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ABSTRACT OF THE DISSERTATION 
 

 

Utilizing a systems biology approach to 

uncover the molecular networks of 

metabolic diseases 

 
by 

 

Montgomery Charles Thomas Blencowe 
 

Doctor of Philosophy in Molecular, Cellular, and Integrative 

Physiology 

 University of California, Los Angeles, 2022 

Professor Xia Yang, Chair 
 
 
Common complex metabolic diseases (MetDs) such as obesity, type 2 diabetes (T2D), coronary 

artery disease (CAD) and non-alcoholic fatty liver disease (NAFLD), impose an unprecedented 

burden on public health worldwide and demonstrate sex differences. Our general hypothesis is that 

genetic risk factors perturb set of genes in the form of functional gene networks, which 

subsequently induces the initiation and progression of MetDs. Following this hypothesis, our 

research focuses on dissecting the molecular networks that are perturbed by genetic risk factors of 

MetDs utilizing multiomics systems biology approaches. To address this challenge, I embarked 

interdisciplinary systems biology studies encompassing the development of an accessible multi-

omics integration webserver, elucidation of genetically perturbed tissue networks in numerous 

MetDs, and uncovering the relative contribution of three sex factors in gene regulation in tissues 

relevant to MetDs. First, I contributed to the development of a user-friendly webserver for 
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multiomics integration, network modeling, and network-based drug repositioning for complex 

diseases such as MetDs. Second, I investigated the genetically perturbed gene networks that 

underly various MetDs, namely, lipid traits, diabetes, CAD, and NAFLD. Third, I employed 

systems biology approaches to uncover the individual and interactive contribution of three sex 

factors (sex chromosomes, gonads, and sex hormones) in gene regulation in tissues relevant to 

MetDs. Completion of these projects offer a user-friendly bioinformatic tool, molecular insights, 

and drug candidates for MetDs. 
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Chapter 1. Introduction 
 
Metabolic diseases (MetDs) are an ever-increasing burden on the general population including 

diseases such as NAFLD, CAD, obesity and diabetes. The growing MetDs epidemic has caused 

the number of diabetic and pre-diabetic persons in the U.S. to reach over 40% of the population 

[1], CAD patients to be as high as 6.7% of the population [2] and NAFLD patients to be over 25% 

of the population [3]. Although the exact etiology of MetDs remains elusive, evidence supports 

the importance of genetics in disease development, progression and heritability [4], e.g. CAD and 

NAFLD have heritability estimates of 50-60% [5] and 20-70% [6], respectively. Particularly with 

the large number of GWAS studies available we have been successful in elucidating novel disease 

variants. However, with highly complex diseases such as MetDs, standard approaches such as 

GWAS alone have limited capacity to fully dissect the complexity. Integrating other omics areas, 

which highlights other critical information such as EWAS (epigenetic contribution), PWAS 

(protein contribution), TWAS (transcript contribution), or MWAS (metabolome contribution), will 

help provide a more complete image. Thus, using a systems biology approach becomes vital to 

understand the molecular mechanisms underlying the actions of genetics for which we can target 

to elucidate effective therapeutic and preventive strategies. 

 
It has become increasingly recognized that the tightly regulated coordination among genes through 

tissue-specific networks underlies higher level physiological processes, and the elucidation of 

interactions among genes has led to significant insights into biological processes and disease 

etiology [7-9]. Previous studies by us and others have shown that the disruption of the specific part 

of these networks, termed “subnetworks”, by genetic and environmental risk factors, could confer 

risks toward MetDs [9-15]. Therefore, rather than focusing on the investigation of isolated genes, 

it is more appealing to elucidate the gene-gene interactions to dissect the molecular mechanisms 
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of MetDs. More importantly, gene networks could be seamlessly integrated into a larger and more 

comprehensive systems genetics framework that takes advantage of vast amount of omics data 

available [16]. The value of omics data is usually limited when individual types of data are used 

in isolation. For example, although genome-wide association study (GWAS) provides unbiased 

information about the genetic basis of diseases, it lacks i) sufficient power to adequately explain 

heritability and gene-by-environment interaction and ii) mechanistic connection between the risk 

loci and downstream events. By integrating different layers of biological information, we are better 

enabled to bridge the gap between genetic predisposition and observed phenotypes and investigate 

molecular interactions in a clinically relevant context. Indeed, systems genetics has already proven 

to be effective in revealing novel biological processes and gene interactions underlying complex 

diseases [17-20]. Nevertheless, well-defined high-throughput systems biology tools that 

effectively convert large-scale biological data and network resources into meaningful outputs are 

still lacking.  

 

Additionally, the incidence, progression, clinical manifestation, and genetic risks of many 

diseases, such as MetDs differ between females and males, which indicates that one sex may have 

endogenous protective or risk factors that could become targets for therapeutic interventions. 

Current sexual differentiation theory suggests that three major classes of factors cause sex 

differences. First, some sex differences are caused by different circulating levels of ovarian and 

testicular hormones, known as “activational effects”. These differences are reversible because they 

are eliminated by gonadectomy of adults. Second, certain sex differences persist after 

gonadectomy in adulthood and represent the effects of permanent or differentiating effects of 

gonadal hormones, known as “organizational effects,” that form during development. A third class 
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of sex differences are caused by the inequality of action of genes on the X and Y chromosomes in 

male (XY) and female (XX) cells, and are called “sex chromosome effects”. To date, few studies 

have systematically evaluated the relative size and importance of each of these three classes of 

factors acting on phenotypic or global gene regulation systems. Therefore, we used the Four Core 

Genotypes (FCG) mice on a C57BL/6J B6 background. In FCG mice, the Y chromosome (from 

strain 129) has sustained a spontaneous deletion of Sry (testis determining), and a Sry transgene is 

inserted onto chromosome 3. Where, we defined “male” (M) as a mouse with testes, and “female” 

(F) as a mouse with ovaries. FCG mice include XX males (XXM) and females (XXF), and XY 

males (XYM) and females (XYF).With this approach we could study the tissue-specific 

contributions and the interactions of activational, organizational, and sex chromosome effects on 

gene regulation to better understand the specific sex factors and genes contributing to complex 

diseases such as MetDs.  

 

Aiming to address these areas, my work was centered on 1) the development of a user friendly and 

accessible webserver for multiomics integration “Mergeomics”, a pipeline that integrates genetic 

associations, tissue-specific functional genomics such as eQTLs, canonical pathways and gene-

gene interaction networks; 2) utilizing Mergeomics, to pinpoint key regulatory hubs of MetD 

related subnetworks. These key drivers shall have the potential to normalize the entire gene 

network spectrum and serve as novel therapeutic targets [21-23]; 3) Using the FCG model, we can 

assess the role of the three sex-biasing factors on gene expression, molecular pathways, and gene 

network organization in key metabolic tissues. We can uncover how the three factors influence 

gene regulation involved in critical processes and their tissue specific contribution. We can further 
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integrate sex-biased genes and networks influenced by each sex-biasing factor with diverse 

diseases in human populations to predict the phenotypic consequences of each sex-biasing factor. 

 

The details of the updated and user-friendly webserver for Mergeomics are described in Chapter 

2. Compared to other tools, Mergeomics not only accommodates diverse data types (GWAS, 

EWAS, TWAS, PWAS, MWAS) from different sources, or species for a given disease, but also 

considers relationships between omics layers through functional genomics such as expression 

quantitative trait loci (eQTLs), molecular pathways, and tissue-specific gene regulatory networks 

to derive disease networks and predict therapeutics. Mergeomics also uses full summary statistics, 

not raw data, as input, thereby reducing the need for raw data processing and harmonization and 

for pre-determining a specific cutoff to call for significant markers. Mergeomics has the ability 

to conduct pathway analysis and model gene regulatory networks, protein-protein interaction 

networks, and transcription factor networks in order to predict and visualize network regulators 

of disease. These unique features help maximize the utility of existing datasets and overcome 

limitations of other tools which utilize a narrower range of multi-omics data sources, do not 

provide mechanistic interpretations, or require programming skills with no intuitive webserver 

for ease of use.  

 

In Chapter 3, we utilized an integrative genomics approach leveraging diverse genomic data from 

human populations to investigate whether genetic variants associated with various plasma lipid 

traits, namely, total cholesterol, high and low density lipoprotein cholesterol (HDL and LDL), and 

triglycerides, from GWASs were concentrated on specific parts of tissue-specific gene regulatory 

networks. In addition to the expected lipid metabolism pathways, gene subnetworks involved in 
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“interferon signaling,” “autoimmune/immune activation,” “visual transduction,” and “protein 

catabolism” were significantly associated with all lipid traits. In addition, we detected trait-specific 

subnetworks, including cadherin-associated subnetworks for LDL; glutathione metabolism for 

HDL; valine, leucine, and isoleucine biosynthesis for total cholesterol; and insulin signaling and 

complement pathways for triglyceride. Finally, by using gene-gene relations revealed by tissue-

specific gene regulatory networks, we detected both known (e.g., APOH, APOA4, and ABCA1) 

and novel (e.g., F2 in adipose tissue) key regulator genes in these lipid-associated subnetworks. 

Knockdown of the F2 gene (coagulation factor II, thrombin) in 3T3-L1 and C3H10T1/2 

adipocytes altered gene expression of Abcb11, Apoa5, Apof, Fabp1, Lipc, and Cd36; reduced 

intracellular adipocyte lipid content; and increased extracellular lipid content, supporting a link 

between adipose thrombin and lipid regulation. Our results shed light on the complex mechanisms 

underlying lipid metabolism and highlight potential novel targets for lipid regulation and lipid-

associated diseases. 

 

In Chapter 4, we utilized a systems biology approach to further elucidate the contributing factors 

to type 2 diabetes development. The islet in type 2 diabetes is characterized by islet amyloid 

derived from islet amyloid polypeptide (IAPP), a protein co-expressed with insulin by beta cells 

that when misfolded and in aggregate form may contribute to beta cell failure. Human IAPP 

(hIAPP) toxicity is most potently mediated by small intracellular membrane permeant oligomers. 

Species with amyloidogenic IAPP, such as humans, non-human primates and cats, share 

vulnerability to type 2 diabetes, while those with non-amyloidogenic IAPP, such as mice and rats, 

do not. While numerous hypotheses have been put forward to explain the wide-ranging changes in 

islets in type 2 diabetes, there is a consensus that misfolded protein stress induced by toxic 
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oligomers of amyloidogenic proteins initiate these changes in neurodegenerative diseases. Given 

the known proximal role of misfolded protein stress in neurodegenerative diseases, and the 

connection of the risk factors for type 2 diabetes to misfolded protein stress, we hypothesised that 

hIAPP misfolded protein stress may be a proximal cause of the wide-ranging changes in islets in 

individuals with type 2 diabetes. In the study we evaluated the islet transcriptome from a mouse 

model of beta cell hIAPP toxicity before diabetes onset in order to avoid the confounding effects 

of hyperglycaemia. To control for the increased burden of IAPP expression, we evaluated the 

transcriptome from mice overexpressing rodent IAPP (rIAPP). We then compared the changes in 

the transcriptome of hIAPP or rIAPP islets to those in humans with prediabetes or type 2 diabetes 

to establish if the changes in the islet in type 2 diabetes are potentially attributable in part to hIAPP 

protein misfolding stress. Overall, the study suggests that much of the islet transcriptome in type 

2 diabetes is adaptive to the increased beta cell burden of protein synthesis and folding. Beta cell 

hIAPP toxicity induces a prominent islet inflammatory response, consistent with that observed in 

type 2 diabetes, implying protein misfolding stress may serve to initiate or contribute to beta cell 

injury in type 2 diabetes. There are also shared pro-survival gene networks in hIAPP and type 2 

diabetes islets. Strategies to suppress IAPP expression warrant further investigation due to the 

mounting evidence to suggest its role in type 2 diabetes pathogenesis. 

 

In Chapter 5, we utilized an integrative and systems biology approach through genetic and 

transcriptomic data in an attempt to holistically differentiate liver fibrosis pathogenesis between 

male and female mice. Our study overall highlights a greater immune response in males along with 

more protein and lipid metabolism abnormalities; for females, we found more carbohydrate 

metabolism related abnormalities contributing to liver fibrosis. Through our key driver analysis, 
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novel key drivers were found. More research into these genes can help identify plausible targets 

and create sex-specific therapeutic treatments for NASH.  

 

In Chapter 6, we focused on teasing apart the relative contribution of sex hormones, sex 

chromosomes and gonads in gene regulation in tissues critical to MetDs. The design allowed 

detection of differences caused by three factors contributing to sex differences in traits. (1) “Sex 

chromosome effects” were evaluated by comparing XX and XY groups. (2) “Gonadal sex effects” 

were determined by comparing mice born with ovaries vs. testes. Since mice were analyzed as 

adults after removal of gonads, the gonadal sex effects represent organizational (long-lasting) 

effects of gonadal hormones, such as those occurring prenatally, postnatally, or during puberty. 

This group also includes effects of the Sry gene, which is present in all mice with testes and absent 

in those with ovaries. Any direct effects of Sry on non-gonadal target tissues would be grouped 

with effects of gonadal sex. (3) “Hormone treatment effects” refers to the effects of circulating 

gonadal hormones (activational effects) and were evaluated by comparing E vs. B groups for 

estradiol effects, and T vs. B groups for testosterone effects. We found that the activational 

hormone levels have the strongest influence on gene expression, followed by the organizational 

gonadal sex effect, and last, sex chromosomal effect, along with interactions among the three 

factors. Tissue specificity was prominent, with a major impact of estradiol on adipose tissue gene 

regulation and of testosterone on the liver transcriptome. The networks affected by the three sex-

biasing factors include development, immunity and metabolism, and tissue-specific regulators 

were identified for these networks. Furthermore, the genes affected by individual sex-biasing 

factors and interactions among factors are associated with human disease traits such as coronary 

artery disease, diabetes, and inflammatory bowel disease. Our study offers a tissue-specific 
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account of the individual and interactive contributions of major sex-biasing factors to gene 

regulation that have broad impact on systemic metabolic, endocrine, and immune functions. 

 

Chapter 7 is a concluding summary of the PhD work completed and covers the future directions 

of the research topics 
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Chapter 2. Mergeomics 2.0: A Web Server for Multiomics Data Integration to Elucidate 
Disease Networks and Predict Therapeutics  
 
2.1 Introduction 
 

The advent of omics technologies has made significant strides in unveiling various disease 

associated genetic and epigenetic variants, genes, proteins, and metabolites. The ever-growing 

source of multiomics datasets available including genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics now presents a new challenge of integrating these different data 

types for more meaningful and holistic interpretation of complex diseases. To conduct a 

comprehensive investigation of disease pathogenesis, we must consider multiple omics layers that 

contribute to biological complexity [24]. The computational pipeline Mergeomics was developed 

to meet the need for multiomics integration and functional interpretation to obtain mechanistic 

understanding. Mergeomics provides flexibility to incorporate the full spectrum of summary 

statistics (not just top hits) of individual layers of omics or multiomics data simultaneously along 

with diverse functional genomics data across data types, studies, and species. As such, genome-

wide association studies (GWAS) as well as epigenome- (EWAS), transcriptome- (TWAS), 

proteome- (PWAS), and metabolome-wide association studies (MWAS) can all be accommodated. 

The development of our Mergeomics tool follows the philosophy of utilizing a systems biology 

approach to unravel the complex interactions across molecular domains as well as cell types, 

tissues, and organ systems that occur in disease. In particular, we are guided by the omnigenic 

disease model [25], which states that a large proportion of the genome likely contributes to disease 

pathogenesis through molecular interactions both within and between tissues. Utilizing this data-

driven analysis considering the interactions among different omics layers and tissue contexts will 

uncover global maps to identify critical targets in disease pathogenesis, which can be followed by 
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experimental approaches to investigate the detailed events that occur through the predicted 

molecules or pathways.  

With the abundance of omics data available, it is unsurprising that various tools or methods have 

been developed to help better integrate and interpret these datasets [26-28]. These tools can be 

broadly categorized into two application categories: multiomics biomarker predictions of diseases 

or subtypes (i.e., uncovering correlative or predictive but not necessarily disease-causing features) 

or mechanistic understanding of disease pathogenesis (i.e., regulators, molecular interactions, and 

processes involved in disease development). Mergeomics focuses on mechanistic modeling but 

not predictive modeling. In terms of approaches, fusion (such as PFA [29], SNF [30], PSDF [31]), 

Bayesian (e.g., iCluster [32], PSDF [31], BCC [33]), correlation, multivariate (e.g., MFA [34], 

IntegrOmics [35], MixOmics [36]), pathway and network methods (PARADIGM [37], SNF [30], 

iOmicsPASS [38], MiBiOmics [39], Lemon-Tree [40], PaintOmics [41], NetICS [42], Metascape 

[43]) have been implemented [26, 27, 44]. Mergeomics falls within the network method category 

that mainly focuses on understanding disease pathogenesis through uncovering multiple molecular 

targets within biological processes important to disease. The benefit of a network approach over 

other integrative options is in its ability to provide biological interpretability, which is reliant not 

on the identification of latent structures through mathematical deconvolution but on the utilization 

of prior information based on molecular interactions, which can help provide clear targetable 

options (e.g., genes) in disease. Compared to other tools, Mergeomics not only accommodates 

diverse data types (GWAS, EWAS, TWAS, PWAS, MWAS) from different sources, studies, or 

species for a given disease, but also considers relationships between omics layers through 

functional genomics such as expression quantitative trait loci (eQTLs), molecular pathways, and 

tissue-specific gene regulatory networks to derive disease networks and predict therapeutics. 
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Mergeomics also uses full summary statistics, not raw data or lists of top associations, as input, 

thereby reducing the need for raw data processing and harmonization and for pre-determining a 

specific cutoff to call for significant markers. Mergeomics has the ability to conduct pathway 

analysis and model gene regulatory networks, protein-protein interaction networks, and 

transcription factor networks in order to predict and visualize network regulators of disease. These 

unique features help maximize the utility of existing datasets and overcome limitations of other 

tools which utilize a narrower range of multiomics data sources, do not provide mechanistic 

interpretations, or require programming skills with no intuitive web server for ease of use.  

Since the release of the open source Mergeomics R package 

(https://bioconductor.org/packages/release/bioc/html/Mergeomics.html) [45] and web server in 

2016 [46], this tool has been used to model a diverse set of diseases including cardiometabolic 

disorders such as non-alcoholic fatty liver disease [47], cardiovascular disease [48-50], and type 2 

diabetes [51], autoimmunity including psoriasis [52] and rheumatoid arthritis [53], alcohol 

dependence [54], brain injury [55], Sjogren’s syndrome [56], and environmental contributions to 

disease [57-59]. Importantly, multiple validations of molecular predictions from Mergeomics with 

in silico, in vitro, and in vivo studies highlight the validity and causal nature of the disease network 

predictions [20, 47, 51, 52, 55, 59-63]. Due to increasing demand for multiomics integration and 

interpretation from scientists with different areas of expertise, we have implemented major 

revisions and improvement on the Mergeomics web server. Specifically, we have redesigned the 

user interface, simplified workflows, offered detailed tutorials and case studies, and provided more 

datasets and network models for utilization. The Mergeomics 2.0 web server offers the scientific 

community much-improved accessibility to our pipeline, caters to each user’s specific goals in 

multi-omics studies, and addresses a broad range of biological questions, particularly emphasizing 
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a mechanistic understanding of disease pathogenesis and prediction of potential therapeutics based 

on mechanistic understanding. 

2.2 Results and discussions 
 
Overview and Updates on the Core Functions of Mergeomics: Overview of core functions: 

Mergeomics 2.0 features four core functions as previously implemented in version 1.0 with an 

addition of a new function. First, we provide a preprocessing tool, Marker Dependency Filtering 

(MDF) to remove omics marker redundancies such as linkage disequilibrium (LD) between single 

nucleotide polymorphisms (SNPs). Second, Marker Set Enrichment Analysis (MSEA) is used to 

identify omics-informed disease processes through the integrations of omics markers such as SNPs 

with functional genomics, canonical pathways, or co-expression networks. Third, Meta-MSEA 

runs MSEA on multiple datasets and conducts pathway/network level meta-analysis to retrieve 

consistent disease processes informed across datasets. Fourth, Key Driver Analysis (KDA) 

pinpoints network regulators of disease processes based on the topology of biological networks. 

In Mergeomics 2.0, we added a new functional module called PharmOmics, which takes as input 

multiomics-informed disease pathways or networks from Mergeomics to match with drug 

signatures to predict potential therapeutic drugs.    

 

Introduction of PharmOmics into Mergeomics 2.0: We have recently developed a novel species- 

and tissue-specific network-based drug repositioning tool, PharmOmics, which is based on in vivo 

molecular studies of drugs [64]. PharmOmics is a complementary drug repositioning tool to other 

existing tools, such as CMap [65] and LINCS L1000 [66], which are mostly based on in vitro cell 

line data. We provide two drug repositioning methods: network-based drug repositioning and gene 

overlap-based drug repositioning. Network-based drug repositioning ranks drugs based on the 
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degree of connectivity of genes influenced by drug treatments to disease gene signatures in a given 

gene network model [67]. Gene overlap-based drug repositioning is based on the degree of direct 

overlap between drug genes and disease genes. Users can directly input their disease pathway 

results from MSEA (genes from disease pathways are used as input) or KDA (genes from the 

disease network or significant key drivers (KDs) are used as input). For both MSEA and KDA, 

specific gene sets can be input into drug repositioning for a more refined analysis. As PharmOmics 

is based on gene expression studies, inputs are limited to genes or proteins. Users can also input 

their genes of interest into PharmOmics for drug repositioning analysis without running any other 

functions in Mergeomics. 

 

Flexible workflows using the core functions: Each of the main functions of Mergeomics described 

above can be utilized as a standalone analysis tool or a multi-step workflow with several different 

cases as portrayed in Figure 2.1. There are four cases or starting points that a user has the option 

to select. In case one, the user has one GWAS dataset and is prompted first to run MDF where 

they provide their association dataset, mapping data (e.g., SNP to gene), and marker dependency 

data (linkage disequilibrium or LD in the case of GWAS) to retrieve corrected SNP associations 

and mapping files. The MDF step is optional if the user does not wish to correct for LD, although 

we highly recommend this correction to avoid statistical artefacts due to LD. These results along 

with a gene set are fed into MSEA to uncover disease-associated pathways, which can be further 

analyzed in KDA to identify key regulators or PharmOmics for drug repositioning. In case two, 

the user has EWAS, TWAS, PWAS, or MWAS data, and they are led to MSEA, where MDF and 

marker mapping are optional. As in the GWAS path, results from MSEA can be carried to KDA 

or PharmOmics. In case three, the user has multiple omics datasets and utilizes Meta-MSEA, 
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which will run MSEA on each dataset and then conduct a meta-analysis across datasets to retrieve 

consistent biological processes, which can be input into PharmOmics or KDA. Finally, in case 

four, the user has a gene set and network of interest and can directly run KDA, which will provide 

KD genes and a subnetwork visualization of the top KDs, and the KDs or subnetwork can be input 

into PharmOmics to predict drugs. 

 

Update on Marker Dependency Filtering (MDF): MDF prepares input files for MSEA by 

correcting for dependency between omics markers and is an optional function. This preprocessing 

step is most commonly used for GWAS data to correct for LD between SNPs and filter out 

redundant SNPs, which is critical for removing redundant association signals that can result in 

statistical and biological artefacts in downstream analysis. Another purpose of MDF is to link the 

SNPs to potential downstream genes based on functional evidence, such as tissue-specific eQTLs. 

Correcting for dependency between other omics markers is currently seldom used. However, this 

feature can be utilized to correct for dependency between other types of markers (methylation sites, 

transcripts, etc.), if desired. MDF uses as input an association file which details markers (e.g., 

SNPs) and their disease association strengths (e.g., -log10 p-values or effect size, note that p values 

are prohibited as MDF ranks larger values as stronger association strength, which is opposite of p 

values), a mapping file used for marker to gene mapping (e.g., SNPs are mapped to genes to be 

enriched for gene sets), and a marker dependency file indicating the dependency between markers 

(e.g., LD between SNPs, to remove redundant markers) (Figure 2.2).  The resulting corrected 

association and mapping files are then used as input to MSEA. MDF also allows for the selection 

of a top percentage of markers (50% or 25% recommended) to be considered in the analysis which 

reduces noise from low signal markers. 
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 Updates to MDF include an increased number of marker to gene mapping options such as 

the addition of all available tissue-specific Genotype-Tissue Expression project (GTEx) [68] cis-

eQTLs and splicing QTLs (cis-sQTLs) (Table 2.1), the ability to combine up to five multiple 

mapping options, and the inclusion of LD files for all 26 populations from 1000 Genomes (1000G) 

[69] and methylation disequilibrium from EWAS software 2.0 [70]. For analysis starting from 

GWAS data, MDF is a default preprocessing step, but we have included the option to skip MDF. 

For analytical paths starting from other omics data, users have the option to add MDF if needed.  

  

Update on Marker Set Enrichment Analysis (MSEA): In MSEA, full summary statistics of omics 

markers such as SNPs from GWAS, epigenetic sites from EWAS, genes from TWAS, proteins 

from PWAS, or metabolites from MWAS and their disease association values are taken as input 

and are integrated with functional genomics, canonical pathways, or co-expression networks to 

retrieve disease-associated pathways and networks. MSEA calculates and summarizes enrichment 

of disease/trait omics markers in sets of functionally related genes, such as canonical pathways 

and co-expression networks, across a range of statistical cutoffs in the full summary statistics file 

using a chi-square like statistic, and then uses permutation to determine statistical p values for the 

enrichment. We emphasize the importance to provide the association strength of the given marker 

wherein a larger number reflects greater association such as -log10 p-values or effect size to avoid 

incorrect downstream analysis and interpretability.  

 MSEA is able to analyze diverse data types, and each has different considerations of inputs 

which was partly described in the above MDF section (Figure 2.2). The output from MSEA can 

be interpreted as omics-informed disease pathways or networks. If GWAS is used, MSEA results 

can imply causal disease processes since GWAS carries causal inference. For other omics data, 



 16 

the MSEA results can only be interpreted as disease-associated processes but may or may not be 

causal. Considering GWAS along with other omics data, in our opinion, is a useful way to identify 

causal genes and processes. We also advise the user to take care in their interpretation of the names 

or annotations of pathways deemed to be significant (FDR < 0.05) as some can be misleading. 

Attention to the genes enriched in a given pathway derived from the input dataset should be 

checked in the gene details output file to confirm whether the pathway name is indeed appropriate 

as the genes may be more suitable or representative of another biological process. A user can 

conclude the analysis with results from MSEA or use the MSEA results as input to KDA with a 

user-defined statistical cutoff to identify network KDs of the disease processes based on molecular 

network topology.  

 In Mergeomics 2.0, we added the ability to use disease-associated gene sets derived from 

MSEA as input to PharmOmics for drug repositioning analysis, selecting either specific gene sets 

or by false discovery fate (FDR) or P-value threshold, to pinpoint drugs whose gene signatures 

align with those of the disease-associated gene sets identified by MSEA.  

 

Update on Meta-MSEA: Meta-MSEA allows for integration of multiple of the same omics type 

(e.g. two or more GWAS datasets) or multiple omics types (e.g., GWAS, EWAS, TWAS) by 

running MSEA for each omics type followed by a meta-analysis. This integration reveals 

consistencies and differences in biological perturbation across different omics types or different 

studies of the same omics type.  

 In Mergeomics 2.0, we improved the guidance of running Meta-MSEA in regard to the 

differences in preprocessing of the different types of omics data. In addition, we have increased 

the flexibility of this analysis to allow for specific inputs and parameters for each association data. 
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After each individual omics dataset is added, the user will be able to review which datasets have 

been successfully uploaded and their individual MSEA parameters with the option to add 

additional datasets or delete certain datasets, providing an easy way to track all the different inputs.  

As in results from individual MSEA, significantly associated gene sets from Meta-MSEA can be 

used as input to KDA or PharmOmics drug repositioning. We have also implemented user-defined 

individual MSEA FDR cutoffs to KDA in that the disease-associated pathways must pass all 

individual MSEA FDR cutoffs as well as the meta-FDR to be used in KDA, allowing the user to 

focus on the most consistent and robust disease processes across different datasets. In addition, we 

now provide heterogeneity q and p values to indicate the variability between datasets. 

 

Update on Key Driver Analysis (KDA): KDA identifies essential regulators of disease-associated 

pathways and networks, which are then visualized in the web browser using Cytoscape.js (Figure 

2.3). KDA results can also be downloaded as network files ready to be used on Cytoscape Desktop 

for further customization of network visualization. A Chi-square like statistic,  , is used to identify 

genes (KDs) that are connected to a significantly larger number of disease-associated genes than 

what is expected by random chance. O and E represent the observed and expected numbers of 

disease-associated genes in a hub subnetwork, and E is estimated by   where Np is the disease gene 

set size, Nk is the hub degree, and N is the full network order. KDs represent prioritized disease 

regulatory genes based on network topology. In numerous recent applications of Mergeomics, top 

KDs have been shown to be causal for diseases based on experimental evidence [47, 51, 60], 

thereby supporting their importance. KDA can be utilized as a follow up analysis to MSEA or 

Meta-MSEA, and it can also be used as an independent analysis using a gene list of interest and a 

given network as inputs. For instance, the user can upload a list of curated disease genes and choose 
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or upload a relevant network to run KDA to identify how the disease genes interact in the network 

and whether there are key hub nodes in the network that regulate the disease genes. 

