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Abstract

Background: Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity, and its
incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic
inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine
models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored.

Methodology/Principal Findings: To investigate whether sEH may have a causal role in AP we utilized Ephx2 knockout (KO)
mice to determine the effects of sEH deficiency on cerulein- and arginine-induced AP. sEH expression increased at the
protein and messenger RNA levels, as well as enzymatic activity in the early phase of cerulein- and arginine-induced AP in
mice. In addition, amylase and lipase levels were lower in cerulein-treated Ephx2 KO mice compared with controls.
Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B and IL-6 were lower in cerulein-
treated Ephx2 KO mice compared with controls. Further, Ephx2 KO mice exhibited decreased cerulein- and arginine-induced
NF-kB inflammatory response, MAPKs activation and decreased cell death. Conclusions -These findings demonstrate a novel
role for sEH in the progression of cerulein- and arginine-induced AP.
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Introduction

Acute pancreatitis (AP) is a frequent gastrointestinal disorder

that causes significant morbidity [1,2]. The incidence of AP has

been progressively increasing in parallel with its risk factors such as

obesity, alcohol abuse and duct obstruction by gallstones [2,3].

The onset of the disease is thought to be triggered by intra-acinar

cell activation of digestive enzymes such as trypsinogen that results

in interstitial edema, inflammation and acinar cell death that often

lead to systemic inflammatory response and complications [4–6].

Specific therapy for AP is lacking and deciphering the molecular

mechanisms underlying its pathogenesis will likely aid in thera-

peutic intervention.

Several animal models have been utilized to study the

pathogenesis of AP; one of the most common is cerulein-induced

pancreatitis [7]. Cerulein is an ortholog of the intestinal hormone

cholecystokinin and at high concentrations cause death of acinar

cells and infiltration of inflammatory cells into the pancreas, which

are also observed in human pancreatitis [8,9]. The mechanism of

cerulein action involves activation of NF-kB and the release of

pro-inflammatory cytokines such as TNFA, IL-1B and IL-6

[10,11]. TNFA and IL-1B are primary cytokines that initiate and

propagate most the systemic inflammatory response [12,13], while

IL-6 mediates the acute-phase response [14]. Pro-inflammatory

cytokines activate the IkB kinase complex (IKK) to phosphorylate

inhibitor of NF-kB (IkB) [15]. IkB phosphorylation triggers its

ubiquitination and subsequent degradation, leading to the

dissociation of NF-kB dimers to the nucleus for activation of

transcription [16].

Soluble epoxide hydrolase (sEH) is a ubiquitously expressed

predominantly cytosolic enzyme with C-terminal epoxide hydro-

lase and N-terminal lipid phosphatase activities [17,18]. Endog-

enous substrates for sEH include epoxy fatty acids such as

epoxyeicosatrienoic acids (EETs) which are arachidonic acid

metabolites produced by cytochrome P-450 epoxygenases. sEH

plays an important role in regulating the level of EETs and other

epoxide containing lipids by effectively degrading them into the

less potent metabolites, dihydroxyeicostrienoic acids (DHETs)

[19]. EETs are more biologically active than DHETs and the

other corresponding fatty acid diols which are rapidly conjugated

and excreted [20]. Insights into the physiological functions of sEH

have emerged from studies in mice with global Ephx2 deficiency
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and the development of selective sEH pharmacological inhibitors

(sEHI) [21]. sEH pharmacological inhibition has beneficial effects

in cardiovascular, renal, metabolic and inflammatory diseases in

murine models [22–27]. sEH inhibition stabilizes EETs and other

epoxy fatty acids by preventing their conversion to DHETs or the

other corresponding fatty acid diols [28]. The stabilized EETs

have anti-inflammatory effects through inhibition of NF-kB and

IkB [29]. Further, sEHI can also synergize with conventional anti-

inflammation drugs, e.g. non-steroidal anti-inflammatory drugs to

reduce inflammation [30]. Importantly, sEH deficiency and

prolonged pharmacological inhibition in mice appear to be quite

benign [24]. Given the salutary effects of sEH deficiency, it is an

attractive target for therapy of several chronic diseases.

