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Abstract

Solute Carrier (SLC) transporters are membrane proteins that transport solutes, such as ions,

metabolites, peptides, and drugs, across biological membranes, using diverse energy coupling

mechanisms. In human, there are 386 SLC transporters, many of which contribute to the

absorption, distribution, metabolism, and excretion of drugs and/or can be targeted directly by

therapeutics. Recent atomic structures of SLC transporters determined by X-ray crystallography

and NMR spectroscopy have significantly expanded the applicability of structure-based prediction

of SLC transporter ligands, by enabling both comparative modeling of additional SLC transporters

and virtual screening of small molecules libraries against experimental structures as well as

comparative models. In this review, we begin by describing computational tools, including

sequence analysis, comparative modeling, and virtual screening, that are used to predict the

structures and functions of membrane proteins such as SLC transporters. We then illustrate the

applications of these tools to predicting ligand specificities of select SLC transporters, followed by

experimental validation using uptake kinetic measurements and other assays. We conclude by

discussing future directions in the discovery of the SLC transporter ligands.
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Solute Carrier transporters

Transporters are membrane proteins that control the uptake and efflux of various solutes,

including metabolites, ions, toxins, and drugs. They include solute carrier (SLC) transporters

as well as ion dependent pumps and ATP-binding cassette (ABC) transporters. The majority

of the SLC transporters are secondary active transporters, such as exchangers, symporters,

and antiporters, for which transport is driven by various energy coupling mechanisms [1-7].

Here, we focus on the human SLC transporters, which include 386 members grouped into 52

families based on their sequences, number of transmembrane α-helices (TMHs) (typically

10-14 TMHs), and biological functions [1, 2, 4]. The SLC members play an important role

in a variety of cellular functions, often cooperatively with other protein families, including

receptors, enzymes, and other transporters, as illustrated by the following examples.

First, members of the SLC families SLC1 (glutamate and neutral amino acid transporter),

SLC6 (Na+- and Cl--dependent neurotransmitter transporters), SLC17 (vesicular glutamate

transporters), SLC18 (vesicular amine transporters), and SLC32 (vesicular inhibitory amino

acid transporters) control the concentration of neurotransmitters such as glutamate and

serotonin in the synapses, thereby regulating downstream neurosignaling pathways that are

activated or inhibited via membrane receptors [8]. Several members of these SLC families

are important drug targets. For instance, the norepinephrine transporter (NET/SLC6A2)

transports norepinephrine from synaptic spaces into presynaptic neurons to regulate

downstream adrenergic pathways associated with behavioral traits. Thus, several drugs, such

as the attention-deficit hyperactivity disorder (ADHD) drug methylphenidate (Ritalin),

inhibit NET activity to increase adrenergic signaling [9, 10].

Second, members of several SLC families, such as SLC21 (organic anion transporters),

SLC22 (organic cation/anion/zwitterion transporters), and SLC47 (multidrug and toxin

extrusion (MATE) transporters), are highly abundant in the liver, kidney, and blood-brain-

barrier (BBB) where they regulate drug absorption, distribution, metabolism, and

elimination (ADME) [11-13]. For example, the organic ion transporter 1 (OCT1/SLC22A1)

transports anti-cancer and anti-viral drugs into the liver and kidney and may, therefore,

mediate drug-drug interactions [14, 15].

Third, mutations in SLC members can lead to differential drug response among individuals

(pharmacogenetics) [16, 17]. For instance, the intracellular concentrations of the anti-

diabetic drug metformin are affected by genetic variations in OCT1 [18-21].

Sequences, structures, and mechanisms of SLC transporters

By definition, members of each of the 52 SLC transporter families share sequence identity

of 20% or more to at least one other family member, and do not exhibit any significant
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sequence similarity to members of other families [1]. Several additional classifications of the

SLC members based on their amino-acid sequences have also been suggested [3, 22]. The

Transporter Classification (TC) system classifies transporters from all organisms, based on

their sequence similarity and cellular functions (http://www.tcdb.org/) [3, 4]. The TC is a

hierarchical classification consisting of five components, including “class” (eg, a carrier),

“subclass” (eg, secondary-active) and “superfamily” (eg, the Major Facilitative Superfamily

(MFS)). Due to the diversity of the human SLC members, they occur in a number of TC

groups [4]. For example, the SLC6 and the SLC8 families are assigned to the

Neurotransmitter:Sodium Symporter (NSS; 2.A.22) and the Ca2+:Cation Antiporter (CaCA;

2.A.19) superfamilies, respectively. Furthermore, a phylogenetic analysis of the SLC

transporters using Hidden Markov Models (HMMs) refined the current classification,

grouping 15 of the 52 SLC families into four distinct clusters [22].