 In Mergeomics 2.0, we added the ability to visualize input gene overlap with a given 

network, if any, in the case that no KDs were found. The user can therefore be better informed on 

the reason for the lack of KD hits based on the distribution and connectivity of the input genes in 

the network. If few input genes are in the network or the input genes are widely dispersed in the 

network, that will explain the lack of KD identification. We have additionally increased the 

number of sample tissue-specific networks (Table 2.1). As we have done similarly with MSEA 

and Meta-MSEA, disease subnetworks or significant KDs from KDA can be used directly for 

PharmOmics drug repositioning, and users can further customize which processes in the 

subnetwork are used in drug repositioning for a more focused analysis.  

 

Data and sample input updates: We have significantly augmented the amount of Mergeomics-

ready sample files with commonly used datasets and will continue to actively update sample files 

to enrich data resources useful for users on a monthly basis.  

In Mergeomics 2.0, we include over 20 GWAS datasets from a broader range of diseases 

from metabolic syndrome to psychiatric disorders (Table 2.1). For omics dependency filtering 

options, we have added the full array of LD data from 26 human populations studied in 1000G 

[69] with LD above 0.5 and 0.7 for SNP filtering to remove redundant SNPs in high LD and have 

also provided an example methylation disequilibrium data file for correction of EWAS data. For 

SNP to gene mapping options, we have added all tissue-specific cis-eQTL and cis-sQTL mapping 

files from the GTEx version 8 (q-value < 0.05) [68], which inform on the SNPs associated with 

gene expression level changes (eQTL) or differential splicing (sQTL). In addition, we offer 
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ENCODE regulatory gene mapping [71] and various chromosomal location-based mapping 

options (Table 2.1). Moreover, we have increased the number of curated pathways from version 

1 to include all gene sets from Molecular Signatures Database (MSigDB) [72] such as KEGG [73], 

Reactome [74], Biocarta [75] canonical pathways, chemical and genetic perturbation, microRNA 

and transcription factor targets, and cell type marker signatures, Gene Ontology [76], 

Wikipathways [77], and Bioplanet [78], among others (Table 2.1). To complement knowledge-

based pathways, we include our data-driven tissue-specific co-expression network modules 

utilizing GTEx transcriptome datasets and co-expression network construction tools MEGENA 

[79] and WGCNA [80] (Table 2.1). Finally, we have constructed tissue-specific Bayesian gene 

regulatory networks [81] and include them as sample networks on the web server. We also provide 

human protein-protein interaction networks [82], transcription factor networks [83], and GIANT 

networks [84] (Table 2.1). Sample files are available to download from our sample resources page 

(http://mergeomics.research.idre.ucla.edu/samplefiles.php), and further clarification on correct 

formatting of input data is detailed on the webserver and in Figure 2.2. 

 

General Updates: We have completely redesigned the user interface to make it much more 

intuitive in guiding the use of the pipeline for different omics data types. To start the pipeline, 

users are presented with four workflow options in regard to the data that they have: (1) GWAS, 

(2) EWAS, TWAS, PWAS, or MWAS, (3) multiple of the same or different types of omics data, 

and (4) a gene set list (user can run KDA or PharmOmics). The separation of GWAS from other 

omics datasets is for the additional need to correct for LD and link SNPs to candidate genes through 

MDF, which is not required or is optional for other omics datasets. For EWAS, a marker to gene 

mapping file is required if the user uploads epigenetic markers such as CpG probes. For MWAS, 
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a metabolite to gene mapping file is optional but not required if the user uses metabolite sets as the 

marker sets to be tested. Marker mapping is not needed for TWAS and PWAS as the markers 

(genes and proteins) match the gene sets. This workflow design clearly delineates what is needed 

for each specific data type, which is more intuitive for the user. We have also improved the fluidity 

and presentation of the pipeline workflow as each collapsible step appears below the previous in a 

vertical format so that the user can revisit input files, parameters, and results of previous steps in 

the pipeline and choose to rerun a step at any point in the pipeline. A workflow map with 

navigation links is also generated on the left sidebar to help visualize the steps taken and 

downstream paths. 

 We have improved the system that allows users to return to their session where results of 

analyses can be revisited or continued onto the next step using a unique tracking ID number that 

is valid for up to 48 hours after the start of their session. The user can also choose to have their 

results emailed upon completion of the analysis, which is not mandatory but is recommended 

because the tracking ID allows the user to reload their session and retrieve completed jobs in case 

a crash occurs. Because later steps of the pipeline, KDA and PharmOmics, can be run 

independently, downloadable result files from MSEA and KDA can be uploaded directly to the 

desired next step in the analysis (e.g., MSEA to KDA/PharmOmics or KDA to PharmOmics).   

 In addition, we have improved case-specific responsiveness of the web server to better 

inform the user such as error-checking of user uploaded files to ensure the file is formatted 

correctly and providing feedback on user results such as whether the results are substantial to be 

used in the next step of the analysis. Across all applications of Mergeomics 2.0 we have provided 

an improved review of analysis inputs and parameters and new interactive tables with pagination, 

sorting, and search features (Figure 2.5). We also implemented real-time runtime analysis output 



 21 

and progress updates, and this job log including any errors that occurred is available for download 

at the conclusion of the analysis. Finally, we have improved multi-device usage including on 

tablets and phones such that it can be appropriately viewed on different screen sizes. We further 

improved the tutorial to explain how to prepare input files and the underlying methods and various 

parameters underlying each computational function and provide a tutorial video to demonstrate 

the different pipeline options. 

 

Use Case: Identifying pathogenic pathways and networks for psoriasis based on multiomics 

data: The use case described here utilizes publicly available GWAS and EWAS data to perform 

Meta-MSEA and subsequently KDA to find pathogenic pathways and regulators of psoriasis 

(Figure 2.4). All data used in this example are provided as sample data on the web server which 

can be downloaded (http://mergeomics.research.idre.ucla.edu/samplefiles.php). GWAS of 

psoriasis was obtained from dbGAP database (www.ncbi.nlm.nih.gov/gap) with accession 

phs000019.v1.p1, and two EWAS of psoriasis was obtained from GEO (GSE31835 and 

GSE63315) [85, 86]. For preprocessing of the GWAS data, we use the top 50% of SNPs ranked 

by -log10 p-value and correct for LD between SNPs using MDF with the psoriasis GWAS summary 

statistics as the marker associations, combined skin and blood eQTLs as the SNP to gene mapping, 

and the 1000G CEU LD structure containing SNPs with r2 > 0.7 as the marker dependency file. 

For the EWAS data, CpG sites are mapped to adjacent genes within 5 kb. Next, we chose canonical 

pathways from the KEGG database and a positive control gene set from the NHGRI-EBI GWAS 

catalog [87] for psoriasis as the pathways or marker sets to be examined. We ran Meta-MSEA 

across GWAS and the two EWAS datasets. At the conclusion of Meta-MSEA, a set of results files 
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and a summary table display are generated on the webpage detailing the pathways ranked by meta 

p-value and their top mapped markers and corresponding genes (Figure 2.5A).  

 As shown in Figure 2.5A, “Cytokine cytokine receptor interaction”, “Graft versus host 

disease”, and “Natural killer cell mediated cytotoxicity” were three of the top pathways identified 

among others. Following Meta-MSEA, KDA was run with default parameters using nonredundant 

supersets (pathways that were merged due to significant overlap in genes enriched) significantly 

associated with psoriasis from Meta-MSEA and a blood GIANT Bayesian gene regulatory network 

[84] (chosen due to the relevance of the immune system to psoriasis) to identify KDs of the disease 

related gene sets.  At the conclusion of KDA, a table is produced on the webpage listing the KDs 

and significance of enrichment of psoriasis associated gene sets in their network neighborhood 

(Figure 2.5B). For example, ICAM2 is identified as the KD for the viral myocarditis/tight 

junction/autoimmune pathway, and CD2 is identified as a KD for the Autoimmune Disease 

Superset. By default, the top five KDs and their local subnetworks from each gene set is included 

in the interactive subnetwork visualization in the browser (Figure 2.3). 

 With addition of the PharmOmics pipeline to the Mergeomics webserver, we ran two drug 

repositioning analyses: one directly from the MSEA results and the other considering the whole 

subnetwork derived from the KDA (Figure 2.5C). In this case study, we do not consider gene 

expression direction changes (upregulation or downregulation) in psoriasis and therefore will 

simply be utilizing genes involved in disease without considering if they are protective or 

pathogenic; thus, our predicted drug list will contain drugs that can induce as well as drugs that 

can potentially treat psoriasis. In addition, PharmOmics interrogates all drug signatures regardless 

of the tissue or species, and the user can choose to focus on the relevant drug studies for their given 

dataset. For example, we mainly focused on drugs that were studied in integument tissue, due to 



 23 

its relevance to psoriasis.  In the top 10 repositioned drugs derived from psoriasis associated gene 

sets from Meta-MSEA, we find 8/10 to have prior association with a role in psoriasis pathogenesis 

(Imiquimod [88]) or treatment including broad options suggesting classes of drugs such as anti-

inflammatory, immunosuppressant, JAK inhibitors, and anti-rheumatic drugs and more specific 

options such as  Baricitinib [89], Ingenol [90], and Etinostat [91] (Figure 2.5C). Similarly, using 

the psoriasis subnetwork from KDA highlights Imiquimod and Ingenol within the top 10 drugs, 

and the remainder of the results are broad categories such as JAK inhibitors, anti-inflammatory 

drugs, and anti-rheumatic drugs, each of which are actively being investigated in the treatment of 

psoriasis [92, 93]. The predicted drugs can form new hypotheses for experimental testing. 

 

Future Directions: The web server will continue to actively incorporate the most up-to-date public 

resources including multiomics association data, functional genomics data such as eQTLs or 

protein QTLs (pQTLs), knowledge-based pathways, gene co-expression networks, and gene 

regulatory networks on a monthly basis. We will also include single cell networks when available 

to understand the gene regulatory connections within a given cell type or between cell types rather 

than across a whole tissue, which will offer higher resolution molecular mechanisms of disease 

pathogenesis. Cell type level association data derived from single cell omics studies can be used 

in the current platform. We will also continue incorporating additional analytical functions into 

the web server such as different forms of meta-analysis that can be conducted within the Meta-

MSEA tool as well as adding new features to better accommodate analysis of data types that are 

currently not considered or well tested, such as gut microbiome and spatial transcriptomics data. 

2.3 Conclusions 
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Thanks to advancements in technologies, the number of multiomics data (GWAS, EWAS, TWAS, 

PWAS and MWAS) increases exponentially. The systems biology approach to interrogate multi-

tissue multi-omics data has become a promising method to understand biology in a data-driven 

way and sheds light on the hidden mechanisms. However, the computational knowledge and skills 

required to perform such integrative analysis are often considered as a hurdle to many biologists. 

Therefore, the Mergeomics web server was developed to lower this barrier to enable fellow 

researchers to dive into multiomics systems biology. The current update, Mergeomics 2.0, is a 

versatile web-based tool that provides multiomics data integration using a pathway- and network-

based approach. The improvements we made support a wide range of precalculated networks and 

data for all steps of the pipeline to fulfill a variety of needs and research purposes. In addition, the 

new user interface presents a more intuitive and flexible environment that greatly improves its ease 

of use. In addition to a detailed tutorial, each step of the pipeline contains embedded guidance to 

facilitate the user experience. We believe that the Mergeomics 2.0 and systematics approach 

applied here will accelerate our understanding of complex diseases and guide therapeutics. 
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2.4 Tables 
 
Table 2.1 Sample resources on Mergeomics web server 
 

General Data Category Data Type Specifics Citation 

Association Data 

GWAS 

Alzheimer’s Disease [94] 
Attention Deficit Hyperactivity Disorder [95] 
Alcohol Dependence [96] 
Body Mass Index [97] 
Breast Cancer [98] 
Coronary Artery Disease [99] 
Fasting Glucose [100] 
Heart Failure [101] 
High Density Lipoproteins (HDL) [102] 
Low Density Lipoproteins (LDL) [102] 
Major Depressive Disorder [103] 
Parental Lifespan [104] 
Parkinson’s Disease [105] 
Psoriasis [106] 
Severe illness in Covid-19 [107] 
Schizophrenia [108] 
Stroke [109] 
Systemic Lupus Erythematosus [110] 
Type 2 Diabetes [111] 
Total Cholesterol [102] 
Triglycerides [102] 

EWAS 

Birth Weight [112] 
Maternal Anxiety [113] 
Social Communication [114] 
Psoriasis  [85, 86] 

Marker Mapping 

Chromosomal Distance 10kb, 20kb, 50kb [69] 
Regulome RegulomeDB (ENCODE) [115] 

eQTL 49 tissue types [68] 
sQTL 49 tissue types [68] 

Marker Dependency Linkage Disequilibrium 26 populations at r2 > 0.5 and > 0.7 [69] 
Methylation Disequilibrium r2 > 0.5 [70] 

Marker Sets 

 
Canonical 

(knowledge based) 

KEGG [73] 
Reactome [74] 
BioCarta [75] 
MSigDB [72] 
GO  [76] 
BioPlanet [78] 
WikiPathways  [77] 

Data-driven (Co-expression) 24 tissue specific modules (WGCNA/MEGENA) [68, 79, 80] 

Networks 

Gene Regulatory Human and 
Mouse Composite (Bayesian) 

Adipose, Blood, Brain, Kidney, Liver, Muscle [12, 81, 
116-120] 

Gene Regulatory 
(GIANT) 

Adipose, Blood, Brain, Kidney, Liver, Muscle [84] 

Protein-Protein Interaction STRING [82] 
 Transcription Factor-Target 

(FANTOM5) 
Adipose, Blood, Brain, Kidney, Liver, Muscle [83] 
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2.5 Figures 
 
 

Figure 2.1. Workflow of Mergeomics. We provide four options on the web server to tailor to the 
user’s data type. Case One: Individual GWAS analysis. For GWAS datasets we advise utilizing 
the MDF function; however, we also provide the ability to skip MDF and go directly into MSEA 
and follow the workflow to PharmOmics or KDA. Case Two: Individual EWAS, TWAS, PWAS, 
or MWAS analysis. In this case, we can directly start at MSEA without MDF; however, we also 
provide the ability to utilize the MDF function if needed. From here the user can feed the MSEA 
results into PharmOmics or to KDA. Case Three: Multiomics analysis. If the user has multiple 
omics of the same type (e.g., two GWAS) or different types (e.g., TWAS and EWAS), they can 
utilize the Meta-MSEA function to derive disease-associated pathways and can input their results 
into PharmOmics or KDA. Case Four: A gene list(s) to run KDA. The user in this case can upload 
their gene sets of interest and upload or select a network to derive KD genes and visualize top KD 
subnetworks. The disease subnetwork or significant KDs can be fed into PharmOmics for drug 
repositioning. 
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Figure 2.2. Mergeomics pipeline inputs. MDF is the default starting point for GWAS analysis and is an optional 
step for EWAS/TWAS/PWAS/MWAS. MDF requires marker-disease associations, a marker-gene mapping file, and 
a marker dependency file. Users with GWAS data can also skip MDF and run MSEA directly. MDF produces 
corrected marker-disease associations and marker-gene mapping files containing independent markers that are used 
for MSEA. For MSEA, required files for all datasets are the marker-disease associations and marker sets 
(pathway/modules). The marker to gene mapping file is required for GWAS and EWAS and optional for MWAS, 
TWAS, and PWAS. Disease-associated marker sets from MSEA can be fed into KDA which requires gene sets and a 
network. KDA can also be a starting point of analysis. Disease-associated gene sets from MSEA or KDs and disease 
subnetwork from KDA can be fed into PharmOmics drug repositioning.
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Figure 2.3. Top KDs network visualization. Screenshot of the in-browser interactive network visualization (using Cytoscape.js) directed from the KDA results 
page. The colors of the nodes represent member genes of a disease-associated pathway. The diamond shaped nodes represent KD genes, where the border color 
represents the top pathway that is regulated by the KD. If a node has multiple colors, it is part of two or more disease-associated pathways, and if a node is grey, it 
does not belong to the disease pathways (non-member genes) but is present in the input network. 
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Figure 2.4. Meta-MSEA use case study overview. To showcase the function and output of the web server, we utilized multiple human psoriasis GWAS and 
EWAS data and ran the multiple omics data workflow (Case 3 in Figure 1, Meta-MSEA). Firstly, we uploaded the psoriasis GWAS data, mapped the SNPs to 
genes using a combined skin and blood eQTL file, and filtered for LD > 0.7 to remove redundant SNPs in LD. Next, we uploaded our psoriasis EWAS association 
datasets and mapped the CpG sites to genes based on a 5kb distance. Finally, we uploaded KEGG pathways with a psoriasis control set. Pathway enrichment results 
are produced, and each pathway’s top genes, markers, and corresponding association values are displayed. Psoriasis associated pathways are used as input into 
KDA as well as PharmOmics drug repositioning (using genes from significant pathways/modules). In the KDA, along with the Meta-MSEA input, we chose the 
blood GIANT network option and ran the KDA providing KD results and visualization (Figure 3) and additionally utilized the network genes as an input into 
PharmOmics. Finally, two sets of drug repositioning results were produced using gene overlap-based drug repositioning in PharmOmics: one based on the genes 
of significant pathways from the Meta-MSEA results and the other based on the KDA network genes.
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Figure 2.5. Output files from Meta-MSEA, KDA, and PharmOmics based on the case study of psoriasis outlined 
in Figure 2.4. Tables are interactive with pagination, search, and sort functions. Result files are downloadable from 
links on the webpage above the output tables (not shown). (A) Example Meta-MSEA output from the psoriasis use 
case. The table shown details the significance of association of each pathway/module and the top markers and 
corresponding association strengths that contributed to the module association. There are two additional tables which 
can be displayed by clicking on the tabs to the right of ‘Module Results’ at the top. The second table shows the 
significance and details of merged modules after merging redundant pathways (termed “Supersets”), and these 
nonoverlapping gene sets are used as input to KDA. The third table shows the individual significance values for each 
omics dataset included in this Meta-MSEA analysis of one GWAS and two EWAS of psoriasis. (B) Example KDA 
output from the psoriasis use case. The table shown records the significance of KDs, the pathways/modules that they 
regulate based on network topology, and details of the local subnetwork such as the number of KD subnetwork genes 
and number of pathway/module gene overlap with the KD subnetwork. Merged pathways/modules are represented by 
the term “Superset”, which means they are comprised of multiple redundant (significant gene overlap) pathways. (C) 
Example PharmOmics drug repositioning output using a gene overlap-based analysis between disease pathways and 
drug signatures. Gene overlap-based drug repositioning queries all tissue- and species-specific meta-analyzed and 
dose/time segregated gene signatures of drugs in our PharmOmics database as well as all L1000 drug signatures. The 
table shown gives the dataset source of the drug signature, the method of differential gene expression analysis, details 
of the drug study including species, tissue or cell line, whether the study was done in vitro or in vivo, the dose and 
time regimen, the Jaccard score, and statistical significance of the gene overlap between the input psoriasis related 
genes from Meta-MSEA and the drug signatures. 
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Chapter 3. Gene Networks and Pathways for Plasma Lipid Traits via Multi-tissue 

Multi-omics Systems Analysis 

3.1 Introduction 
 
Lipid metabolism is vital for organisms as it provides energy as well as essential materials such as 

membrane components and signaling molecules for basic cellular functions. Lipid dysregulation 

is closely related to many complex human diseases, such as atherosclerotic cardiovascular disease 

[121], Alzheimer’s disease [122, 123], type 2 diabetes (T2D) [124], and cancers [125]. The notion 

of targeting lipid metabolism to treat human diseases has been reinforced by the fact that many 

disease-associated genes and drug targets (e.g., HMGCR as the target of statins and PPARA as the 

target of fibrates) are involved in lipid metabolic pathways [126-128].  

Accumulating evidence supports that plasma lipids are complex phenotypes influenced by 

both environmental and genetic factors [129, 130]. Heritability estimates for main plasma lipids 

are high (e.g. ~70% for low density lipoprotein cholesterol [LDL] and ~55% for high density 

lipoprotein cholesterol [HDL]) [131], indicating that DNA sequence variation plays an important 

role in explaining the inter-individual variability in plasma lipid levels. Indeed, genome-wide 

association studies (GWAS) have pinpointed a total of 386 genetic loci, captured in the form of 

single nucleotide polymorphisms (SNPs) associated with lipid phenotypes [132-136]. For 

example, the most recent GWAS on lipid levels identified 118 loci that had not previously been 

associated with lipid levels in humans, revealing a daunting genetic complexity of blood lipid traits 

[136].  

However, there are several critical issues that cannot be easily addressed by traditional 

GWAS analysis. First, even very large GWAS may lack statistical power to identify SNPs with 

small effect sizes and as a result the most significant loci only explain a limited proportion of the 
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genetic heritability, for example, 17.2 – 27.1% for lipid traits [137]. Second, the functional 

consequences of the genetic variants and the causal genes underlying the significant genetic loci 

are often unclear and await elucidation. To facilitate functional characterization of the genetic 

variants, genetics of gene expression studies [17, 138] and the ENCODE efforts [139] have 

documented tissue- or cell-specific expression quantitative trait loci (eQTLs) and functional 

elements of the human genome. These studies provide the much-needed bridge between genetic 

polymorphisms and their potential molecular targets. Third, the molecular mechanisms that 

transmit the genetic perturbations to complex traits or diseases, that is, the cascades of molecular 

events through which numerous genetic loci exert their effects on a given phenotype, remain 

elusive. Biological pathways that capture functionally related genes involved in molecular 

signaling cascades and metabolic reactions, and gene regulatory networks formed by regulators 

and their downstream genes can elucidate the functional organization of an organism and provide 

mechanistic insights [140]. Indeed, various pathway- and network-based approaches to analyzing 

GWAS datasets have been developed [17, 141-143] and demonstrated to be powerful to capture 

both the missing heritability and the molecular mechanisms of many human diseases or 

quantitative phenotypes [17, 142, 144, 145]. For these reasons, integrating genetic signals of blood 

lipids with multi-tissue multi-omics datasets that carry important functional information may 

provide a better understanding of the molecular mechanisms responsible for lipid regulation as 

well as the associated human diseases.  

 In this study, we apply an integrative genomics framework to identify important regulatory 

genes, biological pathways, and gene subnetworks in relevant tissues that contribute to the 

regulation of four critical blood lipid traits, namely TC, HDL, LDL, and TG. We combine the 

GWAS results from the Global Lipids Genetics Consortium (GLGC) with functional genomics 
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data from a number of tissue-specific eQTLs and the ENCODE project, and gene-gene relationship 

information from biological pathways and data-driven gene network studies. The integrative 

framework is comprised of four main parts (Figure 4.1): 1) Marker Set Enrichment Analysis 

(MSEA) where GWAS, functional genome, and pathways or co-regulated genes are integrated to 

identify lipid-related functional units of genes, 2) merging and trimming of identified lipid gene 

sets, 3) key driver analysis (KDA) to pinpoint important regulatory genes by further integrating 

gene regulatory networks, and 4) validation of key regulators using genetic perturbation 

experiments and in silico evidence. This integrated systems biology approach enables us to derive 

a comprehensive view of the complex and novel mechanisms underlying plasma lipid metabolism. 

3.2 Results 
 
Identification of pathways and gene co-expression modules associated with lipid traits 

To asses biological pathway enrichment for the four lipid traits with GLGC GWAS, we 

curated a total of 4532 gene sets including 2705 tissue-specific co-expression modules (i.e., highly 

co-regulated genes based on tissue gene expression data) and 1827 canonical pathways from 

Reactome, Biocarta and the Kyoto Encyclopedia of Genes and Genomes (KEGG). These gene sets 

were constructed as data- and knowledge-driven functional units of genes. Four predefined 

positive control gene sets for HDL, LDL, TC, and TG were also created based on candidate genes 

curated from the GWAS catalog [146]. To map potential functional SNPs to genes in each gene 

set, tissue-specific eQTLs, ENCODE functional genomics information, and chromosomal 

distance-based mapping were used (details in Methods). Tissue-specific eQTL sets were obtained 

from the GTEx database from studies on human adipose tissue, liver, brain, blood, and human 

aortic endothelial cells (HAEC), and a total of nine SNP-gene mapping methods were created. The 
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liver and adipose tissues have established roles in lipid regulation, whereas the other tissues are 

included for comparison. 

Integrating the datasets mentioned above using MSEA, we identified 65, 86, 90, and 92 

gene sets whose functional genetic polymorphisms showed significant association with HDL, 

LDL, TC, and TG, respectively, in GLGC GWAS (FDR < 10%; Supplemental Table S4.1). The 

predefined positive controls for the four lipid traits were among the top signals for their 

corresponding traits (Table 4.1), indicating that our MSEA method is sensitive in detecting true 

lipid trait-associated processes. Compared with other tissues, more pathways were captured when 

using liver and adipose eSNPs to map GWAS SNPs to genes (Supplemental Table S4.1). For 

example, 56 out of the 86 LDL-associated pathways were found when liver and adipose eSNPs 

were used in our analysis. These results confirmed the general notion that liver and adipose tissue 

play critical roles in regulating plasma lipids, leading us to focus the bulk of our analysis on these 

two tissues, with the remaining tissues serving as a supplement.  

  Among the significant gene sets, 39 were shared across the four lipid traits. These gene 

sets represented the expected lipid metabolic pathways as well as those that are less known to be 

associated with lipids, such as ‘antigen processing and presentation’, ‘cell adhesion molecules 

(CAMs)’, ‘visual phototransduction’, and ‘IL-5 signaling pathway’ (summary in Table 4.1; details 

in Supplemental Table S4.1). We broadly classified the common gene sets detected into ‘positive 

controls’, ‘lipid metabolism’, ‘interferon signaling’, ‘autoimmune/immune activation’, ‘visual 

transduction’, and ‘protein catabolism’ (Table 4.1).  

Beside the common gene sets described above, we also detected 18, 5, 6, and 17 trait-

specific pathways/modules for HDL, LDL, TC, and TG, respectively (Table 4.2; Supplement 

Table S4.1), suggesting trait-specific regulatory mechanisms. Among the 18 pathways for HDL 
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were ‘cation-coupled chloride transporters’, ‘glycerolipid metabolism’ and ‘negative regulators of 

RIG-I/MDA5 signaling’ across analyses using different tissue eSNP mapping methods, ‘alcohol 

metabolism’ from brain-based analysis, ‘packaging of telomere ends’ in adipose tissue, 

‘glutathione metabolism’ in liver, and ‘cobalamin metabolism’ and ‘taurine and hypotaurine 

metabolism’ in both adipose and liver-based analyses. LDL-specific pathways included the 

‘platelet sensitization by LDL’ pathway and a liver co-expression module related to cadherin. TC-

specific pathways included ‘valine, leucine and isoleucine biosynthesis’ across tissues and ‘wound 

healing’ in the brain-based analysis. When looking at the TG-specific pathways, gene sets 

associated with ‘cellular junctions’ were consistent across tissues whereas ‘insulin signaling’ and 

complement pathways were exclusively seen in adipose tissue-based analysis.  

Replication of lipid-associated pathways using additional dataset and method 

To replicate our results from the analysis of GLGC GWAS datasets, we utilized an additional lipid 

genetic association dataset based on a MetaboChip lipid association study [135] which involved 

individuals independent of those included in GLGC. The gene sets detected using this independent 

dataset highly overlapped with those from the GLGC dataset (Table 4.1; Figure 4.2; overlapping 

p values < 10-20 by Fisher’s exact test). We also utilized a different pathway analysis method 

iGSEA [147] and again many of the gene sets were found to be reproducible (Table 4.1; Figure 

4.3; overlapping p values < 10-20).  

Construction of non-overlapping gene supersets for lipid traits 

As the knowledge-based pathways and data-driven co-expression modules used in our analysis 

can converge on similar functional gene units, some of the lipid-associated gene sets have 

redundancies. We therefore merged overlapping pathways to derive independent, non-overlapping 

gene sets associated lipid traits. For the 39 shared pathways/co-expression modules across the four 



37   

lipid traits described earlier, we merged and functionally categorized them into five independent 

supersets (Table 4.1; Table 4.3). For the significant gene sets for each lipid trait, we merged them 

into 17, 16, 18, and 14 supersets for HDL, LDL, TC, and TG, respectively (Table 4.3; 

Supplemental Table S4.2), and confirmed that the merged supersets still showed significant 

association with the corresponding lipid traits in a second round of MSEA (p < 0.05 after 

Bonferroni correction for the number of supersets tested; Table 4.3).  

Identification of central regulatory genes in the lipid-associated supersets 

Subsequently, we performed a key driver analysis (KDA; Figure 4.1) to identify potential 

regulatory genes or key drivers (KDs) that may regulate genes associated with each lipid trait using 

Bayesian networks constructed from genetic and gene expression datasets of multiple tissues 

(detailed in Methods; full KD list in Supplemental Table S4.3). The top adipose and liver KDs 

for the shared supersets of all four lipid traits and the representative Bayesian subnetworks are 

shown in Figure 4.2.  

 In adipose tissue (Figure 4.2A), the top KDs for the ‘lipid metabolism’ subnetwork include 

well-known lipoproteins and ATP-binding cassette (ABC) family members that are responsible 

for lipid transport, such as APOF, APOA5 and ABCB11. We also found several KDs that are less 

known to be associated with lipid metabolism, particularly F2 (coagulation Factor II or thrombin). 

For the ‘autoimmune/immune activation’ subnetwork, CD86, HCK, and HLA-DMB were 

identified as KDs. PSMB9 was a KD for the ‘protein catabolism’ subnetwork, whereas NUP210 

is central for the ‘interferon signaling’ subnetwork. Moreover, the SYK gene is a shared KD 

between ‘lipid metabolism’ and ‘autoimmune/immune activation’.  