The role of sEH in AP has heretofore remained unexplored but

a growing body of evidence implicates sEH in pancreatic

endocrine function. sEH deficiency and pharmacological inhibi-

tion promote insulin secretion and reduce islet apoptosis in a type

1 diabetes model [31,32] and increase islet mass in a mouse model

of high fat diet-induced insulin resistance [24]. While these

findings provide insights into the function of sEH in pancreatic

islets, its role in acinar cells remains largely unknown. In the

present study, the effects of sEH deficiency on cerulein- and

arginine-induced AP were investigated. Alterations in systemic

inflammation were determined in cerulein- and arginine-treated

versus non-treated control and Ephx2 knockout (KO) mice, and

the underlying molecular mechanism investigated.

Methods

Mouse studies
Mice with targeted disruption in exon 1 of the Ephx2 gene [33],

were back-crossed onto a C57BL/6J background (Jackson

Laboratories) [24]. Mice were maintained on a 12 h light-dark

cycle in a temperature-controlled facility, with free access to food

and water. All studies were performed using male mice. Ephx2
KO and wild type (WT) male mice were fed standard laboratory

chow (Purina’s Lab Diet, #5001) at weaning. Acute pancreatitis

was induced in 8–12 week old male WT and KO mice using

cerulein or arginine. For cerulein-induced AP, mice were fasted

overnight then injected intraperiotoneally with cerulein (50 mg/kg

body weight) 12 consecutive times, at 1 h intervals. The control

group was administered DMSO as a vehicle control for cerulein.

Animals were sacrificed 2 h after the last injection (14 h after the

initial injection of cerulein) and blood was collected to determine

serum lipase and amylase using commercial kits (Sigma) according

to the manufacturer’s instructions. Levels of serum cytokines were

measured using a Multiplex kit (Meso Scale Discovery) according

to the manufacturer’s protocol. Another group of animals was used

for arginine-induced AP as previously described, with modifica-

tions [34]. Briefly, mice received a single intraperitoneal injection

of 5 g/kg body weight L-arginine monohydrochloride in 0.9%

sodium chloride (pH: 7.0). Animals were sacrificed 48 and 72 h

after arginine injection. All mouse studies were conducted

according to federal guidelines and approved by the Institutional

Animal Care and Use Committee at University of California

Davis.

Biochemical studies
Pancreata were lysed using radio-immunoprecipitation assay

(RIPA) buffer (10 mM Tris-HCl, pH: 7.4, 150 mM NaCl, 0.1%

sodium dodecyl sulfate [SDS], 1% Triton X-100, 1% sodium

deoxycholate, 5 mM EDTA, 1 mM NaF, 1 mM sodium ortho-

vanadate and protease inhibitors). Lysates were clarified by

centrifugation at 13,000 rpm for 10 min, and protein concentra-

tions were determined using a bicinchoninic acid protein assay kit

(Pierce Chemical) according to the manufacturer’s instructions.

Proteins were resolved by SDS-PAGE and transferred to PVDF

membranes. Immunoblotting of lysates and immunoprecipitates

was performed with antibodies for sEH (generated by the

Hammock laboratory), cleaved Caspases 8, 9 and 3, PARP,

SHP1 and Tubulin (all from Santa Cruz), pp38 (Thr180/Tyr182),

p38, pJNK (Thr183/Tyr185), JNK, pIKKa/b (Ser178/180),

IKKa/b, pIkBa (Ser32), IkBa, pNF-kBp65 (Ser536), NF-kBp65

and NF-kBp50 (all from Cell Signaling). After incubation with the

appropriate secondary antibodies, proteins were visualized using

enhanced chemiluminescence (ECL, Amersham Biosciences).

Pixel intensities of immunoreactive bands were quantified using

ImageQuant 5.0 software (Molecular Dynamics). For phosphor-

ylated proteins data are presented as phosphorylation level

normalized to total protein expression (such as pIKKaS178/180/

pIKKa) for each animal and for non-phosphorylated proteins as

total protein expression normalized to Tubulin (such as sEH/

Tubulin) for each animal.

Total RNA was extracted from pancreata using TRIzol reagent

(Invitrogen). cDNA was generated using high-capacity cDNA

synthesis Kit (Applied Biosystems). Ephx2, Il1-b, Il-6 and Tnfa
were assessed by SYBR Green quantitative real time PCR using

SsoAdvanced Universal SYBR Green Supermix (iCycler, BioRad).