Currently, the only human SLC transporter with an experimentally determined atomic

structure is the Rhesus glycoprotein ammonium transporter (RhCG, SLC42A3) [23]. In

addition, there are several high-resolution structures of proteins from prokaryotic and other

eukaryotic organisms that are similar to the human SLC members, sharing at least 25%

sequence identity with the human homolog [24-29]. These structures revealed that the

human SLC transporters are likely to be highly diverse in structure (Fig. 1A). For example,

the structure of the proton glutamate symporter Glp from Pyrococcus horikoshii (an SLC1

homolog) is dissimilar to the structure of the leucine transporter LeuT from Aquifex aeolicus

(an SLC6 homolog). In addition, the structures of prokaryotic SLC homologs revealed that

some SLC families share similar structural features despite weak sequence relationships

(less than 15% sequence identity). For example, the prokaryotic homologs of the SLC5

(vSGLT) [24], SLC6 (LeuT) [25], SLC7 (Arginine/agmatine antiporter (AdiC) [26, 27] and

ApcT transporter [28]) families, as well as other prokaryotic transporters, including the

uracil transporter UraA [29], the sodium-hydantoin transporter Mhp1 [30], the Na+/betaine

symporter BetP [31], the glutamate/gamma-aminobutyrate antiporter [32], and the L-

carnitine/gamma-butyrobetaine antiporter CaiT [33], are classified into the same structural

family [34] that is often referred to as the LeuT-like or NSS fold.

The majority of the SLC structures contain evolutionary-related inverted structural repeats

that are highly divergent in sequence [3, 6, 35-37]. For example, the LeuT fold repeats

typically include five transmembrane helices that are related to each other via a two-fold

pseudo-symmetry axis parallel to the membrane plane; the first helix of each repeat is often

involved in ligand binding [6, 35]. Although the intricate details of the transport mechanisms

differ among the SLC members of the different folds (or even within the same fold), their

structures support a common ‘alternating access’ transport mechanism, in which the

transporter alternately exposes its primary binding site at either side of the membrane [5, 7,

25, 35, 36, 38-40] (Fig. 1B). For example, LeuT structures have been determined in four

conformations representing distinct snapshots of a putative transport cycle [40-42]. Recent

LeuT structures in complex with various amino acid substrates and inhibitors suggested a

competitive inhibition mechanism in which larger and more hydrophobic ligands, such as

tryptophan, stabilize an inactive outward-facing conformation [42]. An additional putative

second substrate-binding site (‘S2’) has also been shown to be located on the LeuT surface
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[43-45], although its affinity for substrates remains uncertain [41]. However, a number of

inhibitors were shown to stabilize different conformations of LeuT via sites overlapping

with the S2 site [41, 46].

Furthermore, various conformations of SLC transporters that are adopted during the

transport cycle have been revealed using other experimental techniques, such as single

molecule fluorescence resonance energy transfer (smFRET) [43-46] as well as

crystallographic characterizations of various LeuT-like structures (eg, Mhp1) [30, 47, 48].

Recently, alternate states of various SLC transporters were modeled by relying on the

internal symmetry of their structures in other states [25, 49] and Molecular Dynamics (MD)

simulations [50]. The mechanisms of transport and inhibition, even for such an extensively

studied model transporter as LeuT, are far from being fully described.

Comparison and clustering of SLC transporters

We recently performed a comprehensive analysis of SLC transporters that included topology

prediction, profile-profile sequence alignment, sequence-based clustering to create similarity

networks, and clustering analysis [51]. A node of a sequence similarity network corresponds

to a protein sequence; edges connect those pairs of sequences that are related above a

defined similarity threshold. A variety of different functional annotations, including

substrate type, transport mode, organism conservation, and tissue specificity, were mapped

on the similarity networks. The goal was to identify relationships among human SLC

transporters and extend their classification.

SLC families of homologs with similar structures generally clustered together, despite

exhibiting relatively weak sequence similarities that do not traditionally suffice for a reliable

transfer of structural and functional annotation (∼10% sequence identity) [52]. For example,

the SLC5, SLC6, and SLC7, which exhibit significant sequence similarity to prokaryotic

proteins with LeuT-like fold, were interconnected. Our analysis identified additional

families, such as the SLC32 (the vesicular inhibitory amino acid transporter family), SLC36

(the proton-coupled amino acid transporter family), and SLC38 (System A and System N

sodium-coupled neutral amino acid transporter family) as putative LeuT-like fold members.

The recent structure of the D-xylose-proton symporter (an SLC2 homolog) [53] and the

structure of the lactose permease LacY (an SLC37 homolog) [54], both of which adopt the

major facilitator superfamily (MFS) fold, confirmed our prediction that the human SLC2

and SLC37 families are related, increasing our confidence in the analysis (Fig. 2). However,

some structural relationships were not detected using the SLC similarity network, indicating

that better sequence comparison methods are still needed for membrane proteins. For

instance, PepTSO, a homolog of the human peptide transporter family (PEPT/SLC15), also

adopts the MFS fold, but is not connected to any other family in our similarity network [55]

(Fig. 2). The SLC15 family members appear to be more divergent from other previously

characterized MFS transporters (eg, they have additional transmembrane helical regions and

large insertions in the loops between the transmembrane helices) [55].

The similarity network also shows that some families with chemically similar substrates

cluster together in the sequence space. For instance, the organic ion transporter families
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SLC22 and SLC21, both of which are important for drug ADME, are grouped together,

suggesting that the SLC similarity network can guide functional annotation of

uncharacterized SLC members based on their characterized aligned homologs. Particularly,

the SLC22 family was also highly inter-connected to the glucose transporter family

(GLUTs/SLC2), which includes members that are associated with cancer and diabetes (Fig.

