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ABSTRACT OF THE DISSERTATION

Essays on Asset Prices, Expectations Formation and Nonlinear Macroeconomic Effects

By

Luis Esteban Maldonado Cabrera

Doctor of Philosophy in Economics

University of California, Irvine, 2022

Professor Fabio Milani, Chair

My dissertation’s main objective is to estimate the effects of asset prices and expectations

over the business cycle, considering potential nonlinear effects. Moreover, I am interested

in quantifying the impact of the financial sector, both domestic and from abroad, on the

economy.

In this tenor, in Chapter 1, I study the effects of house prices on the economy by introducing

adaptive learning expectations formation in a DSGE model with housing. This framework

provides flexibility in beliefs to match the non-rational behavior of house price expectations.

Additionally, I can capture the evolving effects of extrapolative expectations on house prices

on the economy. The results suggest that the feedback from house price beliefs into the

economy was more severe around the period of the housing price bubble and continued to

exist, in a lower magnitude, around the Great Recession.

Meanwhile, in Chapter 2, we further consider the effects of house prices on credit markets’

conditions, for which we introduced a banking sector in the model. The results suggest that

agents’ expectations amplify the credit supply during episodes of asset bubbles. Additionally,

we find that macro-prudential policies may lessen the response of financial intermediaries to

the housing shocks, magnified by the learning dynamics.
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In this regard, I found it essential to consider the effects of agents’ sentiment over asset prices

and the business cycle. Moreover, Adaptive Learning allows me to analyze this behavioral

element jointly with other factors to separate their effects.

Finally, I have also explored the asymmetry in the business cycle, intending to create a

more efficient estimator. Given the documented asymmetries in business cycles, it is vital

to consider nonlinear DSGE models to better approximate the data.

In this context, the “occasionally binding constraints” is one avenue used to address the

nonlinearity estimation challenge. In Chapter 3, I revisit this issue with an MCMC algorithm

based on a mixture model. By carefully defining the sampling scheme, I can make most of

the draws directly from their conditional distribution with a Gibbs sampler step. As a result,

the algorithm features fast convergence and low inefficiency factors.
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Chapter 1

Macroeconomic Effects of House

Prices under Adaptive Learning

Expectations

1.1 Introduction

An important part of households’ wealth in the United States is invested in housing. A

house is a particular type of asset that provides a utility flow from its housing services and

can be used as collateral for loans. The borrowing capacity for this type of loan depends

on future house prices. Therefore, it is crucial to understand how agents form house price

expectations.

There is evidence that suggests that house price expectations do not adhere to the rationality

assumption, such that prices are prone to bubbles1. Glaeser and Gyourko (2006) have

1Rational agents would expect lower returns after a sustained rise in prices, while irrational agents would
continue to predict higher returns.
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difficulties explaining the positive serial correlation in house price changes observed in the

data with a dynamic model for housing under rational expectations. Piazzesi and Schneider

(2009), using data from the Michigan Survey of Consumers, observed that “starting in 2004,

more and more households became optimistic after having watched house prices increase for

several years”. Additionally, Gelain and Lansing (2014), using a Lucas-type asset pricing

model, demonstrate that the model can approximately match the volatility of the price-rent

ratio in the data using near-rational agents.

Asset price bubbles could lead to relaxed credit conditions, and households would be inclined

to increase their borrowing because their beliefs indicate that prices would continue to grow.

When bubbles burst, there will be a tightening of credit, and debtors will have to reduce

consumption and adjust their portfolios to pay their debt. In this context, bubbles amplify

the effects of credit frictions on the economy.

In my paper, I study the effects of the housing price bubble on the economy. Firstly, to

tackle this, I required a model that incorporates housing in the utility of households and their

budget and borrowing constraints. For this, I use a DSGE model developed by Iacoviello

(2005), in which the ceiling in the households’ capacity to borrow depends on house price

expectations.

Secondly, I needed to model how agents formed their expectations. Here, I assume that they

update their beliefs using adaptive learning. This framework provides sufficient flexibility in

beliefs to match the documented behavior of house price expectations, in contrast with the

rationality assumption that implies a rigid structure of expectations.

My model can capture the evolving effects of a house price bubble on the economy via the

expectations effects in the credit channel, and I estimated it using Bayesian methods. I

should note that adaptive learning allowed me to identify the evolving response to shocks

during the different stages of the house price bubble, as opposed to Rational Expectations,

2



which assume a constant response across the sample.

The results suggest that the feedback from house price beliefs into the economy was more

severed around the period of the housing price bubble. In this period, a monetary policy

shock would have caused a severe drop in activity because the burst of the bubble would

have been drastic. The expectations channel still had an effect around the Great Recession,

but the effects were not as significant as during the peak of the bubble.

The remainder of my paper is organized as follows. In Section 1.2, I review the related

literature on house price models. In Section 1.3, I describe the model of the economy and

the expectations formation. In Section 1.4, I detail the estimation and data description, while

in Section 1.5, I report my results, both under Rational Expectations and under Adaptive

Learning. Finally, in Section 1.6, I give my conclusions.

1.2 Related literature

Given its importance in households’ portfolios, extensive research has been created to analyze

the spillover effects of house prices in the economy. Therefore, the papers that I would cite

here should not be seen as an exhaustive list of all the work done in the area. I contribute

to this literature by estimating a model that can seize the evolving effects of house prices

on the economy via extrapolative expectations formation captured with the evolution of

households’ beliefs.

Iacoviello (2005) provides a framework to analyze the house prices effects in a DSGE model.

In this context, Iacoviello and Neri (2010) estimate the model using US data, adding habit

formation and other potential structural shocks, in a model that considers both the supply

and demand dynamics of the housing sector.
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Following the same framework, Guerrieri and Iacoviello (2017) estimate a nonlinear general

equilibrium model where occasionally binding collateral constraints drive an asymmetry in

the link between housing prices and economic activity. They found that before the financial

crisis, collateral constraints became slack, so housing wealth generated a small contribution

to aggregate consumption in the economy. In contrast, the collapse in the housing sector

caused a tight borrowing constraint, which exacerbated the recession of 2007-2009.

In a model with frictions in credit markets used by households, where houses provide housing

services and are used as collateral to lower borrowing costs, Aoki et al. (2004) showed that

this amplifies and propagates the effect of monetary policy shocks on housing investment,

house prices, and consumption. On the other hand, Justiniano et al. (2015) calibrated a

DSGE model and found that, from the perspective of their model, the credit cycle is more

likely due to factors that impact house prices more directly, thus affecting the availability

of credit through a change in collateral values, while the macroeconomic consequences of

leveraging and deleveraging are relatively minor in the aggregate.

Departing from the Rational Expectations assumption is the work done by Adam et al.

(2012). They introduce Bayesian learning into an open economy asset pricing model and cal-

ibrate it to replicate the house price and the current account dynamics for the G7 economies

over the years 2001–2008. In a closed economy framework, Branch et al. (2016) construct

a theoretical search model with an adaptive learning rule and calibrate it to match the dy-

namics of US house prices, sectoral labor flows, and unemployment rate changes from 1996

to 2010.

Gelain et al. (2013) introduced hybrid expectations into the model’s basic structure proposed

in Iacoviello (2005). In their model, expectations are modeled as a weighted average of fully

rational and moving average forecast rules. They calibrate the hybrid expectations model

parameters to generate an empirically plausible degree of volatility in the simulated house

price, household debt, and real output series.
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Under a small open economy DSGE model, Milani and Park (2019) estimated macro-housing

interactions under rational and non-fully rational expectations, using data from Korea. They

found that spillovers from the housing market to the macroeconomy are substantially more

significant under non-rational housing expectations.

1.3 Model

For this paper, I follow closely the model done by Iacoviello (2005) and introduce adaptive

learning for the formation of expectations2.

There are three types of households in the economy: entrepreneurs, patient and impatient.

Patient households (identified with a prime) maximize a lifetime utility function given by:

Ê0

∞∑
t=0

βt

(
ln c′t + jt lnh

′
t −

(L′
t)

η

η

)

subject to the following budget constraint:

c′t + qt∆h
′
t +

Rt−1b′t−1

πt
= b′t + w′

tL
′
t + divt − ξ′h,t

where Ê0 is the adaptive expectations operator
3, β is the discount factor, c′t is consumption at

time t, h′t denotes the holdings of housing, L
′
t are the hours worked, and jt represents random

disturbances to the marginal utility of housing. Let qt ≡ Qt/Pt be the real housing price,

w′
t ≡ Wt/Pt are real wages, πt ≡ Pt/Pt−1 is gross inflation, divt are lump-sum profits received

from the retailers, ∆ represents the first difference operator and ξ′h,t ≡ ϕh

(
∆h′

t

h′
t−1

)2 qth′
t−1

2

denotes the housing adjustment cost. Additionally, it is assumed that households borrow in

real terms, b′t ≡ B′
t/Pt and pay back Rt−1B

′
t−1/Pt, where Rt−1 is the nominal interest rate

2Here, I present a brief description of the model. For more details, please see Iacoviello (2005).
3I follow the convention that the rational expectations operator is defined as Et, while the adaptive

expectations operator is identified with a hat: Êt.
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on loans between t− 1 and t.

Analogously, impatient households (identified with a double prime) maximize:

Ê0

∞∑
t=0

(β′′)t
(
ln c′′t + jt lnh

′′
t −

(L′′
t )

η

η

)

subject to the following budget constraint:

c′′t + qt∆h
′′
t +

Rt−1b′′t−1

πt
= b′′t + w′′

tL
′′
t − ξ′′h,t

and the borrowing constraint:

b′′t ≤ m′′Êt

(
qt+1h′′

t πt+1

Rt

)

where β′′ is the impatient households discount factor, m′′ represents the “loan-to-value” ratio

parameter, such that the maximum amount b′′t that an impatient household can borrow is

bound by m′′Êt(qt+1h
′′
t πt+1/Rt).

In terms of entrepreneurs, it is assumed that they maximize the following lifetime utility

function:

Ê0

∞∑
t=0

γt ln ct

subject to the production function:

Yt = AtK
µ
t−1h

ν
t−1L

′α(1−µ−ν)
t L

′′(1−α)(1−µ−ν)
t

the budget constraint:

Yt/Xt + bt = ct + qt∆ht +
Rt−1bt−1

πt
+ w′

tL
′
t + w′′

tL
′′
t + It + ξe,t + ξK,t
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and the borrowing constraint:

bt ≤ mÊt

(
qt+1htπt+1

Rt

)

where γ is their corresponding discount factor, Yt is the production of intermediate good

that entrepreneurs sell in a competitive market at price Pw
t , At is a random technology

shock, Kt is capital (that depreciates at rate δ) created at the end of each period, Xt is

the retailers gross markup over the intermediate goods price, It = Kt − (1 − δ)Kt−1 is

the investment on capital, ξe,t defines the entrepreneurs’ housing adjustment cost, while

ξK,t ≡ ψ
(

It
Kt−1−δ

)2
Kt−1

2δ
represents a capital installation cost, and the parameter m is the

loan-to-value ratio for entrepreneurs.

One can notice that each household have its own discount factor. It is assumed that β′′ < β,

and γ < β, so that the borrowing constraint becomes binding for these types of households4.

This assumption also implies a steady state in which the entrepreneurial return to savings

is greater than the interest rate.

There is a retail sector in the economy with monopolistic competition, where it is assumed

implicit costs of adjusting nominal prices. These retailers buy intermediate goods from

entrepreneurs, differentiate the goods at no cost, and sell the final goods with a markup.

Patient households own these firms, so the profits are rebated back to them.

Finally, there is a central bank that implements a Taylor-type interest rate rule. I assume

that monetary policy responds systematically to past inflation and output (i.e., a backward-

looking Taylor rule).

The market clearing conditions5 are: for real estate (ht + h′t + h′′t = 1); for goods (ct +

c′t + c′′t + It = Yt); and for loans (bt + b′t + b′′t = 0). The model has a unique stationary

4Iacoviello (2005) assumes γ = 0.98, β = 0.99, and β′′ = 0.95.
5For the labor market, we are assuming that all the supply of patient and impatient households will be

used by entrepreneurs: L′
t + L′′

t = Lt.
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equilibrium in which entrepreneurs and impatient households hit the borrowing constraint

and borrow up to the limit. The model can be reduced to linearized system (see appendix),

which summarized in matrix form can be express as:

A0ξt = A1Êtξ
f
t+1 + A2ξt−1 +Ψϵt (1.1)

where the variables, ξt, and its subset of forward variables, ξft , are
6:

ξft = [ĉt, ĉ
′
t, ĉ

′′
t , Ît, X̂t, ĥt, ĥ

′′
t , q̂t, Ŷt, π̂t];

ξt = [ξft , R̂t, K̂t, b̂t, b̂
′′
t , ĵt, ût, Ât];

1.3.1 Expectations

In order to form their expectations, I assume that the agents have the following perceived

law of motion (PLM):

ξft = Xt−1ϕt−1 + ut

where ϕt−1 is a vector containing the learning beliefs parameters, and the regressors matrix

Xt−1 is constructed in SUR form7. Therefore, the equation above can be described in more

6The hat over the variables is the notation to represent deviation from its steady-state.
7SUR is the acronym for seemingly unrelated regressions.
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detail as8:



ξf1,t

ξf2,t
...

ξfm,t


=



X1,t−1

X2,t−1

. . .

Xm,t−1


·



ϕ1,t−1

ϕ2,t−1

...

ϕm,t−1


+



u1,t

u2,t
...

um,t


.

The errors ut depend on a linear combination of the true model innovations, ϵt, with covari-

ance matrix: Σ = E[ut · uTt ]. With this PLM, we have that:

Êtξ
f
t+1 = Xtϕt (1.2)

By substituting these expectations in the linearized model described in equation (1), we can

obtain the Actual Law of Motion (ALM).

1.3.2 Evolution of beliefs

Concerning the evolution of the beliefs, I follow Slobodyan and Wouters (2012) and assume

that agents use Bayesian learning and update their beliefs with the help of a Kalman filter

mechanism.

It is assumed that the beliefs follow a vector auto-regressive process around ϕ̄:

(ϕt − ϕ̄) = Fϱ(ϕt−1 − ϕ̄) + vt,

where Fϱ is a diagonal matrix with parameter ρϕ ≤ 1 on the main diagonal, and it is assumed

that vt are i.i.d. with covariance matrix V.

8Each Xi,t−1 is the information set used by agents to form their PLM of variable ξfi,t and ϕi,t−1 are the
adaptive learning beliefs associated with the corresponding forward variable.
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The Kalman filter updating and transition equations for the belief coefficients and the cor-

responding covariance matrix are given by:

ϕt|t = ϕt|t−1 +Rt|t−1X
T
t−1[Σ +Xt−1Rt|t−1X

T
t|t−1]

−1(ξft −Xt−1ϕt|t−1) (1.3)

with (ϕt+1|t − ϕ̄) = Fϱ(ϕt|t − ϕ̄).

Rt|t = Rt|t−1 −Rt|t−1X
T
t−1[Σ +Xt−1Rt|t−1X

T
t|t−1]

−1Xt−1Rt|t−1 (1.4)

with Rt+1|t = FϱRt|tF
T
ϱ + V .

From the transition equation, we have that these best estimates for the beliefs, ϕt|t−1, are

substituted for ϕt in equation (2) to generate the expectations and get the ALM. Note that by

using ϕt|t−1, we can avoid the simultaneity between expectations and latent state variables9.

In order to initialize the Kalman filter, I assume that the initial beliefs are model consistent,

and specify ϕ1|0 = ϕ̄, R1|0, Σ, and V using the theoretical moment matrices implied by the

REE evaluated under the corresponding structural parameter vector θ. Therefore, we have

that:

ϕ̄ = E[XTX] · E[XT ξf ]

Σ|ϕ̄ = E[(ξft −Xt−1ϕ̄)× (ξft −Xt−1ϕ̄)
T ]

R1|0 = σ0(X
TΣ−1X)−1

V = σv(X
TΣ−1X)−1

Where we can see that the matrices R1|0 and V are proportional to (XTΣ−1X)−1.10 With

9A similar Bayesian learning process is described in Adam et al. (2012), in the context of an asset pricing
model. Adam and Marcet (2010, 2011) provide a micro-founded belief system justifying the assumption that
information on prices is introduced with a delay in the formation of the beliefs.

10Note: the generalized least squares estimator for ϕ̄ is ϕ̂gls = (XTΣ−1X)−1(XTΣ−1ξf ). Therefore, we

have that var(ϕ̂gls) = (XTΣ−1X)−1.
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this initialization we can see that the scalar parameters σ0, σv, and ρϕ fully describe the

learning dynamics.

Finally, we have that the state-space model is given by the following measurement and state

transition equations:

Observationst = Hξt (1.5)

ξt = γt + Ftξt−1 +Gtϵt (1.6)

where ϵt ∼ N(0,Ω), H is a matrix of zeros and ones just selecting observables from ξt, and

γt, Ft, and Gt are matrices of coefficients, which are convolutions of structural parameters

of the economy and the best estimates of agents’ beliefs, ϕt|t−1.

1.4 Estimation

Following Slobodyan and Wouters (2012), I fixed the scale parameters σ0 = 0.03 and σv =

0.003, and estimate ρϕ using a diffuse beta prior.

The estimation of the structural parameters of the model was done with a Metropolis-

Hastings random walk algorithm:

θ = {α,m′′, ρu, ρj, ρA, σu, σj, σA, σR, ρR, rπ, ry, ρϕ}.

The likelihood is recursively evaluated with the Kalman filter, using equations (5) and (6).

At each moment, the beliefs are updated using equations (3) and (4).

