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Abstract: The rapid increase in drug-resistant and multidrug-resistant infections poses a serious chal-
lenge to antimicrobial therapies, and has created a global health crisis. Since antimicrobial peptides
(AMPs) have escaped bacterial resistance throughout evolution, AMPs are a category of potential
alternatives for antibiotic-resistant “superbugs”. The Chromogranin A (CgA)-derived peptide Cates-
tatin (CST: hCgA352–372; bCgA344–364) was initially identified in 1997 as an acute nicotinic-cholinergic
antagonist. Subsequently, CST was established as a pleiotropic hormone. In 2005, it was reported that
N-terminal 15 amino acids of bovine CST (bCST1–15 aka cateslytin) exert antibacterial, antifungal,
and antiyeast effects without showing any hemolytic effects. In 2017, D-bCST1–15 (where L-amino
acids were changed to D-amino acids) was shown to exert very effective antimicrobial effects against
various bacterial strains. Beyond antimicrobial effects, D-bCST1–15 potentiated (additive/synergistic)
antibacterial effects of cefotaxime, amoxicillin, and methicillin. Furthermore, D-bCST1–15 neither
triggered bacterial resistance nor elicited cytokine release. The present review will highlight the
antimicrobial effects of CST, bCST1–15 (aka cateslytin), D-bCST1–15, and human variants of CST
(Gly364Ser-CST and Pro370Leu-CST); evolutionary conservation of CST in mammals; and their
potential as a therapy for antibiotic-resistant “superbugs”.

Keywords: Chromogranin A; catestatin; gut microbiome; antimicrobial peptide; cell permeable peptide

1. Introduction

Microbial infections in critically ill patients are a global threat. With failing host
defense, the use of antibiotics has taken the place for containment of those infections.
Nevertheless, the microbes have also evolved with time to develop resistance against those
drugs. This arm’s race between antibiotic drugs and pathogens had led to the rise of
multi-drug-resistant microbes, called “superbugs”, which emphasizes the urgent need
to develop new modes of treatment. Since antimicrobial peptides (AMPs) have evaded
bacterial resistance for millions of years of evolution [1], AMPs could be a potential solution
for antibiotic resistant “superbugs”. Chromogranin A (CgA), the acidic and secretory pro-
protein [2,3], is proteolytically cleaved to generate several biologically important peptides,
including Catestatin (CST: hCgA352–372) [4–12]. The 21 amino acid peptide CST (human:
S352SMKLSFRARAYGFRGPGPQL372; bovine: R344SMRLSFRARGYGFRGPGLQL364) was
identified in 1997 as a physiologic brake in catecholamine secretion, which acts by non-
competitive inhibition of nicotinic-cholinergic signaling [5,13–18]. CST is now established
as a pleiotropic peptide [6,19,20]
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The non-hemolytic antimicrobial (bacteria, fungus, and yeast) effects of CST (bCST1–15
aka cateslytin) were first reported in 2005, where CST was shown to act by penetrating
fungal and yeast cell membranes [21]. The study showed that less than 10 µM peptide was
required to kill the bacteria. Antibacterial activities were also reported for the two human
variants of CST (G364S-CST and P370L-CST) [22] with minimal inhibitory concentration
(MIC) of 1–20 µM [21]. Later, D-bCST1–15 (where L-amino acids were changed to D-amino
acids: r344smrlsfrargygfr358) was shown to exert more potent antibacterial (both Gram-
positive and Gram-negative bacteria) effects than natural CST [23]. The present review
will focus on the antimicrobial effects of CST, with special emphasis on the mechanisms
underlying its antibacterial effects, therapeutic potential, and evolutionary conservation.

