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Plasmonic meta-structure paves the way to study and manipulate light both in far 

and near filed. Achieving invisibility (cloaking) by suppressing scattering from an object 

using a nanoassembled 3D plasmonic meta-structure is the principal study of this 

dissertation. The concept of "cloaking" an object is a very attractive one, especially in the 

visible (VIS) and near infra-red (NIR) regions of the electromagnetic spectrum, as that 

would reduce the visibility of an object to the eye. One possible route to achieving this goal 

is by leveraging the plasmonic property of metallic nanoparticles (NPs). In this dissertation 

a model was developed to simulate light in the VIS and NIR scattered by a core of a 

homogeneous medium, covered by plasmonic cloak that is a spherical shell composed of 

gold nanoparticles (AuNPs). To consider realistic, scalable, and robust plasmonic cloaks 

that are comparable, or larger, in size to the wavelength, a multiscale simulation platform 

was introduced. This model uses the multiple scattering theory of Foldy and Lax to model 

interactions of light with AuNPs combined with the method of fundamental solutions to 

model interactions with the core. Numerical results of the simulations for the scattering 

cross-sections of core-shell composite indicate significant scattering suppression of up to 

50% over a substantial portion of the desired spectral range (400 - 600 nm) for cores as 

large as 900 nm in diameter by a suitable combination of AuNP sizes and filling fractions 

of AuNPs in the shell.  

Suppressing total scattering cross-section by a plasmonic meta-structure effects the 

angular distribution of the scattered energy both spectrally and spatially. The second 

project of this dissertation studies the engineering of spatial and spectral profiles applying 

the plasmonic meta-structures. The possibility of engineering spectral scattering was 

explored by three-dimensional mesoscale dielectric targets coated with gold nanoparticles 

(AuNPs) on the surface. By varying AuNP sizes (5-20 nm) and filling fractions of the 

AuNP coatings (0.1 - 0.3), simulations reveals that under optimal combination of these two 

parameters, a meta-structure demonstrates reduced or enhanced scattering efficiency 

compared to the bare core. Furthermore, analysis of the differential scattering cross-section 
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shows that the presence of the AuNP coating alters the angular distribution of scattering by 

suppressing the angular sidelobes, thereby guiding the scattered power preferentially in the 

forward direction. The simulated results highlight that with the ability to tune both the 

spatial and spectral aspects of the scattering profile, these coated structures may serve as a 

platform for a variety of applications, including passive cloaking and high-resolution 

imaging. 

The final part of this dissertation is the experimental realization of nano assembled 

3D plasmonic meta-structures following the demonstration of plasmonic cloaking by these 

structures. These meta-structures were designed based on the simulated results, they are 

comprised of a dielectric (silica) core coated with randomly distributed AuNPs. Silica 

surface modified by the suitable amine ligand enabled adsorption of the AuNPs, and 

electrostatic interactions between AuNPs promoted nanoscale self-assembly, resulted in 

robust core-shell structures. Furthermore, the meta-structure fabrication process was 

optimized to achieve a desired surface coverage (> 20%) of AuNPs for varied meta-

structure sizes (500 nm, 700 nm). Measured scattering cross-section of bare silica and 

AuNP coated silica sphere revealed broadband scattering suppression by the plasmonic 

meta-structures up to 570 nm in the visible spectrum.  Simulated and the measured 

scattering cross-sections of the bare cores and core-shell structures showed a very good 

agreement confirming the applicability of the multiscale simulation platform to the real-

world systems. 
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Chapter 1 
 

Motivation and Research Overview 
 

 This dissertation presents the study of light-matter interactions in terms of 

scattering cross-section, spatial scattering pattern, and scattered power of nano-assembled 

3D plasmonic meta-structures. The plasmonic meta structures are made of a dielectric 

spherical core surrounded by randomly distributed gold nanoparticles (AuNPs). The 

system sizes studied are in the range of 400 nm to 800 nm. A new and fully 3D model has 

been introduced for these systems that explicitly incorporates multiple scattering by the 

dielectric core and the metal nanoparticles. This new model can account for plasmonic 

meta structures that are larger than previous models were able to consider, which is unique 

for practically realizable systems. This chapter introduces the research work and 

significance of the multiscale simulation platform to characterize and predict optical 

scattering from 3D nano-assembled plasmonic meta structures and provides a brief 

overview of all the following chapters. 

Developing a robust and multiscale simulation platform to characterize and predict 

optical scattering responses from nano-assembled 3D plasmonic meta structures motivated 

this research work[1].  Light reflected from an object makes it visible to the human eye or 

detectable by any sensor. This reflection process is commonly known as scattering, which 

plays a crucial role in detecting, imaging, and interference that may arise due to scattering. 

Therefore, reducing the scattering of the incident light and redirecting the scattered energy 

would enable us to design and develop efficient and practical devices by reducing losses. 

Additionally, suppressing scattering would make the objects of interest less visible to 

detection over a specific incident wavelength, commonly known as passive cloaking.  

The currently available models for analyzing interactions of incident light with 

plasmonic meta-structure were limited in system sizes and complexities. These models 

were based on homogenization of a composite structure, attributing an effective refractive 

index for all the constituent components. These models were moderately successful in 

predicting and analyzing electromagnetic responses of complex plasmonic systems. A 

unique numerical model has been studied in this dissertation. This model acts as a 

simulation platform for characterizing and predicting scattering cross-section of complex 

3D plasmonic structures by accounting multiple interactions between the incident light and 

all the constituent elements explicitly.   

An introduction and review of light-matter interactions, which act as a building 

block for the complex interaction between the light and plasmonic meta structures, are 

described in chapter two.  Scattering and absorption of electromagnetic (EM) waves by the 

dielectric particles of different sizes and gold nanoparticles (AuNPs) are reviewed. 

Scattering by particles of much smaller particles than the incident wavelength (diameter 

<<
1

10
𝜆𝑖𝑛𝑐  ) are analyzed using Rayleigh scattering theory. The 3D plasmonic meta 

structures discussed in this dissertation are a composite of AuNPs with sizes ranging from 
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5 nm to 20 nm and a spherical dielectric core. The optical response of the AuNPs is 

analyzed using the Rayleigh scattering because their diameter is much smaller than the 

visible wavelength range (400 nm to 700 nm). In contrast, Mie scattering theory is suitable 

for particles with a diameter comparable to the incident wavelength, which is between 400 

nm to 700 nm in our case. Instead of applying Mie theory, Methods of Fundamentals of 

Solution(MFS) was used to analyze scattering since it provides a more significant 

advantage computationally[1]. 

Chapter three reviews plasmonic cloaking briefly. This is a passive electromagnetic 

cloaking method that works by leveraging the plasmonic properties of metallic 

nanoparticles. This specific type of cloaking method does not require an external energy 

source to operate and works by suppressing scattering from an object. Conventionally a 

plasmonic cloaking structure is comprised of a target object (core) with a plasmonic 

cloaking cover (shell). Optical responses of these core-shell plasmonic structures were 

modeled via dipole approximation and effective medium theory. This chapter briefly 

reviews plasmonic cloaking, discusses the drawback of the existing model and the 

necessity for developing a multiscale simulation platform.      

 A rigorous analysis of the broadband scattering suppression via plasmonic cloaking 

has been presented in the chapter four. This chapter highlights the mathematical description 

and computational procedure of our model. The light-matter interaction between AuNP 

was computed using the generalized Foldy-Lax method. Interaction between the incident 

light and the spherical dielectric core was computed using the MFS method. A justification 

for using these methods to analyze the light matter interactions has been provided in this 

chapter. Broadband scattering suppression (Δ𝜆 = 430 𝑛𝑚 − 670 𝑛𝑚) for a wide range of 

structure sizes (450 nm-950 nm) has been presented as a concluding result in this chapter. 

Multiple scattering and absorption of incident light between the spherical dielectric 

core and the surrounding AuNP coating enable broadband scattering suppression. Apart 

from scattering suppression, these multiple interactions also alter the spatial scattering 

pattern. Tuning scattering patterns and manipulating the directionality of the scattered 

power by the plasmonic meta-structures are discussed in chapter five. Multiple scattering 

and absorption decrease the overall coherence of the scattered light. As a result, angular 

side lobes of the scattered light are suppressed following a narrower central peak. This 

chapter also illuminates a crucial interaction that promotes the process that makes 

broadband scattering possible. A way to manipulate and quantify spatial scattering patterns 

and scattering intensity has been discussed in this chapter.    

The simulation platform presented in this dissertation can generate and predict a 

couple of variations of the plasmonic meta structures that would show scattering 

suppression. Plasmonic meta structures of two different core sizes were fabricated 

following the simulation model. Electrostatic nano-assembly was employed to fabricate 

3D plasmonic meta structure. The scattering cross-sections were measured by collecting 

and measuring diffused light intensities from the plasmonic meta structures. A barium 

sulfate-coated integrating sphere was used to measure the diffused light in transmission 

and in reflections. The measured scattering cross-section of the plasmonic structures shows 

scattering suppression compared with the bare silica sphere over the visible wavelength 

range. An image analysis process was adopted to quantify the surface coverage or filling 

fraction of the AuNPs on the silica sphere. Critical parameters such as AuNP diameter, 
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silica sphere diameter, and filling fraction were fed to the simulation model to generate a 

scattering cross-section. The simulated and measured scattering cross-sections were 

compared with each other to explore the applicability of the simulation model .   

Finally, chapter seven is dedicated to the summary and future work regarding the 

research presented in this dissertation. This chapter highlights some key advantages and 

achievements of this research work following some future work.       
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Chapter 2 
 

Light matter interactions 

 
 This chapter presents a brief description of scattering and absorption in general. 

Two widely known theories for analyzing scattering are Rayleigh and Mie scattering 

theory. These theories have a specific operational regime and related advantages; hence 

basic equations to calculate scattering and absorption are included. The origin of the bulk 

plasmon in the metal following surface plasmon resonance and localized surface plasmon 

resonance is discussed later in this chapter. Finally, scattering and absorption cross-section 

together as a function of gold nanoparticle diameter is presented as an example of the 

tunability of light-matter interactions. The concluding part of this chapter is a brief review 

of the tunability of light matter interaction via plasmonic nanostructures.   

 

2.1 Scattering and absorption cross-section 

 

 Incident electromagnetic waves may be redirected, redistributed angularly 

(scattering), and partially or fully absorbed (absorption) while interacting with an obstacle 

in the direction of propagation. In our case, this obstacle would be a scattering particle. 

This section of the dissertation introduces the scattering and absorption cross-section, 

Rayleigh and Mie scattering theory following the plasmonic interactions.   

 Incident electromagnetic (EM)wave interacts with the discrete charges (i.e., 

electrons or protons) of the constituent scattering particles atoms or molecules. As a result, 

these charges are perturbed and start to oscillate with the same frequency (𝜈0) as the 

incident EM wave[2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Secondary radiation (scattering) by an induced dipole moment 
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This periodic perturbation in the charge cloud creates a periodic separation of opposite 

charges, resulting in an induced dipole moment[2]. This oscillating dipole moment acts as 

a source of secondary radiation or scattered light. The frequency of radiation from the 

oscillating dipole is mostly the same as the incident frequency 𝜈0. This type of scattering 

process is known as elastic scattering. Apart from scattering, a part of the incident EM 

wave may be extinguished inside the particle when the particle is absorbing. This 

absorption process refers to a complex refractive index [2]. The scattering and absorption 

process together is termed as extinction. 

A scattering cross-section represents an effective area (cross-section) that is 

proportional to the probability of interaction of light with an object. Hence, scattering 

cross-section (𝜎𝑠) is defined as a quantity proportional to the rate at which a particular 

light-matter interaction occurs[3]. Similarly, an absorption cross-section is defined as the 

probability of absorption due to the interaction of light with the target object[3].  In many 

practical analysis and experimental setups, absorption cross-section is obtained by 

subtracting the scattering cross-section from the total extinguished energy (extinction 

cross-section) due to the interaction of light with the target object.     

 

 

2.2 Rayleigh and Mie scattering regime 

 

Light scattering by particles of different sizes is analyzed by two theoretical 

frameworks. This first one is the well-known Rayleigh scattering theory named after Lord 

Rayleigh. This scattering theory was initially developed for small non-absorbing 

(dielectric) spherical particles [4]. Later this theory was modified for absorbing (metallic) 

particles. The second theory is Mie theory, following Gustav Mie, which considers the 

general spherical solution of the scattering waves[5] and is applicable for both absorbing 

and non-absorbing particles without a particular bound on particle diameter[6].  A 

dimensionless parameter known as the size parameter is used to determine the regime of 

Rayleigh and Mie scattering theory. The size parameter is, 

 

𝜒 =
2 𝜋𝑅 

𝜆
                                                                                                                  (2.1)  

 

Here 𝑅 is the radius of the particle, and 𝜆 the scattering wavelength in the surrounding 

medium, it is defined as,  

 

𝜆 =  
𝜆0

𝑚0
                (2.2) 

 

Here 𝜆0 is the incident wavelength in vacuum, and 𝑚0 is the refractive index of the 

surrounding medium.  The refractive index of the scattering particle 𝑚  

 

  𝑚 = 𝑛 − 𝑖𝐾                         (2.3) 
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Here 𝑚 is the complex refractive index of the target particle. The real part of the refractive 

index is 𝑛, and 𝐾 is the extinction coefficient.  The value of the extinction coefficient is 

always non-zero for any material. Materials with 𝐾 values approaching zero are known as 

dielectric.  The Rayleigh scattering regime is considered for objects with 𝜒 ≪ 1 and 
|𝑚|𝜒 ≪ 1. This scattering regime assumes that the target particle is sufficiently small. 

Moreover, EM field incident on the particle is considered uniform at any moment, and the 

time taken by a wave train to enter the particle is shorter than its period of oscillation[6].  

 

 

 

2.2.1 Rayleigh scattering 

 

 Light scattering from molecules or very small particles ( 𝑅 ≪
1

10
 𝜆𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) falls 

into the Rayleigh scattering regime [3]. This scattering process is strongly wavelength-

dependent [3]. The scattering and absorption cross-sections are,  

 

Scattering cross-section (𝜎𝑠): 

 

           𝜎𝑠𝑐𝑎 =
2𝜋

5
3(2𝑅)6

𝜆4 |
𝑚̃2−1

𝑚̃2+2
|

2

 ;    𝑚̃ =
𝑛(𝜆)

𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
                       (2.4)     

    

Absorption cross-section (𝜎𝑎): 

 

          𝜎𝑎𝑏𝑠 =
8𝜋2

𝜆
𝑅3𝐼𝑚 |

𝑚̃2−1

𝑚̃2+2
|

2

                                 (2.5) 

 

 

The blue hue of the sky is due to the light scattering off the molecules of air. This 

is an elastic scattering process since the photon energy (frequency of the scattered light) 

remains unchanged due to the scattering.  The 3D meta structures described in this 

dissertation have an AuNP coating around a spherical dielectric sphere.  Interactions of the 

incident light with these discrete AuNPs were modeled using Rayleigh scattering. The 

diameters of these AuNPs were 5, 10, and 20 nm, which are much smaller than the incident 

wavelength. Hence the Rayleigh scattering theory was appropriate in this case. 

 

2.2.2 Mie Scattering    

 

Mie scattering is dominant for particles whose diameter is comparable to incident 

wavelength or much larger than the incident wavelength[3][2].  Typical scattering pattern 

produced by the particles in the Mie scattering regime is like an antenna lobe[2], [3]. These 

scattering lobes become sharper and more intense in the forward direction as the particle 

size increases.  The scattering and extinction cross-sections are,  
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Extinction cross-section  

 

 𝜎𝑒𝑥𝑡 =
𝜆2

2𝜋
∑ (2𝑛 + 1)[𝑅𝑒{𝑎𝑛} + 𝑅𝑒{𝑏𝑛}]∞

𝑛=0          (2.6) 

          

Scattering cross-section 

 

 𝜎𝑠𝑐𝑎𝑡𝑒 =
𝜆2

2 𝜋
∑ (2𝑛 + 1)(|𝑎𝑛|2 + |𝑏𝑛|2)∞

𝑛=0          (2.7) 

 

The absorption cross-section, 𝜎𝑎𝑏𝑠 can be calculated by taking differences between the  

equation 2.6 and equation 2.7.  

The parameters 𝑎𝑛 and 𝑏𝑛 stated above are known as Mie coefficients which are 

from the expansion of the scattered field and can be determined from the boundary 

conditions. The parameters 𝑎𝑛 and 𝑏𝑛 are defined as,  

 

𝑎𝑛 =
 Ψ𝑛(𝜒) Ψ𝑛

′ (𝑚 𝜒)−𝑚 Ψ𝑛(𝑚 𝜒) Ψ𝑛
′ (𝜒)

𝜉(𝜒) Ψ𝑛
′ (𝑚 𝜒) − 𝑚 Ψn(𝑚𝜒) 𝜉𝑛

′ (𝜒)  
                      (2.8) 

 

 

𝑏𝑛 =
𝑚Ψ𝑛(𝜒) Ψ𝑛

′ (𝑚 𝜒) −  Ψ𝑛(𝑚𝜒) Ψ𝑛
′ (𝜒)

𝑚𝜉(𝜒) Ψ𝑛
′ (𝑚 𝜒) − Ψ𝑛(𝑚𝜒) ξn

′ (𝜒) 
                                 (2.9) 

 

Here the Ricatti-Bessel functions Ψ and 𝜉 are defined in terms of the half-integer-order 

Bessel function of the first kind (𝐽
𝑛+

1

2

(𝑧)). It is worth mentioning that these coefficients 

(𝑎𝑛 and 𝑏𝑛) diverge as the denominators start to become very small or zero. The divergent 

cases in the series expansion are denoted as a resonance peak. From the equations 2.8 and 

2.9, resonances are strongly dependent on the size parameter 𝜒. Hence these resonances 

are also known as morphology dependent resonance (MDR)[7].  Apart from the size of the 

particles, resonance peaks are also influenced by the refractive indices of the particles, and 

surrounding medium, and incident wavelength.  

 

 

2.3 Optical properties of metallic nanoparticles 

  

The high density of free electrons originating from the valence electrons gives the metal 

its unique shiny properties under the visible wavelength. This electron density is 

responsible for scattering and absorption [8] and gives rise to the interesting phenomena 

known as a surface plasmon. An extraordinary example of plasmonic interaction of the 

metallic nanoparticles from the ancient world is the Lycurgus cup (Roman empire, 4th 

century AD).  Figure 2 shows Lycurgus cups in reflected light (green) and in transmitted 

light (red).  These variations in color were possible because of the inclusion of metallic 

nanoparticles such as copper, silver, and gold in the glass matrix. Light scattered by the 

silver nanoparticles gives it a greenish hue under reflected light. The AuNP absorbs light 

around 550 nm, because of that, the Lycurgus cups appear red under transmitted light[9].  

The optical properties of the metallic nanoparticles are dependent on the collective 
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oscillations and excitations of the conduction electrons[10]. The coherent oscillation of 

electrons due to the incident light produces bulk plasmon and localized surface plasmons. 

The following section describes the fundamentals of surface plasmons briefly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Lycurgus cups (Roman empire, 4th century AD). ©British Museum. 

 

 

2.3.1 Bulk plasmon 

    

 Free electrons in the metal experience no significant resistance and act as a gas of 

charged particles , or plasma under the influence of incident EM waves [8]. The interaction 

of the incident light with this plasma gas has been described using the Lorentz-Drude 

model[11]. According to this model, a system of free electron gas is polarized with 

polarization, 𝑃 =  −𝑁𝑒𝑥, due to the electric field (ℇ) of the incident EM wave. Here 𝑁 is 

the number of electrons per unit volume, 𝑥 is the displacement of electrons from 

equilibrium due to the EM wave. The displacement vector and the relative permittivity 𝜖𝑟 

,  

 

𝐷 = 𝜖𝑟𝜖0ℇ  

         = 𝜖0ℇ + 𝑃  

                = 𝜖0ℇ −
𝑁 𝑒2ℇ

𝑚0(𝜔2+𝑖𝛾𝜔)
                                                                                               (2.10) 

 

Here 𝜔 is the frequency of the incident wave, and 𝛾 is the damping constant. From equation 

2.10,  

  

 𝜖𝑟(𝜔) = 1 −
𝑁𝑒2

𝜖0𝑚0

1

(𝜔2+𝑖𝛾𝜔)
                     (2.11) 
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The equation 2.11 can be written as,  

 

 𝜖𝑟(𝜔) = 1 −
𝜔𝑝

2

(𝜔2+𝑖𝛾𝜔)
          (2.12) 

 

 

Here the quantity (
𝑁𝑒2

𝜖0𝑚0
)

1

2
 is known as the plasma frequency 𝜔𝑝, 

 

 𝜔𝑝 =  (
𝑁𝑒2

𝜖0𝑚0
)

1

2
           (2.13) 

 

For a lightly damped system the constant 𝛾 = 0. Therefore, equation 2.12 can be expressed 

as,  

 

 𝜖𝑟(𝜔) = 1 −
𝜔𝑝

2

𝜔2           (2.14)  

 

 

This equation 2.14 is an interesting one since it indicates that 𝜖𝑟(𝜔) = 0 at plasma 

frequency (𝜔𝑝). An interesting consequence of 𝜖𝑟 = 0 is, at this frequency, a collective 

longitudinal excitation mode is formed where the electric field and the wave vector are 

parallel [12]. This collective excitation mode is physically a collective oscillation of the 

conduction electron gas with reference to the background of the positive atomic cores[13].  

The quanta of this charge oscillation are known as plasmons or bulk plasmons. 

 

 

 

 

2.3.2 Localized surface plasmon resonance 

 

 Surface plasmon or surface plasmon polaritons (SPPs) are propagating 

electromagnetic excitations along the interface between a metal and dielectric medium. 

The permittivity of the metal (𝜖𝑚) and the dielectric medium (𝜖𝑑) needs to be opposite 

(𝜖𝑑 = −𝜖𝑚) of each other as a necessary condition to sustain a propagating electromagnetic 

excitation along the interface[14].  Figure 3 shows a schematic of the propagating plasmons 

along the interface. This composite system is composed of an EM wave in the dielectric 

medium and an oscillating electron plasma in the metal. The interaction between the photon 

and the plasmon are strong enough to be considered as a coupled system called polariton 

or surface plasmon polariton. Here both modes have decaying characters [15]. 

 

      

 



10 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Schematic diagram illustrating a surface plasmon polariton or propagating 

plasmon. Reproduced from reference[14] with permission © Annual Reviews. 