The priors used for the parameters and their description are given in Table 1. Following

Iacoviello (2005) and some of the findings of Guerrieri and Iacoviello (2017), I calibrated the

parameters with the values exhibit in Table 2.
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Description Distrib. Mean SD
α Patient household’s wage share B 0.65 0.05
m′′ Loan-to-value for impatient households B 0.55 0.05
ρu AR coefficient - Cost-push shock B 0.50 0.28
ρj AR coefficient - Housing preference B 0.50 0.28
ρA AR coefficient - Technology B 0.05 0.015
σu SD - Cost-push shock Γ−1 1 100
σj SD - Housing preference Γ−1 1 100
σA SD - Technology Γ−1 1 100
σR SD - Monetary Policy shock Γ−1 1 100
ρR AR - interest rate B 0.50 0.28
rπ Monetary Policy response to inflation N 1.5 0.25
ry Monetary Policy response to output gap B 0.125 0.025
ρϕ Learning beliefs’ persistence B 0.50 0.28

Table 1.1: Prior distributions.

Description Value Based on
β Patient household’s discount rate 0.995 G and IA (2017)
γ Entrepreneurs household’s discount rate 0.98 IA (2005)
β′′ Impatient household’s discount rate 0.95 IA (2005)
δ Variable capital depreciation rate 0.03 IA (2005)
X Steady-state gross markup 1.2 G and IA (2017)
θC Probability fixed price (Calvo parameter) 0.89 G and IA (2017)
j Weight on housing services 0.04 IA (2005)
µ Variable capital share 0.3 IA (2005)
ν Housing share 0.03 IA (2005)
η Labor supply aversion 1.01 IA (2005)
ψ Variable capital adjustment cost 4 G and IA (2017)
ϕH Housing adjustment cost 0 IA (2005)
m Loan-to-value for entrepreneurs 0.9 G and IA (2017)
π Steady-state Gross inflation rate 1 IA (2005)

Table 1.2: Calibrated parameters.
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1.4.1 Data

As the sample for estimation, I set the period from I-1985 to I-2019. Following the work done

by Iacoviello (2005), I use the following variables11: the GDP and GDP deflator published by

the Bureau of Economic Analysis (BEA), the potential GDP published by the Congressional

Budget Office (CBO), the new home sales price reported by the Census Bureau, the consumer

price index from the Bureau of Labor Statistics (BLS), the Federal Reserve’s Effective Federal

Funds Rate and the shadow interest rate for the zero-lower-bound period estimated by Wu

and Xia (2015)12.

The output gap is simply the difference between the GDP and potential GDP series, con-

verted to a logarithmic scale. The real house prices were constructed by deflating the new

house sales median prices by the CPI, and seasonal effects adjusted it, and finally detrended

using a linear trend.

The inflation was estimated from the difference, in logarithms, of the GDP deflator and

demeaned. The interest rate, complemented with the shadow rate, was converted to a

quarterly rate and demeaned. One can see the evolution of the variables in Figure 1.

1.5 Results

1.5.1 Rational expectations

As a first step, I estimated the model under Rational Expectations. One can see the summary

of the posterior draws in Table 3. In the results, we can see that both the patient households’

wage share, α, and the Loan-to-value for impatient households’, m′′, lie in range with the

11The data was downloaded from The Federal Reserve Bank of St. Louis’ FRED.
12This series was downloaded from the Federal Reserve Bank of Atlanta website: https://www.

frbatlanta.org/cqer/research/shadow_rate.aspx.

13

https://www.frbatlanta.org/cqer/research/shadow_rate.aspx
https://www.frbatlanta.org/cqer/research/shadow_rate.aspx


Figure 1.1: Evolution of the observed variables - Sample I-1985 to I-2019.

original estimations by Iacoviello (2005).

Consistent with more recent estimations done by Iacoviello and Neri (2010) and Guerrieri and

Iacoviello (2017), we can see a reduction in the standard deviation of the housing preference

shock, σj, in contrast to the results reported in Iacoviello (2005) of 24.8913. In addition,

my estimation suggests an autocorrelation coefficient of the housing preference shock, ρj, of

0.994, which is higher than the 0.85 estimated in Iacoviello (2005), but in line with the 0.96

posterior mean of Iacoviello and Neri (2010) and 0.9835 posterior mode of Guerrieri and

Iacoviello (2017).

Consistent with the phenomenon called “Great Moderation,” my estimation suggests a con-

siderable reduction in the standard deviation of the technology shock, σA, compared with

13Iacoviello and Neri (2010) estimated a mean of 4.16 percent, with data from I-1965 to IV-2006. Guerrieri
and Iacoviello (2017) reported a posterior mode of 5.13 percent, and the data sample period is from I-1985
to IV-2011. Nonetheless, in both cases, the models also consider an intertemporal preference shock
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Variable Name Mode Mean 5% 95%
α 0.5957 0.5991 0.5331 0.6629
m′′ 0.6094 0.6056 0.5435 0.6647
ρu 0.2624 0.2602 0.1685 0.3595
ρj 0.9941 0.9941 0.9899 0.9973
ρA 0.0299 0.0378 0.0096 0.0805
σu 0.1358 0.1378 0.1125 0.1664
σj 12.788 12.918 9.411 17.385
σA 0.8136 0.9685 0.4695 1.7989
σR 0.3527 0.3515 0.3179 0.3884
ρR 0.6767 0.6755 0.6228 0.7242
rπ 1.7310 1.7423 1.5763 1.9240
ry 0.2740 0.2711 0.2313 0.3131
MgLikelihood -1,098.4

Table 1.3: REE - Posterior draws.

Note: 500,000 draws, set burn-in of 25 percent.

the 2.24 estimated in Iacoviello (2005)14. I obtained similar results in terms of the auto-

correlation coefficient of the technology shock, ρA, which suggests that this shock has low

persistence.

My estimation for the standard deviation for the cost-push shock, σu, of 0.136 percent

is slightly lower than Iacoviello’s 2005 estimation of 0.17 percent. Regarding this shock’s

autocorrelation coefficient, ρu, my estimation of 0.26 is considerably lower than the 0.59

estimated originally by Iacoviello.

Finally, concerning the Taylor rule estimated parameters, I found slightly more inertia than

Guerrieri and Iacoviello (2017) most recent estimation of 0.5509 posterior mode15. My

rational expectations results of the response to inflation have a slightly higher mode (1.73

vs. 1.54 in G and IA (2017)). However, the range of both estimations overlaps, while

the response to the output gap is considerably higher in my analysis (0.274) compared to

Guerrieri and Iacoviello’s 0.0944 posterior mode.

14The estimation in Iacoviello (2005) was made with VAR with data from I-1974 to II-2003.
15I considered the most recent estimation of the Taylor rule to compare with my results since both compu-

tations consider the period of the ZLB. Iacoviello (2005) ran an OLS regression, for the period that spanned
from I-1974 to II-2003, of the Fed Funds rate on its lag, past inflation, and detrended output yields and
found ρR = 0.73, ry = 0.13, and rπ = 1.27.
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1.5.2 MSV Adaptive learning expectations

To proceed with the estimation, I further assume that the agents hold near-rational expecta-

tions by updating their beliefs around the minimal state variable solution (MSV). Therefore,

I posit that the information set available to the agents to form the PLM of each variable in

ξf is the same and equal to:

Xi,t = [ĥ′′t , ĥt, Ŷt, π̂t, R̂t, K̂t, b̂t, b̂
′′
t , ĵt, ût, Ât].

The summary of posterior draws is in Table 4, where we can observe an improvement in

the marginal likelihood compared with the estimation under rational expectations. It is also

noteworthy the reduction in the cost-push shock persistence, ρu, which is a result consis-

tent with previous literature. This result is in line with the idea that the propagation of

these shocks under learning is captured by the expectations’ mechanism and by the internal

dynamics of the decision rules.

Note that the estimation for the loan-to-value ratio for impatient households, m′′, and the

patient households’ wage share, α, are similar in both analyses. We can see that the structural

parameters that govern the agents’ decision rules remain relatively robust under both versions

considered for the expectations. Slobodyan and Wouters (2012) mentioned that learning

dynamics might explain what was previously thought to be exogenous persistence but leave

the model’s structural parameters unaffected.

1.5.3 Adaptive learning and house prices as a state variable

Turning our attention to the borrowing constraint of the agents, we can notice that, consid-

ering the assumption that is binding, the evolution of house prices affects how much agents
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Variable Name Mode Mean 5% 95%
α 0.5931 0.5783 0.4899 0.6608
m′′ 0.6208 0.6048 0.5257 0.6680
ρu 0.0018 0.0150 0.0006 0.0650
ρj 0.9913 0.9916 0.9862 0.9967
ρA 0.0421 0.0451 0.0252 0.0720
σu 0.0877 0.0903 0.0640 0.1207
σj 13.640 13.324 8.885 18.032
σA 0.3549 0.4724 0.1895 0.9195
σR 0.3431 0.3453 0.3111 0.3835
ρR 0.6623 0.6607 0.6033 0.7128
rπ 1.5306 1.5107 1.3300 1.7004
ry 0.2763 0.2736 0.2333 0.3136
ρϕ 0.9467 0.9471 0.9346 0.9600
MgLikelihood -1,033.9

Table 1.4: AL-MSV Posterior draws.

Note: 500,000 draws, set burn-in of 25 percent.

will be able to borrow each period. Therefore, we could assume that agents will use house

prices as a state variable instead of the current debt amount. This assumption is plausible

since agents determine how much to borrow given the value of their housing holdings, and

they take house prices as given.

With this in consideration, I change the information set used by the agents in their PLM

and include house prices as a state variable:

Xi,t = [ĥ′′t , ĥt, q̂t, Ŷt, π̂t, R̂t, K̂t, ĵt, ût, Ât].

I present the results obtained under this assumption in Table 5, where we can observe that

this specification delivers a higher marginal likelihood than in my previous estimations. Once

again, the structural parameters remain relatively robust. More importantly, by having house

prices as a state variable, we can now study the feedback effects of house prices through the

agents’ beliefs evolution.

In Figure 2, I present the evolution of the real house prices cycle and the beliefs persistence.
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Variable Name Mode Mean 5% 95%
α 0.4785 0.4921 0.4273 0.5672
m′′ 0.5783 0.5811 0.5356 0.6252
ρu 0.0119 0.0271 0.0061 0.0526
ρj 0.9906 0.9900 0.9846 0.9936
ρA 0.0567 0.0497 0.0236 0.0769
σu 0.0979 0.1026 0.0702 0.1413
σj 11.701 12.198 9.954 15.417
σA 0.3545 0.5433 0.1937 1.1694
σR 0.3222 0.3351 0.3035 0.3706
ρR 0.6589 0.6497 0.5915 0.6974
rπ 1.4492 1.4608 1.3395 1.5867
ry 0.3026 0.3024 0.2662 0.3392
ρϕ 0.9615 0.9609 0.9553 0.9653
MgLikelihood -1,016.1

Table 1.5: AL Posterior draws.

Note: 500,000 draws, set burn-in of 25 percent.

Here we can observe that the beliefs seem to capture the 2005 house price bubble and its

burst.

The consistent increase in house prices above the trend started in the first quarter of 2003.

This date also coincided with the beginning of the rise in persistence in house prices’ beliefs.

Moreover, the persistence continues to be relatively high, a result consistent with the idea

that house price expectations do not comply with the rationality assumption.

To see the feedback effects of the beliefs’ evolution over the economy, I estimated the impulse

response to a housing preference shock (Figure 3). The I-85 should be seen as close to

Rational Expectations IRF since, by assumption, I initialize the learning beliefs as model

consistent. The IV-05 coincides with the peak of the house prices cycle, while the IV-08 is

close to the start of the financial crisis. Finally, IV-18 gives us a picture of the most recent

state of responses.

The impulse response functions suggest a small effect of housing preference shocks on inflation

and interest rates. As one should expect, a housing preference shock affects house prices,

and given the persistence in the beliefs, the effect does not die out. Finally, the impact on
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Figure 1.2: Real house prices and the adaptive persistence beliefs for house prices.

output is positive, which comes from the response of entrepreneurs to increase their housing

holdings (not shown), which is an input in their production function. In general, we can see

that the feedback from the shocks is higher at the peak of the bubble (IV-05).

The higher impact around the bubble is also observable in the IRF of consumption (Figure 4).

Here, the model suggests that while patient and impatient households reduce their consump-

tion, given a higher substitution effect, entrepreneurs will increase their consumption. This

result can be explained through an income effect, given the increase in production. Since the

response of patient and impatient households is small relative to the rise in entrepreneurs’

consumption, the IRF suggests a positive response in aggregate consumption.

It is also interesting to see the response to a monetary policy shock (Figures 5 and 6),

where we can still observe that the most prominent response is estimated for the peak of the

house price bubble (IV-05). This behavior is consistent with the idea that we would have

experienced abrupt reactions to house prices, consumption, and output by bursting a bubble

with a monetary policy shock. The model and evolution of beliefs for that period suggest an

increase in inflation, which, combined with the fall in output, implies a stagflation scenario.

19



Figure 1.3: Impulse Response Function to a Housing Preference Shock.
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Figure 1.4: Consumption’s IRF to a Housing Preference Shock.
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Figure 1.5: IRF to a Monetary Policy Shock.
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Figure 1.6: Consumption’s IRF to a Monetary Policy Shock.
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1.6 Conclusion

In this paper, I have explored the role that expectations, formed under a Bayesian adaptive

learning mechanism, have in an economy where housing can be used as collateral for borrow-

ing. Moreover, adaptive learning allows me to identify the evolution of responses to shocks,

which is not possible under the Rational Expectations assumption.

The posterior odds results favor the adaptive learning model with house prices as a state

variable. This specification allowed me to analyze scenarios of the potential feedback effects

of the house price bubble in the economy. The IRFs suggest that most of the impact of

housing preference shocks goes into output and house prices. Given the estimated model,

the increase in aggregate consumption is driven by an important response of entrepreneurs’

consumption, which results from a positive income effect.
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Chapter 2

Housing Price Bubbles and

Macroprudential Policies, an

Adaptive Learning Approach

2.1 Introduction

Credit conditions in the economy are affected by the expectations of asset prices used as

collateral by economic agents. In this regard, the amount of borrowing capacity for mortgages

depends on expectations of future house prices. Therefore, it is crucial to understand how

agents form these predictions and the broader implications of this process.

†This research is a joint work with Marzio Bassanin. I want to thank Marzio for his permission to use
our research as part of my dissertation. Additional thanks go to Damien Lynch, Marc Hinterschweiger, and
colleagues of the Medium-Term Strategy and Research team at the Bank of England for their helpful com-
ments and suggestions for this project. Feedback from the Bank of England’s 2021 Ph.D. Interns Workshop,
the Banking, Finance, and Regulation Seminar at the Bank of England, and the Macro Reading Group at
UCI’s Economics Department are greatly appreciated. I would also like to thank the Bank of England for
its hospitality during part of this project. Any views expressed are solely those of the authors and cannot
be taken to represent those of the Bank of England.
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In this context, the evidence suggests that house price expectations do not adhere to the

rationality assumption and are prone to bubbles.1,2 For instance, with a dynamic model for

housing under rational expectations, Glaeser and Gyourko (2006) have difficulties explaining

the positive serial correlation in house price changes observed in the data. Additionally,

Piazzesi and Schneider (2009) analyzed data from the Michigan Survey of Consumers and

observed that “starting in 2004, more and more households became optimistic after having

watched house prices increase for several years”. Moreover, Gelain and Lansing (2014),

employing a Lucas-type asset pricing model, demonstrate that it can approximately match

the volatility of the price-rent ratio in the data using near-rational agents. Finally, Branch

et al. (2016) constructed a two-sector model with search frictions, a housing market, and a

goods market with explicit financial frictions and calibrated it for the US economy from 1996

to 2010. They consider both the Rational Expectations and Adaptive Learning expectations

assumptions, where only the latter can generate a house price boom of the same magnitude

as exhibited in the data.

Moreover, it is well established that agents’ sentiments have a crucial role in explaining

the boom-bust cycles of housing markets. Previous evidence suggests that during the 2000s

period beliefs related to the housing market were shared by different types of agents, and this

sentiment played a significant role in creating the housing bubble. In this regard, Cheng et

al. (2014) found that mid-level managers in securitized finance did not exhibit awareness of

problems in overall housing markets, while certain groups continued to aggressively increase

their exposure to housing during the 2004-2006 period. Furthermore, Soo (2015) created an

index of sentiment by measuring the tone of housing news in local newspapers and noted

that sentiment forecasts the boom and bust of housing markets by a significant lead, peaking

two years before house prices began to decline in 2006. More recently, Kaplan et al. (2020)

1Rational agents would expect lower returns after a sustained rise in prices, while irrational agents would
continue to predict higher returns.

2Selection of papers has been based on closest congruence to the particular point being made. We
acknowledge that there is a strand of literature focused on rational bubbles, but this is outside the scope of
this paper.
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observed that shifts in expectations about house price growth caused the housing boom-bust

of the 2000s, where households, investors, and lenders shared these beliefs.

Finally, previous studies document that asset price bubbles can affect credit markets and,

in turn, have a clear relevance from a financial stability perspective. Indeed, bubbles could

lead to relaxed credit conditions and induce households to increase borrowing. The latter

results from agents’ beliefs, which suggests that prices would continue to grow, amplifying

the effects of credit frictions on the economy. This type of feedback effect has been confirmed

by empirical studies done by Berlinghieri (2010) for the US and Anundsen and Jansen (2013)

for Norway. Additionally, Brueckner et al. (2012) generate a theoretical model and show that

lenders ease their default concerns when house price expectations become more favorable.

This perception increases their willingness to extend loans to risky borrowers. Since the

housing demand created by subprime lending feeds back onto house prices, such lending also

helps to fuel an emerging housing bubble. They find tentative support in empirical work

for this connection. Anundsen et al. (2016) found that global housing market developments

have predicting power for domestic financial stability risks. Further, they observed that the

probability of a crisis increases when bubble-like behavior in house prices coincides with

high household leverage. Finally, Jordà et al. (2015) found that credit-financed housing

price bubbles have high financial crisis risks.