Relative gene expression was quantitated using the DCT method

with appropriate primers (Table 1) and normalized to Tata-box
binding protein (Tbp). Briefly, the threshold cycle (Ct) was

determined and relative gene expression was calculated as follows:

fold change = 2-D(DCt), where DCt = Ct target gene-Ct TBP

(cycle difference) and D(DCt) = Ct (treated mice)2/Ct (control

mice).

Histological analyses
WT and Ephx2 KO male mice were injected intraperiotoneally

with cerulein or DMSO (50 mg/kg body weight) 12 consecutive

times, at 1 h intervals then sacrificed 48 h after the first injection.

A portion of the pancreas was fixed in 4% paraformaldehyde

overnight, embedded in paraffin and 5 mm sections were stained

with hematoxylin and eosin (H&E) to observe morphological

changes. Histological analysis was initially performed in a blinded

fashion. Histological scoring of pancreatic sections was performed

to grade the extent of pancreatic parenchyma edema (0: no

edema, 1: interlobular edema, 2: interlobular and moderate

intralobular edema, 3: interlobular and severe intralobular

edema), cell vacuolation (0: none, 1: ,20% acini with vacuoles,

2: ,50% acini, 3: .50% acini), inflammation (0: no inflamma-

tion, 1: inflammatory cells present at intralobular, 3: inflammatory

cells present at interacini), and acinar cell necrosis (0: no necrosis,

1: ,10% necrosis, 2: ,40% necrosis, 3.40% necrosis) as

previously described [35].

Determination of levels of eicosanoids
Pancreata were homogenized as described in a previous

publication [35] and extracted by solid phase extraction and

reconstituted with internal standard solution. Then, samples were

analyzed by reverse phase liquid chromatography tandem mass

spectrometer (LC/MS/MS) under negative MRM mode [36].

Statistical analyses
Data are expressed as means6standard error of the mean

(SEM). Data comparisons were performed using Tukey’s-Kramer

honest significant difference analyses using the JMP program (SAS

Institute). Differences were considered significant at P#0.05 and

highly significant at P#0.01.
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Results

sEH expression is increased in the early phase of acute
pancreatitis

Expression of pancreatic sEH was determined in wild type mice

without and with cerulein-induced pancreatitis. AP was induced in

mice with repetitive intraperitoneal injections of cerulein as

detailed in Methods. Immunoblots of pancreatic lysates revealed

significant increase in sEH expression upon cerulein administra-

tion (Fig. 1A). As control, expression of the SH2 domain-

containing phosphatase SHP1 was determined since it is increased

after cerulein administration [37,38]. Indeed, pancreatic SHP1

expression increased in mice with cerulein administration

(Fig. 1A). In addition, mRNA of the gene encoding sEH, as

determined by real time RT-PCR, was increased in the pancreas

upon cerulein administration (Fig. 1B). To evaluate the dynamic

regulation of pancreatic sEH expression, sEH protein was

determined at 3, 6, 9, 12 and 15 h after the initial injection of

cerulein. sEH expression increased by 3 h of cerulein administra-

tion with progressive increase at later times (Fig. 1C). To ensure

that these observations were not limited to a particular model of

AP, pancreatic sEH protein expression was also determined in

arginine-induced AP model. Similarly, pancreatic sEH expression

significantly increased at 48 and 72 h after arginine injection

(Fig. 1D). Further, to determine whether the observed increase in

sEH expression is mirrored by an increase in enzyme activity,

levels of EETs and DHETs were evaluated in pancreata of

arginine-treated and untreated mice as detailed in Methods. As

expected, KO mice exhibited elevated levels of EETs and

decreased levels of DHETs (Fig. 1E). In addition, and consistent

with elevated sEH expression during AP, levels of DHETs

progressively increased with arginine administration in control

mice. Together, these findings reveal increased sEH expression in

two rodent models of AP and this was associated with increased

sEH activity.

