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Behavioral/Cognitive

Working Memory Load Strengthens Reward Prediction
Errors

X Anne G.E. Collins,1,2,3 Brittany Ciullo,3 X Michael J. Frank,3,4 and David Badre3,4

1Department of Psychology and 2Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, and 3Department of Cognitive,
Linguistics, and Psychological Sciences, and 4Brown Institute for Brain Science, Brown University, Providence, Rhode Island 02912

Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors
(RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and
decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory
(WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be
learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two
mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data
showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced
when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of
WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather
interact during learning.

Key words: fMRI; reinforcement learning; reward prediction error; working memory

Introduction
Reinforcement learning (RL) theory (Sutton and Barto, 1998)
proposes that we can learn the value associated with various
choices by computing the discrepancy between the reward that
we obtain and our previously estimated value and proportionally
adjusting our estimate. This discrepancy, the reward prediction
error (RPE), signals a valenced surprise at the outcome being
better or worse than expected and a direction to adapt behavior
(Daw and Doya, 2006; Pessiglione et al., 2006; Schönberg et al.,

2007). In the brain, corticobasal ganglia loops appear to imple-
ment a form of algorithmic RL: dopamine-dependent plasticity
in the striatum may reinforce selection of choices leading to pos-
itive RPEs and weaken those leading to negative RPEs (Frank et
al., 2004; Collins and Frank, 2014). Dopaminergic neurons ex-
hibit phasic changes in their spike rates that convey RPEs (Mon-
tague et al., 1996; Schultz, 2002) and dopamine release in target
regions provides a bidirectional RPE signal (Hart et al., 2014).
Human imaging studies have indeed found that striatal BOLD
correlates with RPE and is enhanced by dopamine manipulations
(Pessiglione et al., 2006; Schönberg et al., 2007; Jocham et al.,
2011).

However, other neurocognitive processes contribute to learn-
ing in addition to the integration of reward history by RL. Specif-
ically, executive processes (such as those involved in representing
sequential or hierarchical task structure) contribute substantially
to human learning over and above incremental RL (Botvinick et
al., 2009; Badre and Frank, 2011; Daw et al., 2011; Collins and
Koechlin, 2012; Collins and Frank, 2013). Even in basic stimulus–
response learning tasks, working memory (WM) contributes
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Significance Statement

Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as
well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one
contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results
also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward
prediction errors.
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substantially to instrumental learning beyond RL (Collins and
Frank, 2012; Collins et al., 2014), as evidenced by both behavioral
analyses and quantitative computational model fits. Two effects
of WM were evident in learning. As WM set size increased (WM
load), learning curves per stimulus were slowed. Second, accu-
racy per trial declined as a function of the number of intervening
items (WM delay). These WM effects decayed with further expe-
rience as the more reliable but slower RL process gained control
of behavior. A hybrid model of WM and RL provided a better fit
to these data than either process alone (Collins and Frank, 2012;
Collins et al., 2014).

This prior behavioral work implies that WM contributes to RL
processes. Here, we investigate the neural markers of learning and
RPEs to determine whether they are interact with WM. Although
many RL studies have revealed neural correlates of RPEs that relate
to learning, these studies have not manipulated or estimated WM
factors that could contribute to (and potentially confound) these
signals. Identifying separate markers of systems that contribute
jointly to behavior also provides an opportunity to explore whether
they interact (e.g., competitively or cooperatively). Specifically, we
tested whether frontoparietal networks associated with cognitive
control and striatal systems associated with RL would show para-
metric modulations of RPE signaling as a function of WM load dur-
ing learning. We also tested whether such interactions would be
predictive of the extent to which individuals relied on WM contri-
butions to RL behaviorally.

Materials and Methods
Participants
We scanned 26 participants (age 18 –31 years, mean 23, 15 males/11
females). All 26 participants are included in the behavioral analysis. Five
participants were excluded from fMRI analysis before analyzing their

fMRI data due to head movement greater than our voxel size. Two to six
blocks were excluded from three other participants due to movement
during data collection toward the end of the scan. All participants were
right-handed with normal or corrected-to-normal vision and were
screened for the presence of psychiatric or neurological conditions and
contraindications for fMRI. All participants were compensated for their
participation and gave informed, written consent as approved by the
Human Research Protection Office of Brown University.

Experimental design
The task (Fig 1) was similar to that described previously (Collins and
Frank, 2012; Collins et al., 2014), itself adapted from a classic conditional
associative learning paradigm (Petrides, 1985). On each trial, subjects
had to respond with one of three responses (button presses on a response
pad) when presented with a centrally displayed single stimulus. Subj-
ects had to learn over trials which response was correct for each stimulus
based on binary deterministic reinforcement feedback (Collins and
Frank, 2012; Collins et al., 2014).

To manipulate WM demands separately from RL components, we
varied the number of stimuli (denoted as set size ns) to be learned within
a block systematically. Larger set sizes provide greater load on WM and
also impose on average larger delays between repetitions of the same
stimulus. Subjects experienced three blocks of each of the set sizes one
through six. In each block, subjects learned about a different category of
visual stimulus (e.g., sports, fruits, places, etc.), with stimulus category
assignment to block set size counterbalanced across subjects. Block or-
dering was also counterbalanced within subjects to ensure an even dis-
tribution of high/low load blocks across each third of the experiment.

At the beginning of each block, subjects were shown the entire set of
stimuli for that block and were encouraged to familiarize themselves with
them for a duration of 10 s (Fig. 1, top). They were then asked to make
their response as quickly and accurately as possible after each individual
stimulus presentation. Within each block, stimuli were presented 12
times, each in a pseudorandomly intermixed order.