Motivated by this evidence, our paper studies the effects of housing price bubbles on credit

markets’ conditions, the banking sector, and the real economy. With this goal in mind, we

develop a medium-scale DSGE model with three main ingredients. First, households’ bor-

rowing capacity depends on house price expectations, as developed by Iacoviello (2005). This

feature introduces a feedback loop between agents’ expectations, housing prices, and credit

in the model. When households expect housing prices to grow, their borrowing capacity

increases, stimulating a credit build-up.

Second, we posit that agents form expectations using an adaptive learning scheme. This
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assumption provides sufficient flexibility in beliefs to match the documented behavior of

housing price expectations. Our model captures the dynamics of a house price bubble in

credit supply via the expectations channel with this approach. We should note that adaptive

learning allowed us to identify the evolving response to shocks during different stages of the

housing price bubble, as opposed to Rational Expectations, which assume a constant response

across the sample.

Third, we introduced a stylized banking sector subject to capital requirements along the

lines of Gerali et al. (2010) and Angelini et al. (2014). The presence of a banking system

in an environment with adaptive learning is crucial to evaluate the interactions between

expectations formation and the supply side of credit markets. In addition, this will allow

us to assess if macroprudential policies are effective in countering the excessive credit ex-

pansion triggered by a housing bubble. While several previous contributions have studied

the effects of macroprudential policies in a similar DSGE framework (Angelini et al. (2010),

Gambacorta and Karmakar (2018), Hinterschweiger et al. (2021), and Acosta-Smith, Bas-

sanin, Sabuga (2021)), to the best of our knowledge, this is the first paper considering an

environment with financial intermediaries and adaptive learning.

The model is estimated for the US economy using Bayesian techniques. This approach allows

us to estimate the adaptive learning parameters jointly with the structural parameters of

the economy. The estimation results suggest that the introduction of learning improves the

model’s ability to fit historical data. We observed a clear improvement in the marginal

likelihood compared to the model under rational expectations. Moreover, the results show

that the model captures an increase in the inertia present in house prices, consistent with

the 2000s housing bubble.

Our analysis produces two main results. First, we find that the feedback loop between

housing prices and credit is more severe around periods of housing bubbles. The stronger

and more persistent rise in housing prices, driven by agents’ expectations, generates a more
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considerable expansion of households’ borrowing capacity and, in turn, a more substantial

build-up of lending volumes. A positive housing preference shock induces a credit expansion

four times larger during a bubble than in regular times. This increase in credit supply

fuels a more persistent response of investment and output. However, this reaction comes at

the cost of a more extensive deterioration of banks’ risk-weighted Capital ratio due to the

amplification effects of agents’ expectations on banks’ lending activities.

Second, we find that capital requirements are more effective in taming the credit cycle dur-

ing periods of exuberance. During the bubble, capital requirements effectively stabilize the

economy by smoothing the increase of housing prices, total credit, and investment, magnified

by the learning dynamics. This stabilization effect results from a more significant deviation

of banks’ risk-weighted capital ratio from the regulatory target during the bubble. Indeed,

capital requirements impose proportional costs on banks that deviate from the regulatory

capital ratio. The banking system does transfer those higher costs to the real economy by

rising lending rates, and this, in turn, mitigates credit expansion. Notably, capital require-

ments also effectively reduce the deterioration of banks’ risk-weighted capital ratio triggered

by the shock, improving the banking system’s resilience. This result suggests that bene-

fits from capital requirements are more extensive in episodes of euphoria, reaffirming the

importance of tightening capital requirements during booms.

We organized the rest of the paper as follows. Section 2.2 describes the model of the economy

and the expectations formation. In Section 2.3 we detail the estimation procedure, the data

description, and report our results. Section 2.4 provides a comparative analysis of the effects

of the macro-prudential policy during the housing bubble, under both Rational Expectations

and Adaptive Learning. Section 2.5 concludes.
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2.2 Model

We build on the model by Gerali et al. (2010). The economy is populated by patient house-

holds, impatient households, and entrepreneurs. Households consume, accumulate housing

stock, and work. The two types of households differ in terms of their degree of impa-

tience. The discount factor of patient households is higher than that of impatient house-

holds (β > β′). Households’ heterogeneity generates positive financial flows in equilibrium,

as patient households save, and impatient ones borrow against the value of their housing

stock. The housing supply is fixed (its price varies endogenously), but housing reallocation

takes place across “patient” and “impatient” households in response to an array of shocks.

Entrepreneurs produce homogeneous intermediate goods using capital and labor. Both types

of households supply the latter. Entrepreneurs borrow from banks using their capital stock

as collateral to finance their capital purchases. Analogously to impatient households, the

discount factor of entrepreneurs is also lower than the one of patient households (β > βE),

such that the borrowing constraint becomes binding. Additionally, capital producers are a

model’s device to introduce the price of capital.

The model features nominal wage and price rigidities. In the case of salaries, we assume

that workers supply their differentiated labor services through unions, which set wages to

maximize members’ utility. On the other hand, the final goods market operates under monop-

olistic competition, where retailers buy intermediate goods from entrepreneurs, differentiate

them at no cost, and sell them with a markup.

The banking sector consists of a wholesale branch and a retail branch. The wholesale branch

manages the capital-asset position of the bank as it accumulates bank capital out of retained

earnings, collects deposits from patient households, and pays some quadratic costs whenever

it deviates from the capital requirements. Retail branches lend to impatient households

and entrepreneurs. They have market power in setting lending rates, while we assume, for
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simplicity, perfect competition in the deposits market.

Additionally, a central bank sets the policy rate according to a standard Taylor-type reaction

function. Finally, we depart from the full information assumption and suppose that agents

form expectations with an adaptive learning scheme. To analyze the effects of learning in this

DSGE model, we consider a step-by-step approach. Therefore, as Milani and Park (2019)

suggested, we started by assuming that only house price expectations are formed using an

adaptive learning scheme, which will later be expanded to include the rest of the forward

variables of the model.

2.2.1 Households

We consider a model with two types of households: patient and impatient. Patient house-

holds choose consumption (ct), housing services (ht), labor hours (nt), and savings through

deposits (dt), to maximize their lifetime utility, given by:

E0

∞∑
t=0

βtzt

(
Γc log(ct − εcct−1) + jtΓh log(ht − εhht−1)−

1

1 + η
n1+η
t

)
(2.1)

and are subject to the following budget constraint:

ct + qtht + dt =
wtnt

χw,t

+ qtht−1 +
Rt−1dt−1

πt
+ divt (2.2)

where the patient’s discount factor is β, while εc and εh measure habits in consumption and

housing services, respectively. Γc and Γh are scaling factor that ensure that the marginal util-

ities of consumption and housing are independent of habits at steady-state3. The parameter

η denotes the inverse Frisch elasticity of labour supply. Let qt ≡ Qt/Pt be the real housing

price, wt ≡ Wt/Pt are real wages, πt ≡ Pt/Pt−1 is gross inflation, Rt−1 is gross nominal inter-

3They are defined as Γc ≡ (1− εc)/(1− βεc) and Γh ≡ (1− εh)/(1− βεh).
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est rate between t− 1 and t, and divt are lump-sum profits received from labor unions, and

firms and banks owned only by patient households. The term χw,t denotes the markup (due

to monopolistic competition in the labor market) between the wage paid by intermediate

goods firms and the wage paid to households, which accrues to the labor unions. The term

jt is a housing preferences shock, such that an increase in these variable shifts preferences

towards housing, while the term zt captures an inter-temporal preference shock, such that

a positive shock increases households’ willingness to spent today, acting as a consumption

demand shock. We assume that the log of the shocks follow AR(1) processes:

log jt = (1− ρJ) log j̄ + ρJ log jt−1 + uj,t

log zt = ρz log zt−1 + uz,t

where uj,t ∼ N(0, σ2
J) and uz,t ∼ N(0, σ2

z).

The relevant first-order conditions for patient households are:

qt =
Uh,t

λPt
+ β Et

λPt+1 qt+1

λPt
(2.3)

wt

χw,t

=
ztn

η
t

λPt
(2.4)

λPt = βEt

λPt+1Rt

πt+1

(2.5)

where λPt denotes the budget constraint Lagrange multiplier for patient households4, and

Uh,t is the patient household marginal utility of housing services.

Similarly, impatient households choose consumption (c′t), housing services (h′t), labor hours

4The Lagrange multiplier is equivalent to the patient household marginal utility of consumption:
λP
t ≡ Uc,t =

Γczt
ct−εcct−1

− βεcEt
Γczt+1

ct+1−εcct
.
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(n′
t), and real loans (bIt ), to maximize their lifetime utility:

E0

∞∑
t=0

β′tzt

(
Γ′
c log(c

′
t − εcc

′
t−1) + jtΓ

′
h log(h

′
t − εhh

′
t−1)−

1

1 + η
n′1+η
t

)
(2.6)

and are subject to the following budget and borrowing constraints:

c′t + qth
′
t +

RbI
t−1b

I
t−1

πt
=
w′

tn
′
t

χ′
w,t

+ qth
′
t−1 + bIt + div′t (2.7)

RbI
t b

I
t ≤ mI

tEtqt+1h
′
tπt+1 (2.8)

where β′ is the impatient households discount factor, Γ′
c and Γ′

h are their corresponding

scaling factors5, RbI
t is the gross nominal interest rate that impatient households have to pay

on the loans they receive, and mI
t represents an stochastic “loan-to-value” ratio for loans

to impatient households, such that the maximum amount bIt that an impatient household

can borrow is bound by the expression in equation (2.8). It is assumed that the stochastic

loan-to-value ratio follows an AR(1) process: logmI
t = (1− ρIm) logm

I + ρIm logmI
t−1 + umI,t

with umI,t ∼ N(0, σ2
mI). The relevant first-order conditions for impatient households are:

qt =
U ′
h,t

λIt
+ Et

mI
t qt+1πt+1

RbI
t

+ β′(1−mI
t )Et

λIt+1 qt+1

λIt
(2.9)

w′
t

χ′
w,t

=
ztn

′η
t

λIt
(2.10)

where λIt is the impatient household’s budget constraint Lagrange multiplier and U ′
h,t its

marginal utility of housing services.

5They are defined as Γ′
c ≡ (1− εc)/(1− β′εc) and Γ′

h ≡ (1− εh)/(1− β′εh).
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2.2.2 Entrepreneurs and Capital Producers

In this model, entrepreneurs or non-financial firms produce intermediate goods and operate in

a competitive market. Each entrepreneur chooses consumption (cEt ), real loans (b
E
t ), capital

(Kt), and labor (nt,n
′
t) to maximize its lifetime utility, subject to its production function, a

budget constraint and a borrowing constraint, represented by:

E0

∞∑
t=0

βt
EΓ

E
c log(cEt − εcc

E
t−1) (2.11)

s.t. yt = Kα
t−1n

(1−σ)(1−α)
t n

′σ(1−α)
t (2.12)

cEt + wtnt + w′
tn

′
t + qktKt +

RbE
t−1b

E
t−1

πt
=

yt
χp,t

+ bEt + qkt (1− δ)Kt−1 (2.13)

RbE
t bEt ≤ mE

t Et[πt+1q
k
t+1(1− δ)Kt] (2.14)

where βE is the entrepreneurs discount factor, ΓE
c is a scaling factor6, yt is the entrepreneurs’

production of intermediate goods, χp,t = Pt/P
W
t is the retailers gross markup over the

intermediate goods price, capitalKt depreciates at rate δ and has a real price equal to qkt , R
bE
t−1

is the gross interest rate on loans to entrepreneurs between t−1 and t, bEt is the entrepreneurs’

borrowing expressed in real terms, and mE
t is a stochastic loan-to-value ratio associated with

loans to entrepreneurs, that follows: logmE
t = (1 − ρEm) logm

E + ρEm logmE
t−1 + umE,t with

umE,t ∼ N(0, σ2
mE).

6It is defined as ΓE
c ≡ (1− εc)/(1− βEεc), and as for the previous cases ensures that the marginal utility

of consumption is independent of habits in the non-stochastic steady-state.
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The first order conditions are given by:

qkt = (1− δ)mE
t Et

qkt+1πt+1

RbE
t

+ Et

λEt+1αyt+1

λEt Ktχp,t+1

+ (1− δ)βE(1−mE
t )Et

λEt+1q
k
t+1

λEt

(2.15)

(1− σ)(1− α)yt = χp,twtnt (2.16)

σ(1− α)yt = χp,tw
′
tn

′
t (2.17)

where λEt represents the entrepreneurs’ budget constraint Lagrange multiplier.

Turning our attention to capital producers, they also operate in a perfectly competitive

market. They use two inputs to produce new capital: previous-period undepreciated capital

(1 − δ)Kt−1, bought from entrepreneurs at nominal price Qk
t , and it units of final goods,

bought from retailers at price Pt. The new stock of effective capital is sold back to en-

trepreneurs at the price Qk
t . Their optimization problem, expressed in real terms, is to

choose the amount of investment, it, to maximize their flow of profits subject to the capital’s

law of motion:

max
it

E0

∞∑
t=0

ΛE
0,t

[
qkt a

k
t

(
it −

ϕ(it − it−1)
2

2̄i

)
− it

]
(2.18)

s.t. Kt = akt

(
it −

ϕ(it − it−1)
2

2̄i

)
+ (1− δ)Kt−1 (2.19)

The optimization above yields the following condition:

qkt a
k
t

(
1− ϕ∆it

ī

)
= 1− ϕβEEt

λEt+1q
k
t+1a

k
t+1∆it+1

īλEt
(2.20)

where ī is the investment non-stochastic steady-state, ϕ is a parameter linked to invest-

ment adjustment costs, ∆it ≡ it − it−1, and the stochastic discount factor is given by

ΛE
t,t+1 ≡ βEλE

t+1

λE
t

. Finally, akt is an investment-specific technology that follows an AR(1)
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process: log akt = ρK log akt−1 + uk,t, with uk,t ∼ N(0, σ2
K).

2.2.3 Final goods sector and nominal rigidities

There is a final goods sector with Calvo-style price rigidities. These firms (which are owned

by patient households) buy wholesale goods from wholesale firms in a competitive market,

differentiate the goods at no cost, and sell them with a markup χp,t over the marginal

cost. The CES aggregates of these goods are converted back into homogeneous consumption

and investment goods by households. Each period, a fraction 1 − θπ of final good firms

set prices optimally, while a fraction θπ cannot do so and index prices to the steady-state

inflation π̄. Combining the final good firms’ optimal pricing decision with the equation for

the evolution of the aggregate price level results in a forward-looking Phillips curve, which

in its log-linearized form can be written as:

π̂t = βEtπ̂t+1 − επχ̂p,t + up,t (2.21)

where the hat represents the deviation of the variable from its steady-state in log terms,

επ = (1 − θπ)(1 − βθπ)/θπ measures the sensitivity of inflation to changes in the markup,

χ̂p,t, whereas the term up,t denotes an i.i.d. price markup shock, up,t ∼ N(0, σ2
π).

Wage setting is modeled analogously. Households supply homogeneous labor services to

unions. The unions differentiate labor services, set wages subject to a Calvo scheme, and

offer labor services to labor packers who reassemble these services into the homogeneous

labor composites nc and n′
c, which non-financial firms hire. The pricing rules set by the
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union imply, after linearization, the following wage Phillips curves:

ω̂t = βEtω̂t+1 − εwχ̂w,t + uw,t (2.22)

ω̂′
t = β′Etω̂

′
t+1 − ε′wχ̂

′
w,t + uw,t (2.23)

where ωt ≡ wt πt

wt−1
and ω′

t ≡
w′

t πt

w′
t−1

denote wage inflation for each household type, and uw,t ∼

N(0, σ2
W ) denotes an i.i.d. wage markup shock.

2.2.4 Banking Sector

Following Gerali et al. (2010) and Gambacorta and Signoretti (2014), we assumed there is a

banking sector in which each bank (j) consists of two units: a wholesale branch and a retail

branch.

The wholesale unit operates in a perfectly competitive market. This unit collects deposits, dt,

from households on which it pays the net interest rate7 set by the central bank, rt, and issues

wholesale loans BI
t and BE

t to retail branches, on which it earns the wholesale loan rates,

rBI
t and rBE

t respectively. The two sources of funding, Kb
t and dt, are perfect substitutes.

Bank capital is accumulated out of reinvested profits:

πtK
b
t (j) = (1− δb)K

b
t−1(j) + Πb

t−1(j) (2.24)

where δb are the costs of managing bank capital and Πb
t−1 denotes the realized overall profits

of the bank, namely the profits of the wholesale unit and the retail unit.

The wholesale branches are subject to capital requirements, meaning that they pay a cost

when their capital ratio - i.e., the proportion of bank capital (Kb
t ) to risk-weighted assets

7We denote gross interest rates with uppercase letter, Rt, while net interest rates are represented by
lowercase letter, rt. Therefore, Rt = 1 + rt.
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(B∗
t ) - deviates from the regulatory level (νb). This penalty for deviating from νb implies

that a bank’s capital ratio affects loan interest rates, generating a feedback loop between

bank capital, borrowers financing conditions, and the real economy.

More in detail, the bank j wholesale unit’s problem is choosing BI
t , B

E
t , and dt so as to

maximize its profits subject to a balance sheet constraint:

max
BI

t (j),B
E
t (j),dt(j)

E0

∞∑
t=0

[
RBI

t BI
t (j) +RBE

t BE
t (j)−Rtdt(j)−

(
BI

t+1(j) +BE
t+1(j)

)
πt+1

+dt+1(j)πt+1 + (πt+1K
b
t+1(j)−Kb

t (j))−
κkb
2

(
Kb

t (j)

B∗
t (j)

− νb
)2

Kb
t (j)

]
(2.25)

s.t. Bt(j) ≡ BI
t (j) +BE

t (j) = dt(j) +Kb
t (j) (2.26)

where
Kb

t

B∗
t
is the bank’s capital ratio and B∗

t ≡ ωbI
t B

I
t + ωbE

t BE
t represents the risk weighted

assets (RWA) of the bank. The risk weights associated to households’ loans, ωbI
t , and to

firms’ loans, ωbE
t , are sketched along the lines of Angelini et al. (2010) as we describe it

later. The first order conditions are:

RBS
t = Rt − κkb

(
Kb

t

B∗
t

− νb
)(

Kb
t

B∗
t

)2

ωbS
t (2.27)

For S = {I, E}. The above equation implies that the loan rate equals the policy rate

plus an endogenous spread, positively related to the number of loans and its corresponding

perception of riskiness.