2. Antibacterial Effects of CST
2.1. Inhibition of Bacterial Growth by CST

The group of Metz-Boutigue first demonstrated the antibacterial activity of CST. Her
group used bCST344–358 (coining the term cateslytin to describe this antimicrobial effect) to
reveal the inhibition of growth of the Gram-positive and Gram-negative bacteria [21]. The
minimal inhibitory concentrations (MICs) of CST (bCgA344–358, hCgA352–372, Gly364Ser-CST
and Pro370Leu-CST) for Gram-positive bacteria (Micrococcus luteus, Bacillus megaterium,
Group A Streptococcus, S. aureus ATCC 25923, S. aureus ATCC 49775, S. aureus S1 MRSA, S.
aureus S1 MSSA, and S. aureus DmprF) range from 0.8 µM to >100 µM (Figure 1) [21,24].
The minimal concentration with 100% inhibition (MIC100) for Gram-positive bacteria range
from 2 µM to >100 µM. The MIC of CST was higher (8 µM to 50 µM) for Gram-negative
bacteria (Escherichia coli D22, E. coli 029, and Pseudomonas aeruginosa) compared to Gram-
positive bacteria (Figure 1). Likewise, the MIC100 of CST was higher (15 µM to 150 µM) for
Gram-negative bacteria compared to Gram-positive bacteria (Figure 1). The higher MIC
and MIC100 values of CST for Gram-negative bacteria are consistent with the presence of
extra outer membrane containing lipopolysaccharide (LPS) [25,26]. Beyond the extra-thick
cell membrane, Gram-negative bacteria also release exotoxins such as tetanus [27] and
cholera toxins [28] that worsen prognosis.
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Figure 1. Effects of wild-type (WT)-CST and natural human variants of CST (Gly364Ser and
Pro370Leu) on the growth of Gram-positive and Gram-negative bacteria showing minimal inhibitory
concentration (MIC) and lethal concentration (MIC100) of CST.

D-bCST1–15 was reported to exert more effective antimicrobial effects against various
bacterial strains than L-bCST1–15 [23]. In addition to its antimicrobial effects, D-bCST1–15
was reported to potentiate (additive/synergistic) the antibacterial effects of cefotaxime,
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amoxicillin, and methicillin [23]. Furthermore, it has been shown that D-bCST1–15 neither
triggered bacterial resistance nor elicited cytokine release [23]. In addition, D-bCST1–15
was reported to be more resistant to degradation by secreted bacterial protease than L-
bCST1–15 [23]. Thus, it was suggested that D-bCST1–15 can be used as a monotherapy or as
a combination therapy with currently prescribed antibiotics to counteract various diseases
associated with bacterial infection [23].

2.2. Composition of Bacterial Membranes

While antibiotics target specific cellular activities (e.g., synthesis of DNA, protein,
or cell wall), AMPs target the LPS layer of the cell membrane. Extensive studies have
been conducted to learn the composition of the bacterial membrane. The bacterial cy-
toplasmic membrane consists of zwitterionic phospholipids (phosphatidylcholine, phos-
phatidylethanolamine, sphingomyelin, etc.) and anionic phospholipids (phosphatidyl
serine, phosphatidyl glycerol, etc.), providing them with a negative charge [29–32]. In
contrast, besides the cytoplasmic membrane, Gram-negative bacteria contain an additional
strong electronegative LPS-containing thick outer membrane [25,26]. Furthermore, the
peptidoglycan layer on the outer side of the cytoplasmic membrane is much thicker in Gram-
positive bacteria compared to Gram-negative bacteria (20–80 nm versus ~10 nm) [33,34].
The peptidoglycan layer in Gram-positive bacteria is connected by electronegative wall
lipoteichoic acids and anchored on the phospholipid bilayer by electronegative lipoteichoic
acids [35]. In contrast, in Gram-negative bacteria, the LPS forms the major lipid component
of the outer leaflet of the outer membrane [35].

