alone.

Chapter 2 elucidates a close relationship between lipid metabolism and ERAD. However, the precise mechanisms by which these lipid changes impair glycan trimming are yet to be determined. While our analysis of the Hrd1 dislocation complex shows that its components are not changed following triacsin C treatment, it is possible that lipid composition of the ER bilayer can play a functional role in facilitating protein interactions and delivery. In addition, inhibition of ACSLs may impact protein acylation, the process by which fatty acids are covalently attached to proteins. While the palmitoylation of calnexin assigns the protein to calcium signaling instead of protein quality control, it is unclear how or if other ERAD factors can be regulated by lipidation ¹⁷³.

Understanding the many different endogenous substrates of ERAD and how they may separate into different pathways remains a fundamental challenge. For example, FSP27, a crucial regulator of lipid droplet fusion and storage, is deacetylated by HDAC6, resulting in rapid degradation ²⁴⁷. In addition, a mutation of TM6SF2, an ER protein of unknown function, is associated with increased hepatic triglyceride content and expressed as an unstable protein ²⁴⁸. Currently, little is known about the degradation pathways of FSP27 and TM6SF2. While these kinds of candidate-based approaches can be of use for specific diseases and conditions, there is a lack of tools available to globally profile the ERAD substrate landscape.

In Chapter 3, we develop a method to profile endogenous ERAD substrates. The VCP inhibitor substrate trapping approach (VISTA) allows for proteomic profiling of endogenous ERAD substrates without genetic manipulation. In addition, the modular nature of VISTA allows for enhancements to the technique as technologies develop. For example, advancements in

quantitative multiplexed proteomics allow for much higher multiplexing to compare ERAD pathways across up to 11 conditions in a single mass spectrometry run ²⁴⁹. The increased number of samples would allow for direct, easy comparisons of VISTA to total protein turnover proteomics for a more targeted approach to ERAD substrate identification ²⁵⁰. In addition, background can further be decreased by combining VISTA with a UbiSite antibody recognizing the C-terminal 13 amino acids of ubiquitin, removing diglycine remnants from the ubiquitin-like proteins NEDD8 and ISG15 ²⁵¹. Although comprehensive identification of ERAD pathways and substrates remains a challenge, VISTA adds to the existing tools with which to study the ERAD substrate landscape.

The work presented in this dissertation provides insight into the intricacies of ERAD and lipid metabolism. While it is clear that ERAD plays a vital role in human health and metabolism, much work remains in understanding the endogenous pathways and how to manipulate them. Furthering this understanding can lead to a more focused effort in developing targeted therapeutics.

References

- 1. Amm, I., Sommer, T. & Wolf, D. H. Protein quality control and elimination of protein waste: the role of the ubiquitin–proteasome system. ... *et Biophysica Acta (BBA)-Molecular Cell* ... (2014).
- 2. Kleiger, G. & Mayor, T. Perilous journey: a tour of the ubiquitin-proteasome system. *Trends Cell Biol.* **24**, 352–359 (2014).
- 3. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. *EMBO J.* **17**, 7151–7160 (1998).
- 4. Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. *Cold Spring Harb. Perspect. Biol.* **3**, a004374 (2011).
- 5. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).
- 6. Olzmann, J. A., Kopito, R. R. & Christianson, J. C. The mammalian endoplasmic reticulum-associated degradation system. *Cold Spring Harb. Perspect. Biol.* **5**, (2013).
- 7. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. *Annu. Rev. Biochem.* **73**, 1019–1049 (2004).
- 8. Adams, B. M., Oster, M. E. & Hebert, D. N. Protein quality control in the endoplasmic reticulum. *Protein J.* **38**, 317–329 (2019).
- 9. Caramelo, J. J. & Parodi, A. J. Getting in and out from calnexin/calreticulin cycles. *J. Biol. Chem.* **283**, 10221–10225 (2008).
- 10. Olivari, S. & Molinari, M. Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. *FEBS Lett.* **581**, 3658–3664 (2007).
- Lamriben, L., Graham, J. B., Adams, B. M. & Hebert, D. N. N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle. *Traffic* (2015). doi:10.1111/tra.12358
- 12. Satoh, T. *et al.* Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. *Mol. Cell* **40**, 905–916 (2010).
- 13. Ushioda, R., Hoseki, J. & Nagata, K. Glycosylation-independent ERAD pathway serves as a backup system under ER stress. *Mol. Biol. Cell* **24**, 3155–3163 (2013).
- Tang, H.-Y., Huang, C.-H., Zhuang, Y.-H., Christianson, J. C. & Chen, X. EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog. *PLoS One* 9, e92164 (2014).

- Cormier, J. H., Tamura, T., Sunryd, J. C. & Hebert, D. N. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. *Mol. Cell* 34, 627–633 (2009).
- 16. Kostova, Z., Tsai, Y. C. & Weissman, A. M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. *Semin. Cell Dev. Biol.* **18**, 770–779 (2007).
- 17. Christianson, J. C. *et al.* Defining human ERAD networks through an integrative mapping strategy. *Nat. Cell Biol.* **14**, 93–105 (2011).
- 18. Ploegh, H. L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. *Nature* **448**, 435–438 (2007).
- Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. *Nature* 429, 841–847 (2004).
- 20. Loureiro, J. *et al.* Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. *Nature* **441**, 894–897 (2006).
- 21. Scott, D. C. & Schekman, R. Role of Sec61p in the ER-associated degradation of shortlived transmembrane proteins. *J. Cell Biol.* **181**, 1095–1105 (2008).
- 22. Willer, M., Forte, G. M. A. & Stirling, C. J. Sec61p is required for ERAD-L: genetic dissection of the translocation and ERAD-L functions of Sec61P using novel derivatives of CPY. *J. Biol. Chem.* **283**, 33883–33888 (2008).
- 23. Carvalho, P., Stanley, A. M. & Rapoport, T. A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. *Cell* **143**, 579–591 (2010).
- 24. Baldridge, R. D. & Rapoport, T. A. Autoubiquitination of the hrd1 ligase triggers protein retrotranslocation in ERAD. *Cell* **166**, 394–407 (2016).
- 25. Schoebel, S. *et al.* Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. *Nature* **548**, 352–355 (2017).
- 26. Vasic, V. *et al.* Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. *Nat. Cell Biol.* **22**, 274–281 (2020).
- 27. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. *Nat. Cell Biol.* **14**, 117–123 (2012).
- 28. Banerjee, S. *et al.* 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. *Science* **351**, 871–875 (2016).
- 29. Bodnar, N. O. & Rapoport, T. A. Molecular mechanism of substrate processing by the cdc48 atpase complex. *Cell* **169**, 722–735.e9 (2017).
- 30. Twomey, E. C. *et al.* Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. *Science* **365**, (2019).

- 31. Neutzner, A. *et al.* A systematic search for endoplasmic reticulum (ER) membraneassociated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. *J. Biol. Chem.* **286**, 8633–8643 (2011).
- 32. Jo, Y., Lee, P. C. W., Sguigna, P. V. & DeBose-Boyd, R. A. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. *Proc. Natl. Acad. Sci. USA* **108**, 20503–20508 (2011).
- Zhang, T., Xu, Y., Liu, Y. & Ye, Y. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum. *Mol. Biol. Cell* 26, 4438– 4450 (2015).
- 34. Leto, D. E. *et al.* Genome-wide CRISPR Analysis Identifies Substrate-Specific Conjugation Modules in ER-Associated Degradation. *Mol. Cell* **73**, 377–389.e11 (2019).
- 35. Shmueli, A., Tsai, Y. C., Yang, M., Braun, M. A. & Weissman, A. M. Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. *Biochem. Biophys. Res. Commun.* **390**, 758–762 (2009).
- 36. Huang, E. Y. *et al.* A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. *Mol. Biol. Cell* **29**, 1021–1030 (2018).
- 37. Komander, D., Clague, M. J. & Urbé, S. Breaking the chains: structure and function of the deubiquitinases. *Nat. Rev. Mol. Cell Biol.* **10**, 550–563 (2009).
- Peterson, B. G., Glaser, M. L., Rapoport, T. A. & Baldridge, R. D. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. *Elife* 8, (2019).
- Ernst, R., Mueller, B., Ploegh, H. L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. *Mol. Cell* 36, 28–38 (2009).
- 40. Stein, A., Ruggiano, A., Carvalho, P. & Rapoport, T. A. Key steps in ERAD of luminal ER proteins reconstituted with purified components. *Cell* **158**, 1375–1388 (2014).
- Bard, J. A. M. *et al.* Structure and function of the 26S proteasome. *Annu. Rev. Biochem.* 87, 697–724 (2018).
- 42. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. *Annu. Rev. Biochem.* **78**, 477–513 (2009).
- 43. Ikeda, Y. *et al.* Regulated endoplasmic reticulum-associated degradation of a polytopic protein: p97 recruits proteasomes to Insig-1 before extraction from membranes. *J. Biol. Chem.* **284**, 34889–34900 (2009).

- 44. Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. *J. Cell Biol.* **153**, 1061–1070 (2001).
- 45. Lee, S.-O. *et al.* Protein disulphide isomerase is required for signal peptide peptidasemediated protein degradation. *EMBO J.* **29**, 363–375 (2010).
- 46. Wang, Q. *et al.* A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. *Mol. Cell* **42**, 758–770 (2011).
- 47. Suzuki, M. *et al.* Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. *Mol. Biol. Cell* **23**, 800–810 (2012).
- 48. Nguyen, K. T. *et al.* N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2. *J. Biol. Chem.* **294**, 379–388 (2019).
- 49. Karagöz, G. E., Acosta-Alvear, D. & Walter, P. The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein-Folding Capacity of the Endoplasmic Reticulum. *Cold Spring Harb. Perspect. Biol.* **11**, (2019).
- 50. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. *Nat. Rev. Mol. Cell Biol.* **13**, 89–102 (2012).
- 51. Lu, M. *et al.* Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. *Science* **345**, 98–101 (2014).
- 52. Mori, K. Signalling pathways in the unfolded protein response: development from yeast to mammals. *J. Biochem.* **146**, 743–750 (2009).
- 53. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. *Nature* **397**, 271–274 (1999).
- 54. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. *Proc. Natl. Acad. Sci. USA* **101**, 11269–11274 (2004).
- Carrara, M., Prischi, F., Nowak, P. R. & Ali, M. M. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling. *EMBO J.* 34, 1589–1600 (2015).
- 56. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. *Mol. Biol. Cell* **10**, 3787–3799 (1999).
- 57. Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. *Biochimica et Biophysica Acta (BBA)-Molecular Cell* ... (2013).
- 58. Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R. & Ali, M. M. U. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. *Front. Mol. Biosci.* **6**, 11 (2019).

- Hu, H., Tian, M., Ding, C. & Yu, S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. *Front. Immunol.* 9, 3083 (2018).
- 60. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. *Proc. Natl. Acad. Sci. USA* **110**, 4628–4633 (2013).
- 61. Promlek, T. *et al.* Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. *Mol. Biol. Cell* **22**, 3520–3532 (2011).
- 62. Shyu, P. *et al.* Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic ER-resident proteins. *Sci. Rep.* **9**, 8637 (2019).
- 63. Thibault, G. *et al.* The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. *Mol. Cell* **48**, 16–27 (2012).
- 64. Ho, N. *et al.* ER stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress. *BioRxiv* (2019). doi:10.1101/774133
- 65. Sekijima, Y. *et al.* The biological and chemical basis for tissue-selective amyloid disease. *Cell* **121**, 73–85 (2005).
- 66. Lukacs, G. L. & Verkman, A. S. CFTR: folding, misfolding and correcting the Δ F508 conformational defect. *Trends Mol. Med.* **18**, 81–91 (2012).
- 67. Pettit, R. S. & Fellner, C. CFTR modulators for the treatment of cystic fibrosis. *Pharmacy and Therapeutics* (2014).
- Vij, N., Fang, S. & Zeitlin, P. L. Selective Inhibition of Endoplasmic Reticulum-associated Degradation Rescues ΔF508-Cystic Fibrosis Transmembrane Regulator and Suppresses Interleukin-8 J. Bio. Chem. (2006).
- 69. Lev, S. Nonvesicular lipid transfer from the endoplasmic reticulum. *Cold Spring Harb. Perspect. Biol.* **4**, (2012).
- 70. Stevenson, J., Huang, E. Y. & Olzmann, J. A. Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis. *Annu. Rev. Nutr.* **36**, 511–542 (2016).
- 71. Maxfield, F. R. & Tabas, I. Role of cholesterol and lipid organization in disease. *Nature* **438**, 612–621 (2005).
- 72. Luirink, I. K. *et al.* 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. *N. Engl. J. Med.* **381**, 1547–1556 (2019).
- 73. DeBose-Boyd, R. A. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. *Cell Res.* **18**, 609–621 (2008).

- 74. Sharpe, L. J. & Brown, A. J. Controlling cholesterol synthesis beyond 3-hydroxy-3methylglutaryl-CoA reductase (HMGCR). *J. Biol. Chem.* **288**, 18707–18715 (2013).
- Olzmann, J. A., Richter, C. M. & Kopito, R. R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. *Proc. Natl. Acad. Sci. USA* 110, 1345–1350 (2013).
- Wernick, N. L. B., Chinnapen, D. J.-F., Cho, J. A. & Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. *Toxins (Basel)* 2, 310–325 (2010).
- 77. Simpson, J. C. *et al.* Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. *FEBS Lett.* **459**, 80–84 (1999).
- 78. van den Boomen, D. J. H. & Lehner, P. J. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I. *Mol. Immunol.* **68**, 106–111 (2015).
- 79. Stagg, H. R. *et al.* The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. *J. Cell Biol.* **186**, 685–692 (2009).
- 80. van de Weijer, M. L. *et al.* A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. *Nat. Commun.* **5**, 3832 (2014).
- 81. Amano, T. *et al.* Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. *Genes Dev.* **17**, 2436–2449 (2003).
- 82. Ye, Y., Baek, S.-H., Ye, Y. & Zhang, T. Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1. *Cell Biosci.* **8**, 46 (2018).
- 83. Lee, K. A. *et al.* Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. *J. Biol. Chem.* **286**, 41530–41538 (2011).
- 84. Ashktorab, H. *et al.* SEL1L, an UPR response protein, a potential marker of colonic cell transformation. *Dig. Dis. Sci.* **57**, 905–912 (2012).
- 85. Mellai, M. *et al.* SEL1L plays a major role in human malignant gliomas. *J. Pathol. Clin. Res.* (2019). doi:10.1002/cjp2.134
- 86. Yanagisawa, K. *et al.* Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways. *Cancer Res.* **70**, 9949–9958 (2010).
- 87. Brockmeier, U. *et al.* The function of hypoxia-inducible factor (HIF) is independent of the endoplasmic reticulum protein OS-9. *PLoS One* **6**, e19151 (2011).
- 88. Deshaies, R. J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. *BMC Biol.* **12**, 94 (2014).
- 89. Milano, A., Perri, F. & Caponigro, F. The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. *Onco. Targets. Ther.* (2009).

- 90. Anderson, D. J. *et al.* Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. *Cancer Cell* **28**, 653–665 (2015).
- 91. Papadopoulos, K. P. *et al.* A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. *Cancer Chemother. Pharmacol.* **72**, 861–868 (2013).
- 92. Roeten, M. S. F., Cloos, J. & Jansen, G. Positioning of proteasome inhibitors in therapy of solid malignancies. *Cancer Chemother. Pharmacol.* **81**, 227–243 (2017).
- Guerriero, C. J. & Brodsky, J. L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. *Physiol. Rev.* 92, 537–576 (2012).
- 94. Christianson, J. C. & Ye, Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. *Nat. Struct. Mol. Biol.* **21**, 325–335 (2014).
- 95. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. *Science* **334**, 1081–1086 (2011).
- 96. Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. *Nature* **529**, 326–335 (2016).
- 97. Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. *Nat. Rev. Mol. Cell Biol.* (2015). doi:10.1038/nrm4073
- 98. Cherepanova, N., Shrimal, S. & Gilmore, R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. *Curr. Opin. Cell Biol.* **41**, 57–65 (2016).
- Christianson, J. C., Shaler, T. A., Tyler, R. E. & Kopito, R. R. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. *Nat. Cell Biol.* 10, 272–282 (2008).
- Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. *Proc. Natl. Acad. Sci.* USA 105, 12325–12330 (2008).
- 101. Tyler, R. E. *et al.* Unassembled CD147 is an endogenous endoplasmic reticulumassociated degradation substrate. *Mol. Biol. Cell* 23, 4668–4678 (2012).
- 102. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. *Nature* **429**, 834–840 (2004).
- 103. Mehnert, M., Sommer, T. & Jarosch, E. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. *Nat. Cell Biol.* **16**, 77–86 (2014).
- 104. Greenblatt, E. J., Olzmann, J. A. & Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. *Nat. Struct. Mol. Biol.* 18, 1147–1152 (2011).

- 105. Plemper, R. K., Böhmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. *Nature* 388, 891–895 (1997).
- 106. Walther, T. C. & Farese, R. V. Lipid droplets and cellular lipid metabolism. *Annu. Rev. Biochem.* **81**, 687–714 (2012).
- 107. Pol, A., Gross, S. P. & Parton, R. G. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. *J. Cell Biol.* **204**, 635–646 (2014).
- Hashemi, H. F. & Goodman, J. M. The life cycle of lipid droplets. *Curr. Opin. Cell Biol.* 33, 119–124 (2015).
- 109. Listenberger, L. L. *et al.* Triglyceride accumulation protects against fatty acid-induced lipotoxicity. *Proc. Natl. Acad. Sci. USA* **100**, 3077–3082 (2003).
- 110. Kurat, C. F. *et al.* Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. *Mol. Cell* **33**, 53–63 (2009).
- Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. *Dev. Cell* 32, 678–692 (2015).
- 112. Tang, T. *et al.* Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet β cells. *Cell Metab.* **18**, 883–895 (2013).
- 113. Haemmerle, G. *et al.* ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. *Nat. Med.* **17**, 1076–1085 (2011).
- 114. Herker, E. *et al.* Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. *Nat. Med.* **16**, 1295–1298 (2010).
- 115. Miyanari, Y. *et al.* The lipid droplet is an important organelle for hepatitis C virus production. *Nat. Cell Biol.* **9**, 1089–1097 (2007).
- 116. Anand, P. *et al.* A novel role for lipid droplets in the organismal antibacterial response. *Elife* **1**, e00003 (2012).
- 117. Cermelli, S., Guo, Y., Gross, S. P. & Welte, M. A. The lipid-droplet proteome reveals that droplets are a protein-storage depot. *Curr. Biol.* **16**, 1783–1795 (2006).
- 118. Moldavski, O. *et al.* Lipid Droplets Are Essential for Efficient Clearance of Cytosolic Inclusion Bodies. *Dev. Cell* **33**, 603–610 (2015).
- 119. Hodges, B. D. M. & Wu, C. C. Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. *J. Lipid Res.* **51**, 262–273 (2010).
- Brasaemle, D. L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. *Biol. Chem.* 279, 46835–46842 (2004).

- 121. Liu, P. *et al.* Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. *J. Biol. Chem.* **279**, 3787–3792 (2004).
- Zehmer, J. K. *et al.* Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. *J. Cell Sci.* 122, 3694–3702 (2009).
- 123. Spandl, J., Lohmann, D., Kuerschner, L., Moessinger, C. & Thiele, C. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 286, 5599–5606 (2011).
- 124. Jo, Y., Hartman, I. Z. & DeBose-Boyd, R. A. Ancient ubiquitous protein-1 mediates sterolinduced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid dropletassociated endoplasmic reticulum membranes. *Mol. Biol. Cell* **24**, 169–183 (2013).
- 125. Klemm, E. J., Spooner, E. & Ploegh, H. L. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286, 37602–37614 (2011).
- Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T. & Fujimoto, T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. *Mol. Biol. Cell* 17, 2674–2683 (2006).
- 127. Hartman, I. Z. *et al.* Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. *J. Biol. Chem.* **285**, 19288–19298 (2010).
- Fei, W., Wang, H., Fu, X., Bielby, C. & Yang, H. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. *Biochem. J.* 424, 61– 67 (2009).
- 129. Vevea, J. D. *et al.* Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast. *Dev. Cell* **35**, 584–599 (2015).
- 130. Olzmann, J. A. & Kopito, R. R. Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. *J. Biol. Chem.* **286**, 27872–27874 (2011).
- Velázquez, A. P., Tatsuta, T., Ghillebert, R., Drescher, I. & Graef, M. Lipid dropletmediated ER homeostasis regulates autophagy and cell survival during starvation. *J. Cell Biol.* 212, 621–631 (2016).
- 132. Petschnigg, J. *et al.* Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. *J. Biol. Chem.* **284**, 30981–30993 (2009).
- 133. Garbarino, J. *et al.* Sterol and diacylglycerol acyltransferase deficiency triggers fatty acidmediated cell death. *J. Biol. Chem.* **284**, 30994–31005 (2009).
- 134. Igal, R. A., Wang, P. & Coleman, R. A. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid:

evidence for functionally separate pools of acyl-CoA. *Biochem. J.* **324 (Pt 2),** 529–534 (1997).

- 135. Tomoda, H., Igarashi, K. & omura, S. Inhibition of acyi-CoA synthetase by triacsins.
- 136. Fujimoto, Y. *et al.* Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. *J. Lipid Res.* **48**, 1280–1292 (2007).
- 137. Kassan, A. *et al.* Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. *J. Cell Biol.* **203**, 985–1001 (2013).
- Nakatsukasa, K. & Kamura, T. Subcellular Fractionation Analysis of the Extraction of Ubiquitinated Polytopic Membrane Substrate during ER-Associated Degradation. *PLoS One* 11, e0148327 (2016).
- 139. Hosokawa, N. *et al.* Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. *J. Biol. Chem.* **283**, 20914–20924 (2008).
- Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 cochaperone CHIP targets immature CFTR for proteasomal degradation. *Nat. Cell Biol.* 3, 100–105 (2001).
- 141. Younger, J. M. *et al.* Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. *Cell* **126**, 571–582 (2006).
- 142. Morito, D. *et al.* Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. *Mol. Biol. Cell* **19**, 1328–1336 (2008).
- 143. Tang, W., Chang, S. B. & Hemler, M. E. Links between CD147 function, glycosylation, and caveolin-1. *Mol. Biol. Cell* **15**, 4043–4050 (2004).
- 144. Banaszynski, L. A., Chen, L.-C., Maynard-Smith, L. A., Ooi, A. G. L. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. *Cell* **126**, 995–1004 (2006).
- 145. Egeler, E. L., Urner, L. M., Rakhit, R., Liu, C. W. & Wandless, T. J. Ligand-switchable substrates for a ubiquitin-proteasome system. *J. Biol. Chem.* **286**, 31328–31336 (2011).
- 146. Bersuker, K., Brandeis, M. & Kopito, R. R. Protein misfolding specifies recruitment to cytoplasmic inclusion bodies. *J. Cell Biol.* **213**, 229–241 (2016).
- 147. Han, G.-S., O'Hara, L., Carman, G. M. & Siniossoglou, S. An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. *J. Biol. Chem.* 283, 20433–20442 (2008).
- 148. Adeyo, O. *et al.* The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. *J. Cell Biol.* **192**, 1043–1055 (2011).

- 149. Caldwell, S. R., Hill, K. J. & Cooper, A. A. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J. Biol. Chem. 276, 23296–23303 (2001).
- 150. Taxis, C., Vogel, F. & Wolf, D. H. ER-golgi traffic is a prerequisite for efficient ER degradation. *Mol. Biol. Cell* **13**, 1806–1818 (2002).
- 151. Vashist, S. *et al.* Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. *J. Cell Biol.* **155**, 355–368 (2001).
- Bogdanov, M., Mileykovskaya, E. & Dowhan, W. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. *Subcell. Biochem.* 49, 197–239 (2008).
- 153. Contreras, F.-X., Ernst, A. M., Wieland, F. & Brügger, B. Specificity of intramembrane protein-lipid interactions. *Cold Spring Harb. Perspect. Biol.* **3**, (2011).
- 154. Grotzke, J. E., Lu, Q. & Cresswell, P. Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. *Proc. Natl. Acad. Sci. USA* **110**, 3393–3398 (2013).
- 155. Harris, C. A. *et al.* DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. *J. Lipid Res.* **52**, 657–667 (2011).
- 156. Cao, J. *et al.* Targeting Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) with small molecule inhibitors for the treatment of metabolic diseases. *J. Biol. Chem.* 286, 41838–41851 (2011).
- 157. Stone, S. J. *et al.* Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. *J. Biol. Chem.* **279**, 11767–11776 (2004).
- 158. Masuda, Y. *et al.* ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. *J. Lipid Res.* **47**, 87–98 (2006).
- 159. Xu, G. *et al.* Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. *J. Biol. Chem.* **280**, 42841–42847 (2005).
- 160. Takahashi, Y. *et al.* Perilipin2 plays a positive role in adipocytes during lipolysis by escaping proteasomal degradation. *Sci. Rep.* **6**, 20975 (2016).
- 161. Fu, S. *et al.* Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. *Nature* **473**, 528–531 (2011).
- 162. Li, Z. *et al.* The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. *Cell Metab.* **3**, 321–331 (2006).
- 163. Volmer, R. & Ron, D. Lipid-dependent regulation of the unfolded protein response. *Curr. Opin. Cell Biol.* **33**, 67–73 (2015).

- 164. Jonikas, M. C. *et al.* Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. *Science* **323**, 1693–1697 (2009).
- 165. Hiramatsu, N., Chiang, W.-C., Kurt, T. D., Sigurdson, C. J. & Lin, J. H. Multiple Mechanisms of Unfolded Protein Response-Induced Cell Death. Am. J. Pathol. 185, 1800– 1808 (2015).
- Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011– 1022 (2001).
- 167. Wang, X. Z. *et al.* Cloning of mammalian Ire1 reveals diversity in the ER stress responses. *EMBO J.* **17**, 5708–5717 (1998).
- 168. Lin, J. H. *et al.* IRE1 signaling affects cell fate during the unfolded protein response. *Science* **318**, 944–949 (2007).
- 169. Han, D. *et al.* IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. *Cell* **138**, 562–575 (2009).
- Yen, C. L., Stone, S. J., Koliwad, S., Harris, C. & Farese, R. V. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. *J. Lipid Res.* 49, 2283– 2301 (2008).
- 171. Benyair, R., Ogen-Shtern, N. & Lederkremer, G. Z. Glycan regulation of ER-associated degradation through compartmentalization. *Semin. Cell Dev. Biol.* **41**, 99–109 (2015).
- Tamura, T., Cormier, J. H. & Hebert, D. N. Characterization of early EDEM1 protein maturation events and their functional implications. *J. Biol. Chem.* 286, 24906–24915 (2011).
- 173. Lynes, E. M. *et al.* Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling. *J. Cell Sci.* **126**, 3893–3903 (2013).
- 174. Lakkaraju, A. K. *et al.* Palmitoylated calnexin is a key component of the ribosometranslocon complex. *EMBO J.* **31**, 1823–1835 (2012).
- 175. Lynes, E. M. *et al.* Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. *EMBO J.* **31**, 457–470 (2012).
- 176. Fairbank, M., Huang, K., El-Husseini, A. & Nabi, I. R. RING finger palmitoylation of the endoplasmic reticulum Gp78 E3 ubiquitin ligase. *FEBS Lett.* **586**, 2488–2493 (2012).
- 177. Lin, J. H., Li, H., Zhang, Y., Ron, D. & Walter, P. Divergent effects of PERK and IRE1 signaling on cell viability. *PLoS One* **4**, e4170 (2009).
- 178. Han, J. *et al.* ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. *Nat. Cell Biol.* **15**, 481–490 (2013).

- 179. Urano, F. *et al.* Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. *Science* **287**, 664–666 (2000).
- 180. Hetz, C., Chevet, E. & Harding, H. P. Targeting the unfolded protein response in disease. *Nat. Rev. Drug Discov.* **12**, 703–719 (2013).
- 181. Benjamin, D. I. *et al.* Diacylglycerol Metabolism and Signaling Is a Driving Force Underlying FASN Inhibitor Sensitivity in Cancer Cells. *ACS Chem. Biol.* 10, 1616–1623 (2015).
- 182. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. *Nat. Rev. Cancer* **7**, 763–777 (2007).
- 183. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Cellular fatty acid metabolism and cancer. *Cell Metab.* **18**, 153–161 (2013).
- 184. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* **9**, 671–675 (2012).
- 185. Mulvihill, M. M. *et al.* Metabolic profiling reveals PAFAH1B3 as a critical driver of breast cancer pathogenicity. *Chem. Biol.* **21**, 831–840 (2014).
- 186. Benjamin, D. I. *et al.* Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. *Proc. Natl. Acad. Sci. USA* **110**, 14912–14917 (2013).
- 187. Ruggiano, A., Foresti, O. & Carvalho, P. Quality control: ER-associated degradation: protein quality control and beyond. *J. Cell Biol.* **204**, 869–879 (2014).
- 188. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. *Cell* **126**, 361–373 (2006).
- 189. Ye, Y., Tang, W. K., Zhang, T. & Xia, D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. *Front Mol Biosci* **4**, 39 (2017).
- 190. Ernst, R. *et al.* Enzymatic blockade of the ubiquitin-proteasome pathway. *PLoS Biol.* **8**, e1000605 (2011).
- 191. Blythe, E. E., Olson, K. C., Chau, V. & Deshaies, R. J. Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy. *Proc. Natl. Acad. Sci. USA* **114**, E4380–E4388 (2017).
- 192. Needham, P. G. & Brodsky, J. L. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. *Biochim. Biophys. Acta* **1833**, 2447–2457 (2013).
- 193. Qi, L., Tsai, B. & Arvan, P. New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. *Trends Cell Biol.* 27, 430–440 (2017).

- 194. Hegde, R. S. & Ploegh, H. L. Quality and quantity control at the endoplasmic reticulum. *Curr. Opin. Cell Biol.* **22**, 437–446 (2010).
- 195. Song, B.-L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. *Mol. Cell* **19**, 829–840 (2005).
- 196. Gill, S., Stevenson, J., Kristiana, I. & Brown, A. J. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. *Cell Metab.* 13, 260–273 (2011).
- 197. Foresti, O., Ruggiano, A., Hannibal-Bach, H. K., Ejsing, C. S. & Carvalho, P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. *Elife* **2**, e00953 (2013).
- 198. Jeon, Y. J. *et al.* Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. *Cancer Cell* **27**, 354–369 (2015).
- 199. Ji, Y. *et al.* The Sel1L-Hrd1 Endoplasmic Reticulum-Associated Degradation Complex Manages a Key Checkpoint in B Cell Development. *Cell Rep.* **16**, 2630–2640 (2016).
- 200. To, M. *et al.* Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. *Mol. Biol. Cell* **28**, 270–284 (2017).
- 201. Tsai, Y. C. *et al.* The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. *Nat. Med.* **13**, 1504–1509 (2007).
- Fisher, E., Lake, E. & McLeod, R. S. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. *J Biomed Res* 28, 178–193 (2014).
- 203. Lee, J. N., Gong, Y., Zhang, X. & Ye, J. Proteasomal degradation of ubiquitinated Insig proteins is determined by serine residues flanking ubiquitinated lysines. *Proc. Natl. Acad. Sci. USA* 103, 4958–4963 (2006).
- 204. Liu, T.-F. *et al.* Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. *Cell Metab.* **16**, 213–225 (2012).
- 205. Shi, G. *et al.* ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. *J. Clin. Invest.* **127**, 3897–3912 (2017).
- 206. Bagola, K., Mehnert, M., Jarosch, E. & Sommer, T. Protein dislocation from the ER. *Biochim. Biophys. Acta* **1808**, 925–936 (2011).
- 207. Bersuker, K. *et al.* A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. *Dev. Cell* **44**, 97–112.e7 (2018).
- Gendron, J. M. *et al.* Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction. *Mol. Cell Proteomics* 15, 2576– 2593 (2016).

- 209. Kim, W. *et al.* Systematic and quantitative assessment of the ubiquitin-modified proteome. *Mol. Cell* **44**, 325–340 (2011).
- 210. Ginsberg, H. N. & Fisher, E. A. The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. *J. Lipid Res.* **50 Suppl,** S162–6 (2009).
- Prabhu, A. V., Luu, W., Sharpe, L. J. & Brown, A. J. Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. J. Biol. Chem. 291, 8363–8373 (2016).
- 212. Wojcikiewicz, R. J. H., Pearce, M. M. P., Sliter, D. A. & Wang, Y. When worlds collide: IP(3) receptors and the ERAD pathway. *Cell Calcium* **46**, 147–153 (2009).
- Jo, Y. & Debose-Boyd, R. A. Control of cholesterol synthesis through regulated ERassociated degradation of HMG CoA reductase. *Crit Rev Biochem Mol Biol* 45, 185–198 (2010).
- 214. Ntambi, J. M. & Miyazaki, M. Recent insights into stearoyl-CoA desaturase-1. *Curr Opin Lipidol* **14**, 255–261 (2003).
- 215. Kato, H., Sakaki, K. & Mihara, K. Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase. *J. Cell Sci.* **119**, 2342–2353 (2006).
- 216. Mziaut, H., Korza, G. & Ozols, J. The N terminus of microsomal Δ9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. *Proc. Natl. Acad. Sci. USA* 97, 8883–8888 (2000).
- Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitinselective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. *EMBO J.* 21, 615–621 (2002).
- 218. Grove, D. E., Fan, C.-Y., Ren, H. Y. & Cyr, D. M. The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508. *Mol. Biol. Cell* **22**, 301–314 (2011).
- 219. Kuang, E. *et al.* Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. *PLoS Genet.* **8**, e1003007 (2012).
- 220. Zhong, B. *et al.* The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. *J. Immunol.* **184**, 6249–6255 (2010).
- 221. Matsuda, N., Suzuki, T., Tanaka, K. & Nakano, A. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J. Cell Sci. 114, 1949–1957 (2001).
- 222. Kirkpatrick, D. S., Weldon, S. F., Tsaprailis, G., Liebler, D. C. & Gandolfi, A. J. Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. *Proteomics* 5, 2104–2111 (2005).

- 223. Peng, J. *et al.* A proteomics approach to understanding protein ubiquitination. *Nat. Biotechnol.* **21**, 921–926 (2003).
- 224. Hitchcock, A. L., Auld, K., Gygi, S. P. & Silver, P. A. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. *Proc. Natl. Acad. Sci. USA* **100**, 12735–12740 (2003).
- 225. Tan, M. K., Lim, H. J. & Harper, J. W. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. *Mol. Cell. Biol.* **31**, 3687–3699 (2011).
- 226. Gao, D. *et al.* mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. *Mol. Cell* **44**, 290–303 (2011).
- 227. Harper, J. W. & Tan, M. K. Understanding cullin-RING E3 biology through proteomicsbased substrate identification. *Mol. Cell Proteomics* **11**, 1541–1550 (2012).
- 228. Tan, M. K., Lim, H. J., Bennett, E. J., Shi, Y. & Harper, J. W. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover. *Mol. Cell* **52**, 9–24 (2013).
- 229. Mark, K. G., Loveless, T. B. & Toczyski, D. P. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps). *Nat. Protoc.* **11**, 291–301 (2016).
- 230. Mark, K. G., Simonetta, M., Maiolica, A., Seller, C. A. & Toczyski, D. P. Ubiquitin ligase trapping identifies an SCF(Saf1) pathway targeting unprocessed vacuolar/lysosomal proteins. *Mol. Cell* **53**, 148–161 (2014).
- 231. O'Connor, H. F. *et al.* Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners. *EMBO Rep.* (2015). doi:10.15252/embr.201540620
- 232. Foresti, O., Rodriguez-Vaello, V., Funaya, C. & Carvalho, P. Quality control of inner nuclear membrane proteins by the Asi complex. *Science* **346**, 751–755 (2014).
- 233. Yen, H. C. & Elledge, S. J. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. *Science* **322**, 923–929 (2008).
- 234. Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. *Science* **322**, 918–923 (2008).
- 235. Ordureau, A., Münch, C. & Harper, J. W. Quantifying ubiquitin signaling. *Mol. Cell* 58, 660–676 (2015).
- 236. Na, C. H. *et al.* Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. *J. Proteome Res.* **11**, 4722–4732 (2012).
- Udeshi, N. D. *et al.* Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. *Mol. Cell Proteomics* 11, 148–159 (2012).

- 238. Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L. M. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. *Mol. Cell* **40**, 917–926 (2010).
- 239. Rape, M. *et al.* Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. *Cell* **107**, 667–677 (2001).
- 240. Hoppe, T. *et al.* Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. *Cell* **102**, 577–586 (2000).
- 241. Ramanathan, H. N. & Ye, Y. The p97 ATPase associates with EEA1 to regulate the size of early endosomes. *Cell Res.* 22, 346–359 (2012).
- 242. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat. Biotechnol.* 26, 1367–1372 (2008).
- 243. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* **4**, 44–57 (2009).
- 244. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. *PLoS One* **6**, e21800 (2011).
- 245. Shannon, P. *et al.* Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* **13**, 2498–2504 (2003).
- 246. Fun, X. H. & Thibault, G. Lipid bilayer stress and proteotoxic stress-induced unfolded protein response deploy divergent transcriptional and non-transcriptional programmes. *Biochimica et Biophysica Acta (BBA)-Molecular and* ... (2020).
- 247. Qian, H. *et al.* HDAC6-mediated acetylation of lipid droplet-binding protein CIDEC regulates fat-induced lipid storage. *J. Clin. Invest.* **127**, 1353–1369 (2017).
- 248. Kozlitina, J. *et al.* Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. *Nat. Genet.* **46**, 352–356 (2014).
- 249. Pappireddi, N., Martin, L. & Wühr, M. A review on quantitative multiplexed proteomics. *Chembiochem* **20**, 1210–1224 (2019).
- Christiano, R., Kabatnik, S., Mejhert, N., Farese, R. V. & Walther, T. C. A systematic protein turnover map for decoding protein degradation. *BioRxiv* (2020). doi:10.1101/2020.03.09.983734
- 251. Akimov, V. *et al.* UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. *Nat. Struct. Mol. Biol.* **25**, 631–640 (2018).

Appendix

Supplemental Table 2-S1. High confidence Hrd1 interacting proteins.

Supplemental Table 2-S2. SILAC proteomic analysis of Hrd1 interacting proteins.

Supplemental Table 2-S3. Metabolomic profiling of triacsin C treated cells.

Supplemental Table 3-S1. SILAC ratio of diGly peptides.

Supplemental Table 3-S2. GO analysis of cellular component (CC) and biological process (BP).

Supplemental Table 3-S3. Predicted subcellular localizations of candidate ERAD substrates.

Supplemental Table 2-S1. High confidence Hrd1 interacting proteins.

UniProt Protein Name	Uniprot ID	Ratio M/L (Log2)	Ratio H/M (Log2)	Ratio H/L (Log2)	Locali zation	Predicte d Topolog y	Domai ns	Brief protein description
E3 ubiquitin -protein ligase synovioli n	Q86TM6	4.629	-0.060	4.554	ER	Polytopic TM	RING	E3 ligase involved in ERAD
Protein sel-1 homolog 1	Q9UBV2	4.505	0.171	4.447	ER	Single- pass TM	TPR repeats	Luminal adaptor for the ERAD E3 ligase Hrd1
Protein FAM8A 1	Q9UBU6	4.460	0.277	4.677	ER	Polytopic TM		Regulator of the ERAD E3 ligase Hrd1
Erlin-2	O94905	4.448	0.195	4.637	ER	Polytopic TM	SPFH- like	ERAD substrate-specific recognition factor
Protein OS-9	Q13438	4.254	0.044	4.284	ER	Luminal, soluble	MRH	Lectin involved in substrate recognition and delivery to the Hrd1 dislocation complex
Endoplas mic reticulum lectin 1	Q96DZ1	4.200	0.154	4.277	ER	Luminal, soluble	MRH	Lectin involved in substrate recognition and delivery to the Hrd1 dislocation complex
Calnexin	P27824	3.254	0.019	3.316	ER	Single- pass TM		Chaperone involved in the folding of glycosylated secretory proteins
Dolichyl- diphosph ooligosac charide protein glycosylt ransferas e subunit 1	P04843	2.569	0.104	2.755	ER			Subunit of the N- oligosaccharyl transferase (OST) complex, which mediates the transfer of a high mannose oligosaccharide to nascent secretory proteins
Transitio nal endoplas mic reticulum ATPase	P55072	2.417	0.385	2.778	ER, Cyto, Nuc	Cyto, soluble	AAA+ ATPas e	ATPase involved in the ubiquitin-dependent extraction of proteins for degradation and ubiquitin- dependent dissociation of protein complexes

Membra	O00264	2.215	0.069	2.504	ER			Putatitive receptor for
ne-								progesterone
associate								
d								
progester								
one								
receptor								
compone								
nt 1							ļ	
Endoplas	P14625	1.799	0.132	1.937	ER	Luminal,		Chaperone involved in the
min						soluble		folding of a specific set of
						ļ	ļ	secretory proteins
Protein	P07237	1.397	0.235	1.495	ER	Luminal,		Disulfide isomerase
disulfide-						soluble		involved in secretory
isomeras								protein folding and
e						ļ	ļ	maturation
Emerin	P50402	1.371	-0.452	0.855	Nuc			
Serpin	P50454	1.359	-0.667	1.090	ER	Luminal,		Chaperone involved in
H1						soluble		collagen folding and
								maturation
Ubiquitin	P62987	1.063	0.441	1.275	ER,	Cyto,		Posttranslational
-60S					Cyto,	soluble		modification implicated in
ribosoma					Nuc			protein degradation and
l protein								regulation
L40								

Uniprot ID	Gene Symbol	Ratio M/L (Log2)	Ratio H/M (Log2)	Ratio H/L (Log2)
Q86TM6	SYVN1	4.63	-0.06	4.55
Q9UBV2	SE1L1	4.50	0.17	4.45
Q9UBU6	FA8A1	4.46	0.28	4.68
O94905	ERLN2	4.45	0.19	4.64
Q13438	OS9	4.25	0.04	4.28
Q96DZ1	ERLEC	4.20	0.15	4.28
P27824	CALX	3.25	0.02	3.32
P04843	RPN1	2.57	0.10	2.75
P55072	TERA	2.42	0.39	2.78
O00264	PGRC1	2.22	0.07	2.50
P14625	ENPL	1.80	0.13	1.94
P07237	PDIA1	1.40	0.23	1.49
P50402	EMD	1.37	-0.45	0.86
P50454	SERPH	1.36	-0.67	1.09
P62987	RL40	1.06	0.44	1.28
P05141	ADT2	1.00	-0.87	0.23
P15924	DESP	0.82	0.42	1.15
P25705	ATPA	0.81	-0.18	0.52
P09874	PARP1	0.78	-0.74	0.15
P23284	PPIB	0.78	-0.17	0.57
P11021	GRP78	0.69	-0.11	0.50
Q5T0Z8	CF132	0.59	0.11	0.73
P62826	RAN	0.59	0.17	0.84
P07900	HS90A	0.58	-0.08	0.21
P14618	КРҮМ	0.54	-0.23	0.51
P06733	ENOA	0.52	0.07	0.71
Q92616	GCN1L	0.46	-0.63	-0.05
P60842	IF4A1	0.43	-0.41	0.07
Q8NC51	SERBP1	0.39	-0.25	0.09
P62258	1433E	0.39	-0.35	0.25
P19105	ML12A	0.39	-0.39	-0.02
P13489	RINI	0.39	0.22	0.67
P78371	ТСРВ	0.38	-0.41	-0.12
P62847	RS24	0.37	0.25	0.60
Q06830	PRDX1	0.32	0.00	0.21
P08107	HSP71	0.31	0.02	0.29

Supplemental Table 2-S2. SILAC proteomic analysis of Hrd1 interacting proteins.