As we mentioned before, we assume a stylized law of motion for the bank’s risk weights in

the spirit of Angelini et al.’s (2010) framework. However, for the impatient households, we
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add an extra component related to house prices:

ωbI
t = ρwbIω

bI
t−1 + (1− ρwbI)χ

I
y∆

Ayt + (1− ρwbI)χ
I
qEt∆

Aqt+1 + (1− ρwbI)ω
bI (2.28)

ωbE
t = ρwbEω

bE
t−1 + (1− ρwbE)χ

E
y ∆

Ayt + (1− ρwbE)ω
bE (2.29)

where ∆Avt represents the annual growth of variable vt, i.e. ∆
Avt ≡ log Vt − log Vt−4.

The retail loan branch is assumed to operate in a regime of monopolistic competition. This

unit buys wholesale loans, differentiates them at no cost, and resells them with a markup

to final borrowers. These banks face quadratic adjustment costs for changing over time the

rates it charges on loans; these costs are parameterized by κrbS, for S = {I, E}, and are

proportional to aggregate returns on loans. Retail loan bank j maximizes:

max
rbIt (j), rbEt (j)

Et

∞∑
t=0

ΛP
0,t

[
rbIt (j)bIt (j) + rbEt (j)bEt (j)− rBI

t (j)BI
t (j)− rBE

t (j)BE
t (j)

−κrbI
2

(
rbIt (j)

rbIt−1(j)
− 1

)2

rbIt b
I
t −

κrbE
2

(
rbEt (j)

rbEt−1(j)
− 1

)2

rbEt bEt

] (2.30)

s.t. bSt (j) =

(
rbSt (j)

rbSt

)−εbSt

bSt ; for S = {I, E} (2.31)

with BI
t (j) = bIt (j) and BE

t (j) = bEt (j). The first two terms are simply the returns from

lending to households and entrepreneurs. The next terms reflect the cost of remunerating

funds received from the wholesale branch. The last two terms are the costs of adjusting the

interest rates. Finally, note that the loans’ elasticity terms, εbSt , are stochastic, and follow

AR(1) processes8. After imposing a symmetric equilibrium, the first-order conditions for

8From the relation between the elasticity and the markup on loans, given by µS
t =

εbSt
εbSt −1

, we define a

shock process for the loans markups. We present the processes in deviation from its steady-state at Appendix
B.1
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interest rates yield:

1− εbSt + εbSt
rBS
t

rbSt
− κrbS

(
rbSt
rbSt−1

− 1

)
rbSt
rbSt−1

+ βEt

[
λPt+1

λPt
κrbS

(
rbSt+1

rbSt
− 1

)(
rbSt+1

rbSt

)2
bSt+1

bSt

]
= 0

(2.32)

We use the patient households’ discount factor because they own the banks. Note that the

retail rates depend on the markup and the wholesale rate (the marginal cost for the banks),

which depends on the bank’s capital position and the policy rate.

Finally, the total profits of the banking group, j, can be written as:

Πb
t(j) = rbIt (j)bIt (j) + rbEt (j)bEt (j)− rtdt(j)−

κkb
2

(
Kb

t (j)

B∗
t (j)

− νb
)2

Kb
t (j)

− κrbI
2

(
rbIt (j)

rbIt−1(j)
− 1

)2

rbIt b
I
t −

κrbE
2

(
rbEt (j)

rbEt−1(j)
− 1

)2

rbEt bEt

(2.33)

2.2.5 Monetary policy and market clearing

The Monetary policy follows an operational Taylor rule that allows for interest rate smooth-

ing and responds to output and inflation.

Rt = RrR
t−1

(πt−1

π

)(1−rR)rπ
(
yt−1

y

)(1−rR)ry

R1−rRet (2.34)

where rπ and ry denote the sensibility of the monetary response to inflation and output,

respectively, and et is assumed to be an auto-regressive monetary policy shock.

The market clearing condition in the housing market is given by:

ht + h′t = 1 (2.35)
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while for the final goods market is:

yt = Ct + it + δb
Kb

t−1

πt
+ adjbt (2.36)

where Ct = ct + c′t + cEt is the aggregate consumption, it is the total investment, Kb
t is the

bank capital, and Adjt includes all the adjustment costs. The model has a unique stationary

equilibrium in which entrepreneurs and impatient households hit the borrowing constraint

and borrow up to the limit. The model can be reduced to a linearized system (see Appendix

B.1), which summarized in matrix form can be expressed as:

AEtξt+1 + Bξt + Cξt−1 + Eεt = const. (2.37)

2.2.6 Expectations formation

We depart from the usual full information assumption and suppose that agents use a limited

information set to form their expectations and learn about economic relationships over time.

For this, we assume that agents have the following perceived law of motion (PLM)9:

ξft = Xtϕt + vt (2.38)

where ϕt is a vector containing the learning beliefs parameters, and the regressors matrix Xt

is constructed in SUR form10. Therefore, the equation above can be described with more

9The set of forward variables in the model are: ξft = [q̂t, R̂
bI
t , R̂bE

t , ŷt, ĉt, ĉ
′
t, ĉ

E
t , ît, ĥ

′
t, π̂t, ω̂t, ω̂

′
t, λ̂

P
t , λ̂

I
t , λ̂

E
t ,

q̂kt , χ̂p,t]. When we assume that agents form their expectations with an adaptive learning scheme only for
house prices, the rest of the variables are set to be consistent with the rational expectations equilibrium.

10SUR is the acronym for seemingly unrelated regressions.
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detail as11:



ξf1,t

ξf2,t
...

ξfm,t


=



X1,t

X2,t

. . .

Xm,t


·



ϕ1,t

ϕ2,t

...

ϕm,t


+



v1,t

v2,t
...

vm,t


.

Under this PLM, the forward variables forecasts are:

Êt−1ξ
f
t+1 = Êt−1Xt+1ϕt−1 (2.39)

where Êt−1Xt+1 is a function of Êt−1ξ
f
t = Xtϕt−1. By substituting these expectations in

the linearized model described in equation (2.37), we can obtain the Actual Law of Motion

(ALM).

Agents are assumed not to know the relevant model parameters and they use historical

data to learn them over time. Each period, they update their estimates according to the

constant-gain learning formula:

ϕt = ϕt−1 + ḡR−1
t XT

t (ξ
f
t −Xtϕt−1) (2.40)

Rt = Rt−1 + ḡ(XT
t Xt −Rt−1) (2.41)

where (2.40) describes the updating of the learning rule coefficients and (2.41) characterizes

the updating of the precision matrix Rt, while ḡ denotes the constant gain coefficient. In

order to initialize the learning process, we assume that the initial beliefs are model consis-

tent, by using the theoretical moment matrices implied by the REE evaluated under the

corresponding structural parameter vector θ.

11Each forward variable ξfi,t have their own information set Xi,t, and their corresponding beliefs ϕi,t−1.
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Along the lines of Slobodyan and Wouters (2012), we assume that economic agents use a

simple univariate AR(2) model to form expectations. Additionally, to focus on the effects

of housing market expectations on credit and the broader economy, we first posit that only

house price expectations deviate from the complete information assumption, as Milani and

Park (2019). We then relax both assumptions so that agents form expectations on all forward

variables with an adaptive learning scheme. We also allow the PLM to include a set of macro

variables considered to affect agents’ economic perspectives.

Finally, we have that the state-space model is given by the following measurement and state

transition equations:

Observationst = Hξt (2.42)

ξt = γt + Ftξt−1 +Gtϵt (2.43)

where ϵt ∼ N(0,Ω), H is a matrix that maps the observables from ξt, and γt, Ft, and Gt are

matrices of coefficients, which are convolutions of structural parameters of the economy and

the best estimates of agents’ beliefs, ϕt−1.

2.3 Estimation

The model is estimated using Bayesian methods. This approach allows us to jointly evaluate

the coefficients describing agents’ learning, such as the gain coefficient (indicating their

learning speed), together with the structural parameters of the economy 12. The parameter

12This strategy responds to potential criticism of models with learning, in which the results might depend
on the parameters that need to be chosen by the researcher.
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vector (θ) is:

θ = {β′, εc, εh, ϕ, σ, rπ, rR, ry, θπ, θw, κrbI , κrbE, ρj, ρK , ρR, ρz, ρµI ,

ρµE, ρmI , ρmE, σJ , σK , σπ, σR, σW , σZ , σµI , σµE, σmI , σmE, ḡ}
(2.44)

where we can see that the parameter vector contains the structural parameters describing

the dynamics of the economy, the monetary policy rule coefficients, the autocorrelation and

standard deviation parameters of the shocks, and the constant gain coefficient ḡ.

The likelihood is recursively evaluated with the Kalman filter, using equations (2.42) and

(2.43). At each moment in time, the beliefs are updated using equations (2.40) and (2.41).

We present the priors used for the parameters and their description in Table 2.1. We calibrate

the rest of the parameters of the model following the literature, with the values exhibited in

Table 2.2.

2.3.1 Data

For the estimation, we use observations for ten series: total real household consumption, price

(GDP deflator) inflation, wage inflation, real investment, real households mortgage debt, real

non-financial corporations’ debt, real house prices, the Federal Funds Rate, mortgage rates,

and corporate bond yields. The observations span the period from Q1-1985 to Q4-2007

(Appendix B.2 describes the data in more detail). We present the evolution of the variables

in Figure 2.1. The model features ten shocks: investment-specific shocks, wage markup,

price markup, monetary policy, inter-temporal preferences, housing preferences, mortgage

markup, corporate loans markup, and loan-to-value shocks to mortgages and firms’ loans.

Before the estimation, we remove the low-frequency components of consumption, investment,

mortgage debt, corporate debt, and house prices using the unobserved components model

with a second-order Markov process for the trend, developed in Grant and Chan (2017).
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Table 2.1: Prior distributions.

Description Distrib. Mean SD
β′ Impatient’s discount factor B 0.985 0.003
εc Habit in consumption B 0.7 0.1
εh Habit in housing B 0.7 0.1
ϕ Investment adjustment cost Γ 5 2
σ Impatient’s wage share B 0.35 0.05
rπ Taylor rule response to inflation N 2 0.33
rR Taylor rule inertia B 0.5 0.1
ry Taylor rule response to output B 0.125 0.025
θπ Calvo parameter, Prices B 0.5 0.075
θw Calvo parameter, wages B 0.5 0.075
κrbI H.H. Loan rate adjustment cost Γ 6 2.5
κrbE Firms Loan rate adjustment cost Γ 3 2.5
ρJ AR coefficient - Housing shock B 0.50 0.1
ρK AR coefficient - investment shock B 0.50 0.1
ρR AR coefficient - monetary shock B 0.50 0.1
ρZ AR coefficient - intertemporal shock B 0.50 0.1
ρIµ AR coefficient - h.h. Loan rate markup shock B 0.50 0.1
ρEµ AR coefficient - Firms Loan rate markup shock B 0.50 0.1
ρIm AR coefficient - h.h. LTV ratio shock B 0.50 0.1
ρEm AR coefficient - Firms LTV ratio shock B 0.50 0.1
σJ SD - Housing shock Γ−1 0.01 1
σK SD - investment shock Γ−1 0.01 1
σπ SD - Price markup shock Γ−1 0.01 1
σR SD - interest rate shock Γ−1 0.01 1
σW SD - wage markup shock Γ−1 0.01 1
σZ SD - intertemporal shock Γ−1 0.01 1
σI
µ SD - h.h. Loan rate markup shock Γ−1 0.01 1
σE
µ SD - Firms Loan rate markup shock Γ−1 0.01 1
σI
m SD - h.h. LTV ratio shock Γ−1 0.01 1
σE
m SD - Firms LTV ratio shock Γ−1 0.01 1
ḡ Constant Gain Parameter Γ 0.025 0.01

They showed that the HP filter is a particular case of their framework, but the new model

can accommodate salient features of the data by having a more flexible approach.
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Table 2.2: Calibrated parameters.

Description Value Based on∗

β Patient’s discount rate 0.995 G & IA (2017)
βE Entrepreneur’s discount rate 0.97 IA & N (2010)
α Capital share in production 0.35 IA & N (2010)
δk Capital depreciation rate 0.025 G & IA (2017)
η Labor disutility 1 G & IA (2017)
π Steady-state gross inflation rate 1.005 G & IA (2017)
j Housing weight in utility 0.04 G & IA (2017)
χp Steady-state price markup 1.2 G & IA (2017)
χw Steady-state wage markup 1.2 G & IA (2017)
mI Steady-state h.h. LTV ratio 0.70 GNSS (2010)
mE Steady-state firms LTV ratio 0.20 N & T (2017)
ωbI Steady-state IRB weight risk 0.37 G & K (2018)
ωbE Steady-state IRB weight risk 0.92 G & K (2018)
νb S.S. capital requirement 0.085 G & K (2018)
κkb Bank’s capital penalty cost 8 G & K (2018)
εbI S.S. loans elasticity of subs. 2.79 GNSS (2010)
εbE S.S. loans elasticity of subs. 3.12 GNSS (2010)
δb Bank’s capital depreciation 0.11 G & K (2018)
ρwbE Firms IRB AR coeff 0.92 AENPQ (2010)
χE
y Firms IRB output sensitivity -14 AENPQ (2010)
ρwbI H.H. IRB AR coeff 0.82 Own est.
χI
y H.H. IRB output sensitivity -1.53 Own est.
χI
q H.H. IRB house prices sensitivity -1.64 Own est.

∗ G & IA: Guerrieri and Iacoviello; IA & N: Iacoviello and Neri; N & T: Nookhwun and Tsomocos; G &
K: Gambacorta and Karmakar; GNSS: Gerali, Neri, Sessa and Signoretti; AENPQ: Angelini, Enria, Neri,
Panetta, Quagliariello.

2.3.2 Results

Rational expectations

We present the structural parameters and the house price constant gain estimation in Table

2.3, while the parameters related to the shock process are in Table 2.4. As a first step, we

estimated the model under Rational Expectations, providing a benchmark case to compare

our results with others in the literature.

Our results under Rational Expectations are consistent with other estimations in the liter-
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Figure 2.1: Observed variables - Sample I-1985 to IV-2007.

ature. Concerning the housing parameters, it is noteworthy that both the habit parameter

(εh) and the autocorrelation of the shock (ρJ) indicate the high persistence present in house

prices. Next, we will see how the expectations formation affects these estimated parameters

as learning becomes another source of persistence in the economy.

Adaptive learning expectations in house prices

As a next step, we further assume that the agents hold near-rational expectations by updating

their beliefs of house price expectations. The information set available to the agents in this

scenario is: Xq,t = [q̂t−1, q̂t−2]. We assume that agents already know the intercept value and

only have uncertainty in the other parameters of their PLM (i.e., there is no intercept in the

estimation of the beliefs).

The estimation results for this adaptive learning specification are denoted as AL−1 at Tables

2.3 and 2.4. We observed a clear improvement in the marginal likelihood compared with

the estimation under rational expectations. Note that there is a reduction in the housing
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Table 2.3: Structural Parameters and House Prices’ Constant Gain Posterior draws.

REE AL-1 AL-2
Mode 5% 95% Mode 5% 95% Mode 5% 95%

β′ 0.9741 0.964 0.981 0.9671 0.957 0.976 0.9760 0.966 0.983
εc 0.6119 0.542 0.663 0.5653 0.498 0.628 0.5439 0.478 0.613
εh 0.9891 0.986 0.993 0.9866 0.984 0.989 0.9815 0.977 0.986
ϕK 2.7090 1.260 8.688 3.2735 1.643 8.429 2.1639 0.802 3.366
σ 0.1949 0.154 0.240 0.1627 0.126 0.204 0.1787 0.142 0.213
rπ 2.1406 1.799 2.541 2.1333 1.718 2.563 1.2669 1.131 1.426
rR 0.8074 0.764 0.840 0.8311 0.799 0.871 0.7856 0.725 0.846
ry 0.0956 0.072 0.131 0.1056 0.079 0.138 0.1338 0.094 0.171
θπ 0.8933 0.865 0.916 0.9069 0.879 0.930 0.8302 0.803 0.856
θW 0.8580 0.822 0.888 0.8624 0.827 0.893 0.7666 0.730 0.805
κrbI 6.5828 3.848 10.81 6.9304 4.124 12.18 5.7093 2.886 12.32
κrbE 11.176 7.089 19.03 12.544 7.585 20.70 6.5910 4.153 9.520
ḡ 0.0053 0.003 0.010 0.0059 0.003 0.011
Log-MgL -469.9 -419.3 -369.5
Note: Based on 200,000 posterior draws, after a burn-in of 20 percent.

preference shock persistence, ρJ , which is in line with the idea that the propagation of

these shocks under learning is captured by the expectations’ mechanism and by the internal

dynamics of the decision rules.

We can observe that the introduction of learning also affected the estimation of habits in

consumption (εc) and the income share of impatient agents (σ). The lower value of σ under

this specification might indicate that the model no longer requires the volatility generated

by impatient households. This outcome might result from the effects that learning has in

terms of the volatility of the model.

Adaptive learning in all forward variables

Finally, we extend the assumption of adaptive learning expectations formation to all the

forward variables in the model. The information set available to the agents in this scenario
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Table 2.4: Structural Shock Parameters Posterior draws.

