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Elaboration of a Multispecies Model of Solid
Tumor Growth with Tumor-Host Interactions

A. Konstorum, S. A. Sprowl, A. D. Lander, M. L. Waterman
and J. S. Lowengrub

Abstract There has been increasing evidence of the critical effects of
microenvironmental influence on tumor growth and metastasis. In this report, we
extend a multispecies continuum model of solid tumor growth to include interac-
tion of the tumor with its microenvironment. This new model, which incorporates
reported interactions between tumor- and stroma-derived chemical signals, predicts
a nonlinear response to host factors: increased growth and asymmetry of the tumor at
low levels of stromal fibroblast-produced Hepatocyte Growth Factor / Scatter Factor
(HGF/SF), and reduced growth at high levels.We test the model predictions using
colon cancer initiating cell (CCIC) spheroids grown in media in varying concen-
trations of HGF. The experiments show qualitatively similar behavior to the model
predictions. We plan to use the experimental studies to calibrate the mathematical
model, and to use the mathematical model to make predictions regarding tumor
behavior in order to guide future experimental studies.
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1 Introduction

The importance of the microenvironment in tumor growth and metastasis has been
established with a large body of research [1–6]. Nevertheless, the molecular interac-
tions between tumor and stroma-resident cells, and the changes in both tissues that
these interactions facilitate, are still under intense study, especially as it has become
evident that pharmaceutical targeting of the tumor alone may not account for cancer
promoting factors that are produced in the tumor microenvironment [7].

The purpose of this study is to extend a recently developed stem-cell based mul-
tispecies model of a solid tumor to include stromal interactions that are well corrob-
orated by experimental data. Numerical analysis of the mathematical model allows
us to examine, in silico, various scenarios of tumor-host interactions, and to compare
our results against the experimental literature. Ultimately, we hope to use the model
to make predictions about potential avenues for future research in malignancy, as
well as pharmaceutical applications.

2 Background: A Mathematical Model of a Solid Tumor with
Multiple Cell Types

A multispecies continuum model based on lineage dynamics of different tumor cell
types has recently been developed by Youssefpour et al. [8]. As this model is extended
here to incorporate tumor-host interactions, an overview of the model is necessary
to understand the additions. Figure 1 summarizes the biological foundation of the
model, while Fig. 2 summarizes the relevant equations.

3 Incorporating Host Effects

It has been shown in numerous studies that HGF production by cancer-associated
fibroblasts in the stroma causes increased κ-catenin localization in the nucleus of
tumor cells near the tumor-host boundary, and additionally causes these cells to
display properties of cancer stem cells such as increased migratory capacity and
clonogenic potential [9, 10]. The effects of HGF can be attributed to binding of
HGF to the c-Met receptor, which is expressed on tumor cells, and can result in a
signaling cascade that ultimately leads to dissociation of κ-catenin from its cytosolic
partners and translocation into the nucleus where it can potentiate the canonical
Wnt signal activity [11]. Based on these studies, we modify the equation for Wnt
signaling, which represents the combined effects that promote Wnt signaling, such
that concentration of HGF has a positive linear effect on Wnt signal production:

Elaboration of a multispecies model of solid tumor growth with tumor-host inter-
actions.
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Fig. 1 A multispecies model of tumor signaling: Tumor tissue is composed of three cell types:
cancer stem cells (CSCs), terminally differentiated cells (TCs), and dead cells (DCs). Stem cells
have a probability of self renewal P0, differentiate into TCs with probability 1 − P0, and divide at a
rate ΔM SC . P0 is promoted by Wnt (and other autocrine) signals produced by the stem cells, which
are in turn inhibited by Dkk (and other) proteins, also produced by CSCs. TCs secrete proteins from
the TGFκ superfamily that lower P0 and ΔM SC . CSCs and TCs can become DCs by apoptosis or
necrosis. Adapted from [8]

ϕCW nt

ϕt
= ∇ · (DW nt∇CW nt ) + f (CW nt , CDkk) (1)

f (CW nt , CDkk) = ΞPW nt
ΔH G F CH G F + C2

W nt

CDkk
C0φC SC

− ΞDW nt CW nt + μ0C0 (φT − φDC ) , (2)