 In the liver (Figure 4.2B), the top KDs for the ‘lipid metabolism’ subnetwork are enzymes 

involved in lipid and cholesterol biosynthesis and metabolism, such as FADS1 (fatty acid 
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desaturase 1), FDFT1 (farnesyl-diphosphate farnesyltransferase 1), HMGCS1 (3-hydroxy-3-

methylglutaryl-CoA synthase 1), and DHCR7 (7-dehydrocholesterol reductase). We also 

identified more KDs for the ‘interferon signaling’ subnetwork in the liver compared to the adipose 

tissue, with MX1, MX2, ISG15, IFI44, and EPSTI1 being central to the subnetwork. Similar to the 

adipose network, PSMB9 and HLA-DMB were also identified as KDs for ‘protein catabolism’ and 

‘autoimmune/immune activation’ subnetworks in liver, respectively. We did not detect key driver 

genes for the ‘visual transduction' subnetwork in either tissue, possibly as a result that the networks 

of liver and adipose tissues did not capture gene-gene interactions important for this subnetwork. 

In addition to the KDs for the subnetworks shared across lipid traits as discussed above, 

we identified tissue-specific KDs for individual lipid traits (Supplemental Table S4.3). In 

adipose, PANK1 and H2B histone family members were specific for the HDL subnetworks 

(Figure 4.3A); HIPK2 and FAU were top KDs for the LDL subnetworks (Figure 4.3B); genes 

associated with blood coagulation such as KNG1 and FGL1 were KDs for the TC and TG 

subnetworks (Figure 4.3C-4.3D). Interestingly, genes related to insulin resistance, PPARG and 

FASN, were KDs for both HDL and TG subnetworks. Similarly, trait specific KDs and 

subnetworks were also detected in the liver; 37 KDs were identified for the TG subnetwork 

including ALDH3B1 and ORM2, whereas AHSG, FETUB, ITIH1, HP, and SERPINC1 were KDs 

found in the LDL subnetwork. We note that most of the KDs are themselves not necessarily GWAS 

hits but are surrounded by significant GWAS genes. For example, gene F2 is centered by many 

GWAS hits in the adipose subnetwork (APOA4, APOC3, APOA5, LIPC, etc.; Figure 4.2; Figure 

4.4). The observation of GWAS hits being peripheral nodes in the network is consistent with 

previous findings from our group and others [148-153], and again supports that important 

regulators may not necessarily harbor common variations due to evolutionary constraints. 
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Experimental validation of F2 KD subnetworks in 3T3-L1 and C3H10T1/2 adipocytes 

Taking into account that the F2 gene is surrounded by various significant GWAS hits within its 

subnetwork, we aimed to validate the role of the F2 gene subnetwork in lipid regulation through 

siRNA-mediated knockdown experiments in two adipocyte cell lines (3T3-L1 and C3H10T1/2) to 

ensure reproducibility and robustness of our results. We found that F2 gene expression was low in 

preadipocytes for both cells lines, but gradually increased during adipogenesis. In fully 

differentiated adipocytes between day 8 and day 10, F2 gene expression level was higher than 

preadipocytes by 12-fold and 6-fold for 3T3-L1 and C3H10T1/2 lines, respectively (Figure 4.5A; 

4.5B). When treated with F2 siRNA, both adipocyte cell lines showed a significant decrease (p < 

0.01) in lipid accumulation based on Oil red O staining, as compared with controls treated with 

scrambled siRNA (Figure 4.5C; 4.5D). Subsequently, we tested the effect of F2 gene siRNA 

knockdown on ten neighbors of the F2 gene in the adipose network (selected from Figure 4.2A). 

With 60% knockdown efficiency of F2 siRNA in the 3T3-L1 adipocytes, seven F2 network 

neighbors (Abcb11, Apoa5, Apof, Fabp1, Lipc, Gc and Proc) exhibited significant changes in 

expression levels (Figure 4.5E). With 74 % knockdown efficiency of F2 in C3H10T1/2 

adipocytes, six F2 network neighbors (Abcb11, Apoa5, Apof, Fabp1, Lipc, and Plg) showed 

significant changes in expression levels (Figure 4.5F). Several of these genes are involved in 

lipoprotein transport and fatty acid uptake. In contrast, none of the four negative controls (random 

genes not in F2 network neighborhood) showed significant changes in their expression levels for 

3T3-L1 cell line. However, one negative control gene (Snrpb2) did change in the C3H10T1/2 cell 

line. These results overall support our computational predictions on the structures of F2 gene 

subnetworks.  
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Next, we measured expression levels of genes related with adipogenesis (Pparg, Cepba, Srepb1, 

Fasn), lipolysis (Lipe), fatty acid transport (Cd36, Fabp4), and other adipokines following F2 

siRNA treatment. We found no change in the expression of most of the tested genes, with the 

exception of Fasn (in C3H10T1/2), important in the formation of long chain fatty acids, and Cd36 

(in both 3T3-L1 and C3H10T1/2), which encodes fatty acid translocase facilitating fatty acid 

uptake. Cd36 expression was decreased by 15 % in 3T3-L1 cells (Figure 4.5G) and 35% in 

C3H10T1/2 cells (Figure 4.5H) (p < 0.05) and Fasn expression was decreased by 25% (Figure 

4.5H) (p < 0.01) in C3H10T1/2 cells compared to control. The decreases in Cd36 and Fasn after 

F2 knockdown suggest that fatty acid synthesis and uptake by adipocytes are compromised, which 

could contribute to alterations in circulating lipid levels. 

We subsequently measured the lipid contents within the cells and in the media of C3H10T1/2 

adipocytes. Following F2 siRNA treatment, we found significant decreases in total intracellular 

lipid levels (cTotal Lipid), total cholesterol (cTC), and unesterified cholesterol (cUC), as well as a 

non-significant trend for decreased triglycerides (cTG) (Figure 4.5I). By contrast, in the culture 

media, there were significant increases in the total lipid levels (mTotal Lipid) and triglycerides 

(mTG) following F2 siRNA treatment (Figure 4.5J). These results support that F2 knockdown 

led to decreased intracellular lipids and increased extracellular lipids, agreeing with the overall 

decreased expression of F2 network neighbor genes involved in lipid transport and uptake. 

 The association between the lipid subnetworks and human diseases 

Epidemiological studies consistently show that plasma lipids are closely associated with 

human complex diseases. For example, high TC and LDL levels are associated with increased risk 

of cardiovascular disease (CVD). Here, we examined the association between the lipid 

subnetworks identified in our study and four human complex diseases, namely, Alzheimer’s 



41   

disease, CVD, T2D, and cancer (Materials and Methods). We found that the gene supersets 

identified for each lipid traits were significantly enriched for GWAS candidate genes reported by 

GWAS catalog for the four diseases at Bonferroni-corrected p < 0.05 (Figure 4.6; Supplemental 

Table S4.4). The superset ‘lipid metabolism’, which was shared across lipid traits, was associated 

with Alzheimer’s disease and CVD. When trait-specific subnetworks were considered, those 

associated with TC, LDL, and TG had more supersets associated with CVD compared to those 

associated with HDL, a finding consistent with recent reports [135, 154, 155]. In addition, 

supersets of each lipid trait, except HDL, were also found to be significantly associated with 

cancer, whereas supersets associated with HDL, LDL, and TG but not TC, were linked to T2D.  

3.3 Discussion 
 
To gain comprehensive insights into the molecular mechanisms of lipid traits that are important 

for numerous common complex diseases, we leveraged the large volume of genomic datasets and 

performed a data-driven multi-omics study combining genetic association signals from large lipid 

GWAS, tissue-specific eQTLs, ENCODE functional data, known biological pathways, and gene 

regulatory networks. We identified diverse sets of biological processes, guided by their tissue-

specific gene-gene interactions, to be associated with individual lipid traits or shared across lipid 

traits. Many of the lipid associated gene sets were significantly linked to multiple complex diseases 

including CVD, T2D, cancer, and Alzheimer’s disease. More importantly, we elucidated tissue-

specific gene-gene interactions among the gene sets and identified both well characterized and 

novel KDs for these lipid-associated processes. We further experimentally validated a novel 

adipose lipid regulator, F2, in two different adipocyte cell lines. Our results offer new insight into 

the molecular regulation of lipid metabolism, which would not have been possible without the 

systematic integration of diverse genetic and genomic datasets. 
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We identified shared pathways associated with all four lipid traits, including ‘lipid 

metabolism’ and ‘autoimmune/immune activation’, which have been consistently linked to lipid 

phenotypes, as well as additional pathways such as ‘interferon signaling’, ‘protein catabolism’, 

and ‘visual transduction’. Interferon factors have previously been linked to lipid storage 

attenuation and differentiation in human adipocytes [156]. Protein catabolism has only recently 

been identified to be important in regulating lipid metabolism through the PSMD9 protein, which 

had no previously known function but was shown to cause significant alterations in lipid 

abundance in both a gain of function and loss of function study in mice [157]. The ‘visual 

transduction’ superset contains retinol-binding proteins, which are carrier proteins involved retinol 

transport, and play key roles in gene expression regulation and developmental processes [158]. 

‘visual transduction’ also shares lipoprotein genes with ‘lipid metabolism’, suggesting that retinol-

related signal transduction is intimately linked to lipoprotein transport and hence plasma lipid 

levels.  

Furthermore, our results indicate that the trait-specific supersets are tissue-specific. For 

example, most TG-specific pathways were found to be significant when adipose eSNPs were used, 

and complement and insulin signaling pathways in the adipose tissue were specific for TG. This 

is in line with adipose tissue functioning as the major storage site for TG and the regulatory role 

of immune system and insulin signaling in adipocyte functions and fat storage [159]. We also 

found five HDL-specific pathways, most of which are associated with glucose, lipid, and amino 

acid metabolism, and were signals derived from liver eSNPs. As HDL acts as the major vehicle 

for transporting cholesterol to the liver for excretion and catabolism, the critical role of the liver 

as well as the connections between major metabolic pathways in HDL regulation is recapitulated 

by our analysis. Interestingly, the TC-specific pathways can be only found when brain eSNPs are 
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used. While the brain accounts for 2% of body weight, it contains 23% of TC in the body [160] 

and deregulated cholesterol trafficking appears to be involved in the pathogenesis of 

neurodegenerative diseases, such as Parkinson's and Alzheimer's disease [161]. These tissue- and 

trait-specific pathways or processes support the unique features of each lipid species and point to 

tissue-specific targeting strategies to modulate levels of individual lipid traits and the associated 

diseases.   

In addition to detecting trait- and tissue-specific causal pathways for the lipid traits, our 

study attempted to delineate the interactions between lipid genes and pathways through gene 

network analysis. Indeed, the tissue-specific gene networks revealed in our study highlight the 

regulatory connections between lipid genes and pathways, and thus put individual genes in a 

broader context. The identification of KDs in a network is essential for uncovering key regulatory 

components and for identifying drug targets and biomarkers for complex diseases [143, 162]. Here, 

we adopted data-driven Bayesian gene regulatory networks that combine various genomic data 

[163] to detect the central genes in plasma lipid regulation. The power of this data-driven objective 

approach has been demonstrated recently [9, 143, 151, 152, 164, 165] and is again supported in 

this study by the fact that many KDs detected are known regulators for lipids or have served as 

effective drug targets based on the DrugBank database [166]. For instance, for the shared ‘lipid 

metabolism’ subnetwork, four top KDs (ACAT2, ACSS2, DHCR7, and FADS1), are targeted by at 

least one FDA approved anti-cholesteremic drug. Another KD, HMGCS1, is a rate-limiting 

enzyme of cholesterol synthesis, and is considered a promising drug target in lipid-associated 

metabolic disorders [167]. These lines of evidence lead us to speculate the other less-studied KDs 

are also important for lipid regulation.  
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Among the top network KDs predicted, several including F2, KLKB1 and ANXA4 are 

involved in blood coagulation. A previous study revealed polymorphisms in the anticoagulation 

genes modify the efficacy of statins in reducing risk of cardiovascular events [168], which in itself 

is not surprising. However, the intimate relationship between a coagulation gene F2 and lipid 

regulation predicted by our analysis is intriguing (Figure 4.5). We found that the partner genes in 

the adipose F2 subnetwork tend to be differentially expressed after F2 knockdown in both 3T3-

L1 and C3H10T1/2 adipocytes, with several of the altered genes (Apoa5, Apof, Abcb11, Fabp1, 

Fasn and Cd36) closely associated with cholesterol and fatty acid transport and uptake. We further 

observed that F2 knockdown affects lipid storage in adipocytes, with intracellular lipid content 

decreasing and extracellular lipid content in the media increasing. Interestingly, F2 expression 

level is low in preadipocytes and only increases during the late phase of adipocyte differentiation. 

Our findings support a largely untapped role of F2 in lipid transport and storage in adipocytes and 

provide a novel target in the F2 gene. 

In addition to the shared KDs such as F2 for different lipids, it may be also of value to 

focus on the trait-specific KDs as numerous studies have revealed these lipid phenotypes play 

different roles in many human diseases. For example, LDL and TC are important risk factors for 

CVD [169] and TG has been linked to T2D [170], while the role of HDL in CVD has been 

controversial [171]. We detected 37 genes as TG-specific KDs in liver regulatory subnetworks. 

Among these, CP (ceruloplasmin) and ALDH3B1 (aldehyde dehydrogenase 3 family, member B1) 

were clinically confirmed to be associated with T2D [172, 173] while most of the other genes such 

as DHODH and ANXA4 were less known to be associated with TG and thus may serve as novel 

targets. In adipose tissue, genes important for insulin resistance and diabetes such as PPARG and 

FASN were found to be KDs for TG, further supporting the connection between TG and diabetes. 
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Additionally, FASN has been implicated as a KD in numerous studies for non-alcoholic fatty liver 

disease [153, 165, 174], again highlighting the importance of this gene in common metabolic 

disorders.  

 We acknowledge some potential limitations to our study. First, the GWAS datasets utilized 

are not the most recently conducted and therefore provides the possibility of not capturing the full 

array of unknown biology. However, despite this our results are consistent with the biology found 

more recently including overlapping signals in pathways for chylomicron-mediated lipid transport 

and lipoprotein metabolism [175] as well as more novel findings such as visual transduction 

pathways. In addition, one of our key drivers KLKB1, which was not found to be a GWAS hit in 

the dataset we utilized, has since been found to pass the genome wide significance threshold in 

more recent larger GWAS and is a hit on apolipoprotein A-IV concentrations, which is a major 

component of HDL and chylomicron particles important in reverse cholesterol transport [176]. 

This further exemplifies the robustness of our integrative network approach to find key genes 

important to disease pathogenesis even when smaller GWAS were utilized.  

3.4 Conclusion 
 

In summary, we used an integrative genomics framework to leverage a multitude of genetic 

and genomic datasets from human studies to unravel the underlying regulatory processes involved 

in lipid phenotypes. We not only detected shared processes and gene regulatory networks among 

different lipid traits, but also provide comprehensive insight into trait-specific pathways and 

networks. The results suggest there are both shared and distinct mechanisms underlying very 

closely related lipid phenotypes. The tissue-specific networks and KDs identified in our study shed 

light on molecular mechanisms involved in lipid homeostasis. If validated in additional population 

genetic and mechanistic studies, these molecular processes and genes can be used as novel targets 
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for the treatment of lipid-associated disorders such as CVD, T2D, Alzheimer’s disease and 

cancers. 

3.5 Methods 
 
GWAS of lipid traits 

The experimental design, genotyping, and association analyses of HDL, LDL, TC, and TG were 

described previously [132]. The dataset used in this study is comprised of > 100,000 individuals 

of European descent (sample size 100,184 for TC, 95,454 for LDLC, 99,900 for HDLC and 96,598 

for TG), ascertained in the United States, Europe, or Australia. More than 906,600 SNPs were 

genotyped using Affymetrix Genome-Wide Human SNP Array 6.0. Imputation was further carried 

out to obtain information for up to 2.6 million SNPs using the HapMap CEU (Utah residents with 

ancestry from northern and western Europe) panel. SNPs with minor allele frequency (MAF) < 

1% were removed. Finally, a total of ~ 2.6 million SNPs tested for association with each of the 

four lipid traits were used in our study. 

Genetic association study of lipid traits using MetaboChip 

The experimental design, genotyping, and association analyses of the lipid MetaboChip study were 

described previously [177]. The study examined subjects of European ancestry, including 93,982 

individuals from 37 studies genotyped with the MetaboChip array, comprised of 196,710 SNPs 

representing candidate loci for cardiometabolic diseases. There was limited overlap between the 

individuals involved in GWAS and those in MetaboChip. 

Knowledge-based biological pathways 

We included canonical pathways from the Reactome (version 45), Biocarta, and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) databases [178, 179]. In addition to the curated 

pathways, we constructed four positive control pathways based on known lipid-associated loci (p 
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< 5.0 × 10-8) and candidate genes from the GWAS Catalog [180]. These gene sets were based on 

4, 11, 13, and 13 studies for TC, TG, LDL, and HDL, respectively (full lists of genes in each 

positive control sets are in Supplemental Table S4.5) and serve as positive controls to validate 

our computational method. 

Data-driven modules of co-expressed genes 

Beside the canonical pathways, we used co-expression modules that were derived from a collection 

of genomics studies (Supplement Table S4.6) of liver, adipose tissue, aortic endothelial cells 

(HAEC), brain, blood, kidney, and muscle [181-190]. A total of 2706 co-expression modules were 

used in this study. Although liver and adipose tissue are likely the most important tissues for lipid 

regulation, we included the other tissue networks to confirm whether known tissue types for lipids 

could be objectively detected and whether any additional tissue types are also important for lipids.  

Mapping SNPs to genes  

Three different mapping methods were used in this study to link SNPs to their potential target 

genes.  

Chromosomal distance-based mapping 

First, we used a standard distance-based approach where a SNP was mapped to a gene if within 50 

kb of the respective gene region. The use of ± 50 kb to define gene boundaries is commonly used 

in GWAS. 

eQTL-based mapping 

The expression levels of genes can be seen also as quantitative traits in GWAS. Hence, it is 

possible to determine eQTLs and the expression SNPs (eSNPs) within the eQTLs that provide a 

functionally motivated mapping from SNPs to genes. Moreover, the eSNPs within the eQTL are 

specific to the tissue where the gene expression was measured and can therefore provide 
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mechanistic clues regarding the tissue of action when intersected with lipid-associated SNPs. 

Results from eQTL studies in human adipose tissue, liver, brain, blood, and HAEC were used in 

this study [181, 183, 184, 191-199]. We included both cis-eSNPs (within 1 Mb distance from gene 

region) and trans-eSNPs (beyond 1 Mb from gene region), at a false discovery rate < 10%. 

ENCODE-based mapping 

In addition to eQTLs and distance-based SNP-gene mapping approaches, we integrated functional 

data sets from the Regulome database [139], which annotates SNPs in regulatory elements in the 

Homo sapiens genome based on the results from the ENCODE studies [200]. 

Nine unique combinations of SNP-gene mapping 

Using the above three mapping approaches, we derived nine unique sets of SNP-gene mapping. 

These are: eSNP adipose, eSNP liver, eSNP blood, eSNP brain, eSNP HAEC, eSNP all (i.e., 

combining all the tissue-specific eSNPs above), Distance (chromosomal distance-based mapping), 

Regulome (ENCODE-based mapping), and Combined (combining all the above methods). 

Removal of SNPs in linkage disequilibrium 

We observed a high degree of linkage disequilibrium (LD) in the eQTL, Regulome, and distance-

based SNPs, and this LD structure may cause artifacts and biases in the downstream analysis. For 

this reason, we devised an algorithm to remove SNPs in LD while preferentially keeping those 

with a strong statistical association with lipid traits. Technical details are available in 

Supplementary Methods. We chose a LD cutoff (R2 < 0.5) to remove redundant SNPs in high LD.  

Marker Set Enrichment Analysis (MSEA) 

We applied a modified MSEA method [143, 201] to find pathways/co-expressed modules 

associated with lipid traits (Supplemental Methods). False discovery rates (FDR) were estimated 

with the method by Benjamini and Hochberg [202]. Pathways or co-expression modules with FDR 
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< 10% were considered statistically significant. MSEA were applied to both the GLGC GWAS 

dataset and the MetaboChip dataset. The combined FDR from these two datasets was expected to 

be < 1% (10% * 10% = 1%). 

Comparison between MSEA and other computational method  

To ensure that the pathway results from MSEA are reproducible, we used the improved gene-set-

enrichment analysis approach (iGSEA) [147]. In the iGSEA analysis, we generated gene sets using 

the same canonical pathways and co-expression modules in MSEA. The SNPs were mapped to 

genes using the default settings of iGSEA. For each given gene set, significance proportion-based 

enrichment score was calculated to estimate the enrichment of genotype–phenotype association. 

Then, iGSEA performed label permutations to calculate nominal P-values to assess the 

significance of the pathway-based enrichment score and FDR to correct multiple testing, with FDR 

< 0.25 (default setting) regarded as significant pathways. Considering that MSEA and iGSEA were 

independent, the combined FDR from these two methods of analysis was expected to be < 5% 

(10% x 25% = 2.5%).  

Construction of independent supersets and confirmation of lipid association 

Because the pathways or co-expression modules were collected from multiple sources, there were 

overlapping or nested structures among the gene sets. To make the results more meaningful, we 

constructed relatively independent supersets that captured the core genes from groups of redundant 

pathways and co-expression modules (Supplemental Methods). After merging, we annotated 

each superset based on function enrichment analysis of the known pathways from the Gene 

Ontology and KEGG databases (P < 0.05 in Fisher's exact test after Bonferroni correction). The 
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supersets were given a second round of MSEA to confirm their significant associated with lipids 

using P < 0.05 after Bonferroni correction as the cutoff. 

Key driver analysis (KDA) 

We adopted a previously developed KDA algorithm [163, 164, 203] of gene-gene interaction 

networks to the lipid-associated supersets in order to identify the key regulatory genes (Figure 

4.1). In the study, we included Bayesian gene regulatory networks from diverse tissues, including 

adipose tissue, liver, blood, brain, kidney and muscle [181-189]. A key driver was defined as a 

gene that is directionally connected to a large number of genes from a lipid superset, compared to 

the expected number for a randomly selected gene within the Bayesian network (details in 

Supplemental Methods). The MSEA, merging, and KDA were performed using R. 

Enrichment analysis of lipid-associated subnetworks in human complex diseases 

We collected disease susceptibility genes from GWAS Catalog with GWAS P<10E-5 for four 

human complex diseases, including cardiovascular diseases (‘myocardial infarction’, ‘myocardial 

infarction (early onset)’, ‘coronary artery calcification’, and ‘coronary heart disease’), Alzheimer’s 

disease, type 2 diabetes, and cancer (‘colon cancer’, ‘breast cancer’, ‘pancreas cancer’, ‘prostate 

cancer’, and ‘chronic lymphocytic leukemia’). Fisher's exact test was used to explore the 

enrichment of genes in the lipid-associated subnetworks in the disease gene sets. Bonferroni-

corrected p < 0.05 was considered significant. 

Validation of F2 in adipocyte functions via F2 siRNA transfection in 3T3-L1 and C3H10T1/2 

adipocyte cell lines 

The mouse preadipocytes 3T3-L1 and C3H10T1/2 cells were obtained from ATCC and maintained 

and differentiated to adipocytes according to the manufacturer’s instruction. For knockdown 

experiments, 3 predesigned siRNAs targeting F2 gene (sequences in Supplemental Table S3; 
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GenePharma, Paramount, CA) were tested and the most effective one was selected for the 

experiment (Supplemental Figure S1). We first measured F2 expression during adipocyte 

differentiation and found increased F2 expression on days 8-10 in 3T3-L1 and days 6-10 in 

C3H10T1/2 during differentiation, which helped inform on the timing of siRNA transfection in 

these cell lines. 3T3-L1 adipocytes were transfected with 50 nM of F2 siRNA using Lipofectamin 

2000 on day 7 (D7) of differentiation, a day before F2 increase. Followed by 72 hrs of siRNA 

treatment, adipocytes were processed for Oil red O staining of lipids and Real-time qPCR for select 

genes. C3H10T1/2 adipocytes were transfected with 50 nM of F2 siRNA using Lipofectamin 2000 

on day 5 (D5) and day 7 (D7), and adipocytes were processed on day 9 (D9) for Oil red O staining 

of lipids, Real-time qPCR for select genes, and quantitative lipid assays. As control, 50 nM of 

scrambled siRNA (GenePharma, Paramount, CA) was transfected at the same time points as the 

F2 siRNA in the two cell lines. To determine changes in lipid accumulation, adipocytes were 

stained by Oil red O stain solution. After obtaining images, Oil red O was eluted in isopropyl 

alcohol and optical density (OD) values were measured at 490 nm.  

RNA extraction and Real-time qPCR 

Total RNA was extracted from the adipocytes (Zymo Research, Irvine, CA), and RNA was reverse 

transcribed using cDNA Reverse Transcription Kit (Thermo Scientific, Madison, WI, USA), Real-

time qPCR for select network and non-network genes was performed using the primers shown in 

Supplemental Table S3. Each reaction mixture (20 ul) is composed of PowerUp SYBR Green 

Master Mix (Applied Biosystems), 0.5 uM each primer, and cDNA (150 ng for F2 gene, 20-50 ng 

for the other genes), Each sample was tested in duplicate under the following amplification 

conditions: 95°C for 2 min, and then 40 cycles of 95°C for 1 s and 60°C for 30 s in QuantStudio 3 

Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). PCR primers were designed 



52   

using the Primer-BLAST tool available from the NCBI web site [204]. Melt curve was checked to 

confirm the specificity of the amplified product. Relative quantification was calculated using the 

2 ^ (-ΔΔ CT) method [205]. Beta actin was used as an endogenous control gene to evaluate the 

gene expression levels. All data are presented as the mean ± s.e.m of n = 4/group. Statistical 

significance was determined by Two-tailed Student’s t test and values were considered statistically 

significant at P < 0.05.   

Extraction and quantification of lipids in cells and media 

Lipids were extracted from C3H10T1/2 cells and culture media using the Folch method [206] with 

minor modifications. Briefly, whole culture medium (1 mL) from each well of 12-well plate was 

collected in a separate tube. Cells were washed with phosphate buffered saline (PBS), and collected 

in 1 mL PBS and homogenized. Media or cell homogenate was mixed in 5 ml of chloroform: 

methanol (2:1, vol/vol) by shaking vigorously several times, and centrifuged at 2,500 x g for 15 

min. Bottom organic layer was transferred to a new glass tube. The remaining aqueous phase and 

interphase including soluble protein were mixed with 5 mL chloroform by vigorous shaking, 

followed by centrifugation at 2,500 x g for 15 min. Bottom organic layer was combined with the 

first collected organic layer. The combined organic phase was evaporated using nitrogen, and then 

the dried lipids were resuspended in 0.5 % Triton X-100 in water. Samples were stored in - 80°C 

until lipid analysis. Triglyceride (TG), total cholesterol (TC), unesterified cholesterol (UC), and 

phospholipid (PL) levels in lipid extractions from cells and from culture media were measured 

separately using a colorimetric assay at the UCLA GTM Mouse Transfer Core [207]. Intracellular 

lipids were normalized to the cellular protein amount measured by BCA protein assay kit (Pierce, 

Rockford, IL, USA). Extracellular lipids are presented as lipid quantity in 1 mL of collected media. 
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3.6 Tables 
 
Table 3.1. Common pathways shared by the four lipid traits in SNP set enrichment analysis. 

Categories Descriptions 
Traits* 

MetaboChip iGSEA 
HDL LDL TC TG 

Positive 
Controls 

Positive control gene set for 
TG 

1,2,3,5,6,7,8,
9 2,3,5,6,7,8,9 2,3,5,6,7,8,9 1,2,3,5,6,7,8,

9 YES YES 

Positive control gene set for 
LDL 5,6,7,8,9 1,2,3,4,5,6,7,

8,9 
1,2,3,4,5,6,7,
8,9 

1,2,3,5,6,7,8,
9 YES YES 

Positive control gene set for 
TC 3,5,6,7,8,9 1,2,3,4,5,6,7,

8,9 
1,2,3,4,5,6,7,
8,9 

1,2,3,5,6,7,8,
9 YES YES 

Positive control gene set for 
HDL 

1,2,3,4,5,6,7,
8,9 2,6,7,8,9 2,5,6,7,8,9 1,2,5,6,7,8,9 YES YES 

Lipid 
metabolism 

Lipoprotein metabolism 1,2,5,6,7,8,9 5,6,7,8,9 5,6,7,8,9 5,6,7,8,9 YES YES 
Chylomicron-mediated lipid 
transport 5,6,7,8,9 7,8,9 5,6,7,8,9 5,6,7,8,9 YES YES 

LDL-mediated lipid transport 6,7,9 6,7,9 6,7,9 6,7,9 NO YES 
HDL-mediated lipid transport 1,2,5,6,7,8,9 5,7,8,9 5,7,8,9 5,7,8,9 YES YES 

Protein 
catabolism 

ER-Phagosome pathway 1,5,8,9 1,3,5,6,8,9 1,2,3,5,6,8,9 1,3,5,6,8,9 YES YES 
Antigen processing and 
presentation 5,9 1,2,3,5,6,7,8,

9 
1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 YES YES 

Interferon 
Signaling 

Interferon Signaling 7,9 1,3,5,6,8,9 1,2,3,5,6,8,9 1,3,5,8 YES YES 

Autoimmune 
/Immune 
activation 

Type I diabetes mellitus 1,5 1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 YES YES 

Scavenging by Class B 
Receptors 6,7,8,9 7,9 7,9 7,9 NO YES 

Asthma 6 1,3,5,6,7,8,9 1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 YES YES 

IL 5 Signaling Pathway 5 1,5,6,8,9 1,5,6,8,9 5,6,8 NO NO 
Th1/Th2 Differentiation 3 1,3,5,6,8 1,3,5,6,8,9 1,3,5,6,8 NO YES 
Natural killer cell mediated 
cytotoxicity 5 1,3,5 1,3,5,6,9 1,3,5 YES YES 

HLA genes 1,3,5,6,7,8,9 1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 YES YES 

Cell adhesion molecules 
(CAMs) 5 1,2,3,5,6,7,8,

9 
1,2,3,5,6,7,8,
9 1,3,5,6,8,9 YES NO 

Autoimmune thyroid disease 1,3,5,6,8,9 1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 

1,2,3,5,6,7,8,
9 YES YES 

Visual 
transduction 

Diseases associated with visual 
transduction 7 7,8,9 7,8,9 7,9 YES YES 

Visual phototransduction 7 7,8,9 7,8,9 7,9 YES YES 
6..1 Note: *: The trait columns represent in which methods the MSEA of the pathways is significant with 

FDR < 10%. Number 1 to 9 represent: adipose eSNP (1), blood eSNP (2), brain eSNP (3), human 
aortic endothelial cells (HAEC) eSNP (4), liver eSNP (5), all eSNP (6), Distance (7), Regulome (8), 
and Combined (9), respectively. The Metabochip and iGSEA columns tell whether the gene set can 
also be detected as statistically significant in the analysis. 
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Table 3.2. Trait-specific pathways identified in the SNP set enrichment analysis for four lipid 
traits. 