2.3. Secondary Structure of CST Explains the Antibacterial Effects of CST

Based on their secondary structure, AMPs are generally categorized into four groups:
(i) α-helical AMPs, (ii) β-sheet AMPs, (iii) extended AMPs, and cationic loop AMPs [36]. Ho-
mology modeling followed by molecular dynamics simulation of bovine CST (bCgA342–370)
performed in a water shell led to a β-strand-loop-β-strand structure. Molecular dynamics
and computer simulations of human CST1–21 revealed the following: R10, A11, and Y12
contribute to a 310 helix [37]. In contrast, F7, R8, A9, F14, R15, G16, P17, and G18 contribute to
the antiparallel β-sheet [37]. The mechanism of the antibacterial action of CST1–21 could
start by interacting with negatively charged moieties such as LPS in the outer membranes
of Gram-negative bacteria and lipoteichoic acid in the wall of Gram-positive bacteria. The
primary structure of CST reveals that CST contains cationic and hydrophobic residues and
adopt a β-sheet secondary structure via intermolecular forces [38]. This folding structure
would facilitate CST to fold into an amphiphilic conformation with positively charged
(polar) and hydrophobic (nonpolar) faces (Figure 2). The presence of a great number of
positively charged residues (5 in bCST and 4 in hCST) will allow CST to interact prefer-
entially with negatively charged bacterial membranes [1,39]. Since the hydrophilic and
hydrophobic amino acids of CST are structurally segregated, it will provide solubility of
CST in both aqueous and lipid-rich environments, as suggested for other AMPs [40]. In ad-
dition, positively charged amino acids in CST formed amphipathic structures, as evidenced
by separated hydrophobic and hydrophilic surface domains [39,41] (Figure 2). When the
concentration of CST would exceed a certain critical concentration, the cell membrane
would form pores, leading to content leakage, cell lysis, and finally death. Since cyclization
of peptide has been reported to induce high antimicrobial activity [39,41], it is reasonable to
assume that cyclization of CST would markedly improve the antibacterial activity of CST.
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Figure 2. Hydropathy profiles of (A) Consensus CST, (B) Human CST, and (C) Bovine CST. The
values are plotted based on the parameters used from Kyte and Doolittle, 1982. The values above zero
represents the hydrophobic property of the amino acids that might contribute to the hydrophobic
core of the peptide. The values below zero represent the hydrophilic property of the amino acids,
which are instrumental in interaction with other protein factors.
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Metz-Boutigue’s group has shown that bCgA344–358 is unstructured in solution but is
converted to an antiparallel β-structure and forms aggregates at the surface of negatively
charged bacterial membranes [42]. As for catecholamine secretion [15], arginine residues
were found to be crucial for binding to negatively charged lipids [42,43]. They proposed
that the phase boundary defects caused by zones of different rigidity and thickness lead to
permeability induction and peptide crossing through the bacterial membrane [42]. The fact
that CST penetrates through the bacterial wall was shown by measuring the optical density
of the released β-galactosidase from ML-35p [24]. Electron microscopical studies of E. coli
ML-35p confirmed that CST rapidly disrupts the E. coli membrane, with visible membrane
blebbing compared to untreated cells within 10 min [24].

2.4. CST as a Potential Therapy for Bacterial Diseases

AMPs derived from CgA display antimicrobial activities by lytic effects at micromolar
range against Gram-positive bacteria, filamentous fungi, and yeasts. Interestingly, CST-
derived peptides can kill “superbugs” and more particularly S. aureus [44]. Considering
the actions of CST on E. coli, it could be useful as a therapeutic target for the Gram-negative
bacteria that cause many serious infections, including Cholera [45], E. coli [46], Yersinia [47],
Campylobacter [48], Legionella [49], Salmonella [50], Klebsiella [51], Pseudomonas [52], Francisella
tularensis [53], Salmonella typhi [54], and microbes associated with drug resistance [55–57],
and CST might be used as a therapeutic target for the above diseases.