+ + Correct +

t+0.5s t+rt
t

t+1.5s t+2s
~ t+ 3.5s

    [2.5-7.5s]

s01s01
81 kcolBn kcolB1 kcolB

Figure 1. Experimental protocol. At the beginning of each block, subjects were shown for 10 s the set of stimuli they would see in that block. In this example, Block 1 uses color patches for stimuli
and has a set size ns � 2; Block n uses shapes and has ns � 6. Each trial included the presentation of a stimulus for 0.5 s, followed by a blue fixation cross until subject pressed 1 of 3 buttons or up
to 1.5 s after trial onset. Button press caused the fixation cross to turn white. Feedback was presented for 1 s and came 1.5 s after trial onset. Feedback consisted of the words “correct” or “incorrect”
in green and red, respectively. The intertrial interval consisted of a white fixation cross with jittered duration to allow trial-by-trial event-related analysis of fMRI signal. Blocks set sizes varied
between one and six and the order was randomized across subjects.
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Stimuli were presented in the center of the screen for up to 0.5 s,
followed by a blue fixation cross for up to 1 s or subjects making a choice
by pressing 1 of 3 buttons, at which time the fixation cross turned white
(Fig. 1, bottom). Feedback was presented 1.5 s after stimulus onset for
0.5 s as either “correct” in green, “incorrect” in red, or “too slow” if the
subject failed to answer within 1.5 s. A white fixation cross followed with
jittered duration of mean 1.5 s (range 0.5– 6.5 s) before the next stimulus
was presented.

Subjects were instructed that finding the correct action for one stim-
ulus was not informative about the correct action for another stimulus.
This was enforced in the choice of correct actions, such that, in a block
with e.g., ns � 3, the correct actions for the three stimuli were not neces-
sarily three distinct keys. This procedure was implemented to ensure
independent learning of all stimuli (i.e., to prevent subjects from infer-
ring the correct actions to stimuli based on knowing the actions for other
stimuli). Before entering the scanner, subjects went through the instruc-
tions and practiced on a separate set size two sets of images to ensure that
they were familiarized with the task.

Computational model
RLWM model
To better account for subjects’ behavior and to disentangle the roles of
WM and RL, we fitted subjects’ choices with our hybrid RLWM compu-
tational model. Previous research showed that this model, which allows
choice to be a mixture between a classic delta rule RL process and a fast
but capacity-limited and delay-sensitive WM process, provided a better
quantitative fit to learning data than models of either WM or RL alone
(Collins and Frank, 2012; Collins et al., 2014). The model used here is a
variant of the previously published models. We first summarize its key
properties and then follow up with the details.

RLWM includes two modules that separately learn the value of stimu-
lus–response mappings: a standard incremental procedural RL module
with learning rate � and a WM module that updates S-R-O associations
in a single trial (learning rate 1) but is capacity limited (with capacity K ).
The final action choice is determined as a weighted average over the two
modules’ policies. How much weight is given to WM relative to RL (the
mixture parameter) is dynamic and reflects the probability that a subject
would use WM versus RL in guiding their choice. This weight depends on
two factors. First, a constraint factor reflects the a priori probability that
the item is stored in WM, which depends on set size ns of the current
block relative to capacity K (i.e., if ns � K, then the probability that an
item is stored is K/ns) scaled by the subject’s overall reliance of WM
versus RL (factor 0 � � � 1), with higher values reflecting relative greater
confidence in WM function. Therefore, the constraint factors indicates
that the maximal use of WM policy relative to RL policy is w0 � � �
min(1, K/ns). Second, a strategic factor reflects the inferred reliability of
the WM compared with RL modules over time: initially, the WM module
is more successful at predicting outcomes than the RL module, but be-
cause it has higher capacity and less vulnerability to delay, the RL module
becomes more reliable with experience. Both RL and WM modules are
subject to forgetting (decay parameters �RL and �WM). We constrain �RL

� �WM consistent with WM’s dependence on active memory).

Learning model details
RL model. All models include a standard RL module with simple delta
rule learning. For each stimulus s and action a, the expected reward
Q(s, a) is learned as a function of reinforcement history. Specifically, the
Q value for the selected action given the stimulus is updated upon ob-
serving each trial’s reward outcome rt (1 for correct, 0 for incorrect) as a
function of the prediction error (PE) between expected and observed
reward at trial t as follows:

Qt�1�s, a� � Qt�s, a� � � � �t,

where �t � rt � Qt�s, a� is the PE, and � is the learning rate. Choices are
generated probabilistically with greater likelihood of selecting actions
that have higher Q values using the following softmax choice rule:

p�a�s� � exp�	Q�s, a��/	i�exp�	Q�s, ai��.

where 	 is an inverse temperature determining the degree with which
differences in Q values are translated into more deterministic choice and
the sum is over the three possible actions ai.

Undirected noise. The softmax temperature allows for stochasticity
in choice, but where stochasticity is more impactful when the value of
actions are similar to each other. We also allow for “slips” of action
(“irreducible noise,” i.e., even when Q value differences are large).
Given a model’s policy 
 � p(a�s), adding undirected noise consists of
defining the new mixture policy as follows:



 � �1 � ��
 � �U,

where U is the uniform random policy (U(a) � 1/nA, nA � 3), and the
parameter 0 � � � 1 controls the amount of noise (Collins and Koechlin,
2012; Guitart-Masip et al., 2012; Collins and Frank, 2013). Nassar and
Frank (2016) showed that failing to take into account this irreducible
noise can render fits to be unduly influenced by rare odd datapoints (e.g.,
that might arise from attentional lapses) and that this problem is reme-
died by using a hybrid softmax-�-greedy choice function as used
here.

Forgetting. We allow for potential decay or forgetting in Q values on
each trial, additionally updating all Q values at each trial, according to the
following:

Q4 Q � ��Q0 � Q�,

where 0 � � � 1 is a decay parameter pulling at each trial the estimates of
values toward initial value Q0 � 1/nA. This parameter allows us to cap-
ture delay-sensitive aspects of WM, where active maintenance is increas-
ingly likely to fail with intervening time and other stimuli, but also allows
us to separately estimate any decay in RL values (which is typically sub-
stantially lower than in WM).

Perseveration. To allow for potential neglect of negative as opposed to
positive feedback, we estimate a perseveration parameter pers such that,
for negative PEs (delta � 0), the learning rate � is reduced by � � (1 �
pers) � �. Therefore, values of pers near 1 indicate perseveration with
complete neglect of negative feedback, whereas values near 0 indicate
equal learning from negative and positive feedback.