sEH deficiency mitigates cerulein-induced acute
pancreatitis

Increased sEH expression in the early phase of pancreatitis

prompted us to determine the role of this enzyme in AP. To that

end, we utilized Ephx2 whole-body KO mice. Immunoblot

analysis of total pancreas lysates demonstrated ablation of sEH

expression in KO mice compared with controls (Fig. 2A). Thus,

this model provides a useful platform to investigate the potential

contribution of sEH to AP. To determine the role of sEH during

AP, we assessed the severity of cerulein-induced pancreatitis in

control and Ephx2 KO mice as described in Methods. Histological

analysis was performed on H&E-stained pancreata sections from

WT and Ephx2 KO mice with and without cerulein administra-

tion to evaluate pathological changes including edema, cell

vacuolation, inflammation and necrosis (Fig. 2B and Table 2). In

most cases, changes when present were localized to the periphery

of the pancreatic lobes. As expected, in WT mice cerulein

administration caused a significant increase in edema, vacuolation,

inflammation and necrosis (Table 2). On the other hand, Ephx2
KO mice exhibited a significant decrease in cerulein-induced

edema, vacuolation and necrosis compared with WT mice

(Table 2). In line with the histological analysis, serum amylase

and lipase that are markers for AP were significantly different

between control and Ephx2 KO mice. Under basal conditions,

serum amylase and lipase were comparable between control and

KO mice (Fig. 2C). Cerulein administration led to significant

increase in amylase and lipase; however sEH deficiency signifi-

cantly reduced cerulein-induced serum amylase and lipase. It is

worth noting that comparable findings were observed in an

independent cohort of mice (data not shown). During AP

activation of NF-kB enhances the release of pro-inflammatory

cytokines such as IL-1B and IL-6 and TNFA. Accordingly,

pancreatic mRNA levels of Il-1b, Il-6 and Tnfa were increased in

control mice after cerulein administration and this was signifi-

cantly reduced in KO mice (Fig. 2D). Similarly, serum levels of IL-

1B and IL-6 were increased in control mice after cerulein

administration and were significantly reduced in KO mice

(Fig. 2E). Collectively, these data demonstrate that sEH deficiency

mitigates cerulein-induced AP in mice.

sEH deficiency decreases cerulein- and arginine-induced
NF-kB inflammatory response

To investigate the molecular basis for decreased AP in Ephx2
KO mice, we initially determined alterations in NF-kB signaling.

NF-kB is activated early in AP in leukocytes and acinar cells and

plays an important role in disease pathogenesis [39–41]. sEH

deficiency or pharmacological inhibition stabilizes EETs and other

fatty acid epoxides which have anti-inflammatory effects through

inhibition of NF-kB [28,29]. Accordingly, we determined the

activation status of components of NF-kB signaling pathway in

control and KO mice. Cerulein-induced IKKa, IkBa and NF-

kBp65 phosphorylation and NF-kBp50 expression were attenuat-

ed in Ephx2 KO mice compared with controls (Fig. 3A). Similarly,

arginine-induced IKKa, IkBa and NF-kBp65 phosphorylation

and NF-kBp50 expression were attenuated in KO mice compared

with controls (Fig. 3B). These data demonstrate decreased

cerulein- and arginine-induced NF-kB inflammatory response in

mice with sEH deficiency. This is in keeping with the reduced

pancreatic and circulating pro-inflammatory cytokines in cerulein-

treated KO mice.

Table 1. Primer sequences used to quantitate sEH, Il-1b, Il-6, Tnfa and Tbp expression.

Gene Forward 59-.39 Reverse 59-.39

Il-1b AGCTTCAGGCAGGCAGTATC AAGGTCCACGGGAAAGACAC

Il-6 ACAACCACGGCCTTCCCTACTT CACGATTTCCCAGAGAACATGTG

Ephx2 CTGGATACCCTGAAGGCAAA TGACGTCATTTGGATTGCAT

Tbp TTGGCTAGGTTTCTGCGGTC GCCCTGAGCATAAGGTGGAA

Tnfa GACGTGGAACTGGCAGAAGAG TGCCACAAGCAGGAATGAGA

doi:10.1371/journal.pone.0113019.t001

sEH Deficiency and Acute Pancreatitis
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sEH deficiency decreases cerulein- and arginine-induced
MAPKs signaling and cell death

Mitogen-activated protein kinases (MAPKs) including p38,

ERK1/2 and JNK1/2 are induced rapidly and transiently during

experimental AP in rodents [42]. This activation is believed to be a

component of the cellular stress response in the onset of

inflammation in the pancreas. Treatment with EETs reduces

inflammation-induced p38 phosphorylation to mediate anti-

inflammatory properties [43]. Cerulein administration led to

increased phosphorylation of ERK, p38 and JNK in control mice

and that was significantly decreased in Ephx2 KO mice (Fig. 4A).

