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Abstract

An improved particle-based method with applications to multiscale biophysical

problems

by

Bruno Tadeu Pereira Jacob

An improved particle-based method for continuum mechanics with both stochastic

and deterministic reaction-diffusion of chemical species in moving boundaries is presented.

The method enables the simulation of a class of biophysical problems that could not be

resolved by using classical mesh-based approaches.

This dissertation is divided in three parts: in Chapter 1, we present an introduc-

tion of particle-based methods, with an overview of its advantages and limitations, along

with recent improvements and applications. In Chapters 2 and 3, we propose solutions

to two crucial factors that limit the applicability of particle-based methods to biophys-

ical problems, respectively: (a) the lack of a discrete spatial stochastic formulation for

reaction-diffusion systems, and (b) the onset of numerical instabilities that cause par-

ticles to penetrate moving wall boundaries. In Chapter 4, we summarize our results

and conclude that the usage of our method provide a robust particle-based multiphysics

framework that extends the reach of particle-based methods to new types of problems

including those of biological relevance.

vii



Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Particle-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modeling of multiscale problems . . . . . . . . . . . . . . . . . . . . . . . 8

2 Resolving multiple scales: a new SDPD-sSSA method for advection-
diffusion-reactions problems 12
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Resolving moving boundaries: an ALE-SPH method for fluid-structure
interaction 45
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 SPH formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Wall treatment: boundary volume fraction method . . . . . . . . . . . . 60
3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Application: polarized yeast cell undergoing mating projection growth . . 86

4 Conclusions 92

Bibliography 96

viii



Chapter 1

Introduction

1.1 Particle-based methods

There are two broad types of widely used numerical methods used in the simulation

of continuum mechanics problems: mesh-based and particle-based methods. Traditional

mesh-based methods, such as finite element (FEM), finite difference (FDM), and finite

volume (FVM), typically implement a mesh to cover the volume domain representing the

cell. However, in problems involving moving boundaries and large domain deformations,

these mesh methods can become inaccurate [1] and often computationally expensive.

Particle-based methods have become popular as an alternative to overcome these prob-

lems. In these methods, instead of mesh nodes, the system is represented by arbitrarily

distributed particles that represent its state. Depending on the method formulation,

these particles are often allowed to move in space, hence offering a natural alternative to

track moving boundaries and other dynamic-shaped problems.
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Introduction Chapter 1

1.1.1 Smoothed Particle Hydrodynamics (SPH)

Considered the first particle-based method developed, Smoothed Particle Hydrody-

namics (SPH) was proposed independently by [2] and [3] as a method to simulate as-

trophysical problems. Since its development, SPH has been used in a wide range of

applications, including colloidal suspensions [4, 5], nanofluidics [6], blood flow [7, 8], mul-

tiphase flows [9] and polymer chains [10]. Given that the method does not have a mesh

or node connectivity, SPH uses a kernel estimation at Lagrangian points (particles) to

approximate the partial differential equations (PDEs) that govern the system of interest.

As a consequence of its Lagrangian description, advection is treated exactly, allowing the

simulation of arbitrary free-shear flow in systems with complex geometries without the

need to use an adaptive mesh or interface tracking [11, 12]. Another important feature

of the method is its inherent adaptivity, as particle attributes evolve according to their

material time derivative [13]. More recently, the development of multi-resolution SPH

brings the method closer to industrial applications by adaptively increasing the resolution

by means of splitting particles in regions of interest, and coalescing particles in regions

where lower resolution suffices [14, 15, 16, 17, 18].

As an example of the SPH formulation, consider the conservation laws for mass and

momentum in a Lagrangian reference

∂ρ

∂t
= −ρ∇ · v, (1.1)

∂v

∂t
= −1

ρ
∇ · σ, (1.2)

where ρ,v, t,σ refer to density, velocity, time and stress tensor, respectively. In the

equations above, temporal derivatives shall be understood as material derivatives. For

2



Introduction Chapter 1

fluids, the stress tensor σ can be written as

σ = −PI + 2ηε, (1.3)

where P, I, η, ε denote the hydrostatic pressure, the second order identity tensor, dynamic

viscosity and strain tensor, respectively.

The first approximation performed in SPH consists of a kernel interpolation: consider

a continuous function f defined at coordinates x in Ω ⊆ R3. Thus, the following identity

holds for any f

f(x) =

∫
Ω

f(x′)δ(x− x′)dx′, (1.4)

where δ(x−x′) is the Dirac delta function. In SPH, the Dirac function is approximated

by a smoothing kernel function W with finite (compact) support h

f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′. (1.5)

The accuracy of the approximation given by Eq. (1.5) depends on the choice of W . In

order to find a good candidate for the interpolation process, the kernel function is often

chosen based on three conditions: a) the normalization of the smoothing function, which

requires its integral to be identically one in the volume Ω; b) the Dirac delta condition,

which requires that W (x−x′, h)→ δ(x−x′) as the support h approaches zero; c) kernel

compactness, which guarantees that W = 0 outside of its support.

After choosing W , the next step consists of rewriting the integral approximation given

by Eq. (3.9) as a discrete sum. The domain Ω is then discretized using N particles, each

located at coordinates xi. Each particle carries mass, volume, momentum, energy, con-

centration of species, and/or any other quantity of interest. We denote these quantities

3



Introduction Chapter 1

here as the arbitrary function f ,

fi ≈
N∑
j=1

mj

ρj
fjWij, (1.6)

where mj, ρj denote the mass and density and the kernel approximation of the field f(x)

at position xj, respectively. Since fj is fixed, the gradient of f can be evaluated as

(∇f)i =
N∑
j=1

mj

ρj
fj∇Wij, (1.7)

where the resulting directional gradient operator is evaluated as

∇Wij =
xij
xij

dWij

dxij
, (1.8)

and xij = xi−xj, xij = ||xij||2 denote the relative position and distance between points i

and j, respectively. The most common approximation of a second derivative (used in the

viscous term in the momentum equation) is given by a combination of finite differences

and SPH approximation

(
∇2f

)
i

=
N∑
j=1

mj

ρj
(fj − fi)xij · xij

1

x2
ij + ε2

dWij

dxij
, (1.9)

where ε is a small number O(10−5) to prevent a zero denominator and avoid singularities

when xij ≈ 0. Finally, we can now use the kernel interpolation and the discretization pro-

cess to approximate Eqs. (1.1)-(1.2), for each particle i. The resulting discrete governing

equations read

dρi
dt

= ρi

N∑
j=1

mj

ρj

∂Wij

∂xij

1

xij
xij · vij, (1.10)

4
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dvi
dt

=
N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
xij
xij

∂Wij

∂xij
+

N∑
j=1

mj
ηijvij · xij
ρiρjxij

∂Wij

∂xij
. (1.11)

In order to close the model described by Eqs. (1.10)-(1.11), a relationship between

density and pressure field must be established. In the Lagrangian fluid dynamics litera-

ture, two different approaches are widely used: 1) treat the flow as incompressible, either

by solving a pressure-Poisson equation to obtain a divergence-free velocity field, or by

requiring as a kinematic constraint that the volume of the fluid particles is constant; or

2) treat it as weakly compressible, and impose an equation of state. Most authors use

the weakly compressible assumption. In this case, a common choice of equation of state

is the so-called Tait’s equation:

p = p0

[(
ρ

ρ0

)γ
− 1

]
, (1.12)

where p0, ρ0 denote reference pressure and density, respectively (these are problem-

dependent), and γ is the polytropic constant (usually γ = 1 or γ = 7 in most papers).

It is a common practice to select p0 = ρ0c
2
0/γ, where c0 is the artificial speed of sound.

In order to limit density variations to 1%, c0 is chosen such that it is at least 10 times

higher than the characteristic velocity of the problem.

1.1.2 Dissipative Particle Hydrodynamics (DPD)

Notice that SPH works as a discretization method for PDEs: given a discrete set of

particles, they interact with each other constrained by the PDE. This PDE-to-particle

model is often referred as a top-bottom approach. In contrast, the dissipative particle

hydrodynamics (DPD) method performs a bottom-top approach: given the particles and

ad-hoc interaction forces, we can evolve the system using Newton’s second law. Due to

5
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its flexibility, the method originally developed by [19] and later modified by [20], was

rapidly adopted for simulating dynamic and rheological properties of complex materials

and non-Newtonian fluids. The method has been applied to a wide range of problems

in physics and chemistry [21] including heat transfer [22, 23, 24], flow through porous

media [25, 26] and shock-capturing [27, 28].

For a system of N particles, the evolution of a DPD particle i with unit mass follows

the conservation of momentum

dv

dt
= Fi =

N∑
j=1

F C
ij + FD

ij + FR
ij , (1.13)

where t, vi denote time and velocity of particle i. The pairwise terms F C
ij , FD

ij , FR
ij

denote conservative, dissipative and random forces acting on particle i due to j, given by

F C
ij = aijωC(xij)eij, (1.14)

FD
ij = −γijωD(xij)(eij · vij)eij, (1.15)

FR
ij = σijωR(xij)εij(∆t)

−1/2eij, (1.16)

where xij is the coordinates of particle i, xij = |xij|, eij = xij/xij is the unit vector

from particle j to i and vij = vj − vi is the velocity difference. Terms ωC , ωD, ωR denote

weight (radial basis) functions, that limit the effect of neighbor particles j on particle i

to only a subset of N particles. Finally, aij, γij, σij denote conservative, dissipative and

random parameters, respectively, to be calibrated depending on the problem.

Despite the success of DPD as a simple, robust and intuitive method, a number of

conceptual shortcomings have been reported [29, 30, 31]. Perhaps the major one is the

lack of direct mapping between the model parameters and the physical parameters of

6
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the system. This problem is still an open area of research, and as a consequence, DPD

parameters must be calibrated on a case-by-case basis using empirical equations, often

in a non-unique way [31, 32, 33]. Other shortcomings of the DPD method include the

impossibility of imposing an equation of state directly in the model [31] and the risk of

particle overlap due to the use of soft potentials [29].

1.1.3 Smoothed Dissipative Particle Hydrodynamics (SDPD)

The shortcomings of the DPD formulation were addressed by [34], who proposed

the combination of the SPH method to model the hydrodynamics, with an additional

stochastic term to model the thermal fluctuations in the mesoscale. The resulting method,

named Smoothed Dissipative Particle Hydrodynamics (SDPD), inherits the benefits of

second-order discretization of the Navier-Stokes equations in the Lagrangian form from

SPH [29, 35], along with the thermodynamic consistency of DPD [34]. For this method,

transport coefficients and equations of state can be imposed as inputs directly in the

model. Moreover, physical scales are consistent with the Navier-Stokes equations, and

therefore hydrodynamic behavior is obtained.

SDPD shares many similarities with SPH, including the use of arbitrarily distributed

particles to represent the state of the system, their Lagrangian nature, and the easiness

of extending it to multiphysics applications. It has been sucessfully applied to a large

variety of problems such as colloidal suspensions [4, 5], nanofluids [6], blood flow [7, 8],

multiphase flows [9] and polymer chains [10].

A canonical formulation for SDPD consists of the same kernel interpolation and the

discretization process used in SPH, Eqs. (1.10)-(1.11), along with the stochastic term

dṽ/dt in the momentum equation. The resulting discrete governing equations are given

7
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by

dρi
dt

= ρi

N∑
j=1

mj

ρj

∂Wij

∂xij

1

xij
xij · vij, (1.17)

dvi
dt

=
N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
xij
xij

∂Wij

∂xij
+

N∑
j=1

mj
ηijvij · xij
ρiρjxij

∂Wij

∂xij
+
dṽ

dt
. (1.18)

A complete description of the form of the stochastic term dṽ/dt is provided in detail

in Chapter 2.

1.2 Modeling of multiscale problems

With the advances in computational power, the complexity of the models used to

simulate systems in science and engineering has dramatically increased. These mod-

els span microscopic to macroscopic scales and multiple types of physics simulations,

including fluid dynamics, solid mechanics, chemical reactions and transport, and ther-

modynamics. For systems in which the scales of time and space are sufficiently small

(microscale), simulations are performed using molecular dynamics (MD) [36] with poten-

tial energy functions derived from classical mechanics. For macroscale systems involving

a well-mixed system, continuum approaches (e.g., Navier-Stokes equations) are typically

employed. At the intermediate mesoscale, recent work by [37] has integrated reaction-

diffusion of chemical species within a particle-based fluid dynamic framework. In the field

of cell biology, it has been found that models with discrete stochastic dynamics are often

required to recapitulate biologically relevant phenotypes [38]. Recent work has shown

the importance of cellular level models with dynamic domain shapes and external flows

coupled to discrete stochastic biochemical simulations [39, 40].

Typically in fluid dynamics simulations, macroscale approaches based on continuum

8
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methods rely on the continuum hypothesis and local equilibrium assumptions. By con-

sidering volumes of particles as local thermodynamic systems, one can reduce the number

of degrees of freedom by several orders of magnitude, because not all the scales of the

system are resolved. This truncation of scales allows the simulation of larger systems for

longer physical times. In this sense, continuum theories can be seen as coarse-grained

versions of the atomic system [36].

The Knudsen number (Kn), defined as the ratio of the mean free path of the molecules

being transported over a characteristic length scale [41], helps to determine whether it is

meaningful to use a macroscopic approach. According to [42], molecular effects become

the dominant transport mechanism in fluid motion when Kn ≥ 10. However, at the

so-called transitional regime, 10−1 ≤ Kn ≤ 101, several important phenomena involving

molecular effects take place in complex systems [36] such as biological flows, and the

behavior of polymers and colloids. In this regime, scales are considered mesoscopic, with

spatio-temporal ranges in the interval O(10−9) - O(10−5) meters and O(10−9) - O(10−3)

seconds [36], making the number of degrees of freedom required in a MD simulation

currently impractical [29, 35, 30, 36]. The most recent MD simulations are constrained

to O(109) atoms and up to O(10−9) seconds [30].

To capture the effect of a wide range of scales, one possible approach consists in

developing hybrid methods. The idea of these methods is to solve microscopic scales

only where is needed. For example, consider the simulation of a biological system where

advection and reaction–diffusion occur at different scales, ranging from the microscopic

(e.g. stochastic molecular binding interactions) to the macroscopic (e.g. fluid flow): a

neutrophil in the blood can track down a single bacterium by sensing individual bacterial

peptides that diffuse to and bind neutrophil receptors, triggering a biochemical response

while experiencing the hydrodynamic forces from blood flow (Fig. 1). Physical forces,

chemical reactions, diffusion, active transport, stochastic dynamics, and advection must

9
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N
B

1) Stochastic Reaction/Diffusion 
(microscopic)

2) Advection (macroscopic)

Figure 1.1: Example of biological system possessing reaction, diffusion, advection, and
stochastic dynamics. In an artery, a neutrophil (N) chemotaxes against the blood flow
toward a bacterium (B) by sensing the gradient of individual bacterial peptides (blue
triangles) that bind receptors (green Y-shapes) on the neutrophil cell surface.

all be modeled, which presents a formidable challenging for any computational frame-

work. Even commercial software solutions such as Comsol Multiphysics can capture the

deterministic spatial dynamics but not the stochastic dynamics. The spatial stochas-

tic simulation algorithm (sSSA) simulates stochastic reaction–diffusion dynamics, but is

ill-suited for representing fluid flow by itself.