2). The predicted functional overlap between the SLC2 and SLC22 families was confirmed

experimentally by kinetic measurements of representative members of these families (eg, the

fructose transporter SLC2A9 and the urate transporter SLC22A12), which were found to

have a common substrate (ie, uric acid) [51]. In summary, the comprehensive sequence-

based comparison was shown to capture many functional and structural relationships among

SLC transporters. It thus served as a guide for structural modeling of selected SLC

members, as described in the next section.

Comparative modeling of SLC transporter structures

To construct a comparative model of a human SLC transporter (target), most similar known

structures (templates) need to be first identified and aligned with the target sequence.

Because SLC families (eg, the SLC5, SLC6, and SLC7) can be only distantly related to

proteins of known structure, state-of-the-art fold assignment and alignment techniques need

to be applied judiciously. The majority of the SLC families share a similar topology (10-14

transmembrane helices). Thus, a key step toward aligning their sequences involves

identifying these transmembrane helical segments, which is fortunately relatively accurate

[56-59]; for example, a support vector machine program MEMSAT-SVM achieves ∼90%

accuracy on a testing set of experimentally determined membrane protein structures [60].

Efforts to model membrane transporters have also relied on profile-profile alignment (eg,

HHpred [61]) and fold recognition methods that rely on structural information (eg,

Promals3D [62]), as well as combinations of these methods and other techniques [63, 64].

For example, the alignment program AlignMe is based on a dynamic programming

algorithm that takes as input the hydropathy plot of a protein in addition to its sequence,

thereby improving its alignment accuracy [37]. AlignMe was shown to be accurate in

identifying proteins of the LeuT fold and also captured sequence similarities among the

LeuT inverted structural repeats that were not identified by other means. In addition,

sequence similarity networks have been shown to be a useful tool in functional annotation

and structural modeling of various protein families, including GPCRs, kinases, and enzymes

families [60, 65, 66].

Once an alignment between the target sequence and one or more known structures is

obtained, comparative model building can be performed [67-72]. For example, the program

MODELLER computes an atomic model based on satisfaction of spatial restraints that are

derived from the target-template alignment, atomic statistical potentials, and molecular

mechanics [73]. Finally, comparative models can be assessed using a variety of

computational criteria [69, 74-78].

Schlessinger et al. Page 5

Curr Top Med Chem. Author manuscript; available in PMC 2014 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Structure-based discovery of SLC transporter ligands

In structure-based ligand discovery, a large virtual library of small organic molecules is

computationally screened against an atomic structure of a protein target (‘receptor’) [79, 80].

For a protein without an experimentally determined structure, virtual screening can be

performed against a comparative protein structure model [81]. The small molecules are

docked and scored based on their complementarity to the receptor's binding site. For

example, in the program DOCK, the score is a sum of van der Waals, Poisson–Boltzmann

electrostatic, and ligand desolvation penalty terms [82, 83]. The top-scoring molecules are

then often analyzed manually and selected for experimental testing. Although binding

affinities of ligands cannot yet be predicted accurately, the ability of docking programs to

prioritize molecules from large databases, such that one needs to consider only the top few

hundred molecules instead of the whole library, is its key strength [80, 84].

The accuracy of virtual screening can be estimated by the enrichment for known ligands

relative to decoy compounds, calculated by docking against the tested model (‘enrichment

calculations’) [85-87]. Thus, by selecting models based on their enrichment scores,

comparative models can be optimized for their utility in predicting additional ligands

[88-91]. Recent studies have successfully combined modeling and docking approaches with

experimental validation of predicted ligands for proteins representing a wide range of

functions, including GPCRs [89, 90, 92, 93], nuclear hormone receptors [94], and various

enzymes [95-97].

Because of limited high-resolution structural information, most previous discovery efforts

targeting SLC transporters have used ligand-based methodologies (eg, pharmacophore

modeling) [98-101]. However, a recent increase in the number of atomic structures of

several prokaryotic and eukaryotic homologs expanded our ability to apply structure-based

ligand discovery to the human SLC members. Nevertheless, constructing comparative

models that are sufficiently accurate for virtual screening remains challenging, for several

reasons: First, it can be difficult, and sometimes even impossible, to align the sequences of

the human SLC proteins to their prokaryotic homologs of known structure, because they can

be highly divergent in sequence (sequence identity lower than 30%) [51]. Second, modeling

and docking programs have not been optimized specifically for membrane proteins, as

opposed to globular proteins [57, 102]. Third, the quality of the available membrane protein

structures is, on average, lower than those for globular proteins. Fourth, comparative

modeling and ligand docking against highly dynamic transporters, using the X-ray structure

of a single and often unbound conformation, is challenging and sometimes inaccurate [86].

Next, we discuss five case studies in which computational modeling, docking, and

experimental follow-up were used to describe specificity determinants of select SLC

transporters.

Case study 1: the norepinephrine transporter (NET, SLC6A2)

NET transports norepinephrine from the synapse into presynaptic neurons, thereby

regulating signaling pathways that are linked to behavioral traits and cardiovascular effects

[103, 104]. NET is a known target for a variety of prescription drugs, including
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antidepressants and psychostimulants that inhibit its activity to increase neurotransmitter

levels in the synapse.