WM. To implement an approximation of a rapid updating but
capacity-limited WM, this module assumes a learning rate � � 1 (repre-
senting the immediate accessibility of items in active memory), but
includes capacity limitation such that only at most K stimuli can be
remembered. At any trial, the probability of WM contributing to the
choice for a given stimulus is wWM(t) �Pt(WM). This value is dynamic as
a function of experience (see next paragraph). Therefore, the overall
policy is as follows:


 � wWM�t�
WM � �1 � wWM�t��
RL

where 
WM is the WM softmax policy and 
RL is the RL policy. Note that
this implementation assumes that information stored for each stimulus
in WM pertains to action– outcome associations. Furthermore, this im-
plementation is an approximation of a capacity/resource-limited notion
of WM. It captures key aspects of WM such as: (1) rapid and accurate
encoding of information when low amount of information is to be
stored; (2) decrease in the likelihood of storing or maintaining items
when more information is presented or when distractors are presented
during the maintenance period; and (3) decay due to forgetting. Because
it is a probabilistic model of WM, it cannot capture specifically which
items are stored, but it can provide the likelihood of any item being
accessible during choice given the task structure and recent history (set
size, delay, etc.).

Inference. The weighting of whether to rely more on WM versus RL is
dynamically adjusted over trials within a block based on which module is
more likely to predict correct outcomes. The initial probability of using
WM wWM(0) � P0(WM) is initialized by the a priori use of WM, as
defined above, wWM(0) � � � min(1, K/ns), where � is a free parameter
representing the participant’s overall reliance on WM over RL.

On each correct trial, wWM(t) � Pt(WM) is updated based on the
relative likelihood that each module would have predicted the observed
outcome given the selected correct action ac; specifically:
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for WM, p(correct�stim, WM) � WWM 
WM(ac) � (1 � w WM)1/nA

for RL, p(correct�stim, RL) is simply 
RL (ac)
The mixture weight is updated by computing the posterior using the

previous trial’s prior, and the above likelihoods, such that

Pt�1�WM�

�
Pt�WM� � p�correct�stim, WM�

Pt�WM� � p�correct�stim, WM� � Pt�RL� � p�correct�stim, RL�
and Pt�1�RL� � 1 � Pt�1�WM�

.

Models considered. We combined the previously described features
into different learning models and conducted extensive comparisons of
multiple models to determine which fit the data best (penalizing for
complexity) so as to validate the use of this model in interpreting sub-
jects’ data. For all models we considered, adding undirected noise,
forgetting, and perseveration features significantly improved the fit, ac-
counting for added model complexity (see model comparisons).

This left three relevant classes of models to consider: The RL model
combines the basic delta rule RL with forgetting, perseveration, and un-
directed noise features. It assumes a single system that is sensitive to delay
and asymmetry in feedback processing. This is a five-parameter model
(learning rate �, sofmax inverse temperature 	, undirected noise �, decay
�RL, and pers parameter). The RL6 model is identical to the previous one,
with the variant that learning rate can vary as a function of set size. We
have shown previously that although such a model can capture the basic
differences in learning curves across set sizes by fitting lower learning
rates with higher set sizes, it provides no mechanism that would explain
these effects and still cannot capture other more nuanced effects (e.g.,
changes in the sensitivity to delay with experience). However, it provides
a benchmark to compare with RLWM. This is a 10-parameter model (six
learning rate �n’s, sofmax inverse temperature 	, undirected noise �,
decay �RL, and the pers parameter). RLWM is the main model, consisting
of a hybrid between RL and WM. RL and WM modules have shared
softmax 	 and pers parameters, but separate decay parameters, �RL and
�WM, to capture their differential sensitivity to delay. WM capacity is 0 �
K � 6, with an additional parameter for overall reliance on WM 0 � � �
1. Undirected noise is added to the RLWM mixture policy. This is an
8-parameter model (capacity K, WM reliance �, WM decay �WM, RL
learning rate �, RL decay �RL, softmax inverse temperature 	, undirected
noise �, and the pers parameter).

In the RLWM model presented here, the RL and WM modules are
independent and only compete for choice at the policy level. Given our
findings showing an interaction between the two processes, we also con-
sidered variants of RLWM including mechanisms for interactions be-
tween the two processes at the learning stage. These models provided
similar fit (measured by the Akaike information criterion, AIC) to the
simpler RLWM model. We chose to use the simpler RLWM model be-
cause the more complex model is less identifiable within this experimen-
tal design, providing less reliable parameter estimates and regressors for
model-based analysis.

RLWM fitting procedure. We used MATLAB optimization under the
constraint function fmincon to fit parameters. This was iterated with 50

randomly chosen starting points to increase the likelihood of finding a
global rather than local optimum. For models including the discrete
capacity K parameter, this fitting was performed iteratively for capacities
K � {1, 2, 3, 4, 5} using the value gave the best fit in combination with
other parameters.

Softmax 	 temperature was fit with constraints [0 100]. All other param-
eters were fit with constraints [0 1]. We considered sigmoid-transforming
the parameters to avoid constraints in optimization and obtain normal dis-
tributions, but although fit results were similar, distributions obtained were
actually not normal. Therefore, all statistical tests on parameters were non-
parametric. See Table 1 for fit parameter statistics.

Other competing models
To further test whether “single-system” models, as opposed to hybrid
models including an RL and a WM component, could account for be-
havior, we tested other algorithms embodying alternative assumptions in
which behavior is governed by a single learning process (either RL or
WM).

The WMd model is similar to a WM module, with the following
changes: there is no capacity limitation and, instead of being fixed, the
decay parameter is fixed to an initial value which then decreases toward 0
with each stimulus encounter, modeling the possibility that forgetting in
WM itself might decrease with practice. This model includes five param-
eters: 	, �, and pers as defined above; the initial value of decay decay0; and
, the decay factor. The WMdi model adds an interference mechanism to
WMd such that the decay factor of a given stimulus additionally increases
with every encounter of a different stimulus. This adds one parameter to
the previous model. The RLi model is identical to the basic RL model
with an added interference mechanism: on each trial, the Q value of
nonobserved stimuli with the chosen action is updated in the same way as
the observed stimuli, but with a fraction of the learning rate �i. This
captures the possibility that credit is assigned to the wrong stimulus,
modeling the possibility that WM-like effects might reflect interference
within a pure RL system. This model includes six parameters.