Then, why not using particle-based methods, such as SDPD, to solve these prob-

lems? Currently, there are two crucial factors that limit their applicability biophysical

problems: (a) the lack of a discrete spatial stochastic formulation for reaction-diffusion

systems, and (b) the onset of numerical instabilities that cause particles to penetrate

moving wall boundaries and generates excessive diffusion, leading to a fast decay of en-

ergy and unrealistic results. In this dissertation, we propose solutions for both of these

problems. In Chapter 2, we present a solution to (a), by proposing a new algorithm that

merges a spatial stochastic simulation algorithm (sSSA) with the smoothed dissipative

particle dynamics (SDPD) method. This hybrid method enables discrete stochastic sim-

ulation of spatially resolved chemically reacting systems on a mesh-free dynamic domain

with a Lagrangian frame of reference. The spatial stochastic fluid dynamics is resolved

using SDPD, a method that combines two popular mesoscopic techniques: smoothed par-

10
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ticle hydrodynamics and dissipative particle dynamics (DPD), linking the macroscopic

and mesoscopic hydrodynamics effects of these two methods. The spatial stochastic

reaction-diffusion is then resolved using a discrete stochastic simulation algorithm using

the reaction-diffusion master equations (RDME) formalism. We validate the new method

by comparing our results to four canonical models, and demonstrate the versatility of

our method by simulating a flow containing a chemical gradient past a yeast cell in a

microfluidics chamber.

In Chapter 3, we propose a new approach that explicitly prevents particle penetra-

tions in boundaries, and develop a systematic approach to prevent numerical instabil-

ities. These algorithms are combined into a new weakly-compressible smoothed parti-

cle hydrodynamics (SPH) method capable of modeling non-slip fixed and moving wall

boundary conditions. The formulation combines a boundary volume fraction (BVF) wall

approach with an arbitrary Lagrangian-Eulerian (ALE)-SPH method. The resulting

method, named SPH-BVF, offers detection of arbitrarily shaped solid walls on-the-fly,

with small computational overhead due to its local formulation. This framework is capa-

ble of solving problems that are difficult or infeasible for standard particle-based methods,

namely flows subject to large shear stresses or at moderate Reynolds numbers, and mass

transfer in deformable boundaries, which is common in biological systems. We validate

the method on canonical fluid flow, convective transport, and fluid-structure interaction

problems, and demonstrate its versatility by simulating a complex biomechanical process:

the formation of a yeast mating projection.

Finally, in Chapter 4 we summarize our results. The accuracy of the method pre-

sented in Chapters 2 and 3, along with the qualitative agreement with yeast experiments,

confirms that the usage of sSSA with the SPH-BVF method provides a robust particle-

based multiphysics framework that extends the reach of particle-based methods to new

types of problems including those of biological relevance.

11



Chapter 2

Resolving multiple scales: a new

SDPD-sSSA method for

advection-diffusion-reactions

problems

2.1 Motivation

In this chapter we introduce a novel formulation of advection-diffusion-reaction in

SDPD. For systems where the molecular discreteness is relevant, we propose to simu-

late the reaction-diffusion of species by use of the spatial stochastic simulation algorithm

(sSSA) to resolve the reaction-diffusion master equation (RDME) [43, 44, 45]. An im-

mediate advantage of the spatial stochastic approach is that transport of species is com-

puted exactly, instead of approximately by adding a fluctuation term to the deterministic

reaction-diffusion equations. On the other hand, in regions where small scales are neg-

ligible, we solve a deterministic form of the SDPD reaction-diffusion equation, thereby

12
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avoiding over-resolving of scales, resulting in increased computational efficiency.

Compared to mesh-based standard approaches, such as finite elements (FEM), fi-

nite differences (FDM) and finite volume (FVM) methods, the new hybrid sSSA-SDPD

method introduced by this work presents important advantages. First, as a consequence

of its Lagrangian description, the method allows the simulation of advection-diffusion-

reaction systems with complex geometries without the need of using adaptive meshes or

interface tracking. Additionally, the method is capable of simulating a broader range

of problems, when compared with standard approaches. In particular, the method is

well-suited for fluid flow problems where stochastic reactive-diffusive mass transport is

relevant.

One class of problems in which the hybrid method is expected to excel compared

to alternative approaches is the simulation of biological systems where advection and

reaction-diffusion occur at different scales, ranging from the microscopic (e.g. stochastic

molecular binding interactions) to the macroscopic (e.g. fluid flow). For example, a

neutrophil in the blood can track down a single bacterium by sensing individual bacterial

peptides that diffuse to and bind neutrophil receptors, triggering a biochemical response

while experiencing the hydrodynamic forces from blood flow (Fig. 1.1). Physical forces,

chemical reactions, diffusion, active transport, stochastic dynamics, and advection must

all be modeled, which presents a formidable challenge for any computational framework.

Commercial software solutions such as Comsol Multiphysics can capture the deterministic

spatial dynamics but not the stochastic dynamics. The spatial stochastic simulation

algorithm (sSSA) [46] simulates stochastic reaction-diffusion dynamics, but is ill-suited

for representing fluid flow.

This chapter is organized as follows: Section 2.2 briefly describes the SDPD and

sSSA formulations. Section 2.3 focuses on the algorithmic description of the method

proposed, with a discussion addressing its appropriate use in multiscale systems. Sec-

13
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tion 2.4 presents validations, applications and discussion of relevant results. Conclusions

and future perspectives are discussed in Chapter 4.

2.2 Background

The hybrid method proposed in this chapter is based on the combination of two

formulations: SDPD and SSA. In this section, we provide a brief theoretical overview of

these two key elements in the proposed hybrid method. In SDPD [34], the domain is

discretized as a finite number of particles, each representing a small volume of material

that carries properties such as momentum, mass and energy. The position of the particles

evolves in time according to some mechanistic model, such as the fluctuating Navier-

Stokes equations for fluid flow [47]. In contrast, the sSSA algorithm [46] consists of a

stochastic model for mesoscopic-scale stochastic reaction-diffusion kinetics, where the

domain is discretized in voxels and the system is modeled as a Markov process. For each

voxel, the number of molecules of diluted species characterize the state of the system

that evolves in time according to the Kolmogorov equation.

The hybrid method proposed uses either the sSSA algorithm or the SDPD formulation

to compute mass reaction-diffusion processes, and SDPD to compute advection and other

body force dynamics. This is achieved by treating each particle in the system as a voxel

for the sSSA. The immediate consequence of using the hybrid sSSA-SDPD method is the

ability to correctly predict the dynamics of multiscale systems in a unified framework,

resolving hydrodynamics and low-concentration reaction-diffusion systems at the same

time.

An overview of the mathematical models of an arbitrary system from a deterministic,

SDPD and hybrid method perspective is depicted in Fig. 2.1. For detailed formulations

of SSA and SDPD, we refer the reader to the work of [46] and [34], respectively.
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Figure 2.1: Comparison between mathematical and physical models of (a) a typical
deterministic approach, (b) SDPD, (c) sSSA, for the idealized case of a channel flow
with diluted species. In the hybrid method, advection is modeled via SDPD, while
mass transport can be modeled via either a spatial stochastic algorithm or SDPD,
depending on whether stochastic effects are relevant. In Figs. (a) and (b), the dotted
parts denote magnified regions, illustrating the differences between the methods. In
Fig (b), vij , Qij and Rij denote the pairwise velocity, flux of mass and reaction term,
respectively. In Fig. (c), p in the Kolmogorov equation denotes the probability that
the system can be found in state X at time t.

2.2.1 SDPD

Theoretical aspects

Consider a domain Ω ⊂ <3, composed of a collection of particles representing fluid

volumes that evolve in time according to the isothermal Navier-Stokes equations and the

reaction-diffusion equation:
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dρ

dt
= −ρ∇ · v, (2.1)

dv

dt
= −1

ρ
∇P + Fvisc + Fbody, (2.2)

dC

dt
= ∇ · (κ∇C) +R, (2.3)

where ρ, v, P , Fvisc, Fbody, C, κ and R denote the fluid density, velocity, pressure, viscous

force, body force, concentration, mass diffusivity and reaction term, respectively. The

d(·)/dt operator denotes the material derivative [48], defined as

d(·)
dt

=
∂(·)
∂t

+ v ·∇(·), (2.4)

thus the characteristic curves of this operator are the particle trajectories [49]. Adopting

a Lagrangian description, we consider each particle as a non-inertial frame of reference.

Therefore, the advective acceleration term in Eq (3.4), v ·∇(·), vanishes identically, by

virtue of having a zero relative velocity. Consequently, Eqs. (2.1)-(2.3) can be rewritten

as

∂ρ

∂t
= −ρ∇ · v, (2.5)

∂v

∂t
= −1

ρ
∇P + Fvisc + Fbody, (2.6)

∂C

∂t
= ∇ · (κ∇C) +R. (2.7)

Equations (3.1)-(3.3) show that the temporal variation of the variables of interest

depends on the evaluation of spatial derivatives of these physical quantities. The solution

of these equations numerically, therefore, raises the question of how to approximate the
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derivatives and transform these expressions into a set of algebraic equations involving

the unknowns of the problem [49, 50].

In Eulerian-based methods, at each time step, points of space are arbitrarily selected

as inertial frames of reference and therefore the spatial grid spacing is, in general, fixed.

Thus, derivatives are typically piecewise-approximated using linear functions, polynomi-

als, etc. In contrast, in a Lagrangian-based method, since particles are moving along with

the flow, the evaluation of derivatives involves interpolation processes, usually based on

radial smoothing kernel functions [49].

In order to find a good candidate for the interpolation process, consider a continuous

function f(x), defined at coordinates x. Note the following identity [50]

f(x) =

∫
Ω

f(x′)δ(x− x′)dx′, (2.8)

where δ(x − x′) is the Dirac delta function. Due to the infinitesimal support of the

Dirac function and the finite decimal precision of computers, it is not possible to write

a discrete numerical method using this integral representation of a function. In order

to overcome this limitation, SPH theory approximates Eq. (2.8) by replacing the Dirac

function with a smoothing kernel function W with finite support h

f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′. (2.9)

Note that Eq. (2.9) is an approximation. The accuracy of the approximation depends

on the choice of W . In the SPH literature, the smoothing kernel function is often chosen

based on three conditions [25, 12]: a) the normalization of the smoothing function, which

requires its integral to be identically one in the volume Ω; b) the Dirac delta condition,

which requires that W (x−x′, h)→ δ(x−x′) as the support h approaches zero; c) kernel

compactness, which guarantees that W = 0 outside of its support.
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After judiciously choosing a function W , the next step consists of rewriting the inte-

gral approximation given by Eq. (2.9) as a discrete sum. The domain Ω is then discretized

using N particles, each located at coordinates xi

〈f(xi)〉 =
N∑
j=1

mj
fj
ρj
W (xi − xj), (2.10)

where mj and 〈fj〉 denote the mass of particle j and the kernel approximation of the

field f(x) at position xj, respectively. As a consequence of the SPH formulation, since

mj and fj are defined locally (i.e., they are particle properties), linear operators (such as

the gradient) will affect only the weight function. Therefore, the gradient of f is given

by

〈∇f(xi)〉 =
N∑
j=1

mj
fj
ρj
∇W (xi − xj), (2.11)

where the resulting directional gradient operator is evaluated as

∇W (xi − xj) =
xij
xij

dW (ξ)

dξ
, (2.12)

with xij = xi − xj, xij = ||xij||2 and ξ denoting a generalized coordinate. In this work,

we have adopted the Lucy kernel, proposed by [3], with ξ = xij/h

W (ξ) =


αD (1 + 3ξ) (1− ξ)3 , if 0 ≤ ξ ≤ 1,

0, otherwise.

(2.13)

where the normalization parameter αD depends on the number of dimensions of the

problem
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αD =


5/4h, if 1D,

5/πh2, if 2D,

105/16πh3, if 3D.

(2.14)

We proceed now by applying this methodology to Eqs. (3.1)-(3.3). The derivation

of the deterministic part of the mathematical model, i.e., the SPH formulation, can be

found in [49]. For a complete derivation of the SDPD method, the reader may refer to

[34]. The resulting equations, disregarding body forces, are given by

dρ

dt
= −

N∑
j=1

mj (vij · xij)
1

xij

dW

dξ
,+ξhc0

N∑
j=1

ψij · xij
1

xij

dW

dξ
(2.15)

dv

dt
=

[
−

N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
1

xij

dW

dξ

]
+

[
5η

3

N∑
j=1

1

x3
ij

dW

dξ

vij + (vij · xij)xij
ρiρj

]
+
dṽ

dt
,

(2.16)

dC

dt
=

[
−

N∑
j=1

mj
(κi + κj)(Ci − Cj)

ρiρjxij

dW

dξ

]
+
dC̃

dt
. (2.17)

In Eq. (2.15), ψij and ξ denote the artificial density diffusion and its amplitude,

respectively. This correction was proposed by [51] as a way to reduce the numerical noise

in the pressure evaluation for weakly-compressible SPH, and has the form

ψij = 2

(
miρj
mjρi

− 1

)
xij

x2
ij + εhh2

, (2.18)

where εh ∼ 0.01 is a small scalar set to prevent numerical singularities [49, 52]. Consid-

ering the significant improvements presented by [51] in terms of stability, we have taken
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the amplitude of the artificial density diffusion to be ξ = 0.1.

The random terms dṽ/dt are introduced in the equations as a tensorial generalization

of a stochastic Wiener process [31],

dṽ

dt
=

N∑
j=1

[(
40

3

ηκBT0

ρiρj

dW

dξ

)1/2
dŴij

dt
· xij
xij

]
, (2.19)

(2.20)

where

dW̃ij =
W̃ij + W̃

T

ij

2
, (2.21)

is the symmetric part of a matrix of independent increments in the Wiener process [31],

κB is the Boltzmann constant and T0 is a characteristic temperature of the system. For

the random term in the reaction-diffusion equation, we follow the assumptions described

by [37], that disregard the influence of the random term in diffusive processes, based on

the fact that the mass of a single solute molecule ms,i is small compared to the mass of

the SDPD particle mi. Therefore, we assume that dC̃ � dC.

To close the model described by Eqs. (2.15)-(2.17), a relationship between density

and pressure field must be established. In the Lagrangian fluid dynamics literature,

two different approaches are widely used: 1) treat the flow as incompressible, either by

solving a pressure-Poisson equation to obtain a divergence-free velocity field [52, 53], or by

requiring as a kinematic constraint that the volume of the fluid particles is constant [54];

or 2) treat it as weakly compressible, and impose an equation of state [3, 55, 31, 56, 12].

In the present work, we have followed the classical weakly-compressible SPH ap-

proaches, where the pressure of a fluid particle is obtained from the density field using
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an equation of state [11]. A common choice is the so-called Tait’s equation of state

[57, 56, 12]:

p = p0

[(
ρ

ρ0

)γ
− 1

]
, (2.22)

where p0, ρ0 denote reference pressure and density, respectively, and γ is the polytropic

constant. It is a common practice [56, 12] to select p0 = ρ0c
2
0/γ, where c0 is the artificial

speed of sound. In order to limit density variations to 1%, we choose γ = 7. Here, c0

is chosen such that it is at least two orders of magnitude higher than the characteristic

velocity of the problem.

Numerical aspects

Following several authors [58, 51, 11], the integration of Eqs. (2.15)-(2.17) was per-

formed using a two-step predictor-corrector scheme. Specifically, considering Y = [vi, ρi, Ci]

the vector of unknowns of the system

∂Y

∂t
= f(Y , t), (2.23)

the explicit trapezoidal method is given by

Ỹ = Y n−1 + ∆tf(tn−1,Y n−1), (2.24)

Y n = Y n−1 +
∆t

2

(
f(tn−1, vn−1) + f(tn, Ỹ )

)
,

which requires the evaluation of f only once per time step. A necessary condition for

stability, given by the Courant-Friedrichs-Lewy condition based on the artificial speed of

sound c0, was used to estimate a suitable time step ∆t for each simulation [12].
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2.2.2 SSA and RDME

It has been observed that mean-field or deterministic models are often insufficient to

capture the relevant dynamics of many biological systems [59, 60, 61]. At this cellular

level, biochemical systems in which the copy number of any relevant chemical species

is sufficiently small can be more accurately modeled with discrete stochastic simulation,

of which the most popular method is the Stochastic Simulation Algorithm (SSA) or

Gillespie algorithm [62]. The SSA assumes that the system is spatially homogeneous,

or well-mixed. To model spatially inhomogeneous stochastic biochemical systems at the

mesoscopic scale, reaction-diffusion master equation (RDME)[46]-based methods, which

discretize space into spatially homogeneous voxels [43, 44, 45], are often used. In our

spatial SSA (sSSA), we integrate the RDME-based methods with a particle-based fluid

dynamics simulation framework by using each SDPD particle as a RDME voxel: for each

particle in the system, the stochastic chemical reactions take place inside the particles,

and the stochastic diffusion occur in between neighbor particles.

