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Abstract

Background and Objectives: Biological systems with intertwined feedback loops pose a chal-
lenge to mathematical modeling efforts. Moreover, rare events, such as mutation and extinc-
tion, complicate system dynamics. Stochastic simulation algorithms are useful in generating time-
evolution trajectories for these systems because they can adequately capture the influence of random
fluctuations and quantify rare events. We present a simple and flexible package, BioSimulator.jl,
for implementing the Gillespie algorithm, τ -leaping, and related stochastic simulation algorithms.
The objective of this work is to provide scientists across domains with fast, user-friendly simulation
tools.

Methods: We used the high-performance programming language Julia because of its emphasis on
scientific computing. Our software package implements a suite of stochastic simulation algorithms
based on Markov chain theory. We provide the ability to (a) diagram Petri Nets describing interac-
tions, (b) plot average trajectories and attached standard deviations of each participating species
over time, and (c) generate frequency distributions of each species at a specified time.

Results: BioSimulator.jl’s interface allows users to build models programmatically within Julia. A
model is then passed to the simulate routine to generate simulation data. The built-in tools allow one
to visualize results and compute summary statistics. Our examples highlight the broad applicability
of our software to systems of varying complexity from ecology, systems biology, chemistry, and
genetics.

Conclusion: The user-friendly nature of BioSimulator.jl encourages the use of stochastic simula-
tion, minimizes tedious programming efforts, and reduces errors during model specification.

Keywords: stochastic simulation, Gillespie algorithm, τ -leaping, systems biology, Julia language

1 Introduction

Biological systems with overlapping feedback and feedforward loops are often inherently stochastic.
Furthermore, large, complex systems are mathematically intractable, and dynamical predictions
based on deterministic models can be grossly misleading [29, 13]. Stochastic simulation algorithms
based on continuous-time Markov chains allow researchers to generate accurate time-evolution tra-
jectories, test the sensitivity of models to key parameters, and quantify frequencies of rare events
[16, 35, 12, 34]. Stochastic simulation is helpful in cases where (a) rare events, such as extinc-
tion or mutation, influence system dynamics, (b) population compartments, such as numbers of
biochemical molecules, are present in small numbers, and (c) population cycles arise from demo-
graphic stochasticity. Examples of such systems include gene expression networks, tumor suppressor
pathways, and demographic and ecological systems. The current paper introduces a simple and
flexible package, BioSimulator.jl, for implementing popular stochastic simulation algorithms based
on Markov chain theory. BioSimulator.jl builds on previous software. Notable examples include:

• StochSS, an integrated framework for deploying simulations on high-performance clusters
[10]. It features a graphical interface for model editing, tools for deterministic, stochastic,
and spatial simulations, a model analysis toolkit, and data visualization. StochKit2, a mature
C++ library of stochastic simulation algorithms, serves as the simulation engine.

• StochPy, an interactive stochastic modeling tool written in Python [27]. It provides a number
of simulation algorithms, including delayed and single molecule methods.
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• GillespieSSA, an R implementation of exact and approximate simulation algorithms [30].
Gillespie.jl is a Julia extension of the original R package [14]. Today, Gillespie.jl features
Jensen’s uniformization method and the True Jump Method.

• DifferentialEquations.jl, an extensive Julia ecosystem for solving differential equations [31].

In addition, there are many specialized biological modeling tools:

• COPASI, a large open-source software application for analyzing and simulating biochemi-
cal networks models [24]. It features a user-friendly graphical interface and supports both
differential equation modeling and stochastic simulation algorithms.

• Smoldyn, a particle-based stochastic spatial simulation engine [1]. It emphasizes biophysical
and cell environment modeling.

• BioNetGen, a rules-based model editor and simulation framework that focuses on cell regu-
latory networks [22].

• PySB, a Python module for building mathematical descriptions of biological networks [26].
It provides a domain-specific language that is translated into a portable intermediate model
representation. PySB connects to other software tools, such as SciPy and StochKit2, for
simulations.

These packages have grown more sophisticated over time. Our goal in developing BioSimulator.jl

is to provide a fast, open-source, and user-friendly library of stochastic simulation algorithms.

BioSimulator.jl is written in the high-level, high-performance programming language Julia [2].
Our software consists of three main components: an interactive interface for model prototyping,
a simulation engine, and a small library of stochastic simulation algorithms. We briefly review
the theory underlying stochastic simulation in Section 2 and present the algorithms implemented
by BioSimulator.jl in Section 3. Section 4 outlines the model development process and describes
the available visualization tools. We summarize BioSimulator.jl’s graphical inputs and outputs,
including (a) Petri nets describing the connectivity of the reaction network, (b) time-evolution
trajectories of the system, and (c) frequency distributions of events. Three examples from biology,
chemistry, and genetics in Section 5 illustrate how to define a model in BioSimulator.jl and simulate
it as a continuous-time Markov chain. BioSimulator.jl will be valuable to a broad range of molecular
and systems biologists, physicists, chemists, applied mathematicians, statisticians, and computer
scientists interested in stochastic simulation modeling.

2 Background

2.1 Markov jump processes

Before we discuss simulation specifics, we describe the time evolution of a Markov jump process
[25]. The underlying Markov chain follows a column vector Xt whose i-th component Xti is the
number of particles of type i at time t ≥ 0. The components of Xt track species counts and
are necessarily non-negative integers. The system starts at time 0 and evolves via a succession
of random reactions. Let c denote the number of reaction channels and d the number of particle
types. Channel j is characterized by a propensity function rj(x) depending on the current vector
of counts x. In a small time interval of length s, we expect rj(x)s + o(s) reactions of type j to
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Name Reaction r(x) v

Immigration 0 → S1 a1 v1 = 1

Decay S1 → 0 a2x1 v1 = −1

Dimerization S1 + S1 → S2 a3
(

x1

2

)

v1 = −2, v2 = 1

Isomerization S1 → S2 a4x1 v1 = −1, v2 = 1

Dissociation S2 → S1 + S1 a5x2 v1 = 2, v2 = −1

Budding S1 → S1 + S2 a6x1 v2 = 1

Replacement S1 + S2 → S2 + S2 a7x1x2 v1 = −1, v2 = 1

Complex Reaction S1 + S2 → S3 + S4 a8x1x2 v1 = v2 = −1, v3 = v4 = 1

Table 1: Propensities r(x) and increment vectors v for some typical reactions. Here, Si denotes a
single particle of type i, and ai denotes the reaction rate constant.

occur. Reaction j changes the count vector by a fixed integer vector vj . Some components vjk of
vj may be positive, some 0, and some negative.