Model comparison. We used AIC to penalize model complexity (Burn-
ham and Anderson, 2002). We showed previously that, in the case of the
RLWM model and its variants, AIC was a better approximation than the
Bayesian information criterion (Schwarz, 1978) at recovering the true
model from generative simulations (Collins and Frank, 2012). Compar-
ing RLWM, RL6, and RL-only showed that models RL6 and RL-only
were strongly nonfavored, with probability 0 over the whole group.
Other single-process models were also unable to capture behavior better
than RLWM (see Fig. 3E).

Model simulation. Model selection alone is insufficient to assess
whether the best fitting model sufficiently captures the data. To test
whether models capture the key features of the behavior (e.g., learning
curves), we simulated each model with fit parameters for each subject,
with 100 repetitions per subject, and then averaged to represent this
subject’s contribution. To account for initial biases, we assume that the
model’s choice at first encounter of a stimulus is identical to the subjects,
whereas all further choices are selected randomly from the model’s
learned values and policies.

Table 1. RLWM model fit parameters

K � �WM � �RL � pers

Parameter statistics
Mean (SD) 4.08 (0.98) 0.07 (0.13) 0.29 (0.31) 0.86 (0.18) 0.05 (0.05) 0.03 (0.03) 0.34 (0.31)
Median 4 0.03 0.18 0.94 0.05 0.03 0.25
Min�max 2–5 0.01– 0.5 0 –1 0.42–1 0 – 0.21 0 – 0.14 0.02–1

Correlation between parameters
� NS
�WM NS 0.77
� NS �0.65 �0.77
�RL NS 0.83 0.69 �0.62
� NS NS NS NS NS
pers NS NS NS NS NS NS

NS, Nonsignificant correlation ( p � 0.05, corrected for multiple comparisons).
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fMRI recording and preprocessing
Whole-brain imaging was performed on a Siemens 3T TIM Trio MRI system
equipped with a 32-channel head coil. A high-resolution T1-weighted 3D
multiecho MPRAGE image was collected from each participant for anatom-
ical visualization. Functional images were acquired in one run of 1920 vol-
ume acquisitions using a gradient-echo, echoplanar pulse sequence (TR 2 s,
TE 28 ms, flip angle 90, 40 interleaved axial slices, 192 mm field of view with
3 � 3 � 3 mm voxel size). Stimuli were presented on a BOLD screen
display device �http://www.crsltd.com/tools-for-functional-imaging/mr-
safe-displays/boldscreen-24-lcd-for-fmri/� located behind the scanner and
made visible to the participant via an angled mirror attached to the head coil.
Padding around the head was used to restrict head motion. Participants
made their responses using an MRI-compatible button box.

Functional images were preprocessed in SPM8 �http://www.fil.ion.ucl.
ac.uk/spm�. Before preprocessing, data were inspected for artifacts and
excessive variance in global signal (functions: tsdiffana, art_global,
art_movie). Functional data were corrected for differences in slice acqui-
sition timing by resampling slices to match the first slice. Next, functional
data were realigned (corrected for motion) using B-spline interpolation
and referenced to the mean functional image. Functional and structural
images were normalized to Montreal Neurological Institute (MNI) ste-
reotaxic space using affine regularization, followed by a nonlinear trans-
formation based on a cosine basis set, and then resampled into 2 � 2 � 2
mm voxels using trilinear interpolation. Last, images were spatially
smoothed with an 8 mm full-width at half-maximum isotropic Gaussian
kernel.

GLMs
A temporal high-pass filter of 400 s (0.0025 Hz) was applied to our
functional data to remove noise but preserve power from low-frequency
regressors. Changes in MR signal were modeled using a general linear
model (GLM) approach. Our GLM included six onsets regressors, one
for correct trials corresponding to each set size (one through six). Each
onset was coded as a boxcar of 2 s in length that encompasses stimulus
presentation, response, and feedback. Each onset regressor was modu-
lated by a PE parametric regressor. We modeled error trials, no response
trials, and instructions (one instruction screen at the beginning of each
block, 18 total, each 10 s in length) as separate regressors. Note that error
trials across all set sizes were binned into one regressor due to the low
number of error trials in low set sizes. Finally, we included nuisance
regressors for the six motion parameters (x, y, z, pitch, roll, and yaw) and
a linear drift over the course of the run. SPM-generated regressors were
created by convolving onset boxcars and parametric functions with the
canonical hemodynamic response (HRF) function and the temporal de-
rivative of the HRF. Beta weights for each regressor were estimated in a
first-level, subject-specific fixed-effects model. For group analysis, the
subject-specific 	 estimates were analyzed with subject treated as a ran-
dom effect. At each voxel, a one-sample t test against a contrast value of
zero gave us our estimate of statistical reliability. For whole-brain analy-
sis, we corrected for multiple comparisons using cluster correction, with
a cluster-forming threshold of p � 0.001 and an extent threshold calcu-
lated with SPM to set a familywise error cluster level corrected threshold
of p � 0.05 (127 for PE � fixation; 267 for the PE * set size interaction).
Note that these appropriately high-cluster-forming threshold ensures
that parametric assumptions are valid and the rate of false positives are
appropriate (Eklund et al., 2016; Flandin and Friston, 2016).

ROIs
Because we did not have specific regional predictions regarding the WM
component of learning, we defined broad frontoparietal networks as
ROIs that have been associated previously with a wide range of tasks
involving cognitive control. Specifically, our first control network ROIs
were defined by using left and right anterior dorsal premotor cortex
(prePMd: 8 mm sphere around �38 10 34; Badre and D’Esposito, 2007)
as seeds in two separate “resting-state” (task-free) seed-to-voxel correla-
tion analyses in the CONN toolbox �https://www.nitrc.org/projects/
conn/� and using the corresponding whole-brain connectivity to left and
right prePMd as our control network ROI. To confirm the robustness of

our findings, we then ran a larger frontoparietal network ROI defined
from a functionally neutral group (Yeo et al., 2011), along with a func-
tionally defined ROI of the multiple demands network from Fedorenko
et al. (2013). All three of these frontoparietal ROIs yielded similar out-
comes, thus confirming the robustness of our findings. We report here
the results from Yeo et al. (2011) as the widest, most neutral ROI.