The spatial SSA algorithm is based on the Reaction-Diffusion Master Equation (RDME)

formalism [46]. The RDME is a mathematical model for spatially-resolved mesoscopic-

scale stochastic chemical reaction-diffusion kinetics. It gives the time evolution of the

probability distribution for the state of the system. First, the physical domain is parti-

tioned into K non-overlapping subvolumes or voxels, similar to numerical methods for

PDEs. Molecules are taken to be point particles and the state of the system is the discrete

number of molecules of each species for each of the voxels in the domain. Modeling the

reaction-diffusion dynamics as a Markov process gives the following forward Kolmogorov

equation for the time evolution of p(X, t) = p(X, t|X0, t0) (the probability that the sys-

tem can be found in state X at time t, conditioned on the initial condition X0 at time

t0):
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∂p(X, t)

∂t
= Rp(X, t) +Dp(X, t), (2.25)

Rp(X, t) =
K∑
i=1

M∑
r=1

air(X− νir)p(X− νir, t)− air(X)p(X, t), (2.26)

Dp(X, t) =
S∑
s=1

K∑
i=1

K∑
j=1

dsij(X− µsij)p(X− µsij, t)− dsij(X)p(X, t), (2.27)

where X is a K×S state matrix, and S is the number of chemical species. The functions

air(Xi) define the propensity functions of the M chemical reactions, and νir are stoi-

chiometry vectors associated with the reactions. The propensity functions are defined

such that air(X)∆t gives the probability that reaction r occurs in a small time interval

of length ∆t. The stoichiometry vector νir defines the rules for how the state changes

when reaction r is executed. dijs(Xi) are propensities for the diffusion jump events, and

µijs are stoichiometry vectors for diffusion events. µijs has only two non-zero entries,

corresponding to the removal of one molecule of species Xs in voxel i and the addition of

a molecule in voxel j. The propensity functions for the diffusion jumps, dijs, are selected

to provide a consistent and local discretization of the diffusion equation.

We do not solve the RDME directly. Instead, we generate sample paths of the un-

derlying stochastic process. The SSA does this by generating two random numbers on

each time step r1 and r2. These determine which reaction event r will fire next and

at what time τ it will fire. These are based on the probabilistic reaction rates (called

propensities). Next, the system state is updated by applying the stoichiometry vector

ν∗r for reaction r to the state vector X. The propensity functions are updated, the time

is incremented by τ , and the procedure continues until the final time. This procedure is

outlined in Algorithm 4.
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Algorithm 1 SSA Reactions

Input: Current population of species in each particle: Xis, Set of SSA reactions r ∈ R
and propensity functions ar(Xi∗), Integration timestep τstep

Output: Population of each SSA species in each particle at time t+ τstep.
1: Calculate air = ar(Xi∗) ; a0 =

∑
i

∑
r air

2: t′ = 0; r1, r2 ∈ URN(0, 1); t′ += − log(r1)/d0

3: while t′ < tsplit do
4: Find: maxµiµr [a0r1 >

∑µi
i

∑µr
r air]

5: Xµiµs += νµiµr
6: Update: air, a0

7: r1, r2 ∈ URN(0, 1)
8: t′ += − log(r1)/a0

9: end while

For SSA diffusion, we use a K ×K matrix, the diffusion matrix D, where Dij is the

diffusion propensity for molecules to jump from particle i to particle j. Following the

formulation of [63], it is defined as:

Dij =


−2

mimj

mi+mj

ρi+ρj
ρiρj

x2ij
x2ij+εhh2

dW
dξ
, if i 6= j,

−
∑

n,n 6=j Dnj. if i = j.

(2.28)

This procedure to solve the SSA diffusion over a time interval [t, t + τstep] is shown in

Algorithm 2.
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Algorithm 2 SSA Diffusion

Input: Current particle positions: xi, Current population of species in each particle:
Xis, Set of SSA species diffusion coefficients: κijs, Integration timestep τstep

Output: Population of each SSA species in each particle at time t+ τstep.
1: Create flux K × S matrix Q = 0
2: Calculate diffusion matrix D [Eq.(2.28)]
3: Calculate dijs = κijsDijXis ; d0 =

∑
i

∑
j

∑
s dijs

4: t′ = 0; r1, r2 ∈ URN(0, 1); t′ += − log(r1)/d0

5: while t′ < tsplit do
6: Find: maxµiµjµs

[
d0r1 >

∑µi
i

∑µj
j

∑µs
s dijs

]
7: Xµiµs −−; Qµiµs −−; Qµjµs ++
8: Update: dijs, d0

9: r1, r2 ∈ URN(0, 1)
10: t′ += − log(r1)/d0

11: end while
12: Xis += Qis∀i, s

2.3 Proposed method

2.3.1 Overview

The goal of the proposed hybrid method is to provide an alternative framework for

the simulation of multiscale systems that potentially involve a broad spectra of Knudsen

numbers, involving micro-, meso- and macro-scopic scales. Thus, advection-diffusion-

reaction problems could be resolved by the same method and numerical solver, without

the burden of over-resolving small scales when not needed, nor truncating fluctuations

in meso/microscale regimes.

The algorithm treats advection via the Navier-Stokes equations using the SDPD for-

mulation, and reaction-diffusion by either SSA, SDPD or both. Coupling between advec-

tion and diffusion with body forces, e.g., in natural convection phenomena, takes place

via SSA or SDPD diffusion, depending on the nature of the problem.

As described in Eq. (2.15), the SDPD formulation includes a random force term, and
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the momentum equation is then treated as a stochastic differential equation (SDE). De-

pending on the Knudsen number, random effects might be relevant or not. For instance,

consider a flow of red blood cells: in a macroscale regime, the effects of the random force

do not change significantly the bulk motion that is transporting the cells; therefore, the

force term might be disregarded and the SDPD equations are reduced to the standard

SPH formulation. For the transport inside one of the cells, however, diffusion occurs in

a meso/microscale regime, thus SSA could be used to resolve interactions.

2.3.2 Algorithm

Our algorithm utilizes a first order operator splitting method to decouple and simulta-

neously solve the SDPD fluid dynamics, the SDPD deterministic reaction-diffusion, and

the SSA stochastic reaction-diffusion equations over the same time interval [t, t + τstep].

First, we time integrate equations (2.15), (2.16), and (2.17) over the interval using an

explicit trapezoidal method. Then, we execute the SSA chemical reaction simulation

[Algorithm 4] within each voxel/SDPD particle. Finally, we execute the SSA diffusion

simulation [Algorithm 2] between all voxel/SDPD particles. The procedure to solve the

full system is shown in Algorithm 3.
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Algorithm 3 Hybrid SDPD-SSA method
Input:

1: Domain region and boundary conditions,
2: Initial Particle Positions/masses/velocities,
3: Particle pair interactions,
4: Set of SDPD species: diffusion coefficients & initial concentrations,
5: Set of SDPD reactions,
6: Set of SSA species: diffusion coefficients & initial populations,
7: Set of SSA reactions,
8: Integration timestep τstep, h, ρ, e, tfinal

Output: At each sample time, for each particle: position, velocity, concentration of each
SDPD species, population of each SSA species.

9: t = 0
10: while t < tfinal do
11: Solve for new position of SDPD particles [Eq.(2.15)]
12: Solve for new velocity of SDPD particles [Eq.(2.16)]
13: Solve deterministic reaction-diffusion [Eq.(2.17)]
14: Solve SSA reactions [Algorithm 4]
15: Solve SSA diffusion [Algorithm 2]
16: t = t+ τstep
17: end while

2.4 Results

In this section we provide experimental validations of the proposed hybrid method.

Section A discusses a one-dimensional, stationary reaction-diffusion problem, and Sec-

tion B compares results of a classical advection-diffusion problem with the literature.

Validations for 1D and 2D diffusion are provided in the Supplementary Information.

2.4.1 Validation for one-dimensional diffusion

The first validation case to be considered is the one-dimensional transient, isotropic

diffusion problem. Dirichlet boundary conditions are imposed on both sides of the do-

main, and the initial concentration of the domain is kept as zero. The physical model of
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the problem is depicted in Fig. 2.2a. All of the physical parameters are expressed in SI

units.

The concentration of an arbitrary species C(x, t) : [0, 1] × [0,∞) → < evolves along

time in a domain Ω = [0, 1]. The mathematical model is given by:

∂C

∂t
= κ

∂2C

∂x2
, (2.29)

with Dirichlet boundary conditions C(0, t) = C0, C(1, t) = 0 and initial condition

C(x, 0) = 0. The initial-boundary value problem can be solved analytically, using sepa-

ration of variables. The solution has the form:

C(x, t) = C0(−x+ 1)−
∞∑
n=1

(
2C0

nπ

)
sin(nπx)e−n

2π2κt. (2.30)

The problem is solved using both SSA and SDPD diffusion formulations. Boundary

conditions are modeled as layers of particles with fixed imposed concentrations. The

mass diffusivity κ = 0.1[m2/s] is kept constant, and a total of three levels of refinement

were used, with the distance between particles ∆x = 1/16, 1/32 and 1/64. A time step

∆t = 10−4[s] was used to ensure stability.

Due the stochastic nature of the SSA algorithm, results were rendered as averages of

multiple realizations in order to be compared with the SDPD and exact solutions. For

all of the three cases considered, Nr = 100 realizations were performed. Hence, the SSA

results should be interpreted as first-order statistical moments, i.e., average and standard

deviation.

Temporal profiles comparing SSA and SDPD with the exact solution are shown in

Fig. 2.2b. A quick analysis of the curves show that the SSA solution is in good agreement

with the exact solution, with larger deviations in the central region of the domain. Such

difference can be explained due to the increase of the number of possible resulting states

28



Resolving multiple scales: a new SDPD-sSSA method for advection-diffusion-reactions problems
Chapter 2

Table 2.1: Results: validation of 1D transient diffusion.

∆x N εSDPD1 εSSA2 C0

1/16 17 6.617× 10−4 8.514× 10−4 1.6× 105

1/32 33 4.669× 10−4 5.278× 10−4 3.2× 105

1/64 65 3.764× 10−4 8.070× 10−4 6.4× 105

of the system. Similarly, time also has an influence in the deviation: as time passes, the

distance from the deterministic region (initial condition) increases.

Table 2.1 shows the quantitative results obtained. Errors εSDPD and εSSA were com-

puted using the L2 norm of the difference between the present method and reference

solutions, normalized by the number of particles in the domain, i.e.,

ε =

√∑N
n=1(Ci − Cref

i )2

C0N
, (2.31)

where Cref
i is a reference concentration, e.g., the exact solution, when available, C0 is a

normalization factor and N is the number of particles considered. A quick analysis of

Table 2.1 shows that the errors using the traditional SDPD formulation have the same

order of magnitude as those of the SSA-based transport. However, it is important to

highlight that Lagrangian methods typically have optimal accuracy at equally-spaced,

stationary lattices, as in the present validation case. Heterogeneous particle distribu-

tions caused by the irregular displacement of particles is a primary source of errors in

Lagrangian methods based on kernel interpolation, such as SPH[57].
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Figure 2.2: (a) Schematic of diffusion in a slab, with initial and boundary conditions.
(b) Comparison of profiles of the normalized concentration for selected times (bottom
to top: t = 0.01, 0.02, 0.04, 0.08, 0.16 and 1.0[s]).

2.4.2 Validation for two-dimensional diffusion

The next validation case consists of a two-dimensional, steady-state, isotropic dif-

fusion problem in a square region Ω = [0, 1] × [0, 1], with a non-homogeneous Dirich-

let boundary condition C0 in the upper wall, and homogeneous conditions on the re-

maining boundaries, as shown in Fig. 2.3a. The initial condition is homogeneous, i.e.,

C(x, t = 0) = 0, ∀x ∈ Ω | x 6= ∂Ω. We seek to find the steady-state by evolving the

problem in time until it reaches the steady-state. The mathematical model is given by

∂C

∂t
= κ∇2C, (2.32)
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where the steady-state exact solution is known to have the form

C(x, y) =
∞∑
n=1

2C0(1− (−1)n)

nπ

sin(nπx) sinh(nπy)

sinh(nπ)
. (2.33)

Simulations were performed using 172, 332 and 652 equally-spaced particles distributed

in a square domain of length L = 1. Dirichlet boundary conditions are modeled as layers

of particles with fixed imposed concentrations, avoiding the truncation of the kernel in

near-boundary regions. The mass diffusivity κ = 10−2[m2/s] is kept constant, and a time

step ∆t = 10−2[s] was used.

A qualitative plot of the level set curves of the normalized concentration is described

by Fig. 2.3b. Clearly, the SSA diffusion captured the physics of the problem, as the

temporal average profiles described mostly overlap the exact solution.
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Figure 2.3: (a) Schematic of diffusion in a flat plate, with initial and boundary
conditions. (b) Level set curves of the normalized concentration C/C0 at steady-state,
for 332 particles. (c) Horizontal and (d) vertical centerline profiles of the normalized
concentration at steady-state, for the case with for N = 332 particles. SSA results
were averaged over Nr = 50 realizations.

Figures 2.3c-2.3d show the horizontal and vertical centerline profiles of the normalized

concentration C/C0 at steady-state. Profiles of SSA-resolved concentrations, along with

the standard deviation bars, were obtained as averages over Nr = 50 realizations. The

analysis of these results show that standard deviations are smaller in the y-direction (Fig.

2.3d) than in the x-direction (Fig. 2.3c). As depicted in 2.3b, these errors are larger for

smaller values of C/C0. Since the horizontal centerline is located in the region 0 .

C/C0 . 0.3 (i.e., smaller values of C/C0), the occurrence of larger standard deviations

is naturally expected.
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Table 2.2: Results: diffusion in a flat plate.

∆x N εSDPD3 εSSA4 C0

1/16 172 2.337× 10−4 2.902× 10−4 2.890× 105

1/32 332 5.818× 10−5 1.294× 10−4 1.089× 106

1/64 652 1.438× 10−5 2.043× 10−4 4.225× 106

A list of the estimated L2-norm errors is summarized in Table 3.4. Results of SSA and

SDPD-based diffusion are comparable, with SSA errors about one order of magnitude

larger than SDPD.

2.4.3 Validation for one-dimensional reaction-diffusion

The diffusion cases presented so far validated the diffusion treatment with sSSA

and SDPD for Dirichlet boundary conditions. We now proceed by allowing reactions

of different species to take place. The following test case was also used in the validation

of the software Stochastic Simulation Service (StochSS [64]), for the case of a three-

dimensional cylinder. For this case, all of the physical parameters are expressed in SI

units.

Consider a domain Ω = [0, 1], with non-homogeneous Dirichlet boundary conditions

imposed in the left and right walls. The walls are constrained with imposed concentra-

tions arbitrary species CA and CB, as depicted in Fig. 2.4a. The initial conditions are

homogeneous, CA(x, t = 0) = CB(x, t = 0) = 0, ∀x ∈ Ω | x 6= ∂Ω.

Species CA and CB interact with each other via mass action at a constant kinetic

rate kAB, leading to annihilation, i.e., CA + CB
kAB−−→ ∅. The mathematical model that

describes the system is given by
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∂

∂t

CA
CB

 =

κA 0

0 κB

 ∂2

∂x2

CA
CB

+

RA

RB

 , (2.34)

where κA, κB are the mass diffusivities, and RA, RB denote the reaction source terms.