From the wait and jump perspective of Markov chain theory, the chain waits an exponential
length of time until the next reaction. If the chain is currently in state x ≡ Xt, then the intensity
of the waiting time until the next reaction is r0(x) =

∑c
j=1 rj(x). Once the decision to jump is

made, the chain jumps to the neighboring state x+ vj with probability rj(x)/r0(x). Table 1 lists
typical reactions, their propensities r(x), and increment vectors v. In the table, Si denotes a single
particle of type i. Only the nonzero increments vi are shown. The reaction propensities invoke the
law of mass action and depend on rate constants ai [23]. Each discipline has its own vocabulary.
Chemists use the term propensity instead of the term intensity and call the increment vector a
stoichiometric vector. Physicists prefer creation to immigration. Biologists speak of death and
mutation rather than of decay and isomerization.

Often one is interested in the finite-time transition probabilities of a Markov chain. Let px,y(t)
denote the probability that a Markov chain starting at state x transitions to state y by time t.
The chemical master equation reads

px,y(t+ dt) = px,y(t)



1−

c
∑

j=1

aj(y)dt



+

c
∑

j=1

px,y−vj (t) aj(y − vj)dt+ o(dt),

or equivalently, in differential form

d

dt
px,y(t) =

c
∑

j=1

[

px,y−vj (t) aj(y − vj)− px,y(t) aj(y)
]

.

The differential form is a system of possibly infinitely-many coupled differential equations. Solv-
ing the master equation is an enormous endeavor except in the simplest of models. Alternatively,
simulating multiple realizations of the process yields data that can then be used to estimate tran-
sition probabilities and summary statistics. References [16, 17] offer a first-principles derivation of
the chemical master equation for biochemical reactions and connect this formalism to simulation
methods.
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2.2 The Julia language

Julia is a fast, expressive, and flexible programming language for scientific computing [2]. Specifi-
cally, the language targets the so-called two-language problem, in which a methods developer builds
working prototypes in a slow high-level language only to then move performance-critical subrou-
tines to a fast low-level language. The implicit assumption is that high-level, dynamic languages
are expressive and therefore easier to use but at the expense of performance. For example, some
language features, such as “for loops”, may incur performance penalties through no fault of the
user. Such performance hurdles are overlooked because dynamic programming languages typically
avoid tedious compilation steps and provide users with an intuitive syntax. High-level languages
allow users to express the tasks they wish to complete by handling the low-level details. On the
other hand, low-level languages typically require technical expertise and offer the fastest possible
execution.

A consequence of the two-language problem is that many tools, especially scientific software,
become fragmented and difficult to manage. This is all the more relevant to scientists who often
lack the necessary skills to maintain a software engineering project. Julia tackles this problem by
providing an intuitive syntax and language features compatible with high performance underneath
the hood, thereby making the user all the more productive. Interested readers are encouraged to
peruse [2] for a deeper look into the Julia philosophy. Many online tutorials for learning Julia are
available at https://julialang.org/learning/.

3 Simulation methods

BioSimulator.jl supports five different simulation algorithms. In the following subsections, we
review each algorithm and briefly describe its strengths and weaknesses. The purpose of this
section is to provide the reader with a high-level understanding of each algorithm and develop an
intuition as to where methods succeed and fail. There are many references that provide details on
these simulation methods, elucidate connections to spatial systems and related stochastic models,
and motivate applications in many fields [20, 21].

3.1 Stochastic simulation algorithm

The Stochastic Simulation Algorithm (SSA), also known as the Direct or Gillespie method, imple-
ments the wait and jump mechanism for simulating a continuous-time Markov chain [16, 17]. At
each step, the algorithm computes the propensities rj(x) of each reaction channel and generates two
random deviates. One of these is an exponential deviate indicating the time to the next reaction
based on r0(x). The second is a uniform random number U(0, 1) determining which reaction fires
next based on the ratios rj(x)/r0(x). The two main computational steps in the SSA are

(I) Generate a random time s to the next event by sampling from an exponential distribution
with rate r0(x). This provides the update t 7→ t+ s.

(II) Generate a random index j denoting the reaction that occurred by sampling a categorical
distribution with probabilities rj(x)/r0(x). This provides the update x 7→ x+ vj.

Since the propensities rj(x) change after each event, the distributions underlying steps (I) and
(II) change over time. Every Gillespie-like simulation algorithm is effectively distinguished by
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the sampling procedures used to generate the required random numbers, and the algorithms that
update the underlying probability distributions.

The main advantage of the SSA is its ability to produce statistically correct trajectories and dis-
tributions by simulating every reaction. This strength is also its greatest weakness in models where
a small subset of frequently occurring reactions dominate simulation. The detailed computational
analysis of Cao et al. identifies the linear search on the propensities rj(x) as a major obstacle to
fast simulation [5]. The algorithm does not scale well with model size in the presence of different
time scales. Thus, one must balance the value of accurate results versus speed in selecting SSA for
simulation.

3.2 First reaction method

Gillespie proposed the First Reaction Method (FRM) as an alternative to SSA [16]. The main
difference is the time to the next reaction

τ = min
1≤j≤c

{w1, . . . , wc}

defined by independent exponentially distributed waiting times w1, . . . , wc with intensity rj . Here
c again denotes the total number of reaction channels. The premise of the algorithm is to compute
the minimum of c exponential random variables explicitly. This approach is less computationally
efficient than SSA in the number of exponential deviates required to compute the time to the next
event. We include the FRM in BioSimulator.jl purely for educational purposes. While the FRM
does not offer any advantage over the original SSA, it provides a different way of thinking about
simulation. The Next Reaction Method builds upon this idea.

3.3 Next reaction method

The Next Reaction Method (NRM), also known as the Gibson-Bruck method, is another exact
algorithm equivalent to SSA [15]. At time t = 0, the algorithm seeds each reaction channel j a
firing time τj and stores them inside a priority queue. In this context, a priority queue is a data
structure that sorts pairs (j, τj) according to the value of τj in increasing order. That is, if τJ is
the minimum time, then the pair (J, τJ) appears at the top of the queue. Thus, the next reaction
is J and its firing time is τJ ; all other reactions fire at some future time. After reaction J fires,
the NRM updates the state vector x → x + vJ . The next firing time τJ is also updated by an
appropriate exponential deviate:

τJ,new = τJ,old + Exponential(rJ,new(x)),

where rJ,new(x) is the new propensity value. The remaining firing times change according to the
recipe

τj,new = t+
rj,old
rj,new

(τj,old − t), j 6= J,

based on the lack of memory property of the exponential distribution.