NET is predicted to have one domain containing 12 transmembrane helices and is related to

LeuT (sequence identity of ∼25%). The ligands transported by LeuT (amino acids) are

chemically different from those of NET (positively charged monoamines), suggesting that

the LeuT structure is not well suited for virtual screening for NET ligands and that the NET

structure needs to be modeled. Thus, we constructed a model for NET based on the LeuT

structure in an outward-occluded substrate-bound conformation [41], which likely represents

an outward-occluded active conformation of LeuT [42], and computationally evaluated the

model using enrichment calculations [91].

The model of NET's primary binding site includes the following four key features that might

determine its ligand-binding specificity (Figs. 3A,B): First, several polar groups are

predicted to make polar interactions with the ligands. For example, the sidechain of Asp75

makes ionic interactions with the amine group of norepinephrine. Second, four residues with

aromatic groups are capable of forming interactions involving π electrons (Phe72, Tyr152,

Phe317, and Phe323). For example, Phe72 is predicted to form π-cation interactions with

norepineprhine via its benzyl sidechain as well as a hydrogen bond via the amide oxygen of

its main chain. Third, several hydrophobic residues (eg, Ala145 and Val148) are capable of

interacting with ligands via van der Waals interactions and the hydrophobic effect. Fourth,

the binding site is relatively small, and, hence, the size of the ligands is limited. These four

features are highly conserved among other SLC6 members that transport monoamines,

including the dopamine transporter (DAT, SLC6A1) and the serotonin transporter (SERT,

SLC6A4)). For example, the residues corresponding to NET's Asp75 in SERT (Asp98)

[105] and DAT (Asp79) [106] were proposed to have similar key roles in ligand recognition

[64, 107].

We computationally screened 6,436 drugs from the Kyoto Encyclopedia of Genes (KEGG

DRUG) against the NET model. 18 top-scoring molecules were tested experimentally using

a cis-inhibition assay in which the molecules are tested for their ability to inhibit transport of

a known transporter substrate (radiolabeled or fluorescent) without distinguishing between

inhibitors and substrates [87]. Ten drugs were found to be potent NET ligands; five of these

were chemically novel ligands of NET (ie, Tanimoto coefficient of <0.5 against all known

ligands, using the Daylight fingerprints [108]). These results may rationalize the efficacy of

several sympathetic and antidepressant drugs, as well as side effects of diabetes and

Alzheimer's drugs. For example, talsaclidine is a muscarinic M1 receptor agonist that was

under development for the treatment of Alzheimer's disease, but failed in clinical trials due

to various side effects, such as tachycardia, high blood pressure, nausea, diarrhea, excessive

sweating, and palpitation [109]. It was proposed that the pharmacological effects of the drug

are caused by its effect on the cholinergic system via binding to the M2 and M3 receptors as

well as on the adrenergic system via an unknown mechanism [109]. The pharmacodynamic

properties of talsaclidine, coupled with our uptake experiments, suggest that inhibition of the

NET uptake might occur in clinically relevant concentrations [17, 87]. Thus, the positive

and negative pharmacological effects of the drug can be partially rationalized by NET

binding. Finally, these observations highlight the utility of virtual screening against a
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comparative model, even when the target and template share less than 30% sequence

identity and have different ligand binding profiles in the primary binding site.

Case study 2: the GABA transporter 2 (GAT-2, SLC6A13)

GABA is a key inhibitory neurotransmitter in mammals that activates GABAergic receptors

in inhibitory neurons (eg, GABAA) [110] and in peripheral tissues, such as the liver, kidney

and lungs [110-112]. The GABA transporter (GAT) family consists of four transporters that

regulate GABAergic signaling pathway [110, 112] and are targeted by various

anticonvulsants and relaxants (eg, tiagabine). GAT-2 (SLC6A13) is primarily expressed in

the liver, kidney and other peripheral tissues (eg, lungs [110-112]), and might also regulate

ADME of GABAergic drugs. We modeled two different conformations of GAT-2, using the

LeuT structures in occluded-outward-facing (‘occluded’) and outward-facing (‘outward’)

conformations (Fig. 3C). The models were iteratively refined with molecular dynamics

simulations and side-chain optimization, and were subsequently evaluated using enrichment

calculations [90]. We validated the models experimentally, using site-directed mutagenesis,

kinetic uptake measurements, and cis-inhibition assays.

The occluded and outward-facing GAT-2 models are similar to each other, differing only by

minor backbone and side-chain rearrangements that make the putative binding site of the

outward conformation slightly more accessible to a ligand. However, almost all predicted

polar interactions between GABA and GAT-2 are conserved in both the occluded and the

outward-facing models (eg, the carboxy group of GABA interacts with the sodium ion Na1,

Gly51, and Gly53) (Fig. 3C). Furthermore, the amino group of GABA forms a key hydrogen

bond with the main chain oxygen of Glu48 as well as a polar interaction with the negatively

charged side-chain of the same residue. During model refinement, the conformation of the

Glu48 side-chain correlated with the enrichment scores for the models, suggesting its

importance for ligand recognition (Fig 3C). Site-directed mutagenesis indeed confirmed this

residue as important for the function, demonstrating the utility of combining model

refinement and ligand docking to predict a key functional residue. Interestingly, Glu48 and

almost all other putative binding site residues are highly conserved among three of the four

GAT's (GAT-2, GAT-3, and BGT1) [113], suggesting a common ligand recognition

mechanism for these transporters. The GAT-1 binding site, however, is predicted to be

unique and likely interacts with GABA via a different mechanism [38, 114].