Based on the law of mass action, the reaction terms are given by

RA

RB

 =

−kABCACB
−kABCACB

 . (2.35)

The resulting system is a set of non-linear, coupled, second-order partial differential

equations. Since there is no systematic way of obtaining the exact solution of this initial-

boundary value problem, we propose its validation using high-fidelity numerical data as

a reference. Thus, we performed the validation using an in-house code that solves the

aforementioned problem using a 6th order tridiagonal compact finite-difference scheme

[65], with grid spacing equivalent to the distance between particles used in the spatial

SSA and SDPD simulations. The source code for our implementation of this solver is

included as a file in the Supplementary Material.

Numerical simulations were performed using mass diffusivities κA = κB = 0.1[m2/s]

and reaction kinetic rate kAB = 0.1[s−1molecules−1]. Three levels of spatial refinement

were used: 17, 33 and 65 equally-spaced particles, spaced ∆x = 1/16, 1/32, 1/64 [m] of

each other, respectively. A comparison of the concentration profiles solved using SSA and

SDPD and contrasted with the compact finite difference solution is shown in Fig. 2.4b.

SSA solutions were obtained as an average of Nr = 100 realizations.

Results show good agreement with the high-order reference solution. As expected,
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Figure 2.4: (a) Schematic of degradation reaction of two arbitrary species, with initial
and boundary conditions. (b) Plot of the concentration of the chemical species along
the length of the cylindrical domain, at t = 0.2, 0.4, 0.6, 0.8 and 1.0[s] for N = 33
particles.

Table 2.3: Estimated errors of reaction-diffusion in a cylinder.

∆x N εSDPDa εSSAb C0

1/16 17 1.856× 10−4 7.285× 10−4 1.6× 105

1/32 33 1.698× 10−4 5.334× 10−4 3.2× 105

1/64 65 2.325× 10−4 6.644× 10−4 6.4× 105

a Error computed at steady-state, t = 100.
b Error computed based at the mean profile of Nr = 100 at steady-state.

the concentration curves monotonically decrease towards the half-length of the domain,

due to the symmetric nature of the problem.

Table 3.5 summarizes the errors for each simulation. Errors with SSA and SDPD

showed the same order of magnitude, which indicates that SSA-based reaction-diffusion

is able to accurately predict the physics of the problem. This result, along with the

diffusion validations, indicate that there is no penalty in using SSA except for the burden

of over-resolving scales, which increases the computational effort. However, notice that

the opposite is not true, i.e., the usage of a deterministic approach does not necessarily

reproduce the physics of the problem, as stochastic effects are relevant for Kn ≥ 10−1.
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Thus, our method allows the simulation of cases even when it is not clear whether the

stochastic effects are relevant or not, covering the whole spectrum of Knudsen numbers.

2.4.4 Boundary condition

For the hybrid SSA-SDPD and SDPD simulations, we adopted two different types of

boundary conditions: in the y-direction, walls were modeled assuming perfectly elastic

collisions, whereas in the x-direction we assumed periodic boundary conditions. The

reason for the latter is to avoid the extra computational effort of destroying particles as

they leave the domain and creating new ones at the inlets. Since particles that leave the

domain in the x-direction are re-injected back into the chamber, these particles require

a special type of boundary treatment: their concentrations and velocities are enforced

according to the boundary conditions described in Fig. 6a using an approximation of non-

reflexive boundary condition, known as sponge layer [66]. In this approach, we enforce

the desired velocity and concentration fields of particles within the sponge zone using a

smoothing function

φ(x) = B

(
x− xs
xe − xs

)n
, (0 ≤ x ≤ xe), (2.36)

where xs and xe denote the start and end x-coordinate of the sponge zone, respectively.

Parameters B and n are adjustment constants that affect the propagation speed for the

absorbing boundary condition, taken here as B = 1 and n = 3. Thus, in the interval

0 ≤ x ≤ xe, the velocity and concentration of particle i crossing the upper inlet region

change smoothly to target values vtarget = vin and Ctarget = CL
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vi ← vi − (vi − vtarget)φ(xi), (2.37)

Ci ← Ci − (Ci −Ctarget)φ(xi), (2.38)

thus approximating the flow inlet condition depicted in Fig. 6a in the main text.

2.4.5 Application: micro-channel reactive flow past a cell

We apply our methodology to perform a challenging simulation of biological signifi-

cance representing a reactive micro-channel flow past a yeast cell that combines advection,

diffusion, and reaction. The typical experiment, depicted schematically in Fig. 2.6a, con-

sists of a microfluidics chamber with cells immersed in a liquid working media. The

system, initially at rest, starts to experience mixing when at t > 0 two different flu-

ids start to flow along the channel from different inlets. A solution containing working

fluid and a diluted species (the mating pheromone alpha-factor, denoted by L) is re-

leased through one of the inlets, while through the other inlet, working fluid alone is

injected into the system. Figure 2.5 shows a diagram of the microfludic Y-chamber that

our simulation recapitulates.
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Figure 2.5: (a) Schematic diagram of microfluidics Y-chamber. (b) Images of device at
inlet junction with cell chamber. Image of the fluorescent dye Dextran3000-TRITC, a
tracer for the pheromone α-factor, as it flows from left to right and diffuses from top
to bottom (top right). Bright-field image of cells attached to floor of the cell chamber
subjected to the flow and pheromone gradient (bottom right). Scale bar = 20 µm.

As the flow develops, L reacts with the alpha-factor receptor R located at the cell

surface, producing a third species, RL (receptor bound to ligand). We assume that the

association reaction, R+L→ RL occurs at a rate kRL[R][L]. Similarly, the dissociation

reaction RL→ R + L also takes place in the system, and occurs at a rate kRLm[RL].

A general deterministic mathematical model that describes the system is given by

Eqs. (3.1)-(3.3) which can be conveniently written in a non-dimensional form. The ref-

erence parameters, evaluated using the dimensional parameters described in Table 2.4,

are given by:
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Table 2.4: Dimensional parameters used in the micro-channel
numerical experiment.

Parameter Description Value

κL α-factor (L) diffusivity 347 [µm2/s]
ν kinematic viscosity 10−6 [m2/s]

CL|x=0 L concentration at inlet 1.0[mol/m3]
CR|cell R concentration at cell wall 1.0[mol/m3]
kRL kinetic association rate 1.0[m3/(mol · s)]
kRLm kinetic dissociation rate 1.0 [s−1]
D diameter of the cell 5.0 [µm]
H channel height 100.0 [µm]

Lchannel channel length 200.0 [µm]
Lcell streamwise cell position 25.0 [µm]
lcell thickness of cell membrane 1.0 [µm]
vo reference velocity 2.5× 10−4 [m/s]
xo reference length H [m/s]

mol/m3 is the molar concentration.

xo = H, (2.39)

vo = xo/to, (2.40)

Co = CL|x=0, (2.41)

Po = ρov
2
o , (2.42)

where H,CL|x=0 and ρo are respectively the channel height, the concentration of alpha-

factor at the inlet, and a reference density, considered here as unity. Using these dimen-

sionless groups, Eqs. (3.1)-(3.3) are written as
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∂ρ∗

∂t∗
= −ρ∗∇∗ · v∗, (2.43)

∂v∗

∂t∗
= − 1

ρ∗
∇∗p∗ +

1

Re
∇2v∗, (2.44)

∂

∂t
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C∗R

C∗L

C∗RL

 =
1

Pe
∇∗2
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C∗R

C∗L

C∗RL

+


R∗R

R∗L

R∗RL

 , (2.45)

where R∗A, R
∗
B and R∗C are given by the law of mass action as


R∗R

R∗L

R∗RL

 =


−1 1

−1 1

1 −1


C∗RC∗L 0

0 C∗RL


DaI/Pe

DaII/Pe

 . (2.46)

The system now depends only on four dimensionless groups: DaI, DaII, P e and Re.

In the present work, we define these quantities as

DaI =
τdiff

τreactI

=
x2
okRLCo
κL

, (2.47)

DaII =
τdiff

τreactII

=
x2
okRLm
κL

, (2.48)

Pe =
xovo
κL

, (2.49)

Re =
xovo
ν
. (2.50)

The first and second Damköhler numbers, denoted by DaI, DaII, are defined as the

ratio between an arbitrary mixing time scale τmix and the chemical time scale of a n-
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th order reaction τreact. It is important to highlight that the mixing scale is problem-

dependent; for combustion-dominated flows, the mixing scale is related to the turbulent

time scale [67, 68], whereas in diffusion-dominant problems, the mixing scale is related

to the molecular diffusion time scale [69, 70, 71, 72].

Table 2.5: Dimensionless groups used in the
numerical experiment.

Group Description Value

DaI first Damköhler number 28.82
DaII second Damköhler number 28.82
Pe mass Péclet number 72.06
Re Reynolds number 2.5× 10−2

The mass Péclet number, denoted by Pe, describes the ratio of advection and molec-

ular diffusion transport [71, 73]. Similarly, the Reynolds number Re describes the ratio

of inertial to viscous transport in the flow[73].

The problem was solved using three different approaches: the present method, i.e.,

hybrid sSSA-SDPD, SDPD, and the finite element method (FEM). All of the cases were

computed using the parameters described in Tables 2.4-2.5. Both hybrid sSSA-SDPD and

SDPD simulations were performed using N = 1250 particles. The number of molecules

per particle was taken as Nm = 1600. Note that because of the low level of parallelism of

the SSA algorithm, simulations of the hybrid method must run in serial, which restricts

the maximum number of particles involved in the simulation, as well as the number

of realizations. As an example, we show only one SSA realization. The finite element

problem was modeled using the software Comsol Multiphysics (v5.2a), using second-order

shape functions in a mesh of approximately 17000 elements. Equations (2.44)-(2.45) were

solved assuming incompressibility.

A qualitative comparison between the concentration of alpha-factor, CL, is depicted

in Fig. 2.6b. At time t∗ = 2, the results show qualitative agreement. A mixing layer
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Figure 2.6: (a) Upper: schematic of our model of a yeast cell in a microfluidics chan-
nel flow containing a pheromone gradient. The working fluid is initially at rest, and
at time t > 0, two inlets start to inject fluid into the chamber; the upper inlet consists
of a diluted mixture of working fluid and alpha-factor L, and the lower inlet injects
working fluid into the system. (a) Lower: magnified region around the cell, illustrat-
ing the particles and their initial velocities. (b) Contour plots of the dimensionless
velocity magnitude field, |v∗|, at t∗ = 2, obtained using the proposed hybrid method
(upper) and FEM (lower). (c) Comparison of the dimensionless concentration profiles
of alpha-factor, C∗L, between hybrid sSSA-SDPD, SDPD and finite element method
(FEM), measured across the y∗ centerline, at time t∗ = 2. Results shown in (b) were
interpolated using a Gaussian kernel, for clarity purposes.
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is formed in the first half of the channel, with the hybrid method showing a delay in

the frontal concentration when compared with FEM solution, indicating differences in

the velocity field. As the flow contours around the cell, the mixing layer is interrupted,

causing a separation of the concentration field into two fronts.

Figure 2.6c provides a quantitative comparison between the algorithms. The y∗-

centerline profiles of C∗RL shown in Fig. 2.6c demonstrate that despite its low resolution,

the hybrid method still captured the physics of the problem. Note that the curves are

in phase with each other. Still in Fig. 2.6c, it is noticeable that the results are in far

better agreement with the FEM in the regions that are away from the boundaries. A

possible cause of this discrepancy originates from the way non-slip boundary conditions

are imposed. For simplicity, in this example, the cell was modeled using stationary par-

ticles, which may introduce errors due to the boundary curvature [74]. In particular, the

usage of more sophisticated boundary treatments has shown to be effective in improving

stability and accuracy of simulations [74, 75].

Finally, a comparison of the formation of species RL in the cell wall region for all three

methods is shown in Fig. 2.7. This figure illustrates that SSA results can significantly

differ from those of SDPD and FEM, depending on the species concentrations involved

and the number of realizations performed. The explanation of the differences between

the hybrid sSSA-SDPD method and the FEM results depend on how significant the

stochastic effects are, and how well the PDEs used in FEM and the SDEs of SDPD can

describe the reaction-diffusion process.

The discrepancies observed in Fig. 2.7 illustrate a case where the stochastic effects

are relevant enough that deterministic methods can no longer predict the physics of the

problem accurately. Furthermore, this typical biological problem shows that it is not

always obvious when stochastic effects will be significant, as the continuum hypothesis

might hold true for momentum transport but not for reactive mass transfer. The proposed
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hybrid method, however, allows for the correct representation of the physics of this class of

problems. In particular, the method bridges the gap between stochastic and deterministic

advection-diffusion-reaction systems in cell biology. In summary, the hybrid sSSA-SDPD

method enables the simulation of systems spanning a large range of Knudsen numbers,

without any ad hoc assumption about the Knudsen number or the relevance of stochastic

transport.

Figure 2.7: Top: dimensionless concentration of species RL at the cell wall, C∗RL, at
t∗ = 1 (equivalent to physical time t = 0.4[s]), obtained by: (a) SDPD, (b) hybrid
sSSA-SDPD method and (c) finite element method. Bottom: dimensionless concen-
tration of species RL at the cell wall, C∗RL, at t∗ = 2 (equivalent to physical time
t = 0.8[s]), obtained by: (d) SDPD, (e) sSSA-SDPD method and (f) finite element
method. Note that the deterministic SDPD simulations in (a) and (d) match closely
the finite element results in (c) and (f). However, the sSSA-SDPD simulations in
(b) and (e) are able to capture the discrete stochastic dynamics of this subcellular
biological process.
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Resolving moving boundaries: an

ALE-SPH method for fluid-structure

interaction

3.1 Background

Smoothed particle hydrodynamics (SPH) is a meshless particle method based on

a Lagrangian formulation [50], proposed independently by [2] and [3] as a method to

simulate astrophysical problems. Since its development, SPH has been used in a wide

range of applications, including colloidal suspensions [4, 5], nanofluidics [6], blood flow

[7, 8], multiphase flows [9], polymer chains [10] and red blood cell deformations [76].

In contrast to grid-based methods, SPH uses a kernel estimation at Lagrangian points

(particles) to approximate the partial differential equations (PDEs) that govern the sys-

tem of interest. When compared with standard mesh-based methods such as finite el-

ement (FEM), finite difference (FDM) and finite volume (FVM), SPH offers attractive

advantages. As a consequence of its Lagrangian description, advection is treated exactly,
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allowing the simulation of arbitrary free-shear flow in systems with complex geometries

without the need to use an adaptive mesh or interface tracking [11, 12]. Another im-

portant feature of the method is its inherent adaptivity, as particle attributes evolve

according to their material time derivative [13]. More recently, the development of multi-

resolution SPH brings the method closer to industrial applications by adaptively increas-

ing the resolution by means of splitting particles in regions of interest, and coalescing

particles in regions where lower resolutions suffices [14, 15, 16, 17, 18].

Despite all of these advantages, the treatment of solid wall boundaries in SPH remains

a challenge. Recent studies [77, 78, 75, 56, 79, 80, 81, 82, 83, 84, 85] have demonstrated

that despite several improvements, the development of a robust, efficient and accurate

method capable of preventing particle penetration under no-slip and partial-slip condi-

tions remains an open problem. In fact, some consider it to be one of the grand challenges

for the advancement of SPH [86].

The work of [87] provides a comprehensive review of the available solid wall models,

comparing the performance of the most widely-used strategies and highlighting their ca-

pabilities and drawbacks. They classify the different models of solid boundaries into three

main groups: (i) semi-analytical, (ii) ghost particles and (iii) boundary force methods.