The striatum ROI was defined based on univariate activity for PE ( p �
0.001, uncorrected), masked by Automated Anatomical Labeling (AAL)
definitions for putamen, caudate, and nucleus accumbens �MarsBar AAL
structural ROIs: http://marsbar.sourceforge.net/download.html�. We
note that this ROI definition would be biased for assessing the effect of
RPE in the striatum. However, this was not our goal because the relation-
ship of RPE and striatum is established both in general from the prior
literature and in this study based on the corrected whole-brain analysis
(see Results). Rather, this ROI will be used to test the effects of set size and
the interaction of set size with RPE within regions maximally sensitive to
RPE. Because the set size variable is uncorrelated with that of RPE, this
ROI definition does not bias either of these analyses.

For each ROI, a mean time course was extracted using the MarsBar
toolbox �http://marsbar.sourceforge.net/�. The GLM design was esti-
mated against this mean time series, yielding parameter estimates (	
weights) for the entire ROI for each regressor in the design matrix.

Whole-brain contrasts. We focus on two main contrasts, the positive
effect of RPE and the positive interaction of RPE and set size, to deter-
mine whether WM processes influence RPE signaling and whether such
interactions relate to behavior. The first contrast is defined by consider-
ing the sum of the 	 weights across all set sizes, 	i�1:6 	PE(i); testing
whether this contrast value is significantly positive. The second contrast
takes the linear contrast of the 	 weights across set sizes by the set size,
	i�1:6 (i-3.5) � 	PE(i); testing whether this contrast is positive signals a
linear increase of RPE with set size. We also tested the opposite contrasts,
as well as the linear effect of set size 	i�1:6 (i-3.5) � 	i.

Interaction between set size and RPE. To investigate individual differ-
ences in the interaction between set size and RPE, we assessed ROI mark-
ers of this interaction. We computed this in one of three ways, each
reflecting different assumptions: (1) a linear contrast of set size on RPE
regression weight; (2) a contrast of high set size (4 – 6) versus low set size
(1–3) on RPE regression weights (in case of a step function, e.g., for above
vs below capacity sets), and (3) Spearman rho of RPE weights across set
sizes, which does not require linearity and is less susceptible to outliers
than linear regression. Despite slightly different assumptions, all three
measures are highly correlated (all rhos � 0.8, p � 10 �4) and yielded
qualitatively similar results. Because we observed that the results neither
show linear changes across set sizes nor a step function, we report results
using the measure defined as option 3.

Results
Behavior
Behavioral results replicate our previous findings (Collins and
Frank, 2012; Collins et al., 2014; Fig. 2). Learning curves showed
strong differences as a function of set size despite the same num-
ber of encounters for each stimulus. Logistic regression analysis
of subject choices (Fig. 2B) showed main effects of reward his-
tory, delay, and load, indicating that subjects were more likely to
select the correct action with more previous correct experience
for a given stimulus (t(25) � 6.8, p � 10�4) and less likely to be
correct with increasing set size (t(25) � �3.4, p � 0.002) and
increasing delay (intervening trials since their last correct choice
on this stimulus; t(25) � �3.2, p � 0.004). There were also inter-
actions between all pairs of factors, such that the delay effect was
stronger in high load (t(25) � �4.4, p � 0.0002; Fig. 2C) and the
effects of load and delay both decreased with more correct reward
history (t � 2.1, p � 0.05; see Fig. 2D). The latter interaction is
expected given the RLWM model’s prediction that behavior tran-
sitions from WM (which is more sensitive to delay and load) to
RL as a function of learned reliability.
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Model fitting
Model fitting also confirmed our previous findings, showing that
a computational model including two modules (RL and WM)
explained subjects’ behavior better than variants of a model as-
suming a single RL or WM process. Specifically, RLWM provided
a significantly better AIC than RL6 (t(25) � 3.9, p � 0.001) and RL
(t(25) � �6.6, p � 10�4) and individual AICs favored RLWM for
a significant number of subjects (21/26 for RL6, sign test p �
0.002; 23/26 for RL, p � 10�4). Model simulations show that a
simple RL model cannot capture the behavior as well as RLWM
or RL6, but note that RL6 needs too many parameters to appro-

priately capture behavior. Pure WM models assuming changes in
decay with experience, or interference, also cannot capture be-
havior as well as our hybrid RLWM model (Fig. 3E).

Imaging results
Whole-brain analysis showed increasing activity with set size in
bilateral precuneus and decreasing activity in a network includ-
ing bilateral superior frontal gyrus, bilateral angular gyrus, and
bilateral supramarginal gyrus (Table 2), confirming that the set
size manipulation is effective at differentially engaging large brain
networks.
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Whole-brain analysis showed a distributed network that posi-
tively correlated with the parametric RPE regressor. We verified
RPE-related activation in the right caudate nucleus and thalamus
(Table 3; for full results, see Fig. 4B), as expected from the literature.
Notably, the RPE network also includes regions of bilateral prefron-
tal and parietal cortex commonly observed in cognitive control
tasks.

We next tested whether the RPE signal was homogeneous
across set sizes in striatum, as implicitly expected if striatal RL is
independent of WM. To the contrary, we found a significant
positive interaction of set size with RPE (t(20) � 2.4, p � 0.026;
Fig. 5B) in the striatal ROI (see Materials and Methods). Note
that this interaction reflects a stronger effect of RPE on the striatal
BOLD signal at higher set sizes (i.e., under more cognitive load).
This finding supports the hypothesis that WM interacts with RL,
showing blunted RL signals in low set sizes (i.e., within the capac-
ity of WM).

Next, we investigated whether other brain regions showed the
same modulation of RPE signaling by WM load. Whole-brain
analysis showed a positive linear interaction of set size with RPE
in left lateral prefrontal cortex and parietal cortex (MNI coordi-
nates �38, 20, 28; Table 4). Further investigation within an inde-
pendent frontoparietal network ROI (Yeo et al., 2011) showed
both a strong main effect of PE (t(20) � 6.9, p � 10�4) and a
significant interaction of set size with RPE in the frontoparietal
ROI (t(20) � 2.3, p � 0.03), a pattern similar to the striatum ROI.
Again, RPE signaling was larger with more WM load, possibly
reflective of a common neuromodulatory signal in striatum and
cortex influenced by cognitive demands.