A virtual screen of 594,166 drugs, metabolites, and fragment-like molecules in the ZINC

database [115] against the two GAT-2 conformations retrieved two groups of chemically

distinct ligands (Fig. 4). Particularly, molecules predicted to interact with GAT-2 using the

outward-facing inhibitor-bound model (eg, baclofen) were larger and more hydrophobic

than those predicted using the occluded substrate-bound model (eg, homotaurine), and

covered a different area of the chemical space (Fig. 4). We tested 31 small organic

molecules experimentally, using the cis-inhibition assay. Twelve ligands were validated, six

of which were chemically novel (eg, homotaurine). The validated ligands suggest that

GAT-2 is a high-selectivity/low-affinity transporter that is resistant to inhibition by typical

GABAergic inhibitors. For example, even ligands that are within one heavy atom of GABA,

such as GABOB, were found to inhibit GAT-2 significantly more weakly than GABA (Km
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of 26.2 µM for GABA versus IC50 of 402 µM for GABOB) [91]. This difference suggests

that GAT-2 has a different binding profile from those of GAT-3 and BGT1 [110-112],

despite their conserved primary binding sites. Because GAT-2 is highly abundant in the

BBB, it is possible that it evolved to be highly selective to prevent toxins and other

molecules from entering the CNS. Furthermore, the pharmacological effects of some of the

discovered ligands can still be partially rationalized by GAT-2 binding. For example, the

hemeprecursor 5-aminolevulinic acid (5-ALA) is involved in neurological side-effects (eg,

porphyria) [116, 117] and is also used for the detection of CNS tumors [118-120]. Thus, it is

plausible that GAT-2 transports 5-ALA across the BBB into the CNS.

Case study 3: the SLC6 family

The SLC6 transporter family of Na+- and Cl-- dependent transporters can be classified into

four groups based on their amino acid sequences and functions – the monoamine

transporters, GABA transporters, amino acid transporters, and “orphan” transporters that

may also transport amino acids [10, 103]. Interestingly, the SLC6 members are closely

related in sequence despite their variability in function. Comparisons between structural

models of representative members of the groups within the SLC6 family in complex with

their ligands suggest key specificity determinants within this family (Fig. 3). For example,

GAT-2 and NET share sequence identity of ∼45%, but bind chemically different ligands in

their putative primary binding sites (GABA-like molecules and aromatic monoamines for

GAT-2 and NET, respectively). The following three differences in the predicted binding

sites of NET and GAT-2 likely rationalize their differences in ligand-binding selectivity

(Fig. 3B,C): First, the number of aromatic residues (two in GAT-2 and four in NET).

Second, the number and location of the charged groups (Glu48 and Na1 in GAT-2, and

Asp75 in NET). Third, the size and shape of the binding site (ie, Ala145, Val148, Gly422,

and Gly423 in NET are replaced by the larger Val122, Leu125, Val393, and Cys394 in

GAT-2). These proposed ligand-binding determinants are consistent with previous studies

characterizing other monoamine SLC6 transporters [38, 64], SERT [105] and DAT [106] as

well as other GATs [38, 64, 113], such as GAT-3 (mouse GAT-4) [113]. In the future,

characterization of SLC6 members in additional conformations and at higher resolution will

enable us to further address functional variability within the SLC6 family. For example, why

do GAT-2 and GAT-3 exhibit substantial differences in binding affinity to ligands, despite

almost identical binding sites?

Case study 4: the large-neutral amino acid transporter (LAT-1, SLC7A5)

LAT-1 is a Na+-independent exchanger of large-neutral amino acids (eg, tyrosine), thyroid

hormones (eg, triiodothyronine (T3)), and prescription drugs (eg, the anti-convulsant

gabapentin) [121]. LAT-1 is found in the brain, testis, and placenta, and is highly abundant

in the BBB where it is responsible for the transport of key metabolites and drugs into the

CNS [122-124]. LAT-1 is also highly upregulated in a variety of cancerous tumors, such as

non-small cell lung cancer and glioblastoma multiforme (GBM) [125, 126], for which it is

thought to provide essential amino acids that are used as nutrients and signaling molecules

for proliferation [127, 128]. LAT-1 is inactive in isolation and becomes active upon binding

to the single transmembrane helix glycoprotein SLC3A2 [129]. The putative transmembrane
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domain (12 predicted transmembrane helices) of LAT-1 is similar in sequence to

prokaryotic transporters of the acid/polyamine/organo-cation transporter (APC) family that

adopt a LeuT-like fold [34, 130]. Therefore, LAT-1 was modeled based on the structures of

the outward-occluded arginine-bound arginine/agmatine transporter AdiC from E. coli [48]

and the inward-apo conformation of the amino acid, polyamine, and organo-cation

transporter ApcT from Methanococcus jannaschii [28, 130].