P39019	RS19	0.28	-0.27	-0.10
P08238	HS90B	0.27	-0.17	-0.17
P42766	RL35	0.27	-0.07	0.08
P50914	RL14	0.26	0.09	0.24
P63261	ACTG	0.22	0.02	0.15
P36578	RL4	0.22	-0.13	-0.18
P62753	RS6	0.19	-0.34	-0.22
P62158	CALM	0.19	0.09	0.15
P61513	RL37A	0.18	-0.18	-0.11
P62280	RS11	0.17	0.05	0.19
P61978	HNRPK	0.17	-0.22	0.16
P29692	EF1D	0.16	-0.33	-0.05
P46776	RL27A	0.16	0.01	-0.04
P08670	VIME	0.16	-0.07	0.01
P46783	RS10	0.15	-0.20	-0.05
P50990	TCPQ	0.14	-0.36	-0.03
O43175	SERA	0.14	-0.28	-0.17
P38646	GRP75	0.13	0.09	0.35
P32969	RL9	0.12	0.27	0.39
P84098	RL19	0.12	-0.21	-0.08
P48643	ТСРЕ	0.12	-0.20	-0.08
Q86V81	THOC4	0.10	0.55	0.69
P18124	RL7	0.09	-0.14	-0.12
Q9NVI7	ATD3A	0.09	-0.31	-0.34
P26641	EF1G	0.09	-0.51	-0.31
P18077	RL35A	0.08	-0.09	-0.08
P40429	RL13A	0.07	0.05	0.24
P62081	RS7	0.07	-0.12	0.03
P67936	TPM4	0.06	0.15	0.22
Q9BQE3	TBA1C	0.06	-0.29	-0.34
P46778	RL21	0.05	0.04	-0.08
P23528	COF1	0.04	0.22	0.47
P26373	RL13	0.03	-0.10	-0.06
P39023	RL3	0.03	-0.12	-0.06
P62701	RS4X	0.02	0.07	0.01
P62277	RS13	0.01	-0.14	-0.07
P61247	RS3A	0.00	-0.06	0.05
P22061	PIMT	0.00	0.08	0.10
P0CW22	RS17L	-0.01	-0.35	-0.17

Q14498	RBM39	-0.01	0.24	0.27
P16949	STMN1	-0.02	-0.35	-0.20
P06748	NPM	-0.02	-0.10	-0.06
Q00839	HNRPU	-0.02	-0.27	-0.31
P18621	RL17	-0.04	-0.39	-0.26
P62269	RS18	-0.05	0.28	0.34
P62249	RS16	-0.05	-0.17	-0.10
P21796	VDAC1	-0.06	-0.03	0.15
P23396	RS3	-0.06	-0.10	-0.27
P62917	RL8	-0.07	-0.12	0.08
Q02543	RL18A	-0.07	-0.22	-0.18
Q02878	RL6	-0.08	-0.09	-0.16
P45880	VDAC2	-0.09	-0.02	-0.10
P62241	RS8	-0.09	-0.16	-0.04
P61313	RL15	-0.09	0.11	0.14
P62937	PPIA	-0.10	0.60	0.47
P62266	RS23	-0.11	-0.31	-0.32
P11142	HSP7C	-0.12	0.18	-0.11
P61254	RL26	-0.12	-0.26	-0.64
Q07020	RL18	-0.12	-0.18	-0.28
Q5VTE0	EF1A3	-0.14	-0.02	-0.38
O43390	HNRPR	-0.15	-0.23	-0.46
Q9Y5A9	YTHD2	-0.15	0.26	-0.15
P49915	GUAA	-0.16	-0.06	-0.10
P62899	RL31	-0.16	-0.04	-0.04
P60660	MYL6	-0.18	0.48	0.09
P61353	RL27	-0.18	-0.05	-0.45
P35580	MYH10	-0.18	0.65	0.47
P09651	ROA1	-0.19	-0.12	-0.46
P55060	XPO2	-0.21	-0.19	-0.49
P60866	RS20	-0.22	-0.21	-0.42
P07437	TBB5	-0.23	-0.22	-0.44
P26583	HMGB2	-0.23	0.00	-0.40
P25398	RS12	-0.23	-0.67	-0.77
Q8NHW5	RLA0L	-0.24	0.29	0.11
P62906	RL10A	-0.24	0.15	-0.21
P30050	RL12	-0.25	-0.47	-0.36
P62424	RL7A	-0.25	-0.14	-0.34
P19338	NUCL	-0.26	0.00	-0.30

P23246	SFPQ	-0.26	-0.36	-0.63
P46781	RS9	-0.27	0.01	-0.08
P11940	PABP1	-0.29	-0.31	-0.59
P62854	RS26	-0.29	-0.03	-0.29
Q14103	HNRPD	-0.32	0.11	-0.25
Q92522	H1X	-0.38	-0.61	-1.01
Q99880	H2B1L	-0.39	0.34	-0.12
P16403	H12	-0.39	-0.26	-0.80
P35579	MYH9	-0.41	0.47	-0.01
Q15233	NONO	-0.47	-0.42	-1.09
Q14257	RCN2	-0.49	0.22	-0.39
P52272	HNRPM	-0.51	1.22	0.66
P11586	C1TC	-0.51	-0.48	-1.02
P49411	EFTU	-0.54	-0.22	-0.68
P62750	RL23A	-0.54	-0.08	-0.75
P17844	DDX5	-0.54	-0.38	-0.89
Q96AE4	FUBP1	-0.59	-0.19	-0.86
Q92841	DDX17	-0.63	-0.55	-1.08
P35232	PHB	-0.64	0.40	-0.34
Q99623	PHB2	-0.67	0.47	-0.27
Q9BUJ2	HNRL1	-0.68	1.46	0.88
P22626	ROA2	-0.71	-0.41	-0.78
P10809	CH60	-0.76	-0.02	-0.81
P20073	ANXA7	-0.81	-0.11	-0.80
P52597	HNRPF	-0.83	-0.14	-1.01
Q15365	PCBP1	-0.86	-0.32	-1.09
P31943	HNRH1	-1.21	0.00	-1.24
Q92945	FUBP2	-1.37	0.21	-1.02

Metabolite	DMSO	DMSO SEM	triacsin	triacsin C	p-value against
	average	SENI	C average	SEIVI	DNISO
C16:0 NAE	4.26	1.35	2.36	1.42	0.37
sphingosine	0.72	0.05	0.64	0.06	0.32
sphinganine	0.76	0.05	0.69	0.02	0.20
C16:0e MAGe	0.89	0.07	0.49	0.05	0.00
C18:1 NAE	1.27	0.14	1.91	0.13	0.01
C18:0 NAE	4.27	1.18	2.45	1.61	0.38
C16:0 MAG	1.24	0.10	0.87	0.07	0.02
C18:0p MAGp	0.91	0.07	0.56	0.06	0.01
C18:0e MAGe	0.89	0.05	0.46	0.04	0.00
C18:2 MAG	0.83	0.07	1.08	0.06	0.03
C18:1 MAG	1.07	0.07	1.01	0.06	0.51
C16:0e/C2:0 MAGe	1.24	0.08	1.08	0.20	0.47
C18:0 MAG	1.16	0.08	0.95	0.16	0.27
C20:4 MAG	0.91	0.10	1.21	0.05	0.05
C18:1e/C2:0 MAGe	0.85	0.11	1.26	0.08	0.02
C18:0e/C2:0 MAGe	0.80	0.08	0.77	0.04	0.77
C16:0 AC	1.15	0.22	0.30	0.04	0.01
Pregninolone sulfate	0.89	0.04	0.95	0.06	0.41
C18:0 AC	1.58	0.59	0.64	0.14	0.21
C16:0e LPEe	1.22	0.08	2.11	0.18	0.00
C16:0 LPE	1.50	0.07	5.18	0.45	0.00
C18:0p LPEp	1.28	0.10	1.75	0.22	0.07
C18:0e LPEe	1.30	0.08	2.16	0.24	0.01
C18:1 LPE	1.45	0.07	3.03	0.31	0.00
C18:0 LPE	1.36	0.08	5.26	0.50	0.00
C16:0e LPCe	1.38	0.08	1.07	0.10	0.04
C16:0 LPC	1.48	0.11	2.58	0.22	0.00
C20:4 LPE	1.39	0.08	1.25	0.06	0.24
C18:0e LPCe	1.40	0.12	2.61	0.23	0.00
C18:0e LPSe	0.96	0.06	0.99	0.09	0.75
C18:1 LPC	1.20	0.07	1.11	0.11	0.50
C18:0 LPC	1.28	0.06	1.04	0.12	0.08
C18:1 LPS	1.54	0.17	0.95	0.09	0.02
C18:0 LPS	1.42	0.09	1.48	0.21	0.77

Supplemental Table 2-S3. Metabolomic profiling of triacsin C treated cells.

C16:0 Ceramide	0.89	0.02	2.04	0.13	0.00
C20:4 LPC	1.46	0.06	2.38	0.21	0.00
C20:4 LPS	0.89	0.13	1.02	0.14	0.53
C18:1p LPCp	1.33	0.11	2.93	0.37	0.00
C20:0 LPC	1.14	0.39	2.38	0.11	0.03
C18:1 Ceramide	0.85	0.07	1.18	0.21	0.15
C18:0 Ceramide	1.00	0.04	1.65	0.16	0.00
C20:4 Ceramide	1.09	0.12	0.99	0.11	0.60
C16:0/C18:1 DAG	0.98	0.05	0.57	0.05	0.00
C18:0/C18:1 DAG	1.05	0.04	1.30	0.06	0.01
C18:0/C20:4 DAG	0.84	0.06	0.86	0.09	0.86
C16:0e/C18:1 PEe	0.76	0.05	1.66	0.21	0.00
C16:0 SM	0.91	0.03	0.61	0.04	0.00
C16:0/C18:1 PE	0.85	0.05	1.51	0.10	0.00
C16:0p/C20:4 PEp	0.84	0.04	1.45	0.06	0.00
C16:0e/C20:4 PEe	0.83	0.06	1.70	0.21	0.00
C18:1 SM	0.83	0.03	0.77	0.04	0.20
C18:0 SM	0.87	0.03	0.72	0.04	0.01
C18:0e/C18:1 PEe	0.82	0.02	1.00	0.08	0.04
C16:0/C20:4 PE	0.73	0.06	1.66	0.18	0.00
C18:0/C18:1 PE	0.96	0.04	1.68	0.07	0.00
C16:0e/C18:1 PCe	0.91	0.03	0.80	0.04	0.07
C16:0e/C18:1 PSe	0.88	0.06	1.30	0.07	0.00
C18:0p/C20:4 PEp	0.91	0.04	1.41	0.08	0.00
C18:0e/C20:4 PEe	0.94	0.03	1.32	0.10	0.01
C20:4 SM	0.89	0.03	0.85	0.04	0.43
C16:0/C18:1 PC	0.91	0.04	1.20	0.07	0.01
C16:0/C18:1 PS	0.89	0.03	1.65	0.11	0.00
C16:0p/C20:4 PCp	0.79	0.03	1.08	0.03	0.00
C18:0/C20:4 PE	0.80	0.05	2.03	0.15	0.00
C16:0e/C20:4 PCe	0.92	0.04	1.20	0.07	0.01
C16:0/C20:4 PG	0.84	0.07	1.10	0.07	0.04
C18:0e/C18:1 PCe	0.92	0.03	0.69	0.03	0.00
C18:0e/C18:1 PSe	0.97	0.05	1.26	0.07	0.01
C16:0/C20:4 PC	0.92	0.03	2.09	0.08	0.00
C16:0/C20:4 PS	0.99	0.04	2.98	0.15	0.00
C18:0/C18:1 PC	0.94	0.04	1.73	0.06	0.00
C18:0/C18:1 PS	0.93	0.05	1.92	0.15	0.00

C18:0p/C20:4 PCp	0.92	0.04	1.18	0.07	0.01
C18:0e/C20:4 PCe	0.92	0.02	0.87	0.04	0.35
C18:0e/C20:4 PSe	1.06	0.14	2.01	0.31	0.02
C18:0/C20:4 PG	1.07	0.07	1.08	0.09	0.96
C18:0/C20:4 PC	0.95	0.04	2.00	0.09	0.00
C18:0/C20:4 PS	0.99	0.05	4.06	0.27	0.00
C16:0/C16:0/C16:0 TAG	1.20	0.15	0.57	0.04	0.01
C16:0/C18:1/C16:0 TAG	0.94	0.03	0.40	0.02	0.00
C16:0/C20:4/C16:0 TAG	0.81	0.06	0.85	0.04	0.63
C18:0/C18:1/C18:0 TAG	0.96	0.04	0.67	0.05	0.00
C18:0/C18:0/C18:0 TAG	1.57	0.20	1.58	0.24	0.96
C18:0/C20:4/C18:0 TAG	0.86	0.04	0.54	0.03	0.00
cholesterol	0.69	0.08	0.78	0.09	0.43
cholesteryl esters	0.83	0.04	0.91	0.06	0.32
C16:0 FFA	1.04	0.05	1.13	0.05	0.26
C18:1 FFA	1.00	0.02	1.03	0.07	0.72
C18:0 FFA	1.03	0.04	0.93	0.08	0.34
phytanic acid	1.32	0.33	1.04	0.33	0.58
C22:6 FFA	1.29	0.30	1.04	0.29	0.57
C16:0e LPAe	0.88	0.14	1.10	0.12	0.28
C16:0 LPA	0.99	0.04	0.87	0.09	0.32
C18:1e LPAe	0.94	0.11	1.29	0.11	0.07
C18:0e LPAe	0.91	0.13	1.47	0.14	0.03
C18:1 LPA	0.99	0.04	0.96	0.08	0.78
C18:0 LPA	1.00	0.14	2.41	0.17	0.00
C16:0e LPIe	0.87	0.17	0.96	0.07	0.62
C16:0 LPI	1.02	0.17	1.11	0.15	0.72
C18:0p LPIp	0.91	0.18	1.56	0.18	0.04
C18:1 LPI	0.99	0.16	0.77	0.09	0.25
C18:0 LPI	1.00	0.05	1.45	0.15	0.04
18:1/C16:0 ceramide-1-phosphate	1.23	0.24	0.74	0.02	0.05
18:0/C16:0 ceramide-1-phosphate	0.89	0.16	0.71	0.06	0.31
C16:0e/18:1 PAe	1.11	0.13	5.26	0.37	0.00
C16:0/C18:1 PA	0.93	0.12	1.20	0.07	0.09
C18:0e/C18:1 PAe	0.91	0.12	1.43	0.12	0.02
C18:0/C18:1 PA	0.93	0.18	1.39	0.12	0.06
C18:0e/C20:4 PAe	1.00	0.08	5.76	0.52	0.00
C18:0/C20:4 PA	0.92	0.13	0.94	0.11	0.89

C16:0/C16:0 PI	1.04	0.09	0.88	0.08	0.22
C16:0e/18:1 PIe	1.18	0.19	0.80	0.03	0.06
C16:0/C18:1 PI	1.15	0.17	0.58	0.07	0.01
C16:0e/20:4 PIe	1.18	0.19	0.41	0.02	0.00
C18:0e/C18:1 PIe	1.18	0.20	0.61	0.04	0.02
C16:0/C20:4 PI	1.05	0.08	0.43	0.05	0.00
C18:0/C18:1 PI	1.33	0.34	0.57	0.02	0.04
C18:0e/C20:4 PIe	1.25	0.25	0.55	0.03	0.02
C18:0/C20:4 PI	1.25	0.26	0.40	0.03	0.01

Unipro t ID	Gene name	Fasta headers	GlyGly (K) Probabilities	MS/ MS count	Avera ge ratio (when detect ed)
Q1504 1	AR6P 1	>sp Q15041 AR6P1_HUM AN ADP-ribosylation factor-like protein 6- interacting protein 1 OS=Homo sapiens GN=ARL6IP1 PE=1 SV=2	IFGSNK(1)WTTEQQQR	10	17.92
Q9297 9	NEP1	>sp Q92979 NEP1_HUMA N Ribosomal RNA small subunit methyltransferase NEP1 OS=Homo sapiens GN=EMG1 PE=1 SV=4	LGAGNK(1)IGGR	1	16.32
P04114	APO B	>sp P04114 APOB_HUMA N Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2	K(1)GNVATEISTER	1	13.81
Q9UP9 5	S12A 4	>sp Q9UP95 S12A4_HUM AN Solute carrier family 12 member 4 OS=Homo sapiens GN=SLC12A4 PE=1 SV=2;>sp Q9UHW9 S12A6 _HUMAN Solute carrier family 12 member 6 OS=Homo sapiens GN=SLC12A6 PE=1 SV=2	LLQAIAK(1)DNIIPFLR	1	12.64
Q8W WT9	S13A 3	>sp Q8WWT9 S13A3_HU MAN Solute carrier family 13 member 3 OS=Homo sapiens GN=SLC13A3 PE=1 SV=1	SLFGQK(1)EVR	1	12.14
Q9H3 H5	GPT	>sp Q9H3H5 GPT_HUMA N UDP-N- acetylglucosamine dolichyl-phosphate N- acetylglucosaminephosphot ransferase OS=Homo sapiens GN=DPAGT1 PE=1 SV=2	LCGQDLNK(1)TSR	2	11.39
O0076 7	ACO D	>sp O00767 ACOD_HUM AN Acyl-CoA desaturase OS=Homo sapiens GN=SCD PE=1 SV=2	VSK(1)AAILAR	2	10.62
Q9NZ S9	BFA R	>sp Q9NZS9 BFAR_HUM AN Bifunctional apoptosis regulator OS=Homo sapiens GN=BFAR PE=1 SV=1	SELK(1)TVPQR	2	9.75

Supplemental Table 3-S1. SILAC ratio of diGly peptides.
Q9NX	DJB1	>sp Q9NXW2 DJB12 HU	AIGTAYAVLSNPEK(1)R	2	9.47
W2	2	MAN DnaJ homolog			
		subfamily B member 12			
		OS=Homo sapiens			
		GN=DNA IB12 PE=1 SV=4			
P04114	APO	>sp $ P04114 $ APOB HUMA	DI K(1)VEDIPI AR	25	9.25
104114	R	N Apolipoprotein B-100		23	1.25
	Ъ	OS=Homo saniens			
		GN=APOB PE=1 SV=2			
O96B	SO4A	>sp 096BD0 S04A1 HUM	GEASNPDFGK(1)TIR	1	8.49
D0	1	AN Solute carrier organic			
	-	anion transporter family			
		member 4A1 OS=Homo			
		saniens GN=SI CO4A1			
		PF=1 SV=2			
O9UP	XCT	>sp $ O9UPY5 XCT HUMA$	IMSEK(1)ITR	1	8.18
Y5		N Cystine/glutamate		-	0.10
10		transporter OS=Homo			
		saniens GN=SL C7A11			
		PF=1 SV=1			
0960	SIM1	>sp $ O96OK8 SIM14$ HUM	GSSLPGK(1)PTSPHNGODPPAPPVD	4	8.07
K8	4	AN Small integral			0.07
110	•	membrane protein 14			
		OS=Homo saniens			
		GN=SMIM14 PF=1 SV=1			
070U	IKIP	>sp $ 070U00 $ IKIP HUMA	GAPAAEPGK(1)R	1	7.81
\hat{O}		N Inhibitor of nuclear factor		1	/.01
×ٽ		kappa-B kinase-interacting			
		protein OS=Homo sapiens			
		GN=IKBIP PE=1 SV=1			
07591	PRAF	>sp O75915 PRAF3 HUM	LTDYISK(0.976)VK(0.024)	1	7.66
5	3	AN PRA1 family protein 3			
		OS=Homo sapiens			
		GN=ARL6IP5 PE=1 SV=1			
O6042	FADS	>sp O60427 FADS1 HUM	ILSVELGK(0.824)QK(0.176)	2	7.58
7	1	AN Fatty acid desaturase 1			
		OS=Homo sapiens			
		GN=FADS1 PE=1 SV=3			
P04920	B3A2	>sp P04920 B3A2 HUMA	SLAGQSGQGK(1)PR	1	7.53
		N Anion exchange protein 2			
		OS=Homo sapiens			
		GN=SLC4A2 PE=1 SV=4			
Q9P0S	ORM	>sp Q9P0S3 ORML1 HU	IFGINK(1)Y	2	7.37
3	L1	MAN ORM1-like protein 1			
		OS=Homo sapiens			
		GN=ORMDL1 PE=1			
		SV=1;>sp Q8N138 ORML3			
		HUMAN ORM1-like			
		protein 3 OS=Homo sapiens			
		GN=ORMDL3 PE=1 SV=1			
P51572	BAP3	>sp P51572 BAP31 HUM	GAAVDGGK(1)LDVGNAEVK	1	7.34
	1	AN B-cell receptor-			
		associated protein 31			
		OS=Homo sapiens			
		GN=BCAP31 PE=1 SV=3			

Q9Y5 U4	INSI2	>sp Q9Y5U4 INSI2_HUM AN Insulin-induced gene 2 protein OS=Homo sapiens GN=INSIG2 PF=1 SV=2	VIAEK(1)SHQE	4	7.27
P0CK9 6	S352 B	>sp P0CK96 S352B_HUM AN Solute carrier family 35 member E2B OS=Homo sapiens GN=SLC35E2B PE=2 SV=1	LLSGDK(1)YR	1	6.87
Q6ZV X9	PAQ R9	>sp Q6ZVX9 PAQR9_HU MAN Progestin and adipoQ receptor family member 9 OS=Homo sapiens GN=PAQR9 PE=2 SV=1	DPPASAK(1)PLLR	3	6.86
P51572	BAP3 1	>sp P51572 BAP31_HUM AN B-cell receptor- associated protein 31 OS=Homo sapiens GN=BCAP31 PE=1 SV=3	QSEGLTK(1)EYDR	1	6.76
P50454	SERP H	>sp P50454 SERPH_HUM AN Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2	LSPK(1)AATLAER	1	6.38
P04844	RPN2	>sp P04844 RPN2_HUMA N Dolichyl- diphosphooligosaccharide protein glycosyltransferase subunit 2 OS=Homo sapiens GN=RPN2 PE=1 SV=3	MLAQQAVK(1)R	3	6.33
Q9994 2	RNF5	>sp Q99942 RNF5_HUMA N E3 ubiquitin-protein ligase RNF5 OS=Homo sapiens GN=RNF5 PE=1 SV=1	LK(1)TPPRPQGQRPAPESR	2	6.32
Q96GF 1	RN18 5	>sp Q96GF1 RN185_HUM AN E3 ubiquitin-protein ligase RNF185 OS=Homo sapiens GN=RNF185 PE=1 SV=1	QVCPVCK(1)AGISR	2	6.01
P0CG4 7	UBB	>sp P0CG47 UBB_HUMA N Polyubiquitin-B OS=Homo sapiens GN=UBB PE=1 SV=1;>sp P0CG48 UBC_H UMAN Polyubiquitin-C OS=Homo sapiens GN=UBC PE=1 SV=3;>sp P62979 RS27A_ HUMAN Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2;>sp P62987 RL40_H UMA	MQIFVK(1)TLTGK	8	6.01

O7584 5	SC5D	>sp O75845 SC5D_HUMA N Lathosterol oxidase	IGGSFK(1)NPSSFEGK	1	5.40
		OS=Homo sapiens GN=SC5D PE=1 SV=2			
P49768	PSN1	>sp P49768 PSN1_HUMA	NSK(1)YNAESTER	1	5.32
		N Presentiin-1 OS=Homo			
		SV=1			
Q1350	SQST	>sp Q13501 SQSTM_HUM	NYDIGAALDTIQYSK(1)HPPPL	18	5.27
1	М	AN Sequestosome-1			
		GN=SOSTM1 PE=1 SV=1			
Q1685	CP51	>sp Q16850 CP51A_HUM	DIFYK(0.994)AIQK(0.006)	1	5.18
0	А	AN Lanosterol 14-alpha			
		demethylase OS=Homo			
		PE=1 SV=3			
Q8ND	RCB	>sp Q8NDN9 RCBT1_HU	EFIAK(0.945)ASK(0.055)	1	5.15
N9	T1	MAN RCC1 and BTB			
		OS=Homo sapiens			
		GN=RCBTB1 PE=2 SV=1			
Q53G	DHB	>sp Q53GQ0 DHB12_HU	SK(0.948)DK(0.052)LDQVSSEIK	1	5.11
Q0	12	MAN Very-long-chain 3-			
		OS=Homo sapiens			
		GN=HSD17B12 PE=1			
D550(1	DII	SV=2		2	1.00
P55061	BH	>sp P55061 BI1_HUMAN Bax inhibitor 1 OS=Homo	K(1)INFDALLK	3	4.96
		sapiens GN=TMBIM6			
		PE=1 SV=2			
P0CG4	UBB	>sp P0CG47 UBB_HUMA	IQDK(1)EGIPPDQQR	139	4.89
/		OS=Homo sapiens			
		GN=UBB PE=1			
		SV=1;>sp P0CG48 UBC_H			
		OS=Homo sapiens			
		GN=UBC PE=1			
		SV=3;>sp P62979 RS27A_			
		HUMAN Ubiquitin-40S			
		OS=Homo sapiens			
		GN=RPS27A PE=1			
		SV=2;>sp P62987 RL40_H			
P61610	\$61.4	UMA		1	1.82
101019	1	N Protein transport protein		1	4.03
		Sec61 subunit alpha			
		isoform 1 OS=Homo			
		sapiens GN=SEC61A1			
		SV=2;>sp Q9H9S3 S61A2			
		HUMAN Protein transport			

		protein Sec61 subunit alpha isoform 2 OS=Homo sapiens GN=SEC61A2			
		PE=2 SV=3			
Q7Z3D	LYS	>sp Q7Z3D4 LYSM3_HU	FEPDNK(1)NTQR	2	4.81
4	M3	MAN LysM and putative			
		peptidoglycan-binding			
		domain-containing protein 3			
		OS=Homo sapiens			
		GN=LYSMD3 PE=1 SV=2			
Q1580	MSM	>sp Q15800 MSMO1 HU	IFGTDSQYNAYNEK(1)R	7	4.81
0	01	MAN Methylsterol			
		monooxygenase 1			
		OS=Homo sapiens			
		GN=MSMO1 PE=1 SV=1			
Q9Y28	ERGI	>sp Q9Y282 ERGI3 HUM	MEALGK(0.832)LK(0.168)	3	4.74
2	3	AN Endoplasmic reticulum-			
		Golgi intermediate			
		compartment protein 3			
		OS=Homo sapiens			
		GN=ERGIC3 PE=1 SV=1			
01517	PGR	>sp O15173 PGRC2 HUM	EK(1)YDYVGR	2	4.60
3	C2	AN Membrane-associated			
		progesterone receptor			
		component 2 OS=Homo			
		sapiens GN=PGRMC2			
		PE=1 SV=1			
Q9994	RNF5	>sp Q99942 RNF5_HUMA	EK(1)VVPLYGR	18	4.48
2		N E3 ubiquitin-protein			
		ligase RNF5 OS=Homo			
		sapiens GN=RNF5 PE=1			
		SV=1			
P67775	PP2A	>sp P67775 PP2AA_HUM	EILTK(1)ESNVQEVR	2	4.43
	А	AN Serine/threonine-			
		protein phosphatase 2A			
		catalytic subunit alpha			
		isoform OS=Homo sapiens			
		GN=PPP2CA PE=1			
		SV=1;>sp P62714 PP2AB_			
		HUMAN Serine/threonine-			
		protein phosphatase 2A			
		catalytic subunit beta			
		isoform OS=Homo sapiens			
		GN=PPP2CB PE=1		_	
P51572	BAP3	>sp P51572 BAP31_HUM	LDVGNAEVK(1)LEEENR	5	4.36
	1	AN B-cell receptor-			
		associated protein 31			
		US=Homo sapiens			
0.0501	D 4 ~	GN=BCAP31 PE=1 SV=3			1.00
09581	BAG	$ > sp O95816 BAG2_HUMA$	LLEHSK(0.792)GAGSK(0.208)	2	4.28
6	2	N BAG family molecular			
		chaperone regulator 2			
		US=Homo sapiens			
		GN=BAG2 PE=1 SV=1			

Q9UN	SSRG	>sp Q9UNL2 SSRG HUM	REDAVSK(1)EVTR	1	4.22
L2		AN Translocon-associated			
		protein subunit gamma			
		OS=Homo sapiens			
		GN=SSR3 PE=1 SV=1			
Q1467	EPN4	>sp Q14677 EPN4_HUMA	LGELSDK(1)IGSTIDDTISK	1	4.21
7		N Clathrin interactor 1			
		OS=Homo sapiens			
		GN=CLINT1 PE=1 SV=1			
P49326	FMO	>sp P49326 FMO5_HUMA	VQGPGK(1)WDGAR	1	4.10
	5	N Dimethylaniline			
		monooxygenase [N-oxide-			
		forming] 5 OS=Homo			
		sapiens GN=FMO5 PE=1			
00004	DUES	SV=2		1	4.02
Q9994	KNF5	$>$ sp Q99942 RNF5_HUMA	QECPVCK(1)AGISR	1	4.03
2		N E3 ubiquitin-protein			
		appions CN-DNE5 DE-1			
		SV=1			
P84090	ERH	>sn P84090 FRH HIMAN	SHTILLVOPTK(1)RPEGR	13	3.92
104070	LIXII	Enhancer of rudimentary	SITTLE VQI TK(I)KI LOK	15	5.72
		homolog OS=Homo sapiens			
		GN=ERH PE=1 SV=1			
O9UB	DHC	>sp Q9UBM7 DHCR7 HU	AK(1)SLDGVTNDR	7	3.86
M7	R7	MAN 7-dehydrocholesterol			
		reductase OS=Homo			
		sapiens GN=DHCR7 PE=1			
		SV=1			
O9586	FADS	>sp O95864 FADS2_HUM	NSK(1)ITEDFR	10	3.79
4	2	AN Fatty acid desaturase 2			
		OS=Homo sapiens			
		GN=FADS2 PE=1 SV=1		-	
Q0076	REEP	>sp Q00765 REEP5_HUM	ETADAITK(0.998)EAK(0.002)	6	3.76
5	5	AN Receptor expression-			
		enhancing protein 5			
		OS=Homo sapiens			
D61610	\$61 4	$\sum_{n=1}^{n=1} \sum_{j=1}^{n=1} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1$	OLK(1)FOOMVMP	5	3 75
101019	1 1	N Protein transport protein		5	5.75
	1	Sec61 subunit alpha			
		isoform 1 OS=Homo			
		sapiens GN=SEC61A1			
		PE=1			
		SV=2;>sp Q9H9S3 S61A2			
		HUMAN Protein transport			
		protein Sec61 subunit alpha			
		isoform 2 OS=Homo			
		sapiens GN=SEC61A2			
		PE=2 SV=3			
P46977	STT3	>sp P46977 STT3A_HUM	NLDISRPDK(0.448)K(0.552)	1	3.72
	А	AN Dolichyl-			
		diphosphooligosaccharide			
		protein glycosyltransferase			
		subunit STI3A OS=Homo			

		sapiens GN=STT3A PE=1 SV=2			
Q9Y5Z 9	UBIA 1	>sp Q9Y5Z9 UBIA1_HUM AN UbiA prenyltransferase domain-containing protein 1 OS=Homo sapiens GN=UBIAD1 PE=1 SV=1	AASQVLGEK(1)INILSGETVK	11	3.60
Q9UB M7	DHC R7	>sp Q9UBM7 DHCR7_HU MAN 7-dehydrocholesterol reductase OS=Homo sapiens GN=DHCR7 PE=1 SV=1	AAK(1)SQPNIPK	3	3.60
Q96H R9	REEP 6	>sp Q96HR9 REEP6_HUM AN Receptor expression- enhancing protein 6 OS=Homo sapiens GN=REEP6 PE=1 SV=1	NVK(1)PSQTPQPK	6	3.52
P02649	APO E	>sp P02649 APOE_HUMA N Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1	AK(1)LEEQAQQIR	4	3.50
P61956	SUM O2	>sp P61956 SUMO2_HUM AN Small ubiquitin-related modifier 2 OS=Homo sapiens GN=SUMO2 PE=1 SV=3	ADEK(0.009)PK(0.941)EGVK(0.05)	2	3.49
Q8TB6 1	S35B 2	>sp Q8TB61 S35B2_HUM AN Adenosine 3'-phospho 5'-phosphosulfate transporter 1 OS=Homo sapiens GN=SLC35B2 PE=1 SV=1	AVPVESPVQK(1)V	9	3.48
Q86U Q4	ABC AD	>sp Q86UQ4 ABCAD_HU MAN ATP-binding cassette sub-family A member 13 OS=Homo sapiens GN=ABCA13 PE=2 SV=3	LLEFGNEVIWK(1)	1	3.48
Q9P0S 3	ORM L1	>sp Q9P0S3 ORML1_HU MAN ORM1-like protein 1 OS=Homo sapiens GN=ORMDL1 PE=1 SV=1;>sp Q8N138 ORML3 _HUMAN ORM1-like protein 3 OS=Homo sapiens GN=ORMDL3 PE=1 SV=1;>sp Q53FV1 ORML2 _HUMAN ORM1-like protein 2 OS=Homo sapiens GN=ORMDL2 PE=1 SV=2	GTPFETPDQGK(1)AR	5	3.40
Q9UN L2	SSRG	>sp Q9UNL2 SSRG_HUM AN Translocon-associated protein subunit gamma OS=Homo sapiens GN=SSR3 PE=1 SV=1	GSSK(1)QQSEEDLLLQDFSR	2	3.39

P0CG4	UBB	>sp P0CG47 UBB_HUMA	LIFAGK(1)OLEDGRTLSDYNIOK	6	3.36
7		N Polyubiquitin-B		Ť.	
,		OS=Homo saniens			
		GN=LIBB PE=1			
		$SV = 1 \cdot \sum p D \cap C \cap A U \cap C \cap H$			
		UMAN Delynhiquitin C			
		OMAN Polyubiquini-C			
		OS=Homo sapiens			
		GN=UBC PE=1			
		SV=3;>sp P62979 RS27A_			
		HUMAN Ubiquitin-40S			
		ribosomal protein S27a			
		OS=Homo sapiens			
		GN=RPS27A PE=1			
		SV=2;>sp P62987 RL40_H			
		UMA			
P61978	HNR	>sp P61978 HNRPK_HUM	GAK(1)IK(1)ELR	1	3.33
	PK	AN Heterogeneous nuclear			
		ribonucleoprotein K			
		OS=Homo sapiens			
		GN=HNRNPK PE=1 SV=1			
P61978	HNR	>sp P61978 HNRPK HUM	GAK(1)IK(1)ELR	1	3.33
	PK	AN Heterogeneous nuclear			
		ribonucleoprotein K			
		OS=Homo sapiens			
		GN=HNRNPK PE=1 SV=1			
O8TC1	RDH	>sp O8TC12 RDH11_HUM	AFAK(1)GFLAEEK	22	3.30
2	11	AN Retinol dehydrogenase			0.00
2	11	11 OS=Homo sapiens			
		GN=RDH11 PF=1 SV=2			
O9NX	DIR1	>sp $ O9NXW2 DIB12$ HU	OYDOFGDDK(1)SOAAR	2	3 25
W2	2	MAN Dra L homolog		2	5.25
VV 2	2	subfamily B member 12			
		OS-Homo soniens			
		CN-DNAID12 DE-1 SV-4			
OODV	EMC	San ODDV91/EMCC HUM		2	2.25
Q9DV	ENIC	ANED mombrone motoin	AAVVAK(I)K	3	5.25
81	0	AN ER membrane protein			
		complex subunit 6			
		OS=Homo sapiens			
001/7				0	2.01
Q9Y67	AUPI	>sp Q9Y0/9 AUP1_HUMA	GELVESLK(1)K	8	3.21
9		N Ancient ubiquitous			
		protein I OS=Homo sapiens			
		GN=AUPI PE=1 SV=1			
Q1539	DHC	>sp Q15392 DHC24_HUM	HVENYLK(1)TNR	2	3.19
2	24	AN Delta(24)-sterol			
		reductase OS=Homo			
		sapiens GN=DHCR24			
		PE=1 SV=2			
Q9994	RNF5	>sp Q99942 RNF5_HUMA	GSQK(1)PQDPR	20	3.17
2		N E3 ubiquitin-protein			
		ligase RNF5 OS=Homo			
		sapiens GN=RNF5 PE=1			
		SV=1			
P11021	GRP7	>sp P11021 GRP78_HUM	VLEDSDLK(0.44)K(0.56)	1	3.16
	8	AN 78 kDa glucose-			

		regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2			
P63261	ACT G	>sp P63261 ACTG_HUMA N Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1;>sp P60709 ACTB_ HUMAN Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1;>sp P68133 ACTS_H UMAN Actin, alpha skeletal muscle OS=Homo sapiens GN=ACTA1 PE=1 SV=1;>sp P68032 ACTC	DSYVGDEAQSK(1)R	7	3.15
Q8TC T9	HM1 3	>sp Q8TCT9 HM13_HUM AN Minor histocompatibility antigen H13 OS=Homo sapiens GN=HM13 PE=1 SV=1	EGTEASASK(0.998)GLEK(0.002)	4	3.14
Q9Y67 9	AUP1	>sp Q9Y679 AUP1_HUMA N Ancient ubiquitous protein 1 OS=Homo sapiens GN=AUP1 PE=1 SV=1	VQQLVAK(1)ELGQTGTR	24	3.13
Q7L5N 7	PCAT 2	>sp Q7L5N7 PCAT2_HUM AN Lysophosphatidylcholine acyltransferase 2 OS=Homo sapiens GN=LPCAT2 PE=1 SV=1	K(1)ITQTALK	2	3.13
Q1425 4	FLOT 2	>sp Q14254 FLOT2_HUM AN Flotillin-2 OS=Homo sapiens GN=FLOT2 PE=1 SV=2	AEAYQK(1)YGDAAK	2	3.08
Q70U Q0	IKIP	>sp Q70UQ0 IKIP_HUMA N Inhibitor of nuclear factor kappa-B kinase-interacting protein OS=Homo sapiens GN=IKBIP PE=1 SV=1	SEGGK(1)TPVAR	1	3.07
Q0076 5	REEP 5	>sp Q00765 REEP5_HUM AN Receptor expression- enhancing protein 5 OS=Homo sapiens GN=REEP5 PE=1 SV=3	AK(1)ETADAITK	6	3.03
Q8WU Y1	THE M6	>sp Q8WUY1 THEM6_HU MAN Protein THEM6 OS=Homo sapiens GN=THEM6 PE=1 SV=2	MESGLSDVTK(1)DQ	3	3.01
Q1467 7	EPN4	>sp Q14677 EPN4_HUMA N Clathrin interactor 1 OS=Homo sapiens GN=CLINT1 PE=1 SV=1	SQNTDMVQK(0.996)SVSK(0.004)	3	2.92
O9581 6	BAG 2	>sp O95816 BAG2_HUMA N BAG family molecular	GAGSK(1)TLQQNAESR	17	2.89

		chaperone regulator 2 OS=Homo sapiens GN=BAG2 PE=1 SV=1			
Q96CS 7	PKH B2	>sp Q96CS7 PKHB2_HUM AN Pleckstrin homology domain-containing family B member 2 OS=Homo sapiens GN=PLEKHB2 PE=1 SV=1	DTQPPDGK(0.837)SK(0.163)	4	2.88
Q8NC U8	YB03 9	>sp Q8NCU8 YB039_HUM AN Uncharacterized protein encoded by LINC00116 OS=Homo sapiens GN=LINC00116 PE=1 SV=1	LQDK(1)LAATQK	1	2.87
Q1539 2	DHC 24	>sp Q15392 DHC24_HUM AN Delta(24)-sterol reductase OS=Homo sapiens GN=DHCR24 PE=1 SV=2	DIQK(1)QVR	4	2.83
P61956	SUM O2	>sp P61956 SUMO2_HUM AN Small ubiquitin-related modifier 2 OS=Homo sapiens GN=SUMO2 PE=1 SV=3;>sp Q6EEV6 SUMO 4_HUMAN Small ubiquitin-related modifier 4 OS=Homo sapiens GN=SUMO4 PE=1 SV=2;>sp P55854 SUMO3 HUMAN Small ubiquitin- related modifier 3 OS=Homo sapi	VAGQDGSVVQFK(0.382)IK(0.618)	1	2.83
Q9954 1	PLIN 2	>sp Q99541 PLIN2_HUMA N Perilipin-2 OS=Homo sapiens GN=PLIN2 PE=1 SV=2	GAVTGSVEK(0.832)TK(0.168)	14	2.81
P0CG4 7	UBB	>sp P0CG47 UBB_HUMA N Polyubiquitin-B OS=Homo sapiens GN=UBB PE=1 SV=1;>sp P0CG48 UBC_H UMAN Polyubiquitin-C OS=Homo sapiens GN=UBC PE=1 SV=3;>sp P62979 RS27A_ HUMAN Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2;>sp P62987 RL40_H UMA	TLTGK(1)TITLEVEPSDTIENVKAK	7	2.78
Q9NZ0 1	TECR	>sp Q9NZ01 TECR_HUM AN Very-long-chain enoyl- CoA reductase OS=Homo	DLRPAGSK(1)TR	1	2.77

		sapiens GN=TECR PE=1			
P05023	AT1A 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1;>sp P13637 AT1A3_ HUMAN Sodium/potassium- transporting ATPase subunit alpha-3 OS=Homo sapiens GN=ATP1A3 PE=1 SV=3;>sp P50993 AT1A2_ HUMAN Sodium/po	TDK(1)LVNER	2	2.77
Q9NZ0 1	TECR	>sp Q9NZ01 TECR_HUM AN Very-long-chain enoyl- CoA reductase OS=Homo sapiens GN=TECR PE=1 SV=1	SYLK(1)EFR	6	2.76
Q9C0 D9	EPT1	>sp Q9C0D9 EPT1_HUMA N Ethanolaminephosphotransf erase 1 OS=Homo sapiens GN=EPT1 PE=1 SV=3	AGYEYVSPEQLAGFDK(0.468)YK(0.532)	2	2.76
Q9C0 D9	EPT1	>sp Q9C0D9 EPT1_HUMA N Ethanolaminephosphotransf erase 1 OS=Homo sapiens GN=EPT1 PE=1 SV=3	AGYEYVSPEQLAGFDK(0.5)YK(0.5)	2	2.75
P31641	SC6A 6	>sp P31641 SC6A6_HUM AN Sodium- and chloride- dependent taurine transporter OS=Homo sapiens GN=SLC6A6 PE=1 SV=2	DILK(1)PSPGK	2	2.74
Q9BQ A9	CQ06 2	>sp Q9BQA9 CQ062_HUM AN Uncharacterized protein C17orf62 OS=Homo sapiens GN=C17orf62 PE=1 SV=1	STGK(1)VVLK	3	2.67
P05023	AT1A 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1;>sp P13637 AT1A3_ HUMAN Sodium/potassium- transporting ATPase subunit alpha-3 OS=Homo sapiens GN=ATP1A3 PE=1 SV=3;>sp P50993 AT1A2_ HUMAN Sodium/po	NSVFQQGMK(0.702)NK(0.298)		2.65

Q1685	CP51	>sp Q16850 CP51A HUM	GVAYDVPNPVFLEQK(0.451)K(0.549)	4	2.65
0	А	AN Lanosterol 14-alpha			
		demethylase OS=Homo			
		sapiens GN=CYP51A1			
		PE=1 SV=3			
O96LD	TRI4	>sp O96LD4 TRI47 HUM	TVALIK(1)SAAVAER	7	2.65
4	7	AN Tripartite motif-			
-		containing protein 47			
		OS=Homo sapiens			
		GN=TRIM47 PE=1 SV=2			
096B2	TM45	>sp $ O96B21 TM45B$ HUM	K(1)NSPLHYYOR	1	2.63
1	B	AN Transmembrane protein		1	2.05
1	D	45B OS=Homo saniens			
		GN=TMEM45B PE=1			
		SV=1			
01311	TRAF	>sp O13114 TRAF3 HUM	VTELESVDK(1)SAGOVAR	1	2.62
4	3	AN TNF receptor-		1	2.02
	5	associated factor 3			
		OS=Homo saniens			
		GN=TRAF3 PF=1 SV=2			
01685	CP51	>splO16850 CP51A HUM	VI ODNPASGEK (1) FAVVPEGAGR	8	2.61
0	Δ	AN L anosterol 14-alpha		0	2.01
Ū	11	demethylase OS=Homo			
		sapiens GN=CVP51A1			
		PF=1 SV=3			
09V57	LIBIA	$\sum_{n=1}^{n} \frac{1}{2} $	SOAFNK(1)LPOP	1	2 50
Q 91 52	1	AN UbiA prenyltransferase	SQAT NK(1)LI QK	1	2.39
,	1	domain_containing protein 1			
		OS=Homo saniens			
		GN=UBIAD1 PF=1 SV=1			
OSTC	HM1	>sp $ O8TCT9 HM13 HIM$	DPAAVTESK(0.996)EGTEASASK(0.004)	2	2 59
Q01C Τ9	3	AN Minor		2	2.57
17	5	histocompatibility antigen			
		H13 OS=Homo sapiens			
		GN=HM13 PE=1 SV=1			
O9NU	PLCE	$>$ sp $ O9NUO2 PICE_HUM$	YNPFOTK(1)VLSASOAFAAOR	2	2 59
$\frac{Q}{\Omega^2}$	ILCL	AN 1-acyl-sn-glycerol-3-		2	2.57
<u><u><u></u></u></u>		nhosphate acyltransferase			
		epsilon OS=Homo sapiens			
		GN=AGPAT5 PE=1 SV=3			
O8NB	SCPD	>sp O8NBX0 SCPDL_HU	NVSNLK(1)PVPLIGPK	2	2.58
X0	L	MAN Saccharopine		2	2.50
	2	dehydrogenase-like			
		oxidoreductase OS=Homo			
		sapiens GN=SCCPDH			
		PE=1 SV=1			
P08034	CXB1	>sp $ P08034 CXB1 HUMA$	LEGHGDPLHLEEVK(1)R	2	2.58
		N Gap junction beta-1	-(-)		
		protein OS=Homo sapiens			
		GN=GJB1 PE=1 SV=1			
Q9Y3E	PTH2	>sp Q9Y3E5 PTH2 HUMA	TSK(1)THTDTESEASILGDSGEYK	3	2.55
5		N Peptidyl-tRNA hydrolase			
		2, mitochondrial OS=Homo			
		sapiens GN=PTRH2 PE=1			
		SV=1			
			•		

Q1584 3	NED D8	>sp Q15843 NEDD8_HUM AN NEDD8 OS=Homo sapiens GN=NEDD8 PE=1 SV=1	TLTGK(1)EIEIDIEPTDK	4	2.50
P38435	VKG C	>sp P38435 VKGC_HUMA N Vitamin K-dependent gamma-carboxylase OS=Homo sapiens GN=GGCX PE=1 SV=2	TSPSSDK(0.999)VQK(0.001)	2	2.50
Q9BW H2	FUN D2	>sp Q9BWH2 FUND2_HU MAN FUN14 domain- containing protein 2 OS=Homo sapiens GN=FUNDC2 PE=1 SV=2	K(1)SNQIPTEVR	10	2.49
P55085	PAR2	>sp P55085 PAR2_HUMA N Proteinase-activated receptor 2 OS=Homo sapiens GN=F2RL1 PE=1 SV=1	TVK(1)QMQVSLTSK	1	2.48
Q5I7T 1	AG10 B	>sp Q5I7T1 AG10B_HUM AN Putative Dol-P- Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2- glucosyltransferase OS=Homo sapiens GN=ALG10B PE=1 SV=2;>sp Q5BKT4 AG10A HUMAN Dol-P- Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2- glucosyltransferase OS=Homo sapiens GN=ALG10 PE	NK(1)AASSIQR	1	2.47
P27824	CAL X	>sp P27824 CALX_HUMA N Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2	DKGDEEEEGEEK(1)LEEK	5	2.35
Q1584 3	NED D8	>sp Q15843 NEDD8_HUM AN NEDD8 OS=Homo sapiens GN=NEDD8 PE=1 SV=1	LIYSGK(1)QMNDEK	3	2.35
P62745	RHO B	>sp P62745 RHOB_HUMA N Rho-related GTP-binding protein RhoB OS=Homo sapiens GN=RHOB PE=1 SV=1	MK(1)QEPVRTDDGR	2	2.35
O9581 6	BAG 2	>sp O95816 BAG2_HUMA N BAG family molecular chaperone regulator 2 OS=Homo sapiens GN=BAG2 PE=1 SV=1	AQAK(0.999)INAK(0.001)	18	2.34
07584 4	FACE 1	>sp O75844 FACE1_HUM AN CAAX prenyl protease 1 homolog OS=Homo	NEEEGNSEEIK(0.976)AK(0.024)	4	2.32

		sapiens GN=ZMPSTE24 PE-1 SV-2			
Q96B9 6	TM15 9	>sp Q96B96 TM159_HUM AN Promethin OS=Homo sapiens GN=TMEM159 PE=1 SV=2	AK(1)EEPQSISR	3	2.32
O9519 7	RTN3	>sp O95197 RTN3_HUMA N Reticulon-3 OS=Homo sapiens GN=RTN3 PE=1 SV=2	SIVEK(0.911)IQAK(0.089)	1	2.31
09514 0	MFN 2	>sp O95140 MFN2_HUMA N Mitofusin-2 OS=Homo sapiens GN=MFN2 PE=1 SV=3	IK(1)QITEEVER	7	2.31
Q53G Q0	DHB 12	>sp Q53GQ0 DHB12_HU MAN Very-long-chain 3- oxoacyl-CoA reductase OS=Homo sapiens GN=HSD17B12 PE=1 SV=2	SK(1)GVFVQSVLPYFVATK	1	2.30
Q8TC T9	HM1 3	>sp Q8TCT9 HM13_HUM AN Minor histocompatibility antigen H13 OS=Homo sapiens GN=HM13 PE=1 SV=1	GK(1)NASDMPETITSR	1	2.30
Q8N2 H4	SYS1	>sp Q8N2H4 SYS1_HUM AN Protein SYS1 homolog OS=Homo sapiens GN=SYS1 PE=1 SV=1	EIPLNSAPK(1)SNV	7	2.29
Q9H0E 2	TOLI P	>sp Q9H0E2 TOLIP_HUM AN Toll-interacting protein OS=Homo sapiens GN=TOLLIP PE=1 SV=1	LNITVVQAK(0.995)LAK(0.005)	9	2.28
P48066	S6A1 1	>sp P48066 S6A11_HUMA N Sodium- and chloride- dependent GABA transporter 3 OS=Homo sapiens GN=SLC6A11 PE=2 SV=1	ALPLGNGK(1)AAEEAR	5	2.24
P33527	MRP 1	>sp P33527 MRP1_HUMA N Multidrug resistance- associated protein 1 OS=Homo sapiens GN=ABCC1 PE=1 SV=3	VDANEEVEALIVK(0.959)SPQK(0.041)	2	2.22
Q9BU V8	CT02 4	>sp Q9BUV8 CT024_HUM AN Uncharacterized protein C20orf24 OS=Homo sapiens GN=C20orf24 PE=2 SV=1	RK(1)EEPPQPQLANGALK	3	2.21
O1496 4	HGS	>sp O14964 HGS_HUMAN Hepatocyte growth factor- regulated tyrosine kinase substrate OS=Homo sapiens GN=HGS PE=1 SV=1	FGIEK(1)EVR	1	2.20