Link to behavior
We hypothesized that the weaker RPE signals observed in low set
sizes might reflect an interaction between WM and RL systems. Spe-
cifically, this may reflect the greater use of WM, instead of RL, at low
set sizes. This strategy could be because low set sizes do not require
RPE signaling: the most recent stimulus–action–outcome can be
accessed from memory. Therefore, we predicted that those subjects
relying more on WM would exhibit a stronger neural interaction
effect (i.e., they would show less homogeneity in their RPE signals
across set sizes). To index WM contributions to choice, we use the
computational model-inferred weight of the WM module averaged

over all trials. Indeed, we found that greater WM contributions to
choices was significantly related to the set size effect on RPE signal-
ing, both in striatum (��0.55, p�0.01), and the frontoparietal ROI
(� � 0.49; p � 0.02) (Fig. 6, left). Moreover, subjects who continued
to rely on WM with experience (i.e., exhibiting less transition to RL)
also showed greater set size effects on RPE signaling in FP (� �
�0.46, p � 0.03) and, marginally, in striatum (� � �0.41; p � 0.06)
(Fig. 6, middle). This may be due to the fact that, for participants
with higher overall reliance on WM, the WM module is more reli-
able, so WM use decreases less over learning. Indeed, the two indexes
were negatively correlated (� �-0.69, p � 10�3). The results were
partly accounted for by differences in model fit capacity pa-
rameter: subjects with higher capacity showed significantly
stronger nsxRPE interaction in FP (� � 0.46, p � 0.03) and
marginally so in striatum (� �.41, p � 0.06). Finally, we con-
firmed this effect was independent of the fit of the RLWM
model using logistic regression, specifically, the effect of set
size on accuracy (note that this measure was, as expected,
related to the one obtained by the computational model:
Spearman � � �0.42, p � 0.05). Indeed, the effect of set size
on accuracy was marginally related to the set size by RPE

Table 2. Main effect of set size

Region BA
Extent
(voxels) x y z

Peak
t value

Contrast: set size parametric increasing
Left precuneus 7 1948 �6 �72 44 6.98
Left angular gyrus 40 �32 �50 36 6.4
Right precuneus 7 12 �70 44 5.22

Contrast: set size parametric decreasing
Right superior frontal gyrus 9 1344 14 58 34 6.64
Left superior frontal gyrus 9 �12 46 42 4.69

10 �4 58 28 4.5
Left supramarginal gyrus 40 447 �64 �44 34 6.31
Left angular gyrus 39 �52 �70 28 5.83

40 �60 �52 40 4.52
Right angular gyrus 40 255 58 �52 44 5.41

22 62 �54 28 4.41
Right supramarginal gyrus 40 64 �46 36 5.19
Right superior frontal gyrus 8 239 14 20 62 5.15

9 10 38 52 4.42
Left superior frontal sulcus 8 255 �24 22 58 4.9
Left middle frontal gyrus 46 �24 18 40 4

Table 3. Main effect of RPE

Region BA
Extent
(voxels) x y z

Peak
t value

Contrast: main effect of RPE � fixation
Right angular gyrus 7 3202 34 �60 42 10.83

40 46 �52 44 9.2
Right inferior parietal gyrus 40 42 �42 40 10.21
Left superior parietal gyrus 7 3317 �30 �54 44 10.43
Left angular gyrus 40 �46 �48 56 10.32
Left inferior parietal gyrus 40 �42 �42 42 9.45
Right superior frontal sulcus 6 12409 20 2 62 9.64
Right middle frontal gyrus 46 38 36 30 8.84
Left superior frontal gyrus 6 �24 �6 62 8.15
Left middle frontal gyrus 11 1686 �30 56 4 7.78
Left lateral orbital gyrus 46 �40 56 �2 6.96
Left anterior orbital gyrus 11 �24 44 �14 6.42
Right putamen 955 28 22 0 6.99
Right thalamus 12 �10 10 5.15
Right pallidum 12 0 6 4.36
Right precuneus 7 731 6 �64 40 6.32

7 8 �66 58 5.21
Contrast: main effect of RPE � fixation

Right superior occipital gyrus 18 9715 16 �92 24 10.22
Left superior occipital gyrus 18 �16 �96 18 8.73
Right inferior lingual gyrus 30 �10 �48 �6 8.9
Left cingulate gyrus (subgenual) 11 2264 �4 28 �12 8.52

25 �2 18 �8 7.34
Left superior frontal gyrus 10 �8 58 2 7.24
Left middle temporal gyrus 20 2543 �56 �8 �18 6.69
Left supramarginal gyrus 48 �36 �36 22 6.26
Left superior temporal gyrus 38 �34 8 �20 6.24
Right precentral sulcus 4 1248 26 �30 66 6.21
Right postcentral gyrus 4 36 �26 72 6.13
Right precentral gyrus 4 52 �12 58 5.62
Right superior temporal gyrus 38 336 30 10 �28 6.08
Right middle temporal gyrus 21 50 2 �26 5.56

21 58 0 �24 4.76
Right cingulate gyrus 23 516 6 �20 44 5.64
Right superior frontal gyrus 6 12 �18 62 5.03
Right cingulate sulcus 4 10 �16 54 4.56
Right superior temporal gyrus 48 935 54 �4 4 5.6
Right lateral fissure 48 50 4 �6 5.11
Right lateral fissure/insular gyrus 48 40 �14 20 5.04

All clusters reliable at p � 0.05, corrected. Coordinates are the center of mass in MNI.
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interaction in striatum (� � �0.4, p � 0.06; Fig. 6, right) and
FP (� � �0.41, p � 0.06). Again, neural interactions were
stronger for those subjects exhibiting a stronger negative effect
of set size on behavior.

Discussion
We combined computational modeling and fMRI to investigate the
contributions of two distinct processes to human learning: RL and

WM. We replicated our previous results
(Collins and Frank, 2012; Collins et al.,
2014) showing that these jointly play a role
in decisions: computational models assum-
ing a single learning process (either WM or
RL) could not capture behavior adequately.
We also replicated the widespread observa-
tion that the striatum and lateral prefrontal
cortex are sensitive to RPEs, a marker of RL.
We made the novel observation that RL and
WM are not independent processes, with
the most commonly studied RL signal
blunted under low WM load. Further, we
found that the degree of interaction was re-
lated to individual differences in subjects’
use of WM: the more robustly subjects used
WM for learning, the more they showed
WM effects on RL signals.