The model of the LAT-1 complex with its natural ligands provides structural hypotheses for

the similarities and differences in ligand binding profiles among the amino acid transporters,

such as LAT-1 and AdiC. In particular, backbone atoms in residues interacting with the

carboxylate and amine groups of the amino acid ligands are highly conserved between the

LAT-1 model and the AdiC template structure (eg, Thr62, Ile63, and Ile64 in LAT-1

correspond to Ala22, Ile23, and Met24 in AdiC). Conversely, two key differences in their

binding sites can explain why their ligands are amino acids with different physicochemical

properties (large and hydrophobic amino acids for LAT-1 versus small and polar amino

acids for AdiC). First, larger residues in the AdiC binding site are replaced with smaller

residues in LAT-1, making the LAT-1 binding site much larger (eg, Val148, Gly255, and

Ser342 in LAT-1 correspond to Met104, Ile205, and Trp293 in AdiC). Second, polar

residues in AdiC correspond to residues with aromatic and hydrophobic side-chains in

LAT-1 (eg, Thr361 in AdiC corresponds to Trp405 in LAT-1).

We identified four small-molecule ligands for LAT-1 (ie, 3,5-diiodo-L-tyrosine, 3-iodo-L-

tyrosine, fenclonine, and acivicin) by virtual screening of 19,166 endogenous metabolites

and prescription drugs from the KEGG database, followed by kinetic uptake experiments of

the 12 top-scoring hits. Two of the four ligands (ie, the anti-cancer agent acivicin and the

tryptophan hydroxylase inhibitor fenclonine) were also confirmed as substrates by a trans-

stimulation assay; in this assay, cells overexpressing the transporter exchange the

intracellular known radiolabeled substrate with the tested extracellular molecule, but only if

the tested molecule is a substrate [130]. These results rationalize some of the positive and

negative pharmacological effects of these ligands. For example, acivicin failed in clinical

trials for cancer therapy due to CNS-related toxic side effects that resulted from active

transport [131]. Our results suggest that such toxicities were facilitated by LAT-1 active

transport of acivicin through the BBB.

A potential drug that is a ligand of a cancer-upregulated exchange or import transporter can

act via one or both of the following mechanisms. First, a substrate can “hijack” the

transporter to deliver a drug against a target in the cell (eg, a metabolic enzyme)

(‘mechanism 1’). Second, a transporter inhibitor can selectively block transport activity, thus

denying the cancer cell key nutrients (eg, the glucose transporter (GLUT1) and LAT-1)

(‘mechanism 2’). Both of the newly discovered LAT-1 ligands, the inhibitor 3-iodo-L-

tyrosine and substrate acivicin, are capable of inhibiting cancer cell proliferation in a GBM

cell line, which expresses LAT-1 at high levels. This finding suggests that the two newly

discovered LAT-1 ligands inhibited the GBM cell line proliferation via two distinct

mechanisms, including nutrient deprivation by 3-iodo-L-tyrosine (mechanism 1) and

cytotoxicity by acivicin (mechanism 2). Future structure-based ligand discovery studies will

be applied simultaneously to LAT-1 and other proteins that might function together in
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cancer (eg GLUT1) or BBB permeability (P-gp). For instance, a comparative model of

another key BBB transporter, the ATP-dependent efflux transporter P-glycoprotein (P-gp),

was constructed based on the structure of its mouse homolog and then used, via molecular

docking, to predict drugs that may get exported from the BBB [132]. Analyzing the

commonalities and differences in the substrate specificities of LAT-1 and P-gp, including

the identification of correlations in ligand properties such as size, polarity, charge,

hydrogen-bonding potential, and other features, may facilitate rational design of drugs with

optimal BBB permeability.

Case study 5: the multidrug and toxin extrusion transporter (MATE, SLC47)

family

The multidrug and toxin extrusion transporter (MATE) family of proteins consists of two

members, MATE1 and MATE2 [12, 133]. MATE proteins contribute to the excretion of

diverse organic cations through the membranes of various cell types by exchanging their

substrates with an oppositely directed proton gradient [133, 134]. In the human kidney,

MATE1 and MATE2-K (a splice variant of MATE2) are localized to the apical membrane

of the proximal and distal convoluted tubule [133]. The MATEs have ligands similar to

those of key SLC22 transporters (OCT1-3), and together these transporters contribute to the

tissue distribution and excretion of many drugs (eg, metformin) (Fig. 5A). Several genetic

variants of MATE1 have been associated with differential response to metformin among

diabetic patients [135, 136].