3. Antifungal and Anti-Yeast Effects of CST
3.1. Inhibition of Growth of Fungus and Yeast by CST

Fungal infections are common on the surface of skin, nails, or mucous membranes
(superficial or mucocutaneous), underneath the skin (subcutaneous), or in the lungs, brain,
or heart (deep infection). Deep fungal infections include Histoplasmosis [58], Coccid-
ioidomycosis (Valley fever) [59], Blastomycosis [60], Aspergillosis [61], Candidal urinary
tract infection [62], invasive candidiasis [63,64], Pneumocystis pneumonia [65], Mucormyco-
sis [66,67], and Cryptococcosis [68,69]. It is becoming increasingly evident that resistance
to antifungal therapy is on the rise [70,71], which calls for the development of alterna-
tive therapy for these infections. Host-defense peptides are emerging as new promising
candidates to counteract antifungal resistance [72]. To this end, Metz-Boutigue’s group
tested the effects of CST on the growth of fungus and yeasts. They found MIC values
of CST or its human variants ranging from 0.2 µM to 75 µM against a host of fungal
species (Neurospora crassa, Aspergillus fumigatus, A. niger, Nectria haematococca, Fusarium
culmorum, F. oxysporum, Trichophyton mentagrophytes, and T. rubrum) [21,24] (Figure 3). The
MIC100 values of CST or its human variants against the above fungal species ranged from
0.8 µM to 100 µM [21,24] (Figure 3). CST and its human variants also displayed similar
inhibitory effects on the growth of yeasts, with MIC ranging from 1.2 µM to >240 µM
(Figure 3) [21,24]. The MIC100 of CST and its variants against the above yeasts ranged
from 6 µM to 75 µM [21,24] (Figure 4). Similar to the effects of retro-inverso (RI)-CST
(Amino-lqpGpGrfGyararfslkmss-carboxyl, with the CST sequence reversed from carboxyl
→ amino, and chirality was inversed from L → D) on catecholamine secretion [73], D-CST
exhibited comparable inhibitory effects on the growth of yeast compared to L-CST with
MIC ranged from 2 µM to 9.6 µM [23]. D-CST was also uncovered to be resistant to prote-
olytic digestion [23,44,74]. Akin to L-CST, D-CST can also be used to develop therapies for
drug-resistant microbial infection [75].
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3.2. Mechanisms Underlying the Antifungal and Antiyeast Activities of CST

The composition of fungal cell membranes is similar to that of bacteria, comprising
zwitterionic and anionic phospholipids. In contrast, the fungal cell wall is composed of
chitin, glucan, ergosterol, and mannoprotein, which reside on the surface of the cytoplasmic
membrane. Because of the negative charge on the cytoplasmic membrane, CST could exert
its anti-fungal activities in a similar way to its antibacterial activity. Metz-Boutigue’s group
used confocal laser microscopy to analyze the interaction of the synthetic rhodamine-labeled
cateslytin (bCgA344–358R) with fungal (A. fumigatus) and yeast (C. albicans) membranes [21].
Rhodaminated cateslytin (1 µM) was detected in the inner compartment after 2 min of
incubation, implicating rapid and efficient penetration through the cell wall [21]. Us-
ing time-lapse video microscopy of fungal growth, they have shown that rhodaminated
cateslytin blocked the growth and development of nascent fungus [21]. Penetration of rho-
daminated cateslytin takes place at both ends of the small fungi (three cells and expressing
a slow growth rate) as compared to larger fungi with a higher growth rate where pene-
tration takes place at one end [21]. Sequence homology of the well-known cell-permeable
peptide penetratin with CST representing seven mammalian orders (Primates, Rodentia,
Artiodactyla, Perissodactyla, Carnivora, Cetacea, and Monotremata) revealed 63.64% to
75% similarity, which should qualify CST as a cell-permeable peptide (Figure 5).
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4. CST Regulation of Gut Microbiota
4.1. Microbiomes in Colonic Mucosa versus Feces