Q9975	PI51	>sp Q99755 PI51A HUMA	GAIQLGITHTVGSLSTK(1)PER	3	2.18
5	А	N Phosphatidylinositol 4-			
		phosphate 5-kinase type-1			
		alpha OS=Homo sapiens			
		GN=PIP5K1A PE=1 SV=1			
Q8TC1	RDH	>sp Q8TC12 RDH11_HUM	GELVAK(1)EIQTTTGNQQVLVR	1	2.17
2	11	AN Retinol dehydrogenase			
		11 OS=Homo sapiens			
		GN=RDH11 PE=1 SV=2			
Q0782	MCL	>sp Q07820 MCL1_HUMA	LLATEK(1)EASAR	2	2.17
0	1	N Induced myeloid			
		leukemia cell differentiation			
		protein Mcl-1 OS=Homo			
		sapiens GN=MCL1 PE=1			
0.50.0	B.115	SV=3			a 1 =
Q53G	DHB	>sp Q53GQ0 DHB12_HU	DKLDQVSSEIK(0.985)EK(0.015)	1	2.17
Q0	12	MAN Very-long-chain 3-			
		oxoacyl-CoA reductase			
		OS=Homo sapiens			
		GN=HSD1/B12 PE=1			
08N0	SPG2	SV = 2 >sp 08N0X7 SDC20 HUM		1	2.14
QOINU X7	5FU2 0	AN Spartin OS=Homo	IQFEEK(0.999)FVEVSFAVIK(0.001)	1	2.14
Δ/	U	saniens GN=SPG20 PE=1			
		SV=1			
01539	DHC	>sp $ O15392 DHC24$ HIM	FK(1)LGCODAFPEVYDK	1	2.13
2	24	AN Delta(24)-sterol		1	2.15
-	2.	reductase OS=Homo			
		sapiens GN=DHCR24			
		PE=1 SV=2			
Q6UX	MET	>sp Q6UX53 MET7B HU	ELFSQIK(0.993)GLTGASGK(0.007)	1	2.13
53	7B	MAN Methyltransferase-			
		like protein 7B OS=Homo			
		sapiens GN=METTL7B			
		PE=1 SV=2			
P48066	S6A1	>sp P48066 S6A11_HUMA	LTTPSTDLK(1)MR	1	2.12
	1	N Sodium- and chloride-			
		dependent GABA			
		transporter 3 OS=Homo			
		sapiens GN=SLC6A11			
01(05	CDC1	PE=2 SV=1		1	2.12
Q1685	CP51	>splQ16850/CP51A_HUM	LK(1)DSWVER	1	2.12
0	А	AIN Lanosterol 14-alpha			
		demethylase US=Homo			
		$\frac{\text{Sapiens ON-CTPSTAT}}{\text{DE}=1 \text{ SV}=2}$			
07538	ΙΔΤ3	$\sum 1 D = 1 S V = 3$ >sp Ω 75387 I AT2 HIIMA	DGVATK(1)SIRPR	9	2.12
7	LAIJ	N Large neutral amino acids		2	2.12
/		transporter small subunit 3			
		OS=Homo saniens			
		GN=SLC43A1 PE=1 SV=1			
P0CG4	UBB	>sp P0CG47 UBB_HUMA	AK(1)IQDKEGIPPDOOR	26	2.10
7	-	N Polyubiquitin-B		-	-
		OS=Homo sapiens			
		GN=UBB PE=1			

		SV=1;>sp P0CG48 UBC_H UMAN Polyubiquitin-C OS=Homo sapiens GN=UBC PE=1 SV=3;>sp P62979 RS27A_ HUMAN Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2;>sp P62987 RL40_H UMA			
Q96CS 3	FAF2	>sp Q96CS3 FAF2_HUMA N FAS-associated factor 2 OS=Homo sapiens GN=FAF2 PE=1 SV=2	EEEVQQQK(1)LAEER	4	2.09
Q9H6 A9	PCX3	>sp Q9H6A9 PCX3_HUM AN Pecanex-like protein 3 OS=Homo sapiens GN=PCNXL3 PE=1 SV=2;>sp Q96RV3 PCX1_ HUMAN Pecanex-like protein 1 OS=Homo sapiens GN=PCNX PE=1 SV=2	GSIQNAK(1)QALR	1	2.08
Q1515 5	NOM O1	>sp Q15155 NOMO1_HU MAN Nodal modulator 1 OS=Homo sapiens GN=NOMO1 PE=1 SV=5	ALGQAASDNSGPEDAK(1)R	2	2.07
Q9H2 H9	S38A 1	>sp Q9H2H9 S38A1_HUM AN Sodium-coupled neutral amino acid transporter 1 OS=Homo sapiens GN=SLC38A1 PE=1 SV=1	SLTNSHLEK(0.435)K(0.565)	3	2.04
P69849	NOM O3	>sp P69849 NOMO3_HUM AN Nodal modulator 3 OS=Homo sapiens GN=NOMO3 PE=3 SV=2;>sp Q5JPE7 NOMO2 HUMAN Nodal modulator 2 OS=Homo sapiens GN=NOMO2 PE=1 SV=1	LQGVGALGQAASDNSGPEDAK(1)R	3	2.03
P08134	RHO C	>sp P08134 RHOC_HUMA N Rho-related GTP-binding protein RhoC OS=Homo sapiens GN=RHOC PE=1 SV=1	MK(1)QEPVR	2	2.02
P48449	ERG7	>sp P48449 ERG7_HUMA N Lanosterol synthase OS=Homo sapiens GN=LSS PE=1 SV=1	LSQVPDNPPDYQK(1)YYR	1	2.02
P21796	VDA C1	>sp P21796 VDAC1_HUM AN Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2	LTFDSSFSPNTGK(0.828)K(0.172)	5	2.02

Q9H3	TMX	>sp Q9H3N1 TMX1 HUM	LLSESAQPLK(0.864)K(0.136)	4	1.99
N1	1	AN Thioredoxin-related			
		transmembrane protein 1			
		OS=Homo sapiens			
		GN=TMX1 PE=1 SV=1			
P38435	VKG	>sp P38435 VKGC HUMA	DK(1)AELISGPR	2	1.99
	С	N Vitamin K-dependent			
		gamma-carboxvlase			
		OS=Homo sapiens			
		GN=GGCX PE=1 SV=2			
O96A2	FUCT	>sp 096A29 FUCT1_HUM	DSEK(1)SAMGV	3	1.99
9	1	AN GDP-fucose transporter		5	1.,,,
-	-	1 OS=Homo sapiens			
		GN=SLC35C1 PE=1 SV=1			
P33897	ABC	>sp P33897 ABCD1 HUM	DVLSGGEK(1)OR	5	1 97
133077	D1	AN ATP-binding cassette	D (ESOCER(I) QR	5	1.97
		sub-family D member 1			
		OS=Homo saniens			
		GN=ABCD1 PF=1			
		SV=2:>ep O0UB12 ABCD2			
		HUMAN ATP-binding			
		member 2 OS-Homo			
		apping CN=ADCD2 DE=1			
		SV-1			
OONIV	СТРО	SV = 1		1	1.07
Q9N I	GIKo	AN Solute comion family 2	OK(1)ILEQIIANTEOK	1	1.97
04		An Solute carrier family 2,			
		transmontation momban 8			
		OS=Homo sapiens			
00110	МЕТ	GN=SLC2A8 PE=1 SV=3		1	1.07
Q9H8		>sp Q9H8H3 ME1/A_HU	ASFSK(0.965)LK(0.035)	1	1.96
нэ	/A	MAN Methyltransferase-			
		inke protein /A OS=Homo			
		sapiens GN=METTL/A			
00557	ACCT	PE=1 SV=1		1	1.02
09557	ACSL	>sp 0955/3 ACSL3_HUM	TK(1)ADFFEDENGQR	1	1.93
3	3	AN Long-chain-fatty-acid			
		CoA ligase 3 OS=Homo			
		sapiens GN=ACSL3 PE=1			
00112				1	1.02
Q9H3	IMX	>sp Q9H3N1 1MX1_HUM	K(1)LLSESAQPLK		1.92
NI	1	AN Inioredoxin-related			
		transmembrane protein 1			
		OS=Homo sapiens			
	L GGT	GN=1MX1 PE=1 SV=1			1.00
09557	ACSL	>sp 0955/3 ACSL3_HUM	VF1YAK(0.413)NK(0.587)	2	1.92
3	3	AN Long-chain-fatty-acid			
		CoA ligase 3 OS=Homo			
		sapiens GN=ACSL3 PE=1			
DOTION					1.01
P07437	TBB5	>sp P07437 TBB5_HUMA	K(1)LAVNMVPFPR	3	1.91
		N Tubulin beta chain			
		OS=Homo sapiens			
		GN=TUBB PE=1			

		SV=2;>sp P68371 TBB4B_ HUMAN Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1;>sp P04350 TBB4A_ HUMAN Tubulin beta-4A chain OS=Homo sapiens GN=TUBB4A PE=1 SV=2;>sp Q3ZCM7 TBB8_ HUM			
P21796	VDA C1	>sp P21796 VDAC1_HUM AN Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2	LTFDSSFSPNTGK(0.424)K(0.576)	5	1.90
Q9NP A0	EMC 7	>sp Q9NPA0 EMC7_HUM AN ER membrane protein complex subunit 7 OS=Homo sapiens GN=EMC7 PE=1 SV=1	LFSSK(0.068)SSGK(0.932)	5	1.89
07538 7	LAT3	>sp O75387 LAT3_HUMA N Large neutral amino acids transporter small subunit 3 OS=Homo sapiens GN=SLC43A1 PE=1 SV=1	LSQK(1)APSLEDGSDAFMSPQDVR	7	1.89
O9514 0	MFN 2	>sp O95140 MFN2_HUMA N Mitofusin-2 OS=Homo sapiens GN=MFN2 PE=1 SV=3	FLGPK(1)NSR	1	1.89
P05023	AT1A 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	CSSILLHGK(0.999)EQPLDEELK(0.001)	1	1.89
Q9BU V8	CT02 4	>sp Q9BUV8 CT024_HUM AN Uncharacterized protein C20orf24 OS=Homo sapiens GN=C20orf24 PE=2 SV=1	VSVWSK(1)VLR	3	1.88
Q8NE0 0	TM10 4	>sp Q8NE00 TM104_HUM AN Transmembrane protein 104 OS=Homo sapiens GN=TMEM104 PE=1 SV=2	AEK(1)RPILSVQR	7	1.88
Q GU W P7	LCLT 1	>sp Q6UWP7 LCLT1_HU MAN Lysocardiolipin acyltransferase 1 OS=Homo sapiens GN=LCLAT1 PE=1 SV=1	SNAFAEK(0.999)NGLQK(0.001)	2	1.87
Q9BS R8	YIPF 4	>sp Q9BSR8 YIPF4_HUM AN Protein YIPF4 OS=Homo sapiens GN=YIPF4 PE=1 SV=1	LNLGGDFIK(1)ESTATTFLR	2	1.86

Q9H3 N1	TMX 1	>sp Q9H3N1 TMX1_HUM AN Thioredoxin-related transmembrane protein 1	LLSESAQPLK(0.412)K(0.588)	4	1.86
		OS=Homo sapiens GN=TMX1 PE=1 SV=1			
P04843	RPN1	>sp P04843 RPN1_HUMA N Dolichyl- diphosphooligosaccharide protein glycosyltransferase subunit 1 OS=Homo sapiens GN=RPN1 PE=1 SV=1	LK(1)TEGSDLCDR	2	1.85
Q9NX F8	ZDH C7	>sp Q9NXF8 ZDHC7_HU MAN Palmitoyltransferase ZDHHC7 OS=Homo sapiens GN=ZDHHC7 PE=1 SV=2	SEK(1)PTWER	1	1.84
O0026 4	PGR C1	>sp O00264 PGRC1_HUM AN Membrane-associated progesterone receptor component 1 OS=Homo sapiens GN=PGRMC1 PE=1 SV=3	K(1)FYGPEGPYGVFAGR	1	1.84
Q1575 8	AAA T	>sp Q15758 AAAT_HUMA N Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2	CVEENNGVAK(1)HISR	1	1.83
Q1415 2	EIF3 A	>sp Q14152 EIF3A_HUMA N Eukaryotic translation initiation factor 3 subunit A OS=Homo sapiens GN=EIF3A PE=1 SV=1	LK(1)QFEER	1	1.82
Q9Y5 Y0	FLVC 1	>sp Q9Y5Y0 FLVC1_HUM AN Feline leukemia virus subgroup C receptor-related protein 1 OS=Homo sapiens GN=FLVCR1 PE=1 SV=1	TVMLSK(1)QSESAI	1	1.82
Q9Y39 7	ZDH C9	>sp Q9Y397 ZDHC9_HUM AN Palmitoyltransferase ZDHHC9 OS=Homo sapiens GN=ZDHHC9 PE=1 SV=2	IK(1)NFQINNQIVK	2	1.81
P78382	S35A 1	>sp P78382 S35A1_HUMA N CMP-sialic acid transporter OS=Homo sapiens GN=SLC35A1 PE=2 SV=1	QDTTSIQQGETASK(1)ER	1	1.81
O7595 5	FLOT 1	>sp O75955 FLOT1_HUM AN Flotillin-1 OS=Homo sapiens GN=FLOT1 PE=1 SV=3	LTGVSISQVNHK(1)PLR	1	1.80
Q1467 7	EPN4	>sp Q14677 EPN4_HUMA N Clathrin interactor 1	QDAFANFANFSK(1)	1	1.80

		OS=Homo sapiens			
P05787	K2C8	GN=CLINIIPE=ISV=I >sp P05787 K2C8 HUMA		12	1.80
105787	K2C0	N Keratin type II	LQAEILOLK(1)OQK	12	1.60
		cvtoskeletal 8 OS=Homo			
		sapiens GN=KRT8 PE=1			
		SV=7;>P05787 SWISS-			
		PROT:P05787			
		Tax_Id=9606			
		Gene_Symbol=KRT8			
		Keratin, type II cytoskeletal			
		8;>H-INV:HI1000292931			
		1ax_1d=9606 Gene Symbol= Similar to			
		Keratin type II cytoske			
P00387	NB5R	>sp $ P00387 NB5R3 HUM$	TVK(1)SVGMIAGGTGITPMLOVIR	1	1.79
100507	3	AN NADH-cytochrome b5		1	1.75
	-	reductase 3 OS=Homo			
		sapiens GN=CYB5R3 PE=1			
		SV=3			
Q9Y6	NEM	>sp Q9Y6K9 NEMO_HUM	LK(1)EEAEQHK	3	1.79
K9	0	AN NF-kappa-B essential			
		modulator OS=Homo			
		SV=2			
P08183	MDR	>sp P08183 MDR1 HUMA	ELLAYAK(1)AGAVAEEVLAAIR	1	1.79
	1	N Multidrug resistance		_	
		protein 1 OS=Homo sapiens			
		GN=ABCB1 PE=1 SV=3			
Q1685	CP51	>sp Q16850 CP51A_HUM	QHVSIIEK(1)ETK	3	1.78
0	А	AN Lanosterol 14-alpha			
		demethylase OS=Homo			
		PE=1 SV=3			
O9HD	TM9S	>sp $ O9HD45 TM9S3$ HUM	IYTNVK(1)ID	5	1.77
45	3	AN Transmembrane 9		0	1177
		superfamily member 3			
		OS=Homo sapiens			
		GN=TM9SF3 PE=1 SV=2			
P49585	PCY1	>sp P49585 PCY1A_HUM	VEEK(1)SIDLIQK	2	1.77
	А	AN Choline-phosphate			
		OS=Homo sapiens			
		GN=PCYT1A PE=1 SV=2			
Q9NP	EMC	>sp Q9NPA0 EMC7 HUM	LFSSK(0.999)SSGK(0.001)	5	1.76
Ã0	7	AN ER membrane protein			
		complex subunit 7			
		OS=Homo sapiens			
D 00102	1.055	GN=EMC7 PE=1 SV=1			1.7.4
P08183	MDR	>sp P08183 MDR1_HUMA	GIQLSGGQK(1)QR	2	1.74
	1	notein 1 OS=Homo soniers			
		GN=ABCB1 PF=1			
		SV=3:>sp P21439 MDR3			
		HUMAN			

r				1	
		Phosphatidylcholine			
		OS=Homo sapiens			
		GN=ABCB4 PE=1 SV=2			
O9UP	XCT	>sp $ O9UPY5 XCT HUMA$	K(1)PVVSTISK	1	1.74
Y5		N Cystine/glutamate		-	
		transporter OS=Homo			
		sapiens GN=SLC7A11			
		PE=1 SV=1			
P56937	DHB	>sp P56937 DHB7_HUMA	VTIQK(1)TDNQAR	3	1.73
	7	N 3-keto-steroid reductase			
		OS=Homo sapiens			
0.1.50.1		GN=HSD17B7 PE=1 SV=1			4 = 2
Q1584	NED	>sp Q15843 NEDD8_HUM	QMNDEK(0.995)TAADYK(0.005)	1	1.73
3	D8	AN NEDD8 OS=Homo			
		sapiens GN=NEDD8 PE=1			
00351	ΤΔΡ2	SV = 1 >sp 003519 TAP2 HUMA	ODI GEEOETK(1)TGEI NSR	3	1 73
9	17112	N Antigen peptide		5	1.75
-		transporter 2 OS=Homo			
		sapiens GN=TAP2 PE=1			
		sv=1			
Q8NB	DHB	>sp Q8NBQ5 DHB11_HU	LTAYEFAK(0.941)LK(0.059)	1	1.71
Q5	11	MAN Estradiol 17-beta-			
		dehydrogenase 11			
		OS=Homo sapiens			
		GN=HSD17B11 PE=1			
00056	DVD4	SV=3		2	1.70
Q9930 0	PKP4	N Plakophilin 4 OS-Homo	SPSIDSIQK(1)DPK	2	1.70
9		sapiens GN=PKP4 PE=1			
		SV=2·>sn O9UOB3 CTND			
		2 HUMAN Catenin delta-2			
		OS=Homo sapiens			
		GN=CTNND2 PE=1 SV=3			
Q1284	STX4	>sp Q12846 STX4_HUMA	LGNK(1)VQELEK	9	1.70
6		N Syntaxin-4 OS=Homo			
		sapiens GN=STX4 PE=1			
0.00.54	DI DI	SV=2			1.60
Q9954	PLIN	>sp Q99541 PLIN2_HUMA	TK(1)SVVSGSINTVLGSR	22	1.69
1	2	N Perilipin-2 OS=Homo			
		sapiens GN=PLIN2 PE=1			
O8WU	\$20A	$>$ sp $ O8WIIM9 S20\Delta1$ HII	DSGLVK(1)FLLHK	7	1.69
M9	1	MAN Sodium-dependent	DSGLTK(I)LLLIIK	,	1.07
1019	1	phosphate transporter 1			
		OS=Homo sapiens			
		GN=SLC20A1 PE=1 SV=1			
P53985	MOT	>sp P53985 MOT1_HUMA	ESK(1)EEETSIDVAGKPNEVTK	10	1.69
	1	N Monocarboxylate			
		transporter 1 OS=Homo			
		sapiens GN=SLC16A1			
00117	OFD C	PE=1 SV=3		1	1.60
Q9NK	SERC	>sp Q9NKX5 SERCI_HU	ISNNSQVNK(I)LILISDESTLIEDGGAR	1	1.69
ЛJ	1	INFAIN SETTIE INCORPORATOR I	1	1	1

		OS=Homo sapiens			
09599	BCI 1	>sp $ O95999 $ BCI 10 HIIM	SNSDESNESEK(1)J R	1	1.69
9	0	AN B-cell		1	1.09
-	Ũ	lymphoma/leukemia 10			
		OS=Homo sapiens			
		GN=BCL10 PE=1 SV=1			
P05023	AT1A	>sp P05023 AT1A1 HUM	QGAIVAVTGDGVNDSPALK(0.786)K(0.2	2	1.68
	1	AN Sodium/potassium-	14)		
		transporting ATPase			
		subunit alpha-1 OS=Homo			
		sapiens GN=ATP1A1 PE=1			
		SV=1;>sp P13637 AT1A3_			
		HUMAN			
		Sodium/potassium-			
		transporting ATPase			
		subunit alpha-3 OS=Homo			
		sapiens $GN=A1P1A3PE=1$			
		$SV=3$; $>$ sp P 30993 A11A2_			
00303	CUI 5	SchO02024/CIU 5 HUMA		6	1.68
Q9303 4	COLJ	N Cullin-5 OS=Homo	IQEAIIQIWIK(1)WIK	0	1.00
-		saniens GN=CUL 5 PF=1			
		SV=4			
O3SX	HSD	>sp Q3SXM5 HSDL1 HU	LOVVAK(1)DIADTYK	1	1.68
M5	L1	MAN Inactive			
		hydroxysteroid			
		dehydrogenase-like protein			
		1 OS=Homo sapiens			
		GN=HSDL1 PE=1 SV=3			
Q6ZT2	TMP	>sp Q6ZT21 TMPPE_HUM	VVGSLEK(1)TR	5	1.66
1	PE	AN Transmembrane protein			
		with			
		metallophosphoesterase			
		GN=TMPPF PF=2 SV=2			
P23634	AT2B	>sn P23634 AT2B4 HIIM	NFK(1)GEVEOEK	3	1.66
123034	4	AN Plasma membrane		5	1.00
	•	calcium-transporting			
		ATPase 4 OS=Homo			
		sapiens GN=ATP2B4 PE=1			
		sv=2			
01525	RER1	>sp O15258 RER1_HUMA	SEGDSVGESVHGK(1)PSVVYR	1	1.65
8		N Protein RER1 OS=Homo			
		sapiens GN=RER1 PE=1			
		SV=1		_	
Q8N1F	NUP9	>sp Q8N1F7 NUP93_HUM	LSPATENK(1)LR	2	1.65
7	3	AN Nuclear pore complex			
		protein Nup93 US=Homo			
		sapiens GN=NUP93 PE=1 SV=2			
O9H44	CHM	>sn O9H444 CHM4R HII	AGK(1)GGPTPOFAIOR	8	1.65
4	4B	MAN Charged		0	1.05
		multivesicular body protein			

		4b OS=Homo sapiens GN=CHMP4B PF=1 SV=1			
O1449 5	PLPP 3	>sp O14495 PLPP3_HUM AN Phospholipid phosphatase 3 OS=Homo sapiens GN=PLPP3 PE=1 SV=1	AIVPESK(1)NGGSPALNNNPR	11	1.64
O1525 8	RER1	>sp O15258 RER1_HUMA N Protein RER1 OS=Homo sapiens GN=RER1 PE=1 SV=1	EDAGK(1)AFAS	2	1.63
Q9Y3P 4	RHB D3	>sp Q9Y3P4 RHBD3_HU MAN Rhomboid domain- containing protein 3 OS=Homo sapiens GN=RHBDD3 PE=2 SV=1	VEGAVSLLVGGQVGTETLVTHGK(1)GG PAHSEGPGPP	1	1.62
07539 6	SC22 B	>sp O75396 SC22B_HUM AN Vesicle-trafficking protein SEC22b OS=Homo sapiens GN=SEC22B PE=1 SV=4	K(1)LNEQSPTR	1	1.61
Q9HC 07	TM16 5	>sp Q9HC07 TM165_HUM AN Transmembrane protein 165 OS=Homo sapiens GN=TMEM165 PE=1 SV=1	TK(1)LLNGPGDVETGTSITVPQK	6	1.61
Q9UF H2	DYH 17	>sp Q9UFH2 DYH17_HU MAN Dynein heavy chain 17, axonemal OS=Homo sapiens GN=DNAH17 PE=1 SV=2	NVTEK(0.5)QK(0.5)	5	1.61
Q9H6 H4	REEP 4	>sp Q9H6H4 REEP4_HUM AN Receptor expression- enhancing protein 4 OS=Homo sapiens GN=REEP4 PE=1 SV=1	SYETVLSFGK(1)R	2	1.60
Q9NUJ 7	PLCX 1	>sp Q9NUJ7 PLCX1_HUM AN PI-PLC X domain- containing protein 1 OS=Homo sapiens GN=PLCXD1 PE=2 SV=1	VK(1)TEALIR	11	1.59
P55085	PAR2	>sp P55085 PAR2_HUMA N Proteinase-activated receptor 2 OS=Homo sapiens GN=F2RL1 PE=1 SV=1	K(1)SSSYSSSSTTVK	2	1.58
Q9UF H2	DYH 17	>sp Q9UFH2 DYH17_HU MAN Dynein heavy chain 17, axonemal OS=Homo sapiens GN=DNAH17 PE=1 SV=2	NVTEK(0.981)QK(0.019)	5	1.56
Q9HC 07	TM16 5	>sp Q9HC07 TM165_HUM AN Transmembrane protein 165 OS=Homo sapiens	K(0.984)K(0.016)DEEFQR	1	1.56

		GN=TMEM165 PE=1			
O1526 0	SURF 4	>sp O15260 SURF4_HUM AN Surfeit locus protein 4 OS=Homo sapiens GN=SURF4 PE=1 SV=3	SEGK(1)SMFAGVPTMR	1	1.55
Q8NB Q5	DHB 11	>sp Q8NBQ5 DHB11_HU MAN Estradiol 17-beta- dehydrogenase 11 OS=Homo sapiens GN=HSD17B11 PE=1 SV=3	EDIYSSAK(0.862)K(0.138)	1	1.55
P24001	IL32	>sp P24001 IL32_HUMAN Interleukin-32 OS=Homo sapiens GN=IL32 PE=1 SV=3	FYDK(1)MQNAESGR	5	1.55
Q9965 0	OSM R	>sp Q99650 OSMR_HUM AN Oncostatin-M-specific receptor subunit beta OS=Homo sapiens GN=OSMR PE=1 SV=1	SLTETELTK(1)PNYLYLLPTEK	2	1.54
P56747	CLD6	>sp P56747 CLD6_HUMA N Claudin-6 OS=Homo sapiens GN=CLDN6 PE=1 SV=2	GPSEYPTK(1)NYV	2	1.53
P13639	EF2	>sp P13639 EF2_HUMAN Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4	YFDPANGK(0.978)FSK(0.022)	1	1.53
O1449 5	PLPP 3	>sp O14495 PLPP3_HUM AN Phospholipid phosphatase 3 OS=Homo sapiens GN=PLPP3 PE=1 SV=1	MQNYK(0.996)YDK(0.004)	5	1.52
P08034	CXB1	>sp P08034 CXB1_HUMA N Gap junction beta-1 protein OS=Homo sapiens GN=GJB1 PE=1 SV=1	LSPEYK(1)QNEINK	10	1.52
Q1573 8	NSD HL	>sp Q15738 NSDHL_HUM AN Sterol-4-alpha- carboxylate 3- dehydrogenase, decarboxylating OS=Homo sapiens GN=NSDHL PE=1 SV=2	VNADIEK(0.992)VNQNQAK(0.008)	2	1.51
Q8TCJ 2	STT3 B	>sp Q8TCJ2 STT3B_HUM AN Dolichyl- diphosphooligosaccharide protein glycosyltransferase subunit STT3B OS=Homo sapiens GN=STT3B PE=1 SV=1	AEPSAPESK(0.4)HK(0.6)	1	1.50
O9557 3	ACSL 3	>sp O95573 ACSL3_HUM AN Long-chain-fatty-acid CoA ligase 3 OS=Homo	EVLNEEDEVQPNGK(0.787)IFK(0.213)	1	1.49

		sapiens GN=ACSL3 PE=1			
Q6NU Q4	TM21 4	>sp Q6NUQ4 TM214_HU MAN Transmembrane protein 214 OS=Homo sapiens GN=TMEM214 PE=1 SV=2	ATK(1)TAGVGR	1	1.49
Q6NU K4	REEP 3	>sp Q6NUK4 REEP3_HU MAN Receptor expression- enhancing protein 3 OS=Homo sapiens GN=REEP3 PE=1 SV=1	FLHPLLSSK(1)ER	3	1.49
O7539 6	SC22 B	>sp O75396 SC22B_HUM AN Vesicle-trafficking protein SEC22b OS=Homo sapiens GN=SEC22B PE=1 SV=4	GEALSALDSK(1)ANNLSSLSK	3	1.48
Q9Y3E 5	PTH2	>sp Q9Y3E5 PTH2_HUMA N Peptidyl-tRNA hydrolase 2, mitochondrial OS=Homo sapiens GN=PTRH2 PE=1 SV=1	NDLK(0.985)MGK(0.015)	3	1.48
Q9973 5	MGS T2	>sp Q99735 MGST2_HUM AN Microsomal glutathione S-transferase 2 OS=Homo sapiens GN=MGST2 PE=1 SV=1	YK(1)VTPPAVTGSPEFER	3	1.47
Q1575 8	AAA T	>sp Q15758 AAAT_HUMA N Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2	GPAGDATVASEK(1)ESVM	2	1.47
Q9Y65 3	GPR5 6	>sp Q9Y653 GPR56_HUM AN G-protein coupled receptor 56 OS=Homo sapiens GN=GPR56 PE=1 SV=2	GGPSPLK(1)SNSDSAR	2	1.46
P37173	TGFR 2	>sp P37173 TGFR2_HUM AN TGF-beta receptor type-2 OS=Homo sapiens GN=TGFBR2 PE=1 SV=2	FAEVYK(0.964)AK(0.036)	4	1.46
P08183	MDR 1	>sp P08183 MDR1_HUMA N Multidrug resistance protein 1 OS=Homo sapiens GN=ABCB1 PE=1 SV=3	FYDPLAGK(0.999)VLLDGK(0.001)	1	1.46
Q9P2E 9	RRBP 1	>sp Q9P2E9 RRBP1_HUM AN Ribosome-binding protein 1 OS=Homo sapiens GN=RRBP1 PE=1 SV=4	GNTPATGTTQGK(0.449)K(0.551)	1	1.45
P68363	TBA1 B	>sp P68363 TBA1B_HUM AN Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1;>sp Q71U36 TBA1A HUMAN Tubulin alpha-	DVNAAIATIK(0.14)TK(0.86)	9	1.45

Q9954	PLIN	1A chain OS=Homo sapiens GN=TUBA1A PE=1 SV=1;>sp Q13748 TBA3C_ HUMAN Tubulin alpha- 3C/D chain OS=Homo sapiens GN=TUBA3C PE=1 SV=3;>sp Q6PE >sp Q99541 PLIN2_HUMA	DSVASTITGVMDK(0.323)TK(0.677)	5	1.45
1	2	N Perilipin-2 OS=Homo sapiens GN=PLIN2 PE=1 SV=2			
Q9962 4	S38A 3	>sp Q99624 S38A3_HUMA N Sodium-coupled neutral amino acid transporter 3 OS=Homo sapiens GN=SLC38A3 PE=1 SV=1	SCMEGK(0.999)SFLQK(0.001)	1	1.45
P05023	AT1A 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1;>sp P13637 AT1A3_ HUMAN Sodium/potassium- transporting ATPase subunit alpha-3 OS=Homo sapiens GN=ATP1A3 PE=1 SV=3;>sp P50993 AT1A2_ HUMAN Sodium/po	AIAK(1)GVGIISEGNETVEDIAAR	3	1.45
01542 7	MOT 4	>sp O15427 MOT4_HUMA N Monocarboxylate transporter 4 OS=Homo sapiens GN=SLC16A3 PE=1 SV=1	LHK(1)PPADSGVDLR	12	1.43
O1449 5	PLPP 3	>sp O14495 PLPP3_HUM AN Phospholipid phosphatase 3 OS=Homo sapiens GN=PLPP3 PE=1 SV=1	YDK(1)AIVPESK	8	1.42
P54727	RD23 B	>sp P54727 RD23B_HUM AN UV excision repair protein RAD23 homolog B OS=Homo sapiens GN=RAD23B PE=1 SV=1	LIYAGK(0.999)ILNDDTALK(0.001)	4	1.42
P62834	A A	>sp P62834 RAP1A_HUM AN Ras-related protein Rap-1A OS=Homo sapiens GN=RAP1A PE=1 SV=1;>sp P61224 RAP1B_ HUMAN Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B PE=1 SV=1;>sp A6NIZ1 RP1BL_ HUMAN Ras-related	VVGK(1)EQGQNLAR	2	1.42

		protein Rap-1b-like protein OS=Homo sapiens PE=2 SV			
Q0835 7	S20A 2	>sp Q08357 S20A2_HUMA N Sodium-dependent phosphate transporter 2 OS=Homo sapiens GN=SLC20A2 PE=1 SV=1	LVGDTVSYSK(0.5)K(0.5)	1	1.41
Q0835 7	S20A 2	>sp Q08357 S20A2_HUMA N Sodium-dependent phosphate transporter 2 OS=Homo sapiens GN=SLC20A2 PE=1 SV=1	LVGDTVSYSK(0.5)K(0.5)	1	1.41
Q9NV 96	CC50 A	>sp Q9NV96 CC50A_HUM AN Cell cycle control protein 50A OS=Homo sapiens GN=TMEM30A PE=1 SV=1	DEVDGGPPCAPGGTAK(1)TR	2	1.41
P0DM V9	HS71 B	>sp P0DMV9 HS71B_HU MAN Heat shock 70 kDa protein 1B OS=Homo sapiens GN=HSPA1B PE=1 SV=1;>sp P0DMV8 HS71A HUMAN Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1;>sp P11142 HSP7C_ HUMAN Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA	ITITNDK(1)GR	36	1.40
Q9H3P 7	GCP6 0	>sp Q9H3P7 GCP60_HUM AN Golgi resident protein GCP60 OS=Homo sapiens GN=ACBD3 PE=1 SV=4	EK(1)IQQDADSVITVGR	1	1.40
Q96A5 7	TM23 0	>sp Q96A57 TM230_HUM AN Transmembrane protein 230 OS=Homo sapiens GN=TMEM230 PE=1 SV=1	TNLATGIPSSK(0.962)VK(0.038)	8	1.39
P07910	HNR PC	>sp P07910 HNRPC_HUM AN Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=4	ASNVTNK(1)TDPR	3	1.39
Q96JJ7	TMX 3	>sp Q96JJ7 TMX3_HUMA N Protein disulfide- isomerase TMX3 OS=Homo sapiens GN=TMX3 PE=1 SV=2	YEVSK(1)SENENQEQIEESK	1	1.38
Q9H8 H3	MET 7A	>sp Q9H8H3 MET7A_HU MAN Methyltransferase- like protein 7A OS=Homo	VTCIDPNPNFEK(0.996)FLIK(0.004)	4	1.38

		sapiens GN=METTL7A			
P78536	ADA	>sp P78536 ADA17_HUM	IIK(1)PFPAPQTPGR	1	1.37
	1/	metalloproteinase domain-			
		containing protein 17			
		OS=Homo sapiens			
		GN=ADAM17 PE=1 SV=1			
Q9NU	GIN	>sp Q9NU53 GINM1_HU	VDVIPVTAINLYPDGPEK(1)R	6	1.37
53	M1	MAN Glycoprotein integral			
		membrane protein l			
		GN-GINM1 PE-2 SV-1			
O9HC	TM16	>sp $ O9HC07 TM165$ HIM	MSPDEGOEELEEVOAELK(0.5)K(0.5)	3	1 37
07	5	AN Transmembrane protein	MSI DEGQEEEEE V QALEK(0.5)K(0.5)	5	1.57
07	5	165 OS=Homo sapiens			
		GN=TMEM165 PE=1			
		SV=1			
Q9C0	TTY	>sp Q9C0H2 TTYH3_HU	AK(1)YLATSQPRPDSSGSH	11	1.37
H2	H3	MAN Protein tweety			
		homolog 3 OS=Homo			
		SV=3			
Q96LD	TRI4	>sp Q96LD4 TRI47_HUM	ALQEAEQSK(1)VLSAVEDR	2	1.37
4	7	AN Tripartite motif-			
		containing protein 47			
		OS=Homo sapiens			
D27105	STO	GN=1RIM4/PE=1SV=2	I DDCEV(0,000)DCDCV(0,001)	1	1.26
P2/103	M	N Frythrocyte hand 7	LPDSFK(0.999)DSPSK(0.001)	1	1.50
	111	integral membrane protein			
		OS=Homo sapiens			
		GN=STOM PE=1 SV=3			
Q9HD	NRX	>sp Q9HDB5 NRX3B_HU	LAVGFSTTVK(1)	2	1.36
B5	3B	MAN Neurexin-3-beta			
		OS=Homo sapiens			
		GN=NRXN3 PE=1 SV=4 $Sr=00V4C0$ $NDV2$			
		SV = 4; > Sp Q914C0 NKA3			
		OS=Homo sapiens			
		GN=NRXN3 PE=1 SV=4			
P08183	MDR	>sp P08183 MDR1 HUMA	VVQEALDK(1)AR	3	1.36
	1	N Multidrug resistance			
		protein 1 OS=Homo sapiens			
		GN=ABCB1 PE=1			
		$SV=3$;>sp P21439 MDR3_			
		HUMAN Phognhatidulahalina			
		translocator ABCR4			
		OS=Homo saniens			
		GN=ABCB4 PE=1 SV=2			
P62820	RAB1	>sp P62820 RAB1A HUM	YASENVNK(0.998)LLVGNK(0.002)	1	1.36
	А	AN Ras-related protein			
		Rab-1A OS=Homo sapiens			
		GN=RAB1A PE=1			

		SV=3;>sp Q9H0U4 RAB1B HUMAN Ras-related protein Rab-1B OS=Homo sapiens GN=RAB1B PE=1 SV=1			
Q8IYS 2	K201 3	>sp Q8IYS2 K2013_HUM AN Uncharacterized protein KIAA2013 OS=Homo sapiens GN=KIAA2013 PE=2 SV=1	SK(1)EDPSV	2	1.36
P53985	MOT 1	>sp P53985 MOT1_HUMA N Monocarboxylate transporter 1 OS=Homo sapiens GN=SLC16A1 PE=1 SV=3	K(1)DLHDANTDLIGR	3	1.36
Q86TG 7	PEG1 0	>sp Q86TG7 PEG10_HUM AN Retrotransposon- derived protein PEG10 OS=Homo sapiens GN=PEG10 PE=1 SV=2	NVK(1)DGLITPTIAPNGAQVLQVK	7	1.35
Q9954 1	PLIN 2	>sp Q99541 PLIN2_HUMA N Perilipin-2 OS=Homo sapiens GN=PLIN2 PE=1 SV=2	GAVTGAK(1)DAVTTTVTGAK	1	1.35
Q96GF 1	RN18 5	>sp Q96GF1 RN185_HUM AN E3 ubiquitin-protein ligase RNF185 OS=Homo sapiens GN=RNF185 PE=1 SV=1	DK(1)VIPLYGR	1	1.35
Q8NC 54	KCT2	>sp Q8NC54 KCT2_HUM AN Keratinocyte-associated transmembrane protein 2 OS=Homo sapiens GN=KCT2 PE=2 SV=2	LDQNVNEAMPSLK(1)ITNDYIF	5	1.35
P23458	JAK1	>sp P23458 JAK1_HUMA N Tyrosine-protein kinase JAK1 OS=Homo sapiens GN=JAK1 PE=1 SV=2	DFLK(1)EFNNK	54	1.35
Q8TA V3	CP2 W1	>sp Q8TAV3 CP2W1_HU MAN Cytochrome P450 2W1 OS=Homo sapiens GN=CYP2W1 PE=1 SV=2	QK(1)TVVLTGFEAVK	3	1.34
P0CG4 7	UBB	>sp P0CG47 UBB_HUMA N Polyubiquitin-B OS=Homo sapiens GN=UBB PE=1 SV=1;>sp P0CG48 UBC_H UMAN Polyubiquitin-C OS=Homo sapiens GN=UBC PE=1 SV=3;>sp P62979 RS27A_ HUMAN Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1	TLSDYNIQK(1)ESTLHLVLR	752	1.34

		SV=2;>sp P62987 RL40_H UMA			
Q1289 3	TM11 5	>sp Q12893 TM115_HUM AN Transmembrane protein 115 OS=Homo sapiens GN=TMEM115 PE=1 SV=1	QLALK(1)ALNER	7	1.33
Q8TC1 2	RDH 11	>sp Q8TC12 RDH11_HUM AN Retinol dehydrogenase 11 OS=Homo sapiens GN=RDH11 PE=1 SV=2;>sp Q96NR8 RDH12 _HUMAN Retinol dehydrogenase 12 OS=Homo sapiens GN=RDH12 PE=1 SV=3	LDLSDTK(1)SIR	3	1.33
Q9H8 H3	MET 7A	>sp Q9H8H3 MET7A_HU MAN Methyltransferase- like protein 7A OS=Homo sapiens GN=METTL7A PE=1 SV=1	FLIK(1)SIAENR	2	1.33
Q96C V9	OPT N	>sp Q96CV9 OPTN_HUM AN Optineurin OS=Homo sapiens GN=OPTN PE=1 SV=2	QLQMDEMK(1)QTIAK	1	1.32
Q9GZ M5	YIPF 3	>sp Q9GZM5 YIPF3_HUM AN Protein YIPF3 OS=Homo sapiens GN=YIPF3 PE=1 SV=1	QVADQMWQAGK(1)R	2	1.31
P48029	SC6A 8	>sp P48029 SC6A8_HUM AN Sodium- and chloride- dependent creatine transporter 1 OS=Homo sapiens GN=SLC6A8 PE=1 SV=1	SAENGIYSVSGDEK(0.462)K(0.538)	3	1.31
P15260	INGR 1	>sp P15260 INGR1_HUMA N Interferon gamma receptor 1 OS=Homo sapiens GN=IFNGR1 PE=1 SV=1	SIILPK(1)SLISVVR	8	1.30
P48065	S6A1 2	>sp P48065 S6A12_HUMA N Sodium- and chloride- dependent betaine transporter OS=Homo sapiens GN=SLC6A12 PE=1 SV=2	EGLIAGEK(1)ETHL	9	1.30
Q9954 1	PLIN 2	>sp Q99541 PLIN2_HUMA N Perilipin-2 OS=Homo sapiens GN=PLIN2 PE=1 SV=2	DSVASTITGVMDK(0.977)TK(0.023)	5	1.30
Q86YT 5	S13A 5	>sp Q86YT5 S13A5_HUM AN Solute carrier family 13 member 5 OS=Homo sapiens GN=SLC13A5 PE=1 SV=1	AK(1)ELPGSQVIFEGPTLGQQEDQER	1	1.30

Q0165	LAT1	>sp Q01650 LAT1 HUMA	MLAAK(1)SADGSAPAGEGEGVTLQR	6	1.30
0		N Large neutral amino acids			
		transporter small subunit 1			
		OS=Homo sapiens			
		GN=SLC7A5 PE=1 SV=2			
P10586	PTPR	>sp P10586 PTPRF_HUM	TFALHK(0.995)SGSSEK(0.005)	1	1.29
	F	AN Receptor-type tyrosine-			
		protein phosphatase F			
		OS=Homo sapiens			
		GN=PTPRF PE=1 SV=2			
P20020	AT2B	>sp P20020 AT2B1_HUM	NEK(1)GEIEQER	5	1.29
	1	AN Plasma membrane			
		calcium-transporting			
		ATPase I OS=Homo			
		sapiens GN=A1P2B1 PE=1			
		$SV=3;>sp Q16/20 A12B3_$			
		HUMAN Plasma membrane			
		A TPase 2 OS-Uama			
		A Pase 5 OS -nomo			
		subjects $ON = ATF2D3FL = 1$ $SV = 3 \cdot 2 cp OO1814 A T2B2$			
		HIMAN Plasma membrane			
		calcium			
O9BY	LRR	>sp O9BY71 LRRC3_HU	SLPSAPASK(1)DPIGPGP	3	1 29
71	C3	MAN Leucine-rich repeat-		U	>
	_	containing protein 3			
		OS=Homo sapiens			
		GN=LRRC3 PE=1 SV=1			
P53985	MOT	>sp P53985 MOT1_HUMA	EEETSIDVAGK(0.003)PNEVTK(0.996)AA	1	1.29
	1	N Monocarboxylate	ESPDQK		
		transporter 1 OS=Homo			
		sapiens GN=SLC16A1			
-		PE=1 SV=3			
P48066	S6A1	>sp P48066 S6A11_HUMA	LK(1)SDGTIAAITEK	3	1.29
	1	N Sodium- and chloride-			
		dependent GABA			
		transporter 3 OS=Homo			
		sapiens GN=SLC6A11			
D06212	INCD	$\frac{PE=2}{S} = 1$		4	1.20
P00213	INSK	Sp PU0213 IINSK_HUMA	DIIK(I)GEAEIK	4	1.28
		OS-Homo seriors			
		GN=INSR PF=1 SV=4			
09278	STA	>sp $ 092783 $ STAM1 HIM	ASPALVAK(1)DPGTVANK	2	1.28
3	M1	AN Signal transducing		-	1.20
U U		adapter molecule 1			
		OS=Homo sapiens			
		GN=STAM PE=1 SV=3			
Q1350	SQST	>sp Q13501 SQSTM HUM	AYLLGK(1)EDAAR	4	1.28
1	M	AN Sequestosome-1			
		OS=Homo sapiens			
		GN=SQSTM1 PE=1 SV=1			
Q8IY2	CMIP	>sp Q8IY22 CMIP_HUMA	ILTSK(1)FLR	10	1.27
2		N C-Maf-inducing protein			