Different methodologies, including quantitative structure-activity relationship (QSAR)

modeling, have been previously employed to find common and selective substrates and

inhibitors of MATE and OCT proteins [98, 137-139]. We recently identified 84 MATE1

ligands using iterative ligand-based computational modeling and experimental testing by the

cis-inhibition experiments. We first performed an experimental high-throughput screen

(HTS) for 910 compounds from 124 therapeutic classes, including antidepressants,

antibacterials, antivirals, and antihypertensives [140]. This experimental data was then used

to develop a computational QSAR model of ligand binding, using the Random Forest

algorithm. The QSAR model performed significantly better in identifying true ligands than

random selection (as judged by the area under the receiver operating curve (AUC) of 0.7, p-

value < 0.0001). Next, selected positive and negative predictions were validated by low-

throughput experiments. For example, eight inhibitors (eg, a histamine H2 receptor

antagonist ranitidine) did not show inhibition in the original high-throughput screen, but

were predicted as inhibitors by the QSAR model, and were later confirmed by low-

throughput experiments. Thus, the QSAR model was used to save false negatives from the

high-throughput screen. Likewise, several false positives in the high-throughput screen, such

as the painkiller phenacetin and the vitamin niacin, were also corrected using the

computational model and additional focused testing. We then refined the QSAR model

based on the additional compounds identified by the low-throughput experiments,

significantly improving its performance (ie, AUC=0.78). Next, the refined QSAR model was

used to screen 6,122 compounds from the DrugBank library [141]. Finally, five of the eight

chemically novel predicted ligands that were selected for experimental testing were
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confirmed experimentally as MATE1 inhibitors, including maraviroc, an antiretroviral drug

in the CCR5 receptor antagonist class that is used in the treatment of HIV-inhibited MATE1

(IC50 of 17.3 µM).

With the aid of the QSAR model, we also identified several features that are important for

MATE1 inhibition. MATE1 inhibitors are bulky as evidenced by a higher molecular weight,

a higher number of bonds, and a higher number of rings among MATE1 inhibitors versus

non-inhibitors. We found that lipophilicity is the key determinant of the MATE1 ligands.

Interestingly, while charge is clearly important for the MATE1 ligands, about half of the

inhibitors are acids or uncharged at the physiological pH.

The MATEs are predicted to have 13 transmembrane helices and are related to the

transporter NorM from Vibrio cholerae, whose structure was determined at atomic

resolution and exhibits a 12-TMH topology [142]. A recent comparative model of the rabbit

MATE1 based on the NorM structure, followed by experimental validation, confirmed that a

‘core’ domain containing the N-terminal 12 transmembrane helices is responsible for

transport and suggested that TMH 13 likely influences transporter turnover [143, 144]. We

constructed a comparative model of MATE-1 that consists of a large pore with negative

electrostatic potential and hydrophobic patches. This preliminary comparative model

rationalizes the results obtained with our ligand-based QSAR models. For example, the

negative electrostatic potential on the surface of MATE1 pore complements the cationic

nature of the MATE1 ligands (Fig. 5B).

A model of MATE-2K was recently constructed based on the NorM structure and used to

rationalize the effects of four non-synonymous protein coding single nucleotide

polymorphisms (nsSNPs), including Lys64Asn, Pro162Leu, Gly211Val, and Gly393Arg

[145, 146]. Lys64 is predicted to be in an extracellular loop near the membrane surface;

thus, mutation of the positively charged lysine to an uncharged asparagine residue might

have an effect on the interaction of MATE-2K with the membrane phospholipid head

groups. Pro162 and Gly211 are located in transmembrane helices 4 and 6, respectively;

therefore, mutations of these residues to leucine and valine, respectively, might reduce the

main chain rigidity (Pro) or flexibility (Gly) as well as disrupt helix–helix packing. Finally,

Gly393 is predicted to be located in the channel close to the putative proton-binding site.

Mutation of Gly393 to a positively charged residue might, therefore, perturb the interaction

of the transporter with the cationic ligands and protons.

Conclusions and future outlook

In this review, we first outlined the cellular and pharmacological functions of the human

SLC transporters, as well as their sequences, structures and mechanisms of transport (Fig.

1). We then described various sequence- and structure-based tools that can be used, in

combination with experiment, to characterize interactions between the SLC transporters and

their small-molecule ligands (Fig. 2). We illustrated the utility of computational strategies,

including structure-based (NET, GAT-2, and LAT-1) and ligand-based (MATE-1)

modeling, to predict ligands for biomedically important SLC transporters (Figs. 3-5).

Finally, we demonstrated how a comparative model can be used to rationalize the effect of a
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nsSNP on pharmacogenetics of the antidiabetic drug metformin, a substrate for the kidney

and liver drug transporter MATE-2K. We now present our outlook on future directions in

the field of structure-based ligand discovery for human SLC transporters.

Virtual screening against comparative models of different transporter conformations was

found useful for identifying chemically novel transporter ligands (Fig. 3) [91]. To identify

additional unexplored classes of molecules targeting SLC transporters, virtual screening

should be performed against structures representing additional states in the conformational

cycle of the transporter, characterized experimentally or computationally. Applications of

structural symmetry [6] and MD simulations [50] have been helpful to model experimentally

undefined conformations. However, because SLC transporters are exceptionally diverse in

their structures and mechanisms (including transport of ligands on widely different time

scales), new approaches to characterizing their dynamics with sufficient accuracy for

structure-based ligand discovery are still needed.

The applicability of structure-based ligand discovery tools to human SLC transporters has

been steadily increasing, for two reasons. First, recent experimental determinations of high-

resolution transporter structures have been instrumental in extending the structural coverage

of human SLC transporters via comparative modeling. The number of membrane transporter

structures representing uncharacterized conformations and unexplored families is expected

to grow considerably in the next few years, as a result of both traditional structural biology

and structural genomics efforts [147-149]. Second, the accuracy and automation of

computational tools for structure-based ligand discovery is improving in general [86, 87, 90,

91, 150, 151].