REE AL-1 AL-2
Mode 5% 95% Mode 5% 95% Mode 5% 95%

ρJ 0.9261 0.893 0.949 0.8256 0.785 0.858 0.7714 0.736 0.805
ρK 0.4854 0.384 0.608 0.5180 0.399 0.625 0.4434 0.354 0.525
ρR 0.5103 0.409 0.586 0.5339 0.438 0.616 0.8675 0.779 0.902
ρZ 0.7912 0.703 0.847 0.8840 0.826 0.924 0.6959 0.570 0.791
ρIµ 0.7970 0.695 0.878 0.7821 0.683 0.871 0.6549 0.532 0.780
ρEµ 0.8097 0.716 0.893 0.8092 0.707 0.894 0.7613 0.668 0.837
ρIm 0.9268 0.889 0.963 0.9551 0.919 0.977 0.9598 0.923 0.979
ρEm 0.9487 0.921 0.973 0.9486 0.918 0.974 0.9491 0.916 0.974
σJ 0.0490 0.036 0.063 0.1462 0.112 0.178 0.2155 0.165 0.271
σK 0.0225 0.010 0.075 0.0249 0.013 0.069 0.0645 0.023 0.101
σπ 0.0021 0.002 0.002 0.0019 0.002 0.002 0.0016 0.001 0.002
σR 0.0011 0.001 0.001 0.0010 0.001 0.001 0.0010 0.001 0.001
σW 0.0085 0.008 0.010 0.0086 0.008 0.010 0.0076 0.007 0.009
σZ 0.0177 0.015 0.021 0.0205 0.017 0.026 0.0222 0.017 0.031
σI
µ 0.0034 0.003 0.005 0.0035 0.003 0.005 0.0072 0.004 0.015
σE
µ 0.0033 0.003 0.005 0.0034 0.003 0.005 0.0063 0.004 0.009
σI
m 0.0109 0.010 0.013 0.0076 0.007 0.009 0.0084 0.007 0.010
σE
m 0.0104 0.009 0.012 0.0101 0.009 0.012 0.0105 0.009 0.012

Note: Based on 200,000 posterior draws, after a burn-in of 20 percent.

is:

Xs,t = [R̂t−1, q̂t−1, ŷt−1, π̂t−1, q̂
k
t−1, st−1, st−2] (2.45)

The addition of macro variables in the PLM, like output, inflation, interest rate, and the

asset prices considered in the model, is done to include variables that economic agents

usually follow to have a broad sense of economic conditions. In this estimation, we also

allow agents to have different learning gains. This assumption would be appropriate in cases

where variables have different rates of structural change (Branch and Evans, 2006). Given

the plausibility that agents generate expectations for other variables at different rates, we

explore this specification so that now ḡ will be a vector, rather than a scalar, with the same
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number of gains as forwarding variables in the model. We present the estimation results for

the vector of the constant gains parameters in Table B.2 located at Appendix B.3.

The results of this model are presented as AL−2 in Tables 2.3 and 2.4, where we can observe

that this specification delivers the highest marginal likelihood of our estimated models. The

extra flexibility under this specification allowed the model to fit the inertia observed in the

other observed variables, besides house prices, which the previous models could not do.

Milani (2007) noted that learning could endogenously generate persistence in the economy

and improve the fit of current monetary DSGE models. By introducing learning, other

sources of persistence may lessen their influence on the model. In the results of AL − 2

we can observe that there is a reduction in consumption habits (εc), price stickiness (θπ),

wage stickiness (θw), the interest rate adjustment cost of both loans to impatient households

(κrbI) and entrepreneurs (κrbE), and the auto-correlation coefficients associated with housing

preference shock (ρJ), inter-temporal preference shock (ρZ), impatient loan’s markup shock

(ρIµ) and firms loan’s markup shock (ρEµ ).

Given the previous results, it seems appropriate to look at the evolution of the persistence

associated with house prices. We present these results in Figure 2.2. Since in the PLM we

have both qt−1 and qt−2, the persistence is the sum of the coefficients of these two regressors.

The figure shows the increase in the inertia present in house prices, consistent with the 2000s

housing bubble.

To analyze the belief’s feedback effects on the economy, we estimated the impulse response

to a housing preference shock (Figure 2.3), where we compare the results under Rational

Expectations (REE) and adaptive learning (AL-2). For this exercise, we choose a period

before any influence from the housing bubble (I-85) and a period within the effects of the

bubble (IV-07) to make a clear contrast of the impact of the bubble on the economy. The

transmission mechanism of this shock under the rational expectations hypothesis (black line)
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Figure 2.2: Persistence of house prices beliefs.

Note: the dotted lines represent a 90 percent credible interval.

works as follows. After a positive housing preference shock, households increase their demand

for housing, inflating the corresponding price (q). The rise in housing prices expands the

borrowing capacity of the debtors, allowing them to consume more. Meanwhile, the lending

expansion (B) and the rise of lending rates (RI and RE) propel an increase in banks’ profits.

Accordingly, financial intermediaries can further expand lending to households and firms.

The rise in consumption and investment (i) generates an increase in output (y).

During the bubble (IV-07, red line), the adapting learning scheme amplifies the transmission

mechanism of the housing preference shock to lending and the real economy. First, the shock

stimulates a stronger and more persistent increase in housing prices (q). This reaction is due

to higher inertia from agents’ beliefs, at the bubble stage, compared to the case of rational

expectations. The more considerable magnitude of the housing prices response generates

a more significant expansion of the households’ borrowing capacity and, in turn, triggers

a massive build-up of credit. As a result, the increase in investment and output is more

persistent. However, these effects come at the cost of a more significant decline in the banks’
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Figure 2.3: IRF to a housing preference shock, REE vs AL-2.

Note: the dotted lines represent a 90 percent credible interval.

Capital-to-RWA ratio (Kb/B∗), which means a material deterioration of the resilience of the

banking system.

Interestingly, adaptive learning allows us to isolate the effect of the housing bubble by com-

paring the impulse response functions (IRFs) during the exuberance episode (IV-07, red

line) and regular times (IV-85, blue line). The results document a more robust feedback

loop between housing prices and lending during housing bubbles. The same housing prefer-

ence shock increases lending (B) by a factor of four during the bubble compared to regular

times. It is worth noting two additional results. First, the shock produces a deterioration

of banks’ Capital-to-RWA ratio (Kb/B∗) during the bubble, while the same ratio improves

in normal times. The deterioration during the bubble results from the combination of two

factors - the more substantial increase in lending and the smoother increase in lending rates.

In the model, banks’ capital - the numerator of the capital-to-RWA ratio - is accumulated

by retained earnings only (see equation 2.24) and, therefore, the smoother path of lending

rates mitigates the increase of banks’ capital. Instead, the denominator of the risk-weighted
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Figure 2.4: IRF to an expansionary impatient loans markup shock, REE vs AL-2.

Note: the dotted lines represent a 90 percent credible interval.

capital ratio is directly affected by the lending volumes, which increase more during the

bubble. This result suggests that there might be a more prominent role for macropruden-

tial policies in stabilizing the banking system in periods of exuberance. Second, investment

declines after the shock in standard times, while the opposite happens during the bubble.

The housing preference shock has more significant spillover effects on consumption during

exuberant times. In turn, firms’ incentives to borrow to support higher goods production

are strong enough to compensate for the increase in lending rates, resulting in a positive

investment response. On the contrary, during standard times, the lower propagation of the

shock makes firms’ incentives to expand production and demand credit weaker.

We further explore the effects of the financial sector on the economy and its interactions with

the learning environment. For this, we estimated the impulse response to a reduction in the

impatient loans interest rate (Figure 2.4). We can see that, in general, there are modest

effects from the evolution of beliefs for this shock, in contrast to what we observed for the
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housing preference shock.13 This result may suggest that changes in lending rates are not

the main driver for movements in house prices but instead shifts in housing market beliefs,

consistent with the findings of Kaplan et al. (2020).

2.4 Macroprudential Policy Analysis

After introducing adaptive learning to the DSGE model with a banking sector, we analyze

the effects of macroprudential policies, in the form of banks’ capital requirements, under this

environment. Although we are not assuming a time-varying regulatory capital-to-RWA ratio

(νb), how capital requirements are modeled (see equation 2.25) captures some features of a

leaning-against-the-wind policy. Indeed, the size of the banks’ costs when deviating from the

regulatory target increases proportionally to the magnitude of the deviation. Therefore, dur-

ing a boom, a larger expansion of banks’ lending implies a more substantial effect of capital

requirements on banks and, in turn, on the real economy.14 This allows us to characterize

capital requirements as set in the model as a macroprudential policy.

We consider two model’s specifications: 1) a benchmark model in which banks are subject

to capital requirements (κkb = 8); and 2) an alternative model in which capital requirements

are not in place (κkb = 0). We evaluated the capital requirements performance under the

full information assumption and learning, for a standard period (I-85, solid lines) and during

the bubble stage (IV-07, dotted lines).

Figure 2.5 shows the effects of capital requirements under a shock to housing preferences.

The positive housing preference shock determines an increase in house prices (q), a relax-

ation of the credit constraint of borrowers, and, in turn, a lending expansion (B). Capital

13These subtle differences in the results are also observed in the other credit supply shocks (i.e., firms’
loans interest rate, impatients’ LTV ratio, and firms’ LTV ratio shocks), which we present in Appendix B.3

14From a policy perspective, this specification can capture the crucial features of capital buffers (e.g.,
capital conservation buffer and systemic buffers). Instead, we are not considering the counter-cyclical capital
buffer (CCyB), which is an explicit time-varying requirement.
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Figure 2.5: IRF to a housing preference shock.

requirements aim to mitigate the credit build-up by imposing costs on banks that deviate

from the regulatory capital ratio. The banking system transfers those costs to the real

economy by increasing lending rates. From Figure 2.5 we can see the stabilization pro-

cess in progress, where the model with capital requirements (bluish lines) shows a smoother

response of variables like credit and investment compared with the model without capital

requirements (reddish lines).

Moreover, Figure 2.5 shows that capital requirements are more effective in taming the credit

cycle during the bubble. Under the complete information assumption and under learning for

the period pre-bubble (I-85, solid lines), the difference in the model’s responses to the shock

is similar in both models. On the contrary, during the bubble, macroprudential policies

effectively stabilize the economy by smoothing the effect on house prices, total credit, and

investment. More robust stabilization is associated with the more significant deviation of

banks’ capital ratio from the regulatory target during the bubble and the associated costs

imposed on banks by capital requirements. Notably, capital requirements also effectively
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mitigate the decline in banks’ capital-to-RWA triggered by the shock, improving the banking

system’s resilience. This result suggests more significant benefits from capital requirements

to stabilize the economy in episodes of exuberance. From a policy perspective, this reaffirms

the importance of tightening capital requirements during booms.

2.5 Conclusions

In this paper, we had two main questions: i) what the effects of the housing bubble are, gen-

erated via expectations formation, in the credit supply; and ii) how effective is the macropru-

dential policy in place under this environment with learning. We found that housing shocks

have a higher impact on other economic variables under learning, especially in periods of a

housing bubble. Additionally, we have evidence that capital requirements may play a role

in lessening the effects of housing shocks under the influence of the bubble. Future research

must analyze how other macro-prudential policies, such as the leverage ratio and output

floor, might impact the credit supply in this environment.
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[32] Òscar Jordà, Moritz Schularick, and Alan M. Taylor. Leveraged bubbles. Journal of

Monetary Economics, 76:S1–S20, 2015. Supplement Issue: November 7-8, 2014 Research

Conference on “Asset Price Fluctuations and Economic Policy”.

[33] Alejandro Justiniano, Giorgio E Primiceri, and Andrea Tambalotti. Household leverag-

ing and deleveraging. Review of Economic Dynamics, 18(1):3–20, 2015.

[34] Greg Kaplan, Kurt Mitman, and Giovanni L. Violante. The housing boom and bust:

Model meets evidence. Journal of Political Economy, 128(9):3285–3345, 2020.

[35] Jianjun Miao and Pengfei Wang. Asset bubbles and credit constraints. American

Economic Review, 108(9):2590–2628, September 2018.

[36] Fabio Milani. Expectations, learning and macroeconomic persistence. Journal of Mon-

etary Economics, 54(7):2065–2082, 2007.

[37] Fabio Milani and Sung Ho Park. Expectations and macro-housing interactions in a

small open economy: Evidence from korea. Open Economies Review, 30(2):375–402,

2019.

[38] Nuwat Nookhwun and Dimitrios Tsomocos. Mortgage default, financial disintermedia-

tion and macroprudential policies. Technical report, mimeo, 2017.

[39] Monika Piazzesi and Martin Schneider. Momentum traders in the housing market:

survey evidence and a search model. American Economic Review, 99(2):406–11, 2009.

[40] Robert J Shiller. Irrational exuberance. Princeton university press, 2015.

62



[41] Sergey Slobodyan and Raf Wouters. Learning in a medium-scale dsge model with

expectations based on small forecasting models. American Economic Journal: Macroe-

conomics, 4(2):65–101, 2012.

[42] Frank Smets and Rafael Wouters. Shocks and frictions in us business cycles: A bayesian

dsge approach. American Economic Review, 97(3):586–606, June 2007.

[43] Cindy Soo. Quantifying animal spirits: news media and sentiment in the housing

market. Ross School of Business Paper, (1200), 2015.

63



Chapter 3

Revisiting the Mixing in the

Occasionally Binding Constraints

estimation with a Gibbs Sampler

3.1 Introduction

There is a well-documented asymmetry in business cycles, in the sense that economic activity

presents violent drops during recessions while expansions are moderate. In recent work by

Adrian et al. (2019), using quantile regressions, the authors provided time series estimates of

the conditional distribution of predicted GDP growth. They found that financial conditions

are mainly correlated with higher moments of the estimated distribution. This result suggests

that nonlinear approximations to the solutions of DSGE models may be more appropriate.

In terms of the nonlinear approximations under a DSGE framework, I can mention the

work done by Guerrieri and Iacoviello (2015, 2017), in which occasionally binding collateral

constraints on housing wealth drive an asymmetry in the link between housing prices and
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economic activity. Additionally, among the literature with estimates involving inequality

constraints, I find interesting the work done by Chan and Strachan (2014) and Chan, Koop,

and Potter (2016), which use precision-based methods proposed by Chan and Jeliazkov

(2009).

Considering the findings of Adrian et al. (2019), it should be important to introduce these

nonlinearities in the estimation of DSGE models. As shown in Guerrieri and Iacoviello

(2017), one way to do it is by allowing that the collateral constraints in the model are not

always binding.

The “occasionally binding constraint” (OBC) model is related to the literature on regime-

switching and, in a broader sense, to mixture models. In this OBC model, the classification

of the regime is done by defining a latent variable related to the constraint of interest (i.e.,

a Lagrange multiplier). It assumes that the other variables of the model are contingent on

the state of that constraint. At the same time, the structural parameters remain invariant.1

Using this framework, I simulated data and proceeded to do an estimation. For this, I

develop an algorithm where the definition of the blocks of latent variables and parameters

has to be done so that the full conditional distributions are tractable. In this context, the

sampling of the variable that captures the regime of the model is done marginally from the

rest of the latent variables of the model, with the objective of reducing the inefficiency of

its draws. For the case of the latent variables, other than the Lagrange multiplier, I use the

precision-based method proposed by Chan and Jeliazkov (2009), which provides the draws

of these variables at a low computational cost. The results suggest that this procedure offers

an efficient simulation of the objective distribution, although there are some caveats and

future work.

I organize my paper as follows. In section 3.2, I present a model with the characteristics of

1This contrast with a simple Markov Switching model, in which it is assumed a different set of reduced-
form parameters for each regime.
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the “occasionally binding constraint” and simulate data from it. In section 3.3, I describe

my estimation strategy and deliver my results. In section 3.4, I provide my conclusions.

3.2 Model (DGP)

Following Guerrieri and Iacoviello (2015), I consider a model with an impatient consumer

that maximizes the following lifetime utility:2

E0

∞∑
t=0

βtZc,tΓc
(Ct − hCt−1)

1−γ − 1

1− γ
(3.1)

subject to a budget constraint and a borrowing constraint:

Ct +RBt−1 = Yt +Bt (3.2)

Bt ≤ δBt−1 + (1− δ)Zb,tmYt (3.3)

where Ct is the consumer’s consumption, Bt the level of debt, Yt her income, β is the

consumer’s discount factor, h captures the consumption habits, γ is the inverse elasticity

of substitution, Γc ≡ (1−h)γ

1−βh
is a scaling factor that ensures that the marginal utility of

consumption is independent of habits in the steady state, R is the steady state gross interest

rate, δ is a parameter that measures the borrowing inertia in the borrowing limit, m is the

steady state loan-to-value ratio, Zc,t is a preference shock and Zb,t a credit shock, and Et

represents the rational expectations operator at period t, i.e. the model assumes Rational

Expectations. It is assumed that βR < 1, so in steady state the credit constraint (3.3) is

binding.

For simplicity, the consumer’s income is exogenously determined and that its logarithm, yt,

2The model is based on what is described in the appendix of Guerrieri and Iacoviello (2015).
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follows the following process:

yt = (1− ρ)ȳ + ρyt−1 + εy,t (3.4)

Additionally, the logarithm of the shocks follow AR(1) processes:

log(Zc,t) = ρZclog(Zc,t−1) + εZc,t (3.5)

log(Zb,t) = ρZblog(Zb,t−1) + εZb,t (3.6)

where the parameters ρ, ρZc, and ρZb represent the persistence of its respective process.

Therefore, the consumer’s problem is to choose the level of consumption, Ct, and debt, Bt, to

maximize her lifetime utility (3.1) subject to the constraints (3.2) and (3.3). The Lagrangian

of the described optimization problem is given by:

L = E0

∞∑
t=0

βt{Zc,tΓc
(Ct − hCt−1)

1−γ − 1

1− γ

+ µt(Yt +Bt − Ct −RBt−1)

+ λt(δBt−1 + (1− δ)Zb,tmYt −Bt)}

where µt is the budget constraint’s Lagrange multiplier and λt the borrowing constraint’s

Lagrange multiplier. From the optimization for the consumption path we get a system of

seven necessary conditions and seven variables: {Yt, Zc,t, Zb,t, Bt, Ct, µt, λt}.