 

In the case of colloidal metallic nanoparticles, the surface plasmon polaritons are 

non-propagating; hence they are known as a localized surface plasmon. The curved surface 

of the nanoparticles provides a resulting restoring force on the oscillating electron, causing 

a resonance [16]. Field amplification both inside and in the near-field zone outside the 

particle is observed due to this resonance[17], called localized surface plasmon resonance 

(LSPR).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Schematic diagram of LSPR for a spherical gold nanoparticle. Reproduced 

from reference[14] with permission © Annual Reviews. 

 

An advantage of the curved surface is that plasmon resonance can be excited via direct 

incident light, in contrast to propagating surface plasmons which requires the phase-

matching techniques for resonance[18]–[22]. Gold and Silver nanoparticles show LSPR in 

the visible wavelength region[23][24]. A fascinating consequence of this resonantly 

enhanced interaction is the bright colors exhibited in reflected and transmitted light.  
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The origin of the bright colors is LSPR enhanced scattering and absorption[25].  The 

following section describes the scattering and absorption of the gold nanoparticles (NP).  

 

 

2.3.2 Scattering and absorption of gold nanoparticles 

 

 The differences in the optical properties between a metallic nanoparticle and the 

bulk metal can be explained in terms of polarizability[8]. The polarizability of a smaller 

metallic particle or a nanoparticle can be described as. 

 

 𝛼 = 4 𝜋 𝑅3 𝜖𝑚−𝜖𝑑

𝜖𝑚+2𝜖𝑑
           (2.15) 

 

Here polarizability 𝛼, depends on the radius (𝑅) of the particle, the permittivity of the metal 

(𝜖𝑚 ), and dielectric (𝜖𝑑). Based on the expression above, resonance occurs at 𝜖𝑚 =  −2𝜖𝑑, 

but in the case of undamped plasma resonance occurs at 𝜔𝑝/√3, here air acts as dielectric 

independent of the particle size[17]. Plasmonic resonance in the metallic nanoparticles was 

experimentally found to be dependent on the size and surrounding medium[8]. There is a 

shift in the resonance frequency due to the Interbrand absorption of the metal[26]. LSPR 

enables plasmon-enhanced scattering and absorption of metallic nanoparticles. In this 

dissertation AuNPs plays a key role for enabling multiple scattering and absorption 

between the spherical dielectric core and the plasmonic shell.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.  Normalized extinction cross-section of gold nanoparticle as a function of size 

over visible wavelength. Extinction cross-sections are normalized by the corresponding 

maximum and rescaled. 
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Normalized extinction cross-sections (scattering plus absorption) of gold 

nanoparticles of varied sizes were shown in figure 2.5. Extinction cross-sections of 5 (black 

line), 10 (red line), and 20 nm (blue line) are exhibiting resonance around 510 nm as 

evidence of plasmon-enhanced scattering and absorption[10]. An increase in the extinction 

cross-section with the increased diameter shows tunability of light-matter interaction using 

plasmonic gold nanoparticles. The extinction cross-section was plotted using equations 2.5, 

2.6, and optical constants for the AuNPs were from the experimentally measured plasmonic 

gold thin film[3][27].   

 

 

2.4 Introduction to plasmonic interaction of the nanostructures  

 

Plasmonic nanostructures show promises for a wide range of applications such as 

broadband scattering suppressions [1], biosensing [28]–[36], spectroscopy [14], [37]–[48], 

nanolasing [49]–[60], all-optical switching [61]–[66], nonlinear optical process[67]–[73], 

and meta surface technology[74]–[84].  Plasmonic nanostructures make a flexible and 

geometry-dependent response to the electromagnetic field. As a result, these structures 

yield many exotic properties, such as the ability to confine light to sub-wavelength scales 

following significant local field enhancement[77][8]. The building block of these 

plasmonic nanostructures are metallic nanoparticles such as gold, silver, and copper[85]. 

These metallic nanoparticles have intrinsic nonlinear optical constants, which are many 

orders of magnitude larger than dielectric materials[86].  At the sub-wavelength scale[87], 

these nanostructures individually show localized surface plasmon resonances (LSPRs)[88], 

which are incident electromagnetic fields coupled to the free-electron plasma of a metallic 

nanoparticle at a metal-dielectric interface[8]. Governing by the size and shape, an 

individual nanoparticle can be polarized by the incident electromagnetic wave, acting like 

a lossy dipole antenna[89]. Hence plasmonic nanoparticles shows both scattering and 

absorption properties[8]. The plasmon-enhanced scattering and absorption properties lead 

to light-matter interaction tunability by facilitating multiple scattering and absorption 

between a dielectric host and randomly distributed metallic nanoparticle coating[1][90].       

 

2.4.1 Tuning light-matter interaction using plasmonic nanostructures 

 

Plasmonic responses of the nanostructures are highly tunable as the surface 

plasmons (SPs) are strongly dependent on materials and structures. Hence by varying 

constituent metals, semiconductors, dimensions(2D or 3D), and morphology, plasmonic 

resonance wavelengths can be tuned from ultraviolet(UV), visible, near-infrared(NIR) to 

far infrared[91]–[94]. Surface plasmons (SPs) are the coupled Electromagnetic (EM) 

waves with the free electrons on the material dielectric boundary. Conventionally, air 

works as an interfacing dielectric medium to accommodate SPs. The plasmon resonance 

frequency is expressed as,  

 

𝜔𝑝 = (
4 𝜋𝑁𝑒2

𝜖∝𝑚∗ )

1

2
                (2.16) 
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Here N is the carrier density (electron or holes), 𝑚∗ is the effective mass of the carriers, 

 𝑒 is the charge of the carriers (electron or holes), and 𝜖∝ is the effective permittivity of the 

system. We can readily conclude from the equation 2.16 that the plasma frequency of a 

system can be varied by changing the carrier density and effective permittivity. The noble 

metallic nanoparticle’s typical carrier density is1022 − 1023 𝑐𝑚−3 and the plasmon 

resonance frequency is in the NIR to the visible range[95]. In the case of a doped 

semiconductor, the typical value of N is 1016 − 1012 𝑐𝑚−3 and the plasmon frequency is 

in the THz and NIR region[96]. Apart from the carrier or doping density, the plasmon 

resonance frequency is also strongly dependent on physical size, surrounding host medium, 

morphology, and geometrical arrangement[97]–[100]. 

 

Plasmonic colloidal metallic nanoparticles possess a unique ability to couple with the 

incident light with wavelengths are much longer than their diameter. As a result, plasmonic 

nanostructures manifest some extra ordinary optical or electromagnetic response such as 

negative refractive index, perfect lensing, and transparency or cloaking properties that are 

not available in naturally occurring materials[101], [102]. These composite structures are 

commonly known as meta-materials. Wide research interest has been developed to study 

novel properties of meta materials or artificial materials due to recent advances in nano-

synthesis, characterization, and fabrication [103]–[105]. Meta materials are well designed 

and fabricated nanostructures that collectively show an electromagnetic and optical 

response beyond the boundaries of the naturally existing materials[106][107]. One of the 

most exotic metamaterial applications is achieving transparency or invisibility by 

manipulating the incident light. The working principle of achieving transparency varies 

depending on the design and applications. A review of some of the electromagnetic 

cloaking methods and their working principles are presented in the following chapter.  
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Chapter 3 
 

Passive cloaking via scattering 

suppression 

 
This chapter briefly reviews conventional electromagnetic cloaking methods. The 

mechanism of passive cloaking is explored here to a more considerable extent within the 

scope of this dissertation. Invisibility cloaking by the plasmonic metamaterial recently 

opened a promising field of research, where spherical core-shell structures at the size of 

the wavelength of operation can be fabricated and which passively (no external power 

required) achieve invisibility by canceling scattering[108]. A widely used method to model 

and compute optical responses from the plasmonic metamaterials is the effective medium 

theory. Some of the relevant applications of this theory along with the drawbacks are 

described in this chapter. 

 

3.1 Electromagnetic cloaking method 

 

Passive cloaking by scattering suppression is one possible solution to the 

electromagnetic cloaking that has been developed over the last few decades[102]. There 

are several other cloaking methods currently being tested for different physical situations, 

and a brief overview of those techniques will provide an idea of the existing methods and 

their advantages or disadvantages. These cloaking methods can be classified into 

Transformation electrodynamics, Carpet cloaking, and Mantle cloaking[102].  

 

3.1.1 Transformation electrodynamics: 

 

 The transformation-based cloaking method works by controlling the flow of 

electromagnetic energy[109]. For example, a ray of light propagates in a straight line in 

free space, but if the space coordinates can be modified in such a way that it is stretched or 

bent, then according to the Fermat principle, the path of the ray will be altered entirely and 

redirected as shown in figure 3.1.   

A medium with specific inhomogeneity, anisotropic permittivity, and permeability 

distributions makes this type of transformation possible[109]. A two-dimensional 

metamaterial with a negative refractive index is one such candidate for building a 

coordinate transforming medium[110], where the cloak is constructed using a 

metamaterial, and a target object is placed inside it. The magnetic and electric response 

(permeability and permittivity) of the cloak needs to be exact to match the background 

impedance of the cloaking shell so that there would be no reflection or scattering from the 

cloak itself[105]. 

 



15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Coordinate transformation can be used to manipulate the path of light. 

Reproduced from reference [109] with permission.©2006, AAAS.  

 

 

Distance traveled by the light would be larger in the transformed coordinate system, 

or inside the cloak compared to the free space. This implies the phase velocity of the light 

inside the cover has to be more than the free space (superluminal) to compensate for the 

phase delay due to traveling longer distances [111].  

According to Kramers-Kronig relation, superluminal propagation only happens for 

a passive, causal, linear, and time-independent material at an isolated frequency[111]. 

Therefore, cloaking via transformation electrodynamic is ideal for a single frequency.  

There are two mentionable drawbacks to this cloaking method. The requirement of 

superluminal propagation of light prevents broadband cloaking, and the complex 

fabrication process of the constitutive material makes this method of cloaking difficult. The 

condition of superluminal flow can be solved by sacrificing the phase of the wave by 

employing carpet cloaking and its variant[111]. A plasmonic cloak can solve the 

requirements for the complex fabrication of the constitutive material.  

 

3.1.2 Carpet cloaking 

 

  This cloaking method was proposed by Li and Pendry[112]. Experimentally it was 

shown that a specific type of transformation could be attained in two dimensions with 

dielectric materials, with practical values of permittivity and weak anisotropy in the 

cloaked medium[112]. Figure 3.2 shows the simulation and experimental results of carpet 

cloaking. 
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Figure 3.2 (a) and (b) showing a simulated schematic of the carpet cloaking in operation. 

(c) Experimental results are showing carpet cloaking. Reproduced with permission 

from[113]. © 2011, American Chemical Society.  

  

 

A two-dimensional quasi-conformal transformation is applied in this cloaking 

method. A carpet cloak is built on a perfect electrical conductor (i.e., mirror) as a 

background or substrate for the target object then a cloak is applied on top of it[112]. Carpet 

cloaking has been experimentally demonstrated for frequencies ranging from microwave 

to optical[113][114]. There are a couple of drawbacks to this cloaking method. It cloaks in 

two dimensions only. The concealed object is readily detectable in the third dimension 

[115]. Another disadvantage is finding a specific transformation to hide the target 

object[115]. 

 

3.1.3 Mantle cloaking 

 

 Mantle cloaking strongly suppresses the scattering of an object by canceling the 

principal terms in the multipole expansion of the scattered field [116]. Mantle cloaking 

uses an ultra-thin frequency-selective surface (FSS) that is designed to induce a current 

along the surface that cancels the scattering from the target object [117][118]. This 

technique is practically applicable at microwave frequencies for which FSS are available 

and easy to develop[119]. Mantle cloaks have advantages of low weight and thinness. 

Generally, mantle cloaks are designed using periodic metallic patterns deposited on thin 

dielectric layers as arrays of stripes, patches, holes, or crosses [118]. One atom thick mantle 

cloak was proposed using graphene at THz frequencies [120].  Figure 3.3 shows the 

schematic of a planar surface cloak or mantle cloak. Where a patterned conductor (left) is 

at the radio frequency (RF) and an atomically thin graphene monolayer is grown on SiO2 
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(right) at Terra hertz (THz) frequency. Both geometries can be used to cloak a dielectric 

planar slab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Schematic diagram of a planar mantle cloak realized with monolayer graphene 

operational over the RF, microwave, and THz. Reproduced with permission from 

reference[120]. © 2011, American Chemical Society.  

 

 

Mantle cloaks have been extensively studied to suppress scattering from transmitting and 

receiving antennas because of their conformability and the convenience of fabrication 

[121][122]. However, the main drawback of mantle cloaking is the frequency selective 

surface (FSS) that restricts its application to broadband cloaking.  

 

3.2 Passive plasmonic cloaking 

 

 This cloaking technique is based on all-angle scattering cancellation using a 

homogenous layer of material with low or negative permittivity or permeability[123]. This 

method relies on producing a local polarization vector that is in “anti-phase” in reference 

to the object to be cloaked[123]. Plasmonic cloaking implies that a well-designed cloaking 

cover may recover the near and far-field incident wavefront and is independent of the 

incident angle, form, and polarization of the incident wave and location of the 

observer[124][125] [126]. Figure 3.4 shows an artistic diagram of the plasmonic cloak in 

action[127].  
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Figure 3.4 Artistic view of the plasmonic cloaking. On the left is a bare dielectric object 

that reveals its presence and a plasmonic shell covering the dielectric object on the right. 

The suppression of the scattered light makes the object undetectable. Reproduced with 

permission from [128] © 2013, Stefan Mühlig et al.  

 

 

Only a single layer of plasmonic cloaking cover has been shown to reduce the 

scattering significantly from a couple of multipolar scattering orders [129]. This is cloaking 

an object on the scale of the wavelength of the operation. Cloaking a larger object and 

multiband operation can be carried out using multilayered plasmonic cloaking covers[130]. 

In this case, it will act on more degrees of freedom and suppress a higher scattering order. 

A plasmonic cloaking cover is easy to fabricate compared to other cloaking methods 

discussed in previous sections. The plasmonic cloaking method does not require external 

energy to operate (passive cloaking), which is another advantage. It has been hypothesized 

that a plasmonic cloaking cover scatters as much light as the target object, but the phase 

difference is 𝜋 out-of-phase[128]. As a result, scattered light from the target object and the 

cloaking cover interferes destructively in the far-field.  

A latent quality of this method is the possibility of interaction between the incident 

wave and the cloaked object, where the system as a whole remains invisible with respect 

to the incident wave [123]. The other cloaking techniques (transformation, carpet cloak, 

and mantle cloak) completely isolate the object from the incident wave.  
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Figure 3.5 Operation of (a) a regular apertureless NSOM tip and (b) an NSOM tip partially 

covered by a scattering suppression material. Reproduced with permission from 

reference[131]. © 2011, OSA. 

 

This quality of interaction with the incident wave enables a cloaked object to sense the 

electromagnetic field around them. As a result, plasmonic cloaking may be applied to 

sensors in near-field measurements where the presence of such a system creates fewer 

disturbances to the sensing system [131][132][133]. This cloaked sensor technique 

becomes very useful in near-field scanning optical microscopy (NSOM) or receiving 

antennas. Figure 3.5 is a schematic that shows the operation and the advantages of a 

partially cloaked NSOM tip. A partially cloaked scanning tip reduces unwanted scattering 

from its presence without interfering with the signal from the sample. Hence it increases 

the signal-to-noise ratio.  

 

3.2.1 Plasmonic cloaking working principle  

 

Plasmonic cloaking is achieved by suppressing dominant scattering harmonics 

radiated from the cloaked object[102]. How much scattered filed is generated in each 

transverse electric (TE), and transverse magnetic (TM) mode is determined by the 

coefficients 𝐶𝑛
𝑇𝐸, and 𝐶𝑛

𝑇𝑀 [12]. These coefficients do not depend on the excitation wave. 

Instead, it depends on the object's refractive index, size, surrounding medium, and 

operating frequency[12]. The scattering cross-section, or the visibility of the object,  

 

𝜎𝑠 =
2𝜋

|𝑘𝑜|2
∑ ∑ (2𝑛 + 1)(|𝑐𝑛𝑚

𝑇𝑀|2 + |𝐶𝑛𝑚
𝑇𝐸 |2)𝑛

𝑚=−𝑛
∞
𝑛=1             (3.1) 

 

Here 𝑘0 is the wavenumber in the background medium. In general, the sum in equation 3.1 

is dominant up to a few terms. For an object of characteristic size 𝜒, the only terms 𝑛 ≈
𝑘0𝜒 contributes significantly to the scattering waves[134][3]. In more applied cases, the 

object of interest is considered as an electrically small dielectric object of radius a, 

illuminated by a plane wave. Here the only surviving terms would be 𝑚 = 1, 𝑛 = 1 in the 
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expansion of equation 3.1[12][3]. These surviving terms indicate scattering or radiation 

from a dipole. The overall scattering can be reduced or canceled completely by having the 

core and the plasmonic shell opposite polarizability[124]. Hence, plasmonic cloaking is a 

scattering cancellation technique where concentric shells of isotropic and homogenous 

materials are used to suppress each of the dominant terms stated in equation 3.1.  Figure 

3.6 shows the cancellation of the overall dipole moment through an induced negative 

polarization vector. 

 

 

Figure 3.6 Heuristic interpretation of the transparency phenomenon: cancellation of 

overall dipole moment through an induced negative polarization vector. Reproduced from 

reference [124] with permission. © 2005, Phys. Rev. E. 

 

In the case of more practical consideration, for cloaking a dielectric sphere with 

permittivity 𝜖 > 𝜖0, the cloak would require 𝜖 ≅ 0. This condition can be achieved by 

plasmonic material shell or cover. Plasmonic materials have a very small permittivity 

around the plasma frequency[8][13].  The resulting induced dipole moment in the cloak 

takes an opposite sign compared with the core dielectric object in the core-shell system. 

This equal and opposite induced dipole moment precisely compensates each other. This 

method of cloaking is quite different from any other cloaking method described before. 

Both the cloak and the target object scatter incident light, and invisibility is obtained by 

pairing them destructively. As a result,  there is zero net-induced dipole moment and 

dipolar scattering[124]. The cloaking shell can be realized at microwave frequencies using 

metamaterials and at optical frequencies using noble metals[135][125].   

 

3.3 Limitations of existing cloaking methods 

 

 Each cloaking method has some notable advantages or disadvantages. The 

spherical transformation electrodynamic cloak is an ideal and all-angle cloaking method. 

A significant limitation of this method is its frequency dependency. In this case, a new 

cloak needs to be designed and fabricated for each operational frequency. These 

requirements make the transformation electrodynamic cloak zero bandwidth and highly 

complicated for fabrication[102]. A potential replacement of the transformational cloaking 

method was carpet cloaking and its variant. The carpet cloaking method provides a couple 
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of advantages over transformation-based cloaking, such as its applicability to dielectric 

material and its supports for a wide bandwidth. Carpet cloaking lacks the support for three-

dimensional geometry. It can cloak in two dimensions only[102]. Another major 

disadvantage of carpet cloaking is that it requires a mirror or highly reflecting plane as a 

supporting background, and it is not an all angle cloaking. Mantle cloaking presents several 

advantages over transformational electrodynamic cloak, and carpet cloak. It works by 

canceling dominant scattering harmonics radiated from the target object[102]. The mantle 

cloak uses an ultrathin frequency-selective surface to induce the surface current. Hence this 

cloaking method requires FSS to cancel dominant scattering harmonics. The main 

advantage of mantle cloaking is that it is isotropic, all angle, and can support a reasonable 

bandwidth. The requirement of FSS is a significant setback of this cloaking method[102].  

Plasmonic cloaking is all angle scattering cancellation method. The working 

concept of this cloaking method has been hypothesized and modeled as a compensating 

dipole moment of the target object by applying a shell made of plasmonic material having 

opposite polarizability[124] at the operational frequencies.  This method is isotropic, 

conformal, and can support a reasonable bandwidth. The major disadvantage of plasmonic 

cloaking is that it is size limited and unable to support a broadband frequency[102][124]. 

Suppressing scattering by compensating dipole or inducing an opposite dipole to have a 

net zero dipole moment turns out to be impractical for mesoscale structures[102]. The 

plasmonic cloaking shell works effectively at or near the plasma frequency, which restricts 

its bandwidth of operation. Another assumption of this method is that a plasmonic shell 

and the scattering dielectric core makes an electromagnetically homogenous medium. This 

composite core-shell structure has been analyzed using effective medium theory or mixing 

formula such as Maxwell Garnett approximation[136]. Application of effective medium 

theory and assuming the core-shell as a homogenous structure imposes size and bandwidth 

constrain on the applicability of plasmonic cloaking[102].   The effective medium theory 

in plasmonic cloaking and its drawback has been discussed briefly in the following 

subsection. 

 

3.3.1 Effective medium theory  

 

 In 1904 Maxwell Garnett developed a mixing formula that is a simple yet very 

successful homogenization theory [136]–[138]. This mixing formula is also known as 

effective medium theory. This theory approximates complex electromagnetic mediums. 

The Maxwell Garnett mixing formula provides the permittivity of a composite complex 

medium, or in other words, it gives effective permittivity[137]. Permittivity and volume 

fractions of each constituent medium are considered for calculating effective 

permittivity[137]. 

 The core-shell structure in plasmonic cloaking is fabricated with plasmonic 

nanoparticles (such as silver or gold) as a cloaking cover, and the enclosing objects can be 

dielectric or metal[128][139]. Each component in such a core-shell structure has different 

permittivity, and they are often surrounded by air. Altogether, these structures create an 

effective medium whose permittivity is not the same as any of the constituent mediums. A 

Maxwell Garnett or Maxwell Bruggeman approximation is the appropriate tool to calculate 

effective permittivity. Plasmonic cloaking to work, a shell with negative permittivity or 
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close to zero, is required. The effective permittivity of the plasmonic shell can be calculated 

using the Maxwell-Garnett mixing formula as,  

 

𝜖𝑒𝑓𝑓 = 𝜖𝑚
𝜖𝑖(𝜔)[1+2𝑓]−𝜖𝑚[2𝑓−2]

𝜖𝑚[1+𝑓]+𝜖𝑖(𝜔 )[1−𝑓]
                   (3.2) 

 

Here 𝜖𝑚 is the nondispersive permittivity of the host medium. 𝜖𝑖(𝜔) the permittivity of the 

nanoparticles and 𝑓 the filling fraction of the effective medium. 