		OS=Homo sapiens GN=CMIP PE=1 SV=3			
Q8IY2 2	CMIP	>sp Q8IY22 CMIP_HUMA N C-Maf-inducing protein OS=Homo sapiens GN=CMIP PE=1 SV=3	TFLSK(1)ILTSK	12	1.27
Q9980 8	S29A 1	>sp Q99808 S29A1_HUMA N Equilibrative nucleoside transporter 1 OS=Homo sapiens GN=SLC29A1 PE=1 SV=3	AGK(1)EESGVSVSNSQPTNESHSIK	5	1.27
Q1350 1	SQST M	>sp Q13501 SQSTM_HUM AN Sequestosome-1 OS=Homo sapiens GN=SQSTM1 PE=1 SV=1	CSVCPDYDLCSVCEGK(1)GLHR	2	1.26
Q9BX S4	TMM 59	>sp Q9BXS4 TMM59_HU MAN Transmembrane protein 59 OS=Homo sapiens GN=TMEM59 PE=1 SV=1	SK(1)TEDHEEAGPLPTK(1)VNLAHSEI	1	1.26
07539 6	SC22 B	>sp O75396 SC22B_HUM AN Vesicle-trafficking protein SEC22b OS=Homo sapiens GN=SEC22B PE=1 SV=4	DLQQYQSQAK(1)QLFR	2	1.26
P07437	TBB5	>sp P07437 TBB5_HUMA N Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2	ISVYYNEATGGK(1)YVPR	1	1.26
P55085	PAR2	>sp P55085 PAR2_HUMA N Proteinase-activated receptor 2 OS=Homo sapiens GN=F2RL1 PE=1 SV=1	SSSYSSSSTTVK(1)TSY	8	1.26
P05026	AT1B 1	>sp P05026 AT1B1_HUM AN Sodium/potassium- transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 SV=1	FIWNSEK(0.661)K(0.339)	1	1.25
Q9C0B 5	ZDH C5	>sp Q9C0B5 ZDHC5_HU MAN Palmitoyltransferase ZDHHC5 OS=Homo sapiens GN=ZDHHC5 PE=1 SV=2;>sp Q9ULC8 ZDHC 8_HUMAN Probable palmitoyltransferase ZDHHC8 OS=Homo sapiens GN=ZDHHC8 PE=1 SV=3	TTNEQVTGK(1)FR	5	1.25
Q9UP Y5	XCT	>sp Q9UPY5 XCT_HUMA N Cystine/glutamate transporter OS=Homo	LPSLGNK(1)EPPGQEK	3	1.25

		sapiens GN=SLC7A11 PE=1 SV=1			
P53985	MOT 1	>sp P53985 MOT1_HUMA N Monocarboxylate transporter 1 OS=Homo sapiens GN=SLC16A1 PE=1 SV=3	ESKEEETSIDVAGK(1)PNEVTK	10	1.25
Q1662 5	OCL N	>sp Q16625 OCLN_HUMA N Occludin OS=Homo sapiens GN=OCLN PE=1 SV=1	YDK(1)SNILWDK	2	1.24
Q9UL C5	ACSL 5	>sp Q9ULC5 ACSL5_HU MAN Long-chain-fatty- acidCoA ligase 5 OS=Homo sapiens GN=ACSL5 PE=1 SV=1	LGVK(1)GSFEELCQNQVVR	1	1.24
Q9Y50 8	RN11 4	>sp Q9Y508 RN114_HUM AN E3 ubiquitin-protein ligase RNF114 OS=Homo sapiens GN=RNF114 PE=1 SV=1	ATIK(1)DASLQPR	3	1.23
Q8TB6 1	S35B 2	>sp Q8TB61 S35B2_HUM AN Adenosine 3'-phospho 5'-phosphosulfate transporter 1 OS=Homo sapiens GN=SLC35B2 PE=1 SV=1	ACVFGNEPK(1)ASDEVPLAPR	4	1.23
Q9NZI 8	IF2B1	>sp Q9NZI8 IF2B1_HUMA N Insulin-like growth factor 2 mRNA-binding protein 1 OS=Homo sapiens GN=IGF2BP1 PE=1 SV=2	IAPPETPDSK(1)VR	10	1.22
Q8NC 54	KCT2	>sp Q8NC54 KCT2_HUM AN Keratinocyte-associated transmembrane protein 2 OS=Homo sapiens GN=KCT2 PE=2 SV=2	DGLCSK(1)TVEYHR	5	1.22
Q9UKJ 5	CHIC 2	>sp Q9UKJ5 CHIC2_HUM AN Cysteine-rich hydrophobic domain- containing protein 2 OS=Homo sapiens GN=CHIC2 PE=1 SV=1	SIEK(1)LLEWENNR	10	1.21
P08183	MDR 1	>sp P08183 MDR1_HUMA N Multidrug resistance protein 1 OS=Homo sapiens GN=ABCB1 PE=1 SV=3	YNK(1)NLEEAK	11	1.21
Q9H8 M9	EVA1 A	>sp Q9H8M9 EVA1A_HU MAN Protein eva-1 homolog A OS=Homo sapiens GN=EVA1A PE=1 SV=1	TLNK(1)NVFTSAEELER	12	1.21
P48066	S6A1 1	>sp P48066 S6A11_HUMA N Sodium- and chloride- dependent GABA	SDGTIAAITEK(1)ETHF	6	1.21

		transporter 3 OS=Homo sapiens GN=SLC6A11 PE=2 SV=1			
Q9BT6 7	NFIP 1	>sp Q9BT67 NFIP1_HUM AN NEDD4 family- interacting protein 1 OS=Homo sapiens GN=NDFIP1 PE=1 SV=1	TK(1)AEATIPLVPGR	10	1.21
Q9NP5 8	ABC B6	>sp Q9NP58 ABCB6_HU MAN ATP-binding cassette sub-family B member 6, mitochondrial OS=Homo sapiens GN=ABCB6 PE=1 SV=1	EAIIK(1)YQGLEWK	9	1.20
Q9NU 53	GIN M1	>sp Q9NU53 GINM1_HU MAN Glycoprotein integral membrane protein 1 OS=Homo sapiens GN=GINM1 PE=2 SV=1	AENLEDK(1)TCI	3	1.20
Q1459 6	NBR1	>sp Q14596 NBR1_HUMA N Next to BRCA1 gene 1 protein OS=Homo sapiens GN=NBR1 PE=1 SV=3	TDDLTCQQEETFLLAK(1)EER	2	1.19
O1467 2	ADA 10	>sp O14672 ADA10_HUM AN Disintegrin and metalloproteinase domain- containing protein 10 OS=Homo sapiens GN=ADAM10 PE=1 SV=1	LPPPK(0.999)PLPGTLK(0.001)	2	1.19
P31946	1433 B	>sp P31946 1433B_HUMA N 14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3	SELVQK(0.319)AK(0.681)	8	1.19
Q9Y2 G8	DJC1 6	>sp Q9Y2G8 DJC16_HUM AN DnaJ homolog subfamily C member 16 OS=Homo sapiens GN=DNAJC16 PE=2 SV=3	TGK(1)TEPSFTK	1	1.19
Q9GZ M5	YIPF 3	>sp Q9GZM5 YIPF3_HUM AN Protein YIPF3 OS=Homo sapiens GN=YIPF3 PE=1 SV=1	GFK(1)GQLSR	5	1.18
Q96J0 2	ITCH	>sp Q96J02 ITCH_HUMA N E3 ubiquitin-protein ligase Itchy homolog OS=Homo sapiens GN=ITCH PE=1 SV=2	TGK(1)SALDNGPQIAYVR	1	1.18
O0016 1	SNP2 3	>sp O00161 SNP23_HUM AN Synaptosomal- associated protein 23 OS=Homo sapiens GN=SNAP23 PE=1 SV=1	TITMLDEQK(1)EQLNR	3	1.18
P07737	PROF 1	>sp P07737 PROF1_HUM AN Profilin-1 OS=Homo	STGGAPTFNVTVTK(0.371)TDK(0.629)	1	1.18

		sapiens GN=PFN1 PE=1 SV=2			
Q9954 1	PLIN 2	>sp Q99541 PLIN2_HUMA N Perilipin-2 OS=Homo sapiens GN=PLIN2 PE=1 SV=2	NVYSANQK(1)IQDAQDK	8	1.17
Q9954 1	PLIN 2	>sp Q99541 PLIN2_HUMA N Perilipin-2 OS=Homo sapiens GN=PLIN2 PE=1 SV=2	EVSDSLLTSSK(1)GQLQK	13	1.17
Q9H44 4	CHM 4B	>sp Q9H444 CHM4B_HU MAN Charged multivesicular body protein 4b OS=Homo sapiens GN=CHMP4B PE=1 SV=1	SVFGK(1)LFGAGGGK	10	1.17
Q9288 7	MRP 2	>sp Q92887 MRP2_HUMA N Canalicular multispecific organic anion transporter 1 OS=Homo sapiens GN=ABCC2 PE=1 SV=3	FLK(1)HNEVR	4	1.17
Q9288 7	MRP 2	>sp Q92887 MRP2_HUMA N Canalicular multispecific organic anion transporter 1 OS=Homo sapiens GN=ABCC2 PE=1 SV=3	NLK(1)TFLR	1	1.16
Q96J0 2	ITCH	>sp Q96J02 ITCH_HUMA N E3 ubiquitin-protein ligase Itchy homolog OS=Homo sapiens GN=ITCH PE=1 SV=2	FIYGNQDLFATSQSK(0.999)EFDPLGPLP PGWEK(0.001)	2	1.16
Q86YT 5	S13A 5	>sp Q86YT5 S13A5_HUM AN Solute carrier family 13 member 5 OS=Homo sapiens GN=SLC13A5 PE=1 SV=1	AALK(1)VLQEEYR	1	1.16
P52895	AK1 C2	>sp P52895 AK1C2_HUM AN Aldo-keto reductase family 1 member C2 OS=Homo sapiens GN=AKR1C2 PE=1 SV=3;>sp Q04828 AK1C1_ HUMAN Aldo-keto reductase family 1 member C1 OS=Homo sapiens GN=AKR1C1 PE=1 SV=1;>sp P42330 AK1C3_ HUMAN Aldo-keto reductase family 1 member C	GVVVLAK(1)SYNEQR	4	1.16
Q9NPF 0	CD32 0	>sp Q9NPF0 CD320_HUM AN CD320 antigen OS=Homo sapiens	ESLLLSEQK(1)TSLP	19	1.16
P52895	AK1 C2	>sp P52895 AK1C2_HUM AN Aldo-keto reductase	MDSK(1)YQCVK	7	1.15

P08195	4F2	family 1 member C2 OS=Homo sapiens GN=AKR1C2 PE=1 SV=3;>sp Q04828 AK1C1_ HUMAN Aldo-keto reductase family 1 member C1 OS=Homo sapiens GN=AKR1C1 PE=1 SV=1 >sp P08195 4F2_HUMAN 4F2 cell-surface antigen	VAEDEAEAAAAAK(0.997)FTGLSK(0.00 3)	11	1.15
		heavy chain OS=Homo sapiens GN=SLC3A2 PE=1 SV=3			
Q1518 5	TEBP	>sp Q15185 TEBP_HUMA N Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1	DVNVNFEK(0.846)SK(0.154)	1	1.15
P58335	ANT R2	>sp P58335 ANTR2_HUM AN Anthrax toxin receptor 2 OS=Homo sapiens GN=ANTXR2 PE=1 SV=5	EEEEEPLPTK(0.419)K(0.581)	13	1.15
P22455	FGFR 4	>sp P22455 FGFR4_HUM AN Fibroblast growth factor receptor 4 OS=Homo sapiens GN=FGFR4 PE=1 SV=2	LVLGK(1)PLGEGCFGQVVR	7	1.15
O1542 7	MOT 4	>sp O15427 MOT4_HUMA N Monocarboxylate transporter 4 OS=Homo sapiens GN=SLC16A3 PE=1 SV=1	EVEHFLK(1)AEPEK	4	1.14
P37173	TGFR 2	>sp P37173 TGFR2_HUM AN TGF-beta receptor type-2 OS=Homo sapiens GN=TGFBR2 PE=1 SV=2	DYEPPFGSK(1)VR	1	1.14
P04114	APO B	>sp P04114 APOB_HUMA N Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2	FQFPGK(1)PGIYTR	2	1.14
P62937	PPIA	>sp P62937 PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2	ALSTGEK(0.93)GFGYK(0.07)	1	1.13
Q96C V9	OPT N	>sp Q96CV9 OPTN_HUM AN Optineurin OS=Homo sapiens GN=OPTN PE=1 SV=2	AVLK(0.989)ELSEK(0.011)	1	1.13
P05023	ATIA 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	AVFQANQENLPILK(1)R	5	1.13

Q0482	AK1	>sp Q04828 AK1C1 HUM	DAGLAK(1)SIGVSNFNRR	2	1.13
8	C1	AN Aldo-keto reductase			
		family 1 member C1			
		OS=Homo sapiens			
		GN=AKR1C1 PE=1			
		SV=1;>sp P42330 AK1C3			
		HUMAN Aldo-keto			
		reductase family 1 member			
		C3 OS=Homo sapiens			
		GN=AKR1C3 PE=1 SV=4			
Q0165	LAT1	>sp Q01650 LAT1 HUMA	ALAAPAAEEK(1)EEAR	16	1.13
0		N Large neutral amino acids			
		transporter small subunit 1			
		OS=Homo sapiens			
		GN=SLC7A5 PE=1 SV=2			
P15260	INGR	>sp P15260 INGR1 HUMA	SATLETK(1)PESK	16	1.13
	1	N Interferon gamma			
		receptor 1 OS=Homo			
		sapiens GN=IFNGR1 PE=1			
		SV=1			
O1526	SPTC	>sp O15269 SPTC1 HUM	EQEIEDQK(1)NPR	4	1.13
9	1	AN Serine			
		palmitoyltransferase 1			
		OS=Homo sapiens			
		GN=SPTLC1 PE=1 SV=1			
Q1459	NBR1	>sp Q14596 NBR1_HUMA	GAEGK(1)PGVEAGQEPAEAGER	2	1.12
6		N Next to BRCA1 gene 1			
		protein OS=Homo sapiens			
		GN=NBR1 PE=1 SV=3			
Q1350	SQST	>sp Q13501 SQSTM_HUM	YK(1)CSVCPDYDLCSVCEGK	2	1.11
1	М	AN Sequestosome-1			
		OS=Homo sapiens			
		GN=SQSTM1 PE=1 SV=1			
P16435	NCP	>sp P16435 NCPR_HUMA	INK(1)GVATNWLR	1	1.11
	R	N NADPHcytochrome			
		P450 reductase OS=Homo			
		sapiens GN=POR PE=1			
		SV=2			
P05023	AT1A	>sp P05023 AT1A1_HUM	DK(1)YEPAAVSEQGDK	2	1.11
	1	AN Sodium/potassium-			
		transporting ATPase			
		subunit alpha-1 OS=Homo			
		sapiens GN=ATP1A1 PE=1			
0.07710	D) (E	SV=1		-	
Q8TB	PMF	>sp Q8TBY8 PMFBP_HU	TVAEQDMK(1)MNDMLDR	5	1.11
Y 8	BP	MAN Polyamine-			
		modulated factor 1-binding			
		protein I US=Homo sapiens			
D(22(1	ACT	GN=PMFBP1 PE=2 SV=1		2	1 1 1
P03201	ACI	>spiP03201 ACIG_HUMA	EIIALAPSIMK(0.796)IK(0.204)	3	1.11
	9	N Actin, cytoplasmic 2			
		CN-ACTC1 DE-1			
		$\begin{array}{c} \text{GN}=\text{ACIGIPE} \\ \text{SV}=1 \\ $			
		$Sv = 1; > Sp FOU/U9 ACIB_$			
		numan acun,			
		cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1;>sp P68133 ACTS_H UMAN Actin, alpha skeletal muscle OS=Homo sapiens GN=ACTA1 PE=1 SV=1;>sp P68032 ACTC			
------------	-----------	--	-------------------------	---	------
Q1313 7	CAC O2	>sp Q13137 CACO2_HUM AN Calcium-binding and coiled-coil domain- containing protein 2 OS=Homo sapiens GN=CALCOCO2 PE=1 SV=1	K(1)QQELMDENFDLSK	2	1.11
Q96J0 2	ITCH	>sp Q96J02 ITCH_HUMA N E3 ubiquitin-protein ligase Itchy homolog OS=Homo sapiens GN=ITCH PE=1 SV=2	SQGQLNEK(1)PLPEGWEMR	3	1.11
O6071 6	CTN D1	>sp O60716 CTND1_HUM AN Catenin delta-1 OS=Homo sapiens GN=CTNND1 PE=1 SV=1	K(1)GGPPPPNWR	3	1.10
Q9980 8	S29A 1	>sp Q99808 S29A1_HUMA N Equilibrative nucleoside transporter 1 OS=Homo sapiens GN=SLC29A1 PE=1 SV=3	LDLISK(1)GEEPR	8	1.10
Q9BT U6	P4K2 A	>sp Q9BTU6 P4K2A_HUM AN Phosphatidylinositol 4- kinase type 2-alpha OS=Homo sapiens GN=PI4K2A PE=1 SV=1	RLALEK(0.998)VPK(0.002)	1	1.10
Q9Y28 9	SC5A 6	>sp Q9Y289 SC5A6_HUM AN Sodium-dependent multivitamin transporter OS=Homo sapiens GN=SLC5A6 PE=2 SV=2	LLSLLPLSCQK(1)R	3	1.09
P08195	4F2	>sp P08195 4F2_HUMAN 4F2 cell-surface antigen heavy chain OS=Homo sapiens GN=SLC3A2 PE=1 SV=3	FTGLSK(1)EELLK	8	1.09
Q1501 2	LAP4 A	>sp Q15012 LAP4A_HUM AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens GN=LAPTM4A PE=1 SV=1	VSMSFK(1)R	2	1.09
Q8W WI5	CTL1	>sp Q8WWI5 CTL1_HUM AN Choline transporter-like protein 1 OS=Homo sapiens GN=SLC44A1 PE=1 SV=1	ELK(1)PMASGASSA	1	1.08
O4349 3	TGO N2	>sp O43493 TGON2_HUM AN Trans-Golgi network	IIAFVLEGK(1)R	4	1.08

		integral membrane protein 2			
		OS=Homo sapiens			
		GN=TGOLN2 PE=1 SV=2			
Q9BT6	NFIP	>sp Q9BT67 NFIP1_HUM	K(1)MPETFSNLPR	1	1.08
7	1	AN NEDD4 family-			
		interacting protein 1			
		OS=Homo sapiens			
0(040	ACCT	GN=NDFIP1 PE=1 SV=1		0	1.00
06048	ACSL	>sp O60488 ACSL4_HUM	ILFK(I)IGYDYK	9	1.08
8	4	AN Long-chain-fatty-acid			
		sapiens GN=ACSI 4 PF=1			
		SV=2			
P68363	TBA1	$>$ sp P68363 TBA1B_HUM	DVNAAIATIK(0.956)TK(0.044)	9	1.07
100505	B	AN Tubulin alpha-1B chain			1.07
	D	OS=Homo sapiens			
		GN=TUBA1B PE=1			
		SV=1;>sp Q71U36 TBA1A			
		_HUMAN Tubulin alpha-			
		1A chain OS=Homo			
		sapiens GN=TUBA1A			
		PE=1			
		SV=1;>sp Q13748 TBA3C_			
		HUMAN Tubulin alpha-			
		3C/D chain US=Homo			
		DE-1 SV-2. SeplO6DE			
01339	PI D1	>sp $ O13393 PI D1 HIMA$		3	1.07
3	I LD I	N Phospholipase D1	v v i i i i i i i i i i i i i i i i i i	5	1.07
5		OS=Homo sapiens			
		GN=PLD1 PE=1 SV=1			
Q9UP9	S12A	>sp Q9UP95 S12A4 HUM	ELVHIK(1)PDQSNVR	3	1.06
5	4	AN Solute carrier family 12			
		member 4 OS=Homo			
		sapiens GN=SLC12A4			
		PE=1 SV=2			
Q8WU	S20A	>sp Q8WUM9 S20A1_HU	EGEQK(1)GEEMEK	1	1.06
M9	1	MAN Sodium-dependent			
		phosphate transporter 1			
		OS=Homo sapiens GN=SI C20A1 PE=1 SV=1			
08N0	SPG2	>sn $ O8N0X7 $ SPG20 HIM	TRPSSDOLK(1)FASGTDVK	8	1.06
X7	0	AN Spartin OS=Homo		0	1.00
211	Ŭ	sapiens GN=SPG20 PE=1			
		SV=1			
Q9288	MRP	>sp Q92887 MRP2 HUMA	ITEYTK(1)VENEAPWVTDK	4	1.06
7	2	N Canalicular multispecific			
		organic anion transporter 1			
		OS=Homo sapiens			
		GN=ABCC2 PE=1 SV=3			
01543	MRP	>sp O15438 MRP3_HUMA	LYAWEPSFLK(1)QVEGIR	4	1.06
8	3	N Canalicular multispecific			
		organic anion transporter 2			
		OS-nomo sapiens OS- $ABCC2 DE-1 SV-2$			
	1	011-ADCC3 FE-1 3V-3	1	1	

P08195	4F2	>sp P08195 4F2 HUMAN	IK(1)VAEDEAEAAAAAK	27	1.06
		4F2 cell-surface antigen			
		heavy chain OS=Homo			
		sapiens GN=SLC3A2 PE=1			
		sV=3			
01532	CTG	>sp O15320 CTGE5 HUM	LLEK(1)FSLVOK	7	1.06
0	E5	AN cTAGE family member			
Ŭ	20	5 OS=Homo sapiens			
		GN=CTAGE5 PE=1			
		SV=4·>sp O96RT6 CTGF2			
		HUMAN cTAGE family			
		member 2 OS=Homo			
		saniens GN=CTAGE1			
		PE=1 SV=2			
01516	PLS1	>sp O15162 PLS1_HUMA	YEIK(1)NSFGOR	5	1.05
2		N Phospholipid scramblase		-	
		1 OS=Homo sapiens			
		GN=PLSCR1 PE=1 SV=1			
Q86SO	GP12	>sp Q86SQ4 GP126 HUM	SSDNLGK(1)SLSSSSIGSNSTYLTSK	4	1.05
4	6	AN G-protein coupled			
		receptor 126 OS=Homo			
		sapiens GN=GPR126 PE=1			
		sV=3			
O9518	VAM	>sp O95183 VAMP5 HUM	GVK(1)LAELQQR	2	1.05
3	P5	AN Vesicle-associated			
		membrane protein 5			
		OS=Homo sapiens			
		GN=VAMP5 PE=1 SV=1			
P08183	MDR	>sp P08183 MDR1_HUMA	TVIAFGGQK(0.387)K(0.613)	7	1.04
	1	N Multidrug resistance			
		protein 1 OS=Homo sapiens			
		GN=ABCB1 PE=1 SV=3			
Q96K4	TM87	>sp Q96K49 TM87B_HUM	SEMAEK(1)MFSSEK	3	1.04
9	В	AN Transmembrane protein			
		87B OS=Homo sapiens			
		GN=TMEM87B PE=1			
		SV=1			
Q9962	S38A	>sp Q99624 S38A3_HUMA	SFLQK(0.989)SPSK(0.011)	2	1.04
4	3	N Sodium-coupled neutral			
		amino acid transporter 3			
		OS=Homo sapiens			
D2 (00) i	DIG	GN=SLC38A3 PE=1 SV=1			1.0.4
P36894	BMR	>sp P36894 BMR1A_HUM	TIAK(1)QIQMVR	4	1.04
	IA	AN Bone morphogenetic			
		protein receptor type-1A			
		OS=Homo sapiens			
0967	EDAG	$\mathbf{UN} = \mathbf{BWIFKIA} \mathbf{PE} = \mathbf{I} \mathbf{SV} = \mathbf{Z}$		2	1.04
Q80X		/ SplQ00AA4 FKASI_HUM	INVINILSEPEAAYIFK (0.393) GAK (0.607)	2	1.04
Λ4	1	AIN EXTRACEMULAR MAINIX			
		protein rKASI US=H0m0			
		SV=2			
P07148	FARP	>sp $ P07148 FARPI$ HIIM	AIGLPEELIOK(0.087)GK(0.913)	2	1.03
10/170	L	AN Fatty acid-hinding		-	1.05
	L .	protein, liver OS=Homo			
L	1		I	I	

		sapiens GN=FABP1 PE=1 SV=1			
Q9P2R 3	ANF Y1	>sp Q9P2R3 ANFY1_HUM AN Rabankyrin-5 OS=Homo sapiens GN=ANKFY1 PE=1 SV=2	NNK(1)SAEAILK	5	1.03
O1526 9	SPTC 1	>sp O15269 SPTC1_HUM AN Serine palmitoyltransferase 1 OS=Homo sapiens GN=SPTLC1 PE=1 SV=1	SDLTVK(0.99)EK(0.01)	6	1.03
Q86SQ 4	GP12 6	>sp Q86SQ4 GP126_HUM AN G-protein coupled receptor 126 OS=Homo sapiens GN=GPR126 PE=1 SV=3	SLSSSSIGSNSTYLTSK(0.764)SK(0.236)	4	1.03
Q8NE Q6	CA06 4	>sp Q8NEQ6 CA064_HUM AN Uncharacterized protein C1orf64 OS=Homo sapiens GN=C1orf64 PE=2 SV=1	SSTWGTVK(0.997)DSLK(0.003)	3	1.03
P0DM V9	HS71 B	>sp P0DMV9 HS71B_HU MAN Heat shock 70 kDa protein 1B OS=Homo sapiens GN=HSPA1B PE=1 SV=1;>sp P0DMV8 HS71A HUMAN Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1	MVQEAEK(0.983)YK(0.017)	10	1.03
Q9BX S4	TMM 59	>sp Q9BXS4 TMM59_HU MAN Transmembrane protein 59 OS=Homo sapiens GN=TMEM59 PE=1 SV=1	TEDHEEAGPLPTK(1)VNLAHSEI	29	1.03
Q86TG 7	PEG1 0	>sp Q86TG7 PEG10_HUM AN Retrotransposon- derived protein PEG10 OS=Homo sapiens GN=PEG10 PE=1 SV=2	DGLITPTIAPNGAQVLQVK(1)R	1	1.03
Q9BY 67	CAD M1	>sp Q9BY67 CADM1_HU MAN Cell adhesion molecule 1 OS=Homo sapiens GN=CADM1 PE=1 SV=2	GADDAADADTAIINAEGGQNNSEEK(0.2 17)K(0.783)EYFI	1	1.02
P27105	STO M	>sp P27105 STOM_HUMA N Erythrocyte band 7 integral membrane protein OS=Homo sapiens GN=STOM PE=1 SV=3	ALK(1)EASMVITESPAALQLR	1	1.02
09529 7	MPZ L1	>sp O95297 MPZL1_HUM AN Myelin protein zero- like protein 1 OS=Homo sapiens GN=MPZL1 PE=1 SV=1	DYTGCSTSESLSPVK(1)QAPR	3	1.02

P11166	GTR1	>sp P11166 GTR1 HUMA	GTADVTHDLQEMK(1)EESR	1	1.02
		N Solute carrier family 2,			
		facilitated glucose			
		transporter member 1			
		OS=Homo sapiens			
		GN=SLC2A1 PE=1 SV=2			
O9NV	NFIP	>sp $ O9NV92 NFIP2$ HIM	AK(1)AAAMAAAAAFTSOR	1	1.02
92	$\frac{1}{2}$	AN NEDD4 family-	Indin a da de la sere	1	1.02
12	2	interacting protein 2			
		OS=Homo sapiens			
		GN=NDEIP2 PE=1 SV=2			
01207		$\sum p 012074 TD A2 HIM$	K(1)VCVTTI VD	1	1.02
Q1297	γ	ΔN Protein tyrosine	K(I)IOVIILVK	1	1.02
4	2	ahogehotogo treo IVA 2			
		OS-Using series			
		OS=Homo sapiens			
OODV	CAD	GN=P1P4A2 PE=1 SV=1		10	1.01
Q9BY	CAD	>sp Q9BY6/ CADMI_HU	GADDAADADIAIINAEGGQNNSEEK(0.5	18	1.01
6/	MI	MAN Cell adhesion)K(0.5)		
		molecule I OS=Homo			
		sapiens GN=CADM1 PE=1			
		SV=2			
P08034	CXB1	>sp P08034 CXB1_HUMA	RSPGTGAGLAEK(1)SDR	6	1.01
		N Gap junction beta-1			
		protein OS=Homo sapiens			
		GN=GJB1 PE=1 SV=1			
Q1286	MER	>sp Q12866 MERTK_HUM	TMK(1)LDNSSQR	1	1.01
6	TK	AN Tyrosine-protein kinase			
		Mer OS=Homo sapiens			
		GN=MERTK PE=1 SV=2			
Q9H0	WWP	>sp Q9H0M0 WWP1_HU	SSSAFEAAK(1)SR	4	1.01
M0	1	MAN NEDD4-like E3			
		ubiquitin-protein ligase			
		WWP1 OS=Homo sapiens			
		GN=WWP1 PE=1 SV=1			
Q9980	S29A	>sp Q99808 S29A1 HUMA	LEGPGEQETK(1)LDLISK	11	1.01
8	1	N Equilibrative nucleoside			
		transporter 1 OS=Homo			
		sapiens GN=SLC29A1			
		PE=1 SV=3			
P63218	GBG	>sp P63218 GBG5 HUMA	SGSSSVAAMK(0.857)K(0.143)	2	1.00
	5	N Guanine nucleotide-			
		binding protein			
		G(I)/G(S)/G(O) subunit			
		gamma-5 OS=Homo			
		sapiens GN=GNG5 PE=1			
		SV=3			
O8WU	\$38A	>sp O8WUX1 S38A5 HU	GPAPGSK(1)PVOFMDFEGK	1	1.00
X1	5	MAN Sodium-counled		-	1.00
		neutral amino acid			
		transporter 5 OS=Homo			
		saniens GN=SI C3845			
		PE=1 SV=1			
P29992	GNA	>sp P29992 GNA11 HUM	ILYK(1)YEONK	13	1.00
1 2 7 7 7 2	11	AN Guanine nucleotide-		15	1.00
	11	binding protein subunit			
		omanig protoni subunit			

		alpha-11 OS=Homo sapiens			
P05556	ITB1	<pre>>sp P05556 ITB1_HUMAN Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2</pre>	MNAK(1)WDTGENPIYK	6	1.00
07550 9	TNR2 1	>sp O75509 TNR21_HUM AN Tumor necrosis factor receptor superfamily member 21 OS=Homo sapiens GN=TNFRSF21 PE=1 SV=1	NK(1)GFFVDESEPLLR	1	1.00
Q1326 3	TIF1 B	>sp Q13263 TIF1B_HUMA N Transcription intermediary factor 1-beta OS=Homo sapiens GN=TRIM28 PE=1 SV=5	VLVNDAQK(1)VTEGQQER	2	0.99
Q1575 8	AAA T	>sp Q15758 AAAT_HUMA N Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2	SELPLDPLPVPTEEGNPLLK(1)HYR	10	0.99
P27105	STO M	>sp P27105 STOM_HUMA N Erythrocyte band 7 integral membrane protein OS=Homo sapiens GN=STOM PE=1 SV=3	DVK(1)LPVQLQR	1	0.99
P11142	HSP7 C	>sp P11142 HSP7C_HUM AN Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1	MVQEAEK(0.983)YK(0.017)	10	0.99
Q9Y2 G8	DJC1 6	>sp Q9Y2G8 DJC16_HUM AN DnaJ homolog subfamily C member 16 OS=Homo sapiens GN=DNAJC16 PE=2 SV=3	TEPSFTK(0.924)ENSSK(0.076)	1	0.99
Q8N2 R8	FA43 A	>sp Q8N2R8 FA43A_HUM AN Protein FAM43A OS=Homo sapiens GN=FAM43A PE=2 SV=2	VGSMFRSK(1)	3	0.99
P05787	K2C8	>sp P05787 K2C8_HUMA N Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7;>P05787 SWISS- PROT:P05787 Tax_Id=9606 Gene_Symbol=KRT8 Keratin, type II cytoskeletal 8;>Q9H552 TREMBL:Q9H552 Tax_Id=9606 Gene_Symbol=- Keratin-8- like protein 1;>O8BGZ7	TLNNK(1)FASFIDK	1	0.99

Q7Z5G 4	GOG A7	>sp Q7Z5G4 GOGA7_HU MAN Golgin subfamily A member 7 OS=Homo sapiens GN=GOLGA7 PE=1 SV=2	VSK(1)YIQEQNEK	9	0.99
P98196	AT11 A	>sp P98196 AT11A_HUM AN Probable phospholipid- transporting ATPase IH OS=Homo sapiens GN=ATP11A PE=1 SV=3	AADTIEALQK(0.988)AGIK(0.012)	5	0.99
Q9BV T8	TMU B1	>sp Q9BVT8 TMUB1_HU MAN Transmembrane and ubiquitin-like domain- containing protein 1 OS=Homo sapiens GN=TMUB1 PE=1 SV=1	LK(1)FLNDSEQVAR	2	0.99
Q969G 9	NKD 1	>sp Q969G9 NKD1_HUM AN Protein naked cuticle homolog 1 OS=Homo sapiens GN=NKD1 PE=1 SV=1	LTVAPDGSQSK(1)R	1	0.99
Q9Y6 M5	ZNT1	>sp Q9Y6M5 ZNT1_HUM AN Zinc transporter 1 OS=Homo sapiens GN=SLC30A1 PE=1 SV=3	NLIK(1)ELR	3	0.98
Q96Q D8	S38A 2	>sp Q96QD8 S38A2_HUM AN Sodium-coupled neutral amino acid transporter 2 OS=Homo sapiens GN=SLC38A2 PE=1 SV=2	QAALK(1)SHYADVDPENQNFLLESNLG K	3	0.98
P01892	1A02	>sp P01892 1A02_HUMAN HLA class I histocompatibility antigen, A-2 alpha chain OS=Homo sapiens GN=HLA-A PE=1 SV=1;>sp P10316 1A69_H UMAN HLA class I histocompatibility antigen, A-69 alpha chain OS=Homo sapiens GN=HLA-A PE=1 SV=2;>sp P01891 1A68_H UMAN HLA cla	K(1)GGSYSQAASSDSAQGSDVSLTACK	2	0.98
P05023	AT1A 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	DKYEPAAVSEQGDK(0.422)K(0.578)	4	0.98
P63000	RAC1	>sp P63000 RAC1_HUMA N Ras-related C3 botulinum toxin substrate 1 OS=Homo sapiens GN=RAC1 PE=1 SV=1	EIGAVK(1)YLECSALTQR	1	0.98

P55082	MFA	>sp P55082 MFAP3 HUM	LQK(1)AFEIAK	5	0.98
	P3	AN Microfibril-associated		-	
		glycoprotein 3 OS=Homo			
		sapiens GN=MFAP3 PE=2			
		SV=1:>sp O75121 MFA3L			
		HUMAN Microfibrillar-			
		associated protein 3-like			
		OS=Homo sapiens			
		GN=MFAP3L PE=2 SV=3			
P80370	DLK1	>sp P80370 DLK1_HUMA	IDMTTFSK(1)EAGDEEI	7	0.98
		N Protein delta homolog 1			
		OS=Homo sapiens			
		GN=DLK1 PE=1 SV=3			
Q86SQ	GP12	>sp Q86SQ4 GP126_HUM	TATNIIK(0.381)K(0.619)	1	0.98
4	6	AN G-protein coupled			
		receptor 126 OS=Homo			
		sapiens GN=GPR126 PE=1			
		SV=3			
P02654	APO	>sp P02654 APOC1_HUM	EFGNTLEDK(1)AR	2	0.98
	C1	AN Apolipoprotein C-I			
		OS=Homo sapiens			
		GN=APOC1 PE=1 SV=1		-	
Q9NQ	ITM2	>sp Q9NQX7 ITM2C_HU	ISFQPAVAGIK(0.996)GDK(0.82)ADK(0.1	3	0.97
X7	С	MAN Integral membrane	84)		
		protein 2C OS=Homo			
		sapiens GN=ITM2C PE=1			
	~~.	SV=1		_	
Q9278	STA	>sp Q92783 STAM1_HUM	AIELSLK(1)EQR	1	0.97
3	MI	AN Signal transducing			
		adapter molecule 1			
		OS=Homo sapiens			
D(00)0	TD 1 1	GN=STAM PE=1 SV=3		16	0.07
P68363	TBAI	$>$ sp P68363 TBA1B_HUM	VGINYQPPTVVPGGDLAK(1)VQR	16	0.97
	В	AN Iubulin alpha-IB chain			
		OS=Homo sapiens			
		GN=IUBAIBPE=I			
		SV=1;>SP P08300 IBA4A			
		HUMAN Tubulin alpha-4A			
		CN-TUPAAA DE-1			
		ON-IODA4A FL-I SV-1, sp $O711136$ TPA 1A			
		SV = 1, -Sp Q/1000 1BAIA			
		1A chain OS=Homo			
		sapiens GN=TUBA1A			
		PE=1 SV=1 > sp O137/8			
P08581	MET	$\sum P(0.8581)$ MET HUMAN	DLIGEGLOVAK (0.5) GMK (0.5)	1	0.97
100501	IVIL I	Hepatocyte growth factor	DEIGI OLQ VAR(0.5)OWR(0.5)	1	0.97
		recentor OS=Homo saniens			
		GN=MET PE=1 SV=4			
P08581	MET	>sp P08581 MET HUMAN	DLIGFGLOVAK(0.5)GMK(0.5)	1	0.97
		Hepatocyte growth factor		-	/
		receptor OS=Homo sapiens			
		GN=MET PE=1 SV=4			
P31431	SDC4	>sp P31431 SDC4_HUMA	K(1)APTNEFYA	4	0.97
		N Syndecan-4 OS=Homo			

		sapiens GN=SDC4 PE=1 SV=2			
Q1388 4	SNTB 1	>sp Q13884 SNTB1_HUM AN Beta-1-syntrophin OS=Homo sapiens GN=SNTB1 PE=1 SV=3	EQLGK(1)TGIAGSR	13	0.97
P62979	RS27 A	>sp P62979 RS27A_HUM AN Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2	VDENGK(1)ISR	43	0.97
P0DM V9	HS71 B	>sp P0DMV9 HS71B_HU MAN Heat shock 70 kDa protein 1B OS=Homo sapiens GN=HSPA1B PE=1 SV=1;>sp P0DMV8 HS71A HUMAN Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1	MVQEAEK(0.5)YK(0.5)	10	0.97
P11142	HSP7 C	>sp P11142 HSP7C_HUM AN Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1	MVQEAEK(0.5)YK(0.5)	10	0.97
Q96K4 9	TM87 B	>sp Q96K49 TM87B_HUM AN Transmembrane protein 87B OS=Homo sapiens GN=TMEM87B PE=1 SV=1	SVSNGTAK(1)PATSENFDEDLK	2	0.97
P53801	PTTG	>sp P53801 PTTG_HUMA N Pituitary tumor- transforming gene 1 protein-interacting protein OS=Homo sapiens GN=PTTG1IP PE=1 SV=1	YGLFK(1)EENPYAR	6	0.97
Q1662 5	OCL N	>sp Q16625 OCLN_HUMA N Occludin OS=Homo sapiens GN=OCLN PE=1 SV=1	VDSPMAYSSNGK(0.386)VNDK(0.614)	2	0.96
Q9H3Z 4	DNJC 5	>sp Q9H3Z4 DNJC5_HUM AN DnaJ homolog subfamily C member 5 OS=Homo sapiens GN=DNAJC5 PE=1 SV=1	EINNAHAILTDATK(1)R	2	0.96
Q96AJ 9	VTI1 A	>sp Q96AJ9 VTI1A_HUM AN Vesicle transport through interaction with t- SNAREs homolog 1A OS=Homo sapiens GN=VTI1A PE=1 SV=2	ETDANLGK(1)SSR	1	0.96
Q9Y28 7	ITM2 B	>sp Q9Y287 ITM2B_HUM AN Integral membrane protein 2B OS=Homo	VTFNSALAQK(1)EAK	43	0.96

		sapiens GN=ITM2B PE=1			
Q1412 6	DSG2	>sp Q14126 DSG2_HUMA N Desmoglein-2 OS=Homo sapiens GN=DSG2 PE=1 SV=2	ATQFTGATGAIMTTETTK(1)TAR	3	0.96
P21580	TNA P3	>sp P21580 TNAP3_HUM AN Tumor necrosis factor alpha-induced protein 3 OS=Homo sapiens GN=TNFAIP3 PE=1 SV=1	NIQATLESQK(0.875)K(0.125)	1	0.96
Q9BR K3	MXR A8	>sp Q9BRK3 MXRA8_HU MAN Matrix-remodeling- associated protein 8 OS=Homo sapiens GN=MXRA8 PE=1 SV=1	NNILK(1)ER	4	0.96
Q1286 6	MER TK	>sp Q12866 MERTK_HUM AN Tyrosine-protein kinase Mer OS=Homo sapiens GN=MERTK PE=1 SV=2	LQLEK(1)LLESLPDVR	5	0.96
P0DM V9	HS71 B	>sp P0DMV9 HS71B_HU MAN Heat shock 70 kDa protein 1B OS=Homo sapiens GN=HSPA1B PE=1 SV=1;>sp P0DMV8 HS71A HUMAN Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1	LSK(1)EEIER	1	0.96
Q9Y62 4	JAM1	>sp Q9Y624 JAM1_HUMA N Junctional adhesion molecule A OS=Homo sapiens GN=F11R PE=1 SV=1	SEGEFK(1)QTSSFLV	6	0.96
P11717	MPRI	>sp P11717 MPRI_HUMA N Cation-independent mannose-6-phosphate receptor OS=Homo sapiens GN=IGF2R PE=1 SV=3	SSSAQQK(1)TVSSTK	3	0.96
O1526 9	SPTC 1	>sp O15269 SPTC1_HUM AN Serine palmitoyltransferase 1 OS=Homo sapiens GN=SPTLC1 PE=1 SV=1	EK(1)EELIEEWQPEPLVPPVPK	2	0.96
P29317	EPH A2	>sp P29317 EPHA2_HUM AN Ephrin type-A receptor 2 OS=Homo sapiens GN=EPHA2 PE=1 SV=2	QK(1)VIGAGEFGEVYK	1	0.95
Q86SQ 4	GP12 6	>sp Q86SQ4 GP126_HUM AN G-protein coupled receptor 126 OS=Homo sapiens GN=GPR126 PE=1 SV=3	SK(1)SSSTTYFK	1	0.95
Q1504 3	S39A E	>sp Q15043 S39AE_HUM AN Zinc transporter ZIP14	K(1)DQEEGVMEK	8	0.95

		OS=Homo sapiens GN=SLC39A14 PE=1 SV=3			
Q1411 8	DAG 1	>sp Q14118 DAG1_HUMA N Dystroglycan OS=Homo sapiens GN=DAG1 PE=1 SV=2	LTLEDQATFIK(0.879)K(0.121)	8	0.95
Q9Y62 4	JAM1	>sp Q9Y624 JAM1_HUMA N Junctional adhesion molecule A OS=Homo sapiens GN=F11R PE=1 SV=1	K(1)VIYSQPSAR	5	0.95
P51148	RAB5 C	>sp P51148 RAB5C_HUM AN Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C PE=1 SV=2;>sp P20339 RAB5A_ HUMAN Ras-related protein Rab-5A OS=Homo sapiens GN=RAB5A PE=1 SV=2	NWVK(1)ELQR	10	0.95
P08183	MDR 1	>sp P08183 MDR1_HUMA N Multidrug resistance protein 1 OS=Homo sapiens GN=ABCB1 PE=1 SV=3;>sp P21439 MDR3_ HUMAN Phosphatidylcholine translocator ABCB4 OS=Homo sapiens GN=ABCB4 PE=1 SV=2	VGDK(1)GTQLSGGQK	1	0.95
Q9UH 65	SWP7 0	>sp Q9UH65 SWP70_HUM AN Switch-associated protein 70 OS=Homo sapiens GN=SWAP70 PE=1 SV=1	GSLK(1)EELLK	5	0.95
O9529 7	MPZ L1	>sp O95297 MPZL1_HUM AN Myelin protein zero- like protein 1 OS=Homo sapiens GN=MPZL1 PE=1 SV=1	INK(1)SESVVYADIR	1	0.94
P21796	VDA C1	>sp P21796 VDAC1_HUM AN Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2	DVFTK(0.999)GYGFGLIK(0.001)	1	0.94
O0030 8	WWP 2	>sp O00308 WWP2_HUM AN NEDD4-like E3 ubiquitin-protein ligase WWP2 OS=Homo sapiens GN=WWP2 PE=1 SV=2	TTTFK(1)DPRPGFESGTK	3	0.94
P07307	ASG R2	>sp P07307 ASGR2_HUM AN Asialoglycoprotein receptor 2 OS=Homo	AK(1)DFQDIQQLSSEENDHPFHQGEGPG TR	3	0.94

		sapiens GN=ASGR2 PE=1 SV=2			
Q86VP 1	TAX B1	>sp Q86VP1 TAXB1_HUM AN Tax1-binding protein 1 OS=Homo sapiens GN=TAX1BP1 PE=1 SV=2	EQVK(1)IAENVK	4	0.94
Q9P26 5	DIP2 B	>sp Q9P265 DIP2B_HUM AN Disco-interacting protein 2 homolog B OS=Homo sapiens GN=DIP2B PE=1 SV=3	SK(1)LLSPYSPQTQETDSAVQK	5	0.94
Q86U D5	SL9B 2	>sp Q86UD5 SL9B2_HUM AN Mitochondrial sodium/hydrogen exchanger 9B2 OS=Homo sapiens GN=SLC9B2 PE=1 SV=2	LK(1)GIDANEPTEGSILLK	1	0.94
Q9NP R9	GP10 8	>sp Q9NPR9 GP108_HUM AN Protein GPR108 OS=Homo sapiens GN=GPR108 PE=2 SV=3	HLQDASGTDGK(0.999)VAVNLAK(0.001)	1	0.94
Q9H8 Y8	GOR S2	>sp Q9H8Y8 GORS2_HU MAN Golgi reassembly- stacking protein 2 OS=Homo sapiens GN=GORASP2 PE=1 SV=3	K(1)ISLPGQMAGTPITPLK	1	0.94
Q1289 3	TM11 5	>sp Q12893 TM115_HUM AN Transmembrane protein 115 OS=Homo sapiens GN=TMEM115 PE=1 SV=1	VDSPLPSDK(1)APTPPGK	3	0.94
Q96Q D8	S38A 2	>sp Q96QD8 S38A2_HUM AN Sodium-coupled neutral amino acid transporter 2 OS=Homo sapiens GN=SLC38A2 PE=1 SV=2	FSISPDEDSSSYSSNSDFNYSYPTK(0.999) QAALK(0.001)	5	0.93
Q9NU 53	GIN M1	>sp Q9NU53 GINM1_HU MAN Glycoprotein integral membrane protein 1 OS=Homo sapiens GN=GINM1 PE=2 SV=1	GILQLDK(1)VDVIPVTAINLYPDGPEK	1	0.93
P07148	FABP L	>sp P07148 FABPL_HUM AN Fatty acid-binding protein, liver OS=Homo sapiens GN=FABP1 PE=1 SV=1	VK(1)TVVQLEGDNK	2	0.93
P06733	ENO A	>sp P06733 ENOA_HUMA N Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2	SILK(1)IHAR	1	0.93
O7543 6	VP26 A	>sp O75436 VP26A_HUM AN Vacuolar protein sorting-associated protein 26A OS=Homo sapiens GN=VPS26A PE=1 SV=2	VNLAFK(0.999)QPGK(0.001)	1	0.93