Traits Modules Descriptions Methods* 
H

D
L

 
rctm0846 Packaging of telomere ends 1 
Haec:M1+ (Cholesterol biosynthesis) 9 
M12882 Taurine and hypotaurine metabolism 1,5 
rctm0060 Activation of Genes by ATF4 9 
rctm0216 Cation-coupled Chloride cotransporters 7,8,9 
rctm0697 Metabolism of water-soluble vitamins and cofactors 5 
Cerebellum:M1+ (Alcohol metabolism) 3 
Cerebellum:M2+ 3 
rctm0507 Glutathione synthesis and recycling 5 
Liver:M1+ (Transition metal ion homeostasis) 2,9 

rctm0937 RIG-I/MDA5 mediated induction of IFN-alpha/beta 
pathways 7,8,9 

rctm0772 Negative regulators of RIG-I/MDA5 signaling 7,8,9 
rctm0255 Cobalamin (Cbl, vitamin B12) transport and metabolism 1,5 
M15902 Glycerolipid metabolism 6,7,9 
rctm1178 Striated muscle contraction 9 
rctm0696 Metabolism of vitamins and cofactors 5 

L
D

L
 

Haec:M2+ (Positive regulation of cellular metabolism) 3 
Liver:M2+ (Cadherin) 6 
Cerebellum:M3+ (Immunity and defense) 8 
M6831 The citric acid cycle 6 
rctm0876 Platelet sensitization by LDL 7,9 

T
C

 

M17946 Valine, leucine and isoleucine biosynthesis 1,6,9 
PC:M1+ (Chaperone) 3 
Cerebellum:M4+ 

(Response to wounding) 
9 

Adipose:M1+ 8 
Omental:M1+ 3 
rctm1111 Signal transduction by L1 3 

T
G

 

rctm1276 Tight junction interactions 1,6,8,9 
rctm0589 Initial triggering of complement 1 
rctm0235 Cholesterol biosynthesis 2 
M18155 Insulin signaling pathway 1 
Blood:M1+ (Carbohydrate metabolism) 1,6 
rctm0225 Cell-cell junction organization 1,6,8 
Blood:M3+ (Transferase activity, transferring glycosyl groups) 1 
M7146 Classical complement pathway 1 
rctm0059 Activation of Gene Expression by SREBP (SREBF) 2 
M917 Complement pathway 1 
M5872 Steroid biosynthesis 2 
Omental:M2+ (hemopoietic or lymphoid organ development) 8 
M2164 Leukocyte transendothelial migration 1 

Note: *: The method column represents in which methods the MSEA of the pathways is significant 
with FDR < 10%. Number 1 to 9 represent: adipose eSNP (1), blood eSNP (2), brain eSNP (3), 
human aortic endothelial cells (HAEC) eSNP (4), liver eSNP (5), all eSNP (6), Distance (7), 
Regulome (8), and Combined (9), respectively. +: Co-expression modules. The statistically 
overrepresented Gene Ontologies satisfying p < 0.01 in Fisher’s exact test after Benjamini-
Hochberg correction within the modules are listed in the parentheses. PC: prefrontal cortex. #: The 
column tells whether the trait-specific pathways can also be detected as trait-specific ones in either 
Metabochip and/or iGSEA. 
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Table 3.3. Supersets shared by four lipid traits and key driver genes. 

Supersets 
No. 

Genes 
Methodsa Top Adipose 

KDs 
Top Liver KDs 

HDL LDL TC TG 

Lipid 
metabolism 793 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 

APOH, 
ABCB11, F2, 
ALB, APOA5, 

APOC4, 
DMGDH, 

SERPINC1, 
APOF, 

HADHB, 
ETFDH, 
KLKB1 

HMGS1, 
FDFT1, 
FADS1, 
DHCR7, 
ACAT2, 
ACSS2 

Protein 
catabolism 253 1,3,4,5,6,

7,8,9 1,3,5,6 1,3,5,6,9 1,3,5,6,8 PSMB9 PSMB9 

Interferon 
Signaling 171 1,3,5,7,8,

9 
1,2,3,5,6,

7,8,9 
1,2,3,5,6,

7,8,9 
1,2,3,5,6,

8,9 NUP210 
MX1, ISG15, 
MX2, IFI44, 

EPSTI1 
Autoimmune/ 

Immune 
activation 

152 1,3,4,5,6,
7,8,9 

1,2,3,4,5,
6,7,8,9 

1,2,3,4,5,
6,7,8,9 

1,2,3,4,5,
6,7,8,9 

HLA-DMB, 
HCK, SYK, 

CD86 

HLA-DMB, 
CCL5, HLA-

DQA1 
Visual 

transduction 86 7,9 7,8,9 7,8,9 7,8,9 - - 

Note: a The method column represents in which methods the MSEA of the pathways is significant 
with Bonferroni-adjusted P<0.05. Number 1 to 9 represent: adipose eSNP, blood eSNP, brain 
eSNP, haec eSNP, liver eSNP, all eSNP, Distance, Regulome, and Combined, respectively. 
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3.6 Figures 

 
Figure 3.1. Overall design of the study. The statistical framework can be divided into four main 
parts, including Marker Set Enrichment Analysis (MSEA), merging and trimming of gene sets, 
Key Driver Analysis (KDA), and validation of the key regulators using in vitro testing.  
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Figure 3.2. Validation of MSEA results from GLGC GWAS using independent genetic 
association data from MetaboChip and a different method iGSEA. A) Venn diagram of the 
convergent pathways between GLGC GWAS and MetaboChip dataset using the same MSEA 
method. B) Venn diagram of the convergent pathways between MSEA and iGSEA for the same 
GLGC GWAS dataset. Fisher exact test was applied to evaluate the overlap in the pathways 
detected using different datasets or using different methods, with 4532 pathways in total. 
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Figure 3.3. Common KDs and their neighboring genes in the shared lipid- associated subnetworks.  
A) Adipose KDs and subnetworks. B) Liver KDs and subnetworks. The subnetworks shared by 
HDL, LDL, TC, and TG are depicted by different colors according to the difference in their 
functional categories. Nodes are the KDs and their adjacent regulatory partner genes, with KDs 
depicted as larger nodes. Only network edges that were present in at least two independent network 
studies were included. The node size corresponds to the GWAS significance. 
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Figure 3.4. Adipose KDs and subnetworks for each lipid trait. Panel (A)-(D) represent HDL, LDL, 
TC, and TG subnetworks. Nodes are the KDs and their adjacent regulatory partner genes, with 
KDs depicted as larger nodes. The yellow color signifies networks associated with interferon 
signaling, blue with lipid metabolism, pink with immune response, green with protein metabolism, 
red with lipoprotein metabolism and brown with fatty acid oxidation. 
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Figure 3.5. GWAS genes in Neighboring genes of Gene F2 in human Bayesian networks. Panel 
(A-D) represent GWAS susceptibility genes around gene F2 for HDL, LDL, TC, and TG 
respectively. The interactions come from a combined Bayesian network from different human 
tissues, including adipose, liver, blood, kidney, muscle, and brain. The node size corresponds to 
the GWAS significance. 
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Figure 3.6. Validation of F2’s predicted subnetwork and regulatory role in adipocytes. A, B) Time 
course of F2 expression during adipocyte differentiation in 3T3-L1 cells (A) and C3H10T1/2 cells 
(B). D-2, D0, D2, D3, D4, D6, D8, D10 indicate two days before initiation of differentiation, day 
0, day 2, day 3, day 4, day 6, day 8, and day 10 of differentiation, respectively. Sample size n=2-
3/time point. C, D) Visualization and quantification (OD value) of lipid accumulation by Oil red 
O staining in 3T3-L1 adipocytes (C) and C3H10T1/2 adipocytes (D). Sample size n = 5-8/group 
for adipocytes. E, F) Fold change of expression level for F2 adipose subnetwork genes and 
negative control genes after siRNA knockdown. At day 7 of differentiation of 3T3-L1 and day 5 
and day 7 of differentiation of C3H10T1/2, adipocytes were transfected with F2 siRNA for the 
knockdown experiments. Ten F2 neighbors were randomly selected from the first and second level 
neighboring genes of F2 in adipose network. Four negative controls were randomly selected from 
the genes not directly connected to F2 in adipose network. G, H) The fold changes of 
adipokine/adipogenesis-related genes in 3T3-L1 (G) and in C3H10T1/2 (H). Gene expression 
levels were determined by RT-qPCR, normalized to Beta actin. The fold changes were relative to 
scrambled siRNA control. Sample size n=4/group. I, J) Lipid profiles: Total Lipid, Triglyceride 
(TG), Total Cholesterol (TC), Unesterified Cholesterol (UC) and Phospholipid (PL) in C3H10T1/2 
cells (I) and in media (J). Total Lipid was estimated using the sum of the four lipids (TG, TC, UC, 
PL). Intracellular lipids plotted in (I) were normalized to total cellular protein quantity. 
Extracellular lipids plotted in (J) are presented as lipid quantity in 1 mL of collected media. Sample 
size n = 6/group.  Results represent mean ± s.e.m.  Statistical significance was determined by two-
sided Student’s t-test (*p < 0.05 and **p < 0.01). 
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Figure 3.7. The associations between lipid-associated supersets and human complex diseases. The 
edges represent the associations between supersets for the specific lipid classes matched by color 
and diseases (p value < 0.05; Fisher exact test with Bonferroni correction). AD: Alzheimer’s 
disease; CVD: cardiovascular diseases; T2D:  type 2 diabetes.  
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Figure 3.8. Gene knockdown efficiencies of three F2 siRNAs. Three F2 siRNAs were tested to 
select for the most efficient knockdown of the target gene. 3T3-L1 adipocytes were transfected 
with F2 siRNA at day 7 of differentiation (D7). Scrambled (Sc) siRNA was used as the control for 
normalization. After 48 h, F2 gene expression was analyzed by real-time qPCR. Beta actin was 
used as a housekeeping gene. Result represents the mean ± s.e.m. n = 3/group. Statistical 
significance was determined by Student’s t-test between each F2 siRNA and the Sc siRNA (*p < 
0.05 and **p < 0.01). 
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Chapter 4. IAPP-induced beta cell stress recapitulates the islet transcriptome in type 2 
diabetes 
 
4.1 Introduction 
 
The islet in type 2 diabetes is characterised by islet amyloid derived from islet amyloid 

polypeptide (IAPP), a protein co-expressed with insulin by beta cells that when misfolded and in 

aggregate form may contribute to beta cell failure [208-211]. Human IAPP (hIAPP) toxicity is 

most potently mediated by small intracellular membrane permeant oligomers [212]. Species 

with amyloidogenic IAPP, such as humans, non-human primates and cats, share vulnerability 

to type 2 diabetes, while those with non-amyloidogenic IAPP, such as mice and rats, do not 

[213]. While numerous hypotheses have been put forward to explain the wide-ranging changes 

in islets in type 2 diabetes [214], there is a consensus that misfolded protein stress induced by 

toxic oligomers of amyloidogenic proteins initiate these changes in neurodegenerative diseases.   

 

Given the known proximal role of misfolded protein stress in neurodegenerative diseases, and 

the connection of the risk factors for type 2 diabetes to misfolded protein stress, we hypothesised 

that hIAPP misfolded protein stress may be a proximal cause of the wide-ranging changes in islets 

in individuals with type 2 diabetes. Risk factors for type 2 diabetes include insulin resistance [215] 

and low birthweight [216]. Low birthweight may lead to low adult beta cell mass [217], which 

together with insulin resistance, predicts a high insulin and IAPP expression rate per beta cell 

[218]. Beta cell misfolded protein stress is induced when expression of hIAPP per cell exceeds 

the cellular threshold for clearing misfolded proteins [219]. This threshold declines with ageing 

[220], a risk factor for both type 2 diabetes and neurodegenerative diseases. hIAPP overexpression 

in isolated mouse islets in vitro can modify islet gene expression with relevance to type 2 diabetes 

[221].  
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In the present study we evaluated the islet transcriptome from a mouse model of beta cell hIAPP 

toxicity [219] before diabetes onset in order to avoid the confounding effects of hyperglycaemia. To 

control for the increased burden of IAPP expression, we evaluated the transcriptome from mice 

overexpressing rodent IAPP (rIAPP) [222]. We then compared the changes in the transcriptome of 

hIAPP or rIAPP islets to those in humans with prediabetes or type 2 diabetes to establish if the 

changes in the islet in type 2 diabetes are potentially attributable in part to hIAPP protein misfolding 

stress. 

4.2 Results 
 
Similarity in islet transcriptome in prediabetes or type 2 diabetes and IAPP overexpressing 

mice  

There is striking concordance of the islet transcriptome between individuals with prediabetes and those with 

type 2 diabetes (Figure 5.1a). Since ~80% of individuals with prediabetes do not develop diabetes [223], this 

finding implies that a high proportion of the changes in islets in type 2 diabetes are adaptive rather than causal 

of diabetes. There was also a close concordance of changes in islet gene expression in type 2 diabetes and 

mouse islets with increased hIAPP or rIAPP expression (Figure 5.1b–d; Figure 5.2).  

Since by design neither the hIAPP or rIAPP mice had diabetes when islets were sampled, we further compared 

the changes in islet transcriptome in the mouse islets with those in human islets with prediabetes. There was 

again close concordance in transcriptome in both rIAPP and hIAPP islets with those from individuals with 

prediabetes (Figure 5.1e, f).  These findings imply that a more detailed analysis of the transcriptome in response 

to increased expression of rIAPP and hIAPP might shed light on adaptive vs disease causal changes in type 2 

diabetes.  

 

Islet transcriptome in response to increased beta cell rIAPP or hIAPP expression  
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To investigate beta cell adaptation to an increased workload of non-amyloidogenic rIAPP 

expression, we compared the transcriptome of islets from rIAPP vs WT mice. Gene expression 

was increased in WGCNA modules M8 (Mitogen activated protein kinase (MAPK) signalling), M9 

(TGF-β signalling), M13 (cell migration) and decreased in M7 (cell cycle) in rIAPP islets (Figure 

5.3, Table 5.1, Figure. 5.4). Differential expression analysis identified 2731 DEGs (1306 up- and 

1425 downregulated in rIAPP islets; FDR<0.05) (Figure 5.5). Of the 2731 DEGs, 14 are implicated 

in monogenetic diabetes and 39 are located in genomic regions associated with type 2 diabetes by 

genome-wide association studies (GWAS), consistent with the overlap between rIAPP and type 2 

diabetes by RRHO analysis (Figure 5.1c, Figure 5.6). Prominently upregulated genes in rIAPP 

islets include those required for protein synthesis and those that adapt cells to an increased burden 

of protein folding and quality control, collectively referred to as the unfolded protein response (UPR) 

(Figure 5.5c, Figure 5.7, 5.8).  

Since there is a considerable overlap in the changes in transcriptome in hIAPP and rIAPP mice (Fig. 

1d), and hIAPP but not rIAPP mice develop diabetes, we next compared these transcriptomes to 

discern changes related to oligomer toxicity vs adaptation to an increased burden of IAPP expression. 

Five co-expression modules were differentially expressed between hIAPP and rIAPP islets: M1 

(inflammation), M4 (oxidative stress) and M6 (cell cycle;  cell signalling) expression was increased 

while M5 (RNA processing) and M8 (MAPK signalling; cell adhesion) were downregulated in 

hIAPP (Figure 5.3b, c, Table 5.1). This pattern of changes is consistent with islet inflammation 

reported in type 2 diabetes [224]. We identified 2011 DEGs between hIAPP and rIAPP islets, with 

1031 upregulated and 980 downregulated in hIAPP islets (Figure 5.5b). Among these, 13 DEGs 

have been implicated in monogenetic diabetes and 194 are located in genomic regions associated 

with type 2 diabetes by GWAS (Figure 5.6). A number of interesting trends were found in genes 
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involved in critical pathways associated with type 2 diabetes development (Figure 5.5, Figure 

5.6). 

UPR Consistent with the comparable increase in IAPP expression [222], islets in hIAPP 

mice share a comparable increase in the UPR to rIAPP mice (Figure 5.5c). The evaluation 

of changes in expression of the same genes in humans with type 2 diabetes or prediabetes 

compared with non-diabetics show consistently upregulated BHLHA15 (MIST1), a potent 

endoplasmic reticulum (ER) stress-inducible transcriptional regulator upregulated by beta 

cell Ca2+ overload [225]. 

Inflammation The pronounced signal for inflammation in hIAPP, but not rIAPP islets is also 

present in human prediabetes and type 2 diabetes (Figure 5.5). Consistent with a 

proinflammatory state, several key cell surface antigens (Cd4, Cd68, Cd84), immune sensors 

(Cx3cr1, Clec7a), and macrophage genes (Axl, Slc11a1) were upregulated in hIAPP islets and 

in type 2 diabetes. The top hub gene in the M1 module that is most highly activated in hIAPP 

islets is Cx3cr1 [226]. This prominence of islet inflammation in hIAPP as compared with rIAPP is 

further shown by the lack of difference between rIAPP and WT in module M1 (immune response) 

(Figure 5.3b, c).  

Cell cycle Activation of cell replication is a key component of injury repair programmes. Cell cycle 

related genes are increased in hIAPP islets but decreased in rIAPP islets (Figure 5.5), likely 

reflecting the injury-mediated signalling in hIAPP islets vs adaptive UPR in rIAPP islets [227]. 

Prominent amongst upregulated genes in hIAPP islets are those that enhance cell replication 

directly (Cdk1, Cep55) or indirectly (Hmmr, Anln). In contrast, these genes are downregulated 

in islets from prediabetes and type 2 diabetes, which is perhaps consistent with epigenetic 

silencing of cell cycle genes in beta cells in adult humans compared with 9-week-old mice [228].   
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Beta cell dedifferentiation Genes important for maintaining beta cell differentiation were 

decreased in islets of both rIAPP and hIAPP mice compared with islets from WT mice (Figure 

5.5), a pattern reproduced in islets from humans with prediabetes and type 2 diabetes. In mice, beta 

cell dedifferentiation was confirmed by mRNA and protein analysis (Figure 5.8a–c). To 

establish if this partial dedifferentiation impacts glucose tolerance, we performed IPGTTs. As 

expected, mice transgenic for hIAPP were glucose intolerant compared with WT mice. Although 

to a lesser extent, mice transgenic for rIAPP were also glucose intolerant, consistent with the 

observed partial beta cell dedifferentiation and known action of IAPP to inhibit insulin secretion 

[229] (Figure 5.9d).   

 

Contribution of calpain hyperactivation to beta cell hIAPP toxicity 

Calpain hyperactivation has been widely reported as a mediator of amyloidogenic protein induced 

cytotoxicity, presumably as a consequence of aberrant Ca2+ signalling that results from nonselective 

ion channel activity of toxic oligomers [230]. Concurrent beta cell-specific overexpression of 

human calpastatin (CAST)  (hIAPP:hCAST), which inhibits calpain, delays or prevents diabetes in 

hIAPP transgenic mice [231].  

Functional enrichment analysis revealed the sets of genes partially rescued by CAST overexpression 

in hIAPP mice were those that mediate UPR and inflammation (Figure 5.9). Sustained calpain 

hyperactivation may activate proinflammatory signalling pathways mediated by NF-κB and eNOS 

(endothelial nitric oxide synthase) [232].  

To further evaluate the role of calpain activation in type 2 diabetes and prediabetes, we correlated 

the differential expression patterns and found that the type 2 diabetes islet profile is best reflected 

by the hIAPP islet profile, outperforming the rIAPP and hIAPP:hCAST profiles (Figure 5.9e). 



70   

Similarly, RRHO analysis showed a marked decrease in shared transcriptome between hIAPP 

and type 2 diabetes islets after introduction of human calpastatin (Figure 5.9f vs Figure 5.1b, 

e). These results imply that calpain hyperactivation may play a prominent role in the shared 

transcriptome between hIAPP and type 2 diabetes. 

Cell type analysis for IAPP misfolded protein stress 

To explore the cell types that contribute to the transcriptomic signals in the bulk RNA-seq analysis, 

we conducted cell type marker enrichment analysis of the DEGs and modules as well as cell proportion 

deconvolution of bulk islet RNA-seq (Figure 5.10). These analyses emphasised the impact of beta 

cell IAPP misfolded protein stress on multiple islet cell types including beta, alpha, endothelial, 

macrophage and stellate. Both the DEG and module enrichment analysis for cell type markers 

(Figure 5.10a, b) point to a role of stellate cells with marker enrichment for module M13 (cell 

migration) and downregulated DEGs in hIAPP:hCAST vs hIAPP mice, possibly implicating the role 

of calpastatin in reducing stellate cell population. The deconvolution results showcase a reduction in 

beta cell and a rise in alpha cell populations in both rIAPP and hIAPP (Figure 5.10c), which alludes 

to partial beta cell dedifferentiation (Figure 5.10d). The increase in endothelial cell populations 

exemplifies an increase in vascularisation within the islet consistent with response to injury and 

dedifferentiation. Similarly, the stellate cell populations also follow this trend, and rescue by 

hIAPP:hCAST shows a reduction in both endothelial and stellate cell (Figure 5.10d), which is 

consistent with reduced inflammation (Figure 5.9c). In addition, there is a subtle increase in 

macrophages in hIAPP (Figure 5.10d), matched by macrophage marker enrichment in module M1 

(immune response) and in DEGs between hIAPP and rIAPP as well as between hIAPP and 

hIAPP:hCAST (Fig. 2b, c). These results may explain the differences in inflammation between 
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groups. Complementing this, we found that module M7, associated with beta cells (Figure 5.10b), 

was also enriched for type 2 diabetes GWAS candidate genes (Figure 5.6b).  

Prominent regulatory factors shared between hIAPP islets and type 2 diabetes islets 

Having established that hIAPP-induced beta cell toxicity in mouse islets results in an islet 

transcriptome mimicking that of human islets in type 2 diabetes, we evaluated regulatory cascades 

in hIAPP and type 2 diabetes-associated transcriptomic alterations by TF network and non-TF gene 

network analysis. TF network analysis uncovered four upstream hub transcriptional factors NF-

κB, ESR1, STAT3 and CTNNB1 active in both type 2 diabetes and hIAPP islets (Figure 5.11). 

NF-κB activation has been implicated as a core transcriptional mediator of neuronal cell 

inflammatory responses to amyloidogenic misfolded stress in neurons and can be protective or 

contribute to toxicity of injured beta cells [233] [234] and is activated by aberrant Ca2+ 

signalling and calpain hyperactivation [235]. NF-κB1 was assigned as an upstream regulator to 

co-expression module M7 that is enriched for beta cell markers (Figure 5.10b) and type 2 diabetes 

GWAS candidate genes (Figure 5.10b). NF-κB is a known target of calpain, consistent with 

calpain hyperactivation in beta cells in hIAPP mouse islets and type 2 diabetes. STAT3 is 

activated by aberrant Ca2+ signalling and has been reported as a key regulator of inflammation 

in neurodegenerative diseases [236]. STAT3 and NF-κB cooperate as transcriptional regulators 

to induce angiogenesis, cellular proliferation and pro-survival metabolic remodelling, the latter 

through activation of HIF1α (hypoxia-inducible factor 1 alpha)  [237]. CTNNB1 encodes β-catenin 

that has been implicated in tissue repair and regeneration responses in gut and beta cells, inducing 

cell proliferation, cell migration repair of cytoskeleton and regulation of intracellular Ca2+ 

dynamics [227]. ESR1 signalling is protective of beta cells in response to injury in both human 

and mouse islets [238]. 
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Complementary to the TF network analysis, which is not tissue specific, we utilised an islet gene 

regulatory network constructed using population-based genetic and transcriptomic datasets, which 

captures network regulators that are not necessarily TFs. Here, we uncover the interconnectivity 

between modules/processes for their role in islet pathogenesis and their associated regulatory 

genes (Figure 5.12; Figure 5.13). With stellate and endothelial cell markers enriched for M13 

(Figure 5.10b), hub genes such as COL3A1 (extracellular matrix), NID1 (wound healing) and 

CXCL12 (leucocyte trafficking, angiogenesis and vascular repair) are plausible regulatory genes 

underlying stellate and endothelial cell contribution to islet pathogenesis. Moreover, module M7, 

which is enriched for beta cell markers (Figure 5.10b) and type 2 diabetes GWAS candidates 

(Figure 5.12; Figure 5.10), highlights hub genes such as ZNF800, which is closely associated 

with PAX4 [239], important in the development and differentiation of beta cells. 

 
4.3 Discussion 
 
The synthesis, folding and processing of insulin is close to the limit of the biosynthetic capacity 

of beta cells [240]. hIAPP is highly oligomer prone and readily assembles into membrane 

permeant toxic oligomers if the rate of expression exceeds the capacity of the cell to fold and 

traffic newly expressed protein. The propensity of IAPP to form toxic oligomers defines the 

relative vulnerability of a species to develop type 2 diabetes. Taken together, these observations 

suggest protein misfolding may contribute to beta cell failure leading to type 2 diabetes under 

conditions of insulin resistance (Figure 5.14).  

A striking finding from the studies is the high degree of coordinate transcriptome between islets 

of humans with prediabetes and type 2 diabetes. Since most individuals with prediabetes do not 

progress to diabetes, these findings imply much of the islet transcriptome in type 2 diabetes 

may reflect protective pro-survival changes. Furthermore, we found a close overlap in 
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transcriptome between islets from mice with beta cell overexpression of rIAPP and islets from 

humans with either prediabetes or type 2 diabetes. Since rIAPP overexpressing mice do not 

develop diabetes, these findings imply that much of the islet transcriptome in prediabetes and 

type 2 diabetes reflects adaptive changes to increased beta cell protein synthesis. The 

importance of successful adaptation of beta cells to increased expression of secretory protein is 

further illustrated by the large number of genes linked to vulnerability to type 2 diabetes, by 

GWAS or Mendelian association, that were differentially expressed in rIAPP compared with 

WT islets. 

To better understand the potential role of hIAPP toxicity in beta cell failure and loss in type 2 

diabetes, we evaluated the transcriptome of islets in mice overexpressing hIAPP with that in 

islets of humans with type 2 diabetes. In both hIAPP islets and islets from individuals with type 

2 diabetes, there was a strong inflammatory signal, consistent with an ongoing injury response. 

Network analysis reveals that shared key pro-survival gene networks (Figure 5.11) are 

activated in hIAPP islets and islets from individuals with type 2 diabetes, consistent with the 

slow progression of beta cell loss in type 2 diabetes. Notably, a decrease in expression of genes 

that confer beta cells their identity (dedifferentiation) is apparent in both rIAPP mouse and 

prediabetes human islets, implying that beta cell dedifferentiation maybe a pro-survival 

adaptation. 

By comparing the successful adaptation of beta cells to rIAPP vs hIAPP overexpression, the 

most prominent difference was the increased expression of genes ascribed to inflammation that 

were markedly increased in hIAPP islets and type 2 diabetes but only modestly increased in 

rIAPP islets and in prediabetes. Type 2 diabetes is a heterogeneous disease and there are likely 

multiple pathways to beta cell toxicity, including toxic actions of lipids and hyperglycaemia 

[241]. In a recent partial pancreatectomy study in rats, the resulting marked decrease in beta cell 
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mass and modest hyperglycaemia induced many of the same signals observed in response to beta 

cell hIAPP toxicity in the present study, including inflammation and partial beta cell 

differentiation [242]. In an in vitro acute injury study of human islets exposed to 

glucolipotoxicity, there was also some overlap with islets from humans with type 2 diabetes by 

RRHO analysis [243], but the overlap was weaker compared with IAPP overexpression in the 

current study. The difference could be due to in vivo vs in vitro conditions or intrinsic differences 

between IAPP and glucolipotoxicity. 