The process of model-free RL, as both a
class of machine learning algorithms and as the neural network func-
tion implemented via dopamine-dependent plasticity in cortico-
basal ganglia networks, is characterized by integration of rewards
over time to estimate the value of different options and a value-
dependent policy. Our behavioral results replicate our previous
work showing that, even in simple instrumental learning, we cannot
account for human learning based only on the integrated history of
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reward. Instead, the influences of load and delay/intervening trials
show that WM also contributes to learning. That this influence de-
creases with experience supports a model in which RL and WM
modules are dynamically weighted according to their success in pre-
dicting observed outcomes.

We used computational modeling to disentangle the contri-
butions of RL and WM to learning and to assess neural indicators
of their interactions. We extracted the RPE signal from the RL
module and confirmed in a model-based whole-brain fMRI anal-
ysis that striatum was sensitive to PEs, as established in many
studies (Pessiglione et al., 2006; Schönberg et al., 2007), as was a
large bilateral frontoparietal region (Daw et al., 2011). However,
we found in both regions that sensitivity to RPE was modulated
by set size, the number of items that subjects learned about in a
given block. Specifically, the RPE signal was weaker in lower set
sizes, in which subjects’ learning was closest to optimal, and thus
likely to mostly use WM. Therefore, as noted in our earlier studies
(Collins and Frank, 2012; Collins et al., 2014), WM contributions
to learning can confound measures typically attributed to RL.
Although the previous findings were limited to behavioral, ge-
netic, and computational model parameters, here, we report for
the first time that even neural RPE signals are influenced by WM.
These results also imply that in other studies that do not manip-
ulate WM load during learning, the contribution of WM to learn-
ing may yield inflated or blunted estimates of the pure RL process.

We further found that individual differences in the degree to
which set size modulated RPE signals correlated with the degree
to which subjects relied on WM in their behavioral learning
curves. Specifically, subjects with more robust use of WM showed
more reliably blunted RPE signals in lower set sizes, supporting
the interpretation that WM use induces weaker RPEs in the RL
system. Further supporting this interpretation, we observed that
subjects who continued to use WM with learning (i.e., showing
less transition to RL) exhibited larger effects of set size on RPE
signaling.

One might expect to observe more reliable indicators of neu-
ral computations with easier tasks, but our findings show the
opposite. These results thus strongly hint at a mechanism by
which WM and RL interact beyond the competition for control of
action (Poldrack et al., 2001) and specifically at a mechanism by
which WM interferes with RL computations. How might this
interference occur? One possibility is that the two processes com-
pete, not only for guiding action, but also more generally, for
example, based on their reliability in a given environment. Such
interference would mean that, in conditions in which WM per-
forms better that RL (e.g., early in learning for low set sizes), WM
inhibits the whole RL mechanism and thus weakens its charac-
teristic neural signals such as RPEs. Another possible explanation
for the observed interference is cooperative interaction, in which

WM modifies the reward expectations in the RL system. This
would lead, when WM was working well, to higher expectations
than would be computed by pure RL and thus to weaker RPEs.
Future research will need to distinguish these possibilities. There
may be other interpretations of the change in RPE signaling with
set size, in addition to our interpretation as an interaction be-
tween the RL and WM processes. However, given that behavioral
fits strongly implicate separate WM and RL processes in learning
(see above and previous studies) and that WM is sensitive to load
in other paradigms with similar profiles, this remains the most
parsimonious explanation. Note that this interaction also makes
other behavioral predictions suggesting that reinforcement value
learning is actually enhanced under high WM load; we have re-
cently confirmed this prediction using a novel task building on
this line of work (A.G.E. Collins, M.A. Albrecht, J.A. Waltz, J.M.
Gold, and M.J., unpublished data).

Our results are related to recent work on sequential decision
making and learning that highlighted the role of a model-free mod-
ule (similar to our RL model) and of a model-based module respon-
sible for representing stimulus–action–outcome transitions and
using them to plan decisions (Doll et al., 2015). This latter module
has been linked to cognitive control and is weakened under load
(Otto et al., 2013), suggesting that it may require WM. Moreover,
both WM use in the current task and model-based processing in the
sequential task are related to the same genetic variant associated with
prefrontal catecholaminergic function (Collins and Frank, 2012;
Doll et al., 2016). Notably, Daw et al. (2011) showed that RPEs in the
striatum were modulated by model-based values, a result that may
support our collaborative hypothesis. However, we demonstrate
such interaction even in paradigms that are traditionally thought to
involve purely “model-free” RL. Because there is no sequential de-
pendence between trials, learning in our paradigm does not require
learning a transition model or planning. Indeed, we could ade-
quately capture learning curves for individual set sizes using a purely
model-free RL model (Collins and Frank, 2012; Collins et al., 2014),
with decreasing learning rates across set sizes, but this model has
more parameters than RLWM and cannot capture the nuanced ef-
fects of, for example, delay and set size interactions. Therefore, our
results show that learning in very simple environments that appear
to require purely model-free learning still recruits executive func-
tions, with WM contributing to learning and interfering with the
putative dopaminergic RL process. Our results show a similar pat-
tern of RPE activations for subcortical and lateral prefrontal cortex
areas, a common finding in published studies (Frank and Badre,
2012; e.g., Badre and Frank, 2011), possibly reflecting a common
dopaminergic input to both regions (Björklund and Dunnett, 2007).