where the HGF-induced production of Wnt signaling is modeled in the first term of
the right-hand side of Eq. (2). Creating a model for HGF concentration is a more dif-
ficult matter, as there have been far fewer studies on the molecular basis for changes
in HGF production by cancer-associated stromal cells. There have been many studies
that have shown a direct effect of cancer cells on HGF production via their secretion
of growth factors and cytokines such as TNFθ, bFGF, and PDGF that bind to the EGF
receptor on stromal cells and cause upregulation of HGF production [2, 12]. Thus, we
cannot currently specify whether the stem cells preferentially release these growth
factors and if increased κ-catenin localization (via HGF signaling) results in an
increased release of these factors from neighboring tumor cells, which would indicate
a positive feedback mechanism. With the data available, we model a positive
effect of growth factors from viable tumor tissue on HGF production in the stroma.
Additionally, there is substantial evidence that TGFb is a negative regulator of
HGF production in stromal cells, and thus we include its inhibitory effect in the
model (2):
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Fig. 2 Modeling the multispecies tumor: A brief outline of the model is given here. For a more
detailed description, see [8]. The functions φSC , φT C (shown) and φDC , φW , φH (not shown)
represent the local fractions of CSC, TC, and DC populations in lineage and the water and host
cells, respectively. The sum of the volume fractions equals 1. a For each cell type, the conservation
equation is posed, where J = −Mφ∇μ is a generalized flux (or cellular diffusion), Src is the
mass-exchange term, and us is the mass-averaged velocity of the solid components, assumed to
satisfy Darcys law and is given by ∇ · us = SrcSC + SrcT C + SrcDC . Cells are assumed to
move with the mass-averaged velocity. ForJ = −Mφ∇μ, M is the mobility and μ is the chemical
potential, which is proportional to the variational derivative of the adhesion energy. The flux is
derived from an adhesion energy that accounts for interactions among the cells. b We account for
a self-renewal promoter, such as Wnt, which increases the self-renewal fraction of CSCs, and an
inhibitor of the self-renewal promoter, such as Dkk, using a generalized Geierer-Meinhardt-Turing
system of reaction-diffusion equations. Both are only produced by CSCs, and Wnt diffusion range
is assumed to be shorter than that of Dkk. c CSC self-renewal fraction, P0 is positively regulated
by Wnt and negatively regulated by TGFκ with ε and ω the feedback response of the CSCs to the
respective proteins. d Source term for CSCs. Proportion of CSCs are increased by mitosis rate of
CSCs, ΔM SC , that are self-renewing, and is dependent on C0, the local concentration of oxygen and
nutrients. Hvn(x) denotes the Heaviside function, which is equal to 1 when x > 0 and 0 otherwise.
C̄0 denotes the minimum level of oxygen and nutrients required for cell viability. SrcT C and SrcDC
are modeled analogously
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ϕCH G F

ϕt
= ΞP H G F

CG F

ε + ΔT G FκCT G Fκ

C0φH +
HGF background production rate HGF decay/ binding rate

︷ ︸︸ ︷
ν0C0φ0 −

︷ ︸︸ ︷
ΞDH G F CC H G F +∇ · (DH G F∇CH G F ) , (3)

where the inhibition by TGFb and promotion by tumor-produced growth factors is
modeled in the first term of the right-hand side of Eq. (3).

As discussed above, HGF-promoting growth factors are released by tumor cells,
but it is not known whether the production of these growth factors is different in stem
and differentiated cells. Thus, we allow for the production rate of growth factors to
be different for each of the cell types:

ϕCH G F

ϕt
= ∇ · (DG F∇CG F ) +

Growth Factor production rate Growth Factor decay / binding rate
︷ ︸︸ ︷
C0 (ΞG F SφC SC + ΞG FT φT F ) −

︷ ︸︸ ︷
ΞDFGCG F (4)

We refer the reader to Table 1 for description of the variable and parameter sym-
bols.

4 Numerical and Experimental Methods

For the nondimensionalization and numerical implementation, we followed a
previously published numerical method, which we briefly describe here [8]. An
adaptive finite difference-nonlinear multi grid method [13, 14] was used to solve
the governing equations efficiently. For reasons described in [8, 13], we solved for
φT = φC SC + φT C + φDC . To remove a high-order time step constraint incurred
by an explicit method, we used an implicit 2nd order accurate time discretization of
Crank-Nicholson type, and spatial derivatives were discretized using 2nd order accu-
rate central difference approximations. In regions of large gradients, block structured
Cartesian refinement was used to provide enhanced local resolution.

In the experiments, colon cancer initiating cells (CCICs) were cultured as spher-
oids in ultra-low attachment flasks (Corning) using DMEM/F12 50:50 supplemented
with N2, B12, EGF, bFGF, heparin, sodium pyruvate, and penicillin/ streptomycin
[15]. Unlike typical cell lines, CCICs are multipotent and capable of regenerating het-
erogeneous tumors with characteristics analogous to those found in primary tumors,
from which they are derived [15, 16]. CCICs were trypsinized using a no-serum
trypsin inhibitor. Single cells were counted and plated in 96 well ultra-low attach-
ment plates (Corning) using the previously mentioned media with or without HGF
at various concentrations. CCICs were imaged at 10x resolution once each day. Cell
clusters were observed for sphere morphology and size. Sphere size was determined
by outlining the major sphere boundary (excluding scattered or shed cells) using
ImageJ. Average volume increase over day 3 from three experimental trials was
calculated in order to allow the spheroids 72 hours to adapt to new media.
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Variable or Description Value Reference and / or
parameter rationale (if not in text)

φH stromal fraction (=1-φT )
CH G F concentration of HGF
CG F concentration of

HGF- promoting factors
DG F diffusion coefficient for GF 1.0 [17, 18]
DH G F diffusion coefficient for HGF 0.1 Set to a value lower than

for GF due to higher molecular
weight of HGF and necessity
for HGF to be processed by
molecules in ECM before it
can bind to c-MET [19].