Let UC,t ≡ ΓcZc,t(Ct−hCt−1)
−γ −βhΓcEtZc,t+1(Ct+1−hCt)

−γ be the marginal utility. Addi-

tionally, let us define λu,t ≡ λt/UC,t. The conditions for the equilibrium include the budget

constraint in equation (3.2), the income process (3.4), the AR(1) exogenous shocks (3.5) and

(3.6), together with the first order condition of consumption (3.7), the Euler equation (3.8),
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and the Kuhn-Tucker condition (3.9):

µt = UC,t (3.7)

(1− λu,t)UC,t = β Et[(R− δλu,t+1)UC,t+1] (3.8)

λt(δBt−1 + (1− δ)Zb,tmYt −Bt) = 0 (3.9)

Let M1 be the model under the binding borrowing constraint regime (i.e. λt > 0), which

should be the most common given the assumption that the steady-state lies in this regime.

On the other hand, let M2 be the model under the non-binding borrowing constraint regime

(i.e. λt = 0).3

In the next set of equations, I define the variables in deviation from their steady-state with

a hat (i.e. x̂t ≡ d logXt = log(Xt/X̄)). In both regimes, M1 and M2, the log-linearized

equations of the exogenously determined variables are:

ŷt = ρŷt−1 + εy,t (3.10)

ẑc,t = ρZcẑc,t−1 + εZc,t (3.11)

ẑb,t = ρZbẑb,t−1 + εZb,t (3.12)

Next, I present the regime contingent equations. In terms of the M1 regime, the set of

3I present the steady-states in Appendix C.1
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log-linearized equations are:

b̂t = (1− δ)mŷt + (1− δ)mẑb,t + δmb̂t−1 (3.13)

ĉt =
1

1 + (1−R)m
ŷt +

m

1 + (1−R)m
b̂t −

Rm

1 + (1−R)m
b̂t−1 (3.14)

µ̂t = − γ(1 + βh2)

(1− βh)(1− h)
ĉt +

γh

(1− βh)(1− h)
ĉt−1 +

γβh

(1− βh)(1− h)
Etĉt+1

+
1

1− βh
ẑc,t −

βh

1− βh
Etẑc,t+1 (3.15)

λ̂t =
1− βδ

1− βR
µ̂t + δβ Etλ̂t+1 −

Rβ(1− βδ)

1− βR
Etµ̂t+1 (3.16)

Meanwhile, the log-linearized equations that are contingent to regime M2 are:

b̂t = − 1

m
ŷt +

1 + (1−R)m

m
ĉt +Rb̂t−1 (3.17)

ĉt =
βh

1 + βh2
Etĉt+1 +

h

1 + βh2
ĉt−1 +

1− h

γ(1 + βh2)
ẑc,t −

βh(1− h)

γ(1 + βh2)
Etẑc,t+1

− (1− βh)(1− h)

γ(1 + βh2)
µ̂t (3.18)

µ̂t = Etµ̂t+1 (3.19)

λ̂t = −1 (3.20)

The linearized system of necessary conditions under M1 and M2 can be expressed, respec-

tively, as:

AEtξt+1 + Bξt + Cξt−1 + Eεt = 0 (3.21)

A∗Etξt+1 + B∗ξt + C∗ξt−1 +D∗ + E∗εt = 0 (3.22)

Where ξt = (ŷt, ẑc,t, ẑb,t, b̂t, ĉt, µ̂t, λ̂t)
′. The solution forM1 is done using the Generalized Schur

decomposition method proposed by Sims (2001), while forM2 is obtained using a “guess and

verify” approach, as described in Guerrieri and Iacoviello (2015), where the system is pinned
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down by the household’s expectation that the economy will return to the binding constraint

regime (since is the steady-state regime). In general, the state-transition can be described

by the following equation:

ξt = J(ξt−1, εt) + F (ξt−1, εt)ξt−1 +G(ξt−1, εt)εt (3.23)

3.2.1 Simulated Data

In order to simulate from the described model, I use the parameter values presented in Table

3.1. The data computed in the simulation exercise is presented in Figure 3.1, where we can

see that there is a clear change in the behavior of borrowing (Bt) and consumption (Ct)

when the credit constraint is either binding (λt > 0) or is not binding (λt = 0).4

Description Value
γ IES 1
m Loan-to-value ratio 0.9
δ Borrowing inertia 0.8
h Consumption habits 0.5
R Gross interest rate 1.005
β Discount factor 0.9870
ρ Output persistence 0.9
ρzc Preference shock persistence 0.8
ρzb Credit shock persistence 0.1
σy Output StdDev 0.01
σzc Credit shock StdDev 0.015
σzb Credit shock StdDev 0.00001

Table 3.1: Model Calibration

4In Figure 3.1, the data for the variables, Yt, Bt, Ct, is standardized.
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Figure 3.1: Simulated Data from DGP

3.3 Estimation

3.3.1 Proposed algorithm

To define the sampling scheme of my MCMC algorithm, I resort to blocking to construct

(when possible) the conditional distributions and be able to proceed with Gibbs sampling.

I assume that from the simulated data, only yt = {ŷt, b̂t, ĉt} will be treated as observed

variables.5 Therefore, the rest of the variables in ξt are latent unobserved variables. Finally,

the set of parameters to be estimated are represented by θ = {ρ, ρZc, δ, h, β, σY , σZc}.6,7

I start by describing the blocking scheme for the latent variables, (λ∗t , ξs,t|yt, θ), where ξs,t ≡
5In order to avoid numerical problems, the variables are in logarithm and have been standardized.
6The rest of the parameters of the model are assumed to be fixed in the values of the calibration.
7Note that since the assumed observed variables have been standardized, the parameters σY , σZc should

be re-scaled to be comparable with the DGP calibrated parameters.
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{ẑc,t, ẑb,t, µ̂t}. I should note that, according to the model in section 3.2, the latent variables

are correlated.8 Therefore, to improve the efficiency of the sampler, these variables should

be sampled in a single step. Following the Scheme 2 described in Chan and Jeliazkov (2009),

this step is done by sampling (λ∗t |yt, θ), marginally of ξs,t, followed by a draw of ξs,t from its

full conditional distribution, i.e. (ξs,t|yt, λ
∗
t , θ). With this blocking scheme, I aim to reduce

the inefficiency factors of the sampler and increase its speed of convergence.

The state transition equation for λ∗t is obtained from the solution of equation (3.21), under

regime M1, scaled to its steady-state level λss. I can express such equation as:

λ∗t = λss + Fλξt−1 + νλ,t

where Fλ is the row of matrix F , from equation (3.23), that corresponds to λ, νλ,t ∼ N(0, σ2
λ),

and σ2
λ is the variance of λ, which will be assumed to be a constant.9 As I mentioned before,

to improve the sampling of λ∗, I integrated out ξs, and leave it conditional on the observed

data y; i.e.

λ∗t = λss + Fλyt−1 + νλ,t (3.24)

In terms of the measurement equation for λ∗ we have the relation with the Lagrange multi-

plier λ: λt = 1{λ∗t > 0}, where λt defines the credit constraint regime of the household in

period t. This can be represented as a state-transition equation for ξt, as equation (3.23),

8The variables in ξs,t depend on the regime, defined by λt, while at the same time the solution of equation
(3.21) suggest that λt will depend on the lagged values of the state variables of the model.

9In the estimation I set σλ = 0.025, which is close to the 0.0368 model consistent standard deviation with
the calibrated parameters used to generate the simulated data.
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for each model represented in equations (3.21) and (3.22):

ξt = F (λt > 0)ξt−1 +G(λt > 0)εt (3.25)

ξt = F (λt = 0)ξt−1 +G(λt = 0)εt (3.26)

where {F (λt > 0), G(λt > 0)} ≡ {F,G} are matrices of reduced form parameters for regime

M1 obtained from the solution of equation (3.21), while {F (λt = 0), G(λt = 0)} ≡ {F ∗, G∗}

are matrices of reduced form parameters for regime M2 solution of equation (3.22).

As stated before, I am conditioning λ∗ on the observed variables y. Out of these variables,

b̂t and ĉt change their structural relation depending on the regime defined by the Lagrange

multiplier.10 Let y2,t ≡ {b̂t, ĉt}, I express in SUR form the solutions for these variables as:

y2,t = X2,tϕBC + e2,t (3.27)

y2,t = X2,tϕ
∗
BC + e∗2,t (3.28)

where ϕBC and e2,t ∼ N(0,ΩBC) are for the regime M1 (λ∗ > 0), while ϕ∗
BC and e∗2,t ∼

N(0,Ω∗
BC) are for the regime M2 (λ∗ ≤ 0), and matrices ΩBC and Ω∗

BC are the model

consistent co-variances.11

From equation (3.24), let λ̃∗t = λss+Fλyt−1, and define π0,t ≡ Pr(λ∗t > 0) = 1−Φ(−λ̃∗t/σλ),

where Φ() is the CDF of a standard normal distribution. Combining this with equations

(3.27) and (3.28), we obtain an expression for the probability that λ∗t is positive:

πt =
π0,tϕ(e2,t|ϕBC ,ΩBC)

π0,tϕ(e2,t|ϕBC ,ΩBC) + (1− π0,t)ϕ(e∗2,t|ϕ∗
BC ,Ω

∗
BC)

=
1

1 + Ψt

(3.29)

10Remember that ŷt is exogenously determined.
11These are sub-matrices, related to variables bt and ct, of the Ω matrix that represents the solution to

the theoretical second moment: Ω = FΩF ′ +GΣG′.
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where Ψt =
(1−π0,t)ϕ(e∗2,t|ϕ∗

BC ,Ω∗
BC)

π0,tϕ(e2,t|ϕBC ,ΩBC)
, and ϕ() is the pdf of a Gaussian distribution. Then, the

conditional density of λ∗t is the following 2-component mixture of truncated normal distri-

butions:

p(λ∗t |yt, θ) = πtϕ(0,∞)(λ
∗
t |λ̃∗t , σλ) + (1− πt)ϕ(−∞,0)(λ

∗
t |λ̃∗t , σλ) (3.30)

A draw from the above mixture can be obtained as follows. First, get a Bernoulli draw Z

with P(Z = 1) = πt. If Z = 1, sample λ∗t from the truncated N(0,∞)(λ
∗
t |λ̃∗t , σλ); if Z = 0,

instead sample λ∗t from N(−∞,0)(λ
∗
t |λ̃∗t , σλ).

Given λ∗, I move on to the sampling of (ξs,t|yt, λ
∗
t , θ). It turns out that G−1F = C and

G∗−1
F ∗ = C∗, from equations (3.21) and (3.22). I use this result, together with the following

two definitions, to rewrite equations (3.25) and (3.26) together. Let

iG ≡
(
G−1

1{λt>0} +G∗−1
1{λt=0}

)
, and C ≡

(
C 1{λt>0} + C∗

1{λt=0}
)
. Therefore,

iGξt = Cξt−1 + εt (3.31)

Let

H =



iG

C iG

C
. . .

. . . . . .

C iG


.

Now, I can stack ξt and εt over time and express the equation above as:

Hξ = ε
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Out of matrix H, I take the sub-matrices Hss, Hyy, and Hys, where the indices ij of Hij

represent the rows associated with variable i and columns of variable j. One should keep

in mind that matrix H and its sub-matrices are functions of λ. With these matrices, I can

express the state-transition and measurement equations, respectively, as:

Hssξs = εs (3.32)

Hyyy = Hysξs + εy (3.33)

where εs ∼ N(0,Σs), εy ∼ N(0,Σy), and both Σs and Σy are part of Σ, a diagonal matrix.12

From equation (3.32), the prior for ξs can be express as p(ξs|λ∗, θ) ∝ ξ′sH
′
ss(IT ⊗ Σ−1

s )Hssξs.

From equation (3.33), one can express the likelihood function as f(y|ξs, λ∗, θ) ∝ (Hyyy −

Hysξs)
′(It ⊗ Σ−1

y )(Hyyy−Hysξs). Combining the above expressions, I find that:

p(ξs|y, λ∗, θ) ∝ ξ′s(H
′
ss(IT ⊗ Σ−1

s )Hss +H ′
ys(It ⊗ Σ−1

y )Hys)ξs

− 2ξ′sH
′
ys(It ⊗ Σ−1

y )Hyyy

such that p(ξs|y, λ∗, θ) ∼ N(ξ̂s, K
−1
s ), where

Ks = H ′
ss(It ⊗ Σ−1

s )Hss +H ′
ys(It ⊗ Σ−1

y )Hys (3.34)

ξ̂s = K−1
s (H ′

ys(It ⊗ Σ−1
y )Hyyy) (3.35)

To sample (ξs|y, λ, θ) from the above distribution, I follow the efficient estimation of latent

states algorithm proposed by Chan and Jeliazkov (2009), which provides draws for ξs at low

computational costs.

To sample from (θ|y, ξs, λ), most of the steps are standard results with some minor restric-

12The elements σY and σZc of Σ are part of the θ parameters under estimation. The other elements of Σ
are assumed to be known.
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tions imposed in the sampling. Only for the case of h and β it was necessary to sample them

jointly with an Accept-Reject Metropolis-Hastings (ARMH) algorithm, which I will describe

next.

The parameters h and β are observed in the following equation (equivalent to (3.15)):

(1− βh)µ̂t =− γ(1 + βh2)

1− h
ĉt +

γh

1− h
ĉt−1 +

γβh

1− h
Etĉt+1

+ Ẑc,t − βhEtẐc,t + ν∗µ,t

where I introduce a measurement error and it is assumed that ν∗µ,t ∼ N(0, ω2
µ∗). Additionally,

the expectations are estimated from the Rational Expectations Equilibrium under the model

in regime M1.

I proceed to define Xµ,t ≡ {ĉt,−ĉt−1,−Etĉt+1,−Ẑc,t,EtẐc,t+1, µ̂t} and vector

θµ ≡
(
γ(1 + βh2)

1− h
,
γh

1− h
,
γβh

1− h
, 1, βh, 1− βh

)′

such that

ν∗µ,t =
γ(1 + βh2)

1− h
ĉt −

γh

1− h
ĉt−1 −

γβh

1− h
Etĉt+1 − Ẑc,t + βhEtẐc,t + (1− βh)µ̂t

= Xµ,tθµ

By stacking the variables over time I can express the equation above as ν∗µ = Xµθµ. Therefore,

the logarithm of the likelihood function is proportional to:

log f(ν∗µ|h, β) ∝ −1

2

θ′µX
′
µXµθµ

ω2
µ∗

Given the nonlinear relation between h and β, I proceed to define the approximation of the

likelihood function f(ν∗µ|h, β).13 Let θhb ≡ (h, β)′, and allow me to define the gradient as

13I am omitting that is also conditional to Xµ to simplify notation.
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f = (fh, fβ)
′, where:

fh ≡ ∂

∂h
log f(ν∗µ|θhb)

∣∣∣∣
θhb=θ̃hb

= −
θ′µX

′
µXµ

ω2
µ∗

∂θµ
∂h

∣∣∣∣
θhb=θ̃hb

fβ ≡ ∂

∂β
log f(ν∗µ|θhb)

∣∣∣∣
θhb=θ̃hb

= −
θ′µX

′
µXµ

ω2
µ∗

∂θµ
∂β

∣∣∣∣
θhb=θ̃hb

and let the elements of the negative Hessian G be express as Gi,j, for i, j = h, β, where:

Gi,j ≡ − ∂2

∂i∂j
log f(ν∗µ|θhb)

∣∣∣∣
θhb=θ̃hb

=
θ′µX

′
µXµ

ω2
µ∗

∂2θµ
∂i∂j

∣∣∣∣
θhb=θ̃hb

+

(
∂θµ
∂i

∣∣∣∣
θhb=θ̃hb

)′
X ′

µXµ

ω2
µ∗

∂2θµ
∂j

∣∣∣∣
θhb=θ̃hb

With these definitions, I can expand the log-likelihood, log f(ν∗µ|θhb), around θ̃hb to obtain

the expression:

log f(ν∗µ|θhb) ≈ log f(ν∗µ|θ̃hb) + (θhb − θ̃hb)
′f − 1

2
(θhb − θ̃hb)

′G(θhb − θ̃hb)

= −1

2
[θ′hbGθhb − 2θhb(f +Gθ̃hb)] + c∗f ,

where c∗f is a constant independent of θhb.

I posit a Gaussian prior for θhb ∼ N(θhb,0, K
−1
hb,0). Combined with the approximation of the

log-likelihood, I get the following expression for the conditional distribution of θhb:

log p(θhb|ν∗µ) ∝ log f(ν∗µ|θhb) + log p(θhb)

≈ −1

2
[θ′hb(G+Khb,0)θhb − 2θhb(f +Gθ̃hb +Khb,0θhb,0)] + c∗∗f ,

(3.36)

where again c∗∗f is a constant independent of θhb. This result imply that the approximating

posterior distribution is Gaussian with precision Khb ≡ G+Khb,0 and mean vector K−1
hb (f +

Gθ̃hb +Khb,0θhb,0).
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I choose that the point θ̃hb, around which the Taylor expansion is constructed, to be the

posterior mode, θ̂hb, which has the advantage that it can be obtained via the Newton-

Raphson method. More specifically, it follows from equation (3.36) that the negative Hessian

of log p(θhb|ν∗µ) evaluated at θhb = θ̃hb is Khb, while the gradient at θhb = θ̃hb is given by

∂

∂θhb
log p(θhb|ν∗µ)

∣∣∣∣
θhb=θ̃hb

= −Khbθ̃hb + 2(f +Gθ̃hb +Khb,0θhb,0)

Hence, we can implement the Newton-Raphson method as follows: initialize with θhb = θ
(1)
hb .