It is now appreciated that SLC transporters function in a coordinated manner with each other

as well as other proteins, including receptors and enzymes, in various major biological and

pharmacological processes. For example, several SLC members directly mediate drug-drug

interactions in the liver, kidney, and BBB, which can affect clinical outcome [17, 152]. This

led the FDA to strongly recommend that drug candidates should be tested for drug

interactions with seven drug transporters, five of which are SLC members (eg, OAT1) [17];

this number is expected to grow [152]. Furthermore, SLC transporters such as LAT-1 and

GLUT1 can function cooperatively in reprogrammed cancer metabolic pathways, by

providing nutrients and signaling molecules to the transforming cancer cells; they may thus

be targets for cancer therapy [127, 128].

The increasing applicability of structure-based ligand discovery enables us to characterize

interactions between small molecules and multiple protein targets that make up a ‘system’.

Such systems can be a biological pathway associated with cancer (eg, the mTOR pathway)

or an organ important for drug clearance (eg, kidney). Therefore, future discovery efforts

should aim at describing interactions of small molecules with multiple proteins as well as

appropriately integrating these interactions with additional ‘omics’ data, such as protein-

protein interactions and gene expression data, to better describe these systems and to

ultimately relate them to clinical observations.
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Fig. 1. Structures of SLC transporters
(A) Structures of SLC transporters representing select known structural classes and related

human families. The structures are of the aspartate transporter Glt [153], the xylose

transporter XylE [53], the leucine transporter LeuT [154], the sodium / bile acid symporter

ASBT [155], the ADP/ATP translocase 1 ANT1 [156], the drug and toxin transporter NorM

[142], the concentrative nucleoside transporter CNT [157], and the human rhesus

glycoprotein RhCG ammonium transporter [23]. (B) The alternating access mechanism for

structures with the MFS fold. The structures are of XylE in a ligand-bound outward-facing
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conformation (left) and the lactose permease LacY in a ligand-bound inward-facing

conformation [54] (right). All structures are visualized with PyMol [158].
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Fig. 2. Sequence similarity network of human SLC families predicted to have the MFS fold
(A) The relationships between SLC sequences are visualized using Cytoscape 2.6.1 [51,

159]. (A) The nodes represent SLC sequences, including splice variants, that are similar to

each other or to sequences of proteins with known MFS structures; the colors of the nodes

indicate the SLC family [1]. The edges between the nodes correspond to a pairwise

alignment with sequence identity of at least 10% and an E-value of less than 1 [51, 160].

The structures of XylE (blue) [53], LacY (pink) [54], and PEPTSO (grey) [55] are visualized

using PyMol [158] and their colors are based on the color of the most similar human family

in the similarity network.
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Fig. 3. Binding sites and modes of ligand binding in SLC6 members
(A) The X-ray structure of LeuT as well as the comparative models of (B) NET and (C)

GAT-2, in the ligand-bound occluded conformation, are visualized with PyMol [158].

Atoms are displayed as sticks, with oxygen, nitrogen, and hydrogen atoms in red, blue, and

white, respectively. The sodium ions Na1 and Na2 are visualized with purple spheres. The

ligands L-Leucine, norepinephrine, and GABA are illustrated in cyan sticks and their

hydrogen bonds with the binding-site residues of LeuT (Ala22, Gly26, Thr254, Ser256, and

Na1), GAT-2 (Glu48, Gly51, Gly53, Asn54, and Na1), and NET (Ala145, Phe72, and

Asp75) are displayed as dotted gray lines. Sketches of two representative ligands of each

transporter are shown at the bottom.
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Fig. 4. Structure-based ligand prediction for GAT-2
(A) A network view of predicted GAT-2 ligand drugs and their similarities [91]. The nodes

represent top small molecule hits predicted to bind GAT-2, using the occluded model (blue),

the outward-facing model (yellow), or both models (green). Predicted structures of GAT-2

in the outward-facing (B and C) and occluded (D) conformations, in complex with the

representative experimentally confirmed hits baclofen (B) and homotaurine (C and D).

Small molecules ligands are colored in cyan, with oxygen, nitrogen, sulfur, and hydrogen

atoms in red, blue, yellow, and white, respectively. The sodium ions Na1 and Na2 are

visualized as purple spheres. The GAT-2 TMH regions are illustrated in white ribbons.

Important residues for binding are depicted as sticks; predicted hydrogen bonds between

ligands and GAT-2 are displayed as dotted gray lines.
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Fig. 5. Ligand discovery for MATE-1
(A) An interaction network for prescription drugs and SLC transporters in kidney [140].

SLC transporters are depicted as yellow diamonds. Positively charged drugs are shown as

solid blue circles, negatively charged drugs as solid red circles, and uncharged drugs as gray

circles. Edges between transporters and drugs correspond to known transporter-drug

interactions. (B) A preliminary human MATE-1 comparative model based on the structure

of its prokaryotic homolog NorM. The model is visualized using the Coulombic Surface
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Coloring in UCSF Chimera [161]. Negative and positive electrostatic potentials are

illustrated in red and blue, respectively.
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