The filling fraction can be expressed as 𝑓 =  (
4𝜋

3
) (

𝑎3

𝑑3). Where 𝑎 is the radius of the 

nanoparticles and 𝑑 is the inter-particle distance. A polarization vector induced by the 

effective medium 𝑃𝑠 = 𝜖0(𝜖𝑠 − 1)𝐸, and polarization vector of the bare object 𝑃𝑐 =
𝜖0(𝜖𝑐 − 1)𝐸. Figure 3.6 shows both polarization vectors, and scattering suppression occurs 

when these polarization vectors cancel out each other[124][102].  

 

3.3.2 Drawbacks of the effective medium theory 

 

The derivation process of the effective medium theory is not mathematically 

rigorous. Lorentz local field correction is a prerequisite for this approximation, which relies 

on integrating the electric field of a dipole over a specific geometry such as sphere or 

ellipsoid of finite radius[138]. It would be mathematically incorrect to assume that, since 

the integration converged for some specific region, it would converge over a whole region 

for any geometry. When integrated over the whole space, the electric field of a static dipole 

does not converge at all, so any arbitrary deformation in the integration space would yield 

an arbitrary result[138]. This indicates that the Lorentz local field correction is affected by 

the geometry. Apart from the drawbacks described above, there are some additional 

shortcomings while applying this approximation in an experiment. This theory can produce 

any effective permittivity depending on the filling fraction of arbitrary values between 0 

and 1[137]. Such random values of the filling fraction may not be achievable in practical 

applications. The effective medium theory is a mixing formula that needs to be modified 

based on the type and number of constituent mediums. In most cases it can account for the 

host medium but in case of the core-shell structures it does include dielectric core in the 

calculations [137].  

Passive electromagnetic cloaking via scattering suppression is the most promising 

among all the cloaking methods. Achieving scattering suppression by canceling the 

resultant dipole arising from the cloak and the target object is inefficient and impractical. 

It imposes size limitations on the cloaking system. A significant amount of incident power 

is extinct because of absorption by the encapsulating metallic shell of finite thickness.  

Apart from the power extinction and size limitation, operational bandwidth is another 

drawback that makes it unsuitable for real-world applications. Broadband scattering 

suppression by leveraging the scattering and absorption properties of the plasmonic 

nanoparticles is a unique and robust method of achieving transparency. This method 

overcomes some of the major drawbacks of other cloaking methods discussed in this 

chapter. Development, numerical experiments, and related scattering suppression results 

are discussed in the following chapter.  
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Chapter 4 
 

Modeling broadband cloaking using 

3D nano-assembled plasmonic meta-

structure 
  

 

The mechanism of achieving broadband scattering suppression using plasmonic 

meta-structure is explored in this chapter. These meta-structures are composed of a 

spherical dielectric core coated with gold nanoparticles. The incident light on the structures 

undergoes multiple scattering and absorption between the dielectric core and nanoparticles. 

A rigorous model to compute multiple interactions explicitly instead of applying a 

homogenization theory was developed. A wide variety of cores and metallic nanoparticle 

combinations were analyzed using this model.  This numerical model serves as a scalable 

and robust simulation platform to characterize and simulate the scattering of the incident 

electro-magnetic waves by the 3D nano-assembled plasmonic meta-structures.          

 

4.1 Introduction 

 

Advances in nano-synthesis [105], [106], [140] and nano-assembly [141]–[145] 

have opened up possibilities of many intriguing applications that seek to leverage not just 

the unique size-dependent properties of single nanoparticles (NPs), but also the collective 

behavior of ensembles of NPs, which are distinct both from isolated NPs and from their 

bulk counterparts [146], [147]. One of these is the fabrication of meta-materials using 

metallic NPs whose interaction with electromagnetic (EM) waves have demonstrated 

exotic and anomalous phenomena, including ‘cloaking’ [102], [128], [148]. The 

fundamental concept allowing for cloaking is the ability of metallic NPs to modify EM 

waves in the near- and far-field regimes, a characteristic known as plasmonics, which is 

tunable via NP size, shape, composition, and in an ensemble, inter-NP separation [149]–

[157]. This property allows for achieving invisibility via scattering cancellation [108], 

[125], [158]–[162], a method of passive cloaking which requires no external power. The 

spectral band over which scattering is suppressed is controlled by the physical properties 

of the NPs that, in turn, control their plasmonic response. The cloaking technique is based 

on all angle scattering cancellation using a layer of plasmonic material with low or negative 

effective permittivity and relies on producing a local polarization that is in “anti-phase” in 

reference to the target being cloaked. A well-designed cloaking cover may recover the 
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near- and far-field incident wavefront, and is independent of the incident angle, form and 

polarization of the incident wave and location of the observer. 

The most common type of structure that has experimentally demonstrated significant 

scattering suppression is a spherical core-shell construct[128][158][163], schematically 

represented in Fig. 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Plasmonic cloaking with 3D nano-assembled shells. (a) Schematic depicting 

the difference of optical scattering from a bare sphere [left] and sphere coated with AuNPs 

[right] (b) Shell of finite-sized AuNPs of thickness 𝑅𝑆 − 𝑅𝐶 surrounding the core of radius 

𝑅𝐶  (c) The corresponding set of point scatterers used in the model. Reproduced with 

permission from reference [1]. © 2020. OSA. 

 

  

The core is the target to be cloaked, and the shell consists of an amorphous arrangement of 

metallic NPs, typically gold or silver. Even a single layer of NPs in the shell has reduced 

scattering significantly, although the spatial size of the cores cloaked is limited to the 

subwavelength scale, and the spectral band of operation is relatively narrow – on the order 

of tens of nanometers. Theoretical predictions [129], [164], [165] have outlined the 

possibility that multilayered plasmonic covers could extend both the physical scale of 
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targets and the operation wavelength ranges over which they are cloaked. Such structures 

face both experimental and theoretical challenges, as they are difficult to fabricate and scale 

up using traditional top-down and bottom-up approaches, and additionally, complicated to 

simulate, given that the most prevalent approach for the latter is based on a dipole 

approximation. 

 

We have established a method [166][167] of nano-assembly capable of fabricating 

multi-layered plasmonic covers in the form of shells. These are 3D hollow constructs 

whose radii can be tuned from 200 𝑛𝑚 − 2 𝜇𝑚 and whose wall consists of several layers 

of densely packed AuNPs (see Fig. 4.1 (b)). Effective medium theory [137] is not valid for 

modeling the multiple and densely packed AuNP layers forming these shells. Instead, a 

new multiscale modeling and simulation platform is needed to account for the strong 

multiple interactions of light with the individual AuNPs making up the shell. Additionally, 

this model must take into account interactions with the core. Because the strong, multiple 

interactions between the core and the AuNPs are the main mechanisms to be featured in 

this model, the power scattered and absorbed by the shell due to the optical properties of 

an individual AuNP needs to be taken into account.  

Here, we present a multiscale modeling and simulation platform that satisfies these 

requirements, and provides valuable insights into the relevant issues, such as the fact that 

scattering efficiency of a plasmonic cloak is suppressed most when each individual metal 

NP in the shell scatters and absorbs strongly. As strong multiple scattering in the shell 

assists with confining power to the shell, it therefore follows that strong absorption in the 

shell attenuates the overall power scattered by the cloak. Results from our simulations are 

consistent with this interpretation. 

 In this model, scattering by the core is computed using the Method of Fundamental 

Solutions (MFS) [168] or Discrete Source Method [169]. Since the AuNPs are small 

compared to the wavelength, we model them as point scatterers (see Fig. 4.1(c)) and use 

the multiple scattering theory of Foldy [170]and Lax [171] to compute multiple scattering 

by them. We combine these two methods to obtain generalized Foldy-Lax [172] theory for 

this problem. Using this multiscale simulation platform, we compute the scattering 

efficiency of a plasmonic cloak for core diameters between 400 nm and 900 nm, gold NPs 

(AuNPs) with diameters of 5 nm, 10 nm, and 20 nm, and filling fraction of metal NPs in 

the shell between 0% and 65%. Through these simulations, we show that significant 

suppression of power is achieved for a broad spectral window from approximately 400 nm 

to 630 nm depending on the specific parameter values. The remainder of this chapter is as 

follows. We give a brief description of the method used to fabricate nano-assembled hollow 

shells composed of densely packed metal NPs in Section 4.2. In Section 4.3 we give the 

details of the multiscale model used to compute the scattering efficiency of a plasmonic 

cloak. Included in Section 4.3 is a detailed description of modeling assumptions and 

choices as well as validation studies. Results from using this model to compute the 

scattering efficiency for several different plasmonic cloaks is given in Section 4.4. We give 

our conclusions in Section 4.5. Appendix A gives the details of the model and Appendix B 
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gives the method we use to compute the total scattering cross-section that is used for all 

the results shown here. 

  

4.2 Design and fabrication 

   

 Shell formation is driven by a process reported in our earlier work [166], [167]. 

This process leverages the phase transition of thermotropic hosts to assemble NPs 

dispersed in it into three-dimensional (3D) structures. The first step is to modify the surface 

of the NPs. The native ligands on the NPs are exchanged with custom-designed aromatic 

molecules, followed by dispersion of the NPs into a liquid crystal (LC) material. We use a 

commercially available LC, known as 5CB, as the host, and the functionalized NPs are 

added at 40 C when 5CB is in its isotropic (disordered) phase. This allows uniform 

dispersion and is followed by decreasing the temperature of the suspension at the rate of 

0.5 C/s down to 33 C. 5CB transitions from isotropic to nematic (ordered) phase at 35.5 C, 

so as the temperature decreases and the LC order parameter increases, it expels the 

previously well-dispersed NPs into shrinking isotropic domains. This proximity allows the 

ligands on the NPs to begin the shell formation through an attractive 𝝅 − 𝝅 interaction of 

their aromatic rings. Once shell formation is complete, the structures are very robust, and 

impervious to increased temperature. Further, they can be extracted from the host LC and 

re-dispersed into other optically homogeneous solvents. By a judicious choice of ligands, 

shell diameters can be controllably tuned from 200 nm to 2 𝝁𝒎. In addition to this 

scalability, there are other advantages offered by this novel nano-assembly method. The 

first is versatility, where NPs of different compositions (including metallic, 

semiconducting and magnetic) and of a wide range of sizes can be used to form the shells. 

Therefore, the use of different sizes of AuNPs to allow tuning the operational spectral band 

with relative ease. The second is the capability of encapsulation offered by this assembly 

process. An inclusion of choice can be added to the LC medium concurrently with the 

functionalized NPs, and as the NP-LC composite is cooled, the inclusions are trapped 

within the shells. Encapsulation of organic fluorescent dye, quantum dots and fluorescent 

bacteria have been successfully demonstrated [167], and this ability offers an additional 

degree of functionality not accessible to solid core-shell structures. 

 

4.3 Model 

  
 We model the plasmonic cloak as a sphere composed of a uniform dielectric 

medium (core) surrounded by a random distribution of point scatterers (shell). The key 

parameters for the core include the diameter d and the relative refractive index m given as 

the ratio of the refractive index of the sphere divided by that of the surrounding medium. 

The key parameters for the shell include the number and positions of point scatterers and 

their individual optical properties. The number and positions of the point scatterers depend 

on the shell thickness and the filling fraction. We evaluate the cloaking properties of this 

structure by computing its scattering efficiency over wavelengths ranging from 400 nm to 

700 nm. 

The key parameters described above of this model are all elementary quantities. 

Consequently, this model has no inherent limitations on size or material properties. The 
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key challenge is modeling the strong multiple scattering of light in this system. To simplify 

the modeling, we use the scalar approximation [[173], Chapter 13]. Even though the scalar 

approximation does not account for all the physical details in the system, it effectively 

accounts for the redistribution of power due to the multiple interactions between the core 

and the surrounding AuNPs, and therefore the overall behavior of the scattered light. For 

this reason, this scalar theory provides valuable insight into the problem while also keeping 

the discussion relatively simple.  

 

4.3.1 Mathematical formulation 

 
 In what follows, we give a mathematical formulation for scattering by the system 

comprised of the dielectric spherical core, and the shell composed of randomly distributed 

metal NPs. This 

formulation follows closely with formulations of multiple scattering given by Ishimaru 

[174], for example. Suppose that the origin of a coordinate system lies at the center of the 

dielectric sphere. We 

denote the interior domain by 𝐷 = {|𝑟| <
𝑑

2
} and the exterior domain by 𝐸 = {|𝑟| >

𝑑

2
}. 

The spherical surface 𝐵 = {|𝑟| =
𝑑

2
} is interface between the interior and exterior. The 

interior field 𝜓𝑖𝑛𝑡 satisfies 

 

(∇2 + 𝑘1
2)𝜓𝑖𝑛𝑡 = 0,  in D,             (4.1) 

 

with 𝑘1 denoting the wavenumber for the dielectric sphere. Let N denote the number of 

point scatterers in the shell. The exterior field,  𝜓𝑒𝑥𝑡satisfies 

 

(∇2 + 𝑘0
2)𝜓𝑒𝑥𝑡 =  −𝑘0

2 ∑ 𝑉𝑛𝜓𝑒𝑥𝑡𝑁
𝑛=1  , in E,           (4.2) 

 

 

Here, 𝑘0 is the wavenumber for the exterior and 𝑉𝑛 corresponds to the scattering potential 

for the nth metal NP. We write  𝜓𝑒𝑥𝑡 as the sum 𝜓𝑒𝑥𝑡 = 𝜓𝑖𝑛𝑐 + 𝜓𝑠 with 𝜓𝑖𝑛𝑐 denoting the 

incident field, and  𝜓𝑠 denoting the scattered field. We must supplement the equations 

above with conditions on B as well as radiation conditions. In particular, we prescribe that 

 

𝜓𝑖𝑛𝑡 = 𝜓𝑖𝑛𝑐 + 𝜓𝑠 on B,              

(4.3) 

 

And  

 

𝜕𝑣𝜓𝑖𝑛𝑡 = 𝜕𝑣𝜓𝑖𝑛𝑐 + 𝜕𝑣𝜓𝑠 on B,            (4.4) 

 

with 𝝏𝒗 denoting the derivative along the normal on B pointing into E. Additionally, we 

require that  𝝍𝒔 satisfies the Sommerfeld radiation condition. Equations (1) and (2) along 

with interface conditions Eqs. (4.3) and (4.4), and the requirement that  𝝍𝒔 satisfies the 
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Sommerfeld radiation condition constitute a complete mathematical description of the 

problem. To compute the fields interior and scattered by the core, we make use of the 

Method of Fundamental Solutions (MFS) which is also known as the Discrete Source 

Method. This method was introduced by Mathon and Johnston [168]. It provides an 

accurate and efficient computational method for solving the full scattering problem [169]. 

Scattering by the metal NPs in the shell is computed using the self-consistent scattering 

theory due to Foldy [170] and Lax [171]. By combining these two theories, we arrive at 

the so-called generalized Foldy-Lax scattering theory introduced by Huang et al. [172] to 

study scattering by a system made up of an extended scatterer surrounded by smaller 

scatterers. This model contrasts with that by Huang et al. in that we use the MFS instead 

of a boundary integral equation method to model scattering by the extended object which 

is the core in our model. The details of this method are given in Appendix A. In Appendix 

B, we show how to compute the total scattering cross-section for the plasmonic cloak using 

the results from this method. 

 

4.3.2 Modeling assumptions and choices  

 
 The key modeling assumption is that each metal NP is small enough that we can 

approximate it by a point scatterer. A point scatterer has a constant (complex) scattering 

amplitude, which we denote here by 𝛼. Scattering by a point scatterer is isotropic. Hence, 

its scattering cross-section 𝜎𝑠 is given by 

 

𝜎𝑠 = 4 𝜋 |𝛼|2                                                                                                                                            (4.5) 

 

 

 

Additionally, by the Optical Theorem or forward scattering theorem [2], [3], [173], [175] 

we have 

 

𝜎𝑡 =
4𝜋

𝑘0
 𝐼𝑚 [𝛼],                                                                                                                                                  (4.6) 

 

It follows that if 𝜎𝑠 and 𝜎𝑡  for an individual metal NP are known. Then  

 

𝛼 =  ⌊
𝜎𝑠

4𝜋
− (

𝑘0𝜎𝑡

4𝜋
)

2

⌋

1

2

+ 𝑖
𝑘0𝜎𝑡

4𝜋
                                   (4.7) 

 

In our model, we consider the metal NPs in the shell are identical in size and composition, 

so that there is only one scattering amplitude _ needed for all N metal NPs. This assumption 

is not a restriction of the model. In fact, the details of the method described in Appendix A 

allow for a polydisperse distribution of metal NPs, each having different scattering 

amplitudes. Using a monodisperse distribution of metal NPs is a modeling choice based on 

the fabrication and design of these plasmonic cloaks described in Section 4.2. The ligands 

described in Section 4.2 may affect the optical properties of the shell and therefore would 

need to be included in the model. However, experimental measurements have not shown 
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any significant scattering, extinction, or other optical signature from the ligands, over a 

range of 350 – 800 nm. Therefore, we neglect the ligands here and consider only scattering 

by the metal NPs as the main mechanism in this model leading to strong, multiple 

interactions between the core and shell. In the results shown here, we have taken the optical 

properties for the metal NPs from experiments done on plasmonic film developed for 

plasmonic and nanophotonic applications. The measurements for gold are taken from 

Yakubovsky et al. [27], and the measurements for silver are taken from McPeak et al. 

[176]. The plasmonic films in those experiments were fabricated depositing polycrystalline 

grains whose diameter is approximately same as the film thickness. The plasmonic 

properties and grain diameter motivated us to use dielectric data from these sources. With 

those data, we compute the scattering cross-section _s and the total scattering cross-section 

𝝈𝒕 used to define 𝜶 in Eq. (4.7) using Rayleigh scattering theory [175][2], [3]. Finally, 

these core-shell meta-structures depend on several parameters such as core diameter, NP 

diameter, shell thickness, volume filling fraction of the NP in the shell, etc. The model 

described in Appendix A can account for all of these system parameters. Nonetheless, we 

have chosen to focus here on the specific case in which the shell thickness is three times 

the constituent metal NP diameter. This modeling choice is based on and consistent with 

the fabrication and design of the plasmonic cloaks described in Section 4.2. Moreover, it 

provides a useful restriction allowing for us to study individual system parameters such as 

the filling fraction, core diameter, and metal NP diameter in a controlled way. 

 

 

4.3.3 Computational procedure 

 

 We give the computational procedure to compute the total scattering cross-section 

for a plasmonic cloak. This model requires specifying the relative refractive index m and 

diameter d of the core, and the diameter of an individual metal NPs. Once those values are 

specified, we perform the following computational procedure. 

 

1. Compute the scattering and absorption cross-section for an individual metal NP using 

the experimentally measured optical properties for gold [27]or silver [176]. With those 

data, we compute the cross-sections for the metal NPs using Rayleigh scattering [2], 

[3], [175]. Those cross-sections are then used to compute 𝜶through evaluation of Eq. 

(4.7). 

 

2.  Specify the filling fraction f which gives the volume of all N metal NPs divided by the 

volume of the shell. Using that, we compute 

𝑁 =  ⌊𝑓
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠ℎ𝑒𝑙𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑁𝑃
⌋                                                                                             (4.8) 

 

With ⌊𝒙⌋ denoting the floor function giving the largest integer that is less than or equal to 

𝒙. 

 

3. Compute the positions of the metal NPs. 𝑟𝑛
𝑁𝑃 for n = 1, … … ,N. For each metal NP, 

we compute three pseudo-random numbers: 𝑟, 𝜃, 𝑎𝑛𝑑 φ. The radial length r is sampled 
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uniformly over 𝑅𝑐 ≤ 𝑟 ≤ 𝑅𝑠 with 𝑅𝑐 = 𝑑/2 and 𝑅𝑠 denoting the outer radius of the 

shell set to be three times the diameter of one metal NP (see section 4.3.1). The polar 

angle 𝜃 is uniformly sampled over 0 ≤ 𝜃 ≤ 𝜋, and the azimuthal angle 𝜑 is uniformly 

sampled over 0 ≤ 𝜑 ≤ 2𝜋. The coordinate for the center of a metal NP are 𝑥 =
𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑, 𝑦 = 𝑟 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, and 𝑧 = 𝑟𝑐𝑜𝑠𝜃. The algorithm checks positions of 

subsequent NPs for overlap and vacancy with other metal NPs. If the algorithm detects 

an overlap, that computed coordinate is discarder and another coordinate is computed. 

This process of generating non-overlapping coordinate is continued until it finishes 

generating N positions. 

 

4. Use the Fibonacci lattice[177] to compute boundary points 𝑟𝑗 ∈ 𝐵 for 𝑗 = 1, … , 𝑀 and 

compute 𝑟𝑗
𝑖𝑛𝑡 and 𝑟𝑗

𝑒𝑥𝑡 using Eqs. (A2) and (A6) respectively. In our simulations, we 

have set 𝑀 = 512 and 𝑙 = 0.125𝑑. 

 

5. Solve the linear system comprised of Eqs. (A11) – (A13) with 𝜓𝑖𝑛𝑐(𝑟) = 𝑒𝑖𝑘0 𝑧̂.𝑟 to 

determine the expansion coefficients 𝑐𝑗
𝑖𝑛𝑡 and 𝑐𝑗

𝑒𝑥𝑡 for 𝑗 = 1, … , 𝑀, and exciting fields, 

Ψ𝐸(𝑟𝑛
𝑁𝑃) for 𝑛 = 1, … , 𝑁. 

 

6. Evaluate Eq(B5) at  𝑖̂ = 𝑜̂ =  𝑧̂ and use that to compute the total scattering cross-section 

according to Eq. (B6). 

 

Steps 5 and 6 are repeated for each wavelength sample the spectrum.  

 

There are two parts of this procedure that require the most computational effort. 

Step 3 for computing the positions of the N metal NPs requires large computational times 

as N increases because each additional metal NP requires checking for overlap with the 

previous metal NPs. Future modifications to the computational platform will seek more 

efficient methods for determining these positions. The other major computational effort is 

Step 5 which requires solution of the 2𝑀𝑁 × 2𝑀𝑁 linear system of equations. The 

corresponding system matrix is dense and full. In the results shown here, we have only 

used a general Gaussian elimination method to solve this linear system. Therefore, this 

computation has a complexity of 𝑂(8𝑀3𝑁3). However, the entries of the system matrix 

are mostly evaluations of Green’s functions which yield an inherent structure in the system 

matrix that may be exploited for more efficient computations. Future modifications to the 

computational platform will seek to use state-of-the-art numerical linear algebra methods 

to make this computation more efficient. 