In the semi-analytical approach [80], surface integrals must be approximated using the

SPH formalism. A limitation of this class of methods is the complexity of the algorithm,

as many modifications are necessary to help prevent particle penetration on the solid

boundary. In the ghost particles approach [88], a set of fictitious particles are created in

the wall in order to guarantee non-slip and prevent penetration. Despite being concep-

tually attractive, the treatment of complex geometries is not straightforward. Similarly

challenging, the computational algorithm typically requires the creation/destruction of

particles at specific wall positions at each time step, resulting in memory access overheads

and additional communication in otherwise parallel tasks.
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These limitations make the class of boundary force methods a simple and attractive

alternative. As a common feature, these methods use pre-determined layers of particles

to model boundaries. The variants in this class differ in the way velocity and density are

communicated between wall and fluid particles. For example, in the method developed

by [56], a Lennard-Jones boundary force is added to the momentum equation for particles

in the neighborhood of the walls, in a similar manner as the forces used in the immersed

boundary method [89]. This approach, despite its simplicity, is effective for a wide

range of problems, provided that all the parameters of the boundary force are calibrated

correctly.

In the work of [75], the pressure and velocity of boundary particles are computed us-

ing interpolation of the fluid field, thus implicitly enforcing the impermeability condition

of rigid walls. Unlike the method of [56], this method does not require parameter cali-

bration. In fact, the detailed study of [87] concluded that the method of [75] is overall

the best method available. More recently, [90] obtained good results for an enhanced

incompressible SPH method and a pressure-based, physically-derived boundary condi-

tion. Similarly, [91] obtained excellent results and nearly quadratic convergence by using

stabilization techniques to achieve higher accuracy. However, both frameworks used the

boundary condition proposed by [75] in which there is no mathematical guarantee that

particle penetration is prevented.

Recently a new method, designed primarily for dissipative particle dynamics (DPD)

systems, was proposed by [92]. This method introduces an indicator variable, which

measures the boundary volume fraction (BVF) of particles near solid walls, and employs

a predictor-corrector integration to prevent particle penetration. As a result, the fluid

particles become autonomous to find wall surfaces in arbitrarily shaped objects, based

solely on the coordinates of their neighboring particles. This method prevents particle

penetration with minimal computational overhead by using a local formulation.
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In this context we propose a new SPH formulation combining the BVF wall treatment

with the transport-velocity discretization. The resulting method, named SPH-BVF, is

versatile, accurate and allows the modeling of fixed and moving boundaries. In contrast

to the method proposed in [75], the impermeability is explicitly enforced during the time

integration, and no further correction of the pressure field is required. Furthermore, we

improve the BVF method for the case of moving boundaries by using weighted interpo-

lations of the solid particles to determine the wall velocity and accelerations, resulting

in an algorithm capable of dealing with deforming boundaries. Finally, we introduce

the reaction-diffusion equation in our formulation, extending the usage of the method to

conjugate mass transport problems with moving boundaries, enabling simulations where

boundary deformations are caused by reaction-diffusion events. This step is crucial in

enabling SPH to simulate certain biological systems in which enzymatic reactions trigger

processes that modify the boundary properties.

The main features of the SPH-BVF method include (a) algorithmic simplicity; (b)

retaining the locality and intrinsic parallelism of the SPH method at the cost of a small

overhead; (c) preventing the three major problems in standard SPH methods: parti-

cle penetration at the boundaries, tension instabilities and anisotropic structures. We

demonstrate these capabilities and validate the proposed method using canonical exam-

ples and compare the results with the literature. Finally, we test the new method on a

biomechanical cell wall polarization problem that incorporates multiple physics (species

transport, solid and fluid mechanics), and thus could not be solved by existing SPH

methods and remains challenging for advanced commercial multiphysics FEM tools.

This chapter is organized as follows: Section 3.2 briefly describes the transport-

velocity SPH formulation. Section 3.3 provides the additional equations required for

the SPH-BVF method and its algorithm. Sections 3.4 and 3.5 present validations, appli-

cations, and discussion of relevant results. Finally, conclusions and future perspectives
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are discussed in Chapter 4.

3.2 SPH formulation

In this section we provide a brief overview of the governing equations, the SPH dis-

cretizations and the temporal integration method proposed.

3.2.1 Governing equations and transport-velocity formulation

The continuum mechanics equations for the conservation of mass, linear momentum

and concentration of species in a Lagrangian reference frame are given by

dρ

dt
= −ρ∇ · v, (3.1)

dv

dt
=

1

ρ
∇ · σ + FB, (3.2)

dC

dt
= ∇ · (α∇C) +R, (3.3)

where ρ, v, σ, FB, C, α and R denote the fluid density, velocity, Cauchy stress tensor,

body force, concentration, mass diffusivity and reaction term, respectively. The d(·)/dt

operator denotes the material derivative [48].

One of the most relevant problems of standard, purely Lagrangian SPH discretizations

of Eqs. (3.1)-(3.3) is the onset of anisotropic particle structures formed as the particles

follow the Lagrangian trajectories. This problem was first addressed in [93] by introducing

the concept of particle shifting, where a small perturbation is applied to the particle

trajectories, reducing the formation of anisotropic structures. Later, the work of [94]

applied particle shifting to a weakly compressible SPH formulation, obtaining improved

49



Resolving moving boundaries: an ALE-SPH method for fluid-structure interaction Chapter 3

results in fluid flow problems. More recent improvements include the usage of particle

shifting in free surface flows for incompressible SPH formulations [53], and stabilized

particle shifting techniques [95]. [96] clarified that this issue is particularly relevant in

fluid flows in which there is a natural tendency of particle alignment, such as flows subject

to stretching and shear stresses. A similarly relevant problem is the so-called tensile

instability, a phenomenon that causes particles to clump when subject to a tension stress

state [58], being particularly relevant in fluid-structure interactions, solids under large

deformations and flows under high Reynolds numbers. Incidentally, both of these limiting

issues are alleviated by using the transport-velocity formulation, proposed by [75] for

fluids and later extended to solid mechanics by [97]. The transport-velocity formulation

consists of a particular type of Arbitrary Lagrangian Eulerian (ALE) formalism [96],

where particles are advected by an arbitrary transport velocity, specifically tuned so that

the pressure field is kept positive, thus avoiding the tensile instability, while at the same

time it causes a small shift in the particle trajectories, avoiding the formation of coherent

structures of particles. For a detailed numerical analysis of the transport-velocity SPH

formulation, we refer the reader to [98].

The transport-velocity equations are obtained by rewriting the material derivative

operator for a particle moving with a modified advection velocity ṽ as

d̃(•)
dt

=
∂(•)
∂t

+ ṽ ·∇(•). (3.4)

The presence of the modified transport velocity, ṽ, modifies the material derivative

operator with two relative velocity terms, leading to the following identity

d(•)
dt

=
d̃(•)
dt

+ ∇ · [(•)(v − ṽ)]− (•)∇ · (v − ṽ), (3.5)

where, due to the weakly compressible approximation [11, 97], it is safe to assume that
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∇ · (v − ṽ) ≈ 0. Thus, the transport-velocity formulation of the conservation laws,

Eqs. (3.1)-(3.3), yields

d̃ρ

dt
= −ρ∇ · v −∇ · [ρ(v − ṽ)] , (3.6)

d̃v

dt
=

1

ρ
∇σ + FB −∇ · [v(v − ṽ)] , (3.7)

d̃C

dt
= ∇ · (α∇C) +R−∇ · [C(v − ṽ)] . (3.8)

Equations (3.6)-(3.8) form the set of governing equations of the SPH-BVF formula-

tion. Additional conservation laws can be added as needed, using the identity provided

by Eq. (3.5). Notice that this formulation can be seen as a generic version of SPH schemes

for an arbitrary reference frame [96], where ṽ is the referential velocity. For instance, if

ṽ = v, Eqs. (3.6)-(3.8) reduce to the classical, purely Lagrangian formulation. In con-

trast, setting ṽ = 0 results in a formulation for an inertial (Eulerian) reference frame. In

the following sections, we discuss the usage of ṽ and how this term is discretized.

3.2.2 SPH discretization

In SPH, the mapping between the primitive variables (mass, momentum and con-

centrations) and the discrete particle system is done using two different approximations:

a radial basis function kernel interpolation and a quadrature approximation. The ra-

dial basis function kernel interpolation consists of approximating a continuous function

f : R3 7→ R, defined at coordinates x in Ω ⊆ R3, by the integral equation with a smooth-

ing kernel function W with compact support h

f(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′. (3.9)

51



Resolving moving boundaries: an ALE-SPH method for fluid-structure interaction Chapter 3

The accuracy of the approximation in Eq. (3.9) depends on the choice of W . For the

sake of simplicity, we have adopted in this work the Lucy kernel, proposed by Lucy [3],

with xij = x− x′ and ξ = ||xij||2/h denoting a generalized coordinate

W (ξ) =


αD (1 + 3ξ) (1− ξ)3 , if 0 ≤ ξ ≤ 1,

0, otherwise,

(3.10)

and the spatial derivative

∇W =
x

x

dW

dξ
, (3.11)

where the normalization parameter αD depends on the dimensionality of the problem:

αD =


5/4h, if 1D,

5/πh2, if 2D,

105/16πh3, if 3D.

(3.12)

For details on choosing W , the reader may refer to the work of [12]. The second

approximation consists of rewriting the integral given by Eq. (3.9) as a discrete sum.

The domain Ω is then discretized using N particles, each located at coordinates xi. The

kernel approximations of f and ∇f are given by

fi ≈
N∑
j=1

mj

ρj
fjWij, (3.13)

∇fi ≈
N∑
j=1

mj

ρj
(fj ± fi)∇Wij, (3.14)
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where mj/ρj, 〈f〉i and 〈∇f〉i denote the number density (weight) of particle j, the kernel

approximations of the field f(x) and its gradient at position xi, respectively.

3.2.3 Stress description of solids and fluids

Equations (3.1)-(3.3) allow a common description of fluid and solid dynamics within

the same framework [97]. This facilitates the treatment of multiple materials in complex

physical problems, such as biological systems and multiphase flows. Different materials

can then be modeled using different constitutive relations for the Cauchy stress tensor

σ. For validation purposes, we use two types of materials: linear elastic solids and

Newtonian fluids. Thus,

σ =


−PI + S, for solids

−PI + 2ηε, for fluids,

(3.15)

where P , η are the pressure and viscosity, and S, ε, I denote the deviatoric stress, strain

and second-order identity tensors, respectively. Assuming Hooke’s law, the Jaumann rate

of the deviatoric stress tensor S is given by [58]

dS

dt
= 2G

[
ε− 1

3
Tr(ε)I

]
+ S · ωT + ω · S, (3.16)

where G is the shear modulus and ω is the rotation tensor. The kernel approximations

are used to discretize the spatial derivatives and primitive variables in the governing

equations, Eqs. (3.1)-(3.3). The resulting system of equations is given by
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dρi
dt

= ρi
∑
j

mj

ρj
∇Wij · vij (3.17)

−
∑
j

mj

ρj
∇Wij · [ρi(vi − ṽi) + ρj(vj − ṽj)] ,

dvi
dt

= −
∑
j

mj∇Wij· (3.18)

·
[(
σi
ρ2
i

+
σj
ρ2
j

)
−
(

Ai

ρ2
i

+
Aj

ρ2
j

)]
+
∑
j

mj
µij

ρiρj(x2
ij + εh2)

∇Wij · vij,

dCi
dt

=
∑
j

mj
αij(Cj − Ci)
ρiρj(x2

ij + εh2)
∇Wij · xij (3.19)

−
∑
j

mj

ρj
∇Wij · [Ci(vi − ṽi) + Cj(vj − ṽj)] ,

dSi
dt

= 2G

[
εi −

1

3
Tr(εi)I

]
+ Si · ωTi (3.20)

+ωi · Si,

where the strain and rotation tensors for each particle i in Eq. (3.20) are given by

εi =
∑
j

mj

2ρj

[
vij ⊗∇Wij + (vij ⊗∇Wij)

T
]
, (3.21)

ωi =
∑
j

mj

2ρj

[
vij ⊗∇Wij − (vij ⊗∇Wij)

T
]
, (3.22)

and the summations are performed over all neighboring particles of particle i that are

within the compact support of W , and vij = vi−vj. The term A = ρv(v−ṽ) denotes the

relative velocity tensor. The shear viscosity and mass diffusion coefficients are averaged

as µij = 2µiµj/(µi + µj) and αij = 2αiαj/(αi + αj). A small constant ε = 0.01 is added
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to the denominators of Eqs. (3.18)-(3.19) to prevent singularities.

The second summation in Eq. (3.18), introduced by [74], improves the stability of the

numerical method by acting as a diffusive term, while modeling the viscous force FV, in a

similar manner as the Von Neumann & Richtmyer’s artificial viscosity term used in most

standard SPH formulations [2, 99, 55], and has been used even for elastic solids [58]. In

the present work, we have adopted the artificial viscosity formulation, but it is important

to emphasize that the artificial viscosity term Eq.(3.18) is still an active area of research,

and to a certain extent and despite being widely used in the classic SPH literature, its

application makes the method case-dependent. A promising alternative to the artificial

term consists in reformulating the SPH convolution integrals by introducing only the

sufficient amount of dissipation by means of using a non-linear Riemann problem; this

technique, named Godunov SPH (GSPH), is known for achieving very low advection and

angular momentum conservation errors and no excessive diffusion, without the need for

tuning artificial viscosity terms [100, 101, 102].

The model described by Eqs. (3.17)-(3.19) is closed by a relationship between the

density and pressure field. For fluids, two different approaches are widely used in the

literature, namely: 1) treat the flow as incompressible, either by solving a pressure-

Poisson equation to obtain a divergence-free velocity field [52, 53], or by requiring as a

kinematic constraint that the volume of the fluid particles is constant [54]; or 2) treat it

as weakly compressible, and impose an equation of state [55, 31, 56, 75, 11, 12, 97]. We

follow the weakly compressible formulation, with an equation of state of the form

P = P0

[(
ρ

ρ0

)γ
− 1

]
, (3.23)

where P0, ρ0 denote reference pressure and density, respectively, and γ is the polytropic

constant. It is a common practice [56, 12] to select P0 = K = ρ0c
2
0/γ, where c0 is
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the artificial speed of sound and K is the compressibility modulus of the material. In

order to limit density variations and prevent excessive spurious pressure waves [11], we

choose γ = 1. Here, c0 is chosen based on the desired Mach number, Ma, and the

characteristic velocity of the problem Uc. For problems involving liquids, a typical choice

is to use Ma = 0.1 to reduce compressibility effects, and thus c0 = 10Uc. For solids,

previous works [58, 103, 97] have used the same formulation (P0 = ρ0c
2
0/γ), in which the

sound speed of the solid is computed using the shear modulus G and Poisson ratio of the

material, νp, as c0 =
√

2G(1− νp)/ρ0.

In addition, for solid particles, we suggest the addition of an artificial stress term to

Eq. (3.18), as described by [58], as we found that the transport-velocity formulation was

not capable of removing the tensile instability in solids completely without introducing

excessive particle distortion.

3.2.4 Defining the transport velocity

The transport-velocity formulation introduces the velocity of the reference frame,

ṽ, into Eqs. (3.6)-(3.8). This arbitrary velocity determines the nature of the reference

frame, adjusting the conservation laws to an Eulerian, Lagrangian or any arbitrary mode

in between these descriptions, therefore providing a arbitrary Lagrangian Eulerian (ALE)

formalism to SPH [96].