For s = 1, 2, ..., use θ̃hb = θ
(s)
hb in the evaluation of f , G, and Khb, and denote them as f(θ

(s)
hb ),

G(θ
(s)
hb ), and Khb(θ

(s)
hb ), respectively, where the dependence on θ

(s)
hb is made explicit. Compute

θ
(s+1)
hb as

θ
(s+1)
hb = θ

(s)
hb +Khb(θ

(s)
hb )

−1 ∂

∂θhb
log p(θhb|ν∗µ)

∣∣∣∣
θhb=θ̃hb

= Khb(θ
(s)
hb )

−1(f(θ
(s)
hb ) +G(θ

(s)
hb )θ

(s)
hb +Khb,0θhb,0)

(3.37)

If ∥θ(s+1)
hb − θ

(s)
hb ∥ ≥ ϵ, for some pre-fixed tolerance level ϵ, then continue; otherwise stop and

θ̂hb = θ
(s+1)
hb . Given the mode θ̂hb, the negative Hessian Khb at θ̂hb can be easily computed.

To sample from (h, β|ξ, θ−(h,β)), where θ−j represents any other parameter in θ other than j,

I use the approximation of the posterior N(θ̃hb, K
−1
hb ) to make candidate draws and accept

or reject them via an ARMH step as proposed by Chib and Jeliazkov (2005).14 Using the

ARMH algorithm, I can construct a better approximation of the objective distribution, and

consequently, the acceptance rate is substantially higher than the baseline MH algorithm.

To sample from (ρ|ξ, θ−ρ), notice that ρ’s measurement equation is given by (3.10). For

convenience, I re-express that equation as: ŷt = Xρ,tρ+ εy,t, and by stacking ŷt and Xρ,t over

14For a more detailed description of the Newton-Raphson method and the ARMH step I used, I direct the
reader to Chan and Strachan (2014).
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time I can represent it as ŷ = Xρρ+ εy. I assume a prior N(ρ0, S
2
ρ0). Therefore,

p(ρ|ŷ) ∝ f(ŷ|ρ) p(ρ)

∝ ρ′(1/S2
ρ0 +X ′

ρXρ/σ
2
y)ρ− 2ρ(ρ0/S

2
ρ0 +X ′

ρŷ/σ
2
y)

such that the conditional distribution is p(ρ|ŷ, σy) ∼ N(ρ̂, K−1
ρ ), where:

Kρ = 1/S2
ρ0 +X ′

ρXρ/σ
2
y (3.38)

ρ̂ = K−1
ρ (ρ0/S

2
ρ0 +X ′

ρŷ/σ
2
y) (3.39)

While sampling from (ρ|ŷ, σy) the algorithm only accept draws that are between (0, 1), since

the persistence, ρ, is defined for values in that space.

Analogously, to sample from (ρZc|ξ, θ−ρZc
) we should look at its measurement equation (3.11).

Re-expressing and stacking over time we have Ẑc = XZcρZc + εZc. With an assumed prior

N(ρZc,0, S
2
ρZc,0), we get that p(ρZc|Ẑc, σZc) ∼ N(ρ̂Zc, K

−1
ρZc), where:

KρZc = 1/S2
ρZc,0 +X ′

ZcXZc/σ
2
Zc (3.40)

ρ̂Zc = K−1
ρZc(ρZc,0/S

2
ρZc,0 +X ′

ZcẐc/σ
2
Zc) (3.41)

And again, the algorithm accept only draws that are between (0, 1).

For (δ|ξ, θ−δ), we observe that its measurement equations are (3.13) and (3.16). I re-express

and stack over time equation (3.13) as:

bδ = Xbδδ + eb

where bδ,t = b̂t − mŷt − mẐc,t and Xbδ,t = mb̂t−1 − mŷt − mẐc,t and eδ,t is a measurement
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error that is assumed Gaussian N(0, ω2
b ). Analogously, for equation (3.16),

λδ = Xλδδ + eλ

where λδ,t = (1−βR)λ̂t− µ̂t+βREtµ̂t+1 and Xλδ,t = β(Etλ̂t+1− µ̂t+βREtµ̂t+1) and eλ,t is a

measurement error that is assumed Gaussian N(0, ω2
λ). Finally, I assume a prior N(δ0, S

2
δ0).

Therefore, the logarithm of the objective distribution is:

log p(δ|ξ, θ−δ) ∝ log p(δ) + log f(b̂|δ, θ−δ) + log f(λ̂|δ, θ−δ)

∝ δ′(1/S2
δ0 +X ′

bδXbδ/ω
2
b +X ′

λδXλδ/ω
2
λ)δ

− 2δ′(δ0/S
2
δ0 +X ′

bδbδ/ω
2
b +X ′

λδλδ/ω
2
λ)

Note that the variables in equation (3.16) are all unobserved, so to improve the sampling of

δ, I integrate them out. As a result, the conditional distribution is p(δ|b̂, θ−δ) ∼ N(δ̂, K−1
δ ),

where:

Kδ = 1/S2
δ0 +X ′

bδXbδ/ω
2
b +X ′

λδXλδ/ω
2
λ (3.42)

δ̂ = δ0/S
2
δ0 +X ′

bδbδ/ω
2
b (3.43)

To construct p(σY |ŷ, θ−σY
), I remind the reader that the measurement equation for σY is

(3.10), where εy,t = ŷt − Xρ,tρ, and it is assumed that εy,t ∼ N(0, σ2
Y ). I consider a prior

p(σY ) ∼ Γ−1(ν0, S0). From standard results, I have that the conditional distribution is also

an inverse Gamma, p(σY |ŷ, θ−σY
) ∼ Γ−1(ν̂, Ŝ), with updated parameters:

ν̂ = ν0 +
T − 1

2
(3.44)

Ŝ = S0 +
T∑
t=1

ε2y,t
2

(3.45)
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Before moving on to define p(σZc|ξ, θ−σZc
), I must point out that there some issues with

the identification of the consumer’s preference shock (ẑc,t), and here I would provide some

intuition behind it. Note that when the consumer is in the binding credit constraint regime,

M1, both her consumption and borrowing decisions are restricted by her budget (3.2) and

credit (3.3) constraints, making it difficult to elicit the consumer’s preference shocks. On the

other hand, when the consumer is in the non-binding credit constraint, M2, her borrowing

decision is contingent on her consumption decision; which in turn is related to the Euler

equation (3.8); this implies that in this regime the consumption decision depends on the

consumer’s preference shock. Consequently, it is in regime M2 where one could identify the

preference shock and its related parameters.

In this context, to construct p(σZc|ξ, θ−σZc
) I follow the next steps. First, I use the data

under the non-binding credit constraint regime (λ∗t ≤ 0) and employ equation (3.18), to

which I add a measurement error. Simplifying the parameters’ notation, I have that:

ĉt = ϕc,1Etĉt+1 + ϕc,2ĉt−1 + ϕc,3ẑc,t − ϕc,4Etẑc,t+1 − ϕc,5µ̂t + ec,t

where ec,t ∼ N(0, ω2
c ), and assume that ω2

c have an inverse Gamma prior. Therefore, the

posterior for ω2
c will also be inverse Gamma with updating parameters:

ν̂c = νc,0 +
τ − 1

2
(3.46)

Ŝc = Sc,0 +
τ∑

t=1

e2c,t
2

(3.47)

where τ =
∑T

t=1 1{λ∗t ≤ 0}. Next, I assume that the variance of the measurement error is

composed primarily from the noise of the latent variables in the simplification of equation

(3.18).15 This give us ω2
c ≈ (ϕc,3 + ϕc,4ρZc)

2σ2
Zc + ϕ2

c,5ω
2
µ. From the REE solution I get the

15I base this assumption on the notion that consumption is an observed variable.
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model consistent variance,16 ω2
µ, so that after solving for σ2

Zc I get:

σ2
Zc ≈ (ω2

c − ϕ2
c,5ω

2
µ)/(ϕc,3 + ϕc,4ρZc)

2 (3.48)

To sample from (σ2
Zc|ξ, θ−σZc

), I make draws from (ω2
c |ξ, λ ≤ 0, θ) ∼ Γ−1(ν̂c, Ŝc) and af-

terwards solve the approximation described above for σ2
Zc, rejecting any combination that

results in a negative σ2
Zc.

In summary, the steps of my MCMC algorithm are the following:

1. Draw jointly (λ∗, ξs|y, θ) as follows:

(a) Sample (λ∗|y, θ), marginally of ξs, each period t at a time from equation (3.30),

by drawing a Bernoulli Z, where (Z = 1) ≡ (λ∗t > 0) and (Z = 0) ≡ (λ∗t ≤ 0),

and sample λ∗t from the corresponding truncated Gaussian distribution;

(b) Sample (ξs|y, λ∗, θ) by drawing from N(ξ̂s, K
−1
s ), with precision Ks given by equa-

tion (3.34) and mode ξ̂s by equation (3.35), using the precision sampler in Chan

and Jeliazkov (2009).

2. Draw (θ|y, ξs, λ∗) as described for each case:

(a) Sample jointly (h, β|ξ, θ−(h,β)), by making candidate draws from the approxima-

tion N(θ̂hb, K
−1
hb ), where θ̂hb is found via the Newton-Raphson method, described

in equation (3.37), and accept or reject them via an ARMH step as proposed by

Chib and Jeliazkov (2005).

(b) Sample (ρ|ŷ, θ−ρ) ∼ N(ρ̂, K−1
ρ ), with precision Kρ and mean ρ̂, given by equations

(3.38) and (3.39), respectively.

(c) Sample (ρZc|Ẑc, θ−ρZc
) ∼ N(ρ̂Zc, K

−1
ρZc), with precision KρZc and mean ρ̂Zc, given

by equations (3.40) and (3.41), respectively.

16When computing the model consistent variance for µt, I constructed without the effects of σ2
Zc. Therefore,

the subtraction of ω2
c in equation (3.48) takes out the noise not related to σ2

Zc.
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(d) Sample (δ|y, θ−δ) ∼ N(δ̂, K−1
δ ), with precision Kδ and mean δ̂, given by equations

(3.42) and (3.43), respectively.

(e) Sample (σ2
Y |ŷ, θ−σY

) ∼ Γ−1(ν̂, Ŝ), with degrees of freedom ν̂ and scale parameter

Ŝ, given by equations (3.44) and (3.45), respectively.

(f) Sample (σ2
Zc|ξ, θ−σZc

) by making draws from (ω2
c |ξ, λ ≤ 0, θ) ∼ Γ−1(ν̂c, Ŝc), with

degrees of freedom ν̂c and scale parameter Ŝc, given by equations (3.46) and (3.47),

respectively, and solve for σ2
Zc as in equation (3.48).

3.3.2 Results

The estimation is based on a sample of 10,000 draws kept after a burn-in of 1,000 draws. In

Table 3.2 I present the calibration value used in the data generating process, the assumed

prior distribution,17 and the results of the posterior draws.18,19 Additionally, I show the trace

plots in Figure 3.2, while in Figure 3.5 I contrast the simulated data from the DGP and the

estimated mean of the λ∗ latent variable.

Variable DGP Prior Mean 5% 95% Ineff Factor
δ 0.80 N(0.70, 0.052) 0.7817 0.7142 0.8506 1.1
h 0.50 N(0.50, 0.152) 0.4875 0.4635 0.5092 1.2
ρ 0.90 N(0.70, 0.12) 0.9021 0.8788 0.9256 0.9
ρZc 0.80 N(0.80, 0.022) 0.7985 0.7657 0.8309 2.8
β 0.987 N(0.985, 0.0022) 0.9870 0.9834 0.9906 1.1
σY 0.44 Γ−1(2, 1) 0.4283 0.4122 0.4453 1.1
σZc 0.65 Γ−1(2, 1) 0.7922 0.6349 0.9854 1.3

Table 3.2: Posterior mean and 90 percent credible interval.

The results show that the posterior mean is a good approximation for most of the parameters,

17In Table 3.2, the priors with N(µ0, σ
2
0), the hyperparameters are the mean and variance. For the priors

with Γ−1(ν0, S0), the hyperparameters are the degrees of freedom and the scale.
18The DGP value of σY and σZc are 0.01 and 0.015, respectively. In the Table, these values are scaled by

the standard deviation of the observed data used for its standardization.
19The inefficiency factors are defined as 1+2

∑J
j=1 ϕj , where ϕj is the sample autocorrelation at lag length

j, and J is chosen large enough so that the autocorrelation tapers off. I borrow the code from Eisenstat,
Chan, and Strachan (2016) for their computation.

83



and the 90 percent credible interval contains all the “true” values, although there are some

caveats. First, I want to remark that because of the identification issues related to the

consumer preference shock described in the previous section, I am using a very informative

prior for ρZc. Even with this tight prior, we can see that the highest inefficiency factor was

for the draws of ρZc (2.8). Additionally, in Figure 3.3 we can see that the distribution of σZc

is not centered at the “true” value, and it is skewed to the right, suggesting that as a whole

there are still some problems with the identification of this shock.

In terms of the sensibility of the results to the priors, I can point out that draws for ρ and σY

are the least sensible for the choice of prior. On the other hand, δ and β are highly sensitive

to the choice of prior, while the draws of h are susceptible to the choice of prior variance but

not to the prior mean. When the prior of h is not diffuse enough, the ARMH step for the

pair (h, β) stops updating, eroding the efficiency in the sampler intended with this step.20

In the marginal density plots, presented in Figure 3.3, we can see that the distributions have

a well-defined bell curve shape, although the ones for δ and h are not center at their “true”

values. Moreover, the density of parameter h also appears to be a small skewness to the

left. In Figure 3.4, I present scatter plots for all the combinations of estimated parameters.

We can see some irregularities at the bottom of pairs21 (β, δ)[1,4] and (β, ρZc)[3,2], where it

appears that the sampling of β was not updating a small number of times. The scatter plots

related to ρZc have an odd shape, which reflects the tight prior used for this parameter, while

the upside skewness of σZc is also reflected in these plots.

20The most common case when the sampler for (h, β) stops updating is when the draw of h is well below
its mean. This behavior can be lessened when the prior variance for h is high enough to help the sampler to
accept other draws.

21The subscript represent the [row,column] location in Figure 3.4.
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Figure 3.2: Trace plots for each θ.

Figure 3.3: Posterior Marginal Densities.

85



Figure 3.4: Scatter plots of draws.

Finally, in terms of the variable that defines the change of regime, λ∗, in Figure 3.5 I contrast

the variable from the DGP simulation (on the left) with the posterior mean estimation (on

the center). We can observe that the posterior mean predicts reasonably well the change of

regime, especially in periods where the data suggest a substantial dip in λ∗, i.e., its value

goes well below zero. These periods with big drops are also distinguishable on the 80 percent

credible interval, presented on the right side of Figure 3.5. Additionally, the sampling of λ∗

is done efficiently, as is evident from the reasonable low inefficiency factors computed from

its draws (see Figure 3.6). This result suggests that the sampling λ∗, done marginally of the

other latent variables, is in the right direction of increasing the efficiency of the sampler.

3.4 Conclusions and Future Work

In this paper, I generate data from a model that switches from regime depending on the

consumer’s credit constraint state. Based on the data from the model simulation, I proposed

an MCMC algorithm to recover the latent variable that indicates the change of regime and
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Figure 3.5: Lagrange Multiplier (λt) estimation.

Figure 3.6: Inefficiency factors for θ and λ∗ draws

structural parameters of interest. The algorithm relies on drawing the latent variable that

signals the regime change, λ∗, from a 2-component mixture of truncated normal distributions,

where the distribution is defined marginally from the rest of the latent variables. Next, the

algorithm proceeds to draw the rest of the latent variables, ξs, from their full conditional

distribution, using the precision sampler of Chan and Jeliazkov (2009), which provides the

draw at a low marginal computational cost. Given the latent variables, I can construct the

conditional posterior distributions for most of the structural parameters θ and draw directly

using a Gibbs sampler. Only for the parameters (h, β) I build an approximation of the

objective distribution and sample using the ARMH algorithm, which provides an efficient

simulation of the parameters.

87



The estimation results show that the algorithm can adequately identify the variable that

defines the regime change while it recovers most of the “true” values of the structural pa-

rameters. This estimation is based only on 10,000 posterior draws, and the chain converged

with low inefficiency factors. However, I must mention that I used informative priors to

overcome identification issues prevalent in the estimation.

I aim to estimate an empirical application using a version of this algorithm in future work.