Similarly, arginine administration increased ERK, p38 and JNK

phosphorylation in control mice and that was significantly

decreased in Ephx2 KO mice (Fig. 4B). After exposure to

apoptotic stimuli, cells activate initiator Caspases (Caspases 8

and 9) that proteolytically cleave and activate effector Caspases

(Caspases 3 and 7) to dismantle dying cells [44,45]. Accordingly,

we assessed cerulein-induced expression of initiator and effector

Caspases in control versus Ephx2 KO mice. Cerulein caused pro-

Caspases 8, 9 and 3 cleavage and an increase in the cleavage

fragments and induced cleavage of Caspase 3 substrate; poly

(ADP-ribose) polymerase (PARP) (Fig. 5A). sEH deficiency

decreased cleaved Caspase 8, 9 and 3 and PARP expression

indicative of decreased apoptosis (Fig. 5A). In addition, compara-

ble findings were observed in arginine-treated cohort (Fig. 5B).

Collectively, these findings demonstrate decreased MAPKs

signaling and cell death upon sEH deficiency during the early

phase of cerulein- and arginine-induced AP.

Discussion

The development of AP involves a complex cascade of events

that are triggered by acinar cells, but the underlying mechanisms

Figure 1. Increased sEH expression in acute pancreatitis. A) Total pancreas lysates of wild type mice without and with cerulein administration
(14 h) immunoblotted for sEH, SHP1 and Tubulin as a loading control. Representative immunoblots are shown. Bar graph represents expression of
sEH (normalized to Tubulin) and presented as means 6 SEM (n = 12 per group) (AU: arbitrary units). B) sEH expression as assessed by quantitative real
time PCR in pancreata of wild type mice without (n = 6) and with (n = 6) cerulein. For A and B, (**: P#0.01) indicates significant difference between
mice without and with cerulein administration. C) Total pancreas lysates of wild type mice without and with cerulein administration for the indicated
times immunoblotted for sEH, SHP1 and Tubulin. Representative immunoblots are shown. D) Total pancreas lysates of wild type mice without and
with arginine administration for the indicated times immunoblotted for sEH, SHP1 and Tubulin. E) Levels of EET and Diol in wild type and Ephx2 KO
mice without (0) and with (48 and 72 h) arginine administration (n = 4 mice per group). (*: P#0.05; **: P#0.01) indicate significant difference between
mice without and with arginine administration, and (#: P#0.05; ##: P#0.01) indicate significant difference between WT and KO mice.
doi:10.1371/journal.pone.0113019.g001
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regulating the initiation and severity of the disease are not well

understood. In the current study, we investigated the role of sEH

in AP using two rodent models cerulein- and arginine-induced AP.

We report increased sEH expression and activity during the early

phase of AP. Importantly, sEH deficiency mitigated the effects of

cerulein- and arginine-induced AP in mice. This was associated

with decreased cerulein- and arginine-induced NF-kB inflamma-

tory response and decreased cell death in Ephx2 KO mice.

Together, these findings demonstrate a novel role for sEH in the

pancreas and suggest that sEH pharmacological inhibition may be

of therapeutic value in AP.

Alterations in gene and protein expression during the initiation

phase of AP play a significant role in the progression and severity

of the disease [46]. In this regard, we observed increased sEH

mRNA and protein expression in a cerulein-induced AP mouse

model. This model was utilized since secretagouge-induced

pancreatitis, generated by administration of supramaximally

stimulating dose of cerulein, is very well characterized and has

characteristics that are similar to those of human pancreatitis [7].