Q96NT 5	PCFT	>sp Q96NT5 PCFT_HUMA N Proton-coupled folate transporter OS=Homo sapiens GN=SLC46A1 PE=1 SV=1	MEGSASPPEK(1)PR	13	0.93
P98196	AT11 A	>sp P98196 AT11A_HUM AN Probable phospholipid- transporting ATPase IH OS=Homo sapiens GN=ATP11A PE=1 SV=3	VIEGK(1)VDQIR	9	0.93
O7569 4	NU15 5	>sp O75694 NU155_HUM AN Nuclear pore complex protein Nup155 OS=Homo sapiens GN=NUP155 PE=1 SV=1	NSQFAGGPLGNPNTTAK(1)VQQR	3	0.93
Q9UH N6	TME M2	>sp Q9UHN6 TMEM2_HU MAN Transmembrane protein 2 OS=Homo sapiens GN=TMEM2 PE=1 SV=1	SQASAK(1)FTSIR	5	0.93
P78552	I13R1	>sp P78552 I13R1_HUMA N Interleukin-13 receptor subunit alpha-1 OS=Homo sapiens GN=IL13RA1 PE=1 SV=1	KYDIYEK(1)QTK	2	0.93
P35670	ATP7 B	>sp P35670 ATP7B_HUM AN Copper-transporting ATPase 2 OS=Homo sapiens GN=ATP7B PE=1 SV=4	GDIVK(1)VVPGGK	4	0.92
P05362	ICA M1	>sp P05362 ICAM1_HUM AN Intercellular adhesion molecule 1 OS=Homo sapiens GN=ICAM1 PE=1 SV=2	GTPMK(1)PNTQATPP	14	0.92
Q9288 7	MRP 2	>sp Q92887 MRP2_HUMA N Canalicular multispecific organic anion transporter 1 OS=Homo sapiens GN=ABCC2 PE=1 SV=3	NVNSLK(1)EDEELVK	4	0.92
P52569	CTR2	>sp P52569 CTR2_HUMA N Cationic amino acid transporter 2 OS=Homo sapiens GN=SLC7A2 PE=1 SV=2	VTSK(1)SESQVTMLQR	6	0.92
P78552	I13R1	>sp P78552 I13R1_HUMA N Interleukin-13 receptor subunit alpha-1 OS=Homo sapiens GN=IL13RA1 PE=1 SV=1	EETDSVVLIENLK(0.809)K(0.191)	2	0.92
Q8NB N3	TM87 A	>sp Q8NBN3 TM87A_HU MAN Transmembrane protein 87A OS=Homo sapiens GN=TMEM87A PE=1 SV=3	FAFSPLSEEEEEDEQK(0.946)EPMLK(0.0 54)	1	0.92

Q96Q	S38A	>sp Q96QD8 S38A2 HUM	SHYADVDPENQNFLLESNLGK(0.5)K(0.5	24	0.92
D8	2	AN Sodium-coupled neutral			
		amino acid transporter 2			
		OS=Homo sapiens			
		GN=SLC38A2 PE=1 SV=2			
Q9Y28	ITM2	>sp Q9Y287 ITM2B HUM	VK(1)VTFNSALAQK	4	0.91
7	В	AN Integral membrane			
		protein 2B OS=Homo			
		sapiens GN=ITM2B PE=1			
		SV=1			
P58335	ANT	>sp P58335 ANTR2 HUM	EEEEPLPTK(0.899)K(0.101)	13	0.91
	R2	AN Anthrax toxin receptor			
		2 OS=Homo sapiens			
		GN=ANTXR2 PE=1 SV=5			
Q1440	GLP	>sp Q14409 GLPK3 HUM	TSEEIEK(0.994)LAK(0.006)	3	0.91
9	K3	AN Putative glycerol kinase			
		3 OS=Homo sapiens			
		GN=GK3P PE=5			
		SV=2;>sp P32189 GLPK H			
		UMAN Glycerol kinase			
		OS=Homo sapiens GN=GK			
		PE=1 SV=3			
Q9H30	CDIP	>sp Q9H305 CDIP1 HUM	SSEPPPPYPGGPTAPLLEEK(1)SGAPPTP	24	0.91
5	1	AN Cell death-inducing	GR		
		p53-target protein 1			
		OS=Homo sapiens			
		GN=CDIP1 PE=1 SV=1			
P55082	MFA	>sp P55082 MFAP3_HUM	TLELAK(1)VTQFK	2	0.91
	P3	AN Microfibril-associated			
		glycoprotein 3 OS=Homo			
		sapiens GN=MFAP3 PE=2			
		SV=1;>sp O75121 MFA3L			
		_HUMAN Microfibrillar-			
		associated protein 3-like			
		OS=Homo sapiens			
		GN=MFAP3L PE=2 SV=3			
Q1350	SQST	>sp Q13501 SQSTM_HUM	LLQTK(1)NYDIGAALDTIQYSK	1	0.91
1	М	AN Sequestosome-1			
		OS=Homo sapiens			
		GN=SQSTM1 PE=1 SV=1			
Q969E	SCA	>sp Q969E2 SCAM4_HUM	SEK(1)ENNFPPLPK	12	0.91
2	M4	AN Secretory carrier-			
		associated membrane			
		protein 4 OS=Homo sapiens			
DOTOC		GN=SCAMP4 PE=2 SV=1			0.01
P07306	ASG	>sp P07306 ASGR1_HUM	K(1)GPPPPQPLLQR	8	0.91
	R1	AN Asialoglycoprotein			
		receptor 1 OS=Homo			
		sapiens GN=ASGR1 PE=1			
0.010-5		SV=2			
Q969G	NKD	>sp Q969G9 NKD1_HUM	AETK(1)PTEDLR	1	0.91
9	1	AN Protein naked cuticle			
		homolog I OS=Homo			
		sapiens GN=NKD1 PE=1			
		SV=1			

Q1502	TNIP	>sp Q15025 TNIP1_HUMA	EQLTAEAK(1)ELR	1	0.91
5	1	N TNFAIP3-interacting			
		protein 1 OS=Homo sapiens			
		GN=TNIP1 PE=1 SV=2			
Q1344	ADA	>sp Q13443 ADAM9_HU	SQTYESDGK(1)NQANPSR	9	0.91
3	M9	MAN Disintegrin and			
		metalloproteinase domain-			
		containing protein 9			
		OS=Homo sapiens			
01544	1 (D.D.	GN=ADAM9 PE=1 SV=1		6	0.00
01544	MRP	>sp O15440 MRP5_HUMA	AFSQSVQK(1)IR	6	0.90
0	5	N Multidrug resistance-			
		associated protein 5			
		OS-HOMO saplens GN-A PCC5 PE-1 SV-2			
D27172	TGED	$\sum p D_2 7 7 T GED 2 HIM$	I SSTWETCK(1)TP	7	0.00
13/1/3	$\frac{101}{2}$	AN TGE beta recentor		/	0.90
	2	type-2 OS=Homo saniens			
		GN=TGFBR2 PF=1 SV=2			
P52569	CTR2	>sn P52569 CTR2 HUMA	NLSSPFIFHEK(1)TSEF	13	0.90
152507	01102	N Cationic amino acid		15	0.70
		transporter 2 OS=Homo			
		sapiens GN=SLC7A2 PE=1			
		sV=2			
Q9C03	TRIM	>sp Q9C037 TRIM4 HUM	LNQTIASLK(0.837)K(0.163)	2	0.90
7	4	AN E3 ubiquitin-protein			
		ligase TRIM4 OS=Homo			
		sapiens GN=TRIM4 PE=1			
		SV=2			
Q9965	OSM	>sp Q99650 OSMR_HUM	SSILSLIK(0.98)FK(0.02)	6	0.90
0	R	AN Oncostatin-M-specific			
		receptor subunit beta			
		OS=Homo sapiens			
		GN=OSMR PE=1 SV=1			
Q9UL	ZNRF	>sp Q9ULT6 ZNRF3_HUM	HNIIEQK(1)GNPSAVCVETSNLSR	1	0.90
16	3	AN E3 ubiquitin-protein			
		ligase ZNRF3 OS=Homo			
		sapiens GN=ZNRF3 PE=1			
D22527	MDD	SV=3	TXOXAIIME(0.273)SE(0.(29))	1	0.00
P33327		>sp P3332/ MRP1_HUMA	I Y Q V AHMK(0.372) SK(0.028)	1	0.90
	1	associated protein 1			
		OS=Homo sapiens			
		GN=ABCC1 PF=1 SV=3			
01618	ADR	>sp O16186 ADRM1 HUM	MSLK(1)GTTVTPDK	1	0.90
6	M1	AN Proteasomal ubiquitin			0.20
-		receptor ADRM1			
		OS=Homo sapiens			
		GN=ADRM1 PE=1 SV=2			
Q9HC	E41L	>sp Q9HCM4 E41L5_HUM	GQTPAQAETNYLNK(0.386)AK(0.614)	2	0.89
M4	5	AN Band 4.1-like protein 5			
		OS=Homo sapiens			
		GN=EPB41L5 PE=1 SV=3			
P52895	AK1	>sp P52895 AK1C2_HUM	SK(1)IADGSVK	3	0.89
	C2	AN Aldo-keto reductase			

		family 1 member C2 OS=Homo sapiens GN=AKR1C2 PE=1 SV=3;>sp Q04828 AK1C1_ HUMAN Aldo-keto reductase family 1 member C1 OS=Homo sapiens GN=AKR1C1 PE=1 SV=1;>sp P42330 AK1C3_ HUMAN Aldo-keto reductase family 1 member C			
P60866	RS20	>sp P60866 RS20_HUMA N 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1	DTGK(1)TPVEPEVAIHR	11	0.89
Q969G 9	NKD 1	>sp Q969G9 NKD1_HUM AN Protein naked cuticle homolog 1 OS=Homo sapiens GN=NKD1 PE=1 SV=1	VK(1)LTVAPDGSQSK	1	0.89
P15260	INGR 1	>sp P15260 INGR1_HUMA N Interferon gamma receptor 1 OS=Homo sapiens GN=IFNGR1 PE=1 SV=1	EK(1)SIILPK	1	0.89
Q9NQ X7	ITM2 C	>sp Q9NQX7 ITM2C_HU MAN Integral membrane protein 2C OS=Homo sapiens GN=ITM2C PE=1 SV=1	ADK(1)ASASAPAPASATEILLTPAR	5	0.89
Q9Y34 2	PLLP	>sp Q9Y342 PLLP_HUMA N Plasmolipin OS=Homo sapiens GN=PLLP PE=1 SV=1	AEFPSK(1)VSTR	22	0.89
P20020	AT2B 1	>sp P20020 AT2B1_HUM AN Plasma membrane calcium-transporting ATPase 1 OS=Homo sapiens GN=ATP2B1 PE=1 SV=3	IQESYGDVYGICTK(0.949)LK(0.051)	2	0.89
O6048 7	MPZ L2	>sp O60487 MPZL2_HUM AN Myelin protein zero- like protein 2 OS=Homo sapiens GN=MPZL2 PE=1 SV=1	VVEIK(0.377)SK(0.623)	1	0.89
P24001	IL32	>sp P24001 IL32_HUMAN Interleukin-32 OS=Homo sapiens GN=IL32 PE=1 SV=3	VLSDDMK(0.426)K(0.574)	1	0.89
Q8NB Q5	DHB 11	>sp Q8NBQ5 DHB11_HU MAN Estradiol 17-beta- dehydrogenase 11 OS=Homo sapiens	LVLWDINK(0.991)HGLEETAAK(0.009)	1	0.88

		GN=HSD17B11 PE=1			
00072	T TT 4	SV=3		2	0.00
29973	LIIA F	>sp Q99/32 LITAF_HUM AN Lipopolysaccharide-	ALLGIYK(I)K	2	0.88
-	1	induced tumor necrosis			
		factor-alpha factor			
		OS=Homo sapiens			
		GN=LITAF PE=1 SV=2			
P05787	K2C8	>sp P05787 K2C8_HUMA	DGK(1)LVSESSDVLPK	2	0.88
		N Keratin, type II			
		cytoskeletal 8 OS=Homo			
		sapiens GN=KK18 $PE=1$			
		PROT:P05787			
		Tax Id=9606			
		Gene Symbol=KRT8			
		Keratin, type II cytoskeletal			
		8			
P01892	1A02	>sp P01892 1A02_HUMAN	KGGSYSQAASSDSAQGSDVSLTACK(1)	6	0.88
		HLA class I	V		
		histocompatibility antigen,			
		A-2 alpha chain US=Homo			
		SV=1.>sn P10316 1A69 H			
		UMAN HLA class I			
		histocompatibility antigen,			
		A-69 alpha chain			
		OS=Homo sapiens			
		GN=HLA-A PE=1			
		SV=2;>sp P01891 1A68_H			
0%W	AND	UMAN HLA cla		1	0.00
Q80 W 74	ANK 46	/spiQoow /4/ANK40_HU MAN Ankyrin repeat	LLESLEEQEVK(I)OFNK	1	0.00
/-	40	domain-containing protein			
		46 OS=Homo sapiens			
		GN=ANKRD46 PE=1			
		SV=1			
O0047	EXO	>sp O00471 EXOC5_HUM	K(1)VQELQK(1)	3	0.88
1	C5	AN Exocyst complex			
		component 5 OS=Homo			
		sapiens GN=EXOC5 PE=1			
O0047	EXO	>sp $ 000471 EXOC5 HUM$	K(1)VOELOK(1)	3	0.88
1	C5	AN Exocyst complex		5	0.00
		component 5 OS=Homo			
		sapiens GN=EXOC5 PE=1			
		SV=1			
Q0482	AK1	>sp Q04828 AK1C1_HUM	QLEMILNK(0.949)PGLK(0.051)	1	0.88
8	Cl	AN Aldo-keto reductase			
		Iamily I member CI			
		GN=AKR1C1 PF=1			
		SV=1:>sp P42330 AK1C3			
		HUMAN Aldo-keto			
		reductase family 1 member			

		C3 OS=Homo sapiens GN=AKR1C3 PE=1 SV=4;>sp P17516 AK1C4_ HUMAN Aldo-keto reductase family 1 member C			
Q9Y6 N7	ROB O1	>sp Q9Y6N7 ROBO1_HU MAN Roundabout homolog 1 OS=Homo sapiens GN=ROBO1 PE=1 SV=1	TFNSPNLK(1)DGR	2	0.88
O6048 8	ACSL 4	>sp O60488 ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2	NEEK(1)TAEDYSVDENGQR	2	0.88
Q9H44 4	CHM 4B	>sp Q9H444 CHM4B_HU MAN Charged multivesicular body protein 4b OS=Homo sapiens GN=CHMP4B PE=1 SV=1	LFGAGGGK(0.947)AGK(0.053)	2	0.87
P41440	S19A 1	>sp P41440 S19A1_HUMA N Folate transporter 1 OS=Homo sapiens GN=SLC19A1 PE=1 SV=3	SAAEEK(1)AAQALSVQDK	11	0.87
P33527	MRP 1	>sp P33527 MRP1_HUMA N Multidrug resistance- associated protein 1 OS=Homo sapiens GN=ABCC1 PE=1 SV=3	TYQVAHMK(0.5)SK(0.5)	1	0.87
01532 0	CTG E5	>sp O15320 CTGE5_HUM AN cTAGE family member 5 OS=Homo sapiens GN=CTAGE5 PE=1 SV=4;>sp Q8IX95 CTGE3_ HUMAN Putative cTAGE family member 3 OS=Homo sapiens GN=CTAGE3P PE=5 SV=1	EQVSELNK(0.969)QK(0.031)	1	0.87
P16422	EPCA M	>sp P16422 EPCAM_HUM AN Epithelial cell adhesion molecule OS=Homo sapiens GN=EPCAM PE=1 SV=2	AEIK(1)EMGEMHR	5	0.86
P43007	SATT	>sp P43007 SATT_HUMA N Neutral amino acid transporter A OS=Homo sapiens GN=SLC1A4 PE=1 SV=1	SEEETSPLVTHQNPAGPVASAPELESK(1)ESVL	4	0.86
Q1507 5	EEA1	>sp Q15075 EEA1_HUMA N Early endosome antigen 1 OS=Homo sapiens GN=EEA1 PE=1 SV=2	IQNLEALLQK(1)	8	0.86
O1532 0	CTG E5	>sp O15320 CTGE5_HUM AN cTAGE family member	EYEGYEVESSLK(0.98)DASFEK(0.02)	2	0.86

		5 OS=Homo sapiens			
		GN=CTAGE5 PE=1 SV=4			
Q1583	VAM	>sp Q15836 VAMP3_HUM	VNVDK(1)VLER	21	0.86
6	P3	AN Vesicle-associated			
		membrane protein 3			
		OS=Homo sapiens			
		GN=VAMP3 PE=1			
		SV=3;>sp P6302/ VAMP2			
		_HUMAN Vesicle-			
		associated memorane			
		GN=VAMP2 PE=1			
		SV=3·>sp P23763 VAMP1			
		HUMAN Vesicle-			
		associated membrane			
		protein 1 OS=			
P45974	UBP5	>sp P45974 UBP5 HUMA	LEK(1)IFQNAPTDPTQDFSTQVAK	1	0.86
		N Ubiquitin carboxyl-			
		terminal hydrolase 5			
		OS=Homo sapiens			
		GN=USP5 PE=1 SV=2			
Q1339	PLD1	>sp Q13393 PLD1_HUMA	ETETK(1)YGIR	6	0.86
3		N Phospholipase D1			
		OS=Homo sapiens			
00288	MRP	Sep O02887 MPP2 HIMA	DNII EGTEENEK(1)P	11	0.86
7	$\frac{1}{2}$	N Canalicular multispecific	DNILFOTEINER(I)R	11	0.00
,	2	organic anion transporter 1			
		OS=Homo sapiens			
		GN=ABCC2 PE=1 SV=3			
Q8NB	TM87	>sp Q8NBN3 TM87A_HU	VNK(1)AQEDDLK	1	0.85
N3	А	MAN Transmembrane			
		protein 87A OS=Homo			
		sapiens GN=TMEM87A			
D 00024	CIVD 1	PE=1 SV=3			0.05
P08034	CXBI	>sp P08034 CXB1_HUMA	LLSEQDGSLK(1)DILR	1	0.85
		N Gap junction beta-1			
		GN=GIB1 PF=1 SV=1			
P00441	SOD	>sp P00441 SODC HUMA	TLVVHEK(0.978)ADDLGK(0.022)	1	0.85
100111	C	N Superoxide dismutase		1	0.05
		[Cu-Zn] OS=Homo sapiens			
		GN=SOD1 PE=1 SV=2			
P62820	RAB1	>sp P62820 RAB1A_HUM	MGPGATAGGAEK(0.987)SNVK(0.013)	1	0.85
	А	AN Ras-related protein			
		Rab-1A OS=Homo sapiens			
D.C.C.C.C.		GN=RAB1A PE=1 SV=3			0.0-
P61981	1433	>sp P61981 1433G_HUMA	VDREQLVQK(1)AR	1	0.85
	G	N 14-3-3 protein gamma			
		OS=Homo sapiens			
P21860	EBB	OIN-I WIAO PE=I SV=2 >sp P21860 FPRP3 HIM	GESIEPI DPSEK (0.454) ANK (0.546)	4	0.85
121000	B3	AN Recentor tyrosine-	OLSIEILDISEK(0.737)AINK(0.370)	-	0.05
	1.55	protein kinase erbB-3			
		· · · · · · · · · · · · · · · · · · ·			

		OS=Homo sapiens			
Q9Y28 7	ITM2 B	Sp Q9Y287 ITM2B_HUM AN Integral membrane protein 2B OS=Homo sapiens GN=ITM2B PE=1 SV=1	VTFNSALAQK(0.983)EAK(0.811)K(0.205)	1	0.85
Q9UB B4	ATX1 0	>sp Q9UBB4 ATX10_HU MAN Ataxin-10 OS=Homo sapiens GN=ATXN10 PE=1 SV=1	ITSDEPLTK(1)DDIPVFLR	4	0.85
P05362	ICA M1	>sp P05362 ICAM1_HUM AN Intercellular adhesion molecule 1 OS=Homo sapiens GN=ICAM1 PE=1 SV=2	LQQAQK(0.995)GTPMK(0.005)PNTQATP P	3	0.85
P27348	1433 T	>sp P27348 1433T_HUMA N 14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1	TELIQK(0.5)AK(0.5)	1	0.84
P27348	1433 T	>sp P27348 1433T_HUMA N 14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1	TELIQK(0.5)AK(0.5)	1	0.84
Q9288 7	MRP 2	>sp Q92887 MRP2_HUMA N Canalicular multispecific organic anion transporter 1 OS=Homo sapiens GN=ABCC2 PE=1 SV=3	TK(1)TLVSK	3	0.84
Q9NQ X7	ITM2 C	>sp Q9NQX7 ITM2C_HU MAN Integral membrane protein 2C OS=Homo sapiens GN=ITM2C PE=1 SV=1	VK(1)ISFQPAVAGIK	5	0.84
P23229	ITA6	>sp P23229 ITA6_HUMAN Integrin alpha-6 OS=Homo sapiens GN=ITGA6 PE=1 SV=5	YIDNLEK(0.413)K(0.587)	2	0.84
P29317	EPH A2	>sp P29317 EPHA2_HUM AN Ephrin type-A receptor 2 OS=Homo sapiens GN=EPHA2 PE=1 SV=2	SEQLK(0.998)PLK(0.002)	5	0.83
Q6EM K4	VAS N	>sp Q6EMK4 VASN_HUM AN Vasorin OS=Homo sapiens GN=VASN PE=1 SV=1	GQVGPGAGPLELEGVK(0.999)VPLEPGP K(0.001)	4	0.83
Q0648 1	APLP 2	>sp Q06481 APLP2_HUM AN Amyloid-like protein 2 OS=Homo sapiens GN=APLP2 PE=1 SV=2	HLNK(1)MQNHGYENPTYK	2	0.83
P31946	1433 B	>sp P31946 1433B_HUMA N 14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3	SELVQK(0.993)AK(0.007)	8	0.83

Q1575	AAA	>sp Q15758 AAAT_HUMA	STEPELIQVK(1)SELPLDPLPVPTEEGNP	8	0.83
8	Т	N Neutral amino acid	LLK		
		transporter B(0) OS=Homo			
		sapiens GN=SLC1A5 PE=1			
		SV=2			
P35241	RADI	>sp P35241 RADI_HUMA	VLEQHK(0.986)LTK(0.014)	3	0.82
		N Radixin OS=Homo			
		sapiens GN=RDX PE=1			
		SV=1		_	
P31946	1433 D	>sp P31946 1433B_HUMA	NLLSVAYK(1)NVVGAR	2	0.82
	В	N 14-3-3 protein beta/alpha			
		OS=Homo sapiens			
		GN=YWHABPE=I SW=2:>ap O04017 1422E			
		$SV=3;>SP Q0491/ 1433F_$			
		OS=Homo sapiens			
		GN=YWHAH PF=1			
		SV=4.>sp P61981 1433G			
		HUMAN 14-3-3 protein			
		gamma OS=Homo sapiens			
		GN=YWHAG PE=1			
		SV=2;>sp P63104 1433Z			
P17752	TPH1	>sp P17752 TPH1 HUMA	ENK(1)DHSLER	2	0.82
		N Tryptophan 5-			
		hydroxylase 1 OS=Homo			
		sapiens GN=TPH1 PE=1			
		SV=4			
O0056	SDC	>sp O00560 SDCB1_HUM	SLYPSLEDLK(0.942)VDK(0.058)	4	0.82
0	BI	AN Syntenin-1 OS=Homo			
		sapiens GN=SDCBP PE=1			
D78504	IAC1	SV-1	EQUNOIN(0.000)NDIEV(0.001)	11	0.82
1/0304	JAUI	N Protein jagged-1	EQENQIK(0.333) INI IEK(0.001)	11	0.82
		OS=Homo saniens			
		GN=IAG1 PE=1 SV=3			
01512	SCA	>sp O15126 SCAM1 HUM	EHALAOAELLK(1)R	6	0.82
6	M1	AN Secretory carrier-		-	
		associated membrane			
		protein 1 OS=Homo sapiens			
		GN=SCAMP1 PE=1 SV=2			
P78310	CXA	>sp P78310 CXAR_HUMA	MGAIPVMIPAQSK(1)DGSIV	1	0.81
	R	N Coxsackievirus and			
		adenovirus receptor			
		OS=Homo sapiens			
00(0	020 +	GN=CXADR PE=1 SV=1		24	0.01
Q96Q	838A 2	>splQ96QD8 S38A2_HUM	SHYADVDPENQNFLLESNLGK(0.606)K(24	0.81
108	Z	Ain Sodium-coupled neutral	0.374)		
		OS=Homo sapiens			
		GN=SI C38A2 PF=1 SV=2			
08N4S	MAL	>sn 08N4S9 MALD2 HI	TYSEK(1)VEEYNLR	1	0.81
9	D2	MAN MARVEL domain-		1	0.01
1	D_{2}				
	D_{2}	containing protein 2			

		GN=MARVELD2 PE=1			
		SV=2			
P22455	FGFR 4	>sp P22455 FGFR4_HUM AN Fibroblast growth factor receptor 4 OS=Homo sapiens GN=FGFR4 PE=1 SV=2	QFSLESGSSGK(1)SSSSLVR	3	0.81
Q0648 1	APLP 2	>sp Q06481 APLP2_HUM AN Amyloid-like protein 2 OS=Homo sapiens GN=APLP2 PE=1 SV=2	MQNHGYENPTYK(1)YLEQMQI	1	0.81
O9547 7	ABC A1	>sp O95477 ABCA1_HUM AN ATP-binding cassette sub-family A member 1 OS=Homo sapiens GN=ABCA1 PE=1 SV=3	YGEK(1)YAGNYSGGNK	1	0.80
P05556	ITB1	>sp P05556 ITB1_HUMAN Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2	WDTGENPIYK(1)SAVTTVVNPK	10	0.80
P34741	SDC2	>sp P34741 SDC2_HUMA N Syndecan-2 OS=Homo sapiens GN=SDC2 PE=1 SV=2	APTK(1)EFYA	2	0.80
Q0482 8	AK1 C1	>sp Q04828 AK1C1_HUM AN Aldo-keto reductase family 1 member C1 OS=Homo sapiens GN=AKR1C1 PE=1 SV=1	SK(1)ALEATK	1	0.80
Q9UE U0	VTI1 B	>sp Q9UEU0 VT11B_HUM AN Vesicle transport through interaction with t- SNAREs homolog 1B OS=Homo sapiens GN=VT11B PE=1 SV=3	LVNTSENLSK(1)SR	1	0.80
Q9BR K3	MXR A8	>sp Q9BRK3 MXRA8_HU MAN Matrix-remodeling- associated protein 8 OS=Homo sapiens GN=MXRA8 PE=1 SV=1	AELAHSPLPAK(0.999)YIDLDK(0.001)	1	0.80
P31431	SDC4	>sp P31431 SDC4_HUMA N Syndecan-4 OS=Homo sapiens GN=SDC4 PE=1 SV=2	DEGSYDLGK(0.435)K(0.56)PIYK(0.005)	2	0.80
P68363	TBAI B	>sp P68363 TBA1B_HUM AN Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1;>sp Q71U36 TBA1A HUMAN Tubulin alpha- 1A chain OS=Homo sapiens GN=TUBA1A PE=1 SV=1;>sp Q13748 TBA3C_ HUMAN Tubulin alpha-	GDVVPK(1)DVNAAIATIK	2	0.80

		3C/D chain OS=Homo sapiens GN=TUBA3C PF=1 SV=3:>splO6PF			
P01009	A1AT	>sp P01009 A1AT_HUMA N Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3;>sp P20848 A1ATR_ HUMAN Putative alpha-1- antitrypsin-related protein OS=Homo sapiens GN=SERPINA2 PE=1 SV=1	VVNPTQK(1)	1	0.79
P08727	K1C1 9	>sp P08727 K1C19_HUMA N Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4;>P08727 SWISS- PROT:P08727 Tax_Id=9606 Gene_Symbol=KRT19 Keratin, type I cytoskeletal 19;>sp Q04695 K1C17_HU MAN Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT1	TK(1)FETEQALR	3	0.79
Q1662 5	OCL N	>sp Q16625 OCLN_HUMA N Occludin OS=Homo sapiens GN=OCLN PE=1 SV=1	EHIYDEQPPNVEEWVK(1)NVSAGTQDV PSPPSDYVER	3	0.78
P54252	ATX3	>sp P54252 ATX3_HUMA N Ataxin-3 OS=Homo sapiens GN=ATXN3 PE=1 SV=4	VHK(1)TDLER	1	0.78
Q9NQ 84	GPC5 C	>sp Q9NQ84 GPC5C_HU MAN G-protein coupled receptor family C group 5 member C OS=Homo sapiens GN=GPRC5C PE=1 SV=2	DGK(1)NSQVFR	6	0.78
P30825	CTR1	>sp P30825 CTR1_HUMA N High affinity cationic amino acid transporter 1 OS=Homo sapiens GN=SLC7A1 PE=1 SV=1	TPDGNLDQCK(1)	3	0.78
P11532	DMD	>sp P11532 DMD_HUMA N Dystrophin OS=Homo sapiens GN=DMD PE=1 SV=3;>sp P46939 UTRO_ HUMAN Utrophin OS=Homo sapiens GN=UTRN PE=1 SV=2	VAAAETAK(0.854)HQAK(0.146)	1	0.77
Q86W A9	S2611	>sp Q86WA9 S2611_HUM AN Sodium-independent sulfate anion transporter	EDSILDQK(1)VALLK	8	0.77

		OS=Homo sapiens GN=SLC26A11 PE=2 SV=2			
P05067	A4	>sp P05067 A4_HUMAN Amyloid beta A4 protein OS=Homo sapiens GN=APP PE=1 SV=3	HLSK(1)MQQNGYENPTYK	2	0.77
P05556	ITB1	>sp P05556 ITB1_HUMAN Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2	SAVTTVVNPK(1)YEGK	26	0.77
P63104	1433 Z	>sp P63104 1433Z_HUMA N 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1	NELVQK(0.947)AK(0.053)	1	0.77
P14625	ENPL	>sp P14625 ENPL_HUMA N Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1;>sp Q58FF3 ENPLL HUMAN Putative endoplasmin-like protein OS=Homo sapiens GN=HSP90B2P PE=5 SV=1	K(1)TFEINPR	1	0.77
Q5W0 Z9	ZDH2 0	>sp Q5W0Z9 ZDH20_HU MAN Probable palmitoyltransferase ZDHHC20 OS=Homo sapiens GN=ZDHHC20 PE=1 SV=1	SSGSNQPFPIK(0.931)PLSESK(0.069)	1	0.76
Q1328 6	CLN3	>sp Q13286 CLN3_HUMA N Battenin OS=Homo sapiens GN=CLN3 PE=1 SV=1	TEAPESK(1)PGSSSSLSLR	9	0.76
P04114	APO B	>sp P04114 APOB_HUMA N Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2	FQK(1)AASGTTGTYQEWK	2	0.76
Q9305 0	VPP1	>sp Q93050 VPP1_HUMA N V-type proton ATPase 116 kDa subunit a isoform 1 OS=Homo sapiens GN=ATP6V0A1 PE=1 SV=3	K(1)EMASGVNTR	1	0.76
Q1583 6	VAM P3	>sp Q15836 VAMP3_HUM AN Vesicle-associated membrane protein 3 OS=Homo sapiens GN=VAMP3 PE=1 SV=3;>sp P63027 VAMP2 _HUMAN Vesicle- associated membrane protein 2 OS=Homo sapiens GN=VAMP2 PE=1	DQK(1)LSELDDRADALQAGASQFETSA AK	2	0.75

		SV=3;>sp P23763 VAMP1 _HUMAN Vesicle- associated membrane protein 1 OS=			
Q9NQ X7	ITM2 C	>sp Q9NQX7 ITM2C_HU MAN Integral membrane protein 2C OS=Homo sapiens GN=ITM2C PE=1 SV=1	ISFQPAVAGIK(0.996)GDK(0.82)ADK(0.1 84)	3	0.75
P02786	TFR1	>sp P02786 TFR1_HUMA N Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 SV=2	LAVDEEENADNNTK(0.984)ANVTK(0.01 3)PK(0.003)	4	0.75
P12004	PCN A	>sp P12004 PCNA_HUMA N Proliferating cell nuclear antigen OS=Homo sapiens GN=PCNA PE=1 SV=1	DLSHIGDAVVISCAK(0.804)DGVK(0.196)	1	0.75
Q9288 7	MRP 2	>sp Q92887 MRP2_HUMA N Canalicular multispecific organic anion transporter 1 OS=Homo sapiens GN=ABCC2 PE=1 SV=3	EDEELVK(0.97)GQK(0.03)	1	0.75
P34741	SDC2	>sp P34741 SDC2_HUMA N Syndecan-2 OS=Homo sapiens GN=SDC2 PE=1 SV=2	KPSSAAYQK(1)APTK	3	0.74
P21359	NF1	>sp P21359 NF1_HUMAN Neurofibromin OS=Homo sapiens GN=NF1 PE=1 SV=2	NLLFNPSK(1)PFSR	3	0.74
Q9987 8	H2A1 J	>sp Q99878 H2A1J_HUM AN Histone H2A type 1-J OS=Homo sapiens GN=HIST1H2AJ PE=1 SV=3;>sp Q96KK5 H2A1H HUMAN Histone H2A type 1-H OS=Homo sapiens GN=HIST1H2AH PE=1 SV=3;>sp Q9BTM1 H2AJ_ HUMAN Histone H2A.J OS=Homo sapiens GN=H2AFJ PE=1 SV=1;>sp Q93077 H2A1C_ HU	VTIAQGGVLPNIQAVLLPK(1)	3	0.74
P30825	CTR1	>sp P30825 CTR1_HUMA N High affinity cationic amino acid transporter 1 OS=Homo sapiens GN=SLC7A1 PE=1 SV=1	TILSPK(0.979)NMEPSK(0.021)	1	0.74
O1482 8	SCA M3	>sp O14828 SCAM3_HUM AN Secretory carrier- associated membrane protein 3 OS=Homo sapiens GN=SCAMP3 PE=1 SV=3	NYGSYSTQASAAAATAELLK(0.5)K(0.5)	16	0.74