 

 

4.3.4 Validation 

 

 Before proceeding to simulate the scattering efficiency and suppression of the nano-

assembled shell structures, it is important to validate the model. We do so by first studying 

the accuracy of the MFS in computing scattering by the dielectric core without the shell of 

metal NPs to demonstrate the high accuracy achieved with this method. For a second 
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validation study, we apply our model to the system studied by Mühlig et al[128] . where 

silver NPs (AuNPs) are used to decorate the surfaces of silica cores to show that the model 

captures features that are not predicted using Maxwell-Garnett theory. Consider the plane 

wave 𝜓𝑖𝑛𝑐 = 𝑒𝑖𝑘𝑜𝑟.𝑧̂ incident on a silica sphere with relative refractive index m = 1.4 and 

diameter d = 750 nm. For this problem, we can determine the solution of this scattering 

problem exactly. The scattered field is given as an expansion in Legendre polynomials 

whose expansion coefficients can be determined analytically. To compute the scattered 

field using the MFS, we use the method described in Appendix A, but without terms 

corresponding to scattering by the metal NPs so that Ψ𝑛 = 0, identically. This leads to 

2𝑀 × 2𝑀 linear system corresponding to Eqs. (A11) and (A12) with 𝛼𝑛 = 0 . The code 

used to compute these results along with extensive documentation is available at the 

GitHub repository. In the left plot of Fig. 4.2 we show the scattering efficiency 𝜎𝐸 defined 

as the total scattering cross-section 𝜎𝑡 normalized by the geometric cross-section, 𝜎𝑔 =

𝜋𝑑2/4. The solid blue curve is the result  

 

 

Figure 4.2 Comparison of the exact solution and the MFS approximation for a silica sphere 

with relative refractive index m = 1.4 and diameter d = 750 nm. The left plot shows the 

scattering efficiency 𝜎𝐸 given by the total scattering cross-section 𝜎𝑡 normalized by the 

geometric cross-section 𝜎𝑔 = 𝜋𝑑2/4. The solid blue curve is the result from the exact 

solution and the orange circles is the result computed using the MFS. The right plot shows 

the relative error of the MFS approximation. Produced from reference [1] with permission. 

© 2020, OSA. 

 

 

from the first 64 terms of the Legendre expansion for the exact solution and the orange 

circles is the result from the MFS approximation. These results show excellent agreement. 

In the right plot of Fig. 4.2 we show the relative error made by the MFS approximation. 

Over the spectral window, we find that the MFS is highly accurate with relative errors less 

than 0.1%. We have found that the MFS performs consistently well for a broad range of 

sphere diameters thereby demonstrating its effectiveness in modeling scattering by the 

core. 
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 For the full model that includes many metal NPs in a shell surrounding the dielectric 

core, there is no analytical solution available. Instead, we have applied this model to 

plasmonic cloaks studied experimentally by Mühlig et al. [128]. For this comparison, we 

have used a relative refractive index of m = 2.18 and diameter d = 55 nm for the silica core. 

We have used a filling fraction of f = 10% for the AgNPs on the surface of the core. This 

comparison was done using only one realization of the AgNPs positions, so no averaging 

was done to compute the simulation results. No other tuning of our model was done in this 

comparison study. Figure 4.3 shows the data from the experiment by Mühlig et al. [128] 

(solid squares), where a scattering suppression is observed between 340 – 390 nm, as is 

expected, given the spectral band of the plasmonic resonance of silver. The calculated 

values derived from Maxwell-Garnett theory reported by Mühlig et al. [128] are also 

plotted (triangles). According to Maxwell-Garnett theory, the maximum suppression range 

is 300 – 350 nm, which is blue-shifted from the experimental data. In contrast, the results 

of our simulation (circles) are in closer agreement to the experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Experimental results (Exp data) by Mühlig et al. [128] for the scattering 

efficiency 𝜎𝐸 compared with Maxwell-Garnett theory (MG) and results from our model 

(simulated). The gray-shaded region highlights the agreement between the experimental 

results and our model. The arrow indicates the scattering minimum predicted by Maxwell-

Garnett theory which, is blue-shifted from the other two results. Reproduced from the 

reference[1] with permission. © 2020, OSA. 

 

 

The results shown in Fig. 4.3 demonstrate the usefulness of this new model. It 

compliments the Maxwell-Garnett approximation by providing a different interpretation 

for scattering suppression. The fundamental mechanisms in this model is the multiple 

interactions included between the metal NPs and the dielectric core. Most importantly, it 

has the capability of scaling up to larger systems without restriction. In what follows, we 

use this model to study the scattering suppression properties of plasmonic cloaks. 
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4.4 Results and discussion 

 

In the simulation results that follow, we consider a core made of silica with relative 

refractive index assumed to be m = 1.4 over the spectral window of 400 nm to 700 nm, and 

AuNPs with diameters of 5 nm, 10 nm, and 20 nm. The shell thickness is set to be three 

times the diameter of an individual AuNP and the ligand length is assumed to be 0.98 nm. 

We show results for different values of the core diameter d and filling fractions f . In 

particular, we plot the scattering efficiency, 𝜎𝐸, defined according to 

 

 

𝜎𝐸 = 𝜎𝑡(𝜆)/𝜎𝑔,                                                         (4.9) 

 

with 𝜎𝑔 denoting the geometric cross-section. For reference, we compare our results 

for the results for the scattering efficiency of plasmonic cloak with that for the silica core 

alone. cross-section for the silica core is 𝜎𝑔 = 𝜋𝑅𝑐
2 with 𝑅𝑐 = 𝑑/2 denoting the core radius, 

and the geometric cross-section for the plasmonic cloak is 𝜎𝑔 = 𝜋𝑅𝑠
2 with 𝑅𝑠 denoting the 

shell outer radius.  

 

Figure 4.4 summarizes our results for a d = 750 nm silica core covered with 

plasmonic cloak comprising 10 nm AuNPs of varying filling fraction f. The scattering 

efficiency for the bare silica core, 𝜎𝐸
𝐶, shows the  characteristic oscillatory behavior seen 

in Mie theory  [2], [3]. The peaks of those oscillations correspond to so-called Mie 

resonances. The locations and heights of those peaks are characteristic of the size and 

relative refractive index of the sphere. The scattering efficiency for the core with the 

plasmonic shell (𝜎𝐸
𝐶𝑆 ) composed of 10 nm AuNPs for all f = 0.05,  f = 0.10,  and  f = 0.30  

shown in Figs. 4.4(a)–4.4(c) demonstrate a suppression in the spectral range 400 −550 nm 

where the core -shell composite shows little to no trace of the Mie resonances associated 

with the silica core. Thus, the spectral signature of the core is effectively removed by the 

shell of AuNPs. As intuitively expected, the scattering suppression Δ𝜎𝐸 (defined as 𝜎𝐸
𝐶 −

𝜎𝐸
𝐶 ), increases with the filling fraction f.  
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Figure 4.4 Comparisons of the scattering efficiency _E for a 750 nm silica core (square 

symbols) with that for a core and shell (circle symbols) made up of 10 nm AuNPs for filling 

fractions (a) f = 0.05, (b) f = 0.15, and (c) f = 0.30. The extinction spectrum for a single 10 

nm AuNP is shown in (d), with its FWHM band highlighted in blue in (a) - (d).  Reproduced 

with permission from reference [1]. © 2020, OSA 

 

This spectral region over which the plasmonic shell cover suppresses the scattering 

of the core occurs corresponds closely to the FWHM spectral band of the extinction 

spectrum of a single AuNP (Fig. 4.4(d) highlighted in blue) highlighting that the main 

mechanism in this model is the multiple scattering due to the AuNPs and the dielectric 

core. Consequently, scattering suppression of the plasmonic cloak depends strongly on 

scattering and absorption by each individual AuNP. When scattering by an individual metal 

NP is strong, power incident on the shell of AuNPs undergoes strong multiple scattering in 

the shell. When absorption by each AuNP is also strong, this strong multiple scattering 

effectively yields higher absorption of the overall power. Thus, strong scattering creates 

multiple interactions with strong absorbing AuNPs thereby yielding a suppression in power 

scattered by the plasmonic cloak. Figure 4.5 shows results that compare plasmonic cloaks 

with 5 nm and 20 nm AuNPs for the same 750 nm diameter silica core. Recall that the shell 

thickness is set to be three times the diameter of the AuNP. Thus, for the 5 nm diameter 

AuNP, the shell thickness is 15 nm and for 20 nm diameter AuNPs, the shell thickness is 

60 nm. It then follows that the filling fraction sets the corresponding number of AuNPs 

contained in the shell. In Fig. 4.5 the black curves with square symbols show the scattering 

efficiency for the silica core, the green curves with triangle symbols show the scattering 

efficiency for the plasmonic cloak made up of 5 nm diameter AuNPs, and the blue curves 

with diamond symbols show the scattering efficiency for the plasmonic cloak made up of 

20 nm diameter AuNPs. Figure 4.5(a) is for filling fraction f = 0.10 and Fig. 4.5(b) is for 

filling fraction f = 0.30. Figure 4.5(c) shows the extinction for an individual 5 nm diameter 



35 

 

(green curve) and 20 nm diameter AuNP (blue curve). Because Fig. 4.5(c) shows that the 

extinction for the 20 nm diameter AuNP is relatively larger than that for the 5 nm diameter 

AuNP, we expect that the scattering suppression by the plasmonic cloak made up of 20 nm 

diameter AuNPs to be greater than that for a plasmonic cloak made up of 5 nm diameter 

AuNPs. The results in Figs. 4.5(a) and (b) show this to be the case. We observe 

substantially more suppression of scattering using the 20 nm diameter AuNPs in 

comparison with the 5 nm AuNPs for both f = 0.10 and f = 0.30. For the larger filling 

fraction, we find that the 20 nm diameter AuNPs suppress scattering across the entire 

spectral range. The results in Figs. 4.4 and 4.5 indicate that the plasmonic cloaks effectively 

suppress scattering over a broad spectral range. The amount of scattering suppression 

depends strongly on the filling fraction. To study the dependence on the filling fraction, we 

show in Fig. 4.6 a map of the scattering suppression Δ𝜎𝐸. Here, the plasmonic cloak is 

made up of 10 nm AuNPs. Thus, when Δ𝜎𝐸 > 0, it implies that incorporating the plasmonic 

shell cover reduces scattering from the core, and that cloaking is successful. And when 

Δ𝜎𝐸 < 0 , it signifies that scattering efficiency of the bare silica core is higher than the 

silica core-shell composite. The dark regions of Fig. 4.6 show where the plasmonic cloak 

is effective in suppressing scattering. These results show that both the magnitude of  Δ𝜎𝐸 

and its operational spectral band are enhanced as the filling fraction increases. Indeed, we 

observe that the onset of cloaking begins around a small value of 𝑓 ≥ 25% and rapidly 

improves thereafter. Figure 4.7 maps Δ𝜎𝐸 for different core diameters ranging from 400 

nm to 900 nm. For these results, the plasmonic cloak is made up of 10 nm AuNPs and the 

filling fraction was held fixed at f = 0.30. For all of the silica core diameters shown here, 

we observe significant scattering suppression. An important point to note is that the ratio 

of the radius of AuNPs to the shell thickness is the same for all cases. This implies that, as 

the cores get larger, the ratio of shell wall to core-shell diameter decreases. This agrees 

with our experimental platform. Further, Δ𝜎𝐸 > 0 for the entire range of core sizes leads 

to the conclusions that not only does a plasmonic shell successfully cloak cores with 𝑑~𝜆 

but in addition, do so without requiring the need to add more AuNP layers. 
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Figure 4.5 Comparisons of the scattering efficiency 𝜎𝐸 for a 750 nm silica core (square 

symbols) with that by a core and shell made up of 5 nm AuNPs (triangle symbols) and 20 

nm AuNPs (diamond symbols) for filling fractions (a) f = 0.10, and (b) f = 0.30. A 

comparison of the extinction for single 5 and 20 nm AuNP is shown in (c). Reproduced 

with permission from reference [1]. © 2020, OSA 
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Figure 4.6 A plot of the scattering suppression (scattering efficiency of silica core minus 

scattering efficiency of plasmonic cloak) as a function of filling fraction  f  and wavelength 

𝜆 for a core diameter of 750 nm and AuNPs with diameter 10 nm. Reproduced with 

permission from reference [1]. © 2020. OSA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 A plot of the scattering suppression as a function of core diameter d and 

wavelength 𝜆 for a filling fraction of f = 30% and AuNPs with diameter 10 nm. Reproduced 

with permission from reference [1]. © 2020. OSA 
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4.5 Conclusions 

 

 We have developed a computational platform to study plasmonic cloaking 

structures composed of a core surrounded by a shell of AuNPs. This model uses 

fundamental quantities such as the scattering and absorption cross-sections of the AuNPs 

and the material properties of the core by combining the Method of Fundamental Solutions 

to compute scattering by the core with Foldy-Lax theory to compute multiple scattering by 

the AuNPs. It also takes into account strong multiple interactions between the core and the 

AuNPs, which is essential for understanding complex plasmonic cloaks composed of 

multiple layers of NP coverings. And while it is limited because it uses the scalar 

approximation and a point scatterer assumption for the AuNPs, it nonetheless provides a 

useful tool for studying broadband 3D plasmonic cloaking. Simulations results presented 

confirm that plasmonic NPs can be used to design cloaks in the visible part of the EM 

spectrum, and along with suppressing scattering over a broad spectral range, AuNPs 

robustly cloak silica cores as large as 900 nm, larger than the wavelength of operation. 

Additionally, as the core size increases, cloaking is successful without a subsequent 

increase in the layers of AuNPs, as shown by the suppression via a constant filling fraction.  
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Chapter 5 
 

Engineering spectral and spatial 

scattering profiles in the visible 

spectrum using nanoplasmonic 

mesoscale assemblies 

 
 

This chapter of the dissertation presents some of the consequences of scattering 

suppression using plasmonic meta-structures The scattering of electromagnetic waves by 

an obstacle can be thought of as an angular redistribution of the incident energy carried by 

the wave. Total scattering suppression was achieved by the plasmonic meta-structures by 

leveraging strong multiple scattering and absorption between the nanoparticle shell and the 

dielectric core. As a result of this multiple scattering and absorption spectral and spatial 

properties of the scattered light are altered. Angular redistribution of the spatial and spectral 

profiles was studied in terms of differential cross-section and anisotropy of the scattering 

pattern. A study of the far-field diffraction pattern and the scattering anisotropy revealed 

how these two properties are tunable by varying gold nanoparticle diameter and 

wavelength of the incident light.    

 

5.1 Introduction 

 

 Metallic nanoparticles (NPs) couple to and modulate electromagnetic waves 

through the phenomenon of localized surface plasmon resonance (LSPR) [14], [88], [178]–

[180], which make them highly suitable as building blocks for designer optical and 

photonic meta materials [181]–[184] Some novel functionalities demonstrated by 

nanoplasmonic constructs include extraordinary transmission, optical magnetism, and 

photonic lensing [185]–[191]. As in all cases of nano-assembly, these hierarchical 

structures can be constructed using top-down or bottom-up methods. The latter approach 

offers greater flexibility in terms of composition and morphology of the constituent NPs, 

while also providing a route towards generating large scale structures, extending from the 

nano to the mesoscale and beyond [155][192][193]. Colloidal techniques, such as polymer 

templating, DNA-ligation, or thermotropic phase transition driven directed assembly are 

some of the few methods that have produced meta structures comprised of metallic NPs 

with tailored permittivity, photoconductivity, LSPR tuning and passive cloaking via 

scattering suppression [155][192] [123], [194]–[197]. 
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 Regardless of assembly method, a robust model capable of accurate prediction of 

structure function correlations is needed to transition these techniques from a laboratory 

setting to a standard manufacturing set-up for developing novel multifunctional 

metamaterials. However, bottom-up assembly results in structures with inherent 

randomness possessing only short-range order, adding complexity to any modeling 

platform. Accounting for the multiple length scales involved (incident wavelength, NP 

dimensions, near- and far-field regimes) when plasmonic behavior is at play places even 

greater demand on the sophistication of the required model. Most computational 

approaches either consider the nano assembled structure as a homogenous medium 

(effective medium theory) or focus on phase matching of the incident and scattered fields 

(anomalous diffraction theory) [155][194] [137][198]. These have been only moderately 

successful in modeling the broadband response of plasmonic metastructures and have been 

unable to breach the gap between theory and experiment. What is required is a multi-scale 

model that can handle not only near-field interactions arising from local NP arrangements, 

but additionally allow extension to far-field regimes, particularly when the assembled 

ensembles approach the mesoscale. In this work, we model three-dimensional cloaked 

targets constructed via directed assembly of gold nanoparticles (AuNPs) that form a cover 

around a dielectric core. Instead of homogenizing this composite, we explicitly consider 

the multiple interactions between the core and the nanoassembled cover, which allows us 

to accommodate a broad range of system sizes with core diameter between 400 − 800 nm. 

Composite structures such as these have the potential for cloaking in the visible and near 

infra-red spectral regions, and here, we confirm the viability of broadband scattering 

suppression in the visible regime. More importantly, we show that these structures can 

transfigure scattering patterns with spectral selectivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 3D Deferential cross-section of a 750 nm diameter silica core covered with 10 

nm AuNPs at filling fractions (A) 𝑓= 0.3, (B) 𝑓 = 0 (corresponding to a bare core), and (C) 

𝑓 = 0.1. 
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We further identify two non-dimensional quantities, the albedo, and the anisotropy factor, 

that characterize relative amounts of absorption and scattering, and the scattering 

anisotropy, respectively, and demonstrate that, by varying AuNP sizes (5, 10 and 20 nm) 

and filling fractions (0.1−0.3) in the cloak, scattering intensity can be suppressed or 

enhanced, while reducing scattering anisotropy in both cases. To calculate the filling 

fraction 𝑓 , we consider a `shell' around the core, with thickness equivalent to a single 

AuNP diameter, and 𝑓 is defined as the fraction of the shell volume occupied by all the 

AuNPs. In other words, it is a measure of the surface coverage density. Figure 5.1 shows 

the simulated three-dimensional differential scattering cross-sections of a bare silica core, 

and cores with 10 nm AuNPs on their surfaces with varying 𝑓. A smooth and spherical 

dielectric core has no absorption in the visible wavelength range, so any extinction of 

power is solely due to scattering. By contrast, AuNPs have an appreciable amount of 

scattering and absorption in the same spectral range. Therefore, while all three cores exhibit 

a strong forward-scattering peak above the dashed line (indicating their positions) we 

observe two key differences. The first is the change in the magnitude of the forward 

scattering peak, which is suppressed at filling fraction 𝑓= 0.3 (Figure 5.1A) but enhanced 

at f = 0.1 (Figure 5.1C), compared to the bare core (Figure 5.1B), indicating variation in 

the overall power scattered by the AuNP cloaks. The second difference is that for both 

coated cores, the forward scattering peaks are narrower, and backscattering is suppressed 

compared to the bare core, implying that the scattered power is preferentially focused in 

the forward direction with the addition of the cloaks. 

 

5.2 Scattering and absorption by a gold nanoparticle 

 

We begin with a discussion of the scattering and absorption when a monochromatic 

plane wave is incident on a single AuNP, as those form the basis of how the ensemble of 

AuNPs in the cloak ultimately behaves. Additionally, we make the scalar approximation 

in what follows because the model for the coated core includes strong multiple scattering 

by the AuNPs, which would lead to a negligible degree of polarization of the scattered 

light. 

 

Consider the observation of the scattered filed 𝑈𝑠 at distance 𝑅 away from an AuNP 

with 𝑅 > 𝑑2/𝜆 where 𝑑 is the AuNP diameter and 𝜆 the wavelength of the incident light. 

For this case, the scattered filed behaves according to [174], 

 

𝑈𝑠(𝑅𝑠̂) = 𝐹(𝑜̂, 𝑖̂)
𝑒𝑖𝑘𝑅

𝑅
                         (5.1) 

 

where, 𝑜̂ is the direction of observation, 𝑖̂,  the propagation direction of the incident plane 

wave, and 𝑘 = 2𝜋/𝜆, the wavenumber. We call 𝐹 the complex scattering amplitude. It 

contains the amplitude and phase of the scattered filed in the far-field. We introduce the 

differential scattering cross-section 𝜎𝑑 defined in terms of 𝐹 as: 

 

𝜎𝑑(𝑜̂, 𝑖̂) = |𝐹(𝑜̂, 𝑖̂)|2                                                            (5.2) 

 



42 

 

 The scattering cross-section 𝜎𝑠 characterizes the observed scattered power, and the 

absorption cross-section 𝜎𝑎 characterizes the total absorbed power. The total cross-section 

is the sum, 𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎. In terms of 𝜎𝑑 the scattering cross-section is defined as 

 

𝜎𝑠 = ∫ 𝜎𝑑𝑑Ω
4𝜋

,                                                                                                                                         (5.3) 

 

where this integral is taken over all directions corresponding to the unit sphere.  

 

 

 

According to the Optical theorem[173], we have  

 

𝜎𝑡 =
4𝜋

𝑘
 𝐼𝑚 [𝐹(𝑖̂, 𝑖̂)].                                                                                                                                        (5.4) 

 

Upon computing 𝜎𝑠 and 𝜎𝑡, we compute 𝜎𝑎 = 𝜎𝑡 − 𝜎𝑠 to determine the absorption cross-

section.  

 

 Using these cross-sections we compute the scattering efficiency, 𝜎𝐸, and the albedo, 

𝜛0. The scattering efficiency 𝜎𝐸 is 𝜎𝑠 normalized by the corresponding geometric cross 

section, 𝜎𝑔 = 𝜋𝑑2/4. The albedo is defined as  

 

𝜛0 =
𝜎𝑠

𝜎𝑡
                                                           (5.5) 

 

When 𝜛0 = 1, extinction is due entirely to scattering, and when 𝜛0 = 0, extinction is due 

entirely to absorption. It is therefore a measure of what proportion of the extinction is a 

result of scattering versus that of absorption.  