ΔH G F strength of Wnt 1.0 Optimal reference data not
induction by HGF available, plan to calibratein

future experiments.
ΔT G Fκ inhibitory effect 1.0 [20]

of TGFb on HGF production
ν0 background HGF 0.0001 Set to a value significantly

production rate by non-cancer lower than GF-induced
associated stromal cells production levels [21].

ΞP H G F,DH G F induction, decay rates of HGF 0.1, 1.0 [12, 19]
ΞG F S,G FT production rates of GF 0.1, 0.1; 10,10 Varies widely by cell type

modeled by stem and [22]. Here, at low and high
differentiated cells, respectively levels. Levels set to be equal

in both conditions since
differential production rate
information not available.

5 Results

Numerical results from incorporation of low HGF signal, created by a lower pro-
duction rate of growth factors (ΞG F S,G FT = 0.1) resulted in increased tumor asym-
metry, instability, and volume when compared to the no host simulation (Fig. 3a, b;
No host and Host: low HGF categories). By increasing growth factor production rate
(ΞG F S,G FT = 10), maximal HGF levels at the tumor-host boundary were increased
approximately 100-fold (Fig. 3c), and resulted in a nonlinear growth response to HGF,
namely at higher HGF levels, the tumor had greater symmetry and lower growth rate
than at low HGF (Fig. 3, Host: high HGF category).

Experiments were performed to corroborate results of the model with primary
colon cancer initiating cell (CCIC) spheroids grown in increasing concentration of
HGF. Spheroids are a relevant model for tumor growth since they can be used to
examine 3-dimensional properties of growing tissues, which more closely resemble
in vivo tumors than 2-dimensional culture models (23). The experimental results
show increasing spheroid growth rate with increasing concentration of HGF up to
100 ng/ml, but decreased growth and asymmetry at 250 ng/ml as compared to lower
levels of HGF (Fig. 4), which is qualitatively consistent with the model predictions.
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Fig. 3 Simulation results of tumor-host model: Visualization of numerical results of the mathemat-
ical formulation for incorporation of host factors (HGF) at low and high levels into a multispecies
model for a total tumor, b stem cell fraction, and c HGF concentration (note difference in scale).
d Tumor volume is increased in low HGF environment, but decreases in increased concentration of
HGF

6 Discussion

We have created a mathematical model for tumor-host interactions by incorporating
chemical interactions between host and tumor tissues into a multispecies continuum
model of tumor growth. Our theoretical results at low HGF indicate a good match to
the literature, namely that inclusion of host interactions increased tumor growth rate
and dispersion, as well as stem cell concentration at the tumor-host boundary, over
the no host model. The non-monotonic response is due to decrease in heterogeneity
of cell species at the tumor-host boundary resulting from an increased concentration
of stem cells in that region. This leads to more uniform growth, ie. less branching
over time than what is found in the low HGF model. Indeed, it has recently been
shown that at high concentrations of HGF, myogenic stem cells become quiescent,
while at lower concentrations, they proliferate and differentiate [23].

While our model matches experimental observations qualitatively, our ultimate
goal is to create an experimentallycalibrated mathematical model that can be used, in
conjunction with experimental verification, to make testable predictions about tumor
behavior in various conditions, including presence of stroma and subsequent ther-
apy. To this end, we have begun an experimental collaboration using tumor spheroids
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Fig. 4 Tumor spheroid culture with increasing [HGF]: CCIC tumor spheroids were grown in media
with increasing concentration of HGF. a Average volume increase (from day 3) of three experimental
trials / day. b Sample images from spheroids grown in control (left column), +50 ng/ml HGF media
(center column), and +250 ng/ml HGF media (right column)

developed with the CCIC cell line [15, 16]. While the current experiments did not
include feedback from tumor onto stroma, but only addition of HGF at increasing
concentrations in the media, there is still strong resemblance of the model to the
experiment as the interactions in the model serve to increase the effective HGF at
the tumor-host boundary, which is mimicked by higher concentrations in the exper-
imental media. The experimental observations show both an increase in tumor area
and increased asymmetry and dispersiveness of the tumor at lower concentrations of
HGF, and a slower growth rate and higher tumor symmetry at high levels of HGF
(Fig. 4), indicating similarity of outcomes between the model and experiment.

Work is currently in progress to calibrate our numerical model to the experimental
system by matching the growth parameters and timescale of the experimental system,
removing feedback to stroma, and incorporating the nonlinear effect of HGF at higher
concentrations on tumor growth. The framework of the calibrated model remains the
same as to what is presented in this paper.

In parallel, the experimental system is also being developed to include a
co-culture with stroma and staining for stem and other cell types in order to better
match our current model, which is more closely aligned with the in vivo dynamics
of HGF action on tumor growth. Furthermore, we plan to incorporate, into both the
numerical and experimental system, the following: quantification and modeling of
cell spread, tumor angiogenesis, and macrophage involvement in tumor growth. Our
long-term goal is to build a predictive model that can be efficiently used to better
understand tumor physiology and response to treatment.
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