The NRM also minimizes the number of propensities updated by tracking dependencies between
reaction channels. Typically, the SSA sweeps through all the propensities rj(x) to reflect the
change in x. However, a reaction channel’s propensity only changes when the previous reaction
event affected components of x that appears as reactants. The NRM uses a reaction dependency
graph to describe these relationships between reactions. This data structure reduces the number of
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propensities that must be updated. Kahan summation can also be used to update the cumulative
intensity r0(x) efficiently [15, 28].

The NRM excels in simulating systems with large numbers of species and lightly coupled reac-
tions. Otherwise, in the extreme case, the algorithm must recalculate every firing time at every
step. Systems with heavily coupled reaction channels are problematic for the NRM [5]. In this
setting, the NRM becomes identical to the SSA but with the added burden of maintaining its
priority queue.

3.4 Optimized direct method

The Optimized Direct Method (ODM) improves upon the original SSA by exploiting multi-scale
properties inherent in large models [5]. BioSimulator.jl’s ODM implementation simulates a system
once to count the number of times each reaction fires. This allows one to classify each reaction
channel as fast (high frequency) or slow (low frequency). Sorting the reactions from fast to slow
reduces the search depth in selecting the next reaction. This approach works well with heavily
coupled reactions. Some systems exhibit more erratic behavior that prohibits classifying a reaction
fast or slow. That is, switching between different time scales thwarts the ODM’s sorting optimiza-
tion. The auto-regulation genetic network in Example 3 is an example of a system that undermines
the optimized sorting of ODM.

3.5 τ-leaping

BioSimulator.jl implements performance optimizations described by Mauch and Stalzer to improve
SSA, FRM, NRM, and ODM techniques [28]. However, algorithms that simulate every reaction
ultimately succumb to the high computational expense of large models. The τ -leaping framework
attempts to accelerate simulation by lumping reaction events together within a time leap τ , selected
to be as large as possible [18, 19, 7]. The basic τ -leaping formula is

Xt+τ = Xt +
c

∑

j=1

vjYj(rj(Xt)τ).

where Yj is a Poisson random variable with rate rj(Xt)τ . Thus, τ -leaping accelerates the SSA
by lumping together multiple reaction events over an interval of size τ . The main challenge in
τ -leaping is selecting the step size as large as possible while satisfying the leap condition

|rj(X t+τ )− rj(X t)| ≤ ǫ, j = 1, 2, . . . , c,

which states that the propensity for each reaction j is approximately constant over a leap of size
τ . Here, ǫ ∈ (0, 1] is a prescribed acceptable change in propensities that controls the accuracy
of sample paths generated by a τ -leaping algorithm. A larger ǫ allows for larger leaps, while a
smaller ǫ restricts leap size. In practice, many τ -leaping algorithms employ a surrogate condition
that satisfies the leap condition with high probability.

In the stochastic simulation setting, a system is said to be stiff if the dynamics force a simulator
to take “small” steps. Stiffness arises for a variety of reasons. Large models typically have a number
of reactions occurring within a given interval. Reactions occurring on separate time scales split the
system between “fast” and “slow” reactions, with the former occurring in a nearly deterministic
fashion. In any case, stiffness causes the number of simulated events to increase in exact methods
like the SSA. Stiffness poses a second threat to τ -leaping methods. In addition to decreasing the
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leap size, stiffness can cause τ -leaping to generate an excess of events due to the unbounded nature
of the Poisson distribution.

There are two precautionary measures to protect against aberrant behavior in τ selection [6, 33].
For example, a δ parameter controls whether τ -leaping will default to SSA when the leap size is less
than the expected change under the SSA; that is, if τ < δ · 1/r0(x). This precaution is necessary
to avoid taking suboptimal steps that introduce error and to mitigate leaps that send the system
into negative population counts. In the event of a negative excursion, an acceptance parameter β
in (0, 1) contracts the leap step, effectively thinning the number of reaction events. Specifically,
each event in a bad leap is randomly accepted if a uniform deviate U(0, 1) is less than β. The leap
size τ is then set to τ 7→ βτ . Leap contraction introduces bias in sample paths, so one must take
care in setting β. As a rule of thumb, one should first select conservative values for ǫ, β, and δ and
test performance using short numerical experiments. BioSimulator.jl sets ǫ = 0.03, β = 0.75, and
δ = 2 as default values, drawn from the literature, that ought to perform well in many cases.

τ -leaping discards reaction event times but reduces the burden of random number generation.
Each leap in the algorithm requires c Poisson random deviates, one for each reaction channel.
This accelerates simulation when the leap size τ is significantly large compared to a single SSA
step. Like the SSA, there are many sophisticated variations on the original τ -leaping algorithm.
BioSimulator.jl implements the version found in [19] and is referred to as Ordinary τ -Leaping
(OTL). Future development will implement additional τ -leaping algorithms from the literature.
The next section reviews Step anticipation τ -leaping, a second τ -leaping method.

3.6 Step anticipation τ-leaping

The Step Anticipation τ -Leaping (SAL) algorithm is a variation on τ -leaping [33]. In the SAL
algorithm, one approximates each propensity by a first-order Taylor polynomial around t with
starting value rj(x). The number of reactions of type j is then sampled from a Poisson distribution
with mean

ωj(t, t+ τ) =

∫ t

0

[

rj(x) +
d

dt
rj(x)s

]

ds = rj(X)τ +
d

dt
rj(x)

1

2
τ2.

The deterministic reaction rate equation

d

dt
xk =

c
∑

j=1

rj(x)v
k
j

allows one to approximate the derivatives d
dt
rj(x) at x by applying the chain rule of differentiation:

d

dt
rj(x) =

d
∑

k=1

∂

∂xk
rj(x)

d

dt
xk ≈

d
∑

k=1

∂

∂xk
rj(x)

c
∑

i=1

ri(x)v
k
i .

The required partial derivatives ∂
∂xk

rj(x) are typically constant or linear for mass-action kinetics.
The main advantages of SAL are that it improves accuracy over other τ -leaping algorithms without
compromising speed. This is crucial for complex systems exhibiting rapid fluctuations in reaction
propensity and higher order kinetics. The critical step in SAL is selecting the leap size τ so that the
linear approximation to the system holds and avoids negative populations. In our implementation,
we select τ so that the bound

∣

∣

∣

∣

d

dt
rj(x)

∣

∣

∣

∣

τ ≤ ǫmax{rj(x), cj}
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holds for every reaction [19]. Here cj is the rate constant of reaction j and ǫ is the tuning parameter.
Our implementation of SAL includes the negative population safeguards outlined in the previous
section.