Recent studies have identified a larger role of gut microbiota in gut-immune home-
ostasis and in intestinal pathology. The human intestinal microbiota is dominated by
five phyla: high-abundant (>80%) (1) Bacillota (aka Firmicutes) and (2) Bacteroidota; less-
abundant (3) Actinomycetota (aka Actinobacteria), (4) Pseudomonadota (aka Proteobacteri),
and (5) Verrucomicrobiota [76] as compared to four phyla in mice: high-abundant Bac-
teroidota, Bacillota, Deferribacterota, and Pseudomonadota [77]; and (4) low-abundant
Actinomycetota and Verrucomicrobiota compared to humans. In mouse colonic mucosa
samples, 19 phyla were identified [78] (Figure 6). Although CST failed to alter bacterial
populations in the four high-abundant phyla, it altered colonic mucosa-associated bacte-
rial community composition at lower taxonomic levels, including orders Bacteroidales,
Clostridiales, and YS2, and Families Chitinophagaceae, Clostridiaceae, Coriobacteriaceae,
Pseudomonadaceae, Rikenellaceae, and Ruminococcaceae [78]. While CST increased the
relative abundance of Bacteroidota, it caused a marked decrease in the Bacillota popula-
tion (Figure 6). Bacteroides and Parabacteroides species, representing ~25% of the colonic
microbiota, transform simple and complex sugars into volatile short-chain fatty acids
(SCFAs), such as acetate, butyrate, and propionate [79–81], which are absorbed in the
colon as a nutrient [82,83]. In addition to colonic nutrients, SCFAs are well established
for their roles in accelerating gut transit time via the release of serotonin [84,85]. SCFAs
also release glucagon-like peptide 1 from the enteroendocrine L-cells [86–88] and improve
insulin sensitivity [89–91]. Bacteroides thetaiotaomicron produces significant amounts of
glycosylhydrolases, which prevent obesity [92]. Other Bacteroides species are also reported
to prevent obesity and increase insulin sensitivity [93,94]. Furthermore, Bacteroides fragilis
produces zwitterionic polysaccharide, which activates CD4+ T cells to produce interleukin
10 (IL-10). IL-10 plays crucial roles in preventing abscess formation and other unchecked
inflammatory responses [95,96]. The functional correlation between different CST mutants
across species and their respective microbiota has remained elusive.
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4.2. Microbiomes in CST Knockout (CST-KO) Mice and Inflammation

CST knockout (CST-KO) mice were generated in 2018 and are: insulin-resistant on a
normal chow diet [97], hyperadrenergic [98], hypertensive [98], and with a leaky gut [99].
The microbiome in CST-KO mice was found to be quite different in composition than its
WT littermates [99]. Microbial richness revealed a significant decrease in CST-KO compared
to WT mice [100]. (Figure 7). Surprisingly, Verrucomicrobiota population was very low in
CST-KO mice, indicating low levels of Akkermansia species. Since A. muciniphila modulates
obesity by regulating metabolism and energy homeostasis to improve insulin sensitivity
and glucose homeostasis [101], low Verrucomicrobiota population possibly contributed to
the insulin resistance reported for CST-KO mice [97].