 

 We compute the total extinction (scattering plus absorption) and albedo (𝜛0) for 

in-dividual AuNP with diameter 𝑑 = 5, 10, and 20 nm (Figure 5.2 A and 5.2 B) using 

experimentally measured optical properties [27]. Comparing the relative values of both 

parameters (Figure 5.2 C) shows that 5 nm AuNPs have a relatively low albedo while the 

albedos for 10 nm and 20 nm AuNP are higher. In other words, we confirm that 5 nm 

AuNPs have the highest absorption while 20 nm AuNPs scatter most strongly over the 

visible spectrum.  

 

 

5.3 Modeling the mesoscale cores with nanoplasmonic covers 

 

 In our computational model [1], the scattered and interior fields for the core are 

computed using the Method of Fundamental Solutions (MFS), otherwise known as the 

Discrete Source Method[168]. Multiple scattering and absorption by the AuNPs is 

computed using the self-consistent scattering theory developed by Foldy[170] and 

Lax[171]. It follows that the complex scattering amplitude for the AuNP-coated core is 

given by 
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𝐹(𝑜̂, 𝑖̂) =
1

4𝜋
∑ 𝑐𝑗

𝑒𝑥𝑡𝑒𝑖𝑘0𝑜̂.𝑟𝑗
𝑒𝑥𝑡

𝑀
𝑗=1 +

1

4𝜋
∑ 𝛼𝑛𝑒𝑖𝑘0𝑜̂.𝑟𝑛

𝑁𝑃
Ψ𝐸(𝑟𝑛

𝑁𝑃)𝑁
𝑛=1 ,                                            (5.6) 

 

where 𝑘0 is the wavenumber for the surrounding medium. The first sum in Equation (5.6) 

represents the contribution from the core and the second sum that of the AuNP cover. For 

the first term, the sum is taken over the 𝑀 discrete source points at positions 𝑟𝑗
𝑒𝑥𝑡, for 𝑗 =

1, … , 𝑀. The coefficients 𝑐𝑗
𝑒𝑥𝑡 for 𝑗 = 1, … , 𝑀 give the individual strengths of each of the 

discrete sources. Those coefficients depend on the incident direction, 𝑖̂. In the contribution 

due to the AuNP cover, the sum is taken over the 𝑁 AuNPs centered at positions 𝑟𝑛
𝑁𝑃 for 

𝑛 = 1, … 𝑁. Here, 𝛼𝑛 is the complex scattering amplitude for the 𝑛th AuNP, which is 

computed using its individual absorption and scattering cross-sections. We denote the field 

exciting the 𝑛th AuNP by Ψ𝐸(𝑟𝑛
𝑁𝑃), which depends on the incident direction 𝑖̂. The 

coefficients 𝑐𝑗 for 𝑗 = 1, … , 𝑀 and exciting fields Ψ𝐸(𝑟𝑛
𝑁𝑃) are computed through the 

solution of a linear system resulting from requiring that fields and their normal derivatives 

are  
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Figure 5.2: (A) Extinction (absorption plus scattering), and (B) Scattering albedo of single 

AuNPs of different diameters (C) Ratio of extinction to albedo, which indicate that 

absorption contributes more to the total extinction with decreasing AuNP size. 
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Figure 5.3: (A) Scattering efficiency change Δ𝜎𝐸 in a 750 nm silica core with 5 nm AuNP 

cover mapped with incident wavelength 𝜆 and filling fraction 𝑓. Negative values of Δ𝜎𝐸 

indicate the AuNP cloak lowers scattering compared to the bare core while a positive value 

indicates enhanced scattering. (B) Scattering albedo for the same core at different 𝑓. 

Scattering albedo of 5 nm AuNP coated structures as 𝑓 is tuned from 0.05 to 0.30. The 

monotonic decrease in 𝜛0 with increasing 𝑓 indicates a steady increase of absorption of 

incident power as more AuNPs are added to the core surface. Taken together, these indicate 

a lack of strong and complex optical interactions between the AuNPs and the core, which 

in turn, lead to no significant scattering suppression and only minor hints of enhancement 

in the map in part (A). 

 

 

continuous on the surface of the core[1]. Upon computing Equation (5.6), we determine 𝜎𝑡 

using Optical Theorem given in Equation (5.4). To compute 𝜎𝑠, we introduce a spherical 

coordinate system in which 𝑖̂ is the north pole.  
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We denote the cosine of the polar angle by 𝜇 = 𝑜̂. 𝑖̂, and the azimuthal angle by 𝜑. In terms 

of 𝜇 and 𝜑, we have  

𝑜̂(𝜇, 𝜑) =  (√1 − 𝜇2𝑐𝑜𝑠𝜑, √1 − 𝜇2𝑠𝑖𝑛𝜑, 𝜇)                 (5.7) 

We compute the scattering cross-section using the Q-point product Gaussian quadrature 

rule on the sphere [199] as ,  

 

𝜎𝑠 = ∫ ∫ |𝐹(𝑜̂(𝜇, 𝜑), 𝑖̂)|2𝑑𝜇𝑑𝜑
1

−1

2𝜋

0
≈

𝜋

𝑄
 ∑ ∑ 𝑤𝑞|𝑓(𝑜̂(𝜇𝑞 , 𝜑𝑝), 𝑖̂)|

2𝑄
𝑞=1

2𝑄
𝑝=1                            (5.8) 

 

where, 𝜇𝑞 and 𝑤𝑞 for 𝑞 = 1, … , 𝑄 are the Q-point Gauss-Legendre quadrature points and 

weights, respectively, and 𝜑𝑝 = (𝑝 − 1)𝜋/𝑄 for 𝑝 = 1, … , 2𝑄. With 𝜎𝑡 and 𝜎𝑠 computed, 

we computed the albedo through evaluation of Equation (5.5). We can use this same 

quadrature rule to compute an anisotropy factor 𝑔, though evaluation of  

 

𝑔 ≈
1

𝜎𝑡

𝜋

𝑄
 ∑ ∑ 𝑤𝑞𝜇𝑞|𝐹(𝑜̂(𝜇𝑞 , 𝜑𝑝), 𝑖̂|2𝑄

𝑞=1 .
2𝑄
𝑝=1                                                                                    (5.9) 

 

This nondimensional quantity gives a measure of the amount of power flow in the forward 

direction that is retained after scattering. When 𝑔 = 0, scattering isotropic and when 𝑔 =
1, it is purely in the forward direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Differential scattering cross-section (log-scale) of a 750 nm core at incident 𝜆 

= 500 nm at different 𝑓 of 10 nm AuNPs. The fit to the anisotropy data at 𝑓 = 0.3 is the 

Henyey-Greenstein (HG) scattering model discussed in the text. The fit returns 𝑔 values of 

0.71, 0.75 and 0.76 for 𝑓 = 0, 0.05, and 0.3, respectively.  
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Figure 5.5: Scattering albedo 𝜛0 for different core sizes coated with 20 nm AuNP at (A) 

𝑓 = 0.1, and (B) 𝑓 = 0.3. The 𝑓 dependent 𝜛0 consistently shows the functional form 

observed in Figure 5.7C in the main text. Low 𝑓 shows absence of oscillatory behavior in 

the variation of 𝜛0 with 𝜆. 𝜛0 shows oscillatory feature at high 𝑓 with the change of 𝜆,  

indicating strong and complex interaction between the dielectric core and the AuNP cover 

leading to either scattering suppression or enhancement for a wide range of core sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: H-G fitted anisotropy factor 𝑔 of 10 nm AuNP coated cores of different 

diameters at 𝑓 = 0.3. Solid lines correspond to the bare cores and filled circles to the coated 

cores for each corresponding color. Addition of the cloak increases 𝑔 over the entire 

spectral range for all core sizes but the extent to which g changes is more prominent as core 

sizes decrease. 
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5.4 Results 

 

For our results we have used M = 512 discrete source points for the core. The number N of 

AuNPs used depends on the 𝜆 filling fractions [1] in each case. To compute 𝜎𝑠 and 𝑔, we 

set Q = 512 for the product Gauss quadrature rule. 

In Figure 5.4 we show our computed results for the differential cross-section, 𝜎𝑑 

for a 750 nm diameter core when bare, and when coated with 10 nm AuNPs at filling 

fractions 𝑓 = 0.05 and 𝑓 = 0.3. We plot the azimuthal average of 𝜎𝑑 as a function of the 

polar angle 𝜃 defiend with respect to the propagation direction of the plane wave incident 

on the target. Due to multiple scattering by the AuNPs on the surface, we expect an overall 

decrease in coherence in the scattered _field.  As a result, the angular side lobes, that are 

characteristic of diffraction by a bare core, are shifted and suppressed. In other words, we 

find that 𝜎𝑑 is smoother for the coated cores compared with the bare one, and the smoothing 

is enhanced as 𝑓 increases. In light of this, we consider the well-known Henyey-Greenstein 

(HG) scattering model [200] which defines 𝜎𝑑 as: 

 

 

𝜎𝑑
𝐻𝐺(𝜃) =

𝜎𝑠

4𝜋

1−𝑔2

(1+𝑔2−2𝑔𝑐𝑜𝑠𝜃)3/2               (5.10) 

 

Where 𝜎𝑠 and 𝑔 are the only free parameters. HG has been extensively used to study 

multiple scattering by particles in radiative transfer theory[175]. In fact, it is often used as 

a simplified model for a dielectric sphere. Because coated cores have smoother 𝜎𝑑 than the 

bare core, HG is an appropriate model to use here. In Figure 5.4, this fit to the 𝑓 =
0.3 results is shown as a dashed black curve. We use this fitted value for 𝑔 to evaluate 

differences in angular distribution of scattered power for different structures as core size, 

AuNP size, and filling fraction 𝑓 is varied.  

 

 Figure 5.7 summarizes the effect of AuNP size and 𝑓 on the scattering efficiency 

𝜎𝐸 , HG-fitted anisotropy factor 𝑔, and scattering albedo 𝜛0 of the coated cores over the 

visible spectrum. For all of these results, the diameter of the core is 750 nm and the 

diameter of the AuNPs is 20 nm. Figure 5.7A shows a color contour plot for the difference 

of scattering efficiency denoted by 𝜎𝐸 with 𝑓 varying from 0.0 to 0.3. Δ𝜎𝐸 is calculated as 

the difference of scattering cross sections of the coated core with respect to the bare one. 

Therefore, a negative value of Δ𝜎𝐸 implies scattering suppression when the AuNP cloak is 

present. The region of scattering suppression is highlighted by a white dashed rectangle, 

and corresponds to a broad range of 𝑓 and a wide spectral window. When Δ𝜎𝐸 is positive, 

the coated core has a higher scattering efficiency than the bare core e.g. scattering 

enhancement occurs on adding the cloak. A black dashed rectangle encloses this region. 

From these results, we find that scattering suppression is achieved for 𝑓 > 0.2 over the 

wavelength range 400 nm - 670 nm, while for 0 < 𝑓 < 0.2 scattering is enhanced over the 

wavelength range 600 nm - 750 nm. Figure 5.7B shows results for HG-fitted 𝑔 for the same 

core as a function of incident wavelength for different values of 𝑓. We expect 𝑔 to increase 

as 𝜆 decreases since the core size and 𝜆 become comparable to one another.  
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Figure 5.7 Optical properties of a 750 nm silica core with 20 nm AuNPs. (A) Differences 

of extinction cross-sections (Δ𝜎𝐸 = 𝜎𝐸
𝑐𝑜𝑟𝑒/𝑁𝑃

− 𝜎𝐸
𝑐𝑜𝑟𝑒 ) for different filling fractions as a 

function of 𝜆. The region of scattering suppression (Δ𝜎𝐸 < 0) is indicated by a white 

dashed rectangle, and that of scattering enhancement (Δ𝜎𝐸 > 0 ) by a black one. (B) 

Anisotropy factor 𝑔 of the core for different 𝑓. (C) Scattering albedo 𝜛0 of the core for 

different 𝑓. The arrows correspond to regions where scattering suppression (blue) and 

enhancement (red) is observed in part (A). The grey shaded region shows spectral range 

where scattering power and 𝑔 are both enhanced. 
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We observe this behavior in the results shown in Figure 5.7B. In addition, we note that 𝑔 

is larger than that for the bare core for all values of 𝑓. This behavior corresponds to the 

feature highlighted in Figure 5.1 in which the forward peak is more pronounced and wider 

angle sidelobes are suppressed. We attribute this to multiple scattering by the AuNPs which 

suppresses diffraction by the core, leading to reduction of the wide-angle scattering. As a 

consequence, the power that is scattered by the coated structures is more concentrated in 

the forward direction relative to scattering by the bare core. Figure 5.7C shows 𝜛0 over the 

visible spectrum for the structures. The bare core has 𝜛0 = 1 over this wavelength range. 

The addition of AuNPs results in increased absorption (and decreased 𝜛0) across the entire 

spectrum, but the magnitude of the change varies with 𝑓. For low 𝑓 (< 0.1) 𝜛0 indicates 

significant absorption for  𝜆 < 500 nm, but relatively higher 𝜛0 for high 𝑓(> 0.2) over 

the same spectral range suggests scattering surpasses absorption as AuNP coverage of the 

core increases. Referring back to Figure 5.7A, it seems scattering suppression occurs in the 

spectral range where composites have some optimal absorption relative to scattering, as 

with the structures 𝑓 > 0.2. On the other hand, scattering enhancement is observed when 

𝜛0 approaches 1. There is an additional feature in the variation of 𝜛0 with 𝜆 at high f, 

where we observe an oscillatory behavior. These oscillations indicate strong and complex 

interactions between the dielectric core and the AuNP cover that, in turn, strongly affects 

the scattering intensity. When we repeat these simulations for the same core with 5 nm 

AuNPs, both this non-monotonic behavior of 𝜛0 with 𝑓, and the oscillations are absent. 

As a result, neither suppression nor enhancement occurs (Figure 5.3). However, this 𝑓 

dependence of 𝜛0 is clearly observed in a wide range of core sizes (Figure 5.5) when 20 

nm AuNPs are used, underlining the importance of AuNP size.  

In Figure 5.8 we explore the dependence on AuNP size. Figure 5.8A plots the 

scattering efficiency 𝜎𝐸 as a function of  𝜆 for a 750 nm bare core and cores with covers of 

5, 10 and 20 nm AuNPs, all at 𝑓 = 0.3. The cover consisting of 5 nm AuNPs does not 

cause any suppression, and in fact, enhances 𝜎𝐸 for 𝜆 > 500 nm. The cover made of 10 nm 

AuNPs lead to suppressed scattering up to 550 nm, while the cover made of 20 nm AuNPs 

suppress scattering over the entire visible spectral range. Figure 5.8 B plots the HG-fitted 

𝑔 for the same structures, and shows that 𝑔 for the 5 nm AuNP coated structure closely 

follows that of the bare core over the visible spectrum. In contrast, coverage by 20 nm 

AuNPs results in a significantly higher 𝑔, indicating how the angular distribution of power 

can be tuned by AuNP size. Higher 𝑔 indicates stronger forward scattering, which we check 

by computing the angular width of the central peak of the differential scattering cross 

section at -3dB below the peak, which serves as an approximation for the full-width at half-

maximum (FWHM) for forward scattering cone. Figure 5.8C plots this FWHM over the 

visible region and confirms that the 20 nm AuNP coverage narrows the forward scattering 

peak the most. The schematics shown in Figure 5.8C, 5.8D, and 5.8E summarize this data, 

and highlight the changes in the scattered field due to different AuNP sizes on the surfaces 

of the cores, such as narrowing of the forward scattering peak as FWHM decreases, and 

smoothing of the side lobes with increasing 𝑔, as AuNP size increases. This effect is not 

limited to a specific core size, and is observed down to core sizes of 400 nm (Figure 5.6). 
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Figure 5.8 (A) Scattering efficiency 𝜎𝐸, (B) HG-fitted anisotropy 𝑔, and (C) FWHM of the 

differential scattering cross sections for the bare core and core with AuNPs of different 

sizes, all at 𝑓 = 0.3. Schematic of the cores with coatings of (D) 5 nm AuNPs (E) 10 nm 

AuNPs, and (F) 20 nm AuNPs, summarizing these changes. 
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5.5 Conclusion 

 

Our computational model demonstrates that a cover of randomly distributed AuNPs 

on a dielectric core can be optimized to modulate the mesoscopic optical properties in the 

visible spectrum in more than one way. A cover consisting of 20 nm AuNPs with moderate 

filling fractions 0.2 < 𝑓 < 0.3 results in significant scattering suppression up to 𝜆 = 600 

nm for cores larger than the incident wavelength. But a slight variation of 𝑓, between 0.1 - 

0.2, leads to scattering enhancement in the spectral regime 𝜆 > 650 nm for the same cover. 

This substantial difference in optical response highlights the versatility of this platform. In 

addition to this spectral modulation, we observe that the presence of the cover results in a 

preferential concentration of the scattered power in the forward direction. This reshaping 

of the angular distribution of power occurs when scattering is suppressed and enhanced. 

Our results further underscore the critical role of absorption versus scattering by the 

AuNPs, as we establish that some absorption by the AuNP cover is needed to suppress the 

scattering of the core. However, scattering is suppressed most when 𝑓 is optimal to promote 

both multiple scattering and absorption with a stronger dependence on former. It is for this 

reason that 20nm AuNPs yield more suppression than 5nm AuNPs. In fact, it is because of 

multiple scattering in the cover that the angular distribution of scattered power by the 

coated cores is qualitatively different from that by the bare core. Multiple scattering 

decreases the overall coherence of scattered light and consequently, suppresses the angular 

sidelobes in the distribution of scattered power. As a result, the forward peak in scattering 

is more pronounced and the anisotropy factor increases. Through this investigation of the 

mesoscopic optical properties of nano-assembled plasmonic covers, we have identified 

parameter regimes where the cover of AuNPs lead to scattering suppression or 

enhancement. These results can then guide decisions on tuning AuNP size and filling 

fraction for a wide range of optical and photonic applications in the visible spectrum, 

ranging from near-field microscopy to high-resolution imaging. 
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Chapter 6  
 

Broadband scattering suppression 

using 3D plasmonic meta-structure in 

the visible spectrum  
 

  

The numerical model established in the earlier chapters showed broadband 

scattering suppression achieved by the plasmonic meta-structures. These structures are 

made of dielectric cores coated with colloidal gold nanoparticles. This chapter presents an 

experimental demonstration of the broadband scattering suppression using plasmonic 

meta-structures of two core sizes, 500 nm, and 700 nm. A scalable and robust fabrication 

method was developed to make these core-shell meta-structures. This fabrication method 

has been described in detail in the earlier parts of this chapter, following a process for 

characterizing the core-shell meta-structures.  Scattering cross-section measurements were 

carried out over the visible wavelength range for bare silica cores and the core-sell 

structures. The scattering cross-section measurements revealed broadband scattering 

suppression by these meta-structures. The simulated scattering cross-section of the bare 

cores and core-shell structures showed good agreements with the measured results for a 

filling fraction of 0.3. This filling fraction was computed using an image analysis method.    

 

6.1 Fabrication of plasmonic meta-structures 

 

 The core-shell meta-structures are consist of a silica sphere coated with gold 

nanoparticles randomly distributed on it’s surface, as shown in the schematic in Figure 6.1. 

 

Figure 6.1 Schematic of the plasmonic meta-structure. Spherical silica core (blue) 

decorated with randomly distributed gold nanoparticles (yellow).  
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AuNP coated silica sphere fabrication has two main steps. In the first step, the 

surfaces of solid, nonporous silica spheres are functionalized with amine terminated 

ligands. In the second step, the silica surfaces are decorated with citrate-capped gold 

nanoparticles. The silica spheres, with average diameters 500 and 700 nm, were purchased 

from Bangs lab. The amine terminated ligand used to functionalize the silica surface was 

N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMSPA). This ligand and 20 nm gold 

nanoparticles (OD 1) were purchased from Sigma Aldrich. All the chemicals and 

nanoparticles were used without any further purification. 

 

6.1.1 Functionalizing silica surface  

 

 Non-functionalized silica nanoparticles (SiNPs) have natural hydroxyl(-OH) 

groups on them. In the case of silica, these hydroxyl groups are commonly known as silanol 

groups[201]. The surface functionalization process takes advantage of silanol groups to 

attach the alkoxysilane ligand. The methoxy group of the ligand (-OCH3) reacts with the 

silanol present on the silica surface. As a result, the ligand binds with the silica by forming 

a siloxane(-Si-O-Si-)[202]–[211].  Figure 6.2 shows a schematic of this reaction.  

 

Figure 6.2 Reaction schematic to functionalize silica with TMSPA (bottom row).  

Methanol is produced as a byproduct. Structure of a single TMSPA ligand is shown on the 

top left.  

 

Surface functionalization takes place at room temperature. Silica nanoparticles and 

TMSPA are added to ethanol in a glass vial. Then the solution is stirred vigorously using 

a magnetic stirring bead at 1250 revolution per minutes (RPM) for eight hours. Surface 

functionalized silica is then centrifuged at approximately 2000 relative centrifugal fource 

(RCF) to separate it from the non-absorbed ligands and ethanol mixture. Then the 
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functionalized SiNPs are redispersed in deionized (DI) water. The centrifugation and 

redispersion process is repeated five times to remove all the non-absorbed ligands. The 

exact surface functionalization process was applied for both 500 nm and 700 nm silica 

spheres. Following this process, 1 mg of SiNPs of each size was functionalized for the 

experiments. The 500 nm and 700 nm SiNPs were functionalized with 500𝜇𝐿 and 1ml of 

the ligands, respectively. Functionalized and cleaned SiNPs were stored in DI water for 

gold nanoparticles coating.  

 

 

 

6.1.2 Gold coated silica sphere 

 

 The core-shell structures of silica and gold nanoparticles were fabricated via 

electrostatic nano-assembly[212][213]. This is a self-assembly process in which lone pair 

electrons of the amine are shared with gold nanoparticles forming a coordinate bond[214]–

[222]. As a result, AuNPs are adsorbed on the functionalized silica surface. Adsorbing 

citrate capped AuNPs arranged themselves on the silica surface due to the electrostatic 

interactions between the SiNP and each other, resulting in to a robust and stable core-shell 

structure[223][224]. As purchased AuNPs were centrifuged (26 × 103 rcf, 30 min) to 

concentrate at the bottom of the Eppendorf tube before the fabrication process. A higher 

concentration decreases interaction time between the AuNPs and the SiNPs, promoting a 

faster adsorption process. Functionalized SiNPs were added to the concentrated AuNPs 

dispersed in DI water. This mixer was then stirred using a vortex mixer gently. The 

adsorption process was allowed to react for four hours at room temperature.  Figure 6.3 

shows AuNP decorated silica sphere pallets at the bottom of the tube.  