8M3ANSecretory carrier associated membrane protein 3 OS=Home sapiens (GN=SCAMP3 PE-1 SV=3)Secretory carrier (GN=SCAMP3 PE-1 SV=3)P62820RABI A $> spp(620)RABIA_IPUMS(GN=RABIA PE=1 SV=3)SNVK(1)IQSTPVK60.73O4349E41L2 >p0(6340)IE41L2_HUMAN Band 4.1-like protein 2QS=Home sapiens(GN=FBHL2 PE=1 SV=3)TTEVGSVSEVK(0.881)K(0.119)40.73Q9BV400VAMP8Sap(Q9BV40)VAMP8_HUMAN Vesicle-associatedOS=Home sapiensGN=VAMP8 PE=1 SV=1NLQSEVEGVK(1)NIMTQNVER50.73P01111RASA0RASPSP(01111RASN_HUMAN GTBase NRas OS=HomeSV=1NLQSEVEGVK(1)NIMTQNVER50.73P01111RASVSP8MAN Vesicle-associatedOS=Home sapiensGN=VAMP8 PE=1 SV=1NLQSEVEGVK(1)NIMTQNVER50.73P01111RASVSP8MAN Vesicle-associatedOS=Home sapiensGN=VAMP8 PE=1 SV=1TVDTK(1)QAHELAK60.73P11010RSV=1SV=1GDK(1)EELTPQK50.73P24001RSVP24001L12 PE=1SV=1SK(1)AESSLLR80.72Q9H7X2SCA11A N Ucharacterized proteinclorf15 IOS=Homesapiens GN=C10H15PE=2 SV=1SK(1)AESSLLR80.72P61088NQS=Home sapiensGN=SQLEY PE=1 SV=3CLDILK(0.961)DK(0.039)AN Tetraspanin-10SHPE12N PL-11SV=1AGPQSPSPGAPPAAK(1)PARGAN Ubiquith-conjugatingGN=SPENNIO PE=2 SV=1AGPQSPSPGAPPAAK(1)PARGAN Squalene monoxygenaseGS=Home sapiensGN=SQLEY PE=1 SV=2AGPQSPSPGAPPAAK(1)PARGAN Squasenal-sociatedGS=Home$	O1482	SCA	>sp O14828 SCAM3 HUM	NYGSYSTQASAAAATAELLK(0.5)K(0.5)	16	0.74
Image: Second and membrane protein 3 OS=Homo sapiens GN=SCAMP3 PE=1 SV=3SNVK(1)IQSTPVK6P62820RABI A>spIPG2820[RABIA_1IUM RAN Ras-related protein 2 OS=Homo sapiens GN=RAB1 PE=1 SV=3SNVK(1)IQSTPVK604349F4IL 2>spIPG2820[RAB1A_PLC]TTEVGSVSEVK(0.881)K(0.119)40.7304349F4IL 2N Band 4.1-like protein 2 OS=Homo sapiens GN=RAB412_PE=1_SV=1 OS=Homo sapiens GN=VAMP8 PE=1_SV=1TTEVGSVSEVK(0.881)K(0.119)40.7309BV 40VAM 98SepG9BV40VAMP8_PL NN Vesicle-associated membrane protein 8 OS=Homo sapiens GN=VAMP8 PE=1_SV=1TVDTK(1)QAHELAK PS60.73P01111 RAS N Supiens GN=NRAS PL= SV=1SV=1TVDTK(1)QAHELAK SV=160.73P24001 1L32LL32 V=1SK(1)AESSLLR SK(1)AESSLLR50.7309H7 X2CA11 SepQ9H7X2(CA115_HUM NS Supiens GN=C132 PE=1 SV=1SK(1)AESSLLR80.7209H7 X2CA11 SepQ9H7X2(CA115_HUM N NSK(1)AESSLLR80.7209H7 X2SSNPI61088(UBE2_HUM N Supiens GN=C107115 PE=2 SV=1ICLDILK(0.961)DK(0.039) AN Underacterized protein Supiens GN=SUP SPG90.7209H7 X2CA11 SepQ9H1Z9[TSN10_HUM N Solute carrier family 2, ficilitated glucose transporter member 1 OS=Homo sapiens GN=SU10_PESAGPQSPSPGAPPAAK(1)PARG A10.7201453 4GTRI Solute carrier family 2, ficilitated glucose transporter member 1 OS=Homo sapiens GN=SU122A1 PE=1 SV=2QGGASQSDK(8	M3	AN Secretory carrier-			
Performprotein 3 OS-Homo supiens GN-SCAMP3 PE-1 SV-3SNVK(1)QSTPVK6P62820RABI A>spl(P62820(RAB1A_HUM Rab-1A OS-Homo supiens GN-RAB1A PE-1 SV-3SNVK(1)QSTPVK60.73O4349E41L 2>spl(O434)[F41L2_HUMA N Band 4.1-like protein 2 OS-Homo supiens GN-EPB41L2 PLI-1SV-1TTEVGSVSEVK(0.881)K(0.119)40.73Q9BV 400VAM P8>spl(O8440)VAMP8, HU MAN Vesicle-associated membrane protein 8 OS-Homo supiens GN-EVMP8 PE-1 SV-1NLQSEVEGVK(1)NIMTQNVER50.73P01111RAS N GTPase NRas OS-Homo supiens GN=NRAS PE-1 SV-1TVDTK(1)QAHELAK60.73P24001IL32 VS-1Sep[Q9H7X2]CA115_HUM AN Ubcharacterized protein Clorf115 OS-Homo supiens GN-Clorf115GDK(1)FESLLR50.73P4108NE22 NPG9H7X2]CA115_HUM AN Ubcharacterized protein Clorf115 OS-Homo supiens GN-Clorf115SK(1)AESSLLR80.72P61088NE22 N=1 Svp[04129TSN10_HUM A N Ubquitin-conjugating erzyme E2 N OS-Homo supiens GN-TSPANIO PE-2 SV-1ILCLDILK(0.961)DK(0.039)90.72P61184ERG1 N Solute acarier family 2, faciliated glucose tansporter member 1 OS-Homo supiens GN-SIC2A1 PE-1 SV-3SPFSENK(1)EQLEAR50.71P11166GTR1 A N Solute acarier family 2, faciliated glucose tansporter member 1 OS-Homo supiens GN-SIC2A1 PE-1 SV-2SPFSENK(1)EPPPYLPA10.71P11166LAP4 A N Solute acarier family 2, faciliated glucose tansporter member 1 OS-Homo supiens GN-SIC2A1 PE-1 SV-2MPEK(1)EPPP	-	_	associated membrane			
P62820RABI $Sep[62320]RABIA_IIUMAN Ras-related proteinGN=RABIA PE=1 SV=3SNVK(1)IQSTPVKAN Ras-related proteinGN=RABIA PE=1 SV=360.7304349F41LSep[04349][F41L2_HUMAI are protein 2OS=Homo sapiensGN=RABIA PE=1 SV=3TTEVGSVSEVK(0.881)K(0.119)40.7304349F41LSep[04349][F41L2_HUMAI are protein 2OS=Homo sapiensGN=RAB_H1L2_HEM_SNETTEVGSVSEVK(0.881)K(0.119)40.7304349Sep[049V40]VAMPS_HUNAN Vesicle-associatedmembrane protein 8OS=Homo sapiensGN=VAMPS PE=1 SV=1NLQSEVEGVK(1)NIMTQNVERSV=150.73P01111P24001RASNSep[09111]RASN_HUMANN GTPase NRas OS=Homosapiens GN=NRAS PF=1SV=1TVDTK(1)QAHELAKSCI-160.73P24001IL32Sep[2400]II.12_HUMANInterleukin-32 OS=Homosapiens GN=C1orf115PE=2 SV=1GDK(1)EELTPQK50.73P61088UBE2V=3Sep[04132[PE=1]SV=3SK(1)AESSLLR80.72P61088UBE2V=2 SV=1SK(1)AESSLLR80.72P61088UBE2V=1SV=3SP[04134]ERQ1_HUMAN Usiquitn-conjugatingenzyme E2 N OS=Homosapiens GN=UBE2N PE=1SV=3ILDULK(0.961)DK(0.039)SP[04134]ERQ1_HUMAN Squidem comoxygeneseOS=Homo sapiensGN=SUPRIND [H=2 SV=1AGGQSPSPGAPPAAK(1)PARG10.72Q1453ERG1Sep[04134]ERQ1_HUMAN Squidem comoxygeneseOS=Homo sapiensGN=SUPRIND PI=2 SV=1SPESENK(1)EQLEAR50.71P11166GTR1Sep[04134]ERQ1_HUMAN Squidem comoxygeneseOS=Homo sapiensGN=SUPRIND PI=2 SV=1$			protein 3 OS=Homo sapiens			
P62820RABI A>spP62820[RAB1A_HUM AN Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A PE=1 SV=3 GN=RAB1A PI=1 SV=3 GN=RAB1A PI=1 SV=3 GN=EPB41L2 PE=1 SV=1 OS=Homo sapiens GN=EPB41L2 PE=1 SV=1SNVK(1)[QSTPVK60.73Q9BV 40VAM 2NBand 4.1-like protein 2 OS=Homo sapiens GN=EPB41L2 PE=1 SV=1TTEVGSVSEVK(0.881)K(0.119) NCSHomo sapiens GN=EPB41L2 PE=1 SV=10.73P01111 P1111RAS N GTPase NRas OS=Homo sapiens GN=US2 PE=1 SV=1NLQSEVEGVK(1)NIMTQNVER SSP[0111]RASN HUMA N GTPase NRas OS=Homo sapiens GN=US2 PE=1 SV=1TVDTK(1)QAHELAK SK(1)AESLLR60.73P24001 N2IL32 SSP[24001]IL32_HUMAN Interleukin-32 OS=Homo sapiens GN=US2 PE=1 SV=3TVDTK(1)QAHELAK SK(1)AESLLR60.73Q9H7 X2CA11 SSP[09H7X2]CA115_HUM N N GTPaseThomo sapiens GN=C132 PE=1 SV=3SK(1)AESSLLR80.72Q9H7 X2SSP[0108k]UBE2N_HUM N NICLDILK(0.961)DK(0.039) AN Ubiquifin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1SPC1008k]UBE2N_HUM SPQ0H129(TSN10_HUM N Subte carrier family 2, facilitate fglucose GN=TSPAN10 PE=2 SV=1 GN=TSPAN10 PE=2 SV=1SPESENK(1)EQLEAR50.71Q1512 AERGI N Subte carrier family 2, facilitate fglucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2SPESENK(1)EQLEAR50.71P11166 CTR1 ACARP A N Lysosomal-associated transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2MPEK(1)EPPPPYLPA10.71Q1501 CLAP A N Nysosomal-associa			GN=SCAMP3 PE=1 SV=3			
AAN Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A PE=1SV=3 OS=Homo sapiens OS=Homo sapiens OS=	P62820	RAB1	>sp P62820 RAB1A HUM	SNVK(1)IQSTPVK	6	0.73
Abs1A 0S=Homo sapiens GN=RAB1A PE=1 SV=3TTEVGSVSEVK(0.881)K(0.119) N Band 4.1-like protein 2 OS-Homo sapiens GN=FPB41L2 PE=1 SV=1 OS-Homo sapiens GN=PPB41L2 PE=1 SV=1 OS-Homo sapiens GN=VAMP8 PE1 SV=1TTEVGSVSEVK(0.881)K(0.119) PAU40.73Q9BV 40VAM PS>sp(Q9BV40]VAMP8 HU MAN Vesicle-associated membrane protein 8 OS-Homo sapiens GN=VAMP8 PE1 SV=1NLQSEVEGVK(1)NIMTQNVER PS50.73P01111 P24001RAS N GTPase NRas OS-Homo sapiens GA=NKAS PE=1 SV=1TVDTK(1)QAHELAK TVDTK(1)QAHELAK60.73P24001IL32 SupP24001[IL32 HUMAN Interleukin32 OS-Homo sapiens GA=IL32 PE=1 SV=3GDK(1)EELTPQK SV=150.73Q9H7 X2CA11 Sp(Q9H7X2]CA115 HUM N GTRAS PE=1 SV=3SK(1)AESSLLR80.72Q9H7 X2SA1 SupQ9H7X2]CA115 HUM N M Ubiquitin-conjugating enzymes GN=UBE2N PE=1 SV=1SK(1)AESSLLR80.72P61088 9DE22 Sv=1 PF1080SpQ14D20[TSN10_HUM N M Vbiquitin-conjugating enzymes GN=UBE2N PE=1 SV=1SPG26APPAAK(1)PARG10.72Q9H1Z 9SN1 SapQ14534[EG1_HUMA N Squaleen monoxygenas GN=STPAN10 PE=2 SV=1 GN=Momo sapiens GN=SUE PE=1 SV=3SPF25ENK(1)EQLEAR50.71P11166 2GTR1 N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SUC2A1 PE=1 SV=2MPEK(1)EPPPPYLPA10.71P11166 2LAP A N Subte carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SUC2A1 PE=1 SV=2MPEK(1)EPPPPYLPA1		А	AN Ras-related protein			
$ \begin{array}{ c c c c c } \hline Control & Contro$			Rab-1A OS=Homo sapiens			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			GN=RAB1A PE=1 SV=3			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	O4349	E41L	>sp O43491 E41L2 HUMA	TTEVGSVSEVK(0.881)K(0.119)	4	0.73
Image: second	1	2	N Band 4.1-like protein 2			
(3) <th< td=""><td></td><td></td><td>OS=Homo sapiens</td><td></td><td></td><td></td></th<>			OS=Homo sapiens			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			GN=EPB41L2 PE=1 SV=1			
40P8MAN Vesicle-associated membrane protein 8 OS-Homo sapiens GN=VAMP8 PE=1 SV=1Image: Constraint of the second se	Q9BV	VAM	>sp Q9BV40 VAMP8 HU	NLQSEVEGVK(1)NIMTQNVER	5	0.73
Image: space of the sector o	40	P8	MAN Vesicle-associated			
OS=Homo sapiens GN=VAMP8 PE=1 SV=1VDTK(1)QAHELAK6P01111RAS N SP[P24001 IL32_HUMAN Interleukin-32 0S=Homo sapiens GN=IL32 PE=1 SV=3TVDTK(1)QAHELAK60.73P24001IL32 VSV=1>sp[P24001 IL32_HUMAN Interleukin-32 0S=Homo sapiens GN=IL32 PE=1 SV=3GDK(1)EELTPQK50.73O9H7 X2CA11 S>sp[09H72]CA115_HUM AN Uncharacterized protein C1 orf1 IS OS=Homo sapiens GN=C1 orf115 PE=2 SV=1SK(1)AESSLLR80.72P61088 9UBE2 SNP[61088[UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=C10F115 PE=2 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9TSN1 O>sp[04123]TSN10_HUM OS=Homo sapiens GN=TSPAN10 PE=2 SV=1 GN=SQLE PE=1 SV=2AGPQSPSPGAPPAAK(1)PARG10.72Q9H1Z 9SSN[09H12]TSN10_HUM N Squalene monooxygenase GN=TSPAN10 PE=2 SV=1SPPESENK(1)EQLEAR50.71P11166 OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166 QTR 1>sp[01166]GTR_HUMA N Squalene monooxygenase GN=SQLE PE=1 SV=3QGGASQSDK(1)TPEELFHPLGADSQV140.71P11166 QTA 1CAPHE ISV=2MPEK(1)EPPPYLPA10.71Q1501 2LAP4 A SP[015012]LAP4A_HUM N Sulue carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2MPEK(1)EPPPYLPA10.71			membrane protein 8			
Image: Constraint of the section o			OS=Homo sapiens			
P01111 P01111 N NRAS N GTPase NRas OS-Homo sapiens GN=NRAS PE=1 SV=1TVDTK(1)QAHELAK60.73P24001IL32 V=1>sp[P2401]IL32_HUMAN Interleukin-32 OS-Homo sapiens GN=L32 PE=1 SV=3GDK(1)EELTPQK50.73Q9H7 X2CA11 S>sp[Q9H7X2]CA115_HUM C1orf115 OS=Homo sapiens GN=C1orf115 PE=2 SV=1SK(1)AESSLLR80.72P61088 9UBE2 V=1>sp[P61088]UBE2N_HUM N Ubiquitin-conjugating enzyme E2 N OS-Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72P61088 9UBE2 Sp[P61088]UBE2N_HUM N N Ubiquitin-conjugating enzyme E2 N OS-Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9TSN1 0 Sql2P14153HERG1_HUMA AN Ubiquitin-conjugating enzyme E2 N OS-Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4 4 4ERG1 Sp[Q14534]ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPESENK(1)EQLEAR50.71P11166 2GTR1 A N Squalene monooxygenase GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501 2LAP4 A N Lyosoomal-associated transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2MPEK(1)EPPPPYLPA10.71			GN=VAMP8 PE=1 SV=1			
$ \begin{array}{ c c c c c c } & N & N & GTPase NRas OS=Homo \\ sapiens GN=NRAS PE=1 \\ SV=1 & & & & & & & & & & & & & & & & & & &$	P01111	RAS	>sp P01111 RASN_HUMA	TVDTK(1)QAHELAK	6	0.73
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Ν	N GTPase NRas OS=Homo			
Image: sv=1Image: sv=1Image: sv=1P24001IL32>sp[P24001 IL32_HUMAN Interleukin-32 OS=Homo sapiens GN=IL32 PE=1 SV=3GDK(1)EELTPQK50.73Q9H7CA11>sp[Q9H7X2[CA115_HUM Clorf115 OS=Homo sapiens GN=Clorf115 PE=2 SV=1SK(1)AESSLLR80.72P61088UBE2>sp[P61088[UBE2N_HUM N AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1ZTSN1 O>sp[Q9H1Z9]TSN10_HUM AN Tetraspanin-10 OS=Homo sapiens GN=SQLE PE=1 SV=3AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 N squalene monoxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1 SSP[P11166[GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SUC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4 A N Lyssomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71			sapiens GN=NRAS PE=1			
P24001IL32 $>sp P24001 L32 + HUMANInterleukin-32 OS=Homosapiens GN=IL32 PE=1SV=3GDK(1)EELTPQK550.73Q9H7X2CA11>sp Q9H7X2 CA115 + HUMAN Uncharacterized proteinC1 orf115 OS=Homosapiens GN=C1 orf115PE=2 SV=1SK(1)AESSLLR80.72P61088UBE2NAN Ubiquitin-conjugatingenzyme E2 N OS=Homosapiens GN=UBE2N PE=1SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z9TSN10SP[Q9H1Z9]TSN10_HUMOS=Homo sapiensGN=TSPANI0 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q14534ERG1N squalene monoxygenaseGN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166STSolute carrier family 2,facilitated glucosetransporter member 1OS=Homo sapiensGN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q15012LAP4A>sp[Q1501]LAP4A_HUMAN Lysosomal-associatedtransmembrane protein 4AOS=Homo sapiensMPEK(1)EPPPYLPA10.71$			SV=1			
$ \begin{array}{ c c c c c } \mbox{Interleukin-32 OS=Homo} \\ \mbox{sapiens GN=IL32 PE=1} \\ \mbox{SV=3} \\ \mbox{OP} \\ \mbox{SyplQ9H7X2 CA115_HUM} \\ \mbox{X2} \\ \mbox{SyplQ9H7X2 CA115_HUM} \\ \mbox{SyplQ9H7X2 CA115_HUM} \\ \mbox{C1orf115 OS=Homo} \\ \mbox{sapiens GN=C1orf115} \\ \mbox{PE=2 SV=1} \\ \mbox{PP=2 SV=1}$	P24001	IL32	>sp P24001 IL32_HUMAN	GDK(1)EELTPQK	5	0.73
Sapiens GN=IL32 PE=1 SV=3sapiens GN=IL32 PE=1 SV=3sapiens GN=IL32 PE=1 SV=3SK(1)AESSLLR80.72Q9H7 X2CA11 SSN Uncharacterized protein Clorf115 OS=Homo sapiens GN=Clorf115 PE=2 SV=1SK(1)AESSLLR80.72P61088UBE2 N>ssplPf01088[UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9TSN1 O SSP[Q9H129]TSN10_HUM AN Tetraspanin-10 OS=Homo sapiens GN=TSPANI0 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 SSP[014534]ERG1_HUMA N Squalene monoxygenase GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR SSP[01166]GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV MPEK(1)EPPPPYLPA140.71Q1501 2LAP4 A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiens GN=Homo sapiensMPEK(1)EPPPPYLPA10.71			Interleukin-32 OS=Homo			
Q9H7 X2CA11 splQ9H7X2/CA115_HUM AN Uncharacterized protein sapiens GN=C1orf115 OS=Homo sapiens GN=C1orf115 OS=Homo sapiens GN=C1orf115 PE=2 SV=1SK(1)AESSLLR80.72P61088UBE2 N>splP61088/UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9TSN1 0 AN Tetraspanin-10 OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 N Squalene monooxygenase GN=SLC2A1 PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166 2GTR1 N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501 2LAP4 A N Squ3enden spiens GN=SLC2A1 PE=1 SV=2MPEK(1)EPPPYLPA10.71			sapiens GN=IL32 PE=1			
Q9H7 X2CA11 S>sp Q9H7X2 CA115_HUM AN Uncharacterized protein Clorf115 OS=Homo sagiens GN=Clorf115 PE=2 SV=1SK(1)AESSLLR80.72P61088 N PUBE2 N AN Ubiquitn-conjugating enzyme E2 N OS=Homo SW=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9 0TSN1 OS=Homo Sagiens GN=TSPANI0 PE=2 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9 4TSN1 OS=Homo sagiens GN=TSPANI0 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 Sp Q14534 ERG1_HUMA N Squalene monoxygenase OS=Homo sagiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166 2GTR1 N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sagiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV NEXCONDAL-ASSOCIAL MPEK(1)EPPPPYLPA140.71Q1501 2LAP4 A N SpiQ15012 LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sagiens GN=SHOMO sagiensMPEK(1)EPPPPYLPA10.71			SV=3			
X25AN Uncharacterized protein Clorf115 OS=Homo sapiens GN=Clorf115 PE=2 SV=1AN Uncharacterized protein Clorf115 OS=Homo sapiens GN=UBE2N_HUM enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1ZTSN1 Sp Q9H1Z9 TSN10_HUM OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453ERG1 Sp=Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1 Sp=P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4 A>sp[Q15012]LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71	Q9H7	CA11	>sp Q9H7X2 CA115_HUM	SK(1)AESSLLR	8	0.72
Clorf115 OS=Homo sapiens GN=C1orf115 PE=2 SV=1Clorf115 OS=Homo sapiens GN=C1orf115 PE=2 SV=1ICLDILK(0.961)DK(0.039)90.72P61088UBE2 N AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9TSN1 O OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 SP[09H129]TSN10_HUM N Squalene monoxygenas GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166 2GTR1 Sp[P11166]GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501 2LAP4 A NLysosomal-associated transmerbrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71	X2	5	AN Uncharacterized protein			
sapiens GN=C1orf115 PE=2 SV=1sapiens GN=C1orf115 PE=2 SV=1sapiens GN=C1orf115 PE=2 SV=1sapiens GN=C1orf115 PE=2 SV=1sapiens GN=UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1Z 9TSN1 0>sp[Q9H1Z9 TSN10_HUM OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 N Squalene monoxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166 2GTR1 N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501 2LAP4 A NLysosomal-associated transmerbrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71			Clorf115 OS=Homo			
PE=2 SV=1PE=2 SV=1PE=2 SV=1P61088UBE2>splP61088 UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1ZTSN1>splQ9H1Z9 TSN10_HUM OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453ERG1>splQ14534[ERG1_HUMA N Squalene monoxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPESENK(1)EQLEAR50.71P11166GTR1>splP1166[GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4 A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71			sapiens GN=C1orf115			
P61088UBE2>sp P61088 UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1ICLDILK(0.961)DK(0.039)90.72Q9H1ZTSN1>sp Q9H1Z9 TSN10_HUM OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453ERG1>sp Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1>sp Q146 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4>sp Q15012 LAP4A_HUM A N Lyosomal-associated transmebrane protein 4A OS=Homo sapiensMPEK(1)EPPPYLPA10.71			PE=2 SV=1			
N enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1AGPQSPSPGAPPAAK(1)PARGI09H1Z 9TSN1 0 0 0>sp Q9H1Z9 TSN10_HUM OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453 4ERG1 N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1 Ssp Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3QGGASQSDK(1)TPEELFHPLGADSQV140.71P11166STR1 Ssp P1166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501 2LAP4 A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71	P61088	UBE2	>sp P61088 UBE2N_HUM	ICLDILK(0.961)DK(0.039)	9	0.72
enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1AGPQSPSPGAPPAAK(1)PARGI0.72Q9H1ZTSN1>sp Q9H1Z9 TSN10_HUM AN Tetraspanin-10 OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453ERG1>sp Q14534 ERG1_HUMA A Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1>sp P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4>sp Q15012 LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71		Ν	AN Ubiquitin-conjugating			
appendix appen			enzyme E2 N OS=Homo			
Q9H1ZSV=1AGPQSPSPGAPPAAK(1)PARG10.7290AN Tetraspanin-10 OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453ERG1>sp[Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1>sp[P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4>sp[Q15012 LAP4A_HUM transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71			sapiens GN=UBE2N PE=1			
Q9H1ZISN1>sp[Q9H1Z9]ISN10_HUMAGPQSPSPGAPPAAK(1)PARG10.7290AN Tetraspanin-10 OS=Homo sapiens GN=TSPAN10 PE=2 SV=1AGPQSPSPGAPPAAK(1)PARG10.72Q1453ERG1>sp[Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1>sp[P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4>sp[Q15012 LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71	0.0114 7	T C 1 1	SV=1			
9 0 AN Tetraspann-10 OS=Homo sapiens GN=TSPAN10 PE=2 SV=1	Q9HIZ	TSNI	>sp Q9H1Z9 1SN10_HUM	AGPQSPSPGAPPAAK(1)PARG	1	0.72
Q1453 4ERG1>sp Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1>sp P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose 	9	0	AN Tetraspanin-10			
Q1453 4ERG1 >sp Q14534 ERG1_HUMA N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3SPPESENK(1)EQLEAR50.71P11166GTR1 Sp P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4 A N LAP4 Sp Q15012 LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71			OS=Homo sapiens			
Q1453EKG1-sp[Q14534]EKG1_HOMASPRESENK(1)EQLEAK50.714N Squalene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3OS=Homo sapiens GN=SQLE PE=1 SV=30.71P11166GTR1>sp[P11166]GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2QGGASQSDK(1)TPEELFHPLGADSQV140.71Q1501LAP4 A N LAP4 Sp[Q15012]LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiensMPEK(1)EPPPPYLPA10.71	01452	EDC1	$\frac{\text{GIN}=15\text{PAIN}10\text{PE}=25\text{V}=1}{\text{Nam}[0.14524]\text{EDC1}1111044}$	SDDESENIK (1)EOLEAD	5	0.71
4 IN Squarene monooxygenase OS=Homo sapiens GN=SQLE PE=1 SV=3 Image: Squarene monooxygenase OS=Homo sapiens P11166 GTR1 >sp P11166 GTR1_HUMA N Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2 QGGASQSDK(1)TPEELFHPLGADSQV 14 0.71 Q1501 LAP4 >sp Q15012 LAP4A_HUM A N Lysosomal-associated transmembrane protein 4A OS=Homo sapiens MPEK(1)EPPPPYLPA 1 0.71	Q1433	EKGI	SpiQ14334 EKG1_HUMA	SFFESEINK(I)EQLEAK	5	0.71
P11166 GTR1 >sp P11166 GTR1_HUMA QGGASQSDK(1)TPEELFHPLGADSQV 14 0.71 N Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 VIII 00 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2 0 0 0 Q1501 LAP4 >sp Q15012 LAP4A_HUM MPEK(1)EPPPPYLPA 1 0.71 2 A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens 0 0	4		N Squalene monooxygenase			
P11166 GTR1 >sp P11166 GTR1_HUMA QGGASQSDK(1)TPEELFHPLGADSQV 14 0.71 N Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose facilitated glucose 14 0.71 V Solute carrier family 2, facilitated glucose NPEK(1)EPPPPYLPA 1 0.71 V Solute carrier family 2, facilitated glucose NPEK(1)EPPPPYLPA 1 0.71 V Solute carrier family 2, facilitated glucose NPEK(1)EPPPPYLPA 1 0.71 V			CN-SOLE DE-1 SV-2			
P11100 GTK1 >sp[P11100]GTK1_HUMA QOGASQSDK(1)TPEELPHPLGADSQV 14 0.71 N Solute carrier family 2, facilitated glucose transporter member 1 0.5=Homo sapiens 1 0.71 Q1501 LAP4 >sp[Q15012 LAP4A_HUM] MPEK(1)EPPPPYLPA 1 0.71 2 A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens 1 0.71	D11166	CTD1	Sem D11166 CTD1 HUMA	OCCASOSDK(1)TDEELEUDLCADSOV	1.4	0.71
Q1501 LAP4 >sp Q15012 LAP4A_HUM MPEK(1)EPPPPYLPA 1 0.71 Q A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens 1 0.71	P11100	GIKI	N Solute corrier femily 2	QOOASQSDK(I)IPEELFHPLOADSQV	14	0.71
Q1501 LAP4 >sp Q15012 LAP4A_HUM MPEK(1)EPPPPYLPA 1 0.71 Q A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens 1 0.71			facilitated alucose			
Q1501 LAP4 >sp Q15012 LAP4A_HUM MPEK(1)EPPPPYLPA 1 0.71 2 A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens 1 0.71			transporter member 1			
Q1501 LAP4 >sp Q15012 LAP4A_HUM MPEK(1)EPPPPYLPA 1 0.71 2 A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens I 0.71			OS=Homo sapiens			
Q1501 LAP4 >sp Q15012 LAP4A_HUM MPEK(1)EPPPPYLPA 1 0.71 2 A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens I 0.71			GN=SLC2A1 PF=1 SV=2			
2 A AN Lysosomal-associated transmembrane protein 4A OS=Homo sapiens	01501	LAP4	>sp $ O15012 $ LAP4A HUM	MPEK(1)EPPPPYLPA	1	0.71
transmembrane protein 4A OS=Homo sapiens	2	A	AN Lysosomal-associated			
OS=Homo sapiens			transmembrane protein 4A			
			OS=Homo sapiens			

		GN=LAPTM4A PE=1			
Q9H3 M7	TXNI P	SV=1 >sp Q9H3M7 TXNIP_HU MAN Thioredoxin- interacting protein OS=Homo sapiens GN=TXNIP PE=1 SV=1	VYGSGEK(1)VAGR	7	0.70
O4349 1	E41L 2	>sp O43491 E41L2_HUMA N Band 4.1-like protein 2 OS=Homo sapiens GN=EPB41L2 PE=1 SV=1	TTEVGSVSEVK(0.455)K(0.545)	4	0.70
Q86Y8 2	STX1 2	>sp Q86Y82 STX12_HUM AN Syntaxin-12 OS=Homo sapiens GN=STX12 PE=1 SV=1	NLMSQLGTK(0.931)QDSSK(0.069)	1	0.70
P62269	RS18	>sp P62269 RS18_HUMA N 40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3	SLVIPEK(1)FQHILR	1	0.69
Q96GS 6	AB17 A	>sp Q96GS6 AB17A_HUM AN Alpha/beta hydrolase domain-containing protein 17A OS=Homo sapiens GN=ABHD17A PE=1 SV=1	ELDTIEVFPTK(1)SAR	1	0.69
P18669	PGA M1	>sp P18669 PGAM1_HUM AN Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 SV=2;>sp Q8N0Y7 PGAM 4_HUMAN Probable phosphoglycerate mutase 4 OS=Homo sapiens GN=PGAM4 PE=3 SV=1	AAYK(1)LVLIR	6	0.69
O1482 8	SCA M3	>sp O14828 SCAM3_HUM AN Secretory carrier- associated membrane protein 3 OS=Homo sapiens GN=SCAMP3 PE=1 SV=3	K(1)LSPTEPK	2	0.69
P68036	UB2L 3	>sp P68036 UB2L3_HUM AN Ubiquitin-conjugating enzyme E2 L3 OS=Homo sapiens GN=UBE2L3 PE=1 SV=1	TK(1)IYHPNIDEK	1	0.69
Q1284 6	STX4	>sp Q12846 STX4_HUMA N Syntaxin-4 OS=Homo sapiens GN=STX4 PE=1 SV=2	GQEHVK(0.997)TALENQK(0.003)	1	0.68
Q7KY R7	BT2A 1	>sp Q7KYR7 BT2A1_HU MAN Butyrophilin subfamily 2 member A1 OS=Homo sapiens GN=BTN2A1 PE=1 SV=3	EIALK(1)ELEK	12	0.66
P01116	RAS K	>sp P01116 RASK_HUMA N GTPase KRas OS=Homo	TVDTK(1)QAQDLAR	2	0.66

		sapiens GN=KRAS PE=1			
Q9BQ	FYC	>sp Q9BQS8 FYCO1 HU	TK(1)VEEVNR	4	0.65
S8	01	MAN FYVE and coiled-			
		coil domain-containing			
		protein 1 OS=Homo sapiens			
01592	VAM	GN=FYCOIPE=ISV=3		4	0.65
Q1385 6	V AIVI P3	AN Vesicle-associated	ADALQAGASQFEISAAK(0.809)LK(0.191	4	0.05
U	15	membrane protein 3)		
		OS=Homo sapiens			
		GN=VAMP3 PE=1			
		SV=3;>sp P63027 VAMP2			
		HUMAN Vesicle-			
		protein 2 OS=Homo saniens			
		GN=VAMP2 PE=1 SV=3			
Q8WT	COG	>sp Q8WTW3 COG1_HU	ATAATSPALK(1)R	2	0.65
W3	1	MAN Conserved			
		oligomeric Golgi complex			
		sapiens GN=COG1 PE=1			
		SV=1			
Q5T3U	MRP	>sp Q5T3U5 MRP7_HUM	TK(1)EGLEEEQSTSGR	9	0.64
5	7	AN Multidrug resistance-			
		associated protein 7			
		GN=ABCC10 PE=1 SV=1			
Q8IV	CCD5	>sp Q8IVM0 CCD50_HUM	VMK(1)EAVSTPSR	1	0.63
M0	0	AN Coiled-coil domain-			
		containing protein 50			
		OS=Homo sapiens			
O9BV	VAM	>sp $ O9BV40 VAMP8$ HI	NK(1)TEDLEATSEHEK	13	0.63
40	P8	MAN Vesicle-associated		15	0.05
		membrane protein 8			
		OS=Homo sapiens			
D05702	V101	GN=VAMP8 PE=1 SV=1		2	0.62
P05/83	KICI 8	Sp P05/83 KIC18_HUMA	VVSEINDIK(I)VLK	2	0.63
	0	cvtoskeletal 18 OS=Homo			
		sapiens GN=KRT18 PE=1			
		SV=2			
Q9BV	VAM	>sp Q9BV40 VAMP8_HU	TEDLEATSEHFK(1)TTSQK	10	0.62
40	P8	MAN Vesicle-associated			
		OS=Homo sapiens			
		GN=VAMP8 PE=1 SV=1			
P35670	ATP7	>sp P35670 ATP7B_HUM	ALVK(1)FDPEIIGPR	2	0.62
	В	AN Copper-transporting			
		ATPase 2 OS=Homo			
		SV=4			
P57053	H2BF	>sp P57053 H2BFS_HUM	HAVSEGTK(1)AVTK	1	0.62
	S	AN Histone H2B type F-S			

		OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK PE=1 SV=3;>sp Q16778 H2B2E_ HUMAN Histone H2B type 2-E OS=Homo sapiens GN=HIST2H2BE PE=1 SV=3;>sp P33778			
O1512 6	SCA M1	>sp O15126 SCAM1_HUM AN Secretory carrier- associated membrane protein 1 OS=Homo sapiens GN=SCAMP1 PE=1 SV=2	TVQTAAANAASTAASSAAQNAFK(1)GN QI	11	0.61
O6066 4	PLIN 3	>sp O60664 PLIN3_HUMA N Perilipin-3 OS=Homo sapiens GN=PLIN3 PE=1 SV=3	GAVQSGVDK(0.486)TK(0.514)	1	0.60
Q0795 4	LRP1	>sp Q07954 LRP1_HUMA N Prolow-density lipoprotein receptor-related protein 1 OS=Homo sapiens GN=LRP1 PE=1 SV=2	HSLASTDEK(1)R	1	0.60
Q9NQ 84	GPC5 C	>sp Q9NQ84 GPC5C_HU MAN G-protein coupled receptor family C group 5 member C OS=Homo sapiens GN=GPRC5C PE=1 SV=2	GQSMFVENK(1)AFSMDEPVAAK	5	0.60
P78324	SHPS 1	>sp P78324 SHPS1_HUMA N Tyrosine-protein phosphatase non-receptor type substrate 1 OS=Homo sapiens GN=SIRPA PE=1 SV=2	LHEPEK(1)NAR	1	0.60
P00441	SOD C	>sp P00441 SODC_HUMA N Superoxide dismutase [Cu-Zn] OS=Homo sapiens GN=SOD1 PE=1 SV=2	GDGPVQGIINFEQK(0.973)ESNGPVK(0.0 27)	1	0.59
P62888	RL30	>sp P62888 RL30_HUMA N 60S ribosomal protein L30 OS=Homo sapiens GN=RPL30 PE=1 SV=2	SGK(1)YVLGYK	2	0.59
O6048 8	ACSL 4	>sp O60488 ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2	NHYLK(1)DIER	1	0.58
P62834	RAP1 A	>sp P62834 RAP1A_HUM AN Ras-related protein Rap-1A OS=Homo sapiens GN=RAP1A PE=1 SV=1;>sp P61224 RAP1B	SALTVQFVQGIFVEK(1)YDPTIEDSYRK	2	0.58

		HUMAN Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B PE=1 SV=1			
O1526 9	SPTC 1	>sp O15269 SPTC1_HUM AN Serine palmitoyltransferase 1 OS=Homo sapiens GN=SPTLC1 PE=1 SV=1	LLK(1)EQEIEDQK	1	0.57
P61421	VA0 D1	>sp P61421 VA0D1_HUM AN V-type proton ATPase subunit d 1 OS=Homo sapiens GN=ATP6V0D1 PE=1 SV=1	AK(1)IDNYIPIF	10	0.55
Q1528 6	RAB3 5	>sp Q15286 RAB35_HUM AN Ras-related protein Rab-35 OS=Homo sapiens GN=RAB35 PE=1 SV=1	DNLAK(1)QQQQQNDVVK	1	0.54
Q1359 6	SNX1	>sp Q13596 SNX1_HUMA N Sorting nexin-1 OS=Homo sapiens GN=SNX1 PE=1 SV=3	SK(1)QFAVK	1	0.54
P46783	RS10	>sp P46783 RS10_HUMA N 40S ribosomal protein S10 OS=Homo sapiens GN=RPS10 PE=1 SV=1	SAVPPGADK(0.437)K(0.563)	12	0.53
P11717	MPRI	>sp P11717 MPRI_HUMA N Cation-independent mannose-6-phosphate receptor OS=Homo sapiens GN=IGF2R PE=1 SV=3	SSNVSYK(0.957)YSK(0.043)	2	0.53
O6048 8	ACSL 4	>sp O60488 ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2	SDQSYVISFVVPNQK(1)R	1	0.53
P61088	UBE2 N	>sp P61088 UBE2N_HUM AN Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 SV=1	IYHPNVDK(1)LGR	3	0.51
P55072	TER A	>sp P55072 TERA_HUMA N Transitional endoplasmic reticulum ATPase OS=Homo sapiens GN=VCP PE=1 SV=4	ASGADSK(1)GDDLSTAILK	13	0.51
00021 4	LEG8	>sp O00214 LEG8_HUMA N Galectin-8 OS=Homo sapiens GN=LGALS8 PE=1 SV=4	SFNVDLLAGK(0.345)SK(0.655)	1	0.51
P17301	ITA2	>sp P17301 ITA2_HUMAN Integrin alpha-2 OS=Homo sapiens GN=ITGA2 PE=1 SV=1	MTK(1)NPDEIDETTELSS	3	0.49

Q9UE U0	VTI1 B	>sp Q9UEU0 VT11B_HUM AN Vesicle transport through interaction with t- SNAREs homolog 1B OS=Homo sapiens GN=VT11B PE=1 SV=3	ASSAASSEHFEK(1)LHEIFR	12	0.49
Q96A2 5	T106 A	>sp Q96A25 T106A_HUM AN Transmembrane protein 106A OS=Homo sapiens GN=TMEM106A PE=2 SV=1	SILSSK(1)PAIGSK	8	0.49
Q0781 7	B2CL 1	>sp Q07817 B2CL1_HUM AN Bcl-2-like protein 1 OS=Homo sapiens GN=BCL2L1 PE=1 SV=1	EVIPMAAVK(1)QALR	1	0.47
Q9305 0	VPP1	>sp Q93050 VPP1_HUMA N V-type proton ATPase 116 kDa subunit a isoform 1 OS=Homo sapiens GN=ATP6V0A1 PE=1 SV=3	VLQAAAK(1)NIR	3	0.47
Q9NR 09	BIRC 6	>sp Q9NR09 BIRC6_HUM AN Baculoviral IAP repeat- containing protein 6 OS=Homo sapiens GN=BIRC6 PE=1 SV=2	GSSYK(1)LLVEQAK	1	0.46
Q1340 4	UB2 V1	>sp Q13404 UB2V1_HUM AN Ubiquitin-conjugating enzyme E2 variant 1 OS=Homo sapiens GN=UBE2V1 PE=1 SV=2	AATTGSGVK(1)VPR	1	0.46
P17096	HMG A1	>sp P17096 HMGA1_HUM AN High mobility group protein HMG-I/HMG-Y OS=Homo sapiens GN=HMGA1 PE=1 SV=3	SESSSK(1)SSQPLASK	4	0.45
Q9NQ 84	GPC5 C	>sp Q9NQ84 GPC5C_HU MAN G-protein coupled receptor family C group 5 member C OS=Homo sapiens GN=GPRC5C PE=1 SV=2	GVGYETILK(1)EQK	15	0.44
Q6IAA 8	LTO R1	>sp Q6IAA8 LTOR1_HUM AN Ragulator complex protein LAMTOR1 OS=Homo sapiens GN=LAMTOR1 PE=1 SV=2	K(1)LLLDPSSPPTK	26	0.42
P60866	RS20	>sp P60866 RS20_HUMA N 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1	NVK(0.999)SLEK(0.001)	1	0.40
O9577 2	MEN TO	>sp O95772 MENTO_HU MAN MLN64 N-terminal domain homolog OS=Homo	QDSEK(1)PLLEL	3	0.39

		sapiens GN=STARD3NL PF=1 SV=1			
P51149	RAB7 A	>sp P51149 RAB7A_HUM AN Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 SV=1	QETEVELYNEFPEPIK(0.706)LDK(0.294)	4	0.39
P60866	RS20	>sp P60866 RS20_HUMA N 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1	AFK(1)DTGK	8	0.38
Q9H3Z 4	DNJC 5	>sp Q9H3Z4 DNJC5_HUM AN DnaJ homolog subfamily C member 5 OS=Homo sapiens GN=DNAJC5 PE=1 SV=1	LALK(0.937)YHPDK(0.062)NPDNPEAAD K(0.001)	1	0.38
Q9BT U6	P4K2 A	>sp Q9BTU6 P4K2A_HUM AN Phosphatidylinositol 4- kinase type 2-alpha OS=Homo sapiens GN=PI4K2A PE=1 SV=1	DTDWVVVK(1)EPVIK	7	0.38
P0CG4 7	UBB	<pre>>sp P0CG47 UBB_HUMA N Polyubiquitin-B OS=Homo sapiens GN=UBB PE=1 SV=1;>sp P0CG48 UBC_H UMAN Polyubiquitin-C OS=Homo sapiens GN=UBC PE=1 SV=3;>sp P62979 RS27A_HUMAN Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2;>sp P62987 RL40_H UMA</pre>	TITLEVEPSDTIENVK(0.876)AK(0.124)	19	0.36
P57053	H2BF S	>sp P57053 H2BFS_HUM AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK PE=1 SV=3	AVTK(1)YTSAK	10	0.35
P36543	VAT E1	>sp P36543 VATE1_HUM AN V-type proton ATPase subunit E 1 OS=Homo sapiens GN=ATP6V1E1 PE=1 SV=1	ALSDADVQK(0.996)QIK(0.004)	1	0.34
Q96IV 0	NGL Y1	>sp Q96IV0 NGLY1_HUM AN Peptide-N(4)-(N-acetyl- beta- glucosaminyl)asparagine amidase OS=Homo sapiens GN=NGLY1 PE=1 SV=1	DTINGLNK(1)QR	7	0.34

Q1677 8	H2B2 E	>sp Q16778 H2B2E_HUM AN Histone H2B type 2-E OS=Homo sapiens GN=HIST2H2BE PE=1 SV=3;>sp P33778 H2B1B_ HUMAN Histone H2B type 1-B OS=Homo sapiens GN=HIST1H2BB PE=1 SV=2;>sp P23527 H2B1O_ HUMAN Histone H2B type 1-O OS=Homo sapiens GN=HIST1H2BO PE=1 SV=3;>sp Q8N	AVTK(1)YTSSK	58	0.33
133379	9	N Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4	LK(I)QLAALINK	5	0.55
P16104	H2A X	>sp P16104 H2AX_HUMA N Histone H2AX OS=Homo sapiens GN=H2AFX PE=1 SV=2	K(1)TSATVGPK	1	0.31
Q9NVJ 2	ARL8 B	>sp Q9NVJ2 ARL8B_HUM AN ADP-ribosylation factor-like protein 8B OS=Homo sapiens GN=ARL8B PE=1 SV=1	DLPNALDEK(1)QLIEK	60	0.30
Q9UI1 2	VAT H	>sp Q9UI12 VATH_HUM AN V-type proton ATPase subunit H OS=Homo sapiens GN=ATP6V1H PE=1 SV=1	ILTK(1)LLEVSDDPQVLAVAAHDVGEY VR	1	0.30
Q86W C4	OST M1	>sp Q86WC4 OSTM1_HU MAN Osteopetrosis- associated transmembrane protein 1 OS=Homo sapiens GN=OSTM1 PE=1 SV=1	RLK(1)SSTSFANIQENSN	6	0.27
P62333	PRS1 0	>sp P62333 PRS10_HUMA N 26S protease regulatory subunit 10B OS=Homo sapiens GN=PSMC6 PE=1 SV=1	EQLK(0.999)ELTK(0.001)	1	0.24
Q96B M9	ARL8 A	>sp Q96BM9 ARL8A_HU MAN ADP-ribosylation factor-like protein 8A OS=Homo sapiens GN=ARL8A PE=1 SV=1	DLPGALDEK(1)ELIEK	16	0.23
P55072	TER A	>sp P55072 TERA_HUMA N Transitional endoplasmic reticulum ATPase OS=Homo sapiens GN=VCP PE=1 SV=4	ASGADSKGDDLSTAILK(0.993)QK(0.007)	3	0.19
Q9UL4 0	ZN34 6	>sp Q9UL40 ZN346_HUM AN Zinc finger protein 346 OS=Homo sapiens GN=ZNF346 PE=1 SV=1	THAK(0.657)NLK(0.343)	1	0.05