4 Software description

This section briefly reviews BioSimulator.jl’s interface and its tools. We refer interested readers to
the package documentation for technical details. One may access BioSimulator.jl’s documentation
through Julia’s help system based on the convention ?<name>, where <name> is the name of a function
of interest, such as sum.

4.1 Creating a model

First, a user loads BioSimulator.jl’s interface, simulation routines, and other helper functions with
the command using BioSimulator. The Network construct is central to model specification. It repre-
sents a system of interacting particles starting from some initial state x0. A Network object stores
the initial population sizes for each Species and the definitions for each Reaction. One constructs
a Network by passing a name to the system and successively adding each component with the <=

symbol. For example, the following code

model = Network("Michaelis-Menten")

model <= Species("S", 301)

model <= Species("E", 130)

model <= Species("SE", 0)

model <= Species("P", 0)

defines four Species named S (substrate), E (enzyme), SE (substrate-enzyme complex), and P
(protein) with initial counts x0 = (301, 130, 0, 0). One defines a Reaction by providing a label, a
reaction rate constant, and the reaction equation itself. For example, the code

model <= Reaction("dimerization", 0.00166, "S + E --> SE")

model <= Reaction("dissociation", 0.0001, "SE --> S + E")

model <= Reaction("conversion", 0.1, "SE --> P + E")

defines the dimerization, dissociation, and conversion reactions with rate constants 0.00166, 0.0001,
and 0.1, respectively. BioSimulator.jl assumes mass action kinetics in simulations (see Table 1).

4.2 Running simulations

The simulate method parses a Network and carries out a simulation run using one of BioSimulator.jl’s
algorithms. The command to simulate is written as

simulate(model, algname, output_type = Val(:fixed), time = 1.0, epochs = 1, trials = 1, kwargs...).

Here model and algname are the required inputs. The remaining inputs are keyword arguments
invoked by key-value pairs; each of these optional arguments has a default value. We summarize
these inputs below along with any default values:

• model: The Network to simulate.
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• algname: A simulation algorithm. One may choose between Direct(), FirstReaction(), NextReaction(),
OptimizedDirect(), TauLeaping(), or StepAnticipation().

• output_type = Val(:fixed): One of Val(:fixed) or Val(:full) denoting a strategy for saving the
state vector. The Val(:full) option has the simulator sample the state vector after each
reaction event and records its value. This option uses more memory and may incur a slight
performance penalty due to the fact that BioSimulator.jl cannot determine in advance the
size of the output. The Val(:fixed) option records the state vector at fixed intervals.

• time = 1.0: The amount of time to simulate the model. If one specifies a time t, then the
model will be simulated over the interval (0, t).

• epochs = 1: The number of save points when using fixed-interval output (Val(:fixed)). The
default option epochs = 1 records the initial and final values of the state vector.

• trials = 1: The number of independent realizations to simulate.

• track_stats = false: A Boolean value that indicates whether the simulation should keep track
of algorithm-specific statistics. Using the option with SSA-like methods simply track the num-
ber of events. τ -leaping methods also include the number of times the simulation encounters
negative population counts.

• kwargs: A catch-all for additional options specific to an algorithm. One can check these
options using ?<algname>, where <algname> is to be replaced with an algorithm type. For
example, ?TauLeaping will print a description of the simulation method.

As an example, the code

simulate(model, StepAnticipation(), Val(:fixed), time=100.0, epochs=50, trials=1000, epsilon = 0.125)

will simulate the given model with SAL and return fixed-interval output. The time interval (0, 100)
is discretized into 50 epochs for each of the 1000 independent realizations of the stochastic process.
Lastly, the epsilon = 0.125 option specifies the value of the ǫ parameter used by SAL to control leap
size.

4.3 A note on epochs

By default, BioSimulator.jl partitions the simulation time span into epochs of equal length. After
each simulation step, BioSimulator.jl checks whether the previous event pushed the simulation into
the next epoch. If so, it will record the current value of x at each of the previous epochs. We
note that the Val(:fixed) option does not affect how each algorithm steps through a simulation.
However, this strategy necessarily discards information, such as waiting times between reactions.
Users must also take care to use a sufficiently large number of epochs so that the simulation data
accurately captures system dynamics. In particular, one may fail to capture phenomena occurring
on a time scale smaller than the one implied by the number of epochs. Despite its drawbacks,
BioSimulator.jl favors fixed interval sampling because it assists in computing summary statistics,
improves performance for long simulation runs, and facilitates interactive model prototyping. The
developers of StochPy provide an excellent discussion on the trade-offs between fixed-interval and
full simulation output in [27].
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4.4 Running parallel simulations

Simulating large numbers of realizations is naturally amenable to parallelization because trial runs
are independent. BioSimulator.jl takes advantage of Julia’s built-in parallelism to speed up large
simulation tasks. This is achieved by specifying julia --procs=N when starting Julia. Here N is
the number of worker threads. Running Julia in parallel mode allows BioSimulator.jl to simulate a
Network by delegating work to separate processes. For example, if one has specified 4 threads then
BioSimulator.jl will simulate 1000 realizations by delegating 250 trials to each thread. In prac-
tice, simulations of large networks benefit more from parallelization than small networks because
generating a single trajectory is typically more expensive in the former scenario.

4.5 Petri nets

BioSimulator.jl allows users to visualize the structure of their models as Petri nets using the
visualize function (see Figure 1). A Petri net is a directed graph whose nodes represent either
a species (oval) or reaction (rectangle). An arrow from a species to a reaction indicates that the
species acts as a reactant (black arrows), while the opposite direction indicates a product (red
arrows).