A limitation of the current study is the use of whole pancreatic islets for RNA-seq, which masks 

the cell types contributing to the transcriptional signals. Although we used cellular deconvolution 

and cell marker enrichment methods to mitigate this issue, single cell RNA-seq will be of added 

value in future studies to confirm the predicted cell type contributions from our deconvolution 

analysis. In addition, follow-up on the various genes found to be contributing to hIAPP beta cell 

toxicity through knockdown or overexpression studies will be of use to further confirm their causal 

role in disease. Another limitation of the present study is the potential bias caused by use of an 

inbred mouse FVB strain.  

In conclusion, the present studies suggest that much of the islet transcriptome in type 2 diabetes is 

adaptive to the increased beta cell burden of protein synthesis and folding. Beta cell hIAPP toxicity 

induces a prominent islet inflammatory response, consistent with that observed in type 2 diabetes, 

implying protein misfolding stress may serve to initiate or contribute to beta cell injury in type 2 

diabetes. There are also shared pro-survival gene networks in hIAPP and type 2 diabetes islets. 

Taken together these studies suggest caution should be taken in interpreting transcriptome changes 

in islets in type 2 diabetes as therapeutic targets since many, if not most, of these changes are likely 
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pro-survival adaptations. Strategies to suppress IAPP expression warrant further investigation due 

to the mounting evidence to suggest its role in type 2 diabetes pathogenesis.  

 
4.4 Methods 
 
Mouse models 

Animal studies were approved by the Univers i ty  of  Cal i fornia ,  Los Angeles  (UCLA) 

Office of Animal Research Oversight. The transgenic mice homozygous for human IAPP (hIAPP) 

[219] were originally from Pfizer (available from Jackson Laboratory, Bar Harbor, ME, USA: 

IMSR cat. no. JAX:008232, RRID:IMSR_JAX:008232) and wild-type FVB (WT) mice (IMSR 

cat. No. CRL:207, RRID:IMSR_CRL:207) from Charles Rivers Laboratory (Wilmington, MA, 

USA). The generation of the transgenic mice expressing rodent Iapp (rIAPP), human calpastatin 

(hCAST), and both human IAPP and CAST (hIAPP:hCAST) on FVB background was described 

elsewhere [222, 231]. Mice were bred and maintained at UCLA on 12 h day/night rhythm, Harlan 

Teklad Rodent Diet 8604 (Placentia, CA, USA) and water ad libitum; diabetes was monitored as 

described [231]. hIAPP transgenic mice develop diabetes (fasting blood glucose > 6.9mmol/l) after 

9 weeks of age, while rIAPP mice remained non-diabetic until 18 weeks of age, the end of observation 

(Figure 5.15). Only non-diabetic 9–10-weeks-old male mice were used (Supplement Tables 5.1–

5.4). Expression of IAPP (sum of endogenous and transgenic) is comparable in the rIAPP and hIAPP 

mice [222]. Mice were either subjected to metabolic studies with fasting blood glucose measurements 

and GTT, or islets and pancreases were collected for analysis of RNA by bulk islet RNA sequencing 

(RNA-seq) or qPCR, or analysis of protein levels by western blotting (whole cell lysate in RIPA 

buffer) or immunostaining (4�m thick sections of frozen in OCT 4% paraformaldehyde fixed tissue)  

[231],[244]. 

RNA-seq of mouse islets  
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RNA samples from three mice per group were used for RNA-seq (ESM Table 1). Total RNA was 

extracted from islet samples (176±11 islets per mouse) using the RNeasy Mini Kit (Qiagen, 

Germantown, MD, USA). RNA integrity was confirmed using the Agilent Bioanalyzer 2100 (RNA 

integrity number (RIN) range: 6.8–8.9). RNA-seq libraries were prepared using the TruSeq with 

Ribo-Zero treatment (Illumina, San Diego, CA, USA) to deplete ribosomal RNA. cDNA libraries 

were generated using the NuGEN Ovation kit (NuGEN, Redwood City, CA, USA). Illumina’s 

NextSeq 500 platform was used to generate 75 bp, paired-end reads (64 ± 1.4 million reads per 

sample). Short reads were aligned to the mouse reference genome build GRCm38 (mm10) using 

the Spliced Transcripts Alignment to a Reference software (STAR aligner) [245]. Between 65% 

and 75% (m e a n  70%) of the reads mapped uniquely to the mouse genome. The HT-Seq package 

[246] was used to count the number of fragments aligned to known exonic regions. Gene expression 

was measured as total fragment counts per gene. Sample clustering of islet RNA-seq using 

multidimensional scaling largely reflected genotype (Figure 5.2). 

RNA-seq of human islets 

RNA-seq data from human pancreatic islets were downloaded from the Gene Expression Omnibus 

(GEO) (GSE50244) [247]. Data from 77 samples with available HbA1C values were analysed. 

Read counts were normalised via the trimmed mean method prior to differential expression 

analysis using the edgeR package. One type 2 diabetes sample was excluded as an outlier 

(GSM1216834); therefore 76 samples were included in this manuscript: 51 from normoglycaemic 

donors with HbA1c levels below 42 mmol/mol (<6%) (HbA1c 5.4±0.1%; BMI 26±0.3; Age 56±2; 

18 female/33 male), 15 prediabetic donors with HbA1c levels between 42 and 47 mmol/mol (HbA1c 

6.1±0.3%; BMI 26±1; Age 61±2; 6 female/9 male), and ten donors with type 2 diabetes with HbA1c 
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levels 48 mmol/mol or higher (HbA1c 7.5±0.3%; BMI 30±1; Age 61±3; 6 female/4 male). No 

additional information about the donors or islet morphology was available. 

RNA-seq data analysis 

The RNA-seq data from mouse and human islets were subjected to differential expression analysis 

[248] to find differentially expressed genes (DEGs) between mouse groups and between human 

groups. Rank-rank hypergeometric overlap (RRHO) [223] analysis was then used to compare 

human and mouse gene expression signatures to evaluate between-species similarity and 

differences. In order to understand the biological processes informed by the DEGs, we performed 

functional enrichment analysis to identify over-representation of Gene Ontology (GO) terms and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [249]. DEGs from mouse islets were 

further assessed for enrichment of genes associated with Mendelian or common form of diabetes and 

metabolic syndrome.  

To identify genes with coordinated expression in the form of co-expression modules that are 

related to diabetes development in mouse models, we utilised weighted gene co-expression 

network analysis (WGCNA) [80, 250].  

To identify cell types contributing to the gene expression changes, we subjected DEGs and co-

expression modules (restricting analysis to genes with module membership > 0.5 and false 

discovery rate (FDR) < 0.05) to two types of analysis. First, we carried out cell type marker 

enrichment analysis using PanglaoDB cell marker compendium [251] and GeneOverlap R tool 

[252]. Second, we applied CibersortX [253] to deconvolute mouse bulk islet RNA-seq data into 

cell type proportions using single cell RNA-seq mouse islet data from GEO (GSM2230762) as 

reference.  

To identify shared regulatory factors between islets from hIAPP transgenic mice and islets from 
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humans with type 2 diabetes, we performed transcription factor (TF) network analysis using the 

Enrichr tool [254] with the TF-Gene Co-occurrence extension. To identity additional non-TF 

regulators, we utilised the key driver analysis function from the Mergeomics R package [45] to 

identify regulatory genes for the DEG sets and for the co-expression modules using an islet gene 

regulatory Bayesian network based on a χ2 like statistic. 

Statistical analysis 

Statistical analysis was performed as described in the figure legends. 
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4.5 Tables 
 
Table 5.1 Functional characterisation of co-expression modules. Select hub genes with high 
intramodular connectivity and major biological processes associated with each module by gene set 
enrichment analysis are reported  

 
 
 
  
 
 
 
 
 
 
 
 
 
 

Module Hub genes Associated biological   processes 

M1 Cx3cr1, Trf, Pla2g7, Apoe, Trem2, Axl Immune response, phagocytosis, lysosome 

M2 Tmsb15b2, Tk2, Micu1, Pet112 Oxidoreductase activity, mitochondria 

M3 Cmklr1, Sulf 1, Mylk, Fap, Ndrg2 ERK1/2 cascade, response to growth factor, regulation of angiogenesis 

M4 Arhgap6, Tes, Myo1b, Por, Rcan Oxidative stress response, protein phosphorylation 

M5 Utp6, Slu7, Meis2, Arhgef 9, Usp11 RNA processing 

M6 Nell1, Atp8a1, Capn9, Agt, Sorl1 Oxidative phosphorylation, peroxisome, M phase 

M7 Ttbk2, Wdr11, Ap1s2, Maob, Dusp10, Cdkn2b Cell cycle, microtubule cytoskeleton, phosphatidylinositol signalling 

M8 Ptprz1, Jam2, Mapk4, Calb1, Bmp3, Bcl2 Endothelial cell development, cell migration and morphogenesis, MAPK signalling 

M9 Carhsp1, Lmna, Sqstm1, Pink1, Psma7, Lrp10 GTPase regulator activity, TGF-β signalling, oxidative stress response 

M10 Setd1b, Ncor2, Nav2, Soga1, Vamp2 Transcription regulation, chromatin organisation, insulin secretion 

M11 Svop, Pla2g2f,  Aldoa, Usp7, Vcp, Sec13 Protein processing in ER, proteasome, cell cycle regulation 

M12 Ints2, Zzef 1, Gpd2, Crhr1, Ntrk2 Protein ubiquitination, chaperonin-mediated protein folding 

M13 Col12a1, Mmp2, Pld3, Cpt1a, Calu, Nphs1 Regulation of cell migration, exocytosis, glycerolipid metabolism 

M14 Zfp758, Spopl, Nemf, Clock, Slc1a1 RNA processing, gene expression, G1/S phase 

M15 Gpatch1, Nop58, Bub3, Pdap1, Glis1, Bag5 RNA metabolism and splicing, regulation of cell differentiation 
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4.6 Figures 
 

 
Figure 4.1. Concordant islet transcriptome changes induced by IAPP in mice and in humans 
assessed by RRHO analysis. Pixels represent the −log10(p value) of a hypergeometric test (step 
size=110) and are colour-coded to visualise strength and pattern of overlap. The maximally 
overlapping sets of upregulated genes (signal in upper right quadrant) and downregulated genes 
(signal in lower left quadrant) are shown. The expression profile of pancreatic islets from 
prediabetic and T2D donors (relative to normoglycaemic control) are strikingly similar (a), as are 
the expression profiles of pancreatic islets from the IAPP transgenic mouse models (relative to 
WT, d). The expression profile of pancreatic islets from IAPP transgenic mice (relative to WT) is 
highly concordant with the islet from humans with T2D (b, c) and prediabetes (e, f). The numbers 
of genes subjected to RRHO analysis and concordantly changed are listed in Figure 5.7. T2D, type 
2 diabetes. 
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Figure 4.2. (a) Schematic depicting experimental and control groups, with rationale and expected 
output for each comparison. Created with Biorender.com. (b) Multidimensional scaling map of 
islet profiles shows clustering of samples is largely influenced by genotype of mice. (c) 
Multidimensional scaling map of human islet samples. (d) The proportion of genes concordantly 
up- and down-regulated obtained from RRHO analysis of listed pairs of comparisons.  
 
 
 
 
 
 
 

a    

d 

b 

c 



82   

 

 
Figure 4.3. Co-expression network construction and analysis. (a) Hierarchical cluster dendrogram 
generated using all samples grouped genes into 15 distinct co-expression modules (M1–M15, 
labelled with colours). (b) Module-trait relationships were assessed by fitting a generalised linear 
model based on IAPP and CAST status, then comparing module eigengene (ME)—equivalent to 
the first principal component of a module—between genotype pairs. Module-level differential 
expression was tested by one-way, nonparametric ANOVA followed by post hoc Tukey test. 
Differences in ME expression are presented as a heat map, with significant perturbations denoted 
(*, q<0.05). (c) Trajectory plots of perturbed modules display normalised expression across all 
samples. 
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Figure 4.4 Co-expression network construction and analysis. (a) Heatmap displays correlation 
coefficient between module expression and pairwise islet comparisons. Significant module level 
perturbations are denoted (*, q < 0.05). (b) Plots of ME trajectory by sample group, for seven 
modules not shown in the main text.  

a 

b 



84   

 

 
Figure 4.5 Transcriptomic profiles of adaptation to increased secretory workload, and failure in 
context of protein misfolding toxicity. Volcano plots show relative expression (Log2 fold change) 
of 15,731 transcripts plotted against the adjusted p value from differential expression. (a) 
Comparing rIAPP islets with those of WT defines the expression profile of islets successfully 
compensating for increased soluble IAPP. Several genes implicated in Mendelian disease are 
dysregulated (red, labelled), as are genes linked to type 2 diabetes by GWAS (yellow). (b) hIAPP 
islets compared with rIAPP highlights expression dysregulation corresponding to IAPP-derived 
oligomer toxicity, now controlling for increased beta cell workload. (c–f) Successful and failed 
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adaptation to increased beta cell secretory pathway burden involves activation of the adaptive 
UPR, inflammation, altered expression of cell cycle-associated genes, and beta cell 
dedifferentiation. (c) Islets of rIAPP mice show enhanced upregulation of key UPR genes 
compared with hIAPP. Some UPR-related genes appear to be upregulated in both T2D and 
prediabetes.  (d) Increased beta cell workload leads to downregulation of key beta cell function 
and maturity markers, with rIAPP islets demonstrating more profound ‘dedifferentiation’ than 
hIAPP islets. (e) Increased hIAPP results in transcriptional upregulation of inflammation-
associated genes, including several macrophage markers, which is partially attenuated by 
concurrent overexpression of calpastatin. (f) Increased secretory burden drives downregulation of 
cell cycle-associated genes islets from individuals with T2D (HbA1c level above 48 mmol/mol 
(>6.5%)) and donors with prediabetes (HbA1c levels between 42 and 48 mmol/mol 
(6%<HbA1c<6.5%)), as well as rIAPP islets, but not in hIAPP. Data are expressed as a ratio of 
individual to the mean of WT islets for mouse models, and Control (HbA1c level below 42 
mmol/mol (<6%)) for human islets. T2D, type 2 diabetes 
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Figure 4.6. (a) Common and rare variant enrichment of DEGs. (b) Type 2 diabetes GWAS 
enrichment for 15 WGCNA co-expression modules. 
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Figure 4.7 (a) GO biological process term enrichment of co-expression modules. Enrichment 
analysis and visualization were performed using ClusterProfiler. No overrepresented terms were 
identified for M2 (excluded from visualization). (b) Functional annotation of differentially 
expressed genes (FDR < 0.05) that are upregulated (Up_Up) or downregulated (Down_Down) in 
both hIAPP/WT and rIAPP/WT.  GO biological process term enrichment of DEG sets. 
 
 

a 

b 



88   

 
 

 



89   

 
Figure 4.8 (a) Immunohistochemistry staining of islets for Glp1r and Glut2 highlights reduced 
levels of proteins involved in beta cell secretion. Co-staining for insulin (Ins) and glucagon (Gluc) 
show comparable cell type composition in rIAPP and hIAPP islets. Scale bar, 50 µm. (b, c) RNA-
seq identified downregulation of the key beta cell TFs (Nkx6-1, Pdx1, Mafa) in rIAPP and hIAPP 
islets, and their RNA and protein level expression were tested by qPCR (b) and western blotting 
(c), respectively. Data are the mean±SEM, n=3 in each group, two-tailed Student’s t test: *p<0.05, 
**p<0.01. (d) IPGTT, 2 mg dextrose/g of body weight after overnight fast; both hIAPP and rIAPP 
mice display impaired glucose tolerance compared with body weight matched WT, with the 
greatest effect observed in hIAPP mice. Data are the mean±SEM, n=5–15 per group; one-way 
ANOVA followed by post hoc analysis: *p<0.05, **p<0.01, ***p<0.001. Separate islet samples 
from non-diabetic 9-week-old mice were used to generate the data presented in each panel, and 
they were different from RNA-seq samples (Supplement Tables 5.1–5.3) 
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Figure 4.9. Effect of calpain hyperactivation on gene expression. (a–d) Increased expression of 
calpastatin in beta cells from hIAPP mice partially rescues phenotype related to UPR, 
inflammation, cell cycle and beta cell dedifferentiation. (e, f) Comparison of islet gene expression 
profiles affected by IAPP toxicity and calpain hyperactivation with those in human type 2 diabetes. 
(e) Genes measured in two independent experiments are ranked according to degree (nominal p 
value) of differential expression relative to the appropriate control group, multiplied by the sign of 
the fold change. The type 2 diabetes islet profile is best reflected by the hIAPP islet profile, 
outperforming the rIAPP and hIAPP:hCAST profiles. (f) As an alternative to correlation analysis, 
we applied the RRHO2 algorithm to test preservation of IAPP toxicity and calpain hyperactivation 
signatures in islets from humans with type 2 diabetes and prediabetes. Serial hypergeometric tests 
were performed at gene rank threshold for two ranked lists. The RRHO map was generated by 
−log10 transformation of the hypergeometric test p value (step size=110), and pixels are colour-
coded to visualise strength and pattern of overlap. After accounting for the transcriptomic impact 
of calpain hyperactivity (hIAPP:hCAST), overlap signal between the islet profiles in type 2 
diabetes and prediabetes with the hIAPP mouse model of type 2 diabetes (Figure 5.1) significantly 
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decreases, implying a role for calpain in propagating the inflammatory response in pancreatic beta 
and other cell types in prediabetes and T2D. T2D, type 2 diabetes 

 
Figure 4.10. (a) Cell type marker enrichment of DEGs highlights substantial contribution of non-
endocrine cells toward the composite islet profile in the bulk RNA-seq data. (b) Cell type marker 
enrichment of modules showcases module links with non-endocrine and endocrine cell types. 
Module enrichment for high-specificity cell type markers was evaluated by Fisher’s exact test. 
Colour represents the −log10 FDR-corrected p value, with the OR provided for FDR<0.05. (c) 
Deconvolution of bulk islet RNA-seq revealed the relative abundance of each cell type captured, 
highlighting beta cell dominance across the genotypes. (d) Magnified view of the deconvolution 
of bulk islet RNA-seq results on less abundant cell types (alpha and beta cells were excluded) 
highlighting an increase in endothelial cells, stellate cells and macrophages in hIAPP compared 
with WT 
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Figure 4.11. Putative regulatory network of genes co-ordinately upregulated in hIAPP and in 
human type 2 diabetes islets relative to their respective controls (WT and non-diabetic human 
islets), identified by RRHO analysis. TF binding sites enrichment analysis identified over-
represented upstream TFs including NF-κB1, assigned to beta cell-enriched module (M7), and 
STAT3, a key regulator of inflammation assigned to macrophage- and stellate cell marker-enriched 
M1. ESR1 and CTNNB1 are both implicated in beta cell stress/survival signalling. Node colour 
reflects co-expression module assignment. Edges represent experimentally validated transcription 
factor-target relationships (red) and intramodular co-expression (light grey) 
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Figure 4.12 An islet Bayesian gene regulatory network illustrating the co-expression module 
interconnectivity and highlighting key genes potentially important in driving those processes 
(indicated by the larger node size). T2D GWAS hits (association p<5×10-8) are highlighted on the 
network with pink rings around the nodes, upregulated hIAPP and T2D DEGs are highlighted with 
red rings, and downregulated hIAPP and T2D DEGs are highlighted by blue rings. T2D, type 2 
diabetes 
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Figure 4.13 Gene-gene regulatory subnetwork (Bayesian Network) and top key drivers of 
differentially expressed genes from IAPP sequencing between the various genotypes (color 
indicates comparison(s) in which a gene is differentially expressed; FDR < 0.05). Blue edges 
indicate connections directly derived from an islet constructed Bayesian network, whereas the grey 
edges are derived from a brain Bayesian network. Large nodes indicate key driver genes. 
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Figure 4.14 Proposed model of IAPP toxicity in type 2 diabetes in relation to the major risk factors 
insulin resistance and a low innate beta cell mass, which result in very high expression levels of 
aggregate toxic oligomer-prone IAPP per beta cell in humans. Clearance of misfolded IAPP by 
autophagy and proteasome declines with ageing. Increased IAPP and insulin expression induces 
the protective UPR. Membrane permeant toxic oligomers of IAPP lead to aberrant Ca2+ signalling 
that induces injury inflammatory responses directly and via calpain hyperactivation. These initially 
activate conserved pro-survival injury repair signalling responses that prolong beta cell survival at 
the expense of function. However, the adverse actions of calpain hyperactivation on defence 
against proteotoxicity exacerbates IAPP toxicity, gradually overcoming pro-survival responses 
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Figure 4.15 Diabetes development and beta cell mass. (a) Diabetes was monitored by weekly 
measurement of tail vein blood glucose after overnight fast in 6-18 weeks-old mice. A mouse was 
considered diabetic if fasting blood glucose was >6.9mmol/l. Data is % of non-diabetic mice; n=5-
16 for rIAPP and 5-14 for hIAPP group per column.  (b) Beta cell mass in 9-weeks-old mice with 
fasting glucose and body weight matching to mice used for RNA-seq analysis was comparable in 
all groups. Mice characteristics are presented in Supplement Table 5.4.  
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Chapter 5. Sex differences in NASH pathways informed by multi-omics 
 
5.1 Introduction 
 

Non-alcoholic fatty liver disease (NAFLD) encompasses a range of pathologies, from the 

relatively benign steatosis to the more severe non-alcoholic steatohepatitis (NASH) with or 

without fibrosis, which can further develop to cirrhosis and eventually hepatocellular carcinoma 

(HCC). NAFLD has become a significant health burden and continues to increase on a year-by-

year basis with currently around 25% of the population falling within the NAFLD definition. While 

the disease mechanism has been somewhat elucidated, many holes still remain which is largely 

responsible for the lack of FDA-approved drug options for NAFLD. One area that has had limited 

exploration is the underlying sex differences that contribute to NAFLD development [255].  

Current understanding of the sex differences within NAFLD development presents that 

males generally are at a higher risk than females in developing NAFLD as well as presenting a 

more severe phenotype. Following menopause, however, females are found to develop NAFLD at 

a higher rate compared to males. This difference has been partially attributed to the protective 

effects of estrogen as well as metabolic differences between the male and female livers though 

there is still much to uncover [255]. Our previous research [165], in line with others, has uncovered 

mechanistic differences in the development of steatosis between sexes, and therefore, approach to 

treatment and biomarkers in a sex specific manner may be beneficial [174]. NAFLD is projected 

to be the number one cause for liver transplantation over the next few years, where the major cause 

of liver transplantation is liver fibrosis. Liver fibrosis is the typical response to chronic liver disease 

and is characterized by an increase in extracellular matrix (ECM) constituents that collectively 

form the hepatic scar. To develop target therapies to reverse the fibrotic response and improve the 

outcomes of patients with chronic liver disease, it is important to uncover the mechanisms that 
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underlie liver fibrogenesis. Briefly, the cellular and molecular mechanisms of hepatic fibrosis 

include the activation of hepatic stellate cells (HSCs), which secrete autocrine and paracrine 

growth factors, chemokines, and ECM. The prominent transcriptional targets during HSC 

activation include type I collagen, a-SMA, TGFβ1, TGFβ receptors, MMP2, TIMP1, and TIMP2. 

Among the transcription factors that activate these downstream targets are Ets1, Mef2, CREB, 

Egr1, Vitamin D receptor, Foxf1, JunD, and C/EBPβ. However, the full picture behind fibrosis is 

far from elucidated with a desperate need for better biomarkers and drug treatment options.       

To comprehensively understand the mechanisms in hepatic fibrosis, we utilize a systems 

genetics approach, allowing us to examine its associated genetic factors and pathways, 

systematically taking into account potential sex differences too. Hui et al. reported a systems 

genetics analysis of NASH/fibrosis using a hyperlipidemic human CETP and APOE*3-Leiden 

transgenic mice that develop many features and molecular signatures characteristic of human 

NASH pathophysiology [256]. Overall, 619 male mice from 102 strains of the hybrid mouse 

diversity panel (HMDP) were surveyed. This cohort of mice was termed the fibrosis HMDP. A 

wide spectrum of fibrosis, predominantly pericellular fibrosis, was observed among the strains, 

showing that hepatic fibrosis in mice is strongly dependent on genetic background, and hepatic 

steatosis and NASH/fibrosis are mediated by distinct genetic factors, consistent with a multistep 

model of NAFLD development. Through genome-wide association mapping, significant genetic 

loci uniquely associated with fibrosis were identified, including rs50309490, rs31853140, and 

rs29935539. This study produced a rich multi-omics data resource for liver fibrosis, including 

dense genotyping of common genetic variants, liver transcriptome data, and the corresponding 

expression quantitative trait loci (eQTLs) that reflect genetic regulation of gene expression. To 

add on from this study, 232 female mice from 102 strains of the same transgenic background as 
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the males were also conducted with the same analyses and data generated to allow for direct 

comparison of sex differences. 

To go beyond the top significant genetic loci and better understand the underlying 

pathways and key drivers for liver fibrosis using the HMDP, we applied an integrative genomics 

approach to fully incorporate the whole spectrum of liver fibrosis genetic association with 

functional genomics information from liver fibrosis eQTLs and from gene networks constructed 

using liver transcriptome data from 102 strains as well as from a multitude of existing genomic 

studies. This multi-omics integration revealed coordinated gene-gene interactions in liver tissues 

that are perturbed by polygenic risks of liver fibrosis and uncovered hidden biology missed by 

traditional genomic analysis as well as key sex differences. 

This data-driven integrative approach not only highlighted shared mechanisms for liver 

fibrosis such as ECM related pathways, but also revealed mechanistic differences between sexes, 

with males possessing more immune related processes as well as potential protein metabolism 

perturbations and females possessing more carbohydrate metabolism perturbations as well as 

showing enrichment for diseases with known enzyme deficiencies for long chain sugars. These 

results are in line with the phenotypic differences seen between males and females, with males 

showing a much more severe fibrosis, guiding us to realize that the mechanisms resulting in 

fibrosis may differ between sexes. This is further highlighted by the differences found when 

exploring the key driver genes revealed utilizing Bayesian network modeling. Additionally, using 

the key driver genes uncovered, we perform drug repositioning in an attempt to identify potential 

therapeutic treatments for NAFLD. 
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5.2 Methods 
 
Study Overview 

We modeled fibrosis gene networks using the multi-omics HMDP data along with additional 

public gene expression datasets to identify pathways and predict potential ‘key driver’ genes 

underlying hepatic fibrosis in both males and females (Figure 6.1). In brief, we first constructed 

gene co-expression networks based on liver fibrosis expression data across the HMDP strains. 

Then, we integrated these networks along with curated canonical pathways (KEGG, Reactome, 

and Biocarta) and GWAS analyses of hepatic fibrosis as well as fibrosis eQTL information using 

the Mergeomics platform [257, 258]. This integration led to the identification of co-expression 

modules (groups of co-expressed genes) and canonical biological pathways that are enriched for 

hepatic fibrosis GWAS signals. In addition, we utilized the correlation of liver transcriptomics 

with liver fibrosis to understand the current biological pathways enriched within the diseased mice 

to complement the genetically linked approach. Subsequently, we mapped the fibrosis-associated 

network modules and pathways to gene regulatory Bayesian networks of liver tissues that are based 

on numerous genetics and gene expression datasets to predict potential key regulators, termed key 

drivers (KDs), of the hepatic fibrosis processes. We then prioritized the resulting predicted KD 

genes for experimental validation and mechanistic studies in mice. Taking the KDs identified, we 

also performed drug repositioning using our PharmOmics platform in order to uncover potential 

therapies for NAFLD [64].  

 

GWAS and eQTL Analyses  

For 102 mouse strains, genotypes were obtained from The Jackson Laboratory using the Mouse 

Diversity Array (Yang et al., 2009). Single Nucleotide Polymorphisms (SNPs) were removed if 
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they had a minor allele frequency (MAF) < 5% and a missing genotype rate of > 10% as well as 

being flagged for poor quality, resulting in around 200,000 SNPs as previously described [256]. 

GWAS mapping of fibrosis liver in the HMDP as well as tissue-specific eQTLs were previously 

generated in Hui et al., 2018 [256]. Using the Factored Spectrally Transformed Linear Mixed 

Models (FaST-LMM) approach, both GWAS and eQTLs were generated as previously described. 

eQTLs utilized were of a cis background defined as those within a ±1Mb region of the transcription 

start and end sites of the genes. P values were adjusted to estimate the false discovery rate (FDR) 

to correct for multiple testing. We included 258,743 male-specific cis-eQTL associations (84,164 

unique cis-eSNPs and 2,463 cis-genes) in liver at P<1E-6 (FDR<0.01) and 216,706 female-

specific eQTLs (78,300 unique cis-eSNPs and 2,054 cis-genes) in the current study.  

 

Construction of co-expression modules from liver transcriptome data 

Sex-specific liver transcriptome co-expression modules were constructed from female-specific 

gene expression data and male fibrosis HMDP data. To construct these co-expression modules, we 

utilized two different methods based on hierarchical clustering to identify co-regulated gene sets 

for liver fibrosis: Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) and 

Weighted Gene Co-expression Network Analysis (WGCNA). Collectively, we generated a total 

of 150 female co-expression modules and 62 male co-expression modules. WGCNA is the more 

commonly used of the two network methods and has shown importance with inferring biologically 

relevant processes. At the same time, WGCNA generally produces very large modules with many 

genes where a gene can only be allocated to one module, not multiple, which is not reflective of 

true biology. To account for this limitation, we utilize MEGENA, which produces smaller, more 

coherent modules to capture more discrete biological processes as well as allow genes to be 
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assigned to multiple modules. Therefore, utilizing both approaches is complementary and provides 

the full potential to capture any unknown biology as well as confirm known processes. 