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	O86UF	CTG	>sp O86UF2 CTGE6 HUM	LSGSAEPRSFK(1)	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20001	F6	AN cTAGE family member		10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	LU	6 OS-Homo sonions			
One CLAGED PE=2 SV=2:>sp[A4D2H0CTGEF JtUMAN cTAGE family member 15 OS=Homo sapiens GN=CTAGE15 $PE=2$ SV=1DK(1)LNTQSTYSEA101478 6 3NRP1 >>sp[014981]AT2A1_HUM AN Neuropilin=10S-Homo sapiens GN=NRP1 PE=1 SV=3DK(1)LNTQSTYSEA101498 3 1ATZA A Sarcoplasmic/endoplasmic (CMDef)asmic/endoplasmic freticulum calcium ATPase 1 05=Homo sapiens GN=TA21 PE=1 SV=1TGTLTINQMSVCK(1)201322 0CTG SOS=Homo sapiens GN=CTAGE5 PE=1 SV=4:sp[096R76CTGE2 JHUMAN cTAGE family member 2 0S=Homo sapiens GN=CTAGE5 PE=1 SV=4:sp[096R76CTGE2 HUMAN cTAGE family member 2 0S=Homo sapiens GN=CTAGE1 PE=1 SV=2LNASLK(1)TLEGER104339 5 0PRFF >sp[04359[PRPF3 PE-1] SV=2NLSNPAK(0.99)K(0.99)FK(0.021)104339 5 3<			OUS-HOMO Saplens			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			GN=CTAGE6 PE=2			
$ \left \begin{array}{c c c c c c c c } & HUMAN CTAGE family member 15 OS-Homo sapiens GN=CTAGE15 pE=2 SV=1 \\ \hline PE=2 SV=1 \\ \hline \\ $			SV=2;>sp A4D2H0 CTGEF			
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			_HUMAN cTAGE family			
$ \begin{vmatrix} sapicas CN=CTAGE15 \\ PE=2 SV=1 \\ PE=2 SV=1 \\ SV=0 \\ Superson Superson SGN=RKP1 PE=1 \\ SV=0 \\ SUPERSON SGN=RKP1 SV=1 \\ SUPERSON SGN=RKP1 SV=0 \\ SUPERSON SGN=RKP1 SV$			member 15 OS=Homo			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			sapiens GN=CTAGE15			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			PE=2 SV=1			
	01478	NRP1	>sp O14786 NRP1 HUMA	DK(1)LNTOSTYSEA	1	
$ \begin{array}{ c c c c c c } \hline 0 & \mbox{appinss GN=NRP1 PE=1} \\ superimer Singless GN=NRP1 PE=1 \\ superimer Singless GN=NRP2 A1 PE=1 SV=1 \\ \hline 0 & \mbox{appinss GN=NRP2 A1 PE=1 SV=1} \\ \hline 0 & \mbox{Cf} S & \mbox{appinss GN=CTAGE FP=1} \\ Superimer Singless GN=CTAGE FP=1 \\ Superimer Singless GN=1 \\ CO=1 \\ CO=1 \\ CO=1 \\ CO=1 \\ CO=1 \\ CO=1 \\ CO=1$	6		N Neuropilin-1 OS=Homo		_	
$ \begin{array}{ c c c c c } \hline O(1498) & AT2A & >sp(01498)AT2A1_HUM \\ 3 & 1 & AN \\ Sarcoplasmic/endoplasmic reticulum calcium ATPase \\ I OS-Homo sapiens \\ GN=ATP2A1 PE=1 SV=1 \\ \hline O(1532) CTG & >sp(015320)CTGE5_HUM \\ 0 & E5 & AN CTAGE family member \\ 5 OS=Homo sapiens \\ GN=CTAGE5 PE=1 \\ SV=4, >sp(04339) SPRF3_HUM \\ Sapiens GN=CTAGE1 \\ PE=1 SV=2 \\ \hline O(339) & PRPF & >sp(043395)PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear ribonucleoprotein Prp3 \\ OS-Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O(4339) & PRPF & >sp(043395)PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O(438) & AN U4/U6 small nuclear ribonucleoprotein Prp3 \\ OS-Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O(6048) & ACSL & >sp(06488 ACSL4 HUM \\ 8 & 4 & AN Long-chain-fatty-acid-CoA gase 4 OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O(6049) & SNX3 & >sp(060493 SNX3 HUMA \\ 3 & SNS0493 SNX3 HUMA \\ AN Sordus AN Sordus AN HUMA \\ S & AN Sordus BNX3 PE=1 SV=3 \\ \hline O(6044) & SNX3 & PSPO50439SIPRF3 PHUM \\ 3 & AN Sordus BINX3 HUMA \\ AN Long-chain-fatty-acid-CoA gase 4 OS=Homo sapiens \\ GN=PRPF3 PF=1 SV=2 \\ \hline O(6044) & SNX3 & Sp(060493 SNX3 HUMA \\ AN Sordus BINX3 HUMA \\ AN Long-chain-fatty-acid-CoA gase 4 OS=Homo sapiens \\ GN=N=PRF3 PF=1 SV=3 \\ \hline O(6044) & SNX3 & PSPO50053 H2BFS_HUM \\ 3 & AN Histone H2B type F-S \\ OS=Homo sapiens \\ GN=N=12BF2 PS=1 \\ SV=2 \\ \hline O(5044) & SNX3 PF=1 SV=3 \\ \hline O(5044) & SNX3 PF=1 SV=3 \\ \hline O(5045) & SNX3 PF=1 SV=3 \\ \hline O(5045) & SNX3 PF=1 SV=3 \\ \hline O(5046) & SNX3 PF=1 SV=3 \\ \hline O(5047) & SNX3 PF=1 SV=3 \\ \hline O(5048) & SNX3 PF=1 $	Ũ		sapiens GN=NRP1 PF=1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			SV-2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01409	۸ T C ۸	SV-S	TCTITTNOMEVOU(1)	2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	01498	AIZA	~sp 014985 A12A1_HUW		2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1	AN			
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Sarcoplasmic/endoplasmic			
$ \begin{array}{ c c c c c c } \hline 10S=Homo sapiens \\ GN=ATP2A1 PE=1 SV=1 \\ \hline 0 & E5 & AN cTAGE family member \\ 5 OS=Homo sapiens \\ GN=CTAGES PE=1 \\ SV=4>sp[045320]CTGE5_HUM \\ SV=4>sp[096RT6[CTGE2 \\ _HUMAN cTAGE family \\ member 2 OS=Homo \\ sapiens GN=CTAGE1 \\ PE=1 SV=2 \\ \hline 04339 & PRPF \\ >sp[043395]PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline 04339 & PRPF \\ >sp[043395]PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline 06048 & ACSL \\ 8 & 4 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline 06048 & ACSL \\ 8 & 4 & AN L04/U6 small nuclear \\ ribonuclear riboruclear ribo$			reticulum calcium ATPase			
$ \begin{array}{ c c c c c c } \hline GN=ATP2A1 PE=1 SV=1 \\ \hline O1532 CTG > >p[015320]CTGE5_HUM \\ 0 ES AN CTAGE family member \\ 5 OS=Homo sapiens \\ GN=CTAGE5 PE=1 \\ SV=2 \\ \hline SOS=Homo sapiens GN=CTAGE1 \\ PE=1 SV=2 \\ \hline O4339 PRPF > >p[043395]PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O4339 PRPF > sp[043395]PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O6048 ACSL > >p[06438]ACSL4_HUM \\ 8 & 4 & AN L0arg-chain-faty-acid- CoA ligase 4 OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O6048 ACSL > sp[06048]ACSL4_HUM \\ 8 & 4 & AN L0arg-chain-faty-acid- CoA ligase 4 OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O6049 SNX3 > sp[060493]SNX3_HUMA \\ N Sorting nexin-3 \\ OS=Homo sapiens \\ GN=N=CSL4 PE=1 \\ SV=2 \\ \hline O6049 SNX3 > sp[060493]SNX3_HUMA \\ AN Histone H2B type F-S \\ OS=Homo sapiens \\ GN=HOM Sapiens \\ GN=HOM Sapiens \\ GN=HOM Sapiens \\ GN=SNX3 PE=1 SV=2 \\ \hline OS=2 \\ \hline OS=1 ON Sapiens \\ GN=SNX3 PE=1 SV=2 \\ \hline OS=2 \\ \hline OS=1 ON Sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline OS=1 ON Sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline OS=1 ON Sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline OS=1 ON Sapiens \\ GN=HOM Sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline OS=1 ON Sapiens \\ GN=HOM Sapiens $			1 OS=Homo sapiens			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			GN=ATP2A1 PE=1 SV=1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	01532	CTG	>sp O15320 CTGE5 HUM	LNASLK(1)TLEGER	1	
$ \begin{array}{ c c c c c c c } \hline S & SOS=Homo sapiens \\ SN=CTAGE5 PE=1 \\ SV=4;>sp[096R76[CTGE2 \\ HUMAN cTAGE family \\ member 2 OS=Homo \\ sapiens GN=CTAGE1 \\ PE=1 SV=2 \\ \hline \\ \hline \\ O4339 \\ S^{S} \\ \hline \\ \\ S^{S} \\ \hline \\ S^{S} \\ \hline \\ \\ S^{S} \\ \\ \\ S^{S} \\ \\ \\ S^{S} \\ \\ \\ \\ S^{S} \\ \\ \\ \\ S^{S} \\ \\ \\ \\ \\ S^{S} \\ \\ \\ \\ \\ S^{S} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0	E5	AN cTAGE family member			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ŭ	20	5 OS=Homo sapiens			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			GN-CTAGE5 DE-1			
$ \begin{array}{ c c c c c } SV=4;>sp[Q90R16](C10E2 \\ HUMAN cTAGE family \\ member 2 OS=Homo \\ sapiens GN=CTAGE1 \\ PE=1 SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c c c c c } O4339 \\ Sp[O43395]PRPF3 HUM \\ S \\ OS=Homo sapiens \\ GN=PRP7 PE=1 SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c c c c c } O4339 \\ OS=Homo sapiens \\ GN=PRP7 PE=1 SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c c c c c } O4339 \\ OS=Homo sapiens \\ GN=PRP7 PE=1 SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c c c c } O4339 \\ OS=Homo sapiens \\ GN=PRP7 PE=1 SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c c c c } O4339 \\ OS=Homo sapiens \\ GN=PRP7 PE=1 SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c c } O6048 \\ A CSL \\ S \\ O6048 \\ A CSL \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } O6048 \\ A CSL \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } O6048 \\ A CSL \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } O6048 \\ A CSL \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } O6048 \\ A CSL \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } O6049 \\ SNX3 \\ Sp[O60493]SNX3 HUMA \\ SV \\ OS=Homo sapiens \\ GN=SNC3 \\ OS=Homo sapiens \\ GN=SNC3 \\ OS=Homo sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline \end{array} \\ \begin{array}{ c } CO6049 \\ SNX3 \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } CO6049 \\ SNX3 \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CO6049 \\ SNX3 \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ SV=2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ CSU2 \\ CSU2 \\ \hline \end{array} \\ \begin{array}{ c } CSU2 \\ $			ON-CIAOEJFE-I			
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline tab$			SV=4;>sp Q96K16 C1GE2			
$ \begin{array}{ c c c c c c c } \hline member 2 \ OS=Homo \\ sapiens GN=CTAGE1 \\ PE=1 \ SV=2 \\ \hline \\ O4339 \\ S \\ AN \ U4/U6 \ small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo \ sapiens \\ GN=PRPF3 \ PE=1 \ SV=2 \\ \hline \\ O4339 \\ S \\ AN \ U4/U6 \ small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo \ sapiens \\ GN=PRPF3 \ PE=1 \ SV=2 \\ \hline \\ O4339 \\ S \\ AN \ U4/U6 \ small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo \ sapiens \\ GN=PRPF3 \ PE=1 \ SV=2 \\ \hline \\ O6048 \\ A \ ACSL \\ S \\ AN \ Long-chain-fatty-acid-COA \ Igase 4 \ OS=Homo \\ sapiens \ GN=ACSL4 \ PE=1 \\ SV=2 \\ \hline \\ O6049 \\ S \ NX3 \\ S \\ PS7053 \\ H2BF \\ S \\ AN \ Histone \ H2B \ type \ F-S \\ OS=Homo \ sapiens \\ GN=SNX3 \ PE=1 \ SV=3 \\ \hline \\ F57053 \\ H2BF \\ S \\ AN \ Histone \ H2B \ type \ F-S \\ OS=Homo \ sapiens \\ GN=HOMO \ sapiens \\ GN=HOMO \ Sapiens \\ GN=SNX3 \ PE=1 \ SV=3 \\ \hline \\ F57053 \\ H2BF \\ S \\ S \\ AN \ Histone \ H2B \ type \ F-S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ S \\ AN \ Histone \ H2B \ type \ F-S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ AN \ Histone \ H2B \ type \ F-S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ AN \ Histone \ H2B \ type \ F-S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ OS=Homo \ sapiens \\ GN=HUBFS \ PE=1 \\ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ CS=Homo \ sapiens \\ GN=HUBF \ SV=2 \\ \hline \\ F57053 \\ H2BF \\ S \\ CS=Homo \ Sapiens \\ CS=Homo \ Sapiens \\ GN$			_HUMAN cTAGE family			
$ \begin{array}{ c c c c c c c } & sapiens \ GN=CTAGE1 \\ PE=1 \ SV=2 \\ \hline \\ $			member 2 OS=Homo			
$ \begin{array}{ c c c c c c } \hline PE=1 \ SV=2 & c c c c c c c c c c c c c c c c c c $			sapiens GN=CTAGE1			
$ \begin{array}{ c c c c c c c c } \hline O4339 & PRPF & >sp O43395 PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O4339 & PRPF & >sp O43395 PRPF3_HUM \\ 5 & 3 & AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O6048 & ACSL & >sp O60488 ACSL4_HUM \\ 8 & 4 & AN Long-chain-fatty-acid \\ CoA ligase 4 OS=Homo \\ sapiens GN=ACSL4 PE=1 \\ SV=2 \\ \hline O6049 & SNX3 & >sp O60493 SNX3_HUMA \\ 3 & N Sorting nexin-3 \\ OS=Homo sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline P57053 & H2BF & >sp P57053 H2BFS_HUM \\ S & AN Histone H2B type F-S \\ OS=Homo sapiens \\ GN=HOMO sapiens \\ GN=HOMO sapiens \\ GN=HOMO sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline P57053 & H2BF & >sp P57053 H2BFS_HUM \\ S & AN Histone H2B type F-S \\ OS=Homo sapiens \\ GN=HOMO SAMO BAPR \\ GM=HOMO SAMO BAPR \\$			PE=1 SV=2			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	O4339	PRPF	>sp O43395 PRPF3 HUM	NLSNPAK(0.99)K(0.99)FK(0.021)	1	
$ \begin{array}{ c c c c c c c c } \hline ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O4339 & PRPF \\ S=p O43395 PRPF3 HUM \\ AN U4/U6 small nuclear \\ ribonucleoprotein Prp3 \\ OS=Homo sapiens \\ GN=PRPF3 PE=1 SV=2 \\ \hline O6048 & ACSL \\ S=p O60488 ACSL4_HUM \\ AN Long-chain-fatty-acid-CoA ligase 4 OS=Homo \\ sapiens GN=ACSL4 PE=1 \\ SV=2 \\ \hline O6049 & SNX3 & >sp O60493 SNX3_HUMA \\ N Sorting nexin-3 \\ OS=Homo sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline O6049 & SNX3 & >sp O60493 SNX3_HUMA \\ N Sorting nexin-3 \\ OS=Homo sapiens \\ GN=SNX3 PE=1 SV=3 \\ \hline P57053 & H2BF \\ S & AN Histone H2B type F-S \\ OS=Homo sapiens \\ GN=H2BFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ 1-K OS=Homo sapiens \\ GN=H2DFS PE=-1 \\ SV=2; >sp O60814 H2B1K_HUMA \\ HUMAN Histone H2B type \\ SV=2; >sp O60814 H2B1K_HUMA \\ SV=2; >sp O60814 H2B1K$	5	3	AN U4/U6 small nuclear			
OS=Homo sapiens GN=PRPF3 PE=1 SV=2NLSNPAK(0.99)K(0.021)04339PRPF 3>sp O6043395 PRPF3_HUM AN U4/U6 small nuclear ribonucleoprotein Prp3 OS=Homo sapiens GN=PRPF3 PE=1 SV=2NLSNPAK(0.99)K(0.021)106048ACSL 4>sp O60488 ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2EAANAMK(1)LER106049SNX3 S >sp O60493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK106049SNX3 S >sp O60493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK1P57053H2BF S SN S HDF57053 H2BFS_HUM A N Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN=H2DFX PE_1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN H2CTH2DFX PE_1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN H2CTH2DFX PE_1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN H2CTH2DFX PE_1I	-	-	ribonucleoprotein Prp3			
Odd SignerOS FIRMS spEnt SV=2O4339PRPF>sp[O43395]PRPF3_HUMNLSNPAK(0.99)K(0.99)FK(0.021)153AN U4/U6 small nuclear ribonucleoprotein Prp3 OS=Homo sapiens GN=PRPF3 PE=1 SV=2106048ACSL>sp[O60488]ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2EAANAMK(1)LER184AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2I106049SNX3>sp[O60493]SNX3_HUMA Softing nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK1957053H2BF>sp[P57053]H2BFS_HUM S AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp[O60814]H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN H2BF PE=1 SV=2;>sp[O60814]H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN H2BFS PE=1I			OS=Homo saniens			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CN-DDDE2 DE-1 SV-2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04220	DDDD	$\nabla m = 1 \times 15 \times 12 = 15 \times -2$	NIL SND A $V(0,00)V(0,00)EV(0,021)$	1	
5 3 AN 04/06 small nuclear ribonucleoprotein Prp3 OS=Homo sapiens GN=PRPF3 PE=1 SV=2 06048 ACSL >sp 060488 ACSL4_HUM AN Long-chain-fatty-acidCoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2 1 06049 SNX3 >sp 060493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3 K(1)QGLEQFINK 1 957053 H2BF >sp P57053 H2BFS_HUM SOS=Homo sapiens GN=H2B type F-S OS=Homo sapiens GN=H2B type F-S OS=Homo sapiens GN=H2B type F-S OS=Homo sapiens GN=H2B type I-K OS=HOMO sapie	04339	2 F KFF	\sim sp $ 043393 $ FKFF3_H0M	MLSMFAK(0.99)K(0.99)FK(0.021)	1	
Introducteoprotein Prp3 OS=Homo sapiens GN=PRPF3 PE=1 SV=2EAANAMK(1)LER06048 8ACSL 4>sp O60488 ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2EAANAMK(1)LER106049 3SNX3 Ssp O60493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK106049 3SNX3 Ssp O60493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK1P57053 SH2BF Sorting nexin-3 OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN=H06814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN=H06814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN=H06814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN CN HUGTWIDK PE -1I	5	3	AN 04/06 small nuclear			
OS=Homo sapiens GN=PRPF3 PE=1 SV=2EAANAMK(1)LER06048 8ACSL 4>sp O60488 ACSL4_HUM AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2EAANAMK(1)LER106049 3SNX3 Ssp O60493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK1P57053H2BF S SS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN=H2BF PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN=H2BF PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GNI			ribonucleoprotein Prp3			
$\begin{array}{ c c c c c c } \hline GN=PRPF3 PE=1 SV=2 & \hline GN=ACSL4 PE=1 SV=2 & \hline GN=ACSL4 PE=1 SV=2 & \hline GO00000000000000000000000000000000000$			OS=Homo sapiens			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			GN=PRPF3 PE=1 SV=2			
8 4 AN Long-chain-fatty-acid CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2 Image: Comparison of the comparison o	O6048	ACSL	>sp O60488 ACSL4_HUM	EAANAMK(1)LER	1	
CoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2K(1)QGLEQFINK06049SNX3>sp O60493 SNX3_HUMA N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3K(1)QGLEQFINK1P57053H2BF S>sp P57053 H2BFS_HUM S AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 	8	4	AN Long-chain-fatty-acid			
$ \begin{array}{ c c c c c c } \hline Since GN = ACSL4 PE = 1 \\ SV = 2 \\ \hline \\ O6049 \\ SNX3 \\ SnX3 \\ Snc ring nexin-3 \\ OS = Homo sapiens \\ GN = SNX3 PE = 1 SV = 3 \\ \hline \\ P57053 \\ S \\ $			CoA ligase 4 OS=Homo			
O6049 SNX3 >sp O60493 SNX3_HUMA K(1)QGLEQFINK 1 3 N Sorting nexin-3 OS=Homo sapiens 1 GN=SNX3 PE=1 SV=3 OS=Homo sapiens 1 P57053 H2BF >sp P57053 H2BFS_HUM LLLPGELAK(0.998)HAVSEGTK(0.002) 1 S AN Histone H2B type F-S OS=Homo sapiens 1 GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ 1 HUMAN Histone H2B type 1 1 I-K OS=Homo sapiens 0 1			sapiens GN=ACSL4 PE=1			
O6049 SNX3 >sp O60493 SNX3_HUMA K(1)QGLEQFINK 1 3 N Sorting nexin-3 OS=Homo sapiens 1 OS=Homo sapiens GN=SNX3 PE=1 SV=3 1 P57053 H2BF >sp P57053 H2BFS_HUM LLLPGELAK(0.998)HAVSEGTK(0.002) 1 S AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type I-K OS=Homo sapiens GN=Homo sapiens I I			SV=2			
3 N Sorting nexin-3 OS=Homo sapiens GN=SNX3 PE=1 SV=3 Iterative P57053 H2BF >sp P57053 H2BFS_HUM S AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type Iterative V Iterative Iterative V Iterative Iterative	06049	SNX3	>sp $ 060493 $ SNX3 HIMA	K(1)OGLEOFINK	1	
OS=Homo sapiens GN=SNX3 PE=1 SV=3 Image: Construction of the second	3	511213	N Sorting nevin_2		1	
OS=Homo sapiens GN=SNX3 PE=1 SV=3 P57053 H2BF >sp P57053 H2BFS_HUM LLLPGELAK(0.998)HAVSEGTK(0.002) S AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens GN-HOM sapiens GN-H2BFS PE=1	5		OS-Home			
P57053 H2BF >sp P57053 H2BFS_HUM LLLPGELAK(0.998)HAVSEGTK(0.002) 1 S AN Histone H2B type F-S OS=Homo sapiens Image: Constraint of the second			CN CNIX2 DE 1 CN 2			
P5/053 H2BF >sp P5/053 H2BFS_HUM LLLPGELAK(0.998)HAVSEGTK(0.002) 1 S AN Histone H2B type F-S OS=Homo sapiens 0S=Homo sapiens 1 GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1 I-K OS=Homo sapiens ON-H2BFN PE=1 1	D55052	HARE	GN=SNA3 PE=1 SV=3			
S AN Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens	P57053	H2BF	>sp P57053 H2BFS_HUM	LLLPGELAK(0.998)HAVSEGTK(0.002)	1	
OS=Homo sapiens GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens		S	AN Histone H2B type F-S			
GN=H2BFS PE=1 SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens			OS=Homo sapiens			
SV=2;>sp O60814 H2B1K_ HUMAN Histone H2B type 1-K OS=Homo sapiens			GN=H2BFS PE=1			
HUMAN Histone H2B type 1-K OS=Homo sapiens CNL HIST H12DK DE			SV=2;>sp O60814 H2B1K			
1-K OS=Homo sapiens			HUMAN Histone H2B type			
			1-K OS=Homo saniens			
			GN=HIST1H2BK PF=1			

09514	MFN	SV=3;>sp Q16778 H2B2E_ HUMAN Histone H2B type 2-E OS=Homo sapiens GN=HIST2H2BE PE=1 SV=3;>sp P33778 >sp O95140 MFN2_HUMA	FIDK(1)QLELLAQDYK	1	
0	2	N Mitofusin-2 OS=Homo sapiens GN=MFN2 PE=1 SV=3			
O9518 3	VAM P5	>sp O95183 VAMP5_HUM AN Vesicle-associated membrane protein 5 OS=Homo sapiens GN=VAMP5 PE=1 SV=1	NNFGK(1)VLER	1	
P00451	FA8	>sp P00451 FA8_HUMAN Coagulation factor VIII OS=Homo sapiens GN=F8 PE=1 SV=1	IIVDDTSTQWSK(1)	1	
P02545	LMN A	>sp P02545 LMNA_HUMA N Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1	LVEIDNGK(1)QR	1	
P02679	FIBG	>sp P02679 FIBG_HUMA N Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3	YLQEIYNSNNQK(0.99)IVNLK(0.01)	1	
Q9987 8	H2A1 J	>sp Q99878 H2A1J_HUM AN Histone H2A type 1-J OS=Homo sapiens GN=HIST1H2AJ PE=1 SV=3;>sp Q96KK5 H2A1H HUMAN Histone H2A type 1-H OS=Homo sapiens GN=HIST1H2AH PE=1 SV=3;>sp Q9BTM1 H2AJ_ HUMAN Histone H2A.J OS=Homo sapiens GN=H2AFJ PE=1 SV=1;>sp Q93077 H2A1C_ HU	VTIAQGGVLPNIQAVLLPK(0.5)K(0.5)	5	
P05023	AT1A 1	>sp P05023 AT1A1_HUM AN Sodium/potassium- transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	K(1)YGTDLSR	1	
P05026	AT1B 1	>sp P05026 AT1B1_HUM AN Sodium/potassium- transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 SV=1	EEGSWK(0.88)K(0.12)	1	
P05783	K1C1 8	>sp P05783 K1C18_HUMA N Keratin, type I cytoskeletal 18 OS=Homo	VK(1)YETELAMR	1	

		sapiens GN=KRT18 PE=1			
		SV=2·>P05784 SWISS-			
		PROT:P05784			
		Tax $Id=10090$			
		Gana Symbol-Krt18			
		Venetin trme Lexitedialetel			
		10 Keratin, type I cytoskeletai			
D00024	CVD1	$\sum_{n=1}^{10} \mathbf{D}(0) ^2 0 ^2 $		1	
P08034	CADI	Sp P08034 CABI_HUMA	QNEINK(I)LLSEQDOSLK	1	
		N Gap Junction beta-1			
		protein OS =Homo sapiens			
D00220	11000	GN=GJB1 PE=1 SV=1		1	
P08238	H590 D	>sp P08238 H590B_HUM	LDSGK(0.990)ELK(0.004)	1	
	В	AN Heat shock protein HSP			
		90-beta OS=Homo sapiens			
		GN=HSP90AB1 PE=1			
		SV=4;>sp Q58FF/ H90B3_			
		HUMAN Putative heat			
		shock protein HSP 90-beta-			
		3 OS=Homo sapiens			
		GN=HSP90AB3P PE=5			
		SV=1;>sp Q58FF8 H90B2_			
		HUMAN Putative heat			
		shock protein HSP 90-be			
P23634	AT2B	>sp P23634 AT2B4_HUM	NEVPEEK(0.957)LYK(0.043)	1	
	4	AN Plasma membrane			
		calcium-transporting			
		ATPase 4 OS=Homo			
		sapiens GN=ATP2B4 PE=1			
		SV=2			
P25445	TNR6	>sp P25445 TNR6_HUMA	NDNVQDTAEQK(1)VQLLR	1	
		N Tumor necrosis factor			
		receptor superfamily			
		member 6 OS=Homo			
		sapiens GN=FAS PE=1			
		SV=1			
P31939	PUR9	>sp P31939 PUR9_HUMA	SLFSNVVTK(0.437)NK(0.563)	1	
		N Bifunctional purine			
		biosynthesis protein PURH			
		OS=Homo sapiens			
		GN=ATIC PE=1 SV=3			
Q1440	GLP	>sp Q14409 GLPK3_HUM	AASK(1)K(1)AVLGPLVGAVDQGTSSTR	4	
9	K3	AN Putative glycerol kinase			
		3 OS=Homo sapiens			
		GN=GK3P PE=5			
		SV=2;>sp P32189 GLPK_H			
		UMAN Glycerol kinase			
		OS=Homo sapiens GN=GK			
		PE=1 SV=3			
Q1440	GLP	>sp Q14409 GLPK3_HUM	K(1)AVLGPLVGAVDQGTSSTR	1	
9	K3	AN Putative glycerol kinase			
		3 OS=Homo sapiens			
		GN=GK3P PE=5			
		SV=2;>sp P32189 GLPK_H			
		UMAN Glycerol kinase			
		OS=Homo sapiens GN=GK			
-------------	-----------	---	---	----	--
D35008	DDS7	$\frac{PE=1 \text{ SV}=3}{\text{Nm} 25008 \text{ DD} S7 \text{ HIM} A}$	VIINVK(0.979) OF A K(0.021)	1	
1 3 3 9 9 0	1107	N 26S protease regulatory	$1 \operatorname{IIIV} K(0.979) Q^{T} A K(0.021)$	1	
		subunit 7 OS=Homo			
		sapiens GN=PSMC2 PE=1			
		SV=3			
P40189	IL6R	>sp P40189 IL6RB_HUMA	SK(1)QVSSVNEEDFVR	1	
	В	N Interleukin-6 receptor			
		subunit beta OS=Homo			
		SV=2			
P43007	SATT	>sp P43007 SATT_HUMA	K(1)GEQELAEVK	1	
		N Neutral amino acid			
		transporter A OS=Homo			
		sapiens GN=SLC1A4 PE=1 SV=1			
P46783	RS10	>sp P46783 RS10 HUMA	SAVPPGADK(0.5)K(0.5)	12	
		N 40S ribosomal protein			
		S10 OS=Homo sapiens			
D51505	CT C	GN=RPS10 PE=1 SV=1		1	
P51/9/	CLC N6	>sp P51/9/ CLCN6_HUM	SQSMK(1)SYPSSELR	1	
	INO	protein 6 OS=Homo saniens			
		GN=CLCN6 PE=1 SV=2			
P55072	TER	>sp P55072 TERA_HUMA	LDQLIYIPLPDEK(1)SR	1	
	А	N Transitional endoplasmic			
		reticulum ATPase			
		OS=Homo sapiens			
P61088	UBE2	Sin = VCP PE = 1.5V = 4 >sn P61088 UBE2N HUM	ICL DILK(0 279)DK(0 721)	9	
101000	N N	AN Ubiquitin-conjugating		,	
		enzyme E2 N OS=Homo			
		sapiens GN=UBE2N PE=1			
		SV=1			
P84098	RL19	>sp P84098 RL19_HUMA	LQAK(0.799)K(0.198)EEIIK(0.003)	2	
		I 19 OS=Homo saniens			
		GN=RPL19 PE=1 SV=1			
P86791	CCZ1	>sp P86791 CCZ1_HUMA	DGK(1)PVIEYQEEELLDK	1	
		N Vacuolar fusion protein			
		CCZ1 homolog OS=Homo			
		sapiens GN=CCZ1 PE=1			
		Sv=1;>sp P80/90 CCZIB_			
		protein CCZ1 homolog R			
		OS=Homo sapiens			
		GN=CCZ1B PE=1 SV=1			
Q0108	SPTB	>sp Q01082 SPTB2_HUM	AK(1)TALPAQSAATLPAR	1	
2	2	AN Spectrin beta chain,			
		OS=Homo sapiens			
		GN=SPTBN1 PE=1 SV=2			
Q1348	VPP3	>sp Q13488 VPP3 HUMA	QEENK(1)AGLLDLPDASVNGWSSDEEK	2	
8		N V-type proton ATPase			

		116 kDa subunit a isoform			
		3 OS=Homo saniens			
		GN=TCIRG1 PF=1 SV=3			
01377	NCO	$\sum p O 2772 N COA4 HUM$	$EVIEOTK(0.060) \wedge DK(0.021)$	1	
2^{1377}		AN Nuclear recentor	E V IEQ I K(0.909) AI K(0.051)	1	
2	лт	coactivator 4 OS=Homo			
		sopiens GN-NCOA4 PE-1			
		SV-1			
01415	EED2	$\sum_{n=1}^{n} O1/1156 EED2A HIIM$		1	
Q1415		AN Protein EEP3 homolog	LIFIAVSAFEK(I)LDK	1	
0	А	AN Protein EFKS noniolog			
		A US=Homo sapiens			
01492	CUD	OIN-EFKSA PE-I SV-2	ITOVAV(0.252)V(0.(47))	2	
Q1483	CHD	>sp Q14839 CHD4_HUMA	11QVAK(0.353)K(0.647)	2	
9	4	N Chromodomain-helicase-			
		DNA-binding protein 4			
		OS=Homo sapiens			
<u></u>	~~ · · ·	GN=CHD4 PE=1 SV=2			
Q1484	STAR	>sp Q14849 STAR3_HUM	K(1)SFSAQER		
9	3	AN StAR-related lipid			
		transfer protein 3			
		OS=Homo sapiens			
		GN=STARD3 PE=1 SV=2			
Q1514	PLCB	>sp Q15147 PLCB4_HUM	TFASGK(1)TEK(1)	1	
7	4	AN 1-phosphatidylinositol			
		4,5-bisphosphate			
		phosphodiesterase beta-4			
		OS=Homo sapiens			
		GN=PLCB4 PE=1 SV=3			
Q1514	PLCB	>sp Q15147 PLCB4_HUM	TFASGK(1)TEK(1)	1	
7	4	AN 1-phosphatidylinositol			
		4,5-bisphosphate			
		phosphodiesterase beta-4			
		OS=Homo sapiens			
		GN=PLCB4 PE=1 SV=3			
Q1516	PON3	>sp Q15166 PON3_HUMA	IQNVLSEK(1)PR	1	
6		N Serum			
		paraoxonase/lactonase 3			
		OS=Homo sapiens			
		GN=PON3 PE=1 SV=3			
Q52M	Z585	>sp Q52M93 Z585B_HUM	SYICMKCGLAFIRK(1)	1	
93	В	AN Zinc finger protein			
		585B OS=Homo sapiens			
		GN=ZNF585B PE=2 SV=1			
Q5FW	ESCO	>sp Q5FWF5 ESCO1 HU	IIMVLPEDPK(0.012)YALK(0.988)	1	
F5	1	MAN N-acetyltransferase			
		ESCO1 OS=Homo sapiens			
		GN=ESCO1 PE=1 SV=3			
Q6W2J	BCO	>sp Q6W2J9 BCOR HUM	LIVNK(1)NAGETLLQR	1	
9	R	AN BCL-6 corepressor			
		OS=Homo sapiens			
		GN=BCOR PE=1 SV=1			
Q86US	EST1	>sp Q86US8 EST1A HUM	GLSSGGK(0.989)GSEK(0.011)	1	
8	А	AN Telomerase-binding			
		protein EST1A OS=Homo			

		sapiens GN=SMG6 PE=1 SV=2			
Q86W A9	S2611	>sp Q86WA9 S2611_HUM AN Sodium-independent sulfate anion transporter OS=Homo sapiens GN=SLC26A11 PE=2 SV=2	GFQYFSTLEEAEK(1)HLR	2	
Q8NE0 1	CNN M3	>sp Q8NE01 CNNM3_HU MAN Metal transporter CNNM3 OS=Homo sapiens GN=CNNM3 PE=1 SV=1	GGGDPYSDLSK(1)GVLR	1	
Q8NH H9	ATL A2	>sp Q8NHH9 ATLA2_HU MAN Atlastin-2 OS=Homo sapiens GN=ATL2 PE=1 SV=2	EVAIK(1)QFR	1	
Q8WU M9	S20A 1	>sp Q8WUM9 S20A1_HU MAN Sodium-dependent phosphate transporter 1 OS=Homo sapiens GN=SLC20A1 PE=1 SV=1	TVSFK(1)LGDLEEAPER	1	
Q96C W1	AP2 M1	>sp Q96CW1 AP2M1_HU MAN AP-2 complex subunit mu OS=Homo sapiens GN=AP2M1 PE=1 SV=2	IVIEK(0.85)QGK(0.15)	1	
Q96H N2	SAH H3	>sp Q96HN2 SAHH3_HU MAN Adenosylhomocysteinase 3 OS=Homo sapiens GN=AHCYL2 PE=1 SV=1	YPNMFK(0.909)K(0.909)IK(0.181)	1	
Q96H N2	SAH H3	>sp Q96HN2 SAHH3_HU MAN Adenosylhomocysteinase 3 OS=Homo sapiens GN=AHCYL2 PE=1 SV=1	YPNMFK(0.909)K(0.909)IK(0.181)	1	
Q9953 6	VAT1	>sp Q99536 VAT1_HUMA N Synaptic vesicle membrane protein VAT-1 homolog OS=Homo sapiens GN=VAT1 PE=1 SV=2	VLLVPGPEK(1)EN	2	
Q9967 5	CGR F1	>sp Q99675 CGRF1_HUM AN Cell growth regulator with RING finger domain protein 1 OS=Homo sapiens GN=CGRRF1 PE=1 SV=1	DTK(1)IEDFGTVPR	1	
Q9BW H2	FUN D2	>sp Q9BWH2 FUND2_HU MAN FUN14 domain- containing protein 2 OS=Homo sapiens GN=FUNDC2 PE=1 SV=2	SK(1)AEEVVSFVK	1	
Q9BY E9	CDH R2	>sp Q9BYE9 CDHR2_HU MAN Cadherin-related family member 2	K(1)TAAGVMPSAPAIPGTNMYNTER	1	

		OS=Homo sapiens			
		GN=CDHR2 PE=1 SV=2			
Q9H2 H9	S38A 1	>sp Q9H2H9 S38A1_HUM AN Sodium-coupled neutral amino acid transporter 1 OS=Homo sapiens GN=SLC38A1 PE=1 SV=1	SLTNSHLEK(0.861)K(0.139)	3	
Q9NP5 8	ABC B6	>sp Q9NP58 ABCB6_HU MAN ATP-binding cassette sub-family B member 6, mitochondrial OS=Homo sapiens GN=ABCB6 PE=1 SV=1	AIQASLAK(1)VCANR	2	
Q9P0K 7	RAI1 4	>sp Q9P0K7 RAI14_HUM AN Ankycorbin OS=Homo sapiens GN=RAI14 PE=1 SV=2	MKSLK(1)AK(1)	1	
Q9P0K 7	RAI1 4	>sp Q9P0K7 RAI14_HUM AN Ankycorbin OS=Homo sapiens GN=RAI14 PE=1 SV=2	MKSLK(1)AK(1)	1	
Q9P24 3	ZFAT	>sp Q9P243 ZFAT_HUMA N Zinc finger protein ZFAT OS=Homo sapiens GN=ZFAT PE=1 SV=2_	NLIK(1)HIR	1	
Q9P2J 5	SYLC	>sp Q9P2J5 SYLC_HUMA N LeucinetRNA ligase, cytoplasmic OS=Homo sapiens GN=LARS PE=1 SV=2	LSGLK(1)GK	1	
Q9UG Q2	FLO WR	>sp Q9UGQ2 FLOWR_HU MAN Calcium channel flower homolog OS=Homo sapiens GN=CACFD1 PE=1 SV=1	QQADEEK(1)LAETLEGEL	1	
Q9UG Q3	GTR6	>sp Q9UGQ3 GTR6_HUM AN Solute carrier family 2, facilitated glucose transporter member 6 OS=Homo sapiens GN=SLC2A6 PE=1 SV=2	MQEPLLGAEGPDYDTFPEK(1)PPPSPGD R	1	
Q9UM X0	UBQ L1	>sp Q9UMX0 UBQL1_HU MAN Ubiquilin-1 OS=Homo sapiens GN=UBQLN1 PE=1 SV=2;>sp Q9UHD9 UBQL 2_HUMAN Ubiquilin-2 OS=Homo sapiens GN=UBQLN2 PE=1 SV=2	EK(1)EEFAVPENSSVQQFK	1	
Q9UK 28	TM59 L	>sp Q9UK28 TM59L_HU MAN Transmembrane protein 59-like OS=Homo sapiens GN=TMEM59L PE=2 SV=1	LK(1)LDLTKL	1	

Q9UL G1	INO8 0	>sp Q9ULG1 INO80_HUM AN DNA helicase INO80 OS=Homo sapiens GN=INO80 PE=1 SV=2	KEDELDGK(1)R	1	
Q9UPI 3	FLVC 2	>sp Q9UPI3 FLVC2_HUM AN Feline leukemia virus subgroup C receptor-related protein 2 OS=Homo sapiens GN=FLVCR2 PE=1 SV=1	LQEEEESNTSK(1)VPTAVSEDHL	1	
Q9Y28 7	ITM2 B	>sp Q9Y287 ITM2B_HUM AN Integral membrane protein 2B OS=Homo sapiens GN=ITM2B PE=1 SV=1	VTFNSALAQK(0.175)EAK(0.372)K(0.453)	1	
Q9Y5 X4	NR2E 3	>sp Q9Y5X4 NR2E3_HUM AN Photoreceptor-specific nuclear receptor OS=Homo sapiens GN=NR2E3 PE=1 SV=1	LLFMAVK(1)WAK(1)	3	
Q9Y5 X4	NR2E 3	>sp Q9Y5X4 NR2E3_HUM AN Photoreceptor-specific nuclear receptor OS=Homo sapiens GN=NR2E3 PE=1 SV=1	LLFMAVK(1)WAK(1)	3	
Q9Y6 N7	ROB O1	>sp Q9Y6N7 ROBO1_HU MAN Roundabout homolog 1 OS=Homo sapiens GN=ROBO1 PE=1 SV=1	K(1)VPSFTFTPTVTYQR	1	

Cate	Term	Count	%	PVal	Uniprot ID	L	Р	Р	Fold	Bo	Benia	F
gorv				ue	1	i	0	0	Enrich	nfer	mini	D
8 5						s	p	р	ment	roni		R
						t	H	T				
						Т	i	0				
						0	t	t				
						t	s	а				
						a		1				
						1						
CC	GO:000578	44	36.	3.70	Q8TC12, O75915,	1	8	1	7.82	7.3	7.37E	4.
	9~endoplas		666	E-27	P04114, Q16850,	1	6	8		7E-	-25	64
	mic		666		P49585, P55061,	9	2	2		25		E-
	reticulum		7		P49768, Q70UQ0,			2				24
	membrane				Q9Y5Z9, P08034,			4				
					O960K8, P51572,							
					P11021, O9UNL2,							
					075845, 060427,							
					O96GF1, O75844,							
					O15800, P04844,							
					O9NZ01, P27824,							
					Q9Y282, Q9NUQ2,							
					Q9UBM7, P49326,							
					Q7L5N7, Q9C0D9,							
					O9H3H5, P46977,							
					Q99942, Q9Y5U4,							
					O9P0S3, P38435,							
					015392, 095197,							
					Ò95864, Q15041,							
					Q96HR9, Q8TCT9,							
					000767, P48449,							
					Q5I7T1, Q53GQ0							
CC	GO:001602	78	65	5.85	O75915, P55061,	1	5	1	2.31	2.2	1.11E	1.
	1~integral			E-17	Q9Y3E5, Q96BD0,	1	1	8		1E-	-14	44
	component				Q9BQA9, Q8NCU8,	9	6	2		14		E-
	of				P21796, Q8TB61,		3	2				13
	membrane				P08034, Q96QK8,			4				
					P51572, Q96B96,							
					Q8WWT9, Q96GF1,							
					P05023, O15173,							
					P04844, Q9NZ01,							
					Q9Y282, Q9NUQ2,							
					P69849, Q6ZVX9,							
					Q00765, Q7L5N7,							
					Q07820, Q9C0D9,	1						
					Q15155, P61619,							
					P46977, Q9P0S3,							
					O95197, Q15392,							
					P0CK96, P48066,							
					Q9NZS9, Q8TCT9,							
					Q96HR9, O00767,							
					Q5I7T1, Q8TC12,							
					Q7Z3D4, Q16850,							

Supplemental Table 3-S2. GO analysis of cellular component (CC) and biological process (BP).

CC	GO:001602 0~membran e	51	42.5	8.75 E-17	P49768, O95140, Q9UP95, P04920, Q70UQ0, Q9Y5Z9, Q8N2H4, Q96CS7, Q9NXW2, O75845, Q9UNL2, O60427, Q9H6A9, O75844, Q9BV81, Q9UPY5, Q15800, Q12846, Q9C0B5, O75387, Q9BWH2, Q9UBM7, P49326, P31641, Q9H3H5, Q86UQ4, Q99942, Q9H2H9, Q9Y5U4, P38435, P33527, O95864, Q15041, Q96B21, P55085, Q53GQ0 O14495, O75915, Q9Y3E5, P55061, Q8NBX0, P21796, Q8TB61, P51572, P05023, P61978, O15173, P04844, P84090, P24001, Q9Y282, Q14677, Q07820, P61619, Q15155, P46977, P02649, Q15392, P67775, Q9NZS9, Q8TCT9, O00767, Q16850, P49768, O9UP95, P04920,	1 1 9	2 2 0 0	1 8 2 4	3.55	2.2 1E- 14	7.33E -15	1. 44 E- 13
					Q70UQ0, Q9Y5Z9, Q9NXW2, Q9Y679, P11021, O60427, O75844, Q9UPY5, Q12846, P27824, Q14254, Q9C0B5, P23458, Q9UBM7, Q9H3H5, P38435, P33527, O95864, Q15041, P63261, P48449							
CC	GO:000578 3~endoplas mic reticulum	28	23. 333 333 3	2.30 E-12	Q96CS3, O75915, Q16850, P55061, P49768, Q70UQ0, Q9Y5Z9, P51572, Q96QK8, P11021, Q96GF1, P05023, Q15800, P04844, Q9NZ01, P27824, Q99541, Q9UBM7, P49326, Q13501, Q7L5N7, P50454, P02649, Q15392,	1 1 9	8 2 8	1 8 2 2 4	5.18	4.5 7E- 10	1.14E -10	2. 88 E- 09

					O95197, Q9NZS9, Q8TCT9, O00767							
CC	GO:003017 6~integral component of endoplasmic reticulum membrane	11	9.1 666 666 7	1.38 E-09	Q9NZ01, Q9Y679, Q9UBM7, Q8TB61, Q15041, Q9NZS9, P11021, O75844, Q9H3H5, Q9BV81, P61619	1 1 9	1 0 4	1 8 2 2 4	16.20	2.7 4E- 07	5.48E -08	1. 73 E- 06
CC	GO:000581 1~lipid particle	7	5.8 333 333 3	4.29 E-06	Q96CS3, Q99541, Q7L5N7, P51572, Q8NBX0, P48449, Q8N0X7	1 1 9	6 6	1 8 2 2 4	16.24	8.5 4E- 04	1.42E -04	5. 38 E- 03
CC	GO:000579 1~rough endoplasmic reticulum	6	5	1.94 E-05	P27824, P49768, Q8TCT9, P04844, P61619, Q9UPY5	1 1 9	5 1	1 8 2 2 4	18.02	3.8 4E- 03	5.50E -04	2. 42 E- 02
CC	GO:003651 3~Derlin-1 retrotransloc ation complex	3	2.5	2.20 E-03	Q99942, Q8TCT9, Q96GF1	1 1 9	1	1 8 2 2 4	41.77	3.5 5E- 01	5.33E -02	2. 72 E +0 0
CC	GO:000574 1~mitochon drial outer membrane	6	5	2.85 E-03	Q9NUQ2, O95140, Q07820, Q96GF1, P21796, Q8N0X7	1 1 9	1 4 9	1 8 2 2 4	6.17	4.3 3E- 01	6.12E -02	3. 51 E +0 0
CC	GO:004323 1~intracellul ar membrane- bounded organelle	11	9.1 666 666 7	3.38 E-03	P04114, Q16850, Q99541, Q9UBM7, Q14677, O75845, O60427, P05023, Q9H3H5, Q86UQ4, O14964	1 1 9	5 5 8	1 8 2 2 4	3.02	4.9 1E- 01	6.52E -02	4. 16 E +0 0
CC	GO:007006 2~extracellu lar exosome	30	25	6.26 E-03	O14495, O75915, P04114, Q9H444, P08134, O14964, P21796, Q9Y679, P11021, Q9H0E2, P05023, P61978, Q8WWT9, O75844, Q15843, P62745, Q12846, Q14254, P27824, P05787, Q00765, Q13501, P50454, Q9H2H9, P02649, P33527, O95197, P67775, P63261, P0CG47	1 1 9	2 8 1 1	1 8 2 2 4	1.63	7.1 3E- 01	1.07E -01	7. 56 E +0 0

CC	GO:003049 6~midbody	5	4.1 666 666 7	9.89 E-03	P84090, P11021, Q9H444, Q8NBX0, Q8N0X7	1 1 9	1 2 9	1 8 2 2 4	5.94	8.6 2E- 01	1.52E -01	1. 17 E +0 1
CC	GO:000579 0~smooth endoplasmic reticulum	3	2.5	1.22 E-02	P27824, P49768, P11021	1 1 9	2 6	1 8 2 2 4	17.67	9.1 3E- 01	1.71E -01	1. 43 E +0 1
CC	GO:000592 5~focal adhesion	8	6.6 666 666 7	1.37 E-02	P62745, Q99755, Q14254, P23458, P04920, P63261, P11021, P61978	1 1 9	3 9 1	1 8 2 2 4	3.13	9.3 6E- 01	1.78E -01	1. 59 E +0 1
CC	GO:007155 6~integral component of lumenal side of endoplasmic reticulum membrane	3	2.5	1.51 E-02	P27824, P51572, Q8TCT9	1 1 9	2 9	1 8 2 2 4	15.842 36453	9.5 1E- 01	1.82E -01	1. 73 E +0 1
CC	GO:000576 8~endosome	6	5	1.56 E-02	Q12846, Q14254, Q9H444, P05023, Q13114, O14964	1 1 9	2 2 5	1 8 2 2 4	4.0838 09524	9.5 6E- 01	1.77E -01	1. 79 E +0 1
CC	GO:004320 9~myelin sheath	5	4.1 666 666 7	1.72 E-02	P27824, P63261, P11021, P05023, P21796	1 1 9	1 5 2	1 8 2 2 4	5.0375 93985	9.6 8E- 01	1.83E -01	1. 95 E +0 1
CC	GO:000588 7~integral component of plasma membrane	17	14. 166 666 7	2.02 E-02	O14495, P55061, Q96BD0, O75387, P49768, Q9UP95, P04920, P31641, Q9H2H9, P33527, O95864, P48066, Q9NZS9, P51572, P55085, Q8WWT9, Q9UPY5	1 1 9	1 4 1 5	1 8 2 2 4	1.8398 78849	9.8 3E- 01	2.02E -01	2. 25 E +0 1
CC	GO:003436 3~intermedi ate-density lipoprotein particle	2	1.6 666 666 7	2.57 E-02	P02649, P04114	1 1 9	4	1 8 2 2 4	76.571 42857	9.9 4E- 01	2.38E -01	2. 78 E +0 1
CC	GO:000578 4~Sec61 translocon complex	2	1.6 666 666 7	2.57 E-02	Q15041, P51572	1 1 9	4	1 8 2 2 4	76.571 42857	9.9 4E- 01	2.38E -01	2. 78 E +0 1

СС	GO:000588 6~plasma membrane	37	30. 833 333 3	2.87 E-02	O14495, O75915, P04114, Q16850, P49585, Q96BD0, P49768, Q9UP95, P04920, P08134, P21796, P11021, Q8WWT9, P05023, Q9UPY5, Q15800, P62745, Q12846, Q14254, Q9C0B5, O75387, Q99541, Q6ZVX9, P31641, Q8N0X7, Q99755, Q9H2H9, P02649, P33527, O95197, P67775, P63261, P48066, P55085, Q8TCT9, P0CG47, Q5I7T1	1 1 9	4 1 2 1	1 8 2 2 4	1.3749 78334	9.9 7E- 01	2.52E -01	3. 06 E +0 1
CC	GO:001632 3~basolatera l plasma membrane	5	4.1 666 666 7	2.96 E-02	Q12846, Q14254, P33527, P04920, P05023	1 1 9	1 8 0	1 8 2 2 4	4.2539 68254	9.9 7E- 01	2.48E -01	3. 14 E +0 1
CC	GO:003017 3~integral component of Golgi membrane	3	2.5	5.43 E-02	Q8TB61, Q9Y5Z9, Q8N2H4	1 1 9	5 8	1 8 2 2 4	7.9211 82266	1.0 0E +00	3.97E -01	5. 03 E +0 1
CC	GO:000576 9~early endosome	5	4.1 666 666 7	6.17 E-02	P62745, P02649, P04114, P55085, O14964	1 1 9	2 2 9	1 8 2 2 4	3.3437 30505	1.0 0E +00	4.24E -01	5. 50 E +0 1
CC	GO:000825 0~oligosacc haryltransfer ase complex	2	1.6 666 666 7	6.29 E-02	P04844, P46977	1 1 9	1 0	1 8 2 2 4	30.628 57143	1.0 0E +00	4.17E -01	5. 57 E +0 1
CC	GO:000582 9~cytosol	29	24. 166 666 7	7.75 E-02	P04114, Q9Y3E5, P49585, O95140, Q9H444, Q8N2H4, P08134, Q93034, O14964, O95816, P51572, Q9H0E2, Q13114, Q15843, P62745, Q12846, P23458, P24001, Q99541, Q13501, Q14677, Q07820, P61619, Q99755, Q15392, Q15041, P67775, P63261, P0CG47	1 1 9	3 3 1 5	$ \frac{1}{8} $ 2 4	1.3397 11269	1.0 0E +00	4.74E -01	6. 36 E +0 1

CC	GO:000563 5~nuclear envelope	4	3.3 333 333 3	8.44 E-02	P49585, Q9NUQ2, Q9H444, O15173	1 1 9	1 5 9	1 8 2 2 4	3.8526 50494	1.0 0E +00	4.91E -01	6. 69 E +0 1
CC	GO:003436 2~low- density lipoprotein particle	2	1.6 666 666 7	8.70 E-02	P02649, P04114	1 1 9	1 4	1 8 2 2 4	21.877 55102	1.0 0E +00	4.89E -01	6. 80 E +0 1
CC	GO:004262 7~chylomicr on	2	1.6 666 666 7	8.70 E-02	P02649, P04114	1 1 9	1 4	1 8 2 2 4	21.877 55102	1.0 0E +00	4.89E -01	6. 80 E +0 1
CC	GO:000573 9~mitochon drion	14	11. 666 666 7	8.94 E-02	Q9Y3E5, Q9NUQ2, Q9BWH2, P49768, O95140, Q8NBX0, Q07820, P21796, P67775, P51572, P11021, O60427, P0CG47, Q13114	1 1 9	1 3 1	1 8 2 2 4	1.6108 18933	1.0 0E +00	4.86E -01	6. 91 E +0 1
CC	GO:007168 2~endocytic vesicle lumen	2	1.6 666 666 7	9.88 E-02	P02649, P04114	1 1 9	1 6	1 8 2 2 4	19.142 85714	1.0 0E +00	5.10E -01	7. 28 E +0 1
BP	GO:000669 5~cholestero l biosynthetic process	6	5.0 0	3.53 E-06	Q9Y5U4, Q16850, Q15392, Q9UBM7, P48449, Q15800	1 0 5	38	1 6 7 9 2	25.251 12782	2.8 6E- 03	2.86E -03	5. 43 E- 03
BP	GO:003349 0~cholestero l biosynthetic process via lathosterol	3	2.5 0	2.26 E-04	Q15392, Q9UBM7, O75845	1 0 5	4	1 6 7 9 2	119.94 28571	1.6 8E- 01	8.77E -02	3. 47 E- 01
BP	GO:003348 9~cholestero l biosynthetic process via desmosterol	3	2.5 0	2.26 E-04	Q15392, Q9UBM7, O75845	1 0 5	4	1 6 7 9 2	119.94 28571	1.6 8E- 01	8.77E -02	3. 47 E- 01
BP	GO:005511 4~oxidation- reduction process	13	10. 83	2.96 E-04	Q8TC12, Q9NZ01, Q16850, Q15392, Q9UBM7, O95864, P49326, O75845, O00767, Q8NBX0, O60427, Q15800, Q53GQ0	1 0 5	5 9 2	1 6 7 9 2	3.5118 40412	2.1 4E- 01	7.71E -02	4. 55 E- 01
BP	GO:005508 5~transmem brane transport	8	6.6 7	8.06 E-04	P33527, O75387, Q9UP95, P08034, P48066, Q8WWT9, Q86UQ4, P61619	1 0 5	2 4 4	1 6 7	5.2434 03591	4.8 1E- 01	1.51E -01	1. 23 E