4.6 Simulation output

Output from stochastic simulation at a series of time points can be plotted as mean trajectories over
time or as full distributions. BioSimulator.jl generates time series data for each species and stores
it in a SimulationSummary object, which also tracks the model used in the simulation, simulation
parameters, and key algorithm statistics. BioSimulator.jl provides a few convenient functions for
visualization and summary statistics through the SimulationSummary construct. For example, one
may access simulation data as a DataFrame provided by the DataFrames.jl package in Julia. The
DataFrames.jl documentation provides examples for carrying out common operations, including
data manipulation, computing summary statistics, and saving data to a file. DataFrame conversion
is achieved by calling DataFrame(result), where result is a SimulationSummary. The resulting table has
three types of columns. The time and trial columns indicate the time point and trial number of a
record. The remaining columns are labelled according to the species or compartment name. One
must load the DataFrames.jl package before converting simulation output to a DataFrame:

> using DataFrames

> result = simulate(model, time = 50.0, epochs = 3, trials = 3)

> DataFrame(result)

| Row | time | SE | S | P | E | trial |

|-----|------|----|-----|-----|-----|-------|

| 1 | 0.0 | 0 | 301 | 0 | 130 | 1 |

| 2 | 25.0 | 66 | 46 | 189 | 64 | 1 |

| 3 | 50.0 | 12 | 0 | 289 | 118 | 1 |

| 4 | 0.0 | 0 | 301 | 0 | 130 | 2 |

| 5 | 25.0 | 63 | 38 | 200 | 67 | 2 |

| 6 | 50.0 | 9 | 0 | 292 | 121 | 2 |

| 7 | 0.0 | 0 | 301 | 0 | 130 | 3 |

| 8 | 25.0 | 64 | 29 | 208 | 66 | 3 |

| 9 | 50.0 | 17 | 0 | 284 | 113 | 3 |

4.7 Plotting

BioSimulator.jl provides convenient methods for visualizing simulation results through the Plots.jl
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(c) Prokaryotic autoregulation

Figure 1: Petri net representations of (a) Kendall’s process, (b) the Michaelis-Menten model, and
(c) a self-regulating gene network generated by BioSimulator.jl via the TikzGraphs package. Arrows
connecting species to reaction denote how species enter into a reaction, and arrows from a reaction
to a species denote how species are produced or deleted by the reaction. When the reaction produces
more than 1 particle of a given species, its coefficient appears along the arrow connecting reaction
to product species.
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package. Installing the Plots.jl package provides one with default recipes for plotting individual real-
izations, mean trajectories, and frequency histograms. The plot function acts on a SimulationSummary

to produce a figure depending on the value of plot_type: the possible choices are :trajectory,
:meantrajectory, and :histogram. Consider the following examples:

• plot(result, plot_type=:trajectory, trial=1) will plot the sample paths for each species based
on the results of the first trial.

• plot(result, plot_type=:meantrajectory, species=["S", "E"], epochs = 100) will plot the mean
trajectories for the species S and E based on 100 epochs. Error bars represent one standard
deviation from the mean.

• plot(result, plot_type=:histogram) will plot the distribution of each species at the end of a
simulation, based on the number of trials.

Plotting options can be mixed and matches based on the interface provided by Plots.jl. Users may
consult the documentation of Plots.jl for help in further customizing figures.

5 Results

To illustrate the workflow of BioSimulator.jl, we provide three simple numerical examples using the
SAL method unless otherwise specified. In each case, we set ǫ = 0.03, δ = 2, and β = 0.75.

Example 1 Kendall’s process

Kendall’s birth, death, and immigration process is a continuous-time Markov chain governed by
a birth rate a1 per particle, a death rate a2 per particle, and an immigration rate a3. Let Xt denote
the count of a species S at time t. The events (reactions)











S → S + S Birth

S → 0 Death

0 → S Immigration

occur with propensities a1 · S, a2 · S, and a3, respectively. The Petri net in Figure 1 (a) shows
the relationships between the particles and reactions. It allows the modeler to visualize the flow of
particles through the network and check whether the set of reactions specified accurately captures
the biological pathways being studied.

The following code simulates this model in BioSimulator.jl:

using BioSimulator

model = Network("Kendall's Process")

model <= Species("S", 5)

model <= Reaction("Birth", 2.0, "S --> S + S")

model <= Reaction("Death", 1.0, "S --> 0")

model <= Reaction("Immigration", 0.5, "0 --> S")

result = simulate(model, StepAnticipation(), time=4.0, epochs=40, trials=100_000)
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In addition to tracking the mean and variance, BioSimulator.jl enables the display of the full
distribution of species counts. In this way, one can quantify the frequency of rare extinction
events. Figure 2 summarizes results for the mean trajectory and distribution of species S in
Kendall’s process. At t = 4, the average population is 300, and in approximately 0.9 percent of
the simulations, the species has gone extinct by this time point. Figure 3 illustrates the trade-off
in selecting large ǫ values in τ -leaping methods, namely OTL and SAL. As ǫ decreases towards
0, the distribution of S at t = 4 approaches the exact statistical results from the SSA. Note that
the smaller ǫ values may force these τ -leaping algorithms to perform slower than SSA because the
proposed leap sizes become smaller than an SSA update. This means that each update wastes time
computing a τ leap that is often rejected. On the other hand, large ǫ values tend to increase the
number of bad leaps. In this case, τ -leaping wastes time contracting the leap size until a suitable
update emerges.
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Figure 2: Kendall’s process with α = 2.0, µ = 1.0, and ν = 0.5 starting from 5 particles. (a) Mean
trajectory and distribution of species S computed from 105 SAL realizations. The light, colored
region represents one standard deviation from the mean at each recorded point. (b) The histogram
suggests extinction is possible at t = 4 even though the mean value is approximately 300.

Example 2 Michaelis-Menten enzyme kinetics

Our next example, Michaelis-Menten enzyme kinetics, involves a combination of first- and second-
order reactions. The system consists of a substrate S, an enzyme E, the substrate-enzyme complex
SE, and a product P. The three reactions connecting them











S + E → SE Binding

SE → S + E Dissociation

SE → P + E Conversion

represent binding of the substrate to an enzyme, dissociation of the substrate-enzyme complex, and
conversion of the substrate into a product. These reactions have rates a1, a2, and a3, respectively.
The following code simulates this system under the initial conditions S = 301, E = 130, SE = P =
0 and rate constants a1 = 0.00166, a2 = 0.0001, and a3 = 0.1.
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using BioSimulator

model = Network("Michaelis-Menten")

model <= Species("S", 301)

model <= Species("E", 130)

model <= Species("SE", 0)

model <= Species("P", 0)

model <= Reaction("dimerization", 0.00166, "S + E --> SE")

model <= Reaction("dissociation", 0.0001, "SE --> S + E")

model <= Reaction("conversion", 0.1, "SE --> P + E")

result = simulate(model, StepAnticipation(), time = 50.0, epochs = 10_000, trials = 1_000)

Figure 1 (b) provides a Petri net representation of the model. Figure 4 (a) demonstrates mean tra-
jectories and standard deviations for each of the reactant species over time. These mean trajectories
match the dynamics predicted by a deterministic model. Figure 4 (b) shows the full distribution
of species counts after t = 50 time steps. The substrate is typically exhausted at t = 50.