4.3. Alteration of Diversity and Composition of the Microbiota in the CST-KO after
Supplementation with CST

Decreased amplicon sequence variants and abundance-based coverage estimator in-
dices in CST-KO mice were restored after supplementation with CST for 15 days [100]. Akin
to richness scores, supplementation of CST-KO mice with CST increased the diversity index
as assessed by Shanon’s H and inverted Simpson’s index [100]. At the phylum level, CST
decreased Bacillota phylum and increased Bacteroidota, Patescibacteria, Desulfobacterota,
Verrucomicrobiota, and Proteobacteria in both CST-KO and WT mice [100]. In contrast,
CST increased Alistipes, Akkermansia, and Roseburia genera only in CST-KO mice [100].
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sequences were aligned using the MUSCLE method provided by SnapGene software from
the following mammalian species: human (Homo sapiens: NM_001275), bonobo (Pan panis-
cus: XP_008956465.1), chimpanzee (Pan troglodytes: PNI97600.1), western low-land gorilla
(Gorilla gorilla gorilla: XM_019009788.2), Sumatran orangutan (Pongo abelii: XM_002825045.3),
silvery gibbon (Hylobates moloch: XP_031990963.1), black snub-nosed monkey (Rhinopithecus
bieti: XM_017857899.1), crab-eating macaque (Macaca fascicularis: XP_045252830.1), golden
snub-nosed monkey (Rhinopithecus roxellana: XM_010384506.1), green monkey (Chlorocebus
sabaeus: XM_007987644.2), night monkey (Aotus nancymaae: XM_012455409.1), old world mon-
key (Colobus angolensis palliates: XM_011949380.1), olive baboon (Papio Anubis: XM_031667888.1),
pig-tailed macaque (Macaca nemestrina: XM_011717182.1), red colobus (Piliocolobus tephrosceles:
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XM_023205512.3), Sooty mangabey (Cercocebus atys: XM_012083744.1), rhesus monkey (Macaca
mulatta: NM_001278450.1), tufted capuchin (Sapajus apella: XM_032287580.1), black rat (Rattus rat-
tus: XM_032908276.1), brown rat (Rattus norvegicus: XM_032908276.1), golden hamster (Mesocrice-
tus auratus: XM_005068386.4), grasshopper mouse (Onychomys torridus: XM_036206345.1), house
mouse (Mus musculus: NM_007693.2), multimammate mouse (Mastomys coucha: XM_031357132.1),
Ryuku mouse (Mus caroli: XM_021179357.1), Shrew mouse (Mus pahari: XM_021202342.2), European
rabbit (Oryctolagus cuniculus: XM_051826432.1), alpaca (Vicugna pacos: XP_031534667.1), Arabian
camel (Camelus dromedarius: XM_031454226.1), cattle (Bos taurus: NM_181005.2), goat (Capra hircus:
XM_018066172.1), pig (Sus scrofa: NP_001157477.2), sheep (Ovis aries: XP_004018008.3), donkey
(Equus asinus: XP_014687627.1), horse (Equus caballus: NP_001075283.2), southern white rhinoceros
(Ceratotherium simum: XP_004434274.1), California sea lion (Zalophus californianus: XP_027424506.2),
cat (Felis catus: XP_023111743.1), cheetah (Acinonyx jubatus: XP_026922275.1), dog (Canis lupus:
XP_038528993.1), giant panda (Ailuropoda melanoleuca: XP_019660005.1), grizzly bear (Ursus arctos
horribilis: XP_048075839.1), harbor seal (Phoca vitulina: XP_032261715.1), leopard (Panthera pardus:
XP_019317643.2), mongooses (Suricata suricatta: XP_029807749.1), monk seal (Neomonachus schauins-
landi: XP_021535325.1), Northern fur seal (Callorhinus ursinus: XP_025726236.1), walrus (Odobenus
rosmarus divergens: XP_004394547.1), weddell-seal (Leptonychotes weddellii: XP_030873380.1), dolphin
(Lipotes vexillifer: XP_007454783.1), killer whale (Orcinus orca: XP_004262400.1), sperm whale (Physeter
catodon: XP_023986851.1), and platypus (Ornithorhynchus anatinua: XP_039767777.1). Yellow shows
an amino acid match between species.

4.4. Restoration of Microbial Dysbiosis in CST-KO Mice after Fecal Microbial Transplant (FMT)
from WT Donor Mice

FMT is now established as an effective therapeutic modality in the treatment of the
following diseases: (i) antibiotic-refractory recurrent Clostridium difficile colitis with a
success rate of up to 95% [102–105], (ii) constipation, (iii) irritable bowel syndrome, and
(iv) inflammatory bowel disease [106–108]. Therefore, attempts were made recently to
assess whether gut microbial population in mice can be reversed by reciprocal FMT. WT
mice that received FMT from the CST-KO mice (WTFMT-CST-KO) encompassed a reduction
of Clostridia and Akkermansia [109], which are linked to metabolic disorders and insulin
resistance [110,111] and a marked increase in the Proteobacteria population, which are
associated with active inflammatory bowel disease (IBD) states [112,113]. Of note, CST-KO
mice are insulin-resistant on a normal chow diet [97]. In contrast, insulin-resistant CST-
KO mice that received FMT from the WT mice (CST-KOFMT-WT) showed an increase in
richness, a notable reduction of Staphylococcus, and an increase in the butyrate-producing
Intestinimonas [109] (Figure 6). Butyrate, taken up directly by colonocytes, serves not
only as a direct source of energy that contributes directly to a healthy gut, but also acts
as a signaling molecule that affects many factors such as satiety, secretion of hormones,
and glucose metabolism [114–116]. Furthermore, reduced levels of butyrate are strongly
associated with IBD and metabolic disorders [117,118]. Butyrate has also been shown
to restore gut barrier integrity [119], modulates regulatory T cell function [120–122], and
regulates certain serine proteases [123,124].