 

Both network methods utilize hierarchical clustering to identify co-regulated gene sets from the 

correlations of gene pairs where they will ultimately assign the co-expressed genes into modules. 

The difference is that WGCNA is based on agglomerative clustering in which genes are clustered 

by merging, whereas MEGENA utilizes divisive clustering in which genes are clustered by 

splitting. In both, gene clustering is determined by a distance measure: one minus topological 

overlap matrix (TOM) in WGCNA, conferring dissTOM = 1 - TOM, and shortest path distance 

(SPD) in MEGENA. For WGCNA, the distance between two clusters is calculated by taking the 

average of the dissTOM scores of all gene pairs (one gene from each cluster), where TOM is 

determined by considering the correlation scores, or edge weights, between two genes, or nodes, 

as well as that of their common neighbors. For MEGENA, a nested k-medoids clustering is used, 

which seeks to minimize SPD in each k-best cluster, running until no further child clusters can be 

identified. MEGENA also differs from WGCNA in that it executes multi-scale clustering, allowing 

us to obtain alternate modules at different scales while employing the same input. This allows us 

to assign a single gene into multiple modules, whereas WGCNA is limited to one gene-one 

module.  

 

Functional Annotation of the NAFLD Correlated Co-expression Modules  

To annotate the liver fibrosis-based co-expression modules with corresponding biological 

pathways, we utilized MatrisomeDB, Biocarta, Reactome, KEGG, and PID databases from the 

MSigDB via the hypergeometric test. Adjusted P-values were obtained using Bonferroni 
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correction. Pathways passing an adjusted p < 5% and shared a gene number > 5 were considered 

as significant pathways. 

 

Knowledge-Based Biological Pathways Curated 

We used a total of 1827 canonical pathways from Reactome (Version 45), Biocarta (Nishimura, 

2001) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.  

 

Liver Transcriptomic Data Correlated with Liver Fibrosis 

To provide potential insights into the most relevant genes associated with liver fibrosis, we 

correlated liver gene expression data with the fibrosed area of the liver up to a p-value cutoff < 1e-

5 using the bicor function from the WGCNA R package. Liver fibrosis was measured as a 

quantitative trait as previously described in Hui et al., 2018 [256].  

 

Marker Set Enrichment Analysis (MSEA) 

To identify co-expression modules and pathways that show evidence for genetic association and 

gene expression correlation with liver fibrosis, we performed a marker set enrichment analysis 

(MSEA) via the Mergeomics R package, using GWAS in conjunction with the eQTL data and 

correlated genes with fibrosis separately. Utilizing this approach would provide two lists of co-

expressed modules and pathways: 1) genetic and causal pathways to fibrosis and 2) pathways 

affected and linked with fibrosis through transcriptomics. MSEA employs a chi-square-like 

statistic with multiple quantile thresholds to assess whether a co-expression module or pathway 

shows enrichment of functional disease SNPs (i.e., SNPs that likely regulate gene expression as 

captured in eQTLs) compared to random chance. 10,000 permuted gene sets were generated for 



104   

each co-expression module and pathway. As detailed in Shu et al., the enrichment statistics from 

the permutations were used to approximate a Gaussian distribution from which enrichment P-

values were determined. Benjamini-Hochberg (BH) false discovery rate (FDR) was estimated 

across all co-expression modules and pathways tested for each of the two approaches. Gene sets 

were considered to be statistically significant if FDR < 0.05 in at least one SNP-gene mapping set 

or gene correlation set. To evaluate gene sets across the two approaches and between sexes, we 

followed up with a meta-analysis at the module/pathway level using the meta-MSEA function in 

Mergeomics to retrieve robust gene sets across both male and female cohorts as well as the three 

approaches. Stouffer’s Z-score method was used to calculate meta-P-values based on the P-values 

from the multiple MSEA runs. Meta-FDR was calculated using the Benjamini-Hochberg method 

as described above.    

 

Merging overlapping pathways into Supersets  

The curated pathways and gene co-expression modules may carry redundant information. For 

example, the KEGG pathway “insulin signaling” can have largely overlapping genes with the 

Reactome pathway “insulin receptor signaling”. To reduce redundancy, we compared the 

significant modules and pathways associated with liver fibrosis at FDR < 0.05 and merged the 

overlapping ones using a merging algorithm in Mergeomics to produce independent, non-

overlapping “supersets”. The algorithm employs an overlap ratio r between two gene sets A and 

B as r = (rAB x rBA)0.5, where rAB is the proportion of genes in A that are also present in B and rBA 

is the proportion of genes in B which are also in A. The overlap ratio cut-off was set to r >= 0.33 

and Fisher’s exact test was used for assessing the statistical significance of gene overlap between 

modules/pathways. BH FDR < 0.05 was considered significant. Resultant supersets containing 
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more than 500 genes were trimmed down to contain core genes shared among the overlapping 

gene sets. 

 

Liver Gene Regulatory Networks and Key Driver Analysis (KDA) 

We performed a key driver analysis using the KDA algorithm in Mergeomics to identify potential 

KDs whose network neighbors are enriched for genes within the fibrosis-associated supersets 

uncovered by MSEA. The algorithm employed a chi-square-like statistic similar to that described 

for MSEA, and FDR < 0.05 was used to focus on the top robust KDs. Liver-specific Bayesian gene 

regulatory networks (BNs) were utilized. BNs used in our study were derived from mapping our 

liver fibrosis-associate supersets onto liver BNs, which were constructed based on human and 

mouse datasets from previous studies using the established method RIMBANet. A BN from a 

dataset represents a consensus network in which only edges that passed a probability of > 0.30 

across 1000 BNs generated starting from different random seed genes were kept. BNs from 

individual studies  [12, 117-119, 259-261] were combined without considering the edge weights 

(as the edges included in each BN were considered robust) to form a union network. This strategy 

has been successfully used previously to derive meaningful biological insights. Since the directions 

of the interactions might be conflicting in some of these previous studies, we omit the directionality 

in these BNs when applying KDA. Because these BNs were collected from both mouse and human 

studies, gene symbols in network figures are given in human orthologs.  

 

Drug Repositioning 

Using the sex-specific KDs found in the KDA, we utilized the PharmOmics tool to uncover 

potential therapeutic drugs [64]. We performed both network-based and overlap-based 
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repositioning for female-specific, male-specific, and shared KDs. For network-based 

repositioning, we queried meta drug signatures in mice/rats using a liver network. For overlap-

based repositioning, we inputted the KDs found as upregulated genes since we omit directionality 

of BNs during the KDA.  

5.3 Results 
 
Identification of Co-Expression Modules and Pathways Genetically Associated with Liver 

Fibrosis 

To identify the potential causal pathways for fibrosis in both males and females, we utilized 

genetic information in the form of GWAS, liver fibrosis eQTLs, fibrosis-correlated co-expression 

modules, and canonical pathways through integration (for males and females separately) to infer 

functionally connected gene groups that show a strong genetic association with liver fibrosis. Out 

of the 1827 curated canonical pathways, we identified 41 pathways enriched from male mice, and 

from the 62 fibrosis correlated co-expression modules, we found 47 enriched modules at an FDR 

< 0.05. For females, we identify 22 canonical pathways and 42 co-expression modules enriched at 

an FDR < 0.05 (Figure 6.2).  

In terms of unique pathways, for males we find the top enriched canonical pathway to be 

“tight junction interactions” followed by a host of immune related signals in line with previous 

literature that males show a greater immune response in fibrosis than females. These pathways 

include “apoptosis”, “cytokine-cytokine receptor interaction”, and “pathogenic E. coli infection”. 

The co-expression modules follow similar results with largely immune related signals, but also 

showcase strong enrichment for extracellular matrix related pathways as well, which was not 

captured within the canonical pathway analysis.  
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In females, the pathways enriched to be causal through our canonical pathway analysis are 

heavily carbohydrate metabolism related, with “Propanoate metabolism”, “Butanoate 

metabolism”, “gluconeogenesis”, and “glycerolipid metabolism” among others showing 

significance at an FDR < 0.05 (Figure 6.2). Some immune/inflammation causal pathways are 

present too such as “systemic lupus erythematosus”, “T cell receptor signaling” and “Fc Epsilon 

Ri signaling pathway”. The co-expression module analysis similar to the males was able to 

highlight many of the ECM related pathways such as “ECM receptor interaction”, “Core 

Matrisome”, as well as more lipid metabolism related pathways such as “cholesterol biosynthesis” 

and “metabolism of lipids”. 

 

When comparing pathways shared between males and females, we found the causal pathways to 

be mostly unique, with only two overlapping canonical pathways “apoptotic cleavage of  cellular 

proteins” and “neurotrophin signaling”, which has previously found by our research to be 

conserved between mice and humans (Figure 6.2) [256]. In our co-expression analysis, we were 

able to uncover more overlap between sexes, particularly the ECM related processes as well as 

other more novel including “CSK pathway”, important in cell growth and immune response. In 

addition, we uncovered more metabolic processes related to vitamins, lipids and lipoproteins to be 

shared between sexes. 

 

Liver Fibrosis Transcriptome Correlations to Predict the Current Biological Pathways and 

Co-Expression Modules  

While utilizing genetic associations advises on the potential causal pathways for liver fibrosis, 

utilizing liver transcriptome data correlated with liver fibrosis can help better indicate the current 
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biology within the liver. Using the same approach as above, we find a total of 102 canonical 

pathways and coexpression modules enriched for males and 48 enriched for females at an FDR < 

0.05 (Figure 6.2D). Here, the transcriptome data showcases an increase in the number of 

overlapping pathways compared to those genetically associated, with a total of 32 overlapping 

between sexes compared to 21 via GWAS. However, the 32 overlapping pathways are dominated 

with ECM related processes, including “ECM organization”, “Collagen formation”, and “integrin 

cell surface interactions”, which would reflect the current pathology of the liver. 

For males, there are 70 unique pathways which include “metabolism of proteins”, “bile 

acid metabolism”, and translation related processes such as “viral mRNA translation” and “peptide 

chain elongation”. Interestingly, a majority of these 70 unique pathways were found within our 

canonical analysis (51/70). The co-expression analysis captures many of the immune related 

processes including “IL7 Signaling”, “TGF-Beta Pathway” and “IL4 Receptor in B Lymphocytes”, 

which again overall mimics the sentiments of the causal pathways being uniquely more immune 

related for males. 

Females, show a similar enrichment to the causal pathways, including “carbohydrate 

metabolism”, “glycosaminoglycan metabolism”, and “MPS diseases” amongst their 16 unique 

signals. MPS, or Mucopolysaccharidoses, are inherited lysosomal storage disorders that arise due 

to a lack of functional enzymes resulting in abnormal accumulation of glycosaminoglycans, which 

helps explain why we also find enrichment of glycosaminoglycan metabolism. The common link 

found utilizing the transcriptome as well as genetic data within females is a potential deficit in 

lysosomal enzyme function in females with resultant liver injury.  

Between sexes, the data alludes to the same end result of liver fibrosis through major ECM 

reconstruction, however through sex specific mechanisms. Specifically, in males, both transcript 
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and genetic data showcase more protein related defects, a stronger immune response and perhaps 

greater cell death. Whereas, females showcase a strong metabolism defect particularly with 

glycosaminoglycan, butanoate and propanoate, with a less complex immune response noted. In 

fact, upon further investigation of the genes enriched for the overlapping pathways such as 

“Collagen Formation”, we largely see non-overlapping genes between males and females despite 

the pathway being strongly enriched in each. 

 

Merging of Genomics and Transcriptomics for combined pathways 

To try to capture a holistic picture utilizing all genomics and transcriptomics datasets available, 

we can conduct a meta-MSEA, which calculates the cumulative significance of each pathway 

enrichment across all the above datasets to give an overall value, the Meta P-value. Unsurprisingly, 

the top enriched pathways for both males (Table 6.1) and females (Table 6.2) include ECM 

organization and ECM receptor interactions. Perhaps as a reflection of the current biology of the 

liver, the collective results are dominated by the transcriptome enrichments with minor causal 

(GWAS) contribution amongst the top pathways (Table 6.1, 6.2). The top 5 pathways for females 

are all ECM related, whereas that for males also include protein formation in addition.  

 

Key Driver Analysis  

Utilizing our liver Bayesian gene regulatory network constructed from tens of human and mouse 

datasets, we utilized our key driver analysis (KDA) to pinpoint key regulators/genes of liver 

fibrosis by overlaying genes enriched from all the significant canonical pathway and co-expression 

modules specific to GWAS and transcriptome results separately. We compared for overlap within 
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sexes for GWAS and transcript informed results as well as between sexes to understand how the 

different omics layers contribute to disease development and progression.  

 

Male Networks 

Firstly, for our male GWAS informed network, we found a large number (810) of KDs identified 

from our co-expression modules particularly those informing on immune signals and ECM related 

functions where the top KDs informed from these signals include SYK, TLR2 and EVL (FC-

gamma-R-mediated phagocytosis) and COL6A3, COL1A1 and ADAMTS2 (ECM glycoproteins) 

(Figure 6.3A). Importantly, we found many additional signals beyond immune and ECM, which 

involved lipid metabolism processes, including ACSS2 which is important in acetyl-coA 

generation and has been functionally validated for its role in steatosis, as well as FASN another 

gene validated for its role in steatosis from our previous study [153] and perhaps more novel HCC. 

These are interesting candidates as it poses the potential for these genes to be important throughout 

NAFLD development.  

 Due to the dominant enrichment of key drivers informed from our co-expression analyses, 

we re-ran our KDA analysis exclusively for canonical pathways to ensure that no other biology 

was missed or overshadowed. Here, we generally found complementary results with our combined 

network (co-expression and canonical informed) as expected, highlighting more immune 

processes such as hemostasis, cytokine-cytokine receptor interaction and chemokine signaling 

pathways with genes highlighted including CCL4, CCL7, INPP5D, PTPRC and APBB1P among 

others. 

 Besides the causal networks informed by GWAS, it is appropriate to understand which 

genes are driving current disease progression processes. We therefore overlaid the transcript 
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informed mechanisms on our liver network. As would have been expected, the network was 

heavily enriched for ECM related processes of which COL6A3, ADAMTS2 and COL1A1 were 

again top candidates reflecting the current fibrosis liver state. Many of the overall network genes 

reflected the GWAS analysis and to understand the overlap and differences better, we carried out 

an overlap network and a unique network. The GWAS only network highlighted the uniquely 

causal hubs including again ACSS2 and many inflammatory signals such as IFIT1, ISG15, CXCL10 

and interestingly circadian rhythm related genes such as ARNTL1. 

 

Female Networks 

Following suit from the male analysis to inform on the causal networks in female liver fibrosis, 

we examined the results suggested through GWAS. Generally, the overall theme is similar to male 

GWAS with many of the top KDs recapitulated albeit not all from the same co-expression modules 

or canonical pathways (although similar overall functions) (Figure 6.3B). An example of this is 

SYK, which again is one of the top ranked KDs but is now listed as part of leishmania infection 

(derived from MEGENA) rather than FC-gamma-R-mediated phagocytosis (derived from 

WGCNA). On top of this the ranked order of key driver significance (FDR<0.05) is somewhat 

different perhaps suggesting different levels of importance of genes fundamental to fibrosis 

development such as ACSS2 being top 10 in female but top 30 in males. Moreover, the female 

related processes have slightly less emphasis on the immune pathways, with many of the top 

networks covering metabolic processes from lipid and lipoprotein metabolism as well as 

cholesterol synthesis including genes FDFT1 and GPAM. Again, separating out the co-expression 

module analysis from our canonical pathways, the canonical analysis only highlighted six 

processes including arginine and proline metabolism (GOT1, ASS1 and CPS1), Butanoate 



112   

metabolism (ACSM3), Propanoate metabolism (ACADM), systemic lupus erythematosus 

(HIST1H4F, HIST1H2BK and HIST1H2BO), Fc epsilon RI signaling pathway (NCKAP1L), and 

T cell receptor signaling (CD3G). The canonical network highlights this underlying metabolic 

issue, but again coupled with immune irregularities. 

 Examining the current biology of female liver fibrosis, we again looked at the transcript 

network, which highlighted the ECM related processes and those major genes COL6A3, 

ADAMTS2, and THBS2. The Transcript analysis highlighted that the genes within male and female 

liver working in fibrosis processes are similar as a whole. Importantly, we screened for differences 

with our GWAS network, which highlighted that GWAS was specific to a number of immune 

signals and metabolism signals with more emphasis on the key drivers derived from canonical 

pathways with all bar NCKAP1L being specific to GWAS. 

 

Sex Comparison between networks  

Comparing first the overlap between the GWAS networks, we find that for females 88% of the 

key drivers predicted overlap with males whereas for males there is a 64% overlap with females, 

showcasing the additional complexity in male liver fibrosis (Figure 6.4A, 6.4B). The top 

overlapping KDs include the ECM related collagen genes (COL6A3, PCOLCE, ADAMTS2, 

COL1A1), immune related (SYK) and metabolism processes (ACSS2, FASN, GPAM, FDFT1). We 

also find PNPLA3 as a KD in both sexes, which is interesting due to high prevalence in NAFLD 

as a major GWAS hit. The top ranked male specific KDs include CCNA2, C15orf23, RACGAP1 

and PBK, whereas for females UGT2A3, HIST1H2BO and MAST2 are noted. Beyond these top 

ranked (FDR<0.05), we find CHCHD6 to be specific to females, which is interesting due to its 

validation in our previous study in steatosis and FADS3 a known GWAS hit in NAFLD to be 
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female specific. PRODH, which has recently been implicated in NAFLD development was noted 

to be male specific. 

 For the transcriptome comparison, we find that 64% of the female key drivers overlap with 

males whereas males have an 85% overlap with females in this case (Figure 6.4C, 6.4D). This is 

almost a reverse of the key driver analysis for GWAS, this is possibly explained by females having 

a more complex pathogenesis in fibrosis development, where more cross talk is apparent from 

different mechanisms and genes within those mechanisms. We find again that the top shared 

overlapping key drivers include COL6A3, ADAMTS2, COL1A1 and THBS2. The top KDs unique 

to males includes CPS1, ASL, HGD and ASS1, and the top unique to female includes FERMT3, 

IGSF6, CTSS and NCF2. 

 

Drug Repositioning through Pharmomics 

Next, we utilized the drug repositioning tool Pharmomics [64] to predict potential drugs that can 

be used to alleviate symptoms of NAFLD. Performing drug repositioning using male-specific 

KDs, the top drugs found include corticosteroids like Fludrocortisone and Dexamethasone; anti-

hypertensives like Ramipril, Pentoxifylline, Candesartan, and Losartan; NSAIDs like Naproxen, 

Sulindac, and Fenoprofen; and diuretics like Eplerenone and Furosemide. Using female-specific 

KDs, the top drugs we identified include corticosteroids like Fludrocortisone, Betamethasone, 

Prednisolone, and Dexamethasone; antivirals like Penciclovir and Ritonavir; and 

immunomodulators like Glatiramer among other drugs. Searching through the genes overlapped 

between sexes, the top drugs we found include corticosteroids like Fluocinolone and 

Dexamethasone, and Enzalutamide which is a nonsteroidal antiandrogen drug. Through drug 
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repositioning and subsequent experimental validation, we hope to be able to find potential 

therapeutic treatments for NAFLD.  

5.4 Discussion 
 

In this study, we utilized a multi-omics approach utilizing our Mergeomics pipeline in an 

attempt to distinguish key differences in fibrosis pathogenesis between sexes. To do this, we 

leveraged hepatic fibrosis GWAS and fibrosis eQTL data and integrated these datasets with 

knowledge derived canonical pathways (KEGG, Reactome, and Biocarta) and data driven sex 

specific liver fibrosis co-expression modules created using WGCNA and MEGENA. We also 

utilized liver fibrosis transcriptome data to pinpoint the biology relevant to liver fibrosis during 

disease as opposed to inherited and predicted causal pathways/genes from GWAS. A combination 

of multi-omics allows us to gain a more holistic picture of disease progression starting from 

baseline inherited genetics to the mechanisms and genes contributing to fibrosis in its current state. 

Taking all of these resources together we finally mapped all of the significant co-expression 

modules and canonical pathway genes to liver BN’s in our KD analysis, where we were able to 

pinpoint the central hubs/key driver genes which are likely to play a significant role in disease 

generation, both shared and sex specific.  

 

Through our pathway analysis, we found that males have a greater number of immune 

response pathways, which is consistent with prior knowledge suggesting that liver fibrosis in males 

generates a more intense immune response. Additionally, we found expected lipid metabolism 

pathways as well as previously unobserved protein/translation-related pathways among our male-

specific pathways, which suggests that differential expression of protein biosynthesis and 

degradation pathways could potentially play a role in fibrosis pathogenesis. In females, we 
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identified more carbohydrate metabolism-related pathways including a large array of 

mucopolysaccharide diseases, which are inherited lysosomal storage disorders where lysosomal 

enzymes responsible for breaking down glycosaminoglycans are impaired or absent. This alludes 

to a potential pathway for fibrosis progression, as buildup of glycosaminoglycans can cause cell 

injury, leading to fibrosis. Previous studies [262-264] have also alluded to this notion, finding 

NAFLD patients to have a higher heparan sulfate and chondroitin sulfate concentration. Through 

our GWAS analysis we observed two shared pathways, “Apoptotic Cleavage of Cellular Proteins” 

and “Neurotrophin Signaling Pathway”, which has been noted in our previous study [256]. While 

“Neurotrophin Signaling Pathway” may seem like an unorthodox pathway for liver fibrosis, 

studies have shown neurotrophin regulator p75NTR to be a liver regeneration regulator 

increasingly expressed in the hepatic stellate cells (HSCs) of cirrhotic liver. Comparing our 

transcriptome data with our liver fibrosis GWAS, we identified many shared pathways that were 

ECM-related, including “ECM Organization”, “Collagen Formation”, and “Focal Adhesion”, in 

reference to the pathophysiology of liver fibrosis. 

 

 Through the Key Driver Analysis function of the Mergeomics pipeline, we identified 

potential key regulators of NAFLD progression between sexes. In males, we identified many cell 

cycle and mitosis related genes, suggesting that these genes, specifically in regard to fibroblast 

proliferation, more heavily impact male liver fibrosis pathogenesis. We also found male-specific 

protein/translation-related genes consistent with pathways from our male-specific pathway 

analysis. In females, we found a variety of genes including metabolism related genes as well as 

complement system genes, highlighting the complement system’s role in promoting inflammation 

leading to fibrosis. Shared between males and females, we find an abundance of ECM-related 
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genes, consistent with liver fibrosis pathophysiology as aforementioned. These shared genes, 

however, are annotated with different pathways between sexes, suggesting that these genes both 

contribute to liver fibrosis, though through different pathways in NAFLD progression between 

sexes. Additionally, we also identified NCKAP1L and FASN, which have both been previously 

found by our group where we have experimentally validated FASN with knockdown high fat, high 

sucrose-induced NAFLD mice, finding them to have improved steatosis and insulin resistance.  

Looking into the known biology of each key driver, we chose to explore several less-

studied genes in regard to NAFLD found in our multi-omics analysis using high fat, high sucrose-

induced NAFLD mice. We are currently pursuing  validation of VNN1 and MAOB, both shared 

causal genes between sexes. VNN1 is a GPI-anchored molecule that plays a role in hematopoietic 

cell trafficking and the oxidative stress response. In a prior study, lipid-induced toxicity in mice 

was shown to induce hepatocytes to secrete microparticles on which the protein coded by VNN1 

is the most abundant protein; these microparticles promote angiogenesis, which plays a major role 

in NAFLD progression [265]. MAOB encodes a monoamine oxidase where elevated levels serves 

as a biomarker for liver fibrosis [266] and has been shown to be tied with reactive oxygen species 

production leading to mitochondrial dysfunction [267].  

 Using the PharmOmics pipeline [64], we performed drug repositioning to uncover potential 

therapies for NAFLD using the sex-specific and overlap KDs found in our KDA. One important 

thing to note is that our pipeline does not show directionality, meaning that the drugs found could 

have beneficial effects or adverse effects, or both. In all three drug repositioning forms used, we 

find a lot of corticosteroids like Fluocinolone and Dexamethasone, which are expected due to 

inflammation being a key player in NAFLD progression. We also find many NSAIDs in both sex-
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specific repositioning for the same reason as well. Interestingly, we find Enzalutamide as an 

overlap drug. Enzalutamide is a nonsteroidal antiandrogen, which may allude to the adverse effects 

of testosterone in both sexes as well as the protective effects of estrogen seen in females. As we 

will with the key driver genes, we will be pursuing the validation of less-studied drugs for a 

potential treatment of liver fibrosis. 

In this study, we utilized an integrative and systems biology approach through genetic and 

transcriptomic data in an attempt to holistically differentiate liver fibrosis pathogenesis between 

males and females. Our study overall highlights a greater immune response in males along with 

more protein and lipid metabolism abnormalities; for females, we found more carbohydrate 

metabolism related abnormalities contributing to liver fibrosis. Through our KD analysis, novel 

key drivers were found. More research into these genes can help identify plausible targets and 

create sex-specific therapeutic treatments for NASH.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

5.5 Tables 
 
Table 5.1 Top consistent pathways derived from GWAS and TWAS within males. 