We investigated the role of WM using set size as a proxy.
However, this leaves open some questions and may limit some of
our interpretations. In particular, set size affects the overall load
of WM, but is also predictive of higher delays between repetitions
of the same stimulus. Although our analyses tease apart load from
delay, the delay itself comprises both a temporal component
(number of seconds over which WM could decay passively) and a
discrete component (number of intervening trials that may inter-
fere with WM). Our paradigm did not manipulate those two
factors to make them maximally decorrelated and cannot distin-
guish their relative contributions to the effect of delay on behav-
ior. Furthermore, by focusing on set size as the marker of WM, we
cannot distinguish between a “tonic,” or slowly tuned interfer-
ence of WM in RL computation, and a more “phasic,” trial-by-
trial adjustment of their role and interaction between them. A
target for future research is increasing the experimental para-
digm’s capacity to disentangle delay from load carefully, allowing

Table 4. Set size * RPE interactiona

Region BA
Extent
(voxels) x y z

Peak
t value

Left superior precentral sulcus 44 725 �46 10 36 5.69
Left inferior frontal sulcus 48 �38 20 28 5.16
Left middle frontal gyrus 6 �32 2 38 4.57
Right superior frontal gyrus 6 689 18 4 54 5.42

32 6 22 46 4.3
Left superior frontal gyrus 6 �6 10 50 4.08
Left intraparietal sulcus 7 463 �26 �66 44 5.28

7 �30 �58 46 5.24
19 �26 �68 34 4.59

Contrast: RPE parametric increasing with set size.
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us to better understand the dynamics of interactions between RL
and WM.

We focused on WM as an alternative learning mechanism
from RL, with an a priori interest in regions of the cognitive
control network in lateral frontal and parietal cortices. However,
regions involved in long-term memory (LTM), such as the me-
dial temporal lobe (MTL) and hippocampus, could also play an
important role: rote memorization of explicit rules is in the prime
domain of LTM. Others have shown trade-offs for learning be-
tween LTM and striatal-based learning (Poldrack et al., 2001) and
WM itself is often difficult to distinguish from LTM (Ranganath
and Blumenfeld, 2005; D’Esposito and Postle, 2015). Our results
are consistent with LTM having a role in learning: indeed, we
observed a negative correlation between RPE and activation in a
network of regions including MTL (Table 4), indicating higher
activation early in learning (Poldrack et al., 2001). However,
computational modeling shows that the second learning compo-
nent that we extracted is capacity limited, supporting our inter-
pretation of this component as mainly WM. Nevertheless, future
research is needed to dissociate more carefully the role of WM
from LTM in RL.

Learning is a key factor in humans for improving our abilities,
skills, and fitting to our quickly changing environments. Under-
standing what distinct cognitive and neurological components
contribute to learning is thus essential, in particular studying
differences in learning across individuals. Many neurological and
psychiatric disorders include learning impairments (Huys et al.,
2016). To understand precisely how learning is affected by these
conditions, we must be able to extract separable cognitive factors
reliably, understand how these factors interact, and link them to
their underlying neural mechanisms. Our results provide a first
step toward clarifying how we trade off WM and integrative value

learning to make decisions in simple learning environments and
how these processes may interfere with each other.

Notes
Supplemental material for this article is available at https://www.ocf.
berkeley.edu/~acollins/pdfs/papers/RLWMfMRI_SIDocument.pdf.
This material has not been peer reviewed.

References
Badre D, D’Esposito M (2007) Functional magnetic resonance imaging ev-

idence for a hierarchical organization of the prefrontal cortex. J Cogn
Neurosci 19:2082–2099. Medline

Badre D, Frank MJ (2012) Mechanisms of hierarchical reinforcement learn-
ing in cortico-striatal circuits 2: evidence from fMRI. Cereb Cortex 22:
527–536. Medline

Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an
update. Trends Neurosci 30:194 –202. CrossRef Medline

Botvinick MM, Niv Y, Barto AC (2009) Hierarchically organized behavior
and its neural foundations: a reinforcement learning perspective. Cogni-
tion 113:262–280. CrossRef Medline

Burnham KP, Anderson DR (2002) Model selection and multi-model infer-
ence: a practical information-theoretic approach. New York: Springer.

Collins A, Koechlin E (2012) Reasoning, learning, and creativity: frontal
lobe function and human decision-making PLoS Biol 10:e1001293.

Collins AG, Brown JK, Gold JM, Waltz JA, Frank MJ (2014) Working mem-
ory contributions to reinforcement learning impairments in schizophre-
nia. J Neurosci 34:13747–13756. Medline

Collins AG, Frank MJ (2012) How much of reinforcement learning is work-
ing memory, not reinforcement learning? A behavioral, computational,
and neurogenetic analysis. Eur J Neurosci 35:1024 –1035. CrossRef
Medline

Collins AG, Frank MJ (2013) Cognitive control over learning: Creating,
clustering, and generalizing task-set structure. Psychol Rev 120:190 –229.
CrossRef Medline

Collins AG, Frank MJ (2014) Opponent actor learning (OpAL): Modeling

FP PE x SS interaction
-0.5 0 0.5 1

be
ha

vi
or

al
 s

s 
ef

fe
ct

-2

-1.5

-1

-0.5

0

0.5

Str PE x SS interaction
-0.5 0 0.5 1

be
ha

vi
or

al
 s

s 
ef

fe
ct

-2

-1.5

-1

-0.5

0

0.5

FP SS*PE effect
-0.5 0 0.5 1

M
od

el
 m

ea
n 

W
M

 w
ei

gh
ts

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP PE*SS effect
-0.5 0 0.5 1

ea
rly

 -
 la

te
 W

M
 w

ei
gh

t

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Str SS*PE effect
-0.5 0 0.5 1

M
od

el
 m

ea
n 

W
M

 w
ei

gh
ts

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Str PE*SS effect
-0.5 0 0.5 1

ea
rly

 -
 la

te
 W

M
 w

ei
gh

t

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6. Effect of set size on RPE in the fMRI signal is related to individual differences in behavior. Left, Average model-inferred mixture weight assigned to WM over RL (“Model mean WM
weight”) is significantly related to a stronger effect of set size in frontoparietal ROI (�� 0.49, p � 0.02) and in the striatum (�� 0.55, p � 0.01). Middle, Decrease in WM weight from early (first 3
iterations) to late in a learning block (last 3 iterations) is significantly related to fMRI effect in FP ROI (���0.46, p � 0.03) and marginally so in striatum (���0.41, p � 0.06). Right, Behavioral
set size effect is measured as the logistic regression weight of the set size predictor; stronger behavioral effect is marginally related to a stronger neural effect in FP ROI (���0.41, p � 0.059) and
in striatum ROI (� � 0.4, p � 0.063).
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