We adopt the transport velocity correction term [75] as our arbitrary velocity, which

has the form of a background pressure gradient

ṽ(t+ ∆t) = v(t) + ∆t

(
d̃v

dt
− 1

ρ
∇Pb

)
, (3.24)
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where the background pressure gradient is discretized as

fPB =

(
1

ρ
∇Pb

)
i

≈ Pb
∑
j

mj

ρ2
i

∇Wij (3.25)

and Pb is chosen as the reference pressure, P0. This choice is justified by the additional

benefit that this term acts as a self-relaxation mechanism [98] in the linear momentum

equation by balancing the actual hydrodynamic pressure gradient ∇P/ρ term, therefore

reducing the tension instability in the flow and greatly improving the overall accuracy of

the method.

3.2.5 Switch correction for pressure and filter

For fluid flows subject to large Reynolds numbers or shear effects, it has been reported

that the usage of the continuity equation, Eq. (3.17) may result in errors and spurious

pressure waves that deteriorate the accuracy of the numerical solution [104, 97]. In

order to overcome this issue, [11] proposed the computation of the density via interpola-

tion, which conserves mass exactly. Although these two formulations are mathematically

equivalent [55], it has been shown that the usage of the continuity equation within an

ALE framework results in smoother density fields [96]. However, experiments reported

by [105] have shown that the pressure can still attain negative values, causing instabilities

and numerical cavitation.

We propose the solution of the continuity equation, along with the usage of a pressure

switch to address the numerical cavitation problem, which filters negative pressures. Both

the filter and the switch are used only for fluid particles, as negative pressures are required

for compressive stress in solids. A similar procedure was proposed by [105]. This simple

correction is based on the identity
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∑∑∑
j

mj∇Wij ·
(
Pi
ρ2
i

+
Pj
ρ2
j

)
I = (3.26)

∑
j

mj∇Wij ·
(
Pj
ρ2
j

− Pi
ρ2
i

)
I + 2

Pi
ρ2
i

∑
j

mj∇Wij · I

and proceeds by dropping the second sum in Eq. (3.26) if the pressure is negative, i.e.,

(
1

ρ
∇P

)
i

=


∑
j

mj∇Wij · P+
ij I, if P+

ij ≥ 0

∑
j

mj∇Wij · P−ij I, else,

(3.27)

where the pairwise pressures P+
ij and P−ij are computed as

P+
ij =

(
Pj
ρ2
j

+
Pi
ρ2
i

)
, (3.28)

P−ij =

(
Pj
ρ2
j

− Pi
ρ2
i

)
. (3.29)

Finally, in order to damp high-frequency pressure waves and improve energy conser-

vation, we use a Shepard filter in the density field every Nf timesteps [106]

ρi =

∑
jmjWij∑
j
mj

ρj
Wij

, (3.30)

where the optimal frequency for filtering, Nf = 20, as reported by [104], was used.

3.2.6 Temporal integration

Following the practice of several authors [58, 51, 11], the integration of Eqs. (3.17)-

(3.20) was performed using a modified velocity-Verlet scheme. For the density and con-
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centration fields, we have adopted an explicit midpoint method. Specifically, considering

vi,xi, ρi, Ci,Si the unknowns of the system, and fρ,fv, fC , fS the right-hand sides of

Eqs. (3.17)-(3.20), respectively, the proposed numerical integration is given by

Step 1

(a) Initial half-steps

ρn+1/2 = ρn +
∆t

2
fn−1/2
ρ , (3.31)

vn+1/2 = vn +
∆t

2
fn−1/2
v , (3.32)

ṽn+1/2 = vn+1/2 +
∆t

2
f
n−1/2
PB , (3.33)

Cn+1/2 = Cn +
∆t

2
fnC , (3.34)

Sn+1/2 = Sn +
∆t

2
fnS . (3.35)

(b) Position update

xn+1 = xn + ∆t ṽn+1/2. (3.36)

Step 2

(a) Final half-steps

ρn+1 = ρn + ∆t fn+1/2
ρ , (3.37)

vn+1 = vn+1/2 +
∆t

2
fn+1/2
v (3.38)

Cn+1 = Cn + ∆t f
n+1/2
C , (3.39)

Sn+1 = Sn + ∆t f
n+1/2
S . (3.40)
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Although the method has two steps, notice that it requires the evaluation of the

particle forces only once per time step. A necessary condition for stability, given by the

Courant-Friedrichs-Lewy condition based on the artificial speed of sound c0, was used to

estimate a suitable time step ∆t for each simulation [12]

∆t ≤ C min

(
h

c0 + |Uc|
,
h2ρ

µ
,

√
h

g

)
, (3.41)

where g is the gravity acceleration, and a Courant number C = 0.25 was adopted.

3.3 Wall treatment: boundary volume fraction method

We start by considering a particle of fluid i, located at a weighted averaged distance d

from the wall. As depicted in Fig. 3.1, the region of influence around particle i, denoted by

Ω, has radius h. The shaded region represents the solid wall. We denote the intersection

of wall and region Ω by S.

Figure 3.1: Schematic showing the influence domain Ω around particle i, nearby wall
and intersection between Ω and the wall, denoted by S.

We assume that the curvature of the wall, κwall, is far smaller than the curvature of

Ω, κΩ. Following [92], we assign to particle i an extra variable, denoted by φ. We define
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φ as the ratio between the volumes of regions S and Ω, i.e., the boundary volume fraction

(BVF), given by

φ :=
V S

V Ω
. (3.42)

Notice that, for d = 0, particle i is located exactly at the wall, thus φ = 0.5. This

allows us to use the variable φ to act as an indicator function of how close a particle

is from the solid wall. It is important to highlight that the boundary volume fraction

interface cutoff of 0.5 makes sense only within a predictor-corrector temporal integration

scheme, as the theoretical value of φ = 0.5 at the interface is never met due to numerical

precision. Thus, the particle will have its trajectory corrected (in the corrector step) only

when it reaches the wall (in the predictor step). Nevertheless, pairwise and viscous effects

of the wall particles remain in effect within the cutoff of the kernel function adopted, as

in other SPH methods.

Assuming that both the wall and the support domain Ω have sufficient particles, we

can approximate the volumes of regions S and Ω in Eq. (3.42) using the SPH formalism

V S
i =

∑
j∈S

mj

ρj
VjWij =

∑
j∈S

(
mj

ρj

)2

Wij, (3.43)

V Ω
i =

∑
j∈Ω

mj

ρj
VjWij =

∑
j∈Ω

(
mj

ρj

)2

Wij, (3.44)

where Ω is the total set of particles, and S is the subset of solid particles. Thus, the BVF

of particle i, φi, written in terms of SPH formalism is given by

φi =

∑
j∈S

(
mj

ρj

)2

Wij∑
j∈Ω

(
mj

ρj

)2

Wij

. (3.45)
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Compared to the standard SPH algorithm, the only major modification regarding

the wall treatment in the SPH-BVF method is that the numerical integration of Eqs.

(3.1)-(3.3) now includes an additional constraint: the following correction is performed

in the velocity field of particle i if φi ≥ 0.5, i.e., if particle i penetrates the wall, we

correct the velocity of particle i by reassigning its velocity to the value calculated using

the bounce-back equation proposed by [92]

vcorrected
i = 2vwall

i + ∆tawall
i − vi + 2 max(0,vi · eni )eni , (3.46)

where en = nw/nw denotes the unit normal vector pointing outward from the wall

boundary, ∆t is the time step and vwall, awall are the local velocity and acceleration of

the boundary, respectively. This equation results from the collision of two particles of

arbitrary masses as described in [107] in the limit case where one particle possesses much

greater mass (m1 � m2) so that the inertial effects on the larger particle are negligible

compared to the smaller particle bouncing-back. Because the collision is considered

elastic, the conservation of energy is preserved. The normal vector for particle i, nwi , is

given by the gradient of φi:

nwi =

∑
j∈S

(
mj

ρj

)2

∇Wij∑
j∈Ω

(
mj

ρj

)2

Wij

. (3.47)

We propose the usage of a kernel-interpolated velocity and acceleration of solid par-

ticles, i.e., for a fluid particle i, its solid neighbor moves with
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vwall
i =

∑
j∈S vj

(
mj

ρj

)2

Wij∑
j∈S

(
mj

ρj

)2

Wij

, (3.48)

awall
i =

∑
j∈S aj

(
mj

ρj

)2

Wij∑
j∈S

(
mj

ρj

)2

Wij

, (3.49)

where the summations in Eqs. (3.48)-(3.49) are over the solid wall particles in the support

of particle i (S).

Algorithm 4 SPH-BVF method

Input: Given initial positions, velocities and concentrations of species for all particles i
at time t: xi,vi, Ci, and integration timestep ∆t.

Output: Positions, velocities and concentrations of species for all particles i at time
t+ ∆t.

1: Find forces, for all i:
2: for all i do
3: Compute SPH approximations, Eqs. (3.17)-(3.19).
4: Compute φi, Eq. (3.45).
5: end for
6: Perform temporal integration, for all i:
7: for all i do
8: After the modified velocity-Verlet final integration step (Step 2), perform BVF

correction:
9: if φi ≥ 0.5 then

10: vi ← 2vwall
i + ∆tawall

i − vi + 2 max(0,vi · eni )eni
11: end if
12: end for

Notice that the accuracy of the computation of the normal vector and the BVF is

strictly dependent on having enough particles to accurately represent the walls. Thus,

thin walls, regions of large curvature and large particle spacing among wall particles

are some of the limitations of the BVF method. In practice, we have found that three

layers of particles are typically enough to obtain accurate results, while slightly increasing
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the computational load of the method. However, the overall computational cost for the

present method must have the same order of magnitude as standard SPH, since the only

algorithmic addition in SPH-BVF is computing the normals and the additional BVF

field φi in Eq. (3.47), which can be performed in parallel with the evaluation of the

pairwise forces, with the advantage that fluid particle penetration is explicitly avoided.

A summary of the algorithm is provided in Algorithm 1.

3.4 Validation

In this section we validate the SPH-BVF method using several canonical exam-

ples. First, a Poiseuille flow simulation is used to validate and verify the convergence of the

fluid flow solver and the BVF boundary conditions. In addition, the new method is tested

for different kernels. In our second example we validate our method with the Taylor-Green

vortex flow problem and compare the results with the standard SPH method, showing

that the SPH-BVF method resolves the velocity decay accurately, without excessive dif-

fusion. Next, a lid-driven cavity flow is used to validate the fluid flow solver and the

BVF wall boundary conditions, which further validates our method over a wider range

of Reynolds numbers and demonstrates that fluid particles do not penetrate through the

walls. We validate the strong coupling of fluid flow and mass transport with a natural

convection flow, emphasizing the elimination of tensile instabilities and particle align-

ments, and also demonstrating our method on curved walls. In our fifth example, we

validate SPH-BVF for solid mechanics with an oscillating cantilever beam. This problem

demonstrates the use of our method on a moving solid under tension, and further shows

the elimination of tensile instability. Finally, we compare SPH-BVF with a finite element

method using a fluid-structure interaction problem. This example also demonstrates our

method in the context of sponge zones and flux boundary conditions.
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3.4.1 Wall boundary condition validation: Poiseuille flow

We validate the proposed wall boundary condition method with a laminar, two di-

mensional Poiseuille flow in a closed channel as performed by [108]. The flow is driven by

a constant volume force of magnitude 0.8 [ms−2], and periodic boundary conditions are

imposed in the streamwise (x)-direction. The channel width is assumed to be W = 1 [m],

where a fluid with viscosity ν = 10−1 [m2s−1] flows with a resulting Reynolds number

Re = 10. We have considered five different particle refinements, with Ny = 20, 40, 80, 160

and 320 particles in the cross-stream (y)-direction. In addition to the standard Lucy

kernel given by Eq. (3.10), we have performed convergence studies using the cubic spline

kernel [58] and the Wendland quintic kernel [109]. In all cases, the kernel cutoff is set to

h = 3∆p, which for a support of diameter 2h results in approximately 28 neighbors, and

∆p is the particle spacing.

For a fully-developed, steady-state flow, the analytical velocity profile of the flow in

the streamwise direction, va
x, is given by

va
x(y) = 4Re ν

y

W 2

(
1− y

W

)
, (3.50)

Based on these levels of particle refinement, and using the analytical solution given

by Eq. (3.50), we have performed a convergence study, taking as an error metric the L2

norm of the global error [108, 110]

L2 error =

√
1

Nf

∑
i∈fluid

(
va
x(yi)− v

sph
x,i

)2

, (3.51)

where Nf refers to the total number of fluid particles used in the L2 error summation.
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Figure 3.2: Results from the SPH-BVF method using the Lucy kernel: (a) Streamwise
profiles of a fully-developed, steady-state Poiseuille flow in a periodic channel, for
Ny = 20, 40, 80, 160 and 320 particles in the cross-stream direction. (b) Convergence
graph showing the L2 error versus the refinement. (c) Comparison of shear rate in
the lower part (0 ≤ y ≤ 0.5) of the channel.
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Table 3.1: Estimated errors and convergence rate of
Poiseuille flow for different kernels.

Kernel Ny L2 Errora

Converg.
rate,
p

Lucy 20 3.425 ×10−2 -
Lucy 40 6.598 ×10−3 2.376
Lucy 80 4.601 ×10−3 0.520
Lucy 160 1.505 ×10−3 1.612
Lucy 320 9.340 ×10−4 0.688

Cubic spline 20 2.169 ×10−2 -
Cubic spline 40 1.690 ×10−2 0.360
Cubic spline 80 9.512 ×10−3 0.828
Cubic spline 160 5.786 ×10−3 0.718
Cubic spline 320 6.620 ×10−4 -0.194

Wendland quintic 20 3.153 ×10−2 -
Wendland quintic 40 2.864 ×10−2 0.138
Wendland quintic 80 7.022 ×10−3 2.028
Wendland quintic 160 1.408 ×10−2 -1.003
Wendland quintic 320 1.206 ×10−2 0.223

a Error computed at steady-state, t = 100.

The errors obtained from the convergence study are provided in Table 3.1. The

streamwise velocity profile of the flow is shown in Fig. 3.2-(a) for all of the refinement

levels. As reported in [108], we noticed that the error of the proposed BVF boundary con-

dition has a non-constant slope, oscillating between first and second order convergence,

as is observed under the Lennard-Jones and fictitious particles boundary conditions. This

behavior is depicted in Fig. 3.2-(b). This result is expected because no kernel correction

technique was enforced near the boundary, which also justifies the slower convergence

behavior of the shear rate near the wall, as depicted in Fig. 3.2-(c). In terms of accuracy,

the Lucy kernel performed better than both the cubic spline and Wendland kernels. We

found that the Wendland kernel produced more organized particles, but that did not
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translate into a higher convergence order. Thus, based on the superior accuracy and

simplicity, we have opted to use the Lucy kernel hereafter.

3.4.2 Analytical solution validation: 2D Taylor-Green vortex

The Taylor-Green flow is a closed form solution of the incompressible Navier-Stokes

equations, and is widely used to validate fluid flow solvers. It consists of the decaying

of a vortex due to viscous effects of the fluid, and is given by the following analytical

velocity fields [11]

va
x(x
∗, y∗, t∗) = −Uebt∗ cos(2πx∗) sin(2πy∗) (3.52)

va
y(x
∗, y∗, t∗) = Uebt

∗
sin(2πx∗) cos(2πy∗), (3.53)

where b is the decay rate of the velocity field and U is the maximum initial velocity. We

use Eqs. 3.52-3.53 to estimate the accuracy of the SPH-BVF method. In our simulations,

we assume a Reynolds number Re = UL/ν = 100, a maximum velocity U = 1, a decay

rate b = −8π2/Re and a domain of length L = 1. The boundary conditions are periodic

in both directions, with x∗, y∗ ∈ [0, 1] × [0, 1]. The initial conditions are obtained by

setting the dimensionless time t∗ = tU/L = 0 in Eqs. 3.52-3.53. The unit length domain

is discretized using three levels of equally-spaced particle refinements: N = 502, 1002 and

2002. For each simulation, the relative error of the numerical solution is measured over

time using the L∞ norm, given by

L∞(t∗) =

∣∣∣∣maxi(||vi(t∗)||)− Uebt
∗

Uebt∗

∣∣∣∣. (3.54)

Figure 3.3 shows snapshots of the particles at dimensionless times t∗ = 0.1, 0.5 for the
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case of N = 502. The top figures (a,b) show the results for the standard SPH, and the

bottom figures (c,d) correspond to results from the present method (SPH-BVF). In (a,b),

it is possible to visualize the anisotropic particle alignment caused by tensile instability.