Example 3 Auto-regulatory genetic network

The influence of noise at the cellular level is difficult to capture in deterministic models. Stochastic
simulation is appropriate for the study of regulatory mechanisms in genetics, where key species
may be present in low numbers. Figure 1 (c) is an example of a simplified negative auto-regulation
network for a single gene, in the sense that the protein represses its own transcription.

There are eight possible reactions: (1) gene transcription into RNA, (2) translation of the protein,
(3) dimerization of the protein with itself, (4) dissociation of the protein dimer, (5) binding to the
gene, (6) unbinding from the gene, (7) RNA degradation, and (8) protein degradation. There are
five species to track — the free copies of the gene, transcribed RNA, protein molecules, dimer
molecules, and blocked copies of the gene. The model is easily implemented in BioSimulator.jl:

using BioSimulator

model <= Network("negative auto-regulation")

model <= Species("gene", 10) # assume 10 copies of the gene are present

model <= Species("RNA", 0) # transcribed from the underlying gene

model <= Species("P", 0) # protein

model <= Species("P2", 0) # protein dimer

model <= Species("P2_gene") # gene repression

model <= Reaction("transcription", 0.01, "gene --> gene + RNA")

model <= Reaction("translation", 10.0, "RNA --> RNA + P")

model <= Reaction("dimerization", 1.0, "P + P --> P2")

model <= Reaction("dissociation", 1.0, "P2 --> P + P")

model <= Reaction("repression binding", 1.0, "gene + P2 --> P2_gene")

model <= Reaction("reverse repression binding", 10.0, "P2_gene --> gene + P2")

model <= Reaction("RNA degradation", 0.1, "RNA --> 0")

model <= Reaction("protein degradation", 0.01, "P --> 0")

result = simulate(model, StepAnticipation(), Val(:full), time = 500.0, trials = 100)

RNA typically has a limited lifetime. Thus, the per particle reaction rates governing protein
production are balanced to favor translation events following transcription. Moreover, the reaction
rates for dimerization and dissociation reflect an assumption that the protein favors neither the
monomer nor the dimer configuration. Figure 5 (a) compares the mean behavior of the protein
and the dimer over time with results from a deterministic model. Plotting individual trajectories
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(a) (b)

Figure 3: The distribution of S in Kendall’s process at t = 4 computed from 105 realizations using
(a) OTL and (b) SAL. SSA is used to derive an exact estimate of the distribution for comparison
and is shown in black. The colored lines represent the resulting distribution under different values
of ǫ. Conservative values are generally safe, but may increase the clock time performance of a
specific algorithm on a non-trivial model. In this example, the time to generate all 105 realizations
for SSA is approximately 5 seconds. The running times for OTL are (in order of increasing ǫ value):
6, 3, 0.4, 0.2, and 0.1 seconds. Similarly, the running times for SAL are: 9, 6, 0.2, 0.1, and 0.05
seconds.
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Figure 4: (a) Mean trajectory of each species in the Michaelis-Menten model using 104 realizations.
The region representing one standard deviation from the mean is small and suggests this network
is not dominated by noise. (b) Population distributions for each species at t = 50 generated from
104 realizations.
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Figure 5: (a) Mean trajectories for the protein and dimer in a simple auto-regulatory gene network.
The bars represent 1 standard deviation away from the mean. (b) Full sample paths for the protein
(top) and RNA (bottom). Note that the RNA sample path is sensitive to the number of epochs
if one were using the fixed-interval option. Using a large window may fail to capture peaks in the
output. This subtlety is important for qualitative model assessment.

for the protein level reveals strong stochastic fluctuations driven by the relative rarity of RNA.
Figure 5 (b) highlights the influence of noise in the system’s dynamics.

5.1 Algorithm comparison

Here we compare the performance of BioSimulator.jl’s algorithms across the three examples from
the previous sections. Each model is simulated using the same model parameters outlined in the
previous examples. Each simulation task involves generating 100 realizations. In the case of fixed-
interval output, 1000 epochs are used. The τ -leaping algorithms use the default values ǫ = 0.03,
δ = 2, and β = 0.75.

Table 2 records the averaged clock times reported by the @benchmark macro from Julia’s Bench-

markTools.jl package. Each simulation task is allotted 2 minutes to generate 100 samples of the
running time. To be explicit, this means that the following command is executed at most 100 times:

simulate(model, algname, output_option, time = tfinal, epochs = 1000, trials = 100)

Thus, these benchmarks reflect both the cost of generating a single realization, the efficiency of
completing a typical simulation task, and the economy of choosing fixed-interval versus full simu-
lation output. Results are based on a MacBook Pro with 2 GHz Intel Core i7 (4 cores) and 16 GB
of RAM running macOS High Sierra 10.13.3.

The NRM performs the worst across the selected model. However, we note that BioSimulator.jl

uses the a priority queue implementation from the DataStructures.jl package which may not be
optimal for the method’s specific demands. Moreover, we take a näıve approach to building depen-
dency graphs. The overhead from BioSimulator.jl’s dependency graphs is sufficiently large that in
some cases most of the simulation is spent on this step. This warrants further review of our NRM
implementation, although we expect an improved implementation to perform similarly to the FRM.
Only the auto-regulation model may show improved performance for the NRM over SSA because
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Algorithm Kendall’s process Michaelis-Menten Auto-regulation

SSA
1.04 (1.03 − 1.05) 0.783 (0.788 − 0.808) 426 (424 − 432)

1.38 (1.37 − 1.40) 0.918 (0.909 − 0.936) 1809 (1734 − 1860)

FRM
1.04 (1.03 − 1.05) 0.863 (0.853 − 0.874) 464 (462 − 468)

1.35 (1.33 − 1.37) 0.983 (0.973 − 1.000) 1597 (1408 − 1645)

NRM
2.72 (2.71 − 2.75) 3.11 (3.08 − 3.15) 1589 (1581 − 1597)

2.99 (2.96 − 3.02) 3.28 (3.25 − 3.33) 2724 (2553 − 2775)

ODM
1.02 (1.01 − 1.03) 0.839 (0.820 − 0.853) 409 (407 − 412)

1.34 (1.32 − 1.37) 0.952 (0.946 − 0.967) 1648 (1437 − 1721)

OTL
0.722 (0.715 − 0.726) 1.50 (1.49 − 1.52) 1867 (1863 − 1877)

0.754 (0.751 − 0.760) 1.64 (1.63 − 1.67) 3038 (2845 − 3087)

SAL
0.596 (0.588 − 0.599) 0.989 (0.985 − 0.996) 1422 (1415 − 1441)

0.607 (0.604 − 0.612) 0.957 (0.954 − 0.967) 2578 (2398 − 2631)

Table 2: Median runtimes and interquantile ranges (in milliseconds) for Example 1, Example 2,
and Example 3 based on 1000 samples of the simulate command. Each simulation task generates
10 realizations of the underlying stochastic model. For example, the median time to generate
10 realizations of Kendall’s process using SSA is 1.04 milliseconds. The first row in a cell is the
benchmark result using the Val(:fixed) option for fixed-interval output. The second row indicates
the timing result using the Val(:full) option for full simulation output.
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the reaction channels for that model are not tightly coupled. Similarly, our ODM implementation
may be inefficient based on its performance on the birth-death-immigration process.