MODULE P GWAS FDR GWAS 
P 
Transcript 

FDR 
Transcrip
t 

METAP FDR DESCR 

WGCNA_3 1.37E-05 0.00310957 1.34E-47 4.55E-45 5.71E-40 
5.03E-
37 

ECM glycoproteins, Core 
matrisome, ECM receptor 
interaction 

WGCNA_4 
0.0002158
7 

0.00756445 1.33E-27 2.25E-25 1.79E-24 
7.87E-
22 

Core matrisome, ECM 
glycoproteins, Matrisome 
associated 

rctm0388 
0.0053118
9 

0.0496367 3.90E-24 3.78E-22 2.24E-19 
3.29E-
17 

Extracellular matrix 
organization 

rctm0385 
0.0230956
6 

0.1010456 1.97E-21 1.34E-19 3.22E-16 
4.05E-
14 

Eukaryotic Translation 
Termination 

rctm0790 
0.0487548
5 

0.13866756 4.19E-19 1.89E-17 5.30E-14 
5.19E-
12 

Nonsense-Mediated Decay 

MEGENA_7 
0.1421078
9 

0.24013052 2.89E-21 1.78E-19 6.82E-14 
5.72E-
12 

NCAM1 interactions, Core 
matrisome, Integrin1 pathway 

rctm0576 
0.2092814
1 

0.29983929 2.96E-22 2.23E-20 7.80E-14 
5.72E-
12 

Influenza Viral RNA 
Transcription and Replication 

rctm0788 0.0375928 0.12678989 2.25E-18 9.00E-17 7.60E-14 
5.72E-
12 

Nonsense Mediated Decay 
Enhanced by the Exon Junction 
Complex 

M189 
0.1321793
4 

0.23255821 1.31E-20 6.83E-19 1.25E-13 
8.50E-
12 

Ribosome 

rctm0789 
0.0443685
7 

0.13131997 3.09E-18 1.17E-16 1.38E-13 
8.71E-
12 

Nonsense Mediated Decay 
Independent of the Exon 
Junction Complex 



 

Table 5.2 Top consistent pathways derived from GWAS and TWAS within females 

MODULE 
P 
GWAS 

FDR 
GWAS 

P Transcript FDR Transcript METAP FDR DESCR  

WGCNA_3 
4.46E-
14 

1.16E-11 1.27E-24 3.48E-22 5.59E-36 
4.37E-
33 

ECM glycoproteins, Core 
matrisome, ECM receptor 
interaction 

MEGENA_26 
0.0040
7012 

0.04877
883 

2.60E-21 2.39E-19 7.88E-18 
3.08E-
15 

Core matrisome, ECM 
glycoproteins, ECM 
organization 

rctm0388 
0.0064
96 

0.07063
284 

3.54E-09 8.85E-08 2.46E-09 
1.75E-
07 

Extracellular matrix 
organization 

MEGENA_550 
0.0006
3689 

0.01271
074 

2.24E-05 0.0003238 1.21E-07 
6.79E-
06 

Axon guidance, Basement 
membranes, Developmental 
biology 

MEGENA_586 
0.0001
7071 

0.00458
565 

0.00012143 0.00151793 1.47E-07 
7.66E-
06 

Integrin3 pathway, Core 
matrisome, Integrin1 pathway 

MEGENA_870 
2.34E-
05 

0.00126
442 

0.00438287 0.02869734 1.11E-06 
5.12E-
05 

CSK pathway; Calcium 
dependent events; Alanine, 
aspartate, and glutamate 
metabolism 

MEGENA_186 
0.0044
7908 

0.05221
57 

6.34E-05 0.00087167 2.58E-06 
9.61E-
05 

Melanoma, Glioma, Axon 
guidance 

M4086 
2.76E-
06 

0.00031
125 

-- -- 2.76E-06 
9.81E-
05 

Propanoate metabolism 

M3397 
9.07E-
06 

0.00088
271 

-- -- 9.07E-06 
0.000
26255 

Butanoate metabolism 

MEGENA_618 
2.33E-
05 

0.00126
43 

-- -- 2.33E-05 
0.000
6069 

Biosynthesis of unsaturated 
fatty acids, Alpha-linolenic 
acid (ALA) metabolism 

 



 

Table 5.3 Top consistent drugs derived from GWAS and TWAS within males 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Drug (GWAS) Class of Drug 
Network-based 
P-Value 

Overlap-based 
P-Value 

Associated KDs 

Fludrocortisone 
Corticosteroid 

1.32E-05 2.33E-43 
ACAT2, ACSS2, ANXA2, ARNTL, 
VIM, CASP1, CCL2, FVER1G, FASN, 
EVL 

Prednisolone 
Corticosteroid 

2.34E-04 1.03E-42 
ADAM8, AIF1, BTG2, COL1A1, 
ELOVL5, MVD, NCAM1, PTPRC, 
VIM 

Urokinase 
Urokinase-type 
plasminogen activator 

2.11E-03 3.03E-41 
ACACB, AIF1, ANXA3, AXL, DDR1, 
CYBA, ELOVL5, FASN, NCF2 

Ritonavir 
HIV Protease Inhibitor 

1.22E-03 2.10E-52 
BEX2, ANXA3, COL4A1, CTPS, 
FOLR2, PDGFRB, PLEK, MVD, 
SMOC2, THRSP 

Oxaliplatin 
Alkylating Antineoplastic 
Agent 

4.19E-03 9.49E-35 
ACCS2, ADAMTS2, BTG2, CYB5R, 
COL1A2, FCGR1, GSN, MGP, TLR1 

Sulindac 
NSAID 

8.17E-03 2.45E-40 
ACAT2, ACSS2, ATF3, COL3A1, 
FCER1G, ELOVL6PKLR, VTN, VIM 

Doxorubicin 
Topoisomerase Inhibitor 
Antineoplastic Agent 

3.71E-02 1.52E-56 
ADAMTS2, ANXA2, ARNTL, BGN, 
COL1A1, EVL , FASN, FERMT3  

Dexamethason
e 

Corticosteroid 
2.01E-02 1.42E-70 

ANXA1, CASP1, CCDC3, CCL3, 
COL6A3, LPL, GPAM, NCKAP1L 

Prednisone 
Corticosteroid 

3.14E-02 4.26E-22 
CCNA2, FCGR3, HK3, LOXL1, 
NCAM1, PNPLA5, RAC2, SMOC2, 
TYROBP 

Decitabine 
Antimetabolite 
Antineoplastic Agent 

3.60E-02 1.65E-38 
ACACB, ACSS2, ADAMTS2, AXL, 
COL6A3, DDR1, GPAM, IDI1, MVD 



 

Table 5.4 Top consistent drugs derived from GWAS and TWAS within females 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drug (GWAS) Class of Drug 
Network-
based P-Value 

Overlap-based 
P-Value 

Associated KDs 

Fludrocortisone 
Corticosteroid 

3.36E-02 2.44E-31 
AACS, ACSS2, CCL2, COL3A1, 
DDR1, CTSS, HCK, MVD, MOGAT1, 
PGD 

Prednisolone 
Corticosteroid 

4.45E-03 2.83E-28 
AIF1, ANXA2, BGN, CCDC3, DCN, 
DECR1, FERMT3, PGD, VIM 

Ritonavir 
HIV Protease Inhibitor 

6.08E-03 4.57E-45 
AIF1, AXL, FERMT3, GPAM, 
MOGAT1, PCOLCE, PGD, SAMSN1 

Chloroquine 
Quinolone 

8.06E-03 6.26E-21 
AACS, ACSS2, ANXA2, COL3A1, 
FCER1G, FOLR2, LSS, PCOLCE 

Neomycin 
Aminoglycoside Antibiotic 

9.56E-03 1.35E-34 
ACADM, AACS, CCL2, CYBA, EVL, 
NCAM1, NCF4, NCKAP1L, PKLR 

Doxorubicin 
Topoisomerase Inhibitor 
Antineoplastic Agent 9.87E-03 5.21E-47 

ACACA, ADAMTS2, BGN, EVL, 
FASN, ELOVL5, LSS, JUN, PAM, 
PTPRC 

Sorafenib 
Tyrosine Kinase Inhibitor 
Antineoplastic Agent 

9.98E-03 2.77E-49 
ACSS2, ART4, AIF1, CLIP2, COL1A1, 
CIDEC, HCK, GPAM, VIM, THBS2 

Pyrazinamide 
Antitubercular Agent 

1.19E-02 7.81E-25 
ACAT2, ANXA2, CCL2, CIDEC, EVL, 
FASN, JUN, PLEK, SCARA3, TYROBP 

Betamethasone 
Corticosteroid 

1.79E-02 1.22E-27 
ACLY, ACSS2, CASP1, EVL, FCER1G, 
FOLR2, MOGAT1, PTPRC, SPARC 

Glatiramer 
Immunomodulator 

3.07E-02 9.73E-37 
ACAT2, CCL2, CLIp2, CFP, COL1A2, 
GPAM, ITGAL, PGD, PLK3, SCARA3 
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5.6 Figures 
 

 
Figure 6.1. Study Overview. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 Overlap results of MSEA results between male and female mice for GWAS and TWAS  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Male GWAS liver Bayesian network 
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Figure 5.4 Female GWAS liver Bayesian network 
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 Figure 5.5 Overlap analysis of KD genes between males and females and visualization of network structure 
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Chapter 6. Relative contributions of sex hormones, sex chromosomes, and gonads 
to sex differences in tissue gene regulation 
 
6.1 Introduction 
 
Females and males differ in the risk, incidence, and progression of complex diseases such as 

obesity, non-alcoholic fatty liver disease, and diabetes [268-270]. Thus, one sex may have 

endogenous protective or risk factors that could become targets for therapeutic interventions. 

Current sexual differentiation theory suggests that three major classes of factors cause sex 

differences [271-275]. First, some sex differences are caused by different circulating levels of 

ovarian and testicular hormones, known as “activational effects”. These differences are reversible 

because they are eliminated by gonadectomy of adults. Second, certain sex differences persist after 

gonadectomy in adulthood and represent the effects of permanent or differentiating effects of 

gonadal hormones, known as “organizational effects,” that form during development. A third class 

of sex differences are caused by the inequality of action of genes on the X and Y Chromosomes in 

male (XY) and female (XX) cells, and are called “sex chromosome effects”. 

To date, few studies have systematically evaluated the relative importance of these three classes 

of factors acting on phenotypic or gene regulation systems [276]. The activational effects of 

hormones have been established as a significant contributor to sexual dimorphism in metabolic 

diseases, with additional evidence pointing to sex chromosome effects on obesity and lipid 

metabolism [277-279]. Previous studies have also emphasized the importance of organizational or 

activational hormone effects on liver gene expression [280-284]. However, the tissue-specific 

contributions and the interactions of activational, organizational, and sex chromosome effects on 

gene regulation are poorly investigated. 



128  
 

Here we conduct a systematic investigation to understand the relative contribution of the 

three sex-biasing factors in gene regulation (Figure 6.1). We used the Four Core Genotypes (FCG) 

mouse model, in which the type of gonad (ovary or testis) is independent of sex chromosome 

complement (XX or XY) [285, 286]. The model separates the effects of sex chromosome 

complement by fixing the gonadal status (XX vs. XY with ovaries; XX vs. XY with testes) from 

the effects of gonads by fixing the sex chromosome type (ovaries vs. testes with XX genotype; 

ovaries vs testes with XY genotype). By varying adult gonadal hormone levels via gonadectomy 

and subsequent hormonal treatments we also asked how androgens and estrogens influence gene 

expression as a function of sex chromosome complement and gonadal sex. The design allows 

comparison of the magnitude of effect of each sex-biasing factor and the interactions among 

different factors. 

Using the FCG model, our aim is to assess the role of the three sex-biasing factors and their 

interactions on gene expression, molecular pathways, and gene network organization in the liver 

and adipose tissue, which are central tissues for metabolic and endocrine homeostasis, with adipose 

tissue additionally contributing to immune functions. We further aim to understand the relationship 

of each sex-biasing factor with various human diseases. 

 
6.2 Results 
 
Overall study design 

In FCG mice, the Y Chromosome (from strain 129) has sustained a spontaneous deletion 

of Sry, and an Sry transgene is inserted onto Chromosome 3 [286] (Figure 6.1A;1B). Here, “male” 

(M) refers to a mouse with testes, and “female” (F) refers to a mouse with ovaries.  FCG mice 

include XX males (XXM) and females (XXF), and XY males (XYM) and females (XYF; Figure 

6.1C). A total of 60 FCG mice were gonadectomized (GDX) at 75 days of age and implanted 
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immediately with medical grade Silastic capsules containing Silastic adhesive only (blank control; 

B) or testosterone (T) or estradiol (E) (Figure 6.1D). This study design produced 12 groups, with 

4 groups of FCG mice (XXM, XXF, XYM, XYF) and each group subdivided into B, T or E based 

on hormonal treatment: XXM_B, XXM_T, XXM_E, XYM_B, XYM_T, XYM_E, XXF_B, 

XXF_T, XXF_E, XYF_B, XYF_T, XYF_E (n=5/genotype/treatment). Liver and inguinal adipose 

tissues were collected 3 weeks later for transcriptome analysis (Figure 6.1E). All liver samples 

passed quality control (n=5/group) whereas 5 adipose samples across 4 of the 12 groups failed 

quality control (n=3-5/group; see Methods) (Figure 6.1F). The design allowed detection of 

differences caused by three factors contributing to sex differences in traits (Figure 6.1G). (1) “Sex 

chromosome effects” were evaluated by comparing XX and XY groups (n=~30/sex chromosome 

type/tissue). (2) “Gonadal sex effects” were determined by comparing mice born with ovaries vs. 

testes (n=~30/gonad type/tissue). Since mice were analyzed as adults after removal of gonads, the 

gonadal sex effects represent organizational (long-lasting) effects of gonadal hormones, such as 

those occurring prenatally, postnatally, or during puberty. This group also includes effects of the 

Sry gene, which is present in all mice with testes and absent in those with ovaries. Any direct 

effects of Sry on non-gonadal target tissues would be grouped with effects of gonadal sex. (3) 

“Hormone treatment effects” refers to the effects of circulating gonadal hormones (activational 

effects) and were evaluated by comparing E vs. B groups for estradiol effects, and T vs. B groups 

for testosterone effects, with n=~20/hormone type/tissue. 

 
Global effects of sex chromosome complement, gonadal sex, and hormonal treatments on 

liver and adipose tissue gene expression 

To visualize the overall gene expression trends due to effects of the three primary sex-

biasing components, we conducted principal component analysis (PCA; Figure 6.2). For adipose 
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tissue, hormonal treatment (Figure 6.2A), sex chromosomes (Figure 6.2B) and gonadal sex 

(Figure 6.2C) did not clearly separate the groups. However, in the liver there was a separation of 

groups based on gonadal hormones, particularly in response to testosterone treatment (Figure 

6.2D), but not based on chromosomal or gonadal factors (Figure 6.2E, 6.2F). 

We then asked which individual genes in liver and adipose tissues were affected by adult 

hormone level, gonadal sex, and sex chromosome complement, as well as interactions between 

these factors, using three sets of ANOVA tests to address biological questions at different 

resolution. We defined a differentially expressed gene (DEG) as a gene that passed a false 

discovery rate (FDR)<0.05 for individual sex-biasing factors and the interaction terms from the 

ANOVAs. First, we used a 3-Way ANOVA (3WA) to test the main effects of sex hormones, gonad 

type, and sex chromosome as well as the interaction terms. Tens to thousands of DEGs were 

identified in liver (Table 6.1) and adipose tissue (Table 6.2). In both tissues, hormonal treatments 

affected the largest numbers of genes, followed by fewer genes that were responsive to 

gonadal/organizational effects or sex chromosome complement (Figure 6.3). Testosterone 

treatment in the liver induced the largest number of DEGs (Figure 6.3A), whereas in adipose tissue 

estradiol treatment affected the greatest number of DEGs (Figure 6.3D). These trends remained 

when different statistical cutoffs (unadjusted p<0.05, p<0.01, FDR<0.1, FDR<0.05) were used 

(Figure 6.4). These results support tissue-specific sensitivity to different hormones. 

Next, we asked if the sex chromosome and gonadal effects are more evident in specific 

hormonal treatment groups using a 2-way ANOVA (2WA). In the liver, the organizational effects 

of gonad type were strongest in gonadectomized mice without hormone replacement (blank group) 

(Figure 6.3B). By contrast, in adipose tissue the gonadal sex effect was most prominent in the 

estradiol treated groups (Figure 6.3E), suggesting that estradiol levels augment the enduring 
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differential effects of gonads on the adipose transcriptome. Sex chromosome effects were limited 

regardless of hormonal treatment status. 

Lastly, we examined whether the effects of testosterone and estradiol are dependent on 

genotypes using a 1-way ANOVA (1WA) followed by post-hoc analysis. More liver genes were 

affected by testosterone than by estradiol regardless of genotype, although XYM liver appeared to 

be less responsive to testosterone than liver from other genotypes (Figure 6.3C). By contrast, in 

adipose tissue, estradiol affected more DEGs in XX genotypes (XXM and XXF) than in XY 

genotypes (XYM and XYF), whereas testosterone had minimal impact on adipose tissue gene 

expression in all four genotypes (Figure 6.3F). These results further support tissue-specific effects 

of estradiol in adipose tissue and testosterone in liver, and indicate that activational effects of 

hormones also depend on sex chromosome complement and hormonal history (gonadal sex) of the 

animal. 

 

Genes and pathways affected by hormonal treatment 

  In the liver, the 3WA analysis showed that testosterone treatment induced the greatest 

number of DEGs with 1378 compared to 333 DEGs from estradiol treatment (Table 6.1; Figure 

6.3A). The testosterone DEGs were enriched for metabolic pathways (lipid metabolism, organic 

acid metabolism, bile acid biosynthesis), development, and immune response (Table 6.1). The 

estradiol liver DEGs showed enrichment for metabolic (organic acid metabolism, carboxylic acid 

metabolism) and immune pathways (complement and coagulation).  

In contrast to liver, we found that the effect of estradiol treatment was more profound (2029 

DEGs) than that of testosterone (275 DEGs) in 3WA of the inguinal adipose tissue (Table 6.2; 

Figure 6.3D). The estradiol DEGs were enriched for protein metabolism, focal adhesion, and 
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transport pathways. Testosterone DEGs were enriched for cell-cell adhesion, development, 

regulation of transcription, and protein signaling pathways.  

Overall, both estradiol and testosterone affected genes involved in metabolism, 

development, and immune function. However, estradiol primarily affected these processes in the 

adipose tissue, whereas testosterone exhibited influence in the liver. 

 

Genes and pathways affected by gonadal sex  

 In the liver, 3WA analyses revealed 93 DEGs influenced by gonadal sex when testosterone 

and blank treatment groups were considered, and 209 DEGs in the analysis of estradiol and blank 

groups (Table 6.1). These genes were enriched for immune/defense response and lipid metabolism 

pathways. By 2WA, we found that gonadal sex has the strongest influence on inflammatory and 

metabolism genes in the absence of hormones (blank group; 115 DEGs), but the effect was reduced 

by estradiol treatment (53 DEGs) and minimized by testosterone treatment (9 DEGs; Table 6.1; 

Figure 6.3B).  

For the inguinal adipose tissue, gonadal sex had more than twice as many DEGs as in liver 

tissue in the 3WA analysis (Figure 6.3A vs. 6.3D). Further dissection of the gonadal sex effect in 

individual hormonal treatment groups in a 2WA analysis showed that the effects of gonadal sex 

were strongest in the estradiol group (400 DEGs), followed by testosterone group (161 DEGs), 

and lastly by the blank group (70 DEGs; Figure 6.3E). Genes affected by gonadal sex are mainly 

relevant to developmental processes, with arginine and proline metabolism genes also affected in 

the estradiol group and cancer-related genes in the testosterone group.  

These results support the importance of gonadal sex in regulating development, metabolic, 

and immune processes in both tissues. However, in the liver, hormonal treatments minimized the 



133  
 

effects of gonadal regulation of gene expression, whereas in the adipose tissue, hormones 

amplified the gonadal influence on gene expression. In both tissues, the gonadal sex effect was 

more prominent in the estradiol-treated group than in the testosterone-treated group (Figure 6.3B 

vs. 6.3E). 

 

Genes and pathways affected by sex chromosome complement 

 In both the 3WA and 2WA analyses, ten or fewer genes were found to be significantly 

affected by sex chromosome complement at FDR < 0.05 in the liver (Table 6.1; Figure 6.3C) and 

10-22 DEGs were influenced by sex chromosomes in the adipose tissue (Table 6.2; Figure 6.3F). 

These genes were mainly sex chromosome genes known to exhibit sex differences, including Xist, 

Ddx3y, Kdm6a, Hccs, Cited1, Tlr7 and Eif2s3x/y [278, 287-289]. However, autosomal genes were 

also influenced by sex chromosome type in both liver (e.g., Ntrk2 and H2-DMb1) and adipose 

tissue (e.g., Pals1, Esrp1, and Dnai1). Genes influenced by sex chromosome complement are 

involved in inflammation/immune response (Tlr7, H2-Dmb1, Cited1), GPCR signaling (Esrp1), 

metabolism (Hccs), and cell junction organization (Pals1).  

 

Genes and pathways affected by interactions of sex-biasing factors 

The interactions among the sex-biasing factors are supported by numerous DEGs with 

significant effects from the interaction terms in the ANOVA analyses (FDR<0.05; Supplemental 

Table S6.1; S6.2 ). For instance, in adipose tissue 31 DEGs were affected by interactions between 

estradiol and gonad type. These DEGs were enriched in pathways such as VLDL particle assembly 

and regulation of leukocyte chemotaxis. DEGs Dnai1 and Cited1 were expressed in female gonads 

(XXF or XYF) when no sex hormones were provided; genes such as Ctns, Slc2a3, S100a14 and 
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Ier3 showed a significant increase in expression when estradiol treatment was provided to female 

gonads (Figure 6.5). In the liver fewer genes showed significant interaction effects between pairs 

of sex-biasing factors (FDR<0.05) (Supplemental Table S6.2). For instance, expression of 

Cyp3a41a, Sult3a1 and Cyp17a1 was downregulated by testosterone in mice with female gonads; 

Obp2a expression was upregulated by testosterone in mice with male gonads; expression of Igfbp2 

was upregulated by testosterone on female gonads but downregulated by testosterone on male 

gonads (Figure 6.6). 

 

Comparison of mouse DEGs affected by sex-biasing factors with human sex-biased genes 

 To cross-validate the DEGs identified in our FCG mouse model, we compared them with 

sex-biased genes identified in human GTEx studies of liver (Supplemental Table S6.4) and 

adipose tissues (Supplemental Table S6.5) [290]. We found 80 out of 500 sex-biased genes (16%) 

in GTEx liver and 116 out of 500 sex-biased genes (23.2%) in GTEx adipose tissue were identified 

as DEGs affected by one or more sex-biasing factors in our FCG model. It is important to note the 

key difference between studies: the sex-biased genes in GTEx are the results of the combined 

effects of all sex-biasing factors whereas our FCG mouse study focuses on the effect of individual 

sex-biasing factors. 

 As GTEx studies cannot isolate specific sex biasing factors, our FCG model suggests the 

particular factors contributing to the sex biased genes found in humans. For instance, in adipose 

tissue, the GTEx female biased genes ASAH1, PRDX2 and LOXL1 might be explained by an effect 

of estradiol. In contrast, the male-biased adipose gene HSD11B1 in GTEx can be explained in the 

FCG by the effect of testosterone (Figure 6.7). In the liver, the human male-biased genes ADH4, 

GNA12, HSD17B12 can be explained in our mouse model by an effect of testosterone, whereas 
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the female-biased human genes AS3MT, ZFX and CXCL16 were found to be affected by estradiol 

in FCG mice (Figure 6.8). Therefore, the FCG mice not only can recapitulate certain sex-biased 

genes in human studies but suggest the specific sex-biasing factors that contribute to the sex bias. 

 

Coexpression modules affected by each sex-biasing factor 

 The above DEG analyses focused on genes that were individually influenced by sex-

biasing factors as well as their interactions. Sets of genes that are highly coregulated or co-

expressed can offer complementary information on coordinated gene regulation by sex-biasing 

factors that might be missed by the DEG-based analyses. To this end, we constructed gene 

coexpression networks for each tissue using MEGENA and identified 326 liver and 131 adipose 

coexpression modules. The first PCs of the coexpression modules were assessed for influence by 

sex chromosome, gonadal sex, and hormonal treatment factors using 3-, 2-, and 1-Was (Figure 

6.3G, 6.3H). We confirmed the large effect of hormonal treatment in regulating modules enriched 

for diverse biological pathways. In the liver, testosterone affected modules involved in metabolism 

(RNA, lipid, protein), development, protein assembly, chemical response, immune system 

(inflammation, adaptive immune response), apoptosis, and transcription/translation. In adipose 

tissue, estradiol influenced modules related to focal adhesion, development, metabolism (protein, 

lipid, oxidative phosphorylation), immune system (complement and coagulation), and translation.  

Gonadal sex also showed considerable influence on liver modules related to protein 

metabolism/assembly, development, stress/immune response, apoptosis, and 

transcription/translation regulation, whereas in adipose tissue gonadal sex mainly affected 

developmental and focal adhesion processes, and to a lesser degree, lipid metabolism, biological 

oxidation, and intracellular signaling modules (Figure 6.3G).  
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The coexpression network analysis also confirmed the limited effect of sex chromosomal 

variation on altering coexpression modules (Figure 6.3G, 6.3H). However, in adipose tissue, sex 

chromosomes showed weak effects on modules related to lipid metabolism and intracellular 

signaling when estradiol and blank groups were considered, but not when the testosterone group 

was included (Figure 6.3H). 

Overall, the gene coexpression network analysis offered clearer patterns of tissue-

specificity and functional specificity of each sex-biasing factor compared to the DEG-based 

analysis. 

 

Bulk tissue deconvolution to understand cellular composition changes through sex-biasing 

factors 

To explore whether the DEGs and pathways/modules identified in FCG can be explained 

by cellular composition changes affected by each sex biasing factor, we carried out cell 

composition deconvolution analysis on the bulk tissue transcriptome data using CIBERSORTx 

based on single cell reference datasets of the corresponding tissues (see Methods). We 

subsequently assessed the hormonal, gonadal, and sex chromosomal effects on individual cell 

types. 

In both the liver (Figure 6.9) and adipose tissue (Figure 6.10), hormones affected the 

largest number of cell types in terms of their abundance, including various immune cell 

populations such as the hepatocellular stellate cells (HSCs) and neutrophils in the liver, and 

macrophages, CD4 T-cells, dendritic cells, and antigen presenting cells in adipose tissue. 

Hormones also affected dividing cell populations and endothelial cells in both tissues. These cell 

populations affected by hormones support the DEGs and pathways involved in immune functions 
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and development that are influenced by the same sex-biasing factor. Similar to the findings based 

on DEG and pathways analysis, the gonadal effect on cell populations is also dependent on the 

tissue and other sex-biasing factors: female gonads exhibit increases in hepatocytes, endothelial, 

and HSCs in the liver on an XX background, whereas male gonads showed an increase in 

macrophage proportion in adipose tissue on an XY and testosterone background. Lastly, the sex 

chromosome effect can be noted in immune cell populations, but it is generally dependent on the 

interactions with other sex factors. Overall, the changes in cellular composition support the 

changes in the pathways highlighted through our DEGs and coexpression modules including 

immune, developmental and metabolic signals in both tissues. 

 

Effect of hormonal treatment on gene expression direction across genotypes  

 Due to the dominant effect of hormonal treatment as compared to gonadal sex or sex 

chromosome differences based on the above analyses, we further investigated the differences 

between testosterone and estradiol treatments in terms of the gene sets they target and the direction 

of gene expression change within and between tissues. 

Overlapping DEGs between testosterone and estradiol treatment 

Comparing groups of DEGs regulated by testosterone or estradiol in the 3WA (Figure 

6.11), 226 overlapped in the liver and 383 overlapped for adipose tissue. However, estradiol DEGs 

in individual genotypes had limited overlap with those caused by testosterone in 1WA (Figure 

6.12). In particular, for the XYF mouse we found no overlapping DEGs in either the liver or 

adipose DEGs between testosterone and estradiol (Figure 6.11). For other genotypes, the 

overlapping DEGs in the liver (Figure 6.12A; 6.12B; 6.12C) and adipose tissues (Figure 6.12D; 

6.12E; 6.12F) mostly had consistent directions of expression changes between hormones, except 
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that Fmo3 (Flavin containing monooxygenase 3, important for the breakdown of nitrogen-

containing compound) in XXM liver (Figure 6.12A) and all the shared DEGs in XXF liver (C1qb, 

C1qc, and Vsig4; complement pathway genes) (Figure 6.12C) were affected by testosterone 

(down) and estradiol (up) oppositely.   

 

Identification of potential regulators of sex-biasing factors  

Transcription factor (TF) network analysis  

To understand the regulatory cascades that explain the large numbers of sex-biased genes 

affected by hormone treatments (Figure 6.13), we performed TF analysis using as input DEGs 

that passed an FDR<0.05 from 1WA specific to testosterone effects in the liver and estradiol 

effects in adipose tissue (Table 6.1; Table 6.2). For the testosterone liver DEGs, we identified 67, 

66, 60 and 62 TFs for XYM, XXM, XXF and XYF respectively (Figure 6.14A-D; Supplemental 

Table S6.6). As expected, we captured gonadal hormone receptors including Androgen Receptor 

(AR) as a highly ranked TF in all genotypes and estrogen receptors (ESR1, ESR2, ESRRA) to be 

TFs with lower rank. We also found NR3C1 (Nuclear receptor subfamily 3; the glucocorticoid 

receptor important for inflammatory responses and cellular proliferation) to be among the top 5 

TFs for all four genotypes and the top-ranked TF for XXF and XYF, which is consistent with a 

female bias for this TF found in the GTEx study [290]. A number of circadian rhythm TFs were 

found throughout all genotypes in the liver including CRY1, CRY2, PER1, and PER2, which is 

consistent with sex differences in body clocks [291]. Additional consistent TFs for testosterone 

effect in liver across multiple genotypes, where sex bias has been documented previously, include 

FOXA1/2, XBP1, HNF4A, SPI1, and CTCF.  
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An analysis of TFs that may mediate estradiol effects in adipose tissue identified 64, 61, 

44 and 53 TFs for XYM, XXM, XXF and XYF respectively (Figure 6.14E-H; Supplemental 

Table S6.7). We found ESR1 and ESR2 as consistent TFs throughout the genotypes, except for 

XYF, where no classical estradiol or androgen receptor TF was captured. We also identified AR 

as a top TF in XYM and XYF. Notably, we found many TFs across our genotypes to be consistent 

with the TFs for female-biased genes in the Anderson et al. human adipose study [292]. Out of 

their top 20 ranked TFs for female-biased genes, we found 17 in our results for estradiol treatment 

in our genotypes, including ESR1, H2AZ, SUZ12, KDM2B, CEBPB and PPARG. The top TFs 

were generally consistent across genotypes, except KDM5A, POLR2B, KMT2C and CLOCK 

were particular to XXF.  

When looking into the TFs that mediate estradiol’s effects in XYM for potential male-

biased regulation in adipose tissue, we found matches with 13 of the top 20 TFs from the Anderson 

et al. human adipose study. These included AR, CTCF, SMC1A, EZH2, ESR1, RAD21 and TP63, 

and many were also consistent in additional mouse [292, 293] and human studies including the 

GTEx [290, 292]. 

Gene regulatory network analysis  

 An alternative and complementary approach to the TF analysis above is to utilize a gene 

regulatory network approach to decipher the key drivers (KDs) that may drive sex-biased gene 

alterations in each genotype based on the DEGs found in 1WA (Table 6.1; Table 6.2). We note 

that these KDs did not overlap with the TFs identified above due to the incorporation of genetic 

regulatory information in network construction. 

 In the liver (Figure 6.14I), we saw overlapping KDs for testosterone DEGs across all four 

genotypes. Cyp7b1, which is important in converting cholesterol to bile acids and metabolism of 
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steroid hormones, was among the top 5 KDs for all genotypes. Mgst3 (involved in inflammation), 

C6 and C8b (complement genes), and Ces3b (xenobiotics detoxification) were top 5 KDs for 3 of 

the 4 genotypes (Figure 6.14I). We also identified KDs specific to particular genotypes 

(Supplemental Table S6.8) such as Ces3a (xenobiotics detoxification) for female gonads, 

Slc22a27 (anion transport) for XXF, Serpina6 (inflammation) for XYF, and Hsd3b5 (steroid 

metabolism) for male gonads. Among these KDs, Slc22a27 was previously found to be expressed 

predominantly in females and Hsd3b5 and Cyp7b1 were male specific [294], thus agreeing with 

our results.  

For estradiol, 31 KDs were found for adipose tissue DEGs from the XXF, XXM and XYM 

genotypes (Figure 6.14J; Supplemental Table S6.9). The KDs included Mrc1 (response to 

infection), which is the only overlapping top KD between genotypes XXF and XXM. KDs that 

were more highly ranked for XXM but still statistically significant in XXF included genes involved 

in extracellular matrix organization (Prrx2, Mfap2, Col1a2, and Gas7), and those specific to XXF 

are relevant to lipid synthesis/metabolism (Tbxas1, Pla1a) and immune function (Adgre1 and 

Mcub). Irf7 is the only KD for XYM, which has been recently suggested to be a TF in adipocytes 

with roles in adipose tissue immunity as well as obesity [295].  

 

Disease association of the genes affected by sex-biasing factors 

Finally, to test the disease relevance of the genes affected by sex-biasing factors, we used 

a marker set enrichment analysis (MSEA; details in Methods) to detect whether the DEGs 

highlighted in the 1WA overlap with genes previously identified to have SNPs associated with 

human diseases/pathogenic traits by GWAS. In brief, we mapped each of the GWAS SNPs to 

genes using liver and adipose eQTLs to represent disease-associated genes informed by GWAS. 