This alignment results in excessive diffusion, leading to a fast decay of the velocity field.

In contrast, the results obtained by the SPH-BVF method (c,d) dramatically reduce the

particle alignments and tensile instabilities, thus preserving the velocity decay. Remark-

ably, we found that the SPH-BVF method was able to prevent tensile instabilities even

in the case of an initial regular lattice particle distribution. No significant differences

were observed for other arrangements of particles (data not shown), including randomly

shifted arrangements. Conversely, in the work of Adami et al. [11], it was found that the

original transport-velocity formulation was sensitive to the initial particle distribution.

We believe that our method does not suffer from this sensitivity, thus resulting in a more

accurate velocity decay.

The velocity decay is shown in Fig. 3.4. We compare our results with the exact

solution Uebt
∗

and plot the maximum velocity for all three particle refinements (N =

502, 1002, 2002). Following [11], we also compare our method with standard SPH, showing

that the latter fails to predict the exact decay. In contrast, the SPH-BVF method

accurately predicts the decay, even for the coarser refinement (N = 502). Compared to

[11], the SPH-BVF method appears to not suffer from the shifted profile obtained by the

original transport-velocity formulation.

In addition to the velocity decay, the temporal evolution of the L∞ norm, Eq. (3.52),

is shown in Fig. 3.5. The relative error of the maximum velocity, L∞, is ≈ 2% for all

tested cases. This result is comparable to the best results obtained by [11] (non-regular

initial particle distribution, N = 2002). Remarkably, the SPH-BVF method was able to

achieve excellent results even at the lowest resolution (N = 502, equally spaced, regular

lattice particle distribution).
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Figure 3.3: Contour plots of the norm of the velocity vector showing particle ar-
rangements in 2D Taylor-Green vortex simulations at two time points: (a) Standard
SPH, t∗ = 0.1, (b) Standard SPH, t∗ = 0.5, (c) SPH-BVF (present method), t∗ = 0.1,
(d) SPH-BVF (present method), t∗ = 0.5.
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Figure 3.4: Temporal evolution of the decay of the maximum velocity (semi-log
scale) in 2D Taylor-Green vortex simulations for three particle refinements (N) that
are compared to the exact analytical solution and standard SPH. Inset shows an
expanded view of a section of the graph.
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Figure 3.5: Temporal evolution of the relative error of the maximum velocity (L∞
norm) in the Taylor-Green simulations for three particle refinements (N).
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3.4.3 Fluid mechanics validation: lid-driven cavity flow

The lid-driven cavity flow is a classical model problem, and is considered a challenging

problem to be solved using SPH [75]. We validate the proposed method using the high-

resolution finite difference numerical experiment carried out by [111]. It consists of a

square cavity of side L, filled with a Newtonian fluid of kinematic viscosity ν = µ/ρ.

Gravity effects are considered negligible. In Fig. 3.6(a), the schematic of the lid-driven

cavity flow is presented.

The flow, initially at rest, is induced by shear as the lid of the cavity starts moving

at uniform velocity v0. The governing equations are nondimensionalized, in order to

validate our results with the reference. The dimensionless groups are given by

xo = L, (3.55)

to = xo/vo, (3.56)

Po = ρov
2
o , (3.57)

where ρo is a reference density, considered here as unity. Using these groups, Eqs. (3.1)-

(3.2) can be written as

dρ∗

dt∗
= −ρ∗∇∗ · v∗, (3.58)

dv∗

dt∗
= −∇∗p∗ +

1

Re
∇∗2v∗, (3.59)

where Re = v0L/ν denotes the Reynolds number with respect to the characteristic length

L. The walls of the cavity are modeled using three layers of fixed solid particles, so

that near-wall fluid particles are guaranteed to have enough support for accurate φi
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computations.

To test the convergence of the method, simulations were performed using three levels

of particle refinement (N = 502, 1002, 2002 particles) for each Reynolds regime (Re =

102, 103, 104), resulting in a total of nine simulations. In all cases, we have used the Lucy

kernel, with cutoff h = 2.6∆p. We assumed that steady-state was reached once the total

kinetic energy of the system was constant over time within a 10−3 tolerance.

An overview of the flow dynamics on the lid-driven cavity is provided in Figs 3.9(b)-

(c), showing the isocontours of the flow velocity magnitude for each Reynolds flow regime

using N = 2002 particles. Figure 3.7 shows the vertical and horizontal velocity profiles

for all three levels of particle refinement. For Re = 102, the method provides results

comparable to the reference, even for the smallest particle refinement, N = 502. For

Re = 103, the SPH-BVF results converge to the reference values. Notice that for N =

2002 particles, the results are very close to those of the reference, even though [111] used

a higher resolution (2572 mesh). For Re = 104, it is possible to infer the convergence to

the reference solution as the refinement level increases. Nevertheless, as observed by [11],

a deviation from the reference data is observed, which can be justified by the requirement

of a higher refinement level and by the lack of turbulence modeling. For Re > 104, the

flow does not converge to a steady-state [111].
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Figure 3.6: (a) Schematic of lid-driven cavity flow. Isocontours of velocity magnitude
for (b) Re = 102, (c) Re = 103 and (d) Re = 104 at steady-state.
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Figure 3.7: (a), (c) Vertical and (b), (d) horizontal velocity profiles for Re = 102,
Re = 103 and Re = 104 compared with the reference results of [111].

Figure 3.8 shows the streamlines in the cavity for Re = 1000, revealing the two main

structures of the flow: the left and right corner vortices. In his work, [111] reported

approximated heights of 0.15 and 0.35 for the left and right corner vortices, respectively

(c.f. Fig. 3.8). Similarly, the expected values for the widths are approximately 0.20

(left) and 0.30 (right). The sizes of the vortices obtained by our simulations agree with

the reference, showing that the SPH-BVF method was able to accurately predict these
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vortices, therefore validating the wall boundary formulation.

Figure 3.8: Streamlines and patterns of the corner vortices in the cavity for Re = 103,
obtained with the SPH-BVF method.

3.4.4 Convective transport validation: natural convection

We validate the coupling of advection-diffusion using a coupling force, based on the

Oberbeck-Boussinesq approximation [112], in the context of the transport-velocity for-

mulation. To the authors’ best knowledge, this is the first time an ALE formulation of

SPH has been used to simulate convection. A classical test case widely used in the liter-

ature is the natural convection over a cylinder immersed in a square cavity. A complete

description of the problem is given in Fig. 3.9. The system consists of a square enclosure,

filled with fluid at rest. The wall boundaries of the cavity and in the interface between

the cylinder and the fluid are modeled with non-moving SPH particles to enforce the

no-slip boundary condition. Initially, the fluid is free of solute, i.e., C(x, 0) = 0. At

t > 0, the wall concentrations of solute in the circular cylinder and at the enclosure walls

are set to CC and CE, respectively. Since CE > CC , mass transfer begins to occur, and

the system is treated as a binary mixture. The solute diffuses in the fluid over time,

leading to mass stratification.
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Figure 3.9: (a) Schematic of natural convection in a cylinder inside a square enclosure.
(b) Isocontours of the dimensionless concentration field C for Ra = 104, (c) Ra = 105

and (d) Ra = 106 at steady-state.

The Oberbeck-Boussinesq approximation is used to describe the mass transport phe-

nomena, such that a driven body force is proportional to the variation of concentration

C, gravity acceleration g and coefficient of mass expansion β. In this case,the body force

in Eq. 3.2 takes the form

FB = gβ∆C êy, (3.60)

where ∆C = C−Cref, Cref is a reference concentration and êy is the y-direction component
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of the standard Cartesian basis, (êx, êy, êz).

The problem was addressed in previous works as natural convection of heat [113, 114,

115, 116], and has been tested in many different geometries [114, 117, 118, 119]. In order

to validate results with the work of [113], the equations are rendered dimensionless, using

the reference groups proposed by [112]

xo = L, (3.61)

vo =
√
gβL∆C, (3.62)

to = xo/vo, (3.63)

∆Co = CC − CE, (3.64)

Po = ρov
2
o , (3.65)

where ρo is a reference density, considered here as unity. Using these groups, Eqs. (3.1)-

(3.3) are rewritten as

dρ∗

dt∗
= −ρ∗∇∗ · v∗, (3.66)

dv∗

dt∗
= −∇∗P ∗ +

√
Sc

Ra
∇∗2v∗ + C∗êy, (3.67)

dC∗

dt∗
=

1√
RaSc

∇∗2C∗, (3.68)

where Sc = ν/α and Ra = gβ∆CL3/νκ denote the Schmidt and mass transfer Rayleigh

numbers, respectively.

Simulations were performed for Ra = 104, 105 and 106. The Schmidt number was

taken to be equal to 0.7, and the cylinder diameter as D = 0.2L. For all the cases,
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the same number of particles N and same initial conditions were provided. The initial

setup consists of N = 2002 equally-spaced particles distributed in a squared domain

of length L = 1. In all cases, we have used the Lucy kernel, with cutoff h = 2.6∆p.

Boundary conditions are imposed using three layers of boundary particles in the walls.

The cylinder at the center of the cavity is considered a boundary. Dirichlet boundary

conditions are imposed by directly setting the concentration of boundary particles. As in

the cavity flow, we assumed that steady-state was reached once the total kinetic energy

of the system was constant over time within a 10−3 tolerance.

0.60 0.70 0.80 0.90 1.00 0.60 0.70 0.80 0.90
0.00

0.20

0.40

0.60

0.80

1.00

SPH-BVF
Moukalled and Acharya (1996)

0.60 0.70 0.80 0.90 1.00 0.60 0.70 0.80 0.90
-300.00

-200.00

-100.00

0.00

100.00

200.00

300.00
SPH-BVF
Moukalled and Acharya (1996)

Figure 3.10: (a) Profiles of dimensionless concentration C∗ and (b) y-velocity v∗y
profiles along the horizontal centerline of the cavity, for Ra = 104, 105 and 106, at
steady-state.

Profiles of the dimensionless concentration, C∗, and y-velocity component, v∗y, are

shown in Figs. 3.10a-3.10b. Results were compared with the numerical simulation of [113].

Since [113] use a different normalization for the velocity, the dimensionless velocity v∗

obtained from the solution of Eq. (3.67) must be re-scaled, by multiplying v∗ by
√
Ra/Sc.

As depicted in Figs. 3.10a-3.10b, satisfactory results were obtained for all of the Ra

regimes. The method was also capable of capturing the stratification of the concentration

profiles between the wall and the cylinder surface at Re = 105 and the concentration

inversion that occurs at Ra = 106, which causes the flow to slow down in the interval
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Figure 3.11: Comparison of mean velocity fields at time t∗ = 4, for the natural con-
vection problem solved using (a) SPH-BVF method and (b) standard SPH [2] method,
showing that the proposed method prevents particle penetration and mitigates tensile
instability and anisotropic particle alignment.

0.65 . x∗ . 0.85.

A comparison between the mean velocity fields obtained using the present method

and standard SPH for Ra = 106 is shown in Fig. 3.11. While the results obtained by

the standard SPH method have serious particle voids, penetration in the walls and in

the cylinder, clumping and alignments, the SPH-BVF method mitigated all of these

problems, while improving stability. The time step required for a stable simulation with

SPH-BVF (O(10−4)) was two orders of magnitude larger than the one required in practice

using standard SPH, as the soundspeed must be increased to help mitigate the tension

instability.

3.4.5 Solid mechanics validation: oscillating cantilever beam

We validate the solid mechanics part of the method with the test case of an oscillating

cantilever beam. The problem consists of a thin plate of length L and thickness H, fixed
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on one edge and free on the other edges, as shown in Fig. 3.12.

Figure 3.12: Schematic of the oscillating cantilever beam. The beam, initially at
rest, is subject to the initial condition given by Eq. (3.70).

The plate, initially at rest, is set to oscillate at one of its fundamental modes, namely

at kL = 1.875 [103]. For different modes, other wavenumbers k can be found using the

eigensolutions of the Euler-Bernoulli beam equations, given by

cos(kL) cosh(kL) = −1. (3.69)

For the mode kL = 1.875, the resulting initial velocity profile is perpendicular to the

plate and is given by

v0
y(x) = V0c0

F (x)

F (L)
, (3.70)

where V0 is the magnitude of the velocity, c0 is the soundspeed of the material and F is

a force that varies along the length of the plate (x-direction)

F (x) = [cos(kL) + cosh(kL)][cosh(kx)− cos(kx)] (3.71)

+[sin(kL)− sinh(kL)][sinh(kx)− sin(kx)].

In order to allow a direct comparison with the previous results of [97], we set the plate

properties using a Poisson ratio ν = 0.3975, density ρ = 1 × 103[kg/m3] and Young’s

modulus E = 2.0×106[Pa]. We have performed simulations for initial velocity amplitudes
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V0 = 1 × 10−3, 1 × 10−2 and 3 × 10−2[m/s]. The artificial stress coefficient [58] is set to

0.2. In all cases, we have used the Lucy kernel, with cutoff h = 3.0∆p. The fixed support

of the plate is constructed with stationary solid particles. For geometrical consistency,

thickness of the upper and lower parts of the support were set to T = H/2.

Figure 3.13: (a) Plots of the position of the centerline point at the tip of the beam
(y = 0, x = L) for the case of V0 = 3× 10−2, illustrating the convergence of the SPH
solid mechanics formulation. (b) Contour plots of total stress field σxx at t = 0.07[s],
for the case of V0 = 3× 10−2 and Ny = 30.

Figure 3.13-(a) shows a convergence study based on the y-position of the centerline

point of the beam at the tip (x = L). Results are in good agreement with previous studies

[103, 97], and no numerical fracture is observed in the regions of maximum tension, as

shown in Figure 3.13-(b), demonstrating that the tension instability was controlled and

allowed large deformations of the beam.

A quantitative comparison with the analytical solution of a flat plate [107] for various

velocity amplitudes V0 and a relative error convergence analysis are shown in Table 3.2.

The present method achieved relative errors of less than 1% for Ny = 30 and all values

of V0 compared to the 13% errors reported by [97].
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Table 3.2: Relative errors for oscillating cantilever beam for various velocity ampli-
tudes V0 and particle refinements.

V0 ∆p Ny
First period

(present work)
First period
(analyticala)

Relative error (%)

1 ×10−3[m/s] 0.2/10[m] 10 2.747 ×10−1[s] 2.540 ×10−1[s] 8.150
1 ×10−3[m/s] 0.2/20[m] 20 2.605 ×10−1[s] 2.540 ×10−1[s] 2.559
1 ×10−3[m/s] 0.2/30[m] 30 2.539 ×10−1[s] 2.540 ×10−1[s] -0.039

1 ×10−2[m/s] 0.2/10[m] 10 2.757 ×10−1[s] 2.540 ×10−1[s] 8.543
1 ×10−2[m/s] 0.2/20[m] 20 2.618 ×10−1[s] 2.540 ×10−1[s] 3.071
1 ×10−2[m/s] 0.2/30[m] 30 2.546 ×10−1[s] 2.540 ×10−1[s] 0.236

3 ×10−2[m/s] 0.2/10[m] 10 2.756 ×10−1[s] 2.540 ×10−1[s] 8.504
3 ×10−2[m/s] 0.2/20[m] 20 2.635 ×10−1[s] 2.540 ×10−1[s] 3.740
3 ×10−2[m/s] 0.2/30[m] 30 2.556 ×10−1[s] 2.540 ×10−1[s] 0.623

a Based on [97, 107]

3.4.6 Comparison with FEM: fluid-structure interaction

As a final comparison, we demonstrate the ability of the SPH-BVF method to per-

form simulations of fluid-structure interaction (FSI) problems. The problem, depicted

in Fig. 3.14, consists of a horizontal microchannel flow with a narrow vertical rod as an

obstacle. A uniform fluid flow is introduced in the channel entry. In the region near the

obstacle, the flow is induced into a narrow path in the upper part of the channel, and as

a consequence it imposes a force on the structure’s walls. The rod, made of a deformable

material, bends under the applied load, reaching a steady state.