Both τ -leaping algorithms perform poorly on the auto-regulation model. This is to be expected
because neither OTL nor SAL handle separate time scales. Figure 5b shows that RNA transcription
becomes a rare event as the protein dimer population grows. Similarly, the free and blocked gene
copies are always present in relatively small quantities compared to the protein and protein dimer
populations. Thus, protein dimerization and dissociation become the dominant reaction channels
further along the time axis. These two reactions drive the dynamics of the system and therefore
heavily influence the τ -leap selection procedure. A natural consequence is that τ -leaping methods
have an increased likelihood of violating the leap condition in this regime and therefore bias the
simulation toward infeasible states. This assertion is easily verified using the track_stats = true

option and checking the number of negative excursions reported by BioSimulator.jl. In fact, the
leap condition violations are egregious to the point that the recovery mechanism requires thinning
the leap several times per negative excursion. This suggests that reducing the leap size via the ǫ
control parameter is likely to reduce the algorithm to SSA because leaps eventually become smaller
than the expected Gillespie updates.

5.2 Software comparison

We compare BioSimulator.jl’s features and performance against three software packages: StochPy,
StochKit2, and Gillespie.jl. The tools in the space of stochastic simulation are manifold and vary
in their features and applications. Naturally, there are many omissions. Each software package is
selected for its similarity to BioSimulator.jl. Specifically, these tools are domain-independent, gen-
eral purpose Gillespie-like simulators. Table 3 summarizes the differences and similarities between
these software tools.

In addition, we compare each software package on simulation speed across five different models:

(a) Kendall’s process permits an analytic mean trajectory. This model serves as an easy speed
test and a correctness check.

(b) The Michaelis-Menten enzyme kinetics model provides a second simple speed test with mul-
tiple species.

(c) The auto-regulation model serves a benchmark against an interesting biological application
of stochastic simulation.

(d) The dimer-decay model is an example of a small stiff system. It is featured in the literature
as a τ -leaping benchmark [7, 4].

(e) A yeast model from biology is another interesting stiff system used here as a benchmark.
[8, 9, 32].

Initial conditions and other model parameters are deferred to supplementary information (Section
A.1, Tables S1 - S5). Table 4 reports the benchmark results and includes the simulation parameters.
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StochPy StochKit2 Gillespie.jl BioSimulator.jl

Software characteristics:

Language Python C++ Julia Julia

Open-source Yes Yes Yes Yes

GUI No via StochSS No No

Jupyter integration Yes No Yes Yes

Performance Fast Faster Faster Fastest

Interactivity:

Model editor No via StochSS No Yes

Simulation interface Yes via StochSS Yes Yes

Plotting Yes Limited No Yes

Simulation features:

Fixed-interval output via StochKit2 Yes No Yes

Full output Yes Yes Yes Yes

SBML support Yes Yes No No

Readable input Yes No No Yes

Parallelism No Yes No Yes

Table 3: A summary of features across StochPy, StochKit2, Gillespie.jl, and BioSimulator.jl.
Jupyter notebooks are human-readable documents that combine code, text, and figures into a
single interactive report.
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Software StochPy StochKit2 Gillespie.jl BioSimulator.jl

Method SSA SSA (dep. graph) SSA SSA

Mode Serial Parallel Serial Serial Parallel

Kendall’s process
174.31 (173.81 − 174.95) 1.04 (1.03 − 1.05) 0.56 (0.48 − 0.66)

257 (223 − 296) 1285 (1280 − 1293) 1.38 (1.37 − 1.40) 0.79 (0.68 − 0.93)

Michaelis-Menten
210.42 (209.89 − 211.14) 0.783 (0.788 − 0.808) 0.45 (0.44 − 0.46)

214 (213 − 216) 1.15 (1.12 − 1.21) 0.918 (0.909 − 0.936) 0.47 (0.46 − 0.48)

Auto-regulation
432 (425− 445) 426 (424 − 432) 135 (124 − 149)

8.23 (7.87 − 8.75);×104 824 (762 − 834) 1809 (1734 − 1860) 211 (193 − 240)

Dimer-decay
216.98 (216.52 − 217.68) 1.76 (1.75 − 1.79) 0.81 (0.80 − 0.82)

483 (480 − 488) 2.68 (2.66 − 2.84) 2.39 (2.37 − 2.42) 1.03 (1.02 − 1.05)

Yeast
260 (254− 267) 2.56 (2.53 − 2.63) 1.38 (1.10 − 1.42)

469 (465 − 474) 2.25 (2.21 − 2.63) 2.92 (2.89 − 2.99) 1.24 (1.20 − 1.27)

Table 4: Median runtimes and interquantile ranges for StochPy, StochKit2, Gillespie.jl, and BioSimulator across selected models based
on 1000 samples, reported in milliseconds (ms). Each sample measured the time to generate 10 realizations of a given stochastic process.
Results using fixed-interval and fixed output options are recorded in the first and second rows of each cell, respectively. Each simulation
tool is used with its default settings. For example, StochKit2 automatically parallelizes simulation tasks involving multiple realizations
and uses a dependency graph by default. We note that both StochKit2 and BioSimulator.jl used 8 threads for the parallel simulation
benchmarks. Direct comparisons based on these results are not possible, in the sense that slower performance does not necessarily
indicate a particular tool is poorly implemented. Rather, our results reflect natural trade-offs in optimizing software for particular goals.
Note: The StochPy benchmark on the auto-regulation model is based on only 100 samples.
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5.3 Package availability

BioSimulator.jl is available on GitHub (https://github.com/alanderos91/BioSimulator.jl).
All source code is readily available to view, download, and distribute under the MIT license. We also
maintain a documentation manual via GitHub Pages (https://alanderos91.github.io/BioSimulator.jl/stable/).

6 Discussion

BioSimulator.jl simplifies interactive stochastic modeling by virtue of being contained within a single
programming language. Every aspect of the modeling workflow — model specification, simulation,
and analysis — is handled by Julia and its type system. Here we discuss these three aspects of our
simulation software and compare its features and timing benchmarks with other packages.