5. Catestatin and Innate Immunity

The first indication for the role of CST in innate immunity came from a study in rats
where intravenous administration of CST was shown to reduce pressor responses by elec-
trical stimulation [125]. The hypotensive effect of CST was revealed to be mediated at least
in part by profuse histamine release (by ~21-fold) and action at the H1 receptor [125]. The
in vivo studies were later confirmed in peritoneal and pleural mast cells where CST caused
dose-dependent release of histamine utilizing signaling pathways established for wasp
venom peptide mastoparan and other amphiphilic cationic neuropeptides (the peptidergic
pathway) [126]. This pathway is in sharp contrast to the nicotinic-cholinergic pathway
used by CST to induce catecholamine secretion from chromaffin cells [5]. Subsequent
studies uncover the following: (i) release of immunoreactive CST-containing peptides from
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human stimulated polymorphonuclear neutrophils [21]; (ii) detection of CST in mouse peri-
toneal macrophages by Western blots [98]; (iii) detection of CST in human monocytes and
monocyte-derived macrophages by Western blots [127]; (iv) blockade of lipopolysaccharide
(LPS)-induced increase in expression of tumor necrosis factor alpha [127]; (v) decreased
expression of proinflammatory cytokines by CST in plasma and heart [98]; (vi) inhibition
of infiltration of macrophages in obese liver [97]; (vii) degranulation of primary mast
cells from human peripheral blood [128]; and (viii) low plasma CST in fatal COVID-19
patients [129]. These findings implicate CST as an immunomodulatory peptide. Since
receptor-ligand interactions are an essential driver of host-immune response [130], it is
important to examine if CST can bind with a receptor on immune cells and regulate their
polarization and function in host defense.

6. Evolutionary Conservation and Selection Pressure on CST in Mammals
6.1. Homology of CST in Mammals

Sequence alignment of CST in 53 mammalian species belonging to eight orders re-
vealed >80% homology in 52 species, except in Platypus (lowest in the mammalian phyloge-
netic tree) where the homology with the primates (highest in the mammalian phylogenetic
tree) was >58% (Figure 7), indicating that CST is highly conserved in mammals. The
homology of individual amino acids is summarized in Figure 8. Aromatic amino acids such
as phenylalanine, tyrosine and tryptophan are reported to exhibit a rigid, planar structure
and possess added stability due to the π-electron cloud situated above and below the
plane of the aromatic ring [131–133]. Therefore, F7, Y12, F14 conserved residues in CST can
undergo aromatic–aromatic interactions such as hydrogen bonding coupled with attractive,
non-covalent, dipole, and van der Walls interactions, and also pi-stacking of the benzene
rings [134–137]. These interactions, in turn, can stabilize the overall structure of CST, as
reported earlier for other proteins [138–141]. Analysis of the energetics of protein analyses
revealed that the packing of non-polar groups in the protein interior is favorable owing to
the favorable enthalpy of van der Walls interactions [142]. Therefore, it is reasonable to as-
sume that van der Walls interactions of the aromatic amino acids (F7, Y12, F14) in association
with van der Walls interactions of apolar (L5, G18) amino acids provided a global stability
for CST [143,144]. In the course of evolution, with the change in interacting partners across
species, we see a significant reduction in the conservation of charged residue. Interestingly,
for the maintenance of structural framework, a 100% conservation of hydrophobic amino
acid is maintained across the species through the mammalian evolutionary ladder.