 

Figure 6.3 AuNP decorated SiNP pallet at the bottom. The supernatant containing non- 

adsorbed AuNP.    
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The supernatant contains non-adsorbed AuNPs. The supernatant was pipetted out, and the 

sample pallet was redispersed in DI water. The redispersed solution was then centrifuged 

at a very low speed (500 rcf) for two minutes to separate heavier AuNP coated silica from 

the non-adsorbed AuNPs following removal of the supernatant. This process was repeated 

five to seven times to ensure the solution was free from non-adsorbed AuNPs.  6 ml and 

12 ml of purchased AuNP solutions were concentrated and used to fabricate core-shell 

structures of core sizes 500 nm 700 nm, respectively. 

 

 

6.2 Meta-structure characterization 

 

 Nano-assembled meta-structures were characterized using the ultraviolet-yisible 

(UV-Vis) spectroscopy and the scanning electron microscope (SEM). UV-Vis 

spectroscopy shows the absorbance properties of the material.  UV-Vis measurement 

determined the purity and absorption maximum of the sample.  

 

6.2.1 Ultra-violet Visible spectroscopy 

 

UV-Vis spectroscopy (Lambda 35, Perkin Elmer) was carried out on the as-

obtained AuNP from the manufacturer and ligand functionalized silica nanoparticles.  Gold 

nanoparticles show much higher absorbance compared to the TMSPA functionalized silica 

core. A plasmon enhanced absorption peak for AuNPs was observed at 523 nm (Figure 

6.4).  

Figure 6.4 UV-Vis spectroscopy of 20 nm gold nanoparticles (red) and ligand (TMSPA) 

functionalized silica sphere of 500 nm (black). 
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Ligand functionalized silica core showed very low absorbance in the visible wavelength 

range. The absorbance of the silica sphere showed a monotonous rise as the wavelength 

gets smaller. The 500 nm and 700 nm functionalized silica showed almost identical 

absorption curves. Hence only the UV-Vis spectra of the 500 nm silica are included here.  

 

 

 

Figure 6.5 Schematic of the working process of the TTL detector. 

 

 

6.2.2 Scanning electron microscopy 

 

SEM micrograph of the surfaces of the meta-structures revealed the integrity of the 

core-shell structures. A Zeiss Gemini 500 scanning electron microscope was used for 

characterization.  Meta-structures were imaged using the Through-The-Lens (TTL) 

detector and backscattered electron detector (BSD).  

The primary scanning electron beam of the SEM interacts with the specimens and 

creates secondary electrons (SE). These secondary electrons are categorized as SE1, SE2, 

SE3 based on their kinetic energy, from high to low[225].  SE1 and SE2 are originated just 

below the sample surface. Therefore, they exit the surface without deviated much from 

their point of origin. On the other hand, SE3 signals are originated from a deeper part of 

the sample, and escaped trajectory is prone to much more deviation.  Figure 6.5 shows a 

schematic of the TTL detector's working process. A TTL detector uses a confined magnetic 

field in the objective lens column to pull SE1 and SE2 electrons through the objective while 

ignoring SE3 signals. As a result, a TTL detector provides a higher resolution and finer 

surface details than other detectors[225].  
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When the primary scanning electron beam interacts with the specimen's atoms, their 

trajectories deviate. The primary electrons can scatter back and be ejected out of the sample 

in suitable conditions, preserving most of its kinetic energy. Generally, heavier nuclei 

scatter back electrons with higher energy than nuclei of lighter elements [225][226]. A 

BSD detector detects these backscattered electrons from the specimen. It is a disk-shaped 

detector located just above the sample, and it is made of two parts A, and B (figure 6.6). 

Combining the SE and the backscattered electrons signals, information about the sample's 

topographical and compositional state can be obtained[225].  Signals from both parts (A 

and B) of BSD are added to get the compositional form of the sample. The havier element 

appears brighter in the BSD image. Meta-structure imaged using the BSD provides 

geometric distribution of the AuNPs on the surface of silica spheres. BSD images were 

used to calculate the surface filling fractions. Figure 6.7 shows both TTL (A, B, C) and 

BSD (D) images of the core-shell structures.  

 

Figure 6.6 Schematic of location of BSD detector.  Side view (left) and top view (right) of 

the detector configuration. 
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Figure 6.7 Scanning electron micrograph of bare silica cores and AuNP coated silica 

spheres. (A) Bare silica sphere with diameter 500 nm. (B) AuNP coated 500 nm silica 

spheres. (C) 700 nm silica spheres coated with AuNPs. (D) BSD image of 700 nm silica 

spheres coated with AuNP. The AuNPs appear brighter compared to the background in 

BSD images.    

 

 

Broadband scattering suppression by the plasmonic meta-structures occurs for AuNP 

filling fraction of more than 20%, predicted by the numerical model. Fabrication of the 

core-shell meta-structures was optimized to achieve this high filling fraction( > 20%). 

Figure 6.8 shows a much lower surface coverage of AuNPs.  

A      

C   D   
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Figure 6.8 BSD image of low surface coverage core-shell structures. A 500 nm silica core 

coated with AuNP is shown on the left, and a 700 nm coated silica core on the right.  

 

During the optimization of the fabrication process, it was found that the amount of AuNPs, 

ligands, and the silica-ligand functionalization duration plays a crucial role. Therefore, one 

of these three elements was varied while keeping other elements constant to optimize the 

fabrication process. Figure 6.7 shows the final product of this optimized fabrication 

process, yielding very high adsorption of AuNPs on the silica surface. The amount of 

AuNPs and the ligand combinations for a specific core diameter reported in section 6.1 was 

obtained after successfully optimizing the fabrication process.  

   

6.2.3 Surface coverage 

 

Surface coverage is one of the crucial parameters in predicting and simulating 

scattering suppression by the plasmonic meta-structures. Surface coverage was calculated 

as a ratio of the area occupied by the AuNPs to the total surface area of a silica sphere. 

Thus, the surface area occupied by the AuNP clusters provides a practical method of 

quantifying the number of nanoparticles on the surface of a dielectric core.  Figure 6.9 

depicts a generalized step-by-step process of isolating and calculating the number of AuNP 

clusters on the silica surface.  

Figure 6.9 Surface coverage computation process via image processing using ImageJ. BSD 

image of a 500 nm core-shell structure with highlighted AuNP clusters(red).   
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The process of removal of the background and finally obtaining the AuNP clusters shown 

from left to right in figure 6.9. In step one, AuNP clusters are selected based on the 

brightness difference compared to the background using a mask in ImageJ[227]. Then the 

background of the image is removed by highlighting just the AuNP clusters. Finally, the 

total areas of the clusters are computed. This process was somewhat automated and carried 

out using ImageJ. 

Numbers of AuNPs in case of simulating meta-structures were generated using 

shell volume as a container. Shell volumes were calculated as a multiplication of the core's 

surface area and the shell-thickness (see chapter 4, section 4.3.3).   

The AuNP number density was generated as,  

𝑁 =  ⌊𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ×
𝑠ℎ𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
 ⌋         (6.1) 

The filling fraction in Eq (6.1) determines how much of the volume would be occupied by 

the AuNPs. Here the shell-thickness was considered as constant for a specific structure as 

well as the diameter of the nanoparticles.                                                                                                           

 AuNPs on the fabricated meta-structures were not constant in diameter. The BSD 

images revealed that AuNPs are clustered with varied areas instead of distributed as 

separate particles (figure 6.9). As a result, computing the size of these AuNP clusters and 

the ratio of this area to the entire surface area of the core provides a practical method of 

estimating the amount of filling fractions in terms of surface coverage.        

Figure 6.10 Highlighted AuNPs of 700 nm (left) and 500 nm (right) meta-structures using 

ImageJ. The estimated highlighted particles (yellow cross marks) on 700 nm structures 

were approximately 660 and on 500 nm structures were approximately 290.  
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A proof-of-concept analysis process was developed and described here to 

demonstrate the equivalence between the surface fraction analysis using ImageJ and 

volume filling fraction for simulated structures. In this process, an isolated dark spot on the 

BSD image was highlighted using a yellow cross mark, assuming it is a single AuNP. In 

the case of clusters, the number of cross marks was estimated by comparing with a single 

AuNP or a dark spot (figure 6.10).  

 Analyzed images shown in figure 6.10 are an example. Here approximately 290 

spots on one 500 nm structure and 660 spots on a 700 nm structure. Therefore, the total 

number of spots or AuNPs would be 580 for 500 nm and  1320 for 700 nm core-shell 

structures. This estimation assumes that both surfaces of the meta-structures have an equal 

amount of AuNPs. The surface fraction from image analysis of these two structures yields 

a filling fraction of 0.3 for 500 nm and 0.28 for 700 nm structures. The simulated number 

of AuNPs for the 500 nm and 700 nm structures was 680 and 1176, respectively, for the 

filling fractions mentioned above. The measured AuNP diameter observed using SEM was 

as large as 29 nm, and the smallest was 19 nm. Hence an average AuNP diameter was 

considered 24 nm, and shell-thickness was 24 nm for simulation. Compared with the 

fabricated structures, nanoparticles diameter can be thought of as shell thickness.  

The differences between the image analyzed nanoparticle number and simulated 

was approximately 14% for 500 nm and 10% for the 700 nm core-shell structures. This 

discrepancy between the image analyzed and simulated AuNP numbers are acceptable and 

understandable for the following reasons. The actual number of dark spots comprising a 

cluster cannot be determined with a high degree of accuracy.  More than one AuNP 

assembled on top of another is possible in fabricated structures. That was not visible in the 

BSD image.  In the fabricated structures, there is a variation in the AuNP diameter, but in 

the case of simulation, it is constant. Hence the assumption of a constant shell thickness 

for the simulated structure would impact the amount of AuNP packed in the shell volume.  

An average filling fraction obtained by analyzing several images was applied to the 

simulation model. This average filling fraction resulted in a simulated scattering cross-

section across the spectrum showed a good agreement with the measured cross-section, 

confirming the validity of finding the filling fraction this filling fraction analysis (see 

section 6.4).     

Surface filling fractions calculations following the process described above were 

carried out on both 500 nm and 700 nm core-shell structures. The average computed filling 

fraction was approximately 0.35 for 500 nm and 0.31 for 700 nm core-shell structures. 

Figure 6.11 shows a 500 nm meta-structure count as a function of surface coverage by gold 

nanoparticles. An average of 0.35  filling fraction or surface coverage was obtained by a 

gaussian distribution fit of the meta-structure count and corresponding filling fractions.      
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Figure 6.11 500 nm meta-structure count as a function of filling fraction. The average 

filling fraction was 𝑓 = 0.35 with a standard deviation of 0.07 obtained using a gaussian 

fit. 
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Figure 6.12 700 nm meta-structure count as a function of filling fraction. The average 

filling fraction was 𝑓 = 0.3 with a standard deviation of 0.07 obtained using a gaussian fit. 

 

Surface coverage analysis on 700 nm core-shell structures yielded an average of 

0.30 or 30% of the silica surface covered by AuNPs. Figure 6.12 shows surface coverage 

analysis results of the 700 nm meta-structures.  Few meta-structures of both sizes had 

barely any AuNP on them, but their quantity is low enough not to lower the overall filling 

fraction of the meta-structures. Figure 6.8 shows typical low-filling fractions structures. 

The filling fraction obtained following this process was applied to the simulation model to 

compare the simulated and experimental results of the scattering cross-sections. The 

following sections describe experimental methods and related scattering cross-sections 

results.  

 

6.3 Scattering cross-section measurements 

 

 Scattering cross-section of the bare silica sphere and AuNP coated silica spheres 

were measured to demonstrate the broadband scattering suppression. Scattering cross-

section was measured by collecting the diffused light in transmission and reflection. The 

total scattering cross was obtained by adding diffused light intensities (reflection and 
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transmission) [128], [228]–[231].  Figure 6.13 shows the geometric aspect of scattering of 

the incident light schematically. A specular component of the incident light maintains the 

same direction of propagation in transmission (0°) and the opposite direction in reflection 

(180°) with respect to the incident beam. Incident lights are diffused due to the scattering 

by the samples. Diffused components are spread at an angle from the point of origin[3].  

 

Figure 6.13 Schematic showing the diffused and specular components of scattered light.  

 

Sample for measurement was prepared by drop-casting 50 𝜇𝐿 of well-dispersed (in 

DI water) solution on a circular quartz substrate. A thorough cleaning and drying process 

was followed before drop-casting the sample on it. First, the quartz substrate was 

thoroughly cleaned using acetone, methanol, and DI water alternately in a sonication bath. 

The substrate was then dried using nitrogen, ensuring no foreign particles were present. 

Finally, the quartz surface was plasma cleaned using a tabletop, basic plasma cleaner 

(PDC-32G, Harrick Plasma) to make the surface hydrophilic before drop casting. Then the 

drop casted sample was dried in a desiccator before optical measurements. 
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The scattering cross-section was measured using an integrating sphere. A tunable (430 nm 

to 700 nm) pulsed laser system (Super K, NKT photonics) was used as a source of incident 

light. Figure 6.14 shows the experimental setup of the scattering cross-section 

measurements. A barium sulfate coated integrating sphere (4′′ diameter, model 819 C SF-

4, Newport) was used to collect diffused components of scattered light. This highly 

reflecting coating provides more than 97% reflectance in the operating wavelength 

range[232]. The sample was mounted on the 0° port or entrance port.  

The scattered lights are collected at the 90° port, which is perpendicular to the 

direction of incident light.  A port that is opposite to the entrance port (180° port) was 

blocked using a light trap. The light trap was constructed in house using a foot-long non-

reflecting metallic pipe of 1′′ diameter. One end of the pipe was mounted to the 180° port, 

and another end was blocked by a beam blocker. The light trap prevents specular 

components of the light from interacting with the interior of the integrating sphere, 

ensuring that only diffused components are collected.  

 

Figure 6.14 Experimental setup of scattering cross-section measurements. 

 

Diffused light intensity was measured using a Spectro-meter (Princeton 

Instruments, SP-2300i) connected to the 90° port for both reflection and transmission. The 

wavelength of the incident light was varied 10 nm for consecutive measurements from 430 

nm to 700 nm. Total scattering cross-section was computed as the sum of diffused 

transmission and reflection intensities. These measurements were carried out for bare silica 

spheres, and AuNP coated silica spheres. The following section depicts the results of 

scattering cross-section measurements.   
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6.4 Result 

 

 500 nm and 700 nm plasmonic meta-structures show suppressed scattering cross-

sections. Figure 6.15, and figure 6.16 demonstrate broadband scattering suppression by the 

500 nm and 700 nm meta-structures, respectively.  

 

Figure 6.15 Measured scattering cross-section (left) of 500 nm bare silica sphere (black 

dots) and AuNP coated silica sphere (red dots) of the same size. Simulated scattering cross-

section of the bare core and core-shell structures for 30% filling fraction showed on the 

right.   

 

AuNP coated 500 nm silica sphere shows suppressed scattering compared to the bare silica 

core of the same size up to 575 nm in the visible wavelength range (figure 6.15).  The 

figure 6.16 shows suppressed scattering by the 700 nm core-shell meta-structure (red dots) 

compared to bare silica spheres (black dots) of the same size. The 700 nm core-shell 

structures suppress scattering up to 600 nm in the visible spectrum (figure 6.16). The well-

known signature Mie scattering resonant peaks from the bare silica cores (black dots) are 

absent or mostly suppressed in the case of meta-structure scattering cross-section (red dots) 

for both core-shell structures (figure 6.15, and figure 6.16). Scattering cross-section of the 

meta-structures increases beyond 575 nm incident light in the case of 500 nm and beyond 

600 nm in the case of 700 nm core-shell structures. The average filling fraction for both 

core-shell sizes was approximately 30% obtained via image analysis (see section 6.2.3). 

Simulated cross-sections for 30% filling fraction are shown in the case of both structures 

(figure 6.15, and figure 6.16).  Simulated and measured scattering cross-section depicts a 

good agreement between them.  

Measured  Simulated 
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Figure 6.16 Measured scattering cross-section (left) of 700 nm bare silica sphere (black 

dots) and AuNP coated silica sphere (red dots) of the same size. Simulated scattering 

cross-section of the bare core and core-shell structures for 30% filling fraction showed on 

the right.  

 

The common trend of increased scattering cross-section beyond 600 nm incident 

wavelength is present in both simulated and measured results. A filling fraction of 30% for 

simulating scattering cross-section of both core-shell structures was within the standard 

deviation of their filling fraction distribution shown in figures 6.11 and 6.12. Agreement 

between the overall measured and simulated cross-section is acceptable. However, some 

discrepancies in the amount of scattering suppression and position of resonance peaks need 

to be addressed.  These discrepancies may be arising due to the following reasons. First, 

the simulated scattering cross-section refers to a single core-shell meta-structure. Second, 

the simulated structure had a constant AuNP coverage of 30%. Finally, the AuNP diameter 

was fixed for the simulated system. The experimental data was from numerous meta-

structures.  The AuNP filling fractions were not constant on these meta-structures.  Filling 

fractions were as high as 0.45 and low as 0.05 for the fabricated structures. The AuNP also 

had a size distribution, from 19 nm to 24 nm. Therefore, discrepancies between the 

measured and simulated scattering cross-sections can be reduced further by incorporating 

filling fraction and AuNP size distribution.    

 

 

 

 

 

 

 

Measured  Simulated 
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6.5 Conclusion 

 

 Broadband scattering suppression (from 430 nm to 600 nm) in the visible spectrum 

was achieved experimentally using plasmonic meta-structures. Scattering suppression was 

observed by the 500 nm and the 700 nm core-shell structures up to 575 nm and 600 nm of 

the visible spectrum, respectively. Fabrication via electrostatic nano-assembly made 

physically realizable core-shell plasmonic meta-structures possible. This fabrication 

method was proved to be scalable for various core sizes. Simulated and measured scattering 

cross-section results showed good agreement in the wavelength range of suppression 

following an increase in scattering cross-section beyond 600 nm incident light.  The 

experimental results also confirm that the computational model can predict scattering 

cross-sections of the meta-structures correctly to a great extent.  
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Chapter 7 

Summary and future work 
 

 

 Far-field light scattering and diffraction originating from nano-assembled 3D 

plasmonic meta-structures were analyzed, modeled, and measured in this dissertation. It 

highlights the significance of a multiscale simulation model that can be used to analyze 

and predict multiple optical interactions between a dielectric spherical core surrounding 

randomly distributed plasmonic nanoparticles. Furthermore, successful fabrication of the 

physically realizable plasmonic meta-structures following scattering cross-section 

measurements presents potential applications for sensing and high-resolution imaging due 

to its ability to suppress scattering and alter the far-filed scattering pattern as a consequence 

of the scattering suppression. 

 The advent of nanostructured plasmonic material made the realization of meta-

materials possible. One of the mentionable applications of meta-structure is passive 

electromagnetic cloaking by suppressing scattering. A numerical model to design meta-

structure and compute its electromagnetic response showed that physically realizable (450 

nm to 950 nm) structures are possible for plasmonic cloaking. These plasmonic meta-

structures are comprised of a dielectric (silica) core coated with randomly distributed gold 

nanoparticles (AuNPs). It was demonstrated in this dissertation that the scattering 

suppression range could be manipulated by varying the amount of AuNPs or filling 

fractions (𝑓). A broadband scattering suppression from 430 nm up to 600 nm was observed 

for a 750 nm meta-structure by varying the filling fractions (0.2 ≤ 𝑓 ≤ 0.6) of 10 nm 

AuNP coating. Scattering suppression from a wide range of core sizes (450 nm – 950 nm) 

was also demonstrated for 10 nm AuNP coating for a constant filling fraction of 30%. 

Comparison of scattering cross-sections between the 5 nm and 20 nm AuNP coated meta-

structures showed that a 5 nm AuNP is inefficient for scattering suppression.  A numerical 

experiment to validate this model showed that it could reproduce the scattering minimum 

of an experimental system with a higher degree of accuracy than other models based on 

the effective medium theory. The numerical model presented in this dissertation is 

computationally robust and scalable because it can account for a wide range of core sizes, 

AuNP diameters, and interactions between the dielectric cores and randomly distributed 

plasmonic nanoparticles explicitly. 

 This dissertation established that strong scattering and absorption between the 

AuNPs and the silica core play a crucial role in achieving scattering suppression. The 

mechanism of attaining scattering suppression was explored in terms of scattering albedo 

(𝜛0), scattering efficiency (𝜎𝐸) and anisotropy (𝑔) parameters. Scattering by the AuNPs 

promotes multiple interactions (both scattering and absorptions) between the AuNPs and 

dielectric core. Hence plasmon-enhanced scattering properties of the AuNPs show 

dominance over their absorption in achieving scattering suppression was a fascinating and 

intriguing realization. The total scattering suppression also alters the angular distribution 

of the scattered energy. A differential scattering cross-section study showed that the meta-
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structures have narrower central peaks and smoother (suppressed) angular sidelobes than 

the corresponding bare silica cores. Angular distribution of the central peak was quantified 

by computing the anisotropy of the scattering pattern.  Core-shell structures were found to 

have higher anisotropy (forward peaked) for all core diameters (450 nm − 850 nm) and for 

all sizes of AuNP (5nm, 10nm, and 20 nm) coating than the corresponding bare cores. The 

scattering albedo (𝜛0 ) and anisotropy (𝑔 ) of the scattering pattern provides an effective 

and efficient combination of parameters to predict an operational wavelength range over 

which meta-structures can be successfully applied to increase the signal-to-noise ratio and 

high-resolution imaging.  

 A practical and scalable fabrication method for making plasmonic meta-structures 

was presented in this dissertation. This fabrication method takes advantage of the silica 

surface and ligand chemistry to adsorb AuNPs on the silica surface. AuNPs are adsorbed 

covalently on the silica surface and rearranged into a core-shell formation due to the 

electrostatic nano-assembly. The fabrication method was optimized to achieve a specific 

filling fraction (> 0.2 ) for meta-structures (diameter 500 nm and 700 nm) that are suitable 

for scattering suppression applications. Scattering suppression measurements of the meta-

structures of 500 nm and 700 nm showed suppressed scattering compared to bare silica 

cores of the same sizes. Furthermore, simulated scattering cross-sections of the 

corresponding meta-structures showed a reasonable agreement between the measured and 

simulated results.  