The wall boundary condition treatment in the SPH-BVF simulations follows the

previous validation examples, with wall boundary conditions imposed using three layers

of boundary particles in the walls. To model the inlet and outlet boundaries, we adopt

the following strategy: as the fluid leaves the channel, it is re-inserted back at the inlet

after it passes through a sponge zone, which acts as a non-reflective boundary condition

[66] to the flow and re-align the velocity profile. This strategy makes the computation
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less intensive as there is no need to destroy particles as they leave the domain, or to create

new ones at the inlet, as doing so would require re-creating the particle neighboring list

every time step. For details on the implementation of the sponge zone, we refer the

reader to [120].

Since the problem has no analytic solution, we compare our numerical simulation

with high-resolution FEM using the FSI package in Comsol Multiphysics (v.5.3). The

physical parameters for both FEM and SPH-BVF simulations are given in Table 3.3.

Sponge

Zone

Figure 3.14: Schematic of the FSI problem. Water enters a 2D microchannel, filled
with water at rest, with uniform velocity vin. An elastic rod located at the middle of
the channel and fixed at the lower wall, constrains the fluid flow, causing a deformation
in the rod.

Table 3.3: Physical parameters adopted in the FSI simulation.

Parameter Value Description

Hchannel 100 [µm] channel height
Lchannel 300 [µm] channel width
Hrod 50 [µm] rod height
Lrod 100 [µm] horizonta position (rod)
δrod 5 [µm] rod thickness
E 2× 105 [Pa] Young modulus (rod)
νp 0.33 Poisson ratio (rod)
ρf 1000 [kg/m3] fluid density
ρrod 7850 [kg/m3] rod density
µf 10−3 [Pa s] viscosity of fluid
vin 3.33× 10−2 [m/s] inlet fluid velocity
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The SPH-BVF simulation was performed using 30, 000 fluid particles (representing the

water) and 500 solid particles (representing the rod). The FEM solution was obtained

using second-order shape functions in a mesh of approximately 12,000 elements. We

assumed that steady-state was reached once the kinetic energy of the fluid flow was

constant over time within a 10−3 tolerance.

Contour plots of the streamwise (vx) and cross-stream (vy) velocity components at

steady-state are shown in Figs. 3.15-(a) and (b). Is possible to see the bending of the

beam to the right, as a consequence of the flow, as well as boundary layer in the near-wall

regions of the channel. To validate the velocity profiles, a probe was placed along the

y-centerline of the channel.

Figures 3.15-(c) and (d) show the velocity profiles of the channel at the probe, and

a comparison with the FEM result. It is important to highlight that the comparison

of velocity profiles in FEM and SPH-BVF agree in magnitude, demonstrating that the

formulation for the non-reflexive boundary condition is satisfactory, as well as in phase,

which demonstrates that the point of maximum deflection obtained in both the FEM and

SPH-BVF solutions are very close. However, notice that the stream-wise velocity vx drops

at the end of the channel, due to the presence of the sponge zone. Further investigations

in non-reflective boundary conditions in SPH are required to improve these results.
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Figure 3.15: Top: contour plots of the (a) streamwise vx and (b) cross-stream vy
velocity fields at steady-state. The beam has deformed slightly to the right. Bottom:
comparison of dimensionless velocity profiles (c) v∗x and (d) v∗y for a probe located at
the y-centerline of the channel, as depicted in the velocity profiles. Variables were
rendered dimensionless for scaling purposes, as v∗x = vx/vin and x∗ = x/Lchannel.

3.5 Application: polarized yeast cell undergoing mat-

ing projection growth

To further demonstrate the capability of the proposed method, we apply SPH-BVF

to a biomechanics problem that poses a challenge for classic SPH as well as mesh-based

methods because it involves deforming boundaries under pressure, fluid-structure in-

teraction, particle non-penetration and a conjugate transport mechanism (diffusion of

chemical species that alters the mechanical properties of the material). The first attempt

to simulate the mechanics of biological cells was performed by [121, 122], using an SPH-

DEM hybrid method to study the mechanical response of plant cells under compression.

The model, however, is purely mechanical, and therefore the reaction-diffusion dynamics
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of species in the cell wall are not considered.

The motivating problem is the growth of the mating projection in a yeast cell (S.

cerevisiae) responding to mating pheromone in the extracellular fluid [123]. The key

structure is the cell wall, which defines the shape of the cell while providing the mechanical

integrity necessary to withstand the large internal turgor pressure [124]. As depicted

in Fig. 3.16, under the isotropic turgor pressure, polarized growth occurs via localized

softening of the cell wall by the enzymatic digestion of the polymer crosslinks, inducing

expansion at the tip. A mechanical feedback pathway delivers new wall material to this

growing region by vesicular transport, leading to expansion of the mating projection

in the area targeted by the wall-modifying enzyme [125]. This problem demonstrates

our method on curved and dynamically changing boundaries representing the cell wall.

Importantly, the interior fluid, the cytoplasm, does not penetrate the cell wall even while

under sufficient pressure to cause the wall to change shape.

Figure 3.16: Schematic of yeast cell projection growth model. Cell wall modifying
enzymes localized to region in red cause the softening of the cell wall. The internal
turgor pressure pushes and deforms the cell wall at this weakened section, creating a
mating projection. D is the diameter of the cell, H is the height of the enzyme region,
and δ is the thickness of the cell wall.
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3.5.1 Simplified model of yeast mating projection

Yeast mating projection growth is a classic example of cell polarization, and has been

investigated experimentally [126, 127, 128] and through mathematical modeling [129,

130, 131]. Existing models have focused primarily on the reaction-diffusion dynamics of

the signal transduction system. However, more recent work has highlighted the com-

plex interplay between the biochemical dynamics within the mating projection and the

mechanical forces acting on the cell wall to determine the shape of the cell [125]. It is

important to note that the properties of the biological materials involved are not well-

characterized. For example, recent studies [132, 133] showed that cytoplasm can assume

different properties, changing from a viscous fluid to an elastic solid, and can be consid-

ered compressible or incompressible, depending on the state of tension, biological process

involved and external perturbations. Given that the SPH-BVF method is currently lim-

ited to linear elastic solids and Newtonian fluids, we assume that the cytoplasm is a

compressible fluid, and that the cell wall is a linear elastic material characterized by a

shear modulus. Finally, the extracellular fluid around the cell possesses the rheological

properties of water.

For simplicity, we employ the following approximation of the coupling between the

mechanical and biochemical systems. In the model, cell wall modifying enzymes, whose

concentration is denoted by the variable c, decrease the shear modulus of the cell wall

according to the following linear equation: G(c) = G0(1−cR), in which R is a parameter

representing wall degrading enzymatic activity, and G0 is the reference shear modulus

of the non-polarized wall region. The modifying enzymes are able to diffuse in the wall

with a diffusion constant given by κc.

Even under these simplifying assumptions, the model is still complex enough that

advanced computer-aided engineering (CAE) tools have difficulty simulating the coupled
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problem. For example, COMSOL (v.5.3a) is not capable of simulating dynamic me-

chanical properties coupled with diffusive transport in a moving mesh, hence no direct

comparison could be made.

3.5.2 Results

To demonstrate that SPH-BVF can simulate yeast mating projection growth, we

chose to vary the diffusion coefficient κc of the wall-modifying enzymes using two different

values. The other parameters were kept constant with the enzyme initially distributed

in a region of width H = δ/2, where δ is the cell wall thickness. The initial enzyme

concentration was set to be c = 1 [mol/m3] in this region, and to c = 0 [mol/m3] in the

rest of the cell wall. The enzyme affects the shear modulus of the cell wall according to

the linear relationship described above as it diffuses from its initial site. A list of the

physical parameters used in the simplified model is provided in Table 3.4, and a reference

table with each case is detailed in Table 3.5.

Table 3.4: Physical parameters used in the cell polarization simulation.

Parameter Value Description

δ 2.5 [µm] cell wall thickness
D 10 [µm] diameter of the cell
H 1.25 [µm] height of enzyme region
E 106 [Pa] Young modulus of cell wall
G0 3.58× 105 [Pa] reference shear modulus of cell wall
νp 0.3975 Poisson ratio of cell wall
Kf 5× 105 [Pa] bulk modulus of extracellular fluid
Kc 5× 105 [Pa] bulk modulus of cytoplasm
ρf 1000 [kg/m3] density of extracellular fluid
ρc 1500 [kg/m3] density of cytoplasm
ρw 1100 [kg/m3] density of cell wall
µf 10−3 [Pa s] dynamic viscosity of fluid
µc 10−3 [Pa s] dynamic viscosity of cytoplasm
R 0.99[m3/mol] rate of enzymatic softening
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Table 3.5: Two cases simulated with parameter values and number of particles.

Case number Mass diffusivity (κc) Number of particles (N)

I 10−13 [m2/s] 840 (wall), 716 (cytoplasm)
II 10−12 [m2/s] 840 (wall), 716 (cytoplasm)

Figure 3.17: Simulations and experiments showing yeast mating projection
growth over time. Cases I (left column, κc = 10−13 [m2/s]), II (right column,
κc = 10−12 [m2/s]), and microscopy images of a spa2∆ cell responding to 1 µM
mating pheromone α-factor (central column). Particles are colored by the concentra-
tion c of wall-modifying enzymes. Rows A, B and C indicate times of 2000, 3000 and
4000 seconds, respectively, for the simulations, and 30, 60, and 90 minutes for the
experiments. Cells contain the secretion marker protein Fus1-GFP (green) to indi-
cate where wall-modifying enzymes are transported. A broad tip protrudes from both
simulations and experiments. Despite high internal turgor pressure and deformation,
SPH-BVF is able to model the deforming boundaries without particle penetration or
tension instability. Scale bar = 2 µm.

Figure 3.17 shows snapshots of the two simulations (cases I and II) at the two diffusion
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values. Interestingly, the larger diffusion constant produced a longer, laterally concave

projection, whereas the smaller diffusion constant preserved its laterally convex shape.

One can compare the simulations to time-lapse microscopy images obtained by exposing

yeast cells to the mating pheromone α-factor. The cells contain the secretion marker

Fus1-GFP which indicates the presumptive location where the wall-modifying enzymes

are deposited on the cell wall [134]. Qualitatively speaking, the simulations were able to

capture the general shape changes during projection growth, even though some level of

particle alignment is observed near the boundary of the cells. One promising way of alle-

viating this effect is to use an optimal particle arrangement [135], which directly ensures

the isotropy of the particle distribution, even without parameter tuning. Regardless,

this example demonstrates the potential of the SPH-BVF method to simulate complex

biological processes including both biochemical and physical spatial dynamics, involv-

ing fluid-structure interactions and materials with time-varying mechanical properties

without inducing particle penetration or excessive tension instability.
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Conclusions

In the first part of this dissertation, we have developed a method to simulate both dis-

crete stochastic and continuum deterministic chemical reaction-diffusion systems within

an unstructured moving fluid domain whose dynamics are simulated via the smoothed dis-

sipative particle dynamics method. This method has many applications where chemically

or biochemically reactive systems are coupled to a moving fluid domain. For example, it

will be especially useful for modeling biological cells in which discrete stochastic chemical

kinetics are required to accurately describe cellular processes.

It is important to emphasize that because of the Lagrangian nature of SDPD, the

coupling with advective transport occurs naturally, with particle positions being updated

via the equations of motion. This approach has been proven to work in different scales,

ranging from relativistic spaces [136] to quantum systems [137]. Thus, our method pre-

serves the natural advantages of a meshfree method while incorporating the flexibility

of resolving small scales only when necessary, making it a complete framework for the

simulation of biological multiscale systems.

We use operator splitting to couple the SDPD dynamics of fluid position and veloc-

ity, the continuum deterministic reaction-diffusion equations, and SSA discrete stochastic
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reaction-diffusion system over each timestep. This allows us to solve a complex interde-

pendent system efficiently and simply, with known error bounds [138, 139].

We have implemented our method within the LAMMPS[140] simulation framework.

LAMMPS is a software package for simulation of classical molecular dynamics problems.

The advantage of the LAMMPS infrastructure is that is extensible, and has been modified

to include simulation capabilities of SPH and DPD (including tDPD in a recent release).

We have implemented the SDPD, deterministic reaction-diffusion, and the spatial SSA

methods as a user module in LAMMPS, which should allow it to be integrated seamlessly

into many different configurations of LAMMPS. We have released the source for our

enhancements under the GPL v2.0 license, which is the same license as the LAMMPS

software package.

Our simulation methodology has many advantages, but there are still technical limi-

tations. The first is that the compressibility of the SDPD method leads to a performance

limitation for applications where incompressibility is critical. In addition, there are issues

in specifying boundary conditions when using the SSA simulation method, as it is not

as straightforward to specify them in the discrete context compared to the continuous

context. Finally, the current implementation of the SSA method requires that the sim-

ulations be run in serial, rather than utilizing multi-core parallelism. This is due to the

fully connected nature of the SSA method. Our plans for future work include adapting

the SSA method to the multi-core parallel context to increase performance.

We believe that this method will lead to advances in the understanding of complex

systems. Specifically, we envision its application in the modeling of single cell and multi-

cellular systems possessing changing shapes in dynamic environments subjected to various

perturbations. Applications such as this require coupling between physical and chemical

systems, a simulation our method is designed to address. For example, sSSA-SDPD is

able to simulate both the complex fluid dynamics and the stochastic biochemical reac-
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tions of cells in a microfluidics chamber. Finally, we can use the algorithm to model the

physical forces and blood flow in tissues coupled to inter- and intra-cellular processes.

In the second part of this dissertation, we introduce a unified framework to simu-

late solid and fluid mechanics with convective reaction-diffusion transport in SPH. The

method, named SPH-BVF, provides a new local wall boundary condition treatment for

SPH, which allows particles to become autonomous to detect solid neighbors. The bound-

ary volume fraction (BVF) approach introduces only a small computational overhead,

while explicitly preventing fluid penetration through solid boundaries. In addition, SPH-

BVF provides good accuracy and improved stability, and due to its ALE formulation,

prevents tension instabilities and anisotropic particle alignments.

Similarly to the sSSA-SDPD method, we have developed a software package compat-

ible with the LAMMPS framework. The complete code, along with all of the validations,

post-processing routines and the application problem are also available in our source,

under the GPL v2.0 license.

While addressing some problems encountered by standard SPH, our method also

possesses certain limitations. Simulations require approximately three layers of particles

to have sufficient support within the kernel integration area to accurately estimate the

boundary volume fraction. As a result, systems with very thin walls may require finer

discretization and more particles, which can lead to higher computational costs. One

promising approach to overcome this issue in the future is the usage of an immersed

boundary method to represent slender bodies [141, 142]. We also note that the proposed

BVF boundary condition has a non-constant order of convergence (between first and

second order), which is similar to the Lennard-Jones boundary condition using ghost

particles.

One promising domain for SPH-BVF is in simulating biophysical systems. Specifi-

cally, we envision its application in the modeling of cell dynamics, as well as in other
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applications, such as intercellular junction formation, cell morphogenesis and blood flow

simulations in tissues coupled to inter- and intra-cellular processes, in which conjugate

transport, materials with dynamic mechanical properties and boundary deformation are

relevant.
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