Nonetheless, to achieve the latter, it would be imperative to improve the sampler so that it

performs well without relying on tight priors.
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Appendix A

Chapter 1

A.1 Linearized model

Based on Iacoviello (2005). Log-Linearized Model (Appendix 1):

1. Aggregate demand:

Ŷt =
c

Y
ĉt +

c′

Y
ĉ′t +

c′′

Y
ĉ′′t +

I

Y
Ît (A.1)

ĉ′t = ĉ′t+1 − (R̂t − π̂t+1) (A.2)

Ît − K̂t−1 = γ(Ît+1 − K̂t) +
1− γ(1− δ)

ψ
(Ŷt+1 − X̂t+1 − K̂t)

+
1

ψ
(ĉt − ĉt+1)

(A.3)
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2. Housing/consumption margin:

q̂t = γeq̂t+1 + (1− γe)(Ŷt+1 − X̂t+1 − ĥt)−mβ(R̂t − π̂t+1)

− (1−mβ)∆ĉt+1 − ϕe(∆ĥt − γ∆ĥt+1)

(A.4)

q̂t = γhq̂t+1 + (1− γh)(ĵt − ĥ′′t )−m′′β(R̂t − π̂t+1)

+ (1−m′′β)(ĉ′′t − ωĉ′′t+1)− ϕh(∆ĥ
′′
t − β′′∆ĥ′′t+1)

(A.5)

q̂t = βq̂t+1 + (1− β)ĵt + ιĥt + ι′′ĥ′′t + ĉ′t − βĉ′t+1

+
ϕh

h′
(h∆ĥt + h′′∆ĥ′′t − βh∆ĥt+1 − βh′′∆ĥ′′t+1)

(A.6)

3. Borrowing constraints:

b̂t = q̂t+1 + ĥt − (R̂t − π̂t+1) (A.7)

b̂′′t = q̂t+1 + ĥ′′t − (R̂t − π̂t+1) (A.8)

4. Aggregate supply:

Ŷt =
η

η − (1− ν − µ)
(Ât + νĥt−1 + µK̂t−1)

− 1− ν − µ

η − (1− ν − µ)
(X̂t + αĉ′t + (1− α)ĉ′′t )

(A.9)

π̂t = βπ̂t+1 − κX̂t + ût (A.10)
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5. Flows of funds/evolution of state variables:

K̂t = δÎt + (1− δ)K̂t−1 (A.11)

b

Y
b̂t =

c

Y
ĉt +

qh

Y
∆ĥt +

I

Y
Ît +

Rb

Y
(b̂t−1 + R̂t−1 − π̂t)

− (1− s′ − s′′)(Ŷt − X̂t)

(A.12)

b′′

Y
b̂′′t =

c′′

Y
ĉ′′t +

qh′′

Y
∆ĥ′′t +

Rb′′

Y
(b̂′′t−1 + R̂t−1 − π̂t)

− s′′(Ŷt − X̂t)

(A.13)

6. Monetary policy rule and shock processes:

R̂t = ρRR̂t−1 + (1− ρR)rππ̂t−1 + (1− rR)rY Ŷt−1 + êR,t (A.14)

ĵt = ρj ĵt−1 + êj,t (A.15)

ût = ρuût−1 + êu,t (A.16)

Ât = ρAÂt−1 + êA,t (A.17)

Note that in the model, the jump or choice variables are: ĉt, ĉ
′
t, ĉ

′′
t , Ît, X̂t, and q̂t. In this

sense, the predetermined variables of the model are: K̂t, b̂t, b̂
′′
t , R̂t, ĵt, ût, Ât, Ŷt, ĥt, ĥ

′′
t ,

and π̂t. Finally, the forward variables are the variables that appear with expectations in the

model and are defined in section 3 of the paper.
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Appendix B

Chapter 2

B.1 Log-linearized Model

1. Patient Household:

(1− βεc) λ̂
P
t = (1− βεcρZ)ẑt +

βεc
1− εc

Etĉt+1

− 1 + βε2c
1− εc

ĉt +
εc

1− εc
ĉt−1;

(B.1)

(1− βεh) Ûh,t = (1− βεhρZ)ẑt + (1− βεhρJ)ĵt +
βεh

1− εh
Etĥt+1

− 1 + βε2h
1− εh

ĥt +
εh

1− εh
ĥt−1;

(B.2)

χ̂w,t = λ̂Pt + ŵt − ẑt − ηn̂t; (B.3)

q̂t = (1− β) Ûh,t − λ̂Pt + βEt λ̂
P
t+1 + βEtq̂t+1; (B.4)

λ̂Pt = βEt λ̂
P
t+1 + βR̂t − βEtπ̂t+1; (B.5)
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2. Impatient Household:

(1− β′εc) λ̂
I
t = (1− β′εcρZ)ẑt +

β′εc
1− εc

Etĉ
′
t+1

− 1 + β′ε2c
1− εc

ĉ′t +
εc

1− εc
ĉ′t−1;

(B.6)

(1− β′εh) Û ′
h,t = (1− β′εhρZ)ẑt + (1− β′εhρJ)ĵt

+
β′εh
1− εh

Etĥ
′
t+1 −

1 + β′ε2h
1− εh

ĥ′t +
εh

1− εh
ĥ′t−1;

(B.7)

q̂t = θ1 Û ′
h,t − θ2λ̂

I
t +

(
mIπ

RbI
−mIβ′

)
m̂I

t −
mIπ

RbI
R̂bI

t

+
mIπ

RbI
Etπ̂t+1 + θ3Etq̂t+1 + (1−mI)β′Et λ̂

I
t+1;

(B.8)

χ̂′
w,t = λ̂It + ŵ′

t − ẑt − ηn̂′
t; (B.9)

c′

Y
ĉ′t +

qh′

Y
ĥ′t +

RbIbI

πY
R̂bI

t−1 +
RbIbI

πY
b̂It−1 −

RbIbI

πY
π̂t

=
w′n′

Y
ŵ′

t +
w′n′

Y
n̂′
t +

bI

Y
b̂It +

qh′

Y
ĥ′t−1;

(B.10)

b̂It = m̂I
t − R̂bI

t + Etq̂t+1 + Etπ̂t+1 + ĥ′t; (B.11)

where

θ1 ≡ 1− mIπ

RbI
− (1−mI)β′; θ2 ≡ 1− mIπ

RbI
;

θ3 ≡
mIπ

RbI
+ (1−mI)β′;
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3. Entrepreneurs and capital producers:

(1− βEεc) λ̂
E
t =

βEεc
1− εc

Etĉ
E
t+1 −

1 + βEε
2
c

1− εc
ĉEt +

εc
1− εc

ĉEt−1; (B.12)

ŷt = (1− σ)(1− α)n̂t + σ(1− α)n̂′
t + αK̂t−1; (B.13)

(1− σ)(1− α)ŷt = χ̂p,t + n̂t + ŵt; (B.14)

σ(1− α)ŷt = χ̂p,t + n̂′
t + ŵ′

t; (B.15)

qkt =
( π

RbE
− βE

)
(1− δk)m

E m̂E
t +

(
mEπ

RbE
+ (1−mE)βE

)
(1− δk)Etq̂

k
t+1

+
(1− δk)m

Eπ

RbE
(Etπ̂t+1 − R̂bE

t ) +

(
1− (1− δk)

mEπ

RbE

)
(Etλ̂

E
t+1 − λ̂Et )

+

(
1− (1− δk)

mEπ

RbE
− (1− δk)(1−mE)βE

)
(Etŷt+1 − Etχ̂p,t+1 − K̂t)

(B.16)

b̂Et = −R̂bE
t + m̂E

t + Etq̂
k
t+1 + Etπ̂t+1 + K̂t; (B.17)

cE

Y
ĉEt +

wn

Y
ŵt +

wn

Y
n̂t +

w′n′

Y
ŵ′

t +
w′n′

Y
n̂′
t +

Kqk

Y
q̂kt +

qkK

Y
K̂k

t

+
RbEbE

πY
(R̂bE

t−1 + b̂Et−1 − π̂t) =
1

χp

(ŷt − χ̂p,t) +
bE

Y
b̂Et +

qk(1− δk)K

Y
K̂t−1;

(B.18)

K̂t = δk ît + δkât + (1− δk)K̂t−1; (B.19)

q̂kt = −âkt − ϕβEEtît+1 + (1 + βE)ϕît − ϕît−1; (B.20)

4. Final goods and nominal wage rigidities:

π̂t = βEtπ̂t+1 − επχ̂p,t + up,t; (B.21)

ω̂t = βEtω̂t+1 − εwχ̂w,t + uw,t; (B.22)

ω̂′
t = β′Etω̂

′
t+1 − ε′wχ̂

′
w,t + uw,t; (B.23)

ω̂t = ŵt − ŵt−1 + π̂t; (B.24)

ω̂′
t = ŵ′

t − ŵ′
t−1 + π̂t; (B.25)
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where

επ ≡ (1− θπ)(1− βθπ)

θπ
,

εω ≡ (1− θω)(1− βθω)

θω
, ε′ω ≡ (1− θω)(1− β′θω)

θω
,

5. Banking sector:

B̂t =
bI

B
b̂It +

bE

B
b̂Et ; (B.26)

B̂t =
d

B
d̂t +

Kb

B
K̂b

t ; (B.27)

K̂b
t = −π̂t +

1− δb
π

K̂b
t−1 +

Πb

πKb
Π̂b

t−1; (B.28)

B̂∗
t =

ωbIbI

B∗ (ω̂bI
t + b̂It ) +

ωbEbE

B∗ (ω̂bE
t + b̂Et ); (B.29)

R̂BI
t = R̂t −

κkb(ν
b)3ωbI

R
(K̂b

t − B̂∗
t ); (B.30)

R̂BE
t = R̂t −

κkb(ν
b)3ωbE

R
(K̂b

t − B̂∗
t ); (B.31)

ω̂bI
t = ρwbI ω̂

bI
t−1 + (1− ρwbI)χ

I
y∆

Aŷt + (1− ρwbI)χ
I
qEt∆

Aq̂t+1; (B.32)

ω̂bE
t = ρwbEω

bE
t−1 + (1− ρwbE)χ

E
y ∆

Aŷt; (B.33)

R̂bI
t =

εbI − 1

εbI − 1 + (1 + β)κrbI
R̂BI

t +
κrbI

εbI − 1 + (1 + β)κrbI
R̂bI

t−1

+
βκrbI

εbI − 1 + (1 + β)κrbI
EtR̂

bI
t+1 +

εbI − 1

εbI − 1 + (1 + β)κrbI
µ̂I
t ;

(B.34)

R̂bE
t =

εb − 1

εbE − 1 + (1 + β)κrbE
R̂BE

t +
κrbE

εbE − 1 + (1 + β)κrbE
R̂bE

t−1

+
βκrbE

εbE − 1 + (1 + β)κrbE
EtR̂

bE
t+1 +

εbE − 1

εbE − 1 + (1 + β)κrbE
µ̂E
t ;

(B.35)

Π̂b
t =

RbIbI

Πb
R̂bI

t +
(RbI − 1)bI

Πb
b̂It +

RbEbE

Πb
R̂bE

t +
(RbE − 1)bE

Πb
b̂Et

− Rd

Πb
R̂t −

(R− 1)d

Πb
d̂t;

(B.36)
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6. Final goods and housing market clearing:

ŷt =
C

Y
Ĉt +

i

Y
ît −

Kbδb
Y π

π̂t +
Kbδb
Y π

K̂b
t−1; (B.37)

Ĉt =
c

C
ĉt +

c′

C
ĉ′t +

cE

C
ĉEt ; (B.38)

ĥt = −1− h

h
ĥ′t; (B.39)

7. Monetary policy rule and shock processes:

R̂t = rRR̂t−1 + (1− rR)rππ̂t−1 + (1− rR)rY Ŷt−1 + êt; (B.40)

ẑt = ρz ẑt−1 + ûz,t; (B.41)

ĵt = ρj ĵt−1 + ûj,t; (B.42)

âkt = ρK â
k
t−1 + ûK,t; (B.43)

êt = ρRêt−1 + ûR,t; (B.44)

m̂I
t = ρmIm̂

I
t−1 + ûmI,t; (B.45)

m̂E
t = ρmEm̂

E
t−1 + ûmE,t; (B.46)

µ̂I
t = ρµI µ̂

I
t−1 + ûµI,t; (B.47)

µ̂E
t = ρµEµ̂

E
t−1 + ûµE,t; (B.48)
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B.2 Data description

• Consumption: Real Personal Consumption Expenditures, from Bureau of Economic

Analysis (BEA), log-transformed and detrended with the UCUR-2M approach.

• Price Inflation: quarterly change in GDP Implicit Price Deflator, from BEA, and

demeaned using the data from the sample under consideration.

• Wage inflation: Real Compensation per Hour in Nonfarm Business Sector, from the

US Bureau of Labor Statistics (BLS), log-transformed, detrended with the UCUR-2M

approach, first differenced, and expressed in nominal terms adding back price inflation.

• Investment: Real Private Nonresidential Fixed Investment, from BEA, log-transformed

and detrended with the UCUR-2M approach.

• House Prices: Real Home Price Index, from Robert Shiller online data webpage:

(http://www.econ.yale.edu/ shiller/data.htm); log-transformed and detrended with

the UCUR-2M approach.

• Household debt: Households Residential Mortgages [HHMSDODNS], from the Flow of

Funds of the Federal Reserve and retrieved from FRED, St. Louis Fed; deflated with

the Implicit Price Deflator, log-transformed and detrended with UCUR-2M.

• Firms debt: Non-financial Corporate Debt [BCNSDODNS], from the Flow of Funds

of the Federal Reserve and retrieved from FRED, St. Louis Fed; deflated with the

Implicit Price Deflator, log-transformed and detrended with the UCUR-2M approach.

• Nominal Interest Rate: Effective Federal Funds Rate, from the Federal Reserve and

retrieved from FRED, St. Louis Fed; demeaned and divided by 400 to be expressed in

quarterly units.
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• Impatient loan interest rate: Freddie Mac, 30-Year Fixed Rate Mortgage Average

[MORTGAGE30US], retrieved from FRED, St. Louis Fed; demeaned and divided by

400 to be expressed in quarterly units.

• Entrepreneurs loan interest rate: Moody’s Seasoned Baa Corporate Bond Yield [BAA],

retrieved from FRED, St. Louis Fed; demeaned and divided by 400 to be expressed in

quarterly units.

Above the UCUR-2M approach denotes the unobserved components model with a second-

order Markov process for the trend developed in Grant and Chan (2017).
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B.3 Tables and other results

B.3.1 Estimation of the risk weights parameters for impatient

loans

Along the lines of what is described in Appendix 1 of Angelini et al. (2010), we used US data

on the delinquency rates on single-family residential mortgages from the 100th largest US

banks by assets, from the Federal Reserve, as a proxy for the probability of default. Together

with the same assumptions as Angelini et al. (2010) 1, we used this time series into the Basel

II capital requirements formulae to estimate the risk weights for loans to households.

We present the results of Angelini et al. (2010) as case 0 at Table B.1. In addition, we

explore adding house prices (2) and house prices expectations (3) in the specification, as

shown in the following equations:

ω̂bI
t = ρwbI ω̂

bI
t−1 + (1− ρwbI)χ

I
y∆

Aŷt + (1− ρwbI)χ
I
q∆

Aq̂t;

ω̂bI
t = ρwbI ω̂

bI
t−1 + (1− ρwbI)χ

I
y∆

Aŷt + (1− ρwbI)χ
I
qEt∆

Aq̂t+1;

As Angelini, et al (2010), we use quarterly data that spans from Q1-1991 to Q4-2007. The

results are presented in the next table:

Our estimations were done in R, using the brms package. Following Angelini, et al. (2010),

who corrected the standard errors for heteroskedasticity and autocorrelation of residuals, we

assumed a model with heterogeneous variances and a moving average term. The assumed

priors were ρwb ∼ N(0,1)(0.5, 0.25) and χv ∼ N(−∞,0)(−10, 5) for v = {y, q}.
1Angelini et al. (2010) used the residential mortgage function, with LGD equal to 20 percent, following

QIS5. Using the regulatory formulae, we obtained the capital requirements (as a percentage of the exposure
at default), which are then multiplied by 12.5 in order to obtain risk weights.
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Table B.1: Household Loans Risk Weights Nonlinear Regression Estimation Results

Parameter 0 1 2 3

ρwbI
0.94 0.95 0.83 0.82
(0.04) (0.03) (0.04) (0.05)

χI
y

-10 -6.57 -1.60 -1.53
(8) (3.62) (0.87) (1.04)

χI
q

-1.78 -1.64
(0.46) (0.68)

R2 0.89 0.917 0.942 0.940
obs 67 67 67 67

Looking at the table, we can see a significant effect from house prices in the proxy measure

for risk weights in household debt mortgage. Also, note that the results are similar between

the regressions with house prices annual growth rate (2) and its expectations (3). In this

regard, we decided to use the specification under (3) to calibrate the banks’ risk weights for

loans to households in the model.
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B.3.2 Constant Gain Learning Parameters under AL-2 Specifica-

tion

Table B.2: AL2 - Constant Gains Posterior draws.

Mode 5% 95%
ḡ01 0.0059 0.0028 0.0113
ḡ02 0.0225 0.0117 0.0457
ḡ03 0.0210 0.0097 0.0401
ḡ04 0.0274 0.0153 0.0427
ḡ05 0.0219 0.0106 0.0468
ḡ06 0.0268 0.0131 0.0541
ḡ07 0.0214 0.0112 0.0402
ḡ08 0.0155 0.0080 0.0312
ḡ09 0.0171 0.0082 0.0307
ḡ10 0.0134 0.0060 0.0286
ḡ11 0.0219 0.0091 0.0351
ḡ12 0.0224 0.0110 0.0410
ḡ13 0.0205 0.0104 0.0390
ḡ14 0.0246 0.0111 0.0448
ḡ15 0.0209 0.0099 0.0496
ḡ16 0.0204 0.0103 0.0457
ḡ17 0.0223 0.0124 0.0410

Note: Based on 200,000 posterior draws, after a burn-in of 20 percent.
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B.3.3 Other IRF for shocks related to credit conditions

Figure B.1: IRF to an expansionary firms loans markup shock, REE vs AL-2.

Figure B.2: IRF to an Impatient LTV ratio shock, REE vs AL-2.

103



Figure B.3: IRF to an Firms LTV ratio shock, REE vs AL-2.

Note: the dotted lines represent a 90 percent credible interval.
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Appendix C

Chapter 3

C.1 Steady-states

The model is based on the description available at the Appendix of Guerrieri and Iacoviello

(2015). I assumed that the credit constraint is binding in steady state (βR < 1).

Y = Ȳ = 1 (C.1)

Zc = Z̄c = 1 (C.2)

Zb = Z̄b = 1 (C.3)

B = ZbmY = m (C.4)

C = Y + (1−R)B = 1 + (1−R)m (C.5)

UC = ZcC
−γ = (1 + (1−R)m)−γ (C.6)

λ =
1− βR

1− βδ
UC =

1− βR

1− βδ
(1 + (1−R)m)−γ (C.7)

Note that in equilibrium the Lagrange multiplier of the budget constraint, µ, is equal to the

marginal utility, UC .
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