 Successful fabrication of plasmonic meta-structure paves the way to measure the 

changes in angular sidelobes due to scattering suppression. The Rayleigh criterion for 

diffraction limits the resolving ability of two adjacent objects[233]. According to the 

Rayleigh criterion, two images are just resolvable if the center of the diffraction pattern of 

one directly overlaps the first minimum of the diffraction pattern of the second object. Two 

objects are barely resolvable if separated by the angle, 𝜃 ≈ 1.22 𝜆/𝐷, here D is the 

diameter of the aperture, mirror, lens, etc.  𝜆 is the incident wavelength. It was shown semi 

classically and quantum mechanically that Rayleigh criterion can be overcome[234]–[242]. 

A conclusion can be drawn from the concept of the Rayleigh criterion that resolving limit 

can be increased by suppressing angular sidelobes associated with a specific diffraction 

pattern. Figure 7.1 shows the overlapping diffraction patterns (airy disks) arising from two 

adjacent objects and the resolution limit. 

As a part of the continued work, a  proof-of-concept experimental method to observe 

suppression of the angular sidelobe was developed. In this experiment, a plasmonic meta-

structure would be exposed to the diffracted light arising from a circular aperture (pinhole). 

Electric field arising from the pinhole would act as an incident field on the meta-structure.  
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Figure 7.1 Airy diffraction patterns generated by light from two point sources passing 

through a circular aperture, such as the pupil of the eye. Points far apart (left) or meeting 

the Rayleigh criterion (middle) can be distinguished. Points closer than the Rayleigh 

criterion (right) are difficult to distinguish. © Spencer Bliven. Wikimedia Commons, the 

free media repository.  

 

 

The resultant intensities on a far-field detector or screen would result from the incident 

field from a circular aperture after being modified by a meta-structure. Thus, a successful 

demonstration of the angular sidelobes suppression is sufficient to consider these meta-

structures as a potential candidate for high-resolution imaging.  

 A computational model was developed to compute the interaction between the field 

exiting from a circular aperture and the meta-structure following the projection of the total 

field on a screen. This computation model extends the model described earlier (see chapter 

4) following a modification to account for the interaction of the incident filed with a meta-

structure. Fraunhofer or the far-field diffraction regime was considered for computing this 

interaction[243]. Distance of the meta-structure from the aperture was constrained using 

the following expression 

 
𝑎0

2

𝜆𝑖𝑛𝑐 𝑧0
≪ 1  

 

Here 𝑎0 is the diameter of the aperture. 𝑧0 is the distance of the meta-structure from the 

circular aperture. 𝜆𝑖𝑛𝑐 is the incident wavelength. This expression ensures the Fraunhofer 

condition was satisfied. Figure 7.2 shows the simulated airy disk patterns of a circular 

aperture (A) and the final intensity pattern (B).  Meta-structure in this simulation was made 

of a 700 nm silica core coated with 20 nm AuNP and the filling fraction was 30%. 

https://en.wikipedia.org/wiki/Airy_disk
https://en.wikipedia.org/wiki/Point_source
https://en.wikipedia.org/wiki/Aperture
https://en.wikipedia.org/wiki/Pupil
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Figure 7.2 Electric field intensities. (A) The intensity of the incident field is due to a 1𝜇𝑚 

circular aperture. (B) Total intensity observed on a screen or a detector. The incident 

wavelength was 530 nm. The meta-structure was at 10 𝜇𝑚 from the aperture. The total 

field shows suppressed angular sidelobes. 

 

The size of the circular aperture was chosen following Babinet’s principle[173], so that the 

diffraction pattern from this circular aperture and an obstacle of the same diameter would 

be equivalent. Simulated results show total field intensities retained only a few angular 

sidelobes (figure 7.2 B), and their intensities are much reduced compared with the incident 

field intensities (figure 7.2 A).  

 

Suppressed angular side-lobes and higher scattering anisotropy are the 

consequences of the total scattering suppression by the core-shell meta-structures. Tuning 

of these far-field scattering properties is possible due to the multiple interactions (scattering 

and absorption) between the metallic nanoparticles in the shell and dielectric cores. 

Experimentally it was demonstrated that plasmonic meta-structures are able to suppress 

scattering for a broad wavelength range of incident light. Numerically, the plasmonic meta-

structure presented in this dissertation could suppress angular sidelobes and increase the 

scattering anisotropy. Thus, experimental and numerical studies support the claim that 

plasmonic meta-structures are a potential candidate for practical applications in high-

resolution imaging and increase the signal-to-noise ratio in optical detection.  
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Appendix A: computational model 
 

We use the MFS to compute the interior field inside the core, 𝜓𝑖𝑛𝑡. In the whole space 

composed of a uniform medium with wavenumber 𝑘1, Green’s function, 

 

𝐺1(𝑟 − 𝑟′) =
𝑒𝑖𝑘1|𝑟−𝑟′|

4𝜋|𝑟−𝑟′|
                                                                                                                            (A1) 

 

Gives a spherical wave centered at 𝑟′. We use the Fibonacci lattice[177] to compute 

boundary points 𝑟𝑗 ∈ 𝐵 for 𝑗 = 1, … , 𝑀 which are approximately uniformly distributed on 

the surface of the sphere. Then, we set 

 

𝑟𝑗
𝑖𝑛𝑡 = 𝑟𝑗 + 𝑙 𝑣̂𝑗 , 𝑗 = 1, … , 𝑀.                                                                                                                  (A2) 

 

With 𝑣̂𝑗 denoting the unit outward normal at 𝑟𝑗 , and 𝑙 > 0 denoting a user-defined length 

parameter. In our simulations, we have set 𝑙 = 0.125𝑑. According to Eq(A2), 𝑟𝑗
𝑖𝑛𝑡 for 𝑗 =

1, … , 𝑀 lie outside of the sphere. Using these points, we form the following approximation.  

 

𝜓𝑖𝑛𝑡(𝑟) ≈ ∑ 𝑐𝑗
𝑖𝑛𝑡𝐺1(𝑟 − 𝑟𝑗

𝑖𝑛𝑡),    𝑟 ∈ 𝐷.𝑀
𝑗=1                                                                                     (A3) 

 

Equation (A3) approximate 𝜓𝑖𝑛𝑡 as a superposition of finitely many spherical waves 

centered at points located outside of D. Therefore, it is exactly satisfies Eq (4.1).  

  

 

We compute the exterior field, 𝜓𝑒𝑥𝑡 using the sum,  

 

𝜓𝑒𝑥𝑡 = 𝜓𝑖𝑛𝑐 + 𝜓𝐵 +  ∑ Ψ𝑛
𝑁
𝑛=1                                                                                               

(A4) 

 

with 𝜓𝐵 denoting the field scattered by the dielectric sphere and Ψ𝑛 denoting the filed 

scattered by the nth metal nanoparticle. Green’s function,  

 

𝐺0(𝑟 − 𝑟′) =
𝑒𝑖𝑘0|𝑟−𝑟′|

4𝜋|𝑟−𝑟′|
                                                                                                                            (A5) 

 

Gives a spherical wave centered at 𝑟′ propagating in the whole space with wavenumber 

𝑘0. Just as we have done in Eq (A2), we set 
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𝑟𝑗
𝑒𝑥𝑡 = 𝑟𝑗 − 𝑙𝑣̂𝑗 ,   𝑗 = 1, … , 𝑀.                            

(A6) 

 

It follows that 𝑟𝑗
𝑒𝑥𝑡 for 𝑗 = 1, … , 𝑀 lie inside the sphere. Consequently, the approximation 

given by 

 

𝜓𝐵(𝑟) ≈  ∑ 𝑐𝑗
𝑒𝑥𝑡𝐺0(𝑟 − 𝑟𝑗

𝑒𝑥𝑡)𝑀
𝑗=1               

(A7) 

 

exactly satisfies  

 

(∇2 + 𝑘0
2)𝜓𝐵 = 0, 𝑟 ∈ 𝐸.                                                                                                                            (A8) 

 

Let 𝑟𝑛
𝑁𝑃 denote the center of the nth AuNP whose scattering amplitude is 𝛼𝑛. The filed 

scattered by the nth AuNP is then given by 

 

Ψ𝑛 = 𝛼𝑛𝐺0(𝑟 − 𝑟𝑛
𝑁𝑃)Ψ𝐸(𝑟𝑛

𝑁𝑃),                           

(A9) 

 

with Ψ𝐸(𝑟𝑛
𝑁𝑃) denoting the exciting filed at 𝑟𝑛

𝑁𝑃. This exciting field is given as the sum,  

 

Ψ𝐸(𝑟𝑛
𝑁𝑃) = 𝜓𝑖𝑛𝑐(𝑟𝑛

𝑁𝑃) + 𝜓𝐵(𝑟𝑛
𝑁𝑃) +  ∑ 𝛼𝑛′𝐺0(𝑟𝑛

𝑁𝑃 − 𝑟𝑛′
𝑁𝑃)Ψ𝐸(𝑟𝑛′

𝑁𝑃)𝑁
𝑛′=1
𝑛′≠𝑛

.                      

(A10) 

 

Equation (A10) gives the exciting field at 𝑟𝑛
𝑁𝑃 as the sum of the incident filed 𝜓𝑖𝑛𝑐 , the 

field scattered by the dielectric sphere 𝜓𝐵, and the fields scattered by all of the other 𝑁 − 1 

metal nanoparticles evaluated at 𝑟𝑛
𝑁𝑃.  

 In the expression for 𝜓𝑖𝑛𝑡 , 𝜓𝐵, and Ψ𝑛 given by Eqs. (A3), (A7), and (A9), 

respectively, the quantities 𝑐𝑗
𝑖𝑛𝑡 for 𝑗 = 1, … , 𝑀, 𝑐𝑗

𝑒𝑥𝑡 for 𝑗 = 1, … , 𝑀,  and Ψ𝐸(𝑟𝑛) for 𝑛 =

1, … , 𝑁 are to be determined. We find them using interface conditions Eqs. (3) and (4). By 

requiring that interface condition Eq(3) is satisfied exactly on the M boundary points, 𝑟𝑗 ∈

𝐵 for 𝑖 = 1, … , 𝑀, we find that  

 

∑ 𝑐𝑗
𝑖𝑛𝑡𝐺1(𝑟𝑖 − 𝑟𝑗

𝑖𝑛𝑡) − ∑ 𝑐𝑗
𝑒𝑥𝑡𝐺0(𝑟𝑗 − 𝑟𝑗

𝑒𝑥𝑡) − ∑ 𝛼𝑛𝐺0(𝑟𝑖 − 𝑟𝑛
𝑁𝑃)Ψ𝐸(𝑟𝑛

𝑁𝑃) =𝑁
𝑛=1

𝑀
𝑗=1

𝑀
𝑗=0

𝜓𝑖𝑛𝑐(𝑟𝑖),  𝑖 = 1, … , 𝑀.                                                                                                                         (A11) 

 

Similarly, by requiring that boundary condition Eq (4) is satisfied exactly on the M 

boundary points, we find that 

 

∑ 𝑐𝑗
𝑖𝑛𝑡𝜕𝑣𝐺1(𝑟𝑖 − 𝑟𝑗

𝑖𝑛𝑡) − ∑ 𝑐𝑗
𝑒𝑥𝑡𝜕𝑣𝐺0(𝑟𝑖 − 𝑟𝑗

𝑒𝑥𝑡) −  ∑ 𝛼𝑛𝜕𝑣𝐺0(𝑟𝑖 −𝑁
𝑛=1

𝑀
𝑗=1

𝑀
𝑗=0

𝑟𝑛
𝑁𝑃)Ψ𝐸(𝑟𝑛

𝑁𝑃) = 𝜕𝑣𝜓𝑖𝑛𝑐(𝑟𝑖), 𝑖 = 1, … , 𝑀.                                                                                   (A12) 
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Finally, by substituting Eq. (A7) into Eq (A10) and rearranging terms, we find that 

 

Ψ𝐸(𝑟𝑛
𝑁𝑃) − ∑ 𝛼𝑛′𝐺0(𝑟𝑛

𝑁𝑃 − 𝑟𝑛′
𝑁𝑃)Ψ𝐸(𝑟𝑛′

𝑁𝑃) − ∑ 𝑐𝑗
𝑒𝑥𝑡𝐺0(𝑟𝑛

𝑁𝑃 − 𝑟𝑗
𝑒𝑥𝑡) = 𝜓𝑖𝑛𝑐(𝑟𝑛),𝑀

𝑗=1
𝑁
𝑛′=1
𝑛′≠𝑛

𝑛 = 1, … , 𝑁                                                                                                                                            (A13) 

 

Equations (A11), (A12), and (A13) give 2𝑀𝑁 equations for the 2𝑀𝑁 unknows: 𝑐𝑗
𝑖𝑛𝑡 for 

𝑗 = 1, … , 𝑀, 𝑐𝑗
𝑒𝑥𝑡 for 𝑗 = 1, … , 𝑀, and Ψ𝐸(𝑟𝑛

𝑁𝑃) for 𝑛 = 1, … , 𝑁. These equations can be 

combined to form a 2𝑀𝑁 × 2𝑀𝑁 linear systems that is solved standard numerical linear 

algebra methods.  

 

Appendix B: computing the total 

scattering cross-section 
 

Upon solution of the linear system comprised of Eqs. (A11)−(A13) given above, the 

scattered field is given by  

 

𝜓𝑠(𝑟) = 𝜓𝐵 + ∑ Ψ𝑛
𝑁
𝑗=1 ≈ ∑ 𝑐𝑗

𝑒𝑥𝑡𝐺0(𝑟 − 𝑟𝑗
𝑒𝑥𝑡) + ∑ 𝛼𝑛𝐺0(𝑟 − 𝑟𝑛

𝑁𝑃)Ψ𝐸(𝑟𝑛
𝑁𝑃), 𝑟 ∈𝑁

𝑛=1
𝑀
𝑗=1

𝐸.                            

(B1) 

 

The scattered field evaluated at 𝑟 = 𝑅𝑜̂ with 𝑅 = |𝑟| and 𝑜̂ = 𝑟/|𝑟| in the far-field 

corresponding to 𝑅 ≫ 1behaves like a spherical wave and is given by [2], [3], [173], [175] 

 

𝜓𝑠(𝑟)~𝑓(𝑜̂, 𝑖̂)
𝑒𝑖𝑘0𝑅

𝑅
                (B2) 

 

Here, 𝑓(𝑜̂, 𝑖̂) is the scattering amplitude for the scattered field in the far field in direction 𝑜̂ 

when the particle is illuminated by a plane wave propagating in the direction 𝑖̂ with unit 

amplitude.  

 Suppose we have set 𝜓𝑖𝑛𝑐 to be a plane wave unit amplitude propagating in 

direction 𝑖̂ and we have used that to compute the solution of Eqs. (A11) – (A13). Using 
|𝑅𝑜̂ − 𝑟′|~𝑅 − 𝑜̂. 𝑟′ for 𝑅 ≫ 1, the far-field Green’s function [2], [3], [173], [175] is  

 

𝐺0(𝑅𝑜̂ − 𝑟′)~𝑒𝑖𝑘0𝑜̂.𝑟′ 𝑒𝑖𝑘0𝑅

4𝜋𝑅
, 𝑅 ≫ 1                       (B3) 

 

Replacing 𝐺0 by Eq (B3) in Eq. (B1) yields  

 

𝜓𝑠(𝑟)~ [
1

4𝜋
∑ 𝑐𝑗

𝑒𝑥𝑡𝑒𝑖𝑘0𝑜̂.𝑟𝑗
𝑒𝑥𝑡

+  ∑ 𝛼𝑛𝑒𝑖𝑘0𝑜̂.𝑟𝑛
𝑁𝑃

Ψ𝐸(𝑟𝑛
𝑁𝑃)𝑁

𝑛=1
𝑀
𝑗=1 ]

𝑒𝑖𝑘0𝑅

𝑅
, 𝑅 >> 1       

(B4)  
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By comparing Eq (B2) with Eq (B4), we find that the scattering amplitude using our 

method is given by 

 

 

𝑓(𝑜̂, 𝑖̂) ≈
1

4𝜋
∑ 𝑐𝑗

𝑒𝑥𝑡𝑒𝑖𝑘𝑜𝑜̂.𝑟𝑗
𝑒𝑥𝑡

+
1

4𝜋
∑ 𝛼𝑛𝑒1𝑘0𝑜̂.𝑟𝑛

𝑁𝑃
Ψ𝐸(𝑟𝑛

𝑁𝑃).𝑁
𝑛=1

𝑀
𝑗=1         (B5) 

 

 According to the Optical Theorem or forward scattering theorem [2], [3], [173], 

[175], we can compute the total cross-section 𝜎𝑡 of the scattering structure through 

evaluation of  

 

𝜎𝑡 =
4𝜋

𝑘0
 𝐼𝑚 [𝑓(𝑖̂, 𝑖̂)].              (B6) 

 

We compute the total cross-section by substituting Eq (B5) into this formula. Remarkably, 

Eq (B6) allows for the determination of 𝜎𝑡 by only measuring the power scattered in the 

forward direction.  

 

 

Appendix C : computer codes 

 
Broadband scattering suppression using 3D nano-assembled plasmonic 
meta-structure 

 
The codes below contain the complete computational work regarding the project on 

Broadband scattering suppression using 3D nanoassembled meta-structures. These codes 

are written in Python and optimized for Jupyter Notebook. 

 

import  time 
print( 'Last updated: %s' %time.strftime('%d/%m/%Y') ) 

Last updated: 06/09/2021 

# defaults for the codes below 
 
import numpy as np 
import matplotlib.pyplot as plt 

A. Compute the points needed for the method of fundament
al solutions 
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def ComputeMFSPoints( a0, M ): 
    """ 
    This function computes the set of points needed for the method of f
undamental solutions (MFS). 
    In particular, given the radius of a sphere, a0, and the number of 
points M, this function computes 
    the Fibonnaci lattice on the unit sphere and stores them as the uni
t normal vectors ν. Using ν, we 
    then compute ρ_bdy = a0 * ν, ρ_int = ( a0 + ℓ ) * ν, and ρ_ext = ( 
a0 - ℓ ) * ν. 
     
    This function outputs four vectors: ν, ρ_bdy, ρ_int, and ρ_ext. 
    """ 
     
    # allocate memory for the Fibonacci lattice points on the unit sphe
re 
 
    ν = np.full( ( M, 3 ), float( 'nan' ) ) 
 
    # compute the "golden angle" 
 
    golden_angle = np.pi * ( 3 - np.sqrt( 5 ) ) 
 
    # compute the points on the unit sphere 
 
    ν[:,2] = ( 1 - 1 / M ) * ( 1 - 2 * np.arange( 0, M ) / ( M - 1 ) ) 
 
    ρ = np.sqrt( 1 - ν[:,2] ** 2 ) 
    θ = golden_angle * np.arange( 0, M ) 
 
    ν[:,0] = ρ * np.cos( θ ) 
    ν[:,1] = ρ * np.sin( θ ) 
 
    # compute the boundary points, interior points, and exterior points 
 
    ℓ = 0.25 * a0 
 
    ρ_bdy = a0 * ν 
    ρ_int = ( a0 + ℓ ) * ν 
    ρ_ext = ( a0 - ℓ ) * ν 
     
    return ν, ρ_bdy, ρ_int, ρ_ext; 

 

B. Compute the positions of the point scatterers(plasmonic n
anoparticles) 
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def Coordinates(CoreDia, NPDia, Vff): 
 
  #this part of the code takes user input to initiate computation 
  #print('Insert Silica core diameter') 
  #CoreDia = np.double(input()) 
  #print('Insert nanoparticle diameter') 
  #NPDia = np.double(input()) 
  #print('Inser ligand length') 
    LigLen = 0.9800 
  #print('Insert volume filling fraction') 
  #Vff = np.double(input()) 
    ShellThickness = NPDia * 3 
  # Physical space taken by a satelite sphere 
  # Physical space taken by a satelite sphere 
 
    R = (NPDia / 2 + LigLen)  
 
    SmallSphereRadius = R 
    ShellOuterRad = CoreDia /2  + ShellThickness 
    ShellInnerRadius = CoreDia/2 
 
    #Vs = (4/3)* np.pi * (R ** 3) 
  #Floor returns rounding to nearest highest value of the floating numb
er 
    ND = np.floor((ShellOuterRad ** 3 - ShellInnerRadius**3) / (R**3) * 
Vff) 
    N = np.int(ND) # Number of nanoparticles in integre 
  #This part of the code calcuates random distributions of the coordina
tes of the 
  #Allocating memory for coordinates 
    R_N = np.full((N,3), float('nan'))  
  # Allocating memory for specific nanoparticles coordinates 
    Xcoord = np.full((N,1), float('nan')) 
    Ycoord = np.full((N,1), float('nan')) 
    Zcoord = np.full((N,1), float('nan')) 
    for i in range(N): 
        t = 2 * np.pi * np.random.rand() #Elevation angle 
        p = np.arccos(2* np.random.rand()-1) # Azimuthal Angle 
        dr = ShellInnerRadius +(np.random.rand())**(1/3) * (ShellOuterR
ad - ShellInnerRadius) # Distance along z 
        Xcoord[i] = dr * np.cos(t) * np.sin(p) 
        Ycoord[i] = dr * np.sin(t) * np.sin(p) 
        Zcoord[i] = dr * np.cos(p) 
        I = [] 
        # finding vacancies and checking for overlap  
        NoLap = 0 # Seting overlap flag 
        #m = 0;  
        #Compute distances between the naoparticles  
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        if i > 1 : 
             
            dist = np.sqrt((Xcoord - Xcoord[i])**2 + (Ycoord - Ycoord[i
])**2 + (Zcoord - Zcoord[i])**2) 
           #looking for the overlap  
            idx = [idx for idx in range(i)] 
            I = np.where(dist[idx] < SmallSphereRadius) 
            I = np.asanyarray(I) 
            if I.size == 0: 
                NoLap = 0 #No overlap 
            else: 
                NoLap = 1 # Overlap Present 
        if NoLap == 1: 
            while NoLap == 1: 
                 
                t = 2 * np.pi * np.random.rand() #Elevation angle 
                p = np.arccos(2* np.random.rand()-1) # Azimuthal Angle 
                dr = ShellInnerRadius +(np.random.rand())**(1/3) * (She
llOuterRad - ShellInnerRadius )      
                Xcoord[i] = dr * np.cos(t) * np.sin(p) 
                Ycoord[i] = dr * np.sin(t) * np.sin(p) 
                Zcoord[i] = dr * np.cos(p) 
                dist = np.sqrt((Xcoord - Xcoord[i])**2 + (Ycoord - Ycoo
rd[i])**2 + (Zcoord - Zcoord[i])**2) 
                idx = [idx for idx in range(i)] 
                I = np.where(dist[idx] < SmallSphereRadius) 
                I = np.asanyarray(I) 
                if I.size == 0: 
                    NoLap = 0 
                else: 
                    NoLap = 1 
 