Of note, these findings were recapitulated in arginine-induced AP

indicating that they were not unique to a particular rodent model

of AP. Moreover, increased sEH expression during AP was

mirrored by comparable changes in enzyme activity. While

additional studies are required to establish if sEH expression and

activity are comparably regulated in human AP, it is worth noting

that increased hepatic and adipose sEH expression in HFD-fed

Figure 2. sEH deficiency decreases cerulein-induced pancreatic injury. A) Total pancreas lysates from wild type (WT) and Ephx2 KO mice
were immunoblotted for sEH and Tubulin as a loading control. B) Acute pancreatitis was induced by intraperitoneal injections of cerulein as detailed
in Methods. Representative hematoxylin and eosin (H&E)-stained sections of the pancreas. Upper left: Non cerulein treated WT control – Focal area of
acini with intracyoplasmic vacuolation (arrows; ). Upper right: Non cerulein treated KO control – Similar to WT control, focal area of acini with
intracytoplasmic vacuolation (arrows; ). Lower left: Cerulein treated WT mouse 48 h after initial cerulein injection - Lobules and acini are separated by
clear spaces (edema) and inflammatory cells (predominantly neutrophils) (arrowheads; ), and scattered exocrine cells are necrotic (stars;*). Lower
right: Cerulein treated Ephx2 KO mouse 48 h after initial cerulein injection. Lobules are separated by clear spaces (edema) and contain inflammatory
cells (predominantly neutrophils) (arrowheads; ). Scattered acinar cells in several lobules have intracytoplasmic vacuolation (arrows; ). Scale bar:
50 mm. C) Serum amylase and lipase were determined in WT mice without (n = 6) and with (n = 6) cerulein and in KO mice without (n = 6) and with
(n = 6) cerulein from two independent experiments. D) Il-1b, Il-6 and Tnfa (as assessed by quantitative real time PCR) in the pancreata of WT mice
without (n = 6) and with (n = 6) cerulein and KO mice without (n = 6) and with (n = 6) cerulein. Data are expressed as fold change relative to control
(WT without cerulein). E) Circulating levels of IL-1B and IL-6 in serum of WT mice without (n = 4) and with (n = 4) cerulein and KO mice without (n = 4)
and with (n = 4) cerulein. Data are expressed as fold change relative to control (WT without cerulein). (*: P#0.05; **: P#0.01) indicate significant
difference between mice without and with cerulein administration, and (##: P#0.01) indicates significant difference between WT and KO mice.
doi:10.1371/journal.pone.0113019.g002
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Table 2. Histological scoring of pancreatic tissues.

Edema Vacuolation Inflammation Necrosis

WT Ctr n = 14 0.2860.22 0.560.17 0.3560.22 0.0760.07

Cer n = 15 2.2660.22** 1.4660.21* 1.0060.23* 0.5360.16**

KO Ctr
n = 12

0.0060.00 0.3360.14 0.0060.00 0.0060.00

Cer
n = 12

1.2560.39**# 0.5060.19## 0.8360.29* 0.0060.00##

Hematoxylin and Eosin stained pancreas sections were observed and scored to grade the extent of acinar edema, cell vacuolation, inflammation and acinar cell necrosis.
Data are presented as means6SEM. (*: P#0.05, **: P#0.01) indicate significant difference between mice without and with cerulein administration (48 h after initial
injection), and (#: P#0.05; ##: P#0.01) indicate significant difference between WT and Ephx2 KO male mice.
doi:10.1371/journal.pone.0113019.t002

Figure 3. Regulation of cerulein- and arginine-induced NF-kB inflammatory response by sEH. A) Total pancreas lysates from wild type
mice without (n = 6) and with (n = 9) cerulein, and Ephx2 KO mice without (n = 6) and with (n = 9) cerulein were immunoblotted for pIKKa, pIkBa, pNF-
kB and their respective unphosphorylated proteins, NF-kBp50 and Tubulin as a loading control. Representative immunoblots (n = 2–3 samples per
group) are shown. Bar graphs represent normalized data for pIKKa/IKKa, pIkBa/IkBa, pNF-kB/NF-kB and NF-kBp50/Tubulin as means6SEM (AU:
arbitrary units). (*: P#0.05; **: P#0.01) indicate significant difference between mice without and with cerulein administration, and (##: P#0.01)
indicates significant difference between WT and KO mice. B) Total pancreas lysates from wild type mice without (n = 8) and with (n = 8) arginine
administration for the indicated times, and Ephx2 KO mice without (n = 8) and with (n = 8) arginine administration were immunoblotted for pIKKa,
pIkBa, pNF-kB and their respective unphosphorylated proteins, NF-kBp50 and Tubulin. Representative immunoblots (n = 2–3 samples per group) are
shown. Bar graphs represent normalized data for pIKKa/IKKa, pIkBa/IkBa, pNF-kB/NF-kB and NF-kBp50/Tubulin as means6SEM (AU: arbitrary units).
(**: P#0.01) indicates significant difference between mice without and with arginine administration, and (#: P#0.05; ##: P#0.01) indicates
significant difference between WT and KO mice.
doi:10.1371/journal.pone.0113019.g003
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mice was mirrored by increased sEH expression in overweight

humans [47].