StochPy and BioSimulator.jl are mainly interactive simulation tools meant to be used in Read-
Eval-Print Loop (REPL) environments and Jupyter notebooks, but they stand out in that they can
also be used as libraries like StochKit2. BioSimulator.jl’s model specification interface is flexible
enough to allow a user to build up a model using for loops and other language features. StochPy

and StochKit2 mainly rely on input files whose main advantage is model sharing. Model editing
interfaces can be built around standardized formats and indeed such tools exist; StochSS includes a
graphical user interface that feeds into StochKit2. The strength of BioSimulator.jl’s model interface
is the flexibility afforded by Julia’s features as it facilitates rapid model prototyping.

An additional benefit of our implementation is that models can be packaged into functions by
defining a wrapper. This allows one to share models through .jl files that provide the model
through a function call that specifies parameters and initial conditions. A model author has full
control over what parameters ought to be exposed to a user by designing the function signature
appropriately. As an example, recall the model definition for Kendall’s process:

function birth_death_process(S; birth_rate = 2.0, death_rate = 1.0, immigration_rate = 0.5)

model = Network("Kendall's Process")

model <= Species("S", S)

model <= Reaction("Birth", birth_rate, "S --> S + S")

model <= Reaction("Death", death_rate, "S --> 0")

model <= Reaction("Immigration", immigration_rate, "0 --> S")

return model

end

Here birth_death_process is a function that requires an argument S to specify an initial condition.
The variables birth_rate, death_rate, and immigration_rate are optional and have default values.
Calling birth_death_process(5) builds up the model with S0 = 5 and the default reaction rate
constants.

Many models are implemented using data standards independent of software and programming
languages. One notable standard is the Systems Biology Markup Language (SBML) [3]. SBML
addresses crucial details such as parameter units, compartment sizes, and kinetic rate laws in a
standardized format. An interface to SBML is required in order to connect BioSimulator.jl to
existing software, enable thorough comparisons, and facilitate model sharing in a standardized
way. StochPy and StochKit2 stand out in this regard because these tools provide an interface to
SBML. We anticipate adopting the SBML standard in future versions of our software.
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StochKit2 is primarily a command-line tool and a software development package. This makes
StochKit2 highly reusable since other programs, such as model editors or simulation packages, can
interface with it. In fact, one of StochPy’s features is its ability to call StochKit2 for tau-leaping.
The main commands are ssa and tau_leaping. At the start of a simulation job, StochKit2 performs
an analysis to select a suitable algorithm based on the model structure. For example, using the ssa

command will run some variation of the exact Gillespie algorithm based on model structure. The
main drawback is the command-line interface, which may be off-putting to inexperienced users.

Overall, Gillespie.jl is a fast stochastic simulation tool for visualizing results and computing
quantities of interest, but it requires a modest programming effort. Without a model editor, it
requires the user to specify the net change increments vj and propensity functions rj(x) for each
reaction j. This approach places a burden on users, especially those unfamiliar with Julia or any
similar programming language. A benefit of this interface is that non-mass action propensities are
automatically supported since a user must hard-code these for the software. Unlike the other tools,
Gillespie.jl does not yet have an interface for running multiple simulations, and so collecting the
results from independent simulations requires some effort from a user. While the main simulation
functions are similar, Gillespie.jl and BioSimulator.jl have the advantage of Julia’s type system and
multiple-dispatch. When used correctly, these two language features allow one to write powerful
abstractions around scientific computing problems that Julia leverages to generate highly optimized
instructions. The JuMP.jl and DifferentialEquations.jl packages are exemplars in this regard and
serve as a testament to Julia’s advantages [11, 31].

The benchmarking results from Table 4 show that BioSimulator.jl is competitive with StochKit2.
While we are pleased with BioSimulator.jl’s performance, one can only speculate on the precise
meaning of these benchmarks without an intimate understanding of implementation details. Julia

provides a theoretical competitive performance edge for Gillespie.jl and BioSimulator.jl over the
Python software. StochPy’s timings may be slower due to the fact that it records a greater amount
of information. In addition to recording the state vector after each step, StochPy offers the option to
store reaction channel information such as propensity values and event waiting times. While fixed-
interval output provides StochKit2 and BioSimulator.jl with a slight performance boost, the results
between StochPy and BioSimulator.jl using the full output option suggest that the performance
gap is in fact wide.

StochKit2 and BioSimulator.jl each support running parallel simulations. StochKit2 automates
this feature; the software defaults to parallelism if a user’s machine supports it. However, BioSimu-

lator.jl’s implementation is nearly automatic thanks to Julia’s abstractions for parallelism. Table 4
shows that BioSimulator.jl is an order of magnitude faster on each example in the serial case, except
for the auto-regulation model. This warrants further investigation.

All four packages support varying degrees of simulation output analysis. Gillespie.jl and BioSim-

ulator.jl offer automatic time series visualization. We improve upon Gillespie.jl by providing helper
functions for additional visualization tools, such as histograms and mean trajectories, as well as
integration with the Plots.jl ecosystem. Our goal is to emulate StochKit2 / StochSS and StochPy

in their support for more sophisticated analysis tools.

7 Conclusion

In a biological system, interacting feedback loops can make mathematical analysis intractable and
create challenges in choosing an optimal set of experiments to probe system behavior. Combining
experiments and stochastic simulation of complex biological systems promotes model validation and
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the design of promising experiments. The user-friendly nature of BioSimulator.jl encourages the
use of stochastic simulation, eliminates effort spent on modifying simulation code, reduces errors
during model specification, and allows visualization of system interactions via Petri Nets. Track-
ing trajectories and distributions of interacting species over time helps modelers decide between
deterministic and stochastic models. Future developments of BioSimulator.jl include

• support for non-mass action kinetics,

• adopting SBML as an input format,

• extending the SAL algorithm implementation using higher order Taylor expansions,

• implementing additional exact and approximate simulation algorithms from the literature,

• incorporating spatial effects, and

• implementing hybrid methods that integrate stochastic simulation with deterministic model-
ing.

The Julia language provides an ideal environment for this purpose. Its syntax allows one to
write mathematical code in a natural way and facilitates fast prototyping. In particular, the
integration with the IJulia package encourages code sharing and reproducible work. Furthermore,
its interactive environment is well-suited for novice programmers. The package ecosystem in Julia

provides software for visualization, statistical analysis, optimization, differential equations, and
probability distributions. Emerging computational tools in Julia can only increase BioSimulator.jl’s
strengths over time.
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