        X_coords = Xcoord 
        Y_coords = Ycoord 
        Z_coords = Zcoord  
 
 
    R_N[:,0:1] = X_coords 
    R_N[:,1:2] = Y_coords 
    R_N[:,2:3] = Z_coords 
 
       
       
    return R_N; 
 

def RayleighAlpha(R, WL, n, K): 
      #refractive_index_data = ('gold_11nm_silica_film.csv') # loads .c
sv data 
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      #RawData = open(refractive_index_data,'rt') # Data filec processe
d 
      #Data = np.loadtxt(RawData, delimiter=",") # Data now in CSV form
at 
      #WL = Data[:,0] # Wavelength over which the computation takes pla
ce 
      #n  = Data[:,1] # Refractive index of plasmonic gold nanoparticle
s  
      #K  = Data[:,2] # Extinction of the plasmonic gold nanoparticles 
      #nb = 1.0 # Refractive index of the Background medium 
      N = np.zeros(1, dtype=complex) 
      m = np.zeros(1,dtype=complex) 
      K0 = np.zeros(1,dtype=complex) 
      sigma_s = np.zeros(1,dtype=complex) 
      sigma_abs = np.zeros(1,dtype=complex) 
      sigma_t = np.zeros(1,dtype=complex) 
      alpha_imag = np.zeros(1,dtype=complex) 
      alpha_r = np.zeros(1,dtype=complex) 
      alphaN = np.zeros(1,dtype=complex) 
      # R Radius of the nanoparticle 
 
      N = np.complex(n,K) 
      m = N / nb 
      K0 = (2 * np.pi / WL) 
      sigma_s = (((2*np.pi**5/3)*((2*R)**6)*(np.absolute((m**2-1)/(m**2
+2)))**2) /(WL**4)) 
      sigma_abs = ((((8*np.pi**2)*(1/WL)*R**3*np.imag((m**2-1)/(m**2+2)
)))) 
      sigma_t = sigma_s+ sigma_abs 
      alpha_imag = (K0)*sigma_t 
      alpha_r = np.absolute(np.sqrt((4*np.pi*sigma_s) - K0*alpha_imag**
2)) 
      alphaN = (4*np.pi)*(alpha_r + 1j*alpha_imag) 
 
      return alphaN; 
 

 

C. Computing Green's function and its normal derivative 

 

# function to compute Green's function 
 
def ComputeG( k, Rd ): 
    """ 
    This function computes the whole space Green's function given a wav
enumber k and a distance Rd. 
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    The output of this function is the evaluation of the whole space Gr
een's function. 
    """ 
     
    # compute Green's function 
     
    G = np.exp( 1j * k * Rd ) / ( 4 * np.pi * Rd ) 
       
    return G; 
     
# function to compute the normal derivative of Green's function 
 
def ComputeDνG( k, Rd, CosTheta ): 
    """ 
    This function computes the normal derivative of the whole space Gre
en's function  
    given a wavenumber k, a distance Rd, and the cosine of the angle ma
de between the 
    difference vector and the unit normal. 
     
    The output of this function is the evaluation of the normal derivat
ive of the whole  
    space Green's function. 
    """ 
     
    # compute Green's function 
     
    G = ComputeG( k, Rd ) 
     
    # compute the normal derivative of Green's function 
     
    DνG = CosTheta * ( 1j * k - 1 / Rd ) * G 
     
    return DνG; 

 

D. Compute the MFS expansion coefficients and Foldy-Lax exci
ting fields. 

 

def ComputeExpansionCoefficientsExcitingFields( k0, k1, a0, ν, ρ_bdy, ρ
_int, ρ_ext, α, R_N, M, N ): 
     
     
    # interior points 
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    indx, jndx = np.meshgrid( np.arange(0,M), np.arange(0,M) ) 
 
    R_int = np.sqrt( ( ( ρ_bdy[indx] - ρ_int[jndx] ) ** 2 ).sum( axis = 
2 ) ) 
    μ_int = np.divide(( ν[indx] * ( ρ_bdy[indx] - ρ_int[jndx] ) ).sum( 
axis = 2 ), R_int) 
 
    # exterior points 
 
    R_ext = np.sqrt( ( ( ρ_bdy[indx] - ρ_ext[jndx] ) ** 2 ).sum( axis = 
2 ) ) 
    μ_ext = np.divide(( ν[indx] * ( ρ_bdy[indx] - ρ_ext[jndx] ) ).sum( 
axis = 2 ) , R_ext) 
     
    # Foldy-Lax points 
     
    indx, jndx = np.meshgrid( np.arange(0,M), np.arange(0,N) ) 
 
    ρ_bdy2RN = np.sqrt( ( ( ρ_bdy[indx] - R_N[jndx] ) ** 2 ).sum( axis 
= 2 ) ) 
    μ_RN     = np.divide(( ν[indx] * ( ρ_bdy[indx] - R_N[jndx] ) ).sum( 
axis = 2 ), ρ_bdy2RN) 
    RN2ρ_ext = np.sqrt( ( ( ρ_ext[indx] - R_N[jndx] ) ** 2 ).sum( axis 
= 2 ) ) 
 
    indx, jndx = np.meshgrid( np.arange(0,N), np.arange(0,N) ) 
 
    RN2RN    = np.sqrt( ( ( R_N[indx] - R_N[jndx] ) ** 2 ).sum( axis = 
2 ) ) 
     
    # compute the incident field and its normal derivative on the M bou
ndary points 
     
    Ψ_inc   = np.exp( 1j * k0 * ρ_bdy[:,2] ) 
    DνΨ_inc = 1j * k0 * np.multiply( ν[:,2], Ψ_inc ) 
 
    # compute the incident field on the N point scatterers 
     
    Ψ_inc4FL = np.exp( 1j * k0 * R_N[:,2] ) 
     
    # compute the matrix blocks 
     
    A11 =  ComputeG( k1, R_int ) 
    A12 = - ComputeG( k0, R_ext ) 
    A13 = -α * ComputeG( k0, ρ_bdy2RN ).T 
     
    A21 =  ComputeDνG( k1, R_int, μ_int ) 
    A22 = - ComputeDνG( k0, R_ext, μ_ext ) 
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    A23 = - α * ComputeDνG( k0, ρ_bdy2RN, μ_RN ).T 
     
    A31 = np.zeros( ( N, M ), dtype ='complex' ) 
    A32 = - ComputeG( k0, RN2ρ_ext ) 
     
    A33 = np.zeros( ( N, N ), dtype = 'complex') 
    offdiags = np.where( RN2RN != 0 ) 
    A33[offdiags] = -α * ( np.exp( 1j * k0 * RN2RN[offdiags]  ) / ( 4 * 
np.pi * RN2RN[offdiags] ) ) 
    #A33 = -α * np.divide( np.exp( 1j * k0 * RN2RN ), ( 4 * np.pi * RN2
RN ) ) 
    A33 += np.eye( N, dtype = 'complex' ) 
    
    # form the linear system of equations 
     
    A = np.block( [ [ A11, A12, A13 ], [ A21, A22, A23 ], [ A31, A32, A
33 ] ] ) 
    b = np.block( [ Ψ_inc, DνΨ_inc, Ψ_inc4FL ] ) 
     
    # solve the linear system 
     
    c = np.linalg.solve( A, b ) 
     
    # parse the solution 
     
    c_int = c[0:M] 
    c_ext = c[M:2*M] 
    Ψ_E   = c[2*M:2*M*N] 
     
    return c_int, c_ext, Ψ_E; 

def ComputeMFSExpansionCoefficients( k0, k1, a0, ν, ρ_bdy, ρ_int, ρ_ext
, M ): 
    """ 
    This function solves the 2M x 2M system of equations for the MFS ex
pansion coefficients. 
     
    This code requires the results from ComputeMFSPoints, namely ν, ρ_b
dy, ρ_int, and ρ_ext, in  
    addition to the two wavenumbers k0 and k1, the sphere radius, a0, a
nd the number of MFS points,  
    M. 
     
    The output from this code are the 2 M-vectors, c_int and c_sca, cor
responding to the MFS 
    expansions for the interior and scattered fields, respectively. 
    """ 
     
    # interior points 
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    indx, jndx = np.meshgrid( np.arange(0,M), np.arange(0,M) ) 
 
    R_int = np.sqrt( ( ( ρ_bdy[indx] - ρ_int[jndx] ) ** 2 ).sum( axis = 
2 ) ) 
    μ_int = ( ν[indx] * ( ρ_bdy[indx] - ρ_int[jndx] ) ).sum( axis = 2 ) 
/ R_int 
 
    # exterior points 
 
    R_ext = np.sqrt( ( ( ρ_bdy[indx] - ρ_ext[jndx] ) ** 2 ).sum( axis = 
2 ) ) 
    μ_ext = ( ν[indx] * ( ρ_bdy[indx] - ρ_ext[jndx] ) ).sum( axis = 2 ) 
/ R_ext 
     
    # compute the incident field and its normal derivative on the M bou
ndary points 
     
    Ψ_inc   = np.exp( 1j * k0 * ρ_bdy[:,2] ) 
    DνΨ_inc = 1j * k0 * np.multiply( ν[:,2], Ψ_inc ) 
     
    # compute the matrix blocks 
     
    A11 =  ComputeG( k1, R_int ) 
    A12 = -ComputeG( k0, R_ext ) 
     
    A21 =  ComputeDνG( k1, R_int, μ_int ) 
    A22 = -ComputeDνG( k0, R_ext, μ_ext ) 
    
    # form the linear system of equations 
     
    A = np.block( [ [ A11, A12 ], [ A21, A22 ] ] ) 
    b = np.block( [ Ψ_inc, DνΨ_inc ] ) 
     
    # solve the linear system 
     
    c = np.linalg.solve( A, b ) 
     
    # parse the solution 
     
    c_int0 = c[0:M] 
    c_ext0 = c[M:2*M] 
     
    return c_int0, c_ext0; 

 

E. Computing the total cross section 
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def ComputeTotalCrossSection( k0, k1, a0, ν, ρ_bdy, ρ_int, ρ_ext, α, R_
N, M, N ): 
    """ 
    This function computes the total cross-section by evaluating the Op
tical Theorem using 
    the results from the MFS approximation for the scattered field. 
    """ 
     
    # compute the MFS expansion coefficients 
     
    c_int, c_ext, Ψ_E = ComputeExpansionCoefficientsExcitingFields( k0, 
k1, a0, ν, ρ_bdy, ρ_int, ρ_ext, α, R_N, M, N ) 
     
    # compute the scattering amplitude 
     
    f1 = (0.25 / np.pi)  * np.exp( -1j * k0 * ρ_ext[:,2] ).T @ c_ext 
    f2 = (0.25 / np.pi ) * α * np.exp( -1j * k0 * R_N[:,2] ).T @ Ψ_E 
     
    # compute the scattering cross-section 
     
    σ_t = 4 * np.pi * np.imag( f1 + f2 ) / k0 
     
    return σ_t; 
 
def ComputeTotalCrossSectionMFS( k0, k1, a0, ν, ρ_bdy, ρ_int, ρ_ext, M 
): 
    """ 
    This function computes the total cross-section by evaluating the Op
tical Theorem using 
    the results from the MFS approximation for the scattered field. 
    """ 
     
    # compute the MFS expansion coefficients 
     
    c_int, c_sca = ComputeMFSExpansionCoefficients( k0, k1, a0, ν, ρ_bd
y, ρ_int, ρ_ext, M ) 
     
    # compute the scattering amplitude 
     
    f = 0.25 / np.pi * np.exp( -1j * k0 * ρ_ext[:,2] ).T @ c_sca 
     
    # compute the scattering cross-section 
     
    σ_t = 4 * np.pi * np.imag( f ) / k0 
     
    return σ_t; 
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6 Compute and plot the total cross-section over the visible 
spectrum 

 

#Here we upload data file containng refractive index and  
#extinction values of the plasmoninc gold nanoparticles and Silica.  
#The wavelength dependent optical parameters of plasmoninc gold nano pa
rticles. 
#The included file (11nm_gold_film_silica.csv)in this project containes 
those data . 
 
# **--------***-------**** 
 
# Activate the commented line below to upload optical parameter files 
#gold_Refractive_index = files.upload() # upload refractive index, exti
nction data for gold NPs and Silica  
 
# **--------***-------**** 
 
Refractive_index_data = ('11nm_gold_film_silica.csv') # Data file is av
aialble for use 
RawData = open(Refractive_index_data,'rt') 
Data = np.loadtxt(RawData, delimiter=",") # Processed data file 
Wavelength = np.asarray(Data[:,0]) # Wavelength over which the computat
ion takes place 
NPRefndx  = np.asarray(Data[:,1]) # Refractive index of plasmonic gold 
nanoparticles  
NPExtinction  = np.asarray(Data[:,2]) # Extinction of the plasmonic gol
d nanoparticles 
Silica_refndx = Data[:,3] # Refractive index of interior or dielectric 
core 
nb = 1.0 # Refractive index of the Background medium 
 
#Core (dielectric) diameter  
 
CoreDia = 690 
 
#Dielectric core radius 
 
a0 = CoreDia/2 
 
#Plasmonic nanoparticles Dia 
 
NPDia = 20 
 
R = NPDia / 2 #radius of plasmonic NP 
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#Set the filling fraction of NPs in the shell 
 
Vff = 0.10 
 
#Compute the geometric cross-section 
 
σ_g = np.pi * a0 ** 2 # bare core 
σ_g_cs = np.pi * (a0+NPDia*3) ** 2 # core-shell 
 
 
# Set refractive index  
 
k0 = nb # Refractive index exterior or the background 
 
#Set the number of MFS points 
 
M = 512 
 
#Compute the MFS points 
 
ν, ρ_bdy, ρ_int, ρ_ext = ComputeMFSPoints( a0, M ) 
 
# Generate the point scatteres position 
 
R_N = Coordinates(CoreDia, NPDia, Vff) 
 
# allocate memory for the total cross-sections 
 
σ_t0 = np.full( ( len(Wavelength), 1 ), 'nan', dtype = 'float' ) 
σ_s  = np.full( ( len(Wavelength), 1 ), 'nan', dtype = 'float' ) 
 
N = len(R_N) # number of nanoparticles in the shell volume 
 
for i in range(len(Wavelength)): 
    WL = Wavelength[i] 
    n = NPRefndx[i] 
    K = NPExtinction[i] 
    α = RayleighAlpha(R, WL, n, K) 
    k0 = (2*np.pi/WL)*nb  
    k1 = (2*np.pi/WL)*Silica_refndx[i] 
     
  #Compute the MFS results for a Bare core and a core-shell plasmonic m
eta structure 
 
    σ_t0[i] = ComputeTotalCrossSectionMFS( k0, k1, a0, ν, ρ_bdy, ρ_int, 
ρ_ext, M ) 
    σ_s[i]  = ComputeTotalCrossSection( k0, k1, a0, ν, ρ_bdy, ρ_int, ρ_
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ext, α, R_N, M, N )   
 

# plot the results 
 
plt.rcParams['figure.figsize'] = [12,8] 
 
plt.plot( Wavelength, σ_t0 / σ_g, Wavelength, σ_s / σ_g , '--'  ) 
plt.xlabel( r'$\lambda$ (nm)', fontsize = 24 ) 
plt.ylabel( r'$\sigma_{s}/\sigma_{g}$', fontsize = 24 ) 
plt.legend( ( 'Bare Core', 'Core-shell Meta structure' ),  fontsize = 2
4 ) 
plt.grid() 
 
plt.show() 

 

Scattered E-filed computation and plot 

# compute the scattered field on the xy-, xz-, and yz-planes 
 
def ComputeScatteredField( k0, ρ_ext, c_sca, X1, X2 ): 
     
    # compute distances 
 
    Rdiff_xy = np.sqrt( ( X1 - ρ_ext[:,0] ) ** 2 + ( X2 - ρ_ext[:,1] ) 
** 2 + ρ_ext[:,2] ** 2 )       
    Rdiff_xz = np.sqrt( ( X1 - ρ_ext[:,0] ) ** 2 + ρ_ext[:,1] ** 2 + ( 
X2 - ρ_ext[:,2] ) ** 2 ) 
    Rdiff_yz = np.sqrt( ρ_ext[:,0] ** 2 + ( X1 - ρ_ext[:,1] ) ** 2 + ( 
X2 - ρ_ext[:,2] ) ** 2 ) 
     
    # compute the scattered field on the xy-, xz-, and yz-planes 
     
    Uxy = np.exp( 1j * k0 * Rdiff_xy ) / ( 4 * np.pi * Rdiff_xy ) @ c_s
ca 
    Uxz = np.exp( 1j * k0 * Rdiff_xz ) / ( 4 * np.pi * Rdiff_xz ) @ c_s
ca 
    Uyz = np.exp( 1j * k0 * Rdiff_yz ) / ( 4 * np.pi * Rdiff_yz ) @ c_s
ca 
 
    return Uxy, Uxz, Uyz; 
 
# compute the interior field on the xy-, xz-, and yz-planes 
 
def ComputeInteriorField( k1, ρ_int, c_int, X1, X2 ): 
     
    # compute distances 



90 

 

 
    Rdiff_xy = np.sqrt( ( X1 - ρ_int[:,0] ) ** 2 + ( X2 - ρ_int[:,1] ) 
** 2 + ρ_int[:,2] ** 2 )       
    Rdiff_xz = np.sqrt( ( X1 - ρ_int[:,0] ) ** 2 + ρ_int[:,1] ** 2 + ( 
X2 - ρ_int[:,2] ) ** 2 ) 
    Rdiff_yz = np.sqrt( ρ_int[:,0] ** 2 + ( X1 - ρ_int[:,1] ) ** 2 + ( 
X2 - ρ_int[:,2] ) ** 2 ) 
     
    # compute the scattered field on the xy-, xz-, and yz-planes 
     
    Uxy = np.exp( 1j * k1 * Rdiff_xy ) / ( 4 * np.pi * Rdiff_xy ) @ c_i
nt 
    Uxz = np.exp( 1j * k1 * Rdiff_xz ) / ( 4 * np.pi * Rdiff_xz ) @ c_i
nt 
    Uyz = np.exp( 1j * k1 * Rdiff_yz ) / ( 4 * np.pi * Rdiff_yz ) @ c_i
nt 
 
    return Uxy, Uxz, Uyz; 

from ipywidgets import interact 
 
# set the size of the plots 
 
plt.rcParams['figure.figsize'] = [20,6] 
 
# set the values of λ to display 
 
dict_comp = {"{} nm".format(Wavelength[wavelength]):wavelength for wave
length in range(len(Wavelength)) } 
 
# compute the evaluation mesh 
 
NN = 256 
 
X1plot, X2plot = np.meshgrid( a0 * np.linspace( -10, 10, NN ), a0 * np.
linspace( -10, 10, NN ) ) 
 
# plot the fields for each wavelength 
 
@interact( wavelength = dict_comp ) 
def fun( wavelength = 0 ): 
     
    # compute the wavenumbers 
     
    k0 = 2 * np.pi / Wavelength[wavelength] * nb 
    k1 = 2 * np.pi / Wavelength[wavelength] * Silica_refndx[wavelength] 
     
    # compute the MFS expansion coefficients 
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    c_int, c_sca = ComputeMFSExpansionCoefficients( k0, k1, a0, ν, ρ_bd
y, ρ_int, ρ_ext, M ) 
     
    # allocate memory for Uxy, Uxz, and Uyz 
 
    Uxy = np.full( ( NN, NN ), 'nan', dtype = 'complex' ) 
    Uxz = np.full( ( NN, NN ), 'nan', dtype = 'complex' ) 
    Uyz = np.full( ( NN, NN ), 'nan', dtype = 'complex' ) 
     
    for i in range( NN ): 
         
        for j in range( NN ): 
             
            # compute the radial distance of the evaluation point 
             
            R = np.sqrt( X1plot[i,j] ** 2 + X2plot[i,j] ** 2 ) 
             
            # compute the fields 
             
            if R < a0: 
                 
                Uxy[i,j], Uxz[i,j], Uyz[i,j] = ComputeInteriorField( k1
, ρ_int, c_int, X1plot[i,j], X2plot[i,j] ) 
                 
            else: 
             
                Uxy[i,j], Uxz[i,j], Uyz[i,j] = ComputeScatteredField( k
0, ρ_ext, c_sca, X1plot[i,j], X2plot[i,j] ) 
             
    # plot the fields 
     
    plt.subplot(1,3,1) 
    plt.pcolormesh( X1plot / a0, X2plot / a0, np.real( Uxy ), vmin=-1, 
vmax=1, cmap='cividis'  ) 
    plt.colorbar() 
    plt.gca().set_aspect('equal', adjustable='box') 
    plt.draw() 
    plt.tight_layout() 
    plt.xlabel( 'x', fontsize=18 ) 
    plt.ylabel( 'y', fontsize=18 ) 
    plt.title( 'field on the xy-plane', fontsize=20 ) 
 
    plt.subplot(1,3,2) 
    plt.pcolormesh( X1plot / a0, X2plot / a0, np.real( Uxz ), vmin=-1, 
vmax=1, cmap='cividis'  ) 
    plt.colorbar() 
    plt.gca().set_aspect('equal', adjustable='box') 
    plt.draw() 
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    plt.tight_layout() 
    plt.xlabel( 'x', fontsize=18 ) 
    plt.ylabel( 'z', fontsize=18 ) 
    plt.title( 'field on the xz-plane', fontsize=20 ) 
 
    plt.subplot(1,3,3) 
    plt.pcolormesh( X1plot / a0, X2plot / a0, np.real( Uyz ), vmin=-1, 
vmax=1, cmap='cividis'  ) 
    plt.colorbar() 
    plt.gca().set_aspect('equal', adjustable='box') 
    plt.draw() 
    plt.tight_layout() 
    plt.xlabel( 'y', fontsize=18 ) 
    plt.ylabel( 'z', fontsize=18 ) 
    plt.title( 'field on the yz-plane', fontsize=20 ) 
     
    plt.show() 
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