Using a genetic approach, we demonstrated that sEH deficiency

ameliorated the course of AP as evidenced by pancreas histology,

reduced amylase and lipase, decreased pancreatic Il-1b, Il-6 and

Tnfa expression and decreased serum levels of IL-1B, IL-6. Pro-

inflammatory cytokines play a pivotal role in the progression and

severity of pancreatitis [12,13,48]. TNFA exacerbates acinar cell

injury, IL-1B plays a role in the development of AP and IL-6 is a

major mediator of the acute-phase response. Further, suppression

of these pro-inflammatory cytokines could attenuate the severity of

pancreatitis [49]. It remains unclear if the decreased expression of

such pro-inflammatory cytokines in Ephx2 KO mice may be

associated with alterations in expression of anti-inflammatory

cytokines. Nevertheless, it is reasonable to stipulate that the

protective effects of sEH deficiency could be mediated, at least in

part, through the attenuation of the inflammatory response. It is

important to note that since Ephx2 KO mice exhibit global sEH

deficiency the inflammatory response is likely regulated by the

systemic effects of sEH deletion. Accordingly, additional studies

are warranted to determine the effects of specific pancreatic sEH

deficiency on cytokine expression and development of AP.

sEH deficiency modulated cerulein- and arginine-induced NF-

kB inflammatory response and MAPKs signaling. NF-kB inflam-

matory response is activated early in AP and plays an important

role in disease pathogenesis [39–41]. In addition, sEH deletion

correlated with decreased activation of the MAPKs ERK1/2, p38

and JNK indicative of decreased stress and is in line with previous

studies implicating MAPKs in AP [50–53]. The precise mecha-

nism by which sEH deficiency attenuates MAPK signaling

remains unclear, but can be indirect and related to reduced

inflammation. sEH deficiency may impact on additional signaling

pathways that have been previously implicated in pancreatitis. For

example, endoplasmic reticulum (ER) stress has been implicated in

Figure 4. sEH deficiency decreases cerulein- and arginine-induced MAPKs signaling. A) Total pancreas lysates from wild type mice
without (n = 6) and with (n = 9) cerulein, and Ephx2 KO mice without (n = 6) and with (n = 9) cerulein were immunoblotted for pERK1/2, pp38, pJNK1/2
and their respective unphosphorylated proteins and Tubulin as a loading control. Representative immunoblots (n = 2–3 samples per group) are
shown. Bar graphs represent normalized data for pERK/ERK, pp38/p38, and pJNK/JNK, and presented as means6SEM (AU: arbitrary units). (*: P#0.05;
**: P#0.01) indicate significant difference between mice without and with cerulein administration, and (#: P#0.05; ##: P#0.01) indicate significant
difference between WT and KO mice. B) Total pancreas lysates from wild type mice without (n = 8) and with (n = 8) arginine administration for the
indicated times, and Ephx2 KO mice without (n = 8) and with (n = 8) arginine administration were immunoblotted for pERK1/2, pp38, pJNK1/2 and
their respective unphosphorylated proteins and Tubulin. Representative immunoblots (n = 2–3 samples per group) are shown. Bar graphs represent
normalized data for pERK/ERK, pp38/p38, and pJNK/JNK, and presented as means6SEM. (**: P#0.01) indicate significant difference between mice
without and with arginine administration, and (##: P#0.01) indicates significant difference between WT and KO mice.
doi:10.1371/journal.pone.0113019.g004
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the pathophysiology of pancreatitis, in particular alcohol-induced

pancreatic damage [54]. Previously, we reported attenuation of

HFD-induced ER stress in adipose and liver upon sEH deficiency

[47]. Thus, the effects of sEH deficiency or pharmacological

inhibition on ER stress during AP warrant additional investigation.

The current studies suggest that sEH inhibition in the pancreas

may represent a potential approach for treating acute pancreatitis;

however it is important to note that the effects of pancreas-specific

sEH deficiency on AP remain to be determined. Further, the

therapeutic effects of sEH pharmacological inhibition after the

development of AP need to be evaluated. Nevertheless, the

findings presented herein uncover a novel role for sEH in AP and

suggest that interventions designed to inhibit pancreatic sEH may

be of value in combating this disease.
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