								9 2				$^{+0}_{0}$
BP	GO:000686 5~amino acid transport	4	3.3 3	1.31 E-03	Q9H2H9, O75387, P31641, Q9UPY5	1 0 5	3 5	1 6 7 9 2	18.277 0068	6.5 4E- 01	1.91E -01	1. 99 E +0 0
BP	GO:000691 4~autophagy	6	5.0 0	1.42 E-03	P55061, Q13501, Q9H444, Q9H0E2, Q96GF1, O14964	1 0 5	1 3 3	1 6 7 9 2	7.2146 07948	6.8 5E- 01	1.75E -01	2. 16 E +0 0
BP	GO:000865 4~phospholi pid biosynthetic process	4	3.3 3	1.93 E-03	Q99755, P49585, Q9NUQ2, O60427	1 0 5	4 0	1 6 7 9 2	15.992 38095	7.9 2E- 01	2.01E -01	2. 93 E +0 0
BP	GO:004306 6~negative regulation of apoptotic process	10	8.3 3	2.06 E-03	P55061, Q15392, P49768, Q15041, Q9NZS9, Q13501, P11021, Q07820, P61978, P0CG47	1 0 5	4 5 5	1 6 7 9 2	3.5148 09001	8.1 2E- 01	1.89E -01	3. 12 E +0 0
BP	GO:000698 6~response to unfolded protein	4	3.3 3	2.22 E-03	Q96CS3, P55061, O95140, P50454	1 0 5	42	1 6 7 9 2	15.230 839	8.3 6E- 01	1.82E -01	3. 37 E +0 0
BP	GO:000691 5~apoptotic process	11	9.1 7	2.70 E-03	P62745, Q9Y3E5, O95197, Q15392, Q15041, P67775, O95140, Q9NZS9, Q13501, Q13114, P21796	1 0 5	5 6 7	1 6 7 9 2	3.1025 78315	8.8 9E- 01	1.97E -01	4. 08 E +0 0
BP	GO:003497 5~protein folding in endoplasmic reticulum	3	2.5 0	2.83 E-03	P27824, P11021, Q9BV81	1 0 5	1 3	1 6 7 9 2	36.905 49451	9.0 0E- 01	1.89E -01	4. 27 E +0 0
BP	GO:000662 9~lipid metabolic process	6	5.0 0	2.93 E-03	Q9NZ01, O14495, Q9NUJ7, O95864, O75845, O60427	1 0 5	1 5 7	1 6 7 9 2	6.1117 37944	9.0 8E- 01	1.80E -01	4. 42 E +0 0
BP	GO:000663 6~unsaturate d fatty acid biosynthetic process	3	2.5 0	3.78 E-03	O95864, O00767, O60427	1 0 5	1 5	1 6 7 9 2	31.984 7619	9.5 4E- 01	2.11E -01	5. 67 E +0 0
BP	GO:190121 4~regulation of neuron death	3	2.5 0	4.86 E-03	P02649, Q15392, P0CG47	1 0 5	1 7	1 6 7 9 2	28.221 84874	9.8 1E- 01	2.46E -01	7. 22 E +0 0

BP	GO:003043 3~ER- associated ubiquitin- dependent protein catabolic process	4	3.3 3	6.12 E-03	Q96CS3, Q9Y679, P11021, Q96GF1	1 0 5	6 0	1 6 7 9 2	10.661 5873	9.9 3E- 01	2.83E -01	9. 00 E +0 0
BP	GO:001619 7~endosoma l transport	4	3.3 3	7.96 E-03	Q13501, Q9H444, P0CG47, O14964	1 0 5	6 6	1 6 7 9 2	9.6923 52092	9.9 8E- 01	3.33E -01	1. 16 E +0 1
BP	GO:003334 4~cholestero l efflux	3	2.5 0	1.04 E-02	P02649, P04114, Q86UQ4	1 0 5	2 5	1 6 7 9 2	19.190 85714	1.0 0E +00	3.93E -01	1. 48 E +0 1
BP	GO:001623 6~macroaut ophagy	4	3.3 3	1.17 E-02	O95140, Q13501, P0CG47, P21796	1 0 5	7 6	1 6 7 9 2	8.4170 42607	1.0 0E +00	4.12E -01	1. 66 E +0 1
BP	GO:004331 1~positive regulation of eosinophil degranulatio n	2	1.6 7	1.23 E-02	Q12846, P55085	1 0 5	2	1 6 7 9 2	159.92 38095	1.0 0E +00	4.12E -01	1. 74 E +0 1
BP	GO:004278 7~protein ubiquitinatio n involved in ubiquitin- dependent protein catabolic process	5	4.1 7	1.51 E-02	Q99942, Q9NZS9, Q96GF1, P0CG47, Q93034	1 0 5	1 5 3	1 6 7 9 2	5.2262 68285	1.0 0E +00	4.61E -01	2. 08 E +0 1
BP	GO:000669 4~steroid biosynthetic process	3	2.5 0	1.67 E-02	Q16850, P48449, Q53GQ0	1 0 5	3 2	1 6 7 9 2	14.992 85714	1.0 0E +00	4.79E -01	2. 28 E +0 1
BP	GO:004559 5~regulation of cell differentiatio n	3	2.5 0	1.67 E-02	P67775, O60427, Q96CS7	1 0 5	32	1 6 7 9 2	14.992 85714	1.0 0E +00	4.79E -01	2. 28 E +0 1
BP	GO:004554 0~regulation of cholesterol biosynthetic process	2	1.6 7	1.85 E-02	P04114, Q9UBM7	1 0 5	3	1 6 7 9 2	106.61 5873	1.0 0E +00	4.97E -01	2. 49 E +0 1

BP	GO:000156 8~blood vessel development	3	2.5 0	2.31 E-02	O14495, P49768, Q9UBM7	1 0 5	38	1 6 7 9 2	12.625 56391	1.0 0E +00	5.62E -01	3. 02 E +0 1
BP	GO:004215 9~lipoprotei n catabolic process	2	1.6 7	2.45 E-02	P02649, P04114	1 0 5	4	1 6 7 9 2	79.961 90476	1.0 0E +00	5.69E -01	3. 18 E +0 1
BP	GO:007178 7~endoplas mic reticulum tubular network assembly	2	1.6 7	2.45 E-02	O95197, Q15041	1 0 5	4	1 6 7 9 2	79.961 90476	1.0 0E +00	5.69E -01	3. 18 E +0 1
BP	GO:003533 8~long- chain fatty- acyl-CoA biosynthetic process	3	2.5 0	2.79 E-02	Q9NZ01, O00767, Q53GQ0	1 0 5	42	1 6 7 9 2	11.423 12925	1.0 0E +00	6.00E -01	3. 52 E +0 1
BP	GO:000662 0~posttransl ational protein targeting to membrane	2	1.6 7	3.06 E-02	Q9H444, P61619	1 0 5	5	1 6 7 9 2	63.969 52381	1.0 0E +00	6.21E -01	3. 80 E +0 1
BP	GO:000697 9~response to oxidative stress	4	3.3 3	3.09 E-02	P02649, Q15392, P49768, Q9UPY5	1 0 5	1 1 0	1 6 7 9 2	5.8154 11255	1.0 0E +00	6.11E -01	3. 83 E +0 1
BP	GO:001407 0~response to organic cyclic compound	3	2.5 0	3.70 E-02	Q15843, Q99541, O60427	1 0 5	4 9	1 6 7 9 2	9.7912 53644	1.0 0E +00	6.65E -01	4. 40 E +0 1
BP	GO:000663 3~fatty acid biosynthetic process	3	2.5 0	4.12 E-02	O75845, Q15800, Q53GQ0	1 0 5	5 2	1 6 7 9 2	9.2263 73626	1.0 0E +00	6.92E -01	4. 77 E +0 1
BP	GO:001581 3~L- glutamate transport	2	1.6 7	4.26 E-02	O75915, P49768	1 0 5	7	1 6 7 9 2	45.692 51701	1.0 0E +00	6.92E -01	4. 88 E +0 1
BP	GO:004298 7~amyloid precursor protein catabolic process	2	1.6 7	4.85 E-02	Q15392, P49768	1 0 5	8	1 6 7 9 2	39.980 95238	1.0 0E +00	7.28E -01	5. 34 E +0 1

BP	GO:004215 8~lipoprotei n biosynthetic process	2	1.6 7	5.44 E-02	P02649, P04114	1 0 5	9	1 6 7 9 2	35.538 62434	1.0 0E +00	7.58E -01	5. 77 E +0 1
BP	GO:000810 4~protein localization	3	2.5 0	5.49 E-02	Q15843, Q15392, Q13501	1 0 5	6 1	1 6 7 9 2	7.8651 05386	1.0 0E +00	7.51E -01	5. 80 E +0 1
BP	GO:000152 3~retinoid metabolic process	3	2.5 0	5.49 E-02	Q8TC12, P02649, P04114	1 0 5	6 1	1 6 7 9 2	7.8651 05386	1.0 0E +00	7.51E -01	5. 80 E +0 1
BP	GO:003437 4~low- density lipoprotein particle remodeling	2	1.6 7	6.61 E-02	P02649, P04114	1 0 5	1 1	1 6 7 9 2	29.077 05628	1.0 0E +00	8.05E -01	6. 51 E +0 1
BP	GO:000820 3~cholestero l metabolic process	3	2.5 0	6.65 E-02	P02649, Q9Y5U4, P04114	1 0 5	6 8	1 6 7 9 2	7.0554 62185	1.0 0E +00	7.97E -01	6. 53 E +0 1
BP	GO:001619 2~vesicle- mediated transport	4	3.3 3	6.84 E-02	Q12846, Q9Y282, O95197, Q14677	1 0 5	1 5 2	1 6 7 9 2	4.2085 21303	1.0 0E +00	7.98E -01	6. 64 E +0 1
BP	GO:001906 8~virion assembly	2	1.6 7	7.19 E-02	P02649, P0CG47	1 0 5	1 2	1 6 7 9 2	26.653 96825	1.0 0E +00	8.05E -01	6. 82 E +0 1
BP	GO:005092 1~positive regulation of chemotaxis	2	1.6 7	7.19 E-02	Q12846, P55085	1 0 5	1 2	1 6 7 9 2	26.653 96825	1.0 0E +00	8.05E -01	6. 82 E +0 1
BP	GO:001590 9~long- chain fatty acid transport	2	1.6 7	7.19 E-02	P02649, Q99541	1 0 5	1 2	1 6 7 9 2	26.653 96825	1.0 0E +00	8.05E -01	6. 82 E +0 1
BP	GO:007171 2~ER- associated misfolded protein catabolic process	2	1.6 7	7.19 E-02	Q99942, Q96GF1	1 0 5	1 2	1 6 7 9 2	26.653 96825	1.0 0E +00	8.05E -01	6. 82 E +0 1

BP	GO:001580 7~L-amino acid transport	2	1.6 7	7.19 E-02	Q9H2H9, O75387	1 0 5	1 2	1 6 7 9 2	26.653 96825	1.0 0E +00	8.05E -01	6. 82 E +0 1
BP	GO:000979 1~post- embryonic development	3	2.5 0	7.52 E-02	P04114, P49768, Q9UBM7	1 0 5	7 3	1 6 7 9 2	6.5722 1135	1.0 0E +00	8.12E -01	7. 00 E +0 1
BP	GO:001580 4~neutral amino acid transport	2	1.6 7	7.76 E-02	Q9H2H9, O75387	1 0 5	1 3	1 6 7 9 2	24.603 663	1.0 0E +00	8.14E -01	7. 11 E +0 1
BP	GO:003610 9~alpha- linolenic acid metabolic process	2	1.6 7	7.76 E-02	O95864, O60427	1 0 5	1 3	1 6 7 9 2	24.603 663	1.0 0E +00	8.14E -01	7. 11 E +0 1
BP	GO:004312 3~positive regulation of I-kappaB kinase/NF- kappaB signaling	4	3.3 3	7.83 E-02	Q8TB61, P55085, P08134, P0CG47	1 0 5	1 6 1	1 6 7 9 2	3.9732 62348	1.0 0E +00	8.09E -01	7. 15 E +0 1
BP	GO:000682 0~anion transport	2	1.6 7	8.33 E-02	P04920, P21796	1 0 5	1 4	1 6 7 9 2	22.846 2585	1.0 0E +00	8.22E -01	7. 38 E +0 1
BP	GO:003097 0~retrograde protein transport, ER to cytosol	2	1.6 7	8.33 E-02	Q96CS3, Q9Y679	1 0 5	1 4	1 6 7 9 2	22.846 2585	1.0 0E +00	8.22E -01	7. 38 E +0 1
BP	GO:003370 0~phospholi pid efflux	2	1.6 7	8.33 E-02	P02649, Q86UQ4	1 0 5	1 4	1 6 7 9 2	22.846 2585	1.0 0E +00	8.22E -01	7. 38 E +0 1
BP	GO:000648 8~dolichol- linked oligosacchar ide biosynthetic process	2	1.6 7	8.90 E-02	Q9H3H5, Q5I7T1	1 0 5	1 5	1 6 7 9 2	21.323 1746	1.0 0E +00	8.35E -01	7. 62 E +0 1
BP	GO:003650 3~ERAD pathway	2	1.6 7	8.90 E-02	Q99942, Q96GF1	1 0 5	1 5	1 6 7	21.323 1746	1.0 0E +00	8.35E -01	7. 62 E

								9 2				+0 1
BP	GO:003246 9~endoplas mic reticulum calcium ion homeostasis	2	1.6 7	8.90 E-02	P55061, P49768	1 0 5	1 5	1 6 7 9 2	21.323 1746	1.0 0E +00	8.35E -01	7. 62 E +0 1
BP	GO:003438 9~lipid particle organization	2	1.6 7	8.90 E-02	Q96CS3, Q8N0X7	1 0 5	1 5	1 6 7 9 2	21.323 1746	1.0 0E +00	8.35E -01	7. 62 E +0 1
BP	GO:004312 2~regulation of I-kappaB kinase/NF- kappaB signaling	2	1.6 7	8.90 E-02	Q13501, P55085	1 0 5	1 5	1 6 7 9 2	21.323 1746	1.0 0E +00	8.35E -01	7. 62 E +0 1
BP	GO:200123 4~negative regulation of apoptotic signaling pathway	2	1.6 7	9.47 E-02	P55061, P49768	1 0 5	1 6	1 6 7 9 2	19.990 47619	1.0 0E +00	8.47E -01	7. 83 E +0 1
BP	GO:004425 7~cellular protein catabolic process	2	1.6 7	9.47 E-02	Q99942, P04114	1 0 5	1 6	1 6 7 9 2	19.990 47619	1.0 0E +00	8.47E -01	7. 83 E +0 1

Supplemental Table 3-S3. Predicted subcellular localizations of candidate ERAD substrates.

Uniprot	Amin	Molecular	Subcellular location
ID	o acid	weight	
	length		
Q15041	203	23363 MW	Endomembrane system {ECO:0000269 PubMed:10995579}; Multi-pass
	AA		membrane protein {ECO:0000269 PubMed:10995579}. Endoplasmic
			reticulum membrane {ECO:0000269 PubMed:12754298
			ECO:0000269 PubMed:24076029 ECO:0000269 PubMed:24262037};
			Multi-pass membrane protein {ECO:0000269 PubMed:24076029}.
			Endoplasmic reticulum {ECO:0000250 UniProtKB:Q9JKW0}.
			Note=Predominantly localized to intracytoplasmic membranes.
			Preferentially localizes at the ER tubules and the edge of the ER sheets both
			of which are characterized by a high membrane curvature. (ECO: 0000260 DyhMad:24262027)
002070	244	26720 MW	{ECO.0000209 Fu0Med.24202057}.
Q92979	244 A A	20720 IVI W	Nucleus nucleolus $\{ECO,0000209 Fuolvieu,11955225\}$.
P04114	4563	515605	Cytoplasm (ECO:0000269 PubMed:22580899) Secreted
104114	4303 A A	MW	{FCO:0000269 PubMed:22580899 FCO:0000269 PubMed:26224785}
09UP95	1085	120650	Membrane: Multi-pass membrane protein
2,01,0	AA	MW	
Q8WWT	602	66841 MW	Cell membrane {ECO:0000269 PubMed:17426067}; Multi-pass membrane
9	AA		protein {ECO:0000269 PubMed:17426067}.
Q9H3H5	408	46090 MW	Endoplasmic reticulum membrane; Multi-pass membrane protein.
	AA		
O00767	359	41523 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:15907797};
	AA		Multi-pass membrane protein {ECO:0000269 PubMed:18765284
			ECO:0000305}.
Q9NZS9	450	52738 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:10716992
	AA		ECO:0000269 PubMed:14502241}; Multi- pass membrane protein
D 00047	220	257(2) (0)	{ECO:0000269 PubMed:10/16992 ECO:0000269 PubMed:14502241}.
P0CG4/	229	25/62 MW	Ubiquitin: Cytoplasm {ECO:0000250}. Nucleus {ECO:0000250}.
OONIXW2	AA 275	41910 MW	Endoplasmic reticulum membrane (ECO:0000260 DubMed:21148202
Q9INAW2	575	41019 10100	Encomplasmic renculum memorane $\{DCO,0000209]$ rub/red.21148295
	AA		ECO:0000209/1 ubivied.21150129 ECO:0000209/1 ubivied.24752912
			{ECO:0000255} Nucleus membrane {ECO:0000269 PubMed:24732912}
			Single-pass membrane protein {ECO:0000305} Note=Localizes to the
			endoplasmic reticulum membrane (PubMed:21150129 PubMed:21148293
			PubMed:24732912 PubMed:27916661). When overexpressed forms
			membranous structures in the nucleus (PubMed:24732912).
			{ECO:0000269 PubMed:21148293 ECO:0000269 PubMed:21150129
			ECO:0000269 PubMed:24732912 ECO:0000269 PubMed:27916661}.
Q96QK8	99 AA	10710 MW	0
Q96BD0	722	77193 MW	Cell membrane; Multi-pass membrane protein.
	AA		
Q99942	180	19881 MW	Membrane; Multi-pass membrane protein. Mitochondrion membrane.
	AA		Endoplasmic reticulum membrane. Note=Predominantly located in the
			plasma membrane with some localization occurring within cytoplasmic
			organelles.
Q9UPY5	501	55423 MW	Membrane {ECO:0000269 PubMed:15151999}; Multi-pass membrane
	AA		protein {ECO:0000269 PubMed:15151999}.

O9P0S3	153	17371 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:12093374}:
2,1020	AA	1,0,1111	Multi-pass membrane protein {ECO:0000269 PubMed:12093374}.
Q70UQ0	350	39309 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:15389287};
	AA		Single-pass membrane protein {ECO:0000269 PubMed:15389287}.
			Note=Isoform 4 deletion of the hydrophobic or transmembrane region
			between AA 45-63 results in uniform distribution throughout the cell
			suggesting that this region is responsible for endoplasmic reticulum
			localization.
075915	188	21615 MW	Endoplasmic reticulum membrane {ECO:0000250 UniProtKB:Q9ES40};
	AA		Multi-pass membrane protein {ECO:0000255}. Cell membrane
			{ECO:0000250 UniProtKB:Q9ES40}; Multi-pass membrane protein
			{ECO:0000255}. Cytoplasm {ECO:0000250 UniProtKB:Q9ES40}.
			Cytoplasm cytoskeleton {ECO:0000250 UniProtKB:Q9ES40}. Note=Also
			exists as a soluble form in the cytoplasm. Associated with microtubules.
			{ECO:0000250 UniProtKB:Q9ES40}.
P04844	631	69284 MW	Endoplasmic reticulum {ECO:0000250 UniProtKB:F1PCT7}. Endoplasmic
	AA		reticulum membrane; Multi-pass membrane protein {ECO:0000305}.
O60427	444	51964 MW	Isoform 1: Endoplasmic reticulum membrane
	AA		{ECO:0000250 UniProtKB:A4UVI1}; Multi-pass membrane protein
			{ECO:0000250 UniProtKB:A4UVI1}. Mitochondrion
			{ECO:0000269 PubMed:22619218}.
P04920	1241	137009	Membrane; Multi-pass membrane protein.
	AA	MW	
P51572	246	27992 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:9334338
	AA		ECO:0000269 PubMed:9396746}; Multi- pass membrane protein
			{ECO:0000255}. Endoplasmic reticulum-Golgi intermediate compartment
			membrane {ECO:0000269 PubMed:11042173
			ECO:0000269 PubMed:9396746}; Multi-pass membrane protein
			{ECO:0000255}. Note=May shuttle between the ER and the intermediate
			compartment/cis-Golgi complex. {ECO:0000269 PubMed:9396746}.
Q9Y5U4	225	24778 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:12242332};
	AA		Multi-pass membrane protein {ECO:0000269 PubMed:12242332}.
Q13501	440	47687 MW	Cytoplasm cytosol {ECO:0000269 PubMed:20168092}. Late endosome.
	AA		Lysosome. Cytoplasmic vesicle autophagosome. Nucleus. Endoplasmic
			reticulum. Nucleus PML body {ECO:0000269 PubMed:20168092}.
			Cytoplasm myofibril sarcomere {ECO:0000250}. Note=In cardiac muscle
			localizes to the sarcomeric band (By similarity). Commonly found in
			inclusion bodies containing polyubiquitinated protein aggregates. In
			neurodegenerative diseases detected in Lewy bodies in Parkinson disease
			neurofibrillary tangles in Alzheimer disease and HTT aggregates in
			Huntington disease. In protein aggregate diseases of the liver found in large
			amounts in Mallory bodies of alcoholic and nonalcoholic steatohepatitis
			hyaline bodies in hepatocellular carcinoma and in SERPINA1 aggregates.
			Enriched in Rosenthal fibers of pilocytic astrocytoma. In the cytoplasm
			observed in both membrane-free ubiquitin-containing protein aggregates
			(sequestosomes) and membrane-surrounded autophagosomes. Colocalizes
			with TRIM13 in the perinuclear endoplasmic reticulum. Co-localizes with
			TRIM5 in cytoplasmic bodies. When nuclear export is blocked by treatment
			with leptomycin B accumulates in PML bodies.
DOCTO	40-	405555555	{ECO:0000269 PubMed:20168092}.
POCK96	405	43777 MW	Membrane {ECO:0000305}; Multi-pass membrane protein
0(77.72	AA	42(02)	{ECU:0000303}.
Q62VX9	5//	42692 MW	Cell membrane {ECU:0000269 PubMed:231618/0}; Multi-pass membrane
1	AA	1	protein {ECU:0000233}.

0.07 FD1 / -	·		
Q9UBM7	475	54489 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:9878250};
	AA		Wull-pass memorane protein {ECO.0000209[FubWieu.9878250].
Q99541	437	48075 MW	Membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
DZ 04 Z 4	AA	46441 3 633	
P50454	418	46441 MW	Endoplasmic reticulum lumen.
	AA		
Q96GF1	192	20459 MW	Mitochondrion outer membrane {ECO:0000269 PubMed:21931693}; Multi-
	AA		pass membrane protein {ECO:0000305}. Endoplasmic reticulum membrane
			{ECO:0000269 PubMed:24019521 ECO:0000269 PubMed:27485036};
			Multi- pass membrane protein {ECO:0000305}.
Q8TC12	318	35386 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:12036956};
-	AA		Single-pass type II membrane protein {ECO:0000269 PubMed:12036956}.
015173	223	23818 MW	Membrane {FCO:0000305}: Single-pass membrane protein
015175	AA	25010 1010	{ECO:0000305}.
O9Y679	476	53028 MW	Endonlasmic reticulum membrane {ECO:0000269 PubMed:12042322
Q71077	470	55020 WI W	ECO:0000260 PubMed:18711122): Single pass type III membrane protein
	AA		$(ECO.0000260]$ ubited. 16/11132}, Single-pass type in memorane protein (ECO.0000260]D-1M-4.12042222 ECO.0000260]D-1M-4.19711122).
			$\{ECO: 0000209 PubMed: 12042322 ECO: 0000209 PubMed: 18/11132 \};$
			Cytoplasmic side {ECO:0000269 PubMed:12042322
			ECO:0000269 PubMed:18711132}.
Q9Y5Z9	338	36831 MW	Endoplasmic reticulum membrane; Multi-pass membrane protein. Golgi
	AA		apparatus membrane; Multi-pass membrane protein. Mitochondrion
			membrane. Cytoplasm. Nucleus.
O95864	444	52259 MW	Endoplasmic reticulum membrane {ECO:0000305}; Multi-pass membrane
	AA		protein {ECO:0000305}.
075845	299	35301 MW	Endoplasmic reticulum membrane {ECO:0000305}: Multi-pass membrane
	AA		protein {ECO:0000305}.
08TB61	432	47515 MW	Golgi apparatus membrane {ECO:0000269[PubMed:12716889]: Multi-pass
QUIDUI		17515 10100	membrane protein / FCO:0000269/PubMed:12716889
D40768	A67	52668 MW	Endoplesmie rotioulum membrane (ECO:0000260]DubMod:10502000
149700	407	52008 IVI W	ECO.0000260 μ hM ad. 8574060 ECO.0000260 μ hM ad. 0575990
	AA		ECO.0000209 Fu0Med.85/4909 ECO.0000209 Fu0Med.9/58950
			ECO:0000303 PubMed:1003/4/1 ECO:0000303 PubMed:132/4032};
			Multi-pass membrane protein {ECO:0000269 PubMed:25043039
			ECO:0000269 PubMed:25918421 ECO:0000269 PubMed:26280335
			ECO:0000269 PubMed:26623517}. Golgi apparatus membrane
			{ECO:0000269 PubMed:10593990 ECO:0000269 PubMed:8574969
			ECO:0000305 PubMed:10037471 ECO:0000305 PubMed:15274632};
			Multi-pass membrane protein {ECO:0000269 PubMed:25043039
			ECO:0000269 PubMed:25918421 ECO:0000269 PubMed:26280335
			ECO:0000269 PubMed:26623517}. Cytoplasmic granule
			{ECO:0000269 PubMed:11987239}. Cell membrane
			ECO:0000269 PubMed:10593990 ECO:0000269 PubMed:11953314
			ECO:0000269 PubMed:11987239 ECO:0000269 PubMed:21143716}
			Note=Translocates with bound NOTCH1 from the endonlasmic reticulum
			and/or Golgi to the cell surface (PubMed: 10503000) Colocalizes with
			CDH1/2 at sites of coll coll context. Colocalizes with CTNNP1 in the
			enderlagmin rationlym and the maximity of the plasma membrane
			$(D_1 M_1 072802)$ Algo and the proximity of the prasma memorane
			(Publied:9738956). Also present in azurophil granules of neutrophils
			(Publyled: 1198/239). Colocalizes with UBQLN1 in the cell membrane and
			in cytoplasmic juxtanuclear structures called aggresomes
			(PubMed:21143/16). {ECO:0000269 PubMed:10593990
			ECO:0000269 PubMed:11987239 ECO:0000269 PubMed:21143716
L			ECO:0000269 PubMed:9738936}.
Q16850	503	56806 MW	Endoplasmic reticulum membrane {ECO:0000250 UniProtKB:Q64654};
	AA		Single-pass membrane protein {ECO:0000255}. Microsome membrane

			{ECO:0000250 UniProtKB:Q64654}; Single-pass membrane protein {ECO:0000255}.
Q8NDN9	531 AA	58252 MW	Nucleus {ECO:0000305}.
Q14677	625 AA	68259 MW	Cytoplasm. Cytoplasm perinuclear region. Membrane; Peripheral membrane protein. Cytoplasmic vesicle clathrin-coated vesicle. Note=Found throughout the cell with the exception of the cell surface. Concentrated in
			the perinuclear region and associated with clathrin-coated vesicles close to the trans-Golgi network.
Q53GQ0	312 AA	34324 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:12482854}; Multi-pass membrane protein {ECO:0000269 PubMed:12482854}.
P63261	375 AA	41793 MW	Cytoplasm cytoskeleton {ECO:0000269 PubMed:28493397}.
Q15800	293 AA	35216 MW	Endoplasmic reticulum membrane {ECO:0000305}; Multi-pass membrane protein {ECO:0000305}.
P55061	237 AA	26538 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:21075086 ECO:0000269 PubMed:22128171}; Multi- pass membrane protein {ECO:0000269 PubMed:21075086 ECO:0000269 PubMed:22128171}.
Q9NZ01	308 AA	36034 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:12482854}; Multi-pass membrane protein {ECO:0000269 PubMed:12482854}.
P61619	476 AA	52265 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:27392076}; Multi-pass membrane protein {ECO:0000305}. Note=Localizes exclusively
			in granular structures in the endoplasmic reticulum (ER). {ECO:0000269 PubMed:27392076}.
Q7Z3D4	306 AA	34538 MW	Membrane {ECO:0000305}; Single-pass membrane protein {ECO:0000305}.
Q9Y282	383 AA	43222 MW	Endoplasmic reticulum-Golgi intermediate compartment membrane {ECO:0000269 PubMed:15308636}; Multi-pass membrane protein {ECO:0000269 PubMed:15308636}. Golgi apparatus cis-Golgi network membrane {ECO:0000269 PubMed:15308636}; Multi- pass membrane protein {ECO:0000269 PubMed:15308636}. Endoplasmic reticulum membrane {ECO:0000269 PubMed:15308636}. Multi-pass membrane protein {ECO:0000269 PubMed:15308636}. Note=Cycles between the endoplasmic reticulum and the Golgi.
O95816	211 AA	23772 MW	None Listed
P67775	309 AA	35594 MW	Cytoplasm {ECO:0000269 PubMed:16541025}. Nucleus {ECO:0000269 PubMed:16541025}. Chromosome centromere {ECO:0000269 PubMed:16541025}. Cytoplasm cytoskeleton spindle pole {ECO:0000269 PubMed:16541025}. Note=In prometaphase cells but not in anaphase cells localizes at centromeres. During mitosis also found at spindle poles. Centromeric localization requires the presence of SGO2 (By similarity). {ECO:0000250}.
P84090	104 AA	12259 MW	None Listed
Q9H0E2	274 AA	30282 MW	Cytoplasm {ECO:0000305}.
Q9UNL2	185 AA	21080 MW	Endoplasmic reticulum membrane; Multi-pass membrane protein.
P02649	317 AA	36154 MW	Secreted {ECO:0000303 PubMed:3283935}.
P49326	533 AA	60221 MW	Microsome membrane. Endoplasmic reticulum membrane.
Q9BWH2	189 AA	20676 MW	None Listed

Q00765	189	21493 MW	Membrane {ECO:0000255}; Multi-pass membrane protein
	AA		{ECO:0000255}. Endoplasmic reticulum
			ECO:0000269 PubMed:23969831}. Note=Localizes to endoplasmic
			reticulum tubular network. {ECO:0000269 PubMed:23969831}.
P46977	705	80530 MW	Endoplasmic reticulum {ECO:0000269 PubMed:12887896}. Endoplasmic
1 10577	AA	00000011111	reticulum membrane {ECO:0000250 UniProtKB:P46978}: Multi-nass
			membrane protein {ECO:0000250 UniProtKB:P46978}
09BV81	110	12017 MW	Membrane {ECO:0000269[PubMed:22119785]: Multi-nass membrane
Q)D (01	AA	12017 10100	protein {ECO:0000269 PubMed:22119785}.
O96HR9	211	23418 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:24098485
Quinto		25 110 1110	ECO:0000269 PubMed:27889058}: Multi- nass membrane protein
	1111		{ECO:0000255}
P61956	95 AA	10871 MW	Nucleus. Nucleus PML body.
086U04	5058	576159	Membrane {ECO:0000305}: Multi-pass membrane protein
2000 Q .	AA	MW	{ECO:0000305}.
P61978	463	50976 MW	Cytoplasm {ECO:0000269 PubMed:1729596}. Nucleus nucleoplasm
	AA		{ECO:0000269 PubMed:16360036 ECO:0000269 PubMed:1729596
			ECO:0000269 PubMed:18775702 ECO:0000269 PubMed:22721921}. Cell
			projection podosome {ECO:0000269 PubMed:22721921}. Note=Recruited
			to p53/TP53- responsive promoters in the presence of functional p53/TP53
			(PubMed:16360036). In case of ASFV infection there is a shift in the
			localization which becomes predominantly nuclear (PubMed:18775702).
Q9Y3E5	179	19194 MW	Mitochondrion.
	AA		
Q15392	516	60101 MW	Endoplasmic reticulum membrane; Single-pass membrane protein. Golgi
	AA		apparatus membrane; Single-pass membrane protein.
P11021	654	72333 MW	Endoplasmic reticulum lumen {ECO:0000269 PubMed:21080038
	AA		ECO:0000269 PubMed:21289099 ECO:0000269 PubMed:23990668}.
			Melanosome {ECO:0000269 PubMed:12643545}. Cytoplasm
			{ECO:0000250 UniProtKB:P20029}. Note=Identified by mass spectrometry
			in melanosome fractions from stage I to stage IV.
			{ECO:0000269 PubMed:12643545}.
Q8TCT9	377	41488 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:15998642};
	AA		Multi-pass membrane protein {ECO:0000305}. Membrane
			{ECO:0000269 PubMed:12077416 ECO:0000269 PubMed:15385547};
			Multi-pass membrane protein {ECO:0000305}; Lumenal side
			{ECO:0000269 PubMed:12077416 ECO:0000269 PubMed:15385547}.
P27824	592	67568 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:22314232};
	AA		Single-pass type I membrane protein {ECO:0000255}. Endoplasmic
			reticulum {ECO:0000269 PubMed:22314232}. Melanosome
			{ECO:0000269 PubMed:12643545 ECO:0000269 PubMed:17081065}.
			Note=Identified by mass spectrometry in melanosome fractions from stage I
			to stage IV (PubMed:12643545 PubMed:17081065). The palmitoylated
			form preferentially localizes to the perinuclear rough ER
			(PubMed:22314232). {ECO:0000269 PubMed:12643545
			ECO:0000269 PubMed:17081065 ECO:0000269 PubMed:22314232}.
Q7L5N7	544	60208 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:21498505};
	AA		Single-pass type II membrane protein {ECO:0000269 PubMed:21498505}.
			Golgi apparatus membrane {ECO:0000250}; Single-pass type II membrane
			protein {ECO:0000250}. Lipid droplet {ECO:0000269 PubMed:21498505}.
Q14254	428	47064 MW	Cell membrane {ECO:0000269 PubMed:20682791}; Peripheral membrane
	AA		protein {ECO:0000269 PubMed:20682791}. Membrane caveola
			{ECO:0000269 PubMed:20682791}; Peripheral membrane protein
			{ECO:0000269 PubMed:20682791}. Endosome

			{ECO:0000269 PubMed:20682791}. Membrane {ECO:0000305}; Lipid-
			anchor {ECO:0000305}. Note=Membrane-associated protein of caveolae.
Q8WUY1	208	23865 MW	Secreted {ECO:0000305}.
	AA		
075387	559	61477 MW	Membrane {ECO:0000305}; Multi-pass membrane protein
	AA		{ECO:0000305}.
P31641	620	69830 MW	Cell membrane; Multi-pass membrane protein.
005140	AA	0C402 MIN	M's 1 1 1
095140	/5/	86402 M W	Mitochondrion outer membrane $\{ECO:0000269 PubMed:111811/0$
	AA		ECO:0000209 PubMed:23620051]: Multi- pass membrane protein
			{ECO:0000269 PubMed:11181170 ECO:0000269 PubMed:11950885
			ECO:0000269 PubMed:12499352 ECO:0000269 PubMed:23620051}.
			Note=Colocalizes with BAX during apoptosis.
			{ECO:0000269 PubMed:12499352}.
O75844	475	54813 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:23539603};
	AA		Multi-pass membrane protein {ECO:0000269 PubMed:23539603}. Nucleus
			inner membrane {ECO:0000269 PubMed:23539603}; Multi-pass membrane
			protein {ECO:0000269 PubMed:23539603}.
Q96CS7	222	24736 MW	Recycling endosome membrane {ECO:0000269 PubMed:21911378
	AA		$ECO:0000269 PubMed:22281/40\}$; Peripheral membrane protein (ECO:0000260 DubMed:21011278 ECO:0000260 DubMed:22281740)
			{ECU:0000209 Pu0Med:219115/8 ECU:0000209 Pu0Med:22281/40}.
			with TFNR
O8NCU8	138	15608 MW	Membrane {ECO:0000305}: Single-pass membrane protein
C	AA		{ECO:0000305}.
Q8N2H4	156	17615 MW	Golgi apparatus membrane {ECO:0000269 PubMed:15077113}; Multi-pass
	AA		membrane protein {ECO:0000269 PubMed:15077113}.
P62745	196	22123 MW	Late endosome membrane; Lipid-anchor. Cell membrane; Lipid-anchor.
	AA		Nucleus. Cleavage furrow. Note=Late endosomal membrane
			(geranylgeranylated form). Plasma membrane (farnesylated form). Also
			detected at the nuclear margin and in the nucleus. I ransiocates to the
P05023	1023	112896	Cell membrane sarcolemma /ECO:0000260[PubMed:7711835]: Multi-pass
105025	AA	MW	membrane protein {ECO:0000255} Melanosome
			{ECO:0000269 PubMed:17081065}. Note=Identified by mass spectrometry
			in melanosome fractions from stage I to stage IV.
			{ECO:0000269 PubMed:17081065}.
Q9C0D9	397	45229 MW	Membrane {ECO:0000305}; Multi-pass membrane protein
	AA		{ECO:0000305}.
Q15843	81 AA	9072 MW	Nucleus {ECO:0000269 PubMed:9353319}. Note=Mainly nuclear.
Q9BQA9	187	20774 MW	Membrane {ECO:0000305}; Single-pass membrane protein
	AA		{ECO:0000305}.
Q96LD4	638	69532 MW	$Cytoplasm {ECO:0000269 PubMed:11511098}. Nucleus (ECO:0000269 PubMed:11511098).$
006D21	AA 275	21926 MW	{ECO:0000209 Publyled:11511098}.
Q70D21		51620 WIW	FCO.0000305}, Multi-pass memorane protein
P05787	483	53704 MW	Cytoplasm {ECO:0000269 PubMed:10973561
100101	AA	227011010	ECO:0000269 PubMed:19188445}. Nucleus nucleoplasm {ECO:0000250}.
			Nucleus matrix {ECO:0000250}.
Q13114	568	64490 MW	Cytoplasm {ECO:0000305}. Endosome
	AA		{ECO:0000250 UniProtKB:Q60803}. Mitochondrion. Note=Undergoes
			endocytosis together with TLR4 upon LPS signaling (By similarity).
			Associated with mitochondria in response to virus.
			{ECO:0000250 UniProtKB:Q60803}.

Q9NUQ2	364	42072 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:21173190};
	AA		Multi-pass membrane protein {ECO:0000269 PubMed:21173190}. Nucleus
			envelope {ECO:0000269 PubMed:21173190}. Mitochondrion
			{ECO:0000269 PubMed:21173190}.
O8NBX0	429	47151 MW	None Listed
	AA		
P08034	283	32025 MW	Cell membrane: Multi-pass membrane protein. Cell junction gap junction.
	AA		
O96B96	161	17522 MW	Membrane {ECO:0000305}: Multi-pass membrane protein
2,02,0	AA	1,022 1111	{ECO:0000305}.
P48066	632	70606 MW	Membrane: Multi-nass membrane protein
1 10000	AA	,0000 1111	
P23458	1154	133277	Endomembrane system: Perinheral membrane protein. Note=Wholly
125150		MW	intracellular possibly membrane associated
P38/135	758	87561 MW	Endonlasmic reticulum membrane (ECO:0000260 PubMed:10010012)
1 50455	ΔΔ	07501 WIW	Multi-pass membrane protein /ECO:0000269/PubMed:10910912}
004444	224	24050 MW	Cytenlagm sytesol (ECO:0000260[DubMad:15511210]). Late and asome
Q911444	224	24930 IVI W	Cytopiasin cytosol {ECO.0000209 [rubited.15511219}. Late endosome
	AA		ECO.0000205/DykMad.12860004), Designational membrane protein
			$(ECO,0000305)$ M ² H = 4π (ECO,0000200 J = M = 4.212100(C
			$\{ECO: 0000305\}$. Mildbody $\{ECO: 0000209 PubMed: 21510900$
			ECO:0000269[PubMed:22422861]. Nucleus envelope
			{ECO:0000269 PubMed:26040/12}. Note=Recruited to the nuclear
			envelope by CHMP7 during late anaphase (PubMed:26040712). Localizes
			transiently to the midbody arms immediately before abscission
			(PubMed:22422861). {ECO:0000269 PubMed:22422861
			ECO:0000269 PubMed:26040712}.
P55085	397	44126 MW	Cell membrane; Multi-pass membrane protein.
	AA		
Q5I7T1	473	55448 MW	Cell membrane {ECO:0000250 UniProtKB:088788}; Multi-pass membrane
-	AA		protein {ECO:0000250 UniProtKB:088788}.
O12846	297	34180 MW	Cell membrane {ECO:0000305}: Single-pass type IV membrane protein
	AA		{ECO:0000305}.
O07820	350	37337 MW	Membrane {ECO:0000305}: Single-pass membrane protein
	AA		{ECO:0000305}. Cytoplasm. Mitochondrion. Nucleus nucleoplasm.
			Note=Cytoplasmic associated with mitochondria.
09NU17	323	36668 MW	Cytoplasm {ECO:0000269 PubMed:22732399}
2011007	AA	50000 1111	
095197	1032	112611	Endoplasmic reticulum membrane /ECO:0000269PubMed:12811824
0)31)7		MW	ECO:0000260 DubMed:15286784 ECO:0000260 DubMed:16054885
	лл	101 00	ECO:0000269/1 db/wcd.15280784 ECO:0000269/1 db/wcd.16054885
			ECO.0000209 [Fublica.109/9038 ECO.0000209 [Fublica.1/051492]
			ECO.0000209 Fublica.1/182008 ECO.0000209 Fublica.1/191125
			ECO:0000269[PubMed:24262037]; Multi- pass membrane protein
			{ECU:0000255}. Golgi apparatus membrane
			{ECO:0000269 PubMed:15286/84 ECO:0000269 PubMed:16054885
			ECO:0000269 PubMed:16979658}; Multi-pass membrane protein
			{ECO:0000255}.
P33527	1531	171591	Cell membrane {ECO:0000269 PubMed:16230346}; Multi-pass membrane
	AA	MW	protein {ECO:0000255 PROSITE-ProRule:PRU00441
			ECO:0000269 PubMed:16230346}.
Q9BUV8	137	15487 MW	None Listed
	AA		
O14964	777	86192 MW	Cytoplasm {ECO:0000250 UniProtKB:Q9JJ50}. Early endosome membrane
	AA		{ECO:0000269 PubMed:23166352 ECO:0000269 PubMed:24790097};
			Peripheral membrane protein {ECO:0000305 PubMed:23166352
			ECO:0000305 PubMed:24790097}: Cvtoplasmic side
1	1	1	······································

			{ECO:0000305 PubMed:23166352 ECO:0000305 PubMed:24790097}
			Endosome multivesicular body membrane
			{FCO:0000250 UniProtKB:09U50}: Perinheral membrane protein
			(ECO:0000250 UniProtKB:O91150}) Note=Colocalizes with UBOI N1 in
			ubiquitin-rich cytonlasmic aggregates that are not endocytic compartments
			{FCO:0000269 PubMed:16159959}
099755	562	62633 MW	Cell membrane Cytoplasm {ECO:0000250} Nucleus speckle Cell
Q77755		02055 1111	projection ruffle Note=Colocalizes with RAC1 at actin-rich membrane
	1 11 1		ruffles I ocalizes to nuclear speckles and associates with TUT1 to regulate
			nolvadenvlation of selected mRNAs
P/0585	367	41731 MW	Cytoplasm cytosol (ECO:0000250) Membrane (ECO:0000250):
149505		41/J1 W1W	Perinheral membrane protein /ECO:0000250}. Note=It can interconvert
	лл		hetween an inactive autosolic form and an active membrane bound form
			{ECO:0000250}
P24001	234	26676 MW	Secreted {ECO:0000269 PubMed:15664165}.
12.001	AA	200701111	
O8N0X7	666	72833 MW	Cytoplasm {ECO:0000269 PubMed:19580544}. Midbody
	AA		{ECO:0000269 PubMed:20719964}. Note=Transiently associated with
			endosomes (PubMed: 19580544). Colocalized with IST1 to the ends of
			Flemming bodies during cytokinesis (PubMed:20719964).
			{ECO:0000269 PubMed:19580544 ECO:0000269 PubMed:20719964}.
O6UX53	244	27775 MW	None Listed
	AA		
O9C0B5	715	77545 MW	Cell membrane {ECO:0000250}; Multi-pass membrane protein
	AA		{ECO:0000250}.
Q96CS3	445	52623 MW	Cytoplasm {ECO:0000269 PubMed:12372427}. Lipid droplet
	AA		{ECO:0000269 PubMed:19773358 ECO:0000269 PubMed:23297223}.
			Endoplasmic reticulum {ECO:0000269 PubMed:18711132
			ECO:0000269 PubMed:23297223}.
Q9H6A9	2034	222039	Membrane {ECO:0000305}; Multi-pass membrane protein
-	AA	MW	{ECO:0000305}.
Q15155	1222	134324	Membrane {ECO:0000305}; Single-pass type I membrane protein
	AA	MW	{ECO:0000305}.
Q9H2H9	487	54048 MW	Cell membrane {ECO:0000269 PubMed:15054072}; Multi-pass membrane
-	AA		protein {ECO:0000269 PubMed:15054072}. Note=Restricted to the
			somatodendritic compartment of neurons. Found in the cellular processes of
			neurons in the developing brain (By similarity). {ECO:0000250}.
O14495	311	35116 MW	Golgi apparatus trans-Golgi network membrane; Multi-pass membrane
	AA		protein. Cell membrane; Multi-pass membrane protein.
P69849	1222	134134	Membrane {ECO:0000305}; Single-pass type I membrane protein
	AA	MW	{ECO:0000305}.
P08134	193	22006 MW	Cell membrane {ECO:0000305}; Lipid-anchor {ECO:0000305};
	AA		Cytoplasmic side {ECO:0000305}. Cleavage furrow
			{ECO:0000269 PubMed:16236794}. Note=Translocates to the equatorial
			region before furrow formation in a ECT2-dependent manner.
P48449	732	83309 MW	Endoplasmic reticulum membrane {ECO:0000269 PubMed:14766201
	AA		ECO:0000269 PubMed:15525992}; Peripheral membrane protein
			{ECO:0000269 PubMed:14766201 ECO:0000269 PubMed:15525992}.
P21796	283	30773 MW	Mitochondrion outer membrane {ECO:0000269 PubMed:7539795}; Multi-
	AA		pass membrane protein {ECO:0000269 PubMed:18755977
			ECO:0000269 PubMed:18832158}. Cell membrane
			{ECO:0000269 PubMed:25168729 ECO:0000269 PubMed:25296756};
			Multi-pass membrane protein {ECO:0000269 PubMed:18755977
			ECO:0000269 PubMed:18832158}. Membrane raft

			{ECO:0000269 PubMed:25168729}; Multi-pass membrane protein {ECO:0000269 PubMed:18755977 ECO:0000269 PubMed:18832158}.
Q93034	780 AA	90955 MW	None Listed