6.2. Single Nucleotide Polymorphisms (SNPs) in the CST Domain of Mammals

Four non-synonymous SNPs have been identified in CST domain of CgA: Gly364Ser
(US, Indian, and Japanese populations) [22,145,146], Gly367Val (only in Indian popula-
tions) [145], Pro370Leu (US and Indian populations) [22], and Arg374Gln (US populations
only) [22]. Pro370Leu-CST has the highest potency of inhibiting catecholamine secretion
and desensitizing catecholamine secretion, followed by WT-CST and Gly364-Ser-CST [22].
As a sharp contrast to catecholamine secretion [22], Gly364Ser was reported to be two-times
more effective than Pro370Leu in exerting antibacterial activities [21].
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7. Conclusions

(i) High conservation of CST in mammals: Alignment of CST sequences from 53 mam-
malian species belonging to eight orders revealed that CST sequence is highly conserved
(>90% in 90% species) in mammals: Five (~24%) amino acids (M3, L5, F7, F14, and G18) are
100% conserved; nine (~43%) amino acids (S2, K4, S6, R8, R10, R15, P17, Q20 and L21) are
90–96% conserved; and three (~14%) amino acids (A9, A11, and G16) are >80% conserved.
The least conserved sequences are G13 (>66%) and P19 (>58%), where human variants of
CST were reported for G13 (G13S) and P19 (P19L), indicating that natural selection pressures
still exist on those two amino acids [147–150].

(ii) CST as an immunomodulatory peptide: Existing literature (expression of CST in
innate immune cells [21,98,127,151], inhibition of macrophage infiltration in tissues [97–99],
decreased expression of pro-inflammatory cytokines by CST [97,98], and low plasma CST
in fatal COVID-19 patients [129]) implicate CST as an immunomodulatory peptide.

(iii) CST as an antimicrobial peptide: Prominent effects of CST in the low micromolar
range on inhibition of growth of Gram-positive and Gram-negative bacteria, fungi, and
yeast establish CST as an antimicrobial peptide [21].

(iv) D-bCST1–15 as a potential therapy for microbial infection: D-bCST1–15 could be
used as a monotherapy or as a combination therapy with cefotaxime, amoxicillin, and
methicillin against the “superbugs” because it has more effective antibacterial activity
compared to L-bCST1–15, penetration through the bacterial cell wall, resistance to bacterial
proteases, undetectable susceptibility to resistance, and potentiation/synergic action of
commonly prescribed antibiotics [23].

(v) CST as a cell permeable peptide: Penetration of CST (pI 12.03–12.48) in bacteria, fun-
gus, yeast, and neutrophils [21,152], coupled with 70–75% homology with cell penetrating
peptide Penetratin (pI 12.62), rightfully qualify CST as a cell permeable peptide.
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(vi) Gut microbiome-mediated improvement in insulin sensitivity by CST: The in-
creased ratio of Bacilotta to Bacteroidota, together with low levels of Verrucomicrobiota
(e.g., Akkermansia spp.) in CST-KO mice [100], not only explains insulin resistance in
CST-KO mice [97] but also implicates that CST is necessary for the maintenance of insulin
sensitivity. A decreased ratio of Bacilotta to Bacteroidota coupled with increased abundance
of Verrucomicrobiota after supplementation of CST-KO mice with CST [100] confirm that
CST is necessary and sufficient to increase insulin sensitivity by modulating gut micro-
biota. Decreased population of Akkermansia and increased population of Proteobacteria
in WTFMT-CST-KO coupled with increased population of butyrate producing Intestimonas in
CST-KOFMT-WT [109] further substantiates regulation of obesity and insulin resistance by
CST [97] via regulation of gut microbial population [100,109].

(vii) Improvement in antimicrobial effect of CST by cyclization: Based on the exist-
ing literature [39,41], we propose that cyclization of CST would markedly improve the
antibacterial activity of CST.
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