The mouse orthologs of these human GWAS disease genes were then compared with sex-biased 
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DEGs from FCG to connect the genes affected by individual sex factors with human disease genes. 

Of the 73 disease/traits screened for which full GWAS summary statistics was available, we 

focused on two broad categories, “cardiometabolic” (Figure 6.15A;6.15B) and “autoimmune” 

(Figure 6.15C;6.15D), both of which are known to show sex differences. For hormone DEGs, we 

focused on those that are directly relevant to the general human population to understand how 

testosterone or estradiol can affect disease outcomes on XYM (physiological males) or XXF 

(physiological females).  

Disease association for hormone DEGs 

When cardiometabolic diseases were considered, testosterone and estradiol DEGs in the 

adipose tissue from both the XYM and XXF genotypes showed extensive disease associations 

(Figure 6.15A; Supplemental Table S6.10). In contrast, liver DEGs for both hormones showed 

limited cardiometabolic associations, with specificity of testosterone DEGs for both T2D and LDL 

but no association for estradiol DEGs (Figure 6.15B; Supplemental Table S6.11). In terms of 

autoimmune diseases, testosterone DEGs in both the adipose (Figure 6.15C; Supplemental Table 

S6.12) and liver (Figure 6.15D; Supplemental Table S6.13) from both XXF and XYM genotypes 

showed enrichment for disease associations. The estradiol DEGs in both tissues, however, had a 

genotype-dependent pattern for disease association. In particular, estradiol liver DEGs from XYM 

had no association with autoimmune diseases but DEGs in XXF were associated with all 

autoimmune diseases.  

Overall, adipose DEG sets altered by both hormones for both cardiometabolic and 

autoimmune processes. For liver DEGs, the most significant associations were with autoimmune 

diseases and subtle T2D and LDL associations were identified for liver testosterone DEGs.  

Disease association for gonadal sex DEGs 
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We also used MSEA to detect whether gonadal DEGs highlighted in 2WA (FDR<0.05) 

overlap with human disease genes informed by GWAS. For both adipose tissue (Figure 6.15E; 

Supplemental Table S6.14) and liver (Figure 6.15F; Supplemental Table S6.15), the gonadal 

DEGs on an estradiol background showed associations with cardiometabolic diseases or traits, 

whereas gonadal DEGs on a testosterone or blank background had limited or no disease 

association.  

Disease association for sex chromosome DEGs and interaction DEGs 

Due to the low number of DEGs captured for the sex chromosome effect or interactions 

among the sex-biasing factors, no enrichment results are possible through MSEA, therefore we 

queried whether these DEGs have been previously implicated in human diseases by overlapping 

the DEGs at FDR<5% with candidate genes from the GWAS catalog for 2203 traits. Both adipose 

tissue and liver DEGs demonstrating sex chromosome effects, or interactions between gonad and 

hormone, or interactions between sex chromosome and gonad, overlapped with GWAS candidates 

for numerous cardiometabolic and autoimmune diseases (Supplemental Table S6.16-18).  

 

3.3 Discussion 
 
The variation in physiology and pathophysiology between sexes is established via the modulatory 

effects of three main classes of sex-biasing agents. The manifestations of these sex-dependent 

modulators impact disease incidence and severity, including metabolism-related diseases and 

autoimmune diseases [296, 297]. In this study, we separated the effects of these sex-biasing 

components using the FCG model, thus enabling the analysis of each contributing factor as well 

as their interactions in altering gene expression in inguinal adipose and liver tissues, which are 

relevant in systems metabolism and immunity.  
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Our data revealed distinct patterns between tissues in the relative contribution of each sex-biasing 

factor to gene regulation (Table 6.1; Table 6.2). In particular, the liver transcriptome is mainly 

affected by acute effects of testosterone, followed by acute effects of estradiol, organizational 

effect of gonadal sex, and sex chromosome complement, whereas inguinal adipose gene 

expression is primarily regulated by acute effects of estradiol, followed by gonadal sex, acute 

effects of testosterone, and sex chromosome complement. The genes and pathways regulated by 

the sex-biasing factors are largely different between factors, although metabolic, developmental, 

and immune functions can be regulated by both activational effects of sex hormones and gonadal 

sex (organizational effects). Sex chromosome effects were primarily associated with genes that 

reside on X and Y Chromosomes, along with a handful of autosomal genes involved in 

inflammation and metabolic processes that are downstream of the sex-biasing effects of X and Y 

genes. Cell deconvolution analysis supports that sex-biasing factors influence the proportion of 

diverse cell populations such as immune cells, hepatocytes, and dividing cells, suggesting that 

cellular composition changes may partially explain the observed genes and pathways. Lastly, the 

liver and adipose tissue genes affected by the sex-biasing factors were found to be downstream 

targets of numerous TFs and network regulators, not just the sex hormone receptors, and show 

association with human cardiometabolic and autoimmune diseases (Figure 6.16). Previously, sex 

differences in the liver transcriptome have been largely attributed to sex differences in the circadian 

rhythm and levels of Growth Hormone, which are established because of perinatal organizational 

masculinization of hypothalamo-pituitary mechanisms controlling Growth Hormone [280-282]. 

Genes regulated in this manner would be expected to appear in the gonadal effect DEGs. Our 

results suggest, however, that the acute activational effects of gonadal hormones might be a more 

important influence, because of the larger number of testosterone or estradiol DEGs compared to 
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gonad DEGs. Our results are in line with previous evidence that removal of gonadal hormones in 

adulthood eliminates most sex differences in mouse liver gene expression [284, 298], and that 

liver-specific knockout of estrogen receptor alpha or androgen receptor altered genes that underlie 

sex differences in the liver transcriptome [283]. It is possible that the effects of gonadal steroids 

during adulthood are required for some of the organizational effects of testosterone mediated via 

Growth Hormone action. In contrast to liver, gonadectomy does not eliminate sex differences in 

the adipose transcriptome [298], which agrees with our finding that the organizational effects of 

gonads play a strong role, in addition to estradiol, in adipose gene regulation. The striking tissue-

specificity for each of the sex-biasing factors observed here highlights that individual tissues have 

unique sex-biased regulatory mechanisms.  

We found that the gonadal sex factor primarily affects developmental pathways, cell 

adhesion, and metabolic pathways in adipose (Table 6.2; Figure 6.3H), which corroborates past 

evidence indicating that early gonadal sex status and associated hormonal release play critical roles 

in the development of sex differences and disease outcomes [299-301].  

Compared to the organizational gonadal sex effects and activational hormone effects, the 

sex chromosome effects were minimal, and no coherent pathways were found for the sex 

chromosome-driving DEGs (Table 6.1; Table 6.2) or co-expression modules (Figure 6.3G-H). 

The DEGs include those known to escape X inactivation (Kdm6a, Eif2s3x, Ddx3x) [278, 287] and 

their Y paralogues (Eif2s3y, Ddx3y). The X escapees are expressed higher in XX than XY cells, 

causing sex differences in several mouse models of metabolic, immune, and neurological diseases 

[277, 288, 302, 303].  

As our comparative analysis of the three classes of sex-biasing factors clearly determined 

that the activational effects of gonadal hormones are the dominant factors, we further investigated 
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potential upstream regulatory factors that may control the sex-biased genes, using a gene 

regulatory network analysis and a TF analysis, revealing both expected and novel findings. In 

concordance with the importance of hormonal effects and consistent with recent human studies 

including GTEx searching for tissue-specific sex bias [290, 292], TFs for hormone receptors (AR 

and ESR1/2) were captured in the majority of genotypes (Figure 6.14A-H). Beyond the major 

hormonal receptors, within the liver numerous circadian related TFs were captured (PER1, PER2, 

CRY1 and CRY2). Although it is known that males and females have differing biological clocks 

[291], the contribution of hormones particularly in this rhythm is far from fully elucidated and our 

findings support that hormones need to be taken into account in liver circadian rhythm studies. In 

adipose tissue for estradiol treatment, however, we found that the XXF genotype has no significant 

signal for ERs, which may imply that estradiol’s major contribution in adipose gene regulation is 

more importantly through TFs such as H2AZ, which have been shown to be essential for estrogen 

signaling and downstream gene expression [304]. In addition to TFs, we utilized a GRN analysis, 

revealing non-TF regulators. For the liver GRN (Figure 6.14I), key driver genes for testosterone 

DEGs are involved in immune processes (Mgst3, C6, C8b), steroid metabolism (Cyp7b1 and 

Hsd3b5), and xenobiotic detoxification (Ces3b and Ces3a). In adipose tissue (Figure 6.14J), there 

were far fewer shared key drivers for estradiol DEGs across genotypes relative to the results in the 

liver with testosterone treatment, indicating that estradiol has more finely tuned interactions with 

the gonadal sex and sex chromosome genotypes than the broad effect of testosterone.  

  Lastly, to provide context to the health relevance of the liver and adipose sex-biasing DEG 

sets, we looked for GWAS association of these genes with human diseases/traits. We found that 

hormone-affected genes in adipose tissue were enriched for genetic variants associated with 

numerous cardiometabolic diseases/traits, but the enrichment was weaker for the liver DEGs 
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(Figure 6.15A; 6.15B). Another important area of sex difference is found within autoimmunity, 

which occurs more in females [305]. While both adipose and liver DEGs from multiple hormone-

genotype combinations were enriched for autoimmune diseases, the liver DEGs, particularly those 

from the XXF genotype, had more prominent autoimmune association. Beyond the hormonal DEG 

enrichment in human disease/trait, we also found that DEGs caused by gonad type from both 

adipose and liver are involved in cardiometabolic disease (Figure 6.15E; 6.15F). Finally, despite 

minimal DEGs captured for the sex chromosome effect as well as the interactions between each 

sex biasing factors, we found overlap of these DEGs with various disease traits. The DEGs 

underlying disease associations may explain the differential susceptibility of males and females to 

these major diseases, and warrant further investigation to distinguish risk versus protection through 

the genes identified in this study. 

The analyses presented in this study show an extensive dissection of the relative 

contribution of three classes of sex biasing factors on liver and adipose gene expression, their 

associated biological processes and regulators, and their potential contribution to disease. 

Importantly, many of the genes identified in our study were replicated in independent human 

studies such as GTEx, and our mouse study offers unique insights into the particular sex-biasing 

factors (hormones, sex chromosomes, or gonads) that likely contribute to the sex-biased gene 

expression in humans. Despite retrieving numerous new insights, we acknowledge the following 

limitations. First, gonadectomy and subsequent treatment of hormones may have caused 

activational effects that do not match the effects of endogenous physiological changes in the same 

hormones, leading to more predominant activational effects being observed. Second, the relative 

effects of testosterone and estradiol are affected by the doses of each hormone used. Testing 

additional doses is required for detailed comparison of effects of the two hormones. Third, we used 
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DEG counts as a measure of overall effect size to compare the various sex-biasing factors, which 

may be influenced by sample size and statistical power. Therefore, caution is needed when 

interpreting the results. However, we note that the sample sizes are comparable across sex-biasing 

factors and are adequate for mouse transcriptome studies with sufficient statistical power [306, 

307]. Fourth, the comparison of mice with testes vs. ovaries does not map perfectly onto mice that 

had organizational effects of testicular vs. ovarian secretions because of the potential effects of the 

Sry transgene, which was present in tissues only of mice with testes. Lastly, only liver and inguinal 

adipose tissues were investigated, and other tissues warrant examination in future studies.  

Overall, our data revealed tissue-specific differential gene expression resulting from the 

three sex-biasing factors, thereby distinguishing their relative contributions to the differential 

expression of key genes in a variety of clinically significant pathways including metabolism, 

immune activity, and development. Importantly, in addition to establishing the critical influence 

of hormones and their effect on the transcriptome in a tissue specific manner, we also uncovered 

and highlighted the underappreciated role of the sex chromosomal effect and organizational 

gonadal effect as well as interactions among sex-biasing factors in global gene regulation. Our 

findings offer a comprehensive understanding of the origins of sex differences, and each of their 

potential associations with health and disease. 

 
3.4 Methods 
 
Animals 

Mouse studies were performed under approval of the UCLA Institutional Animal Care and Use 

Committee. We used FCG mice on a C57BL/6J B6 background (B6.Cg-TgSry2Ei 

Srydl1Rlb/ArnoJ, Jackson Laboratories stock 10905; backcross generation greater than 20), bred 
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at UCLA [285, 286]. Gonadal females and males were housed in separate cages and maintained at 

23°C with a 12:12 light: dark cycle.  

A total of 60 FCG mice, representing 4 genotypes (XXM, XXF, XYM, XYF), were 

gonadectomized (GDX) at 75 days of age and implanted immediately with medical grade Silastic 

capsules containing Silastic adhesive only (blank control, (B) or testosterone (T) or estradiol (E). 

Mice were euthanized 3 weeks later; liver and inguinal adipose tissues were dissected, snap frozen 

in liquid nitrogen and stored at -80°C for RNA extraction and Illumina microarray analysis. 

RNA isolation, microarray hybridization, and quality control 

RNA from liver and inguinal adipose tissue was isolated using TRIzol (Invitrogen, Carlsbad, CA). 

Individual samples were hybridized to Illumina MouseRef-8 Expression BeadChips (Illumina, San 

Diego, CA) by Southern California Genotyping Consortium (SCGC) at UCLA. Two adipose 

samples were removed from the total of 60 after RNA quality test (degradation detected). Principal 

Component Analysis (PCA) was used to identify three outliers among the adipose sample, which 

were removed from subsequent analyses. PCA was conducted using the prcomp R package [308] 

with the correlation matrix.  

Identification of differentially expressed genes (DEGs) affected by individual sex-biasing 

factors 

To identify DEGs, we conducted 3-way ANOVA (3WA), 2-way ANOVA (2WA), and 1-way 

ANOVA (1WA) using the aov R function. The 3WA tested the general effects of 3 factors of sex 

chromosomes, gonad, and hormonal treatments, as well as their interactions. The 2WA tested the 

effects of sex chromosomes and gonads as well as their interactions within each hormonal 

treatment group (T, E, or B) separately. For 1WA, we tested the effects of T (comparing T vs. B) 

and E (comparing E vs. B) within each genotype. Multiple testing was corrected using the 
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Benjamini-Hochberg (BH) method, and significance level was set to FDR <0.05 to define 

significant DEGs. 

Co-expression network construction and identification of co-expression modules affected by 

individual sex-biasing factors 

We used the Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) [309], a 

method similar to WGCNA [310], to recognize modules of co-expressed genes affected by the 

three different sex-biasing factors. The influence of each sex-biasing factor on the resulting 

modules was assessed using the first principal component of each module to represent the 

expression of that module, followed by 3WA, 2WA, 1WA tests and FDR calculation as described 

under the DEG analysis section to identify differential modules (DMs) at FDR <0.05 that are 

influenced by each sex-biasing factor. 

Annotation of the pathways over-represented in the DEGs and DMs 

For each of the DEG sets and DMs that were significantly affected by any of the sex-biasing 

factors, we conducted pathway enrichment analysis against Gene Ontology (GO) Biological 

Processes and KEGG pathways derived from MSigDB using Fisher’s exact test, followed by BH 

FDR estimation.  

Gene regulatory network analysis  

To predict potential regulators of the sex-biased DEGs, we used the Key Driver Analysis (KDA) 

function of the Mergeomics pipeline [45] and liver and adipose Bayesian networks. In brief, the 

Bayesian networks were built from multiple large human and mouse transcriptome and genome 

datasets [187, 311-314]. To identify the key driver (KD) genes within these networks, the KDA 

uses a Chi-square like statistic to identify genes that are connected to a significantly larger number 
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of DEGs than what would be expected by random chance. KDs were considered significant at 

FDR<0.05 and top KD subnetworks were visualized using Cytoscape [315]. 

Transcription factor (TF) analysis 

To predict TFs that may regulate the sex-biased DEGs sets, we used the Binding Analysis for 

Regulation of Transcription (BART) computational method [316]. We followed the tool’s 

recommendation of a minimum of 100 DEGs as input and an Irwin-Hall p-value cut off (p < 0.01) 

for identify TFs. 

Marker Set Enrichment Analysis (MSEA) to connect sex biasing DEGs with human diseases or 

traits To assess the potential role of the DEGs affected by each of the sex-biasing factors in human 

diseases, we collected the summary statistics of human GWAS for 73 diseases or traits that are 

publicly available via GWAS catalog [317]. SNPs that have linkage disequilibrium of r2>0.5 were 

filtered to remove redundancies. To map GWAS SNPs to genes, we used GTEx Version 7 eQTL 

data for liver and adipose tissues [318] to derive tissue-specific genes potentially regulated by the 

SNPs. We then used the MSEA function embedded in Mergeomics [45] to compare the disease 

association p-values of the SNPs representing the DEGs with those of the SNPs mapped to random 

genes to assess whether the DEGs contain SNPs that show stronger disease associations than 

random genes using a Chi-square like statistic.  

Deconvolution of bulk liver and inguinal adipose tissue 

We downloaded single cell RNA-seq data for mouse liver from GEO (GSE166178) and mouse 

inguinal adipose from GEO (GSE133486) as our reference datasets, and utilized the deconvolution 

tool CIBERSORTx [253] to impute cell fractions in each sample. Cell proportion estimates were 

compared across groups to identify cell types influenced by sex hormones using 1WA with posthoc 

analysis and by gonads or sex chromosomes using t-test. 
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3.5 Tables 
 
Table 6.1 Liver DEGs affected by sex-biasing factors and the associated GO/KEGG pathways.  

Analysis Treatment/
Genotype 

group 

Sex 
Factor 

DEGs 
at 

FDR 
< 0.05 

Top DEGs 
Based on FDR 

Top DEGs  
Based on LogFC 

Top GO/KEGG Pathways FDR<0.05 

 
 
 
 
 

 
3-way 

ANOVA 

 
 
 

T + B  

 
Horm 

 
1378 

Trim80, Cux2, Elovl3, 
Cyp3a41a, Sult3a1  

Up: Elovl3, Serpina4-ps1, Cyp4a12a, Cyp2u1, 
Slco1a1 
Down: Cyp2b13, Fmo3, Cux2, Trim80, Eci3 

Lipid metabolic process 
Organic acid and metabolic process  
Cellular lipid metabolic process 
Primary bile acid biosynthesis 

 
Gonad 

 
93 

Cyp3a41a, Sult3a1, Cxcl9, 
St3gal6, Ly6a 

Up: Nat8, Cyp4a12a, Asns, Obp2a, Cpne8 
Down: Gbp2b, Themis2, Spic, Sult3a1, Cyp3a41a 

Defense response 
Immune system process 
Response to stress 

 
Chr 

 
8 

Ddx3y, Eif2s3y, Xist, Kdm6a, 
Tmsb4x 

Up: Eif2s3y, Ddx3y, Tmsb4x 
Down: Xist, Ntrk2, Kdm6a, Eif2s3x, Wfdc2 

Rig I like receptor signalling pathway 
Transmembrane receptor protein tyrosine 
kinase signalling pathway 
MAPK signaling pathway 

 
 
 

E + B 

 
Horm 

 
333 

Cyp17a1, Slc11a1, Trp53inp2, 
C1qb, Clmn 

Up: Prtn3, Obp2a, Isyna1, Ear4, Acot11 
Down: Adam11, Gsta1, Cfap126, Pde6c, Tppp 

Carboxylic acid metabolic process 
Organic acid metabolic process 
Monocarboxylic acid metabolic process 
Complement and coagulation cascades 

 
Gonad 

 
209 

Cxcl9, Cyp3a41a, Cd74, 
Slc11a1, Ccr5 

Up: Nat8, Cyp4a12a, Tiam2, Susd4, Agpat6 
Down: Cyp3a41a, Thy1, Themis2, Tbc1d10c, 
Cyp4f18 

Defense response 
Lipid metabolic process 
Immune response (SLE) 

 
Chr 

 
8 

Eif2s3y, Xist, Ddx3y, Kdm6a, 
Eif2s3x 

Up: Eif2s3y, Hccs, Ddx3y, Tmsb4x, Mgrn1 
Down: Xist, Kdm6a, Eif2s3x 

Electron transport  
Ubiquitin mediated proteolysis  
Organ morphogenesis  

 
 
 
 
 

 
2-way 

ANOVA 

 
 

T 

 
Gonad 

 
9 

Obp2a, Nat8, St3gal6, Cd74, 
Cxcl9 

Up: Asns, Obp2a, Nat8, Cyp4a12a, Gm4956 
Down: Li, Cxcl9, St3gal6, Qpct 

Cellular response to stress/nutrient 
levels/extracellular stimulus 
Amino Acid Synthesis  

 
Chr 

 
6 

Ddx3y, Eif2s3y, Xist, Kdm6a, 
Tlr7 

Up: Eif2s3y, Tlr7, Ddx3y, Tmsb4x 
Down: Kdm6a, Xist 

Traf6 mediated irf7 activation in Tlr7 
signaling 
Interleukin 8 biosynthetic process 

 
 

E 

 
 

Gonad 

 
 

53 

 
H2-Ab1, H2-Eb1, H2-DMb1, 
Cd44, Cd74 

Up: Cyp7b1, Plekhb1, Actr1b, Sh3glb2 
Down: Thy1, Tbc1d10c, Cd79b, AI467606, S100a8 

Asthma 
Leishmania Infection 
Allograft rejection 
Systemic Lupus Erythematosus 

 
Chr 

 
6 

Eif2s3y, Xist, Ddx3y, Als2cl, 
Kdm6a 

Up: Eif2s3y, Als2cl, Ddx3y 
Down: H2-DMb1, Kdm6a, Xist 

Asthma 
Allograft rejection 

 
 

B 

 
Gonad 

 
115 

Cyp3a41a, Sult3a1, Slc11a1, 
Susd4, Nox4 

Up: Nat8, Cyp4a12a, Cyp2d9, Igfbp2, Susd4 
Down: Sult3a1, Cyp3a41a, A1bg, Themis2, Spic 

Systemic Lupus Erythematosus 
Functionalization of Compounds 
CYP450 arranged by substrate type 
Biological oxidations 

 
Chr 

 
5 

Eif2s3y, Xist, Ddx3y, Kdm6a, 
Ntrk2 

Up: Eif2s3f, Ddx3y 
Down: Xist, Ntrk2, Kdm6a 
 

Rig I like receptor signaling pathway 
Aging, Circadian Rhythm 
Fatty Acid Metabolism 

 
 
 
 
 
 
 
 
1-way 
ANOVA 
Post-hoc 

 
XXF 

 
T  

 
139 

Aqp4, A1bg, Gas6, Parp1 Up: Cyp4a12b, Serpina4-ps1, Elovl3, Cyp2u1, 
Aqp4  
Down: A1bg, Cyp2b13, Fmo3, Slc22a26, Cux2 

Biological Oxidations 
Metabolism (xenobiotic/drug/glutathione) 
Immune (complement/interferon) 

 
XYF 

 
T  

 
123 

Heg1, Aqp4, Cyp2u1, II1a, 
Fam111a 

Up: Cyp4a12a, Elovl3, Gm4956, Cyp2u1, Fst 
Down: Cyp2b13, Fmo3, A1bg, Cux2, Eci3 

Biological Oxidations 
Complement cascade 
Bile acid metabolism 
Metabolism (steroid/drug) 

 
XXM 

 
T  

 
124 

Spry4, Cux2, Sybu, Akr1d1, 
Slco1a1 

Up: Serpina4-ps1, Elovl3, Obp2a, Slco1a1, 
Cyp4a12a 
Down: Cux2, Eci3, Trim80, Irx3, Akr1d1 

Biological Oxidations 
Immune system (complement/SLE) 
Cell development/Wnt signaling 
Drug/Protein/Bile acid/salt metabolism 

 
XYM 

 
T  

 
44 

Atp2a3, Unc79, Trim80, 
Slco1a1, Obp2a 

Up: Serpina4-ps1, Elovl3, Slco1a1, Obp2a, 
Gadd45g 
Down: Fmo3, Cux2, Slc22a26, Trim80, Unc79 

Cell development / Localization  
Metabolism (Drug/Riboflavin) 
Immune (Complement/Innate) 

 
XXF 

 
E 

 
20 

Zfp367, Lamb2, Ahcyl2, 
Prtn3, Pdlim4 

Up: Prtn3, C1qb, Li, C1qc, Vsig4 
Down: Ahcyl2, Lamb2, Zfp367 
 

Signal transduction  
Metabolic Pathways 
Complement Pathways 
Class B2 Secretin Family Receptors 

XYF E 2 Klk1b27, Reck Down Only: Klk1b27, Reck Developmental Processes 
 

XXM 
 

E 
 

29 
Slco1a, Tasor2, Ywhae, 
Sult3a1, Obp2a 

Up: Sult3a1, Obp2a, Slco1a1, Slc11a1, Serpina1e 
Down: Ywhae, Tasor2, Ankrd12, Spc24, Serpina6 

Nitrogen/Vitamin/ Steroid Hormones 
Metabolism  
Complement/Inflammatory Pathways 
Signal Transduction/Transcription 

 
XYM 

 
E 

 
8 

Adam11, Sult3a1, Spc24, Ifit2, 
Gsta4 

Up Only: Ifit2, Sult3a1, Cyp17a1, Gsta4, Serpina6 Immune response (interferon signaling) 
Protein complex assembly 
Biological Oxidations 
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Table 6.2: Inguinal adipose DEGs affected by sex-biasing factors and the associated GO/KEGG 
pathways.  

 

Analysis Treatment/
Genotype 

Group 

Sex 
Factor 

DEGs at 
FDR < 0.05 

Top DEGs Based on FDR Top DEGs Based on LogFC GO/KEGG Pathways at 
FDR<0.05 

 
 
 
 
 
 
 

3-way 
ANOVA 

 
 

T + B  

Horm 275 Pals1, Hp, Lrg1, Serpina3n, 
Prtn3  

Up: Serpina3m, Mt2, Agt, Odf3l2, Krt36  
Down: Fabp5, Crtac1, Clca5, Rad54b, P2rx5 

Cell Cell Adhesion 
Protein Signaling Pathway 

 
Gonad 

268 

Pals1, Dnai1, Aida, Cited1, 
Slc12a2 

Up: Rab9b, Sntg2, Dusp15, Pinx1, Wfdc21 
Down: Dnai1, Aida, Nrxn3, Rab25, Upk2 

Multicellular Organismal 
Development 
Cell Cell Adhesion 
Anatomical Structure 
Development 
Pathways in Cancer 

Chr 15 Pals1, Xist, Ddx3y, Eif2s3y, 
Hccs 

Up: Eif2s3y, Kdm5d, Ddx3y, Pals1, Tlr7 
Down: Xist, Aatk, Kdm6a, Eif2s3x, Il11ra1 

Interleukin 8 biosynthetic process 
  

 
E + B 

 
Horm 

2029 
Dnai1, Gas6, Greb1, Fbxw17, 
Lrg1 

Up: Adamts19, Hpca, Rpp25, Greb1, Thbs1 
Down: F2rl3, Fabp5, Clca5, Crtac1, Ucp1 

Protein Metabolic Process  
Respiratory Electron Transport 
Focal Adhesion 

 
Gonad 

449 

Dnai1, Prlr, Prr15l, Sptbn2, 
Ercc2 

Up: Dusp15, Mtap7d3, Rab9b, Gm525, Kcnh2 
Down: Prr15l, Ercc2, Cldn3, Prom2, Rab25 

Anatomical Structure 
Development 
Nitrogen Compound Metabolic 
Process 
Aldosterone Sodium Reabsorption 

Chr 10 

Xist, Dnai1, Ddx3y, Eif2s3y, 
Eif2s3x, Hcc 

Up: Eif2s3y, Ddx3y, Tlr7, Hccs, Gprasp1 
Down: Xist, Gm525 

Rig I like receptor signaling 
pathway  
Generation of precursor 
metabolites and energy 

 
 
 
 
 
 
 

2-way 
ANOVA 

 
 

T 

 
Gonad 

161 

Esrp1, Sephs1, Fermt1, 
Wnt7b, Lrrc26 

Up: Rab9b, Mlec, Por, Cdsn, Rprml 
Down: Rab31, Wnt7b, AI646023, Esrp1, Fermt1 

Epithelial Cell Differentiation 
Excretion 
Cell Cell Communication 
Cell Carcinoma/ Junction 
Organization 

 
Chr 

11 
Eif2s3y, Rbm35a, Sephs1, 
Fermt1, Ddx3y 

Up: Eif2s3y, Ddx3y, Wnt7b, Fermt1, Lrrc26 
Down: Xist, Kdm6a 

Seleno amino acid metabolism 
Electron transport  
Basal Cell Carcinoma 

 
 

E 

 
Gonad 

400 

Mtap7d3, Elf3, Ercc2, Pkp1, 
Slc5a7 

Up: Kcne11, Dusp15, Kcnh2, Mtap7d3, Gm525 
Down: Pkp1, Fermt1, Atad4, Elf5, Mfsd2a 

Arginine & Proline Metabolism 
Cell Junction Organization 
Cell Cell Communication 
Epidermis Development 

 
Chr 

 
22 

Mtap7d3, Xist, Eif2s3y, 
Ddx3y, Elf3 

Up: Eif2s3y, Ddx3y, Tlr7, Hccs, Mxra7 
Down: Xist, Mtap7d3, Kdm6a, Fermt1, Eif2s3x 

Neurotransmitter release 
Cell Differentiation 

 
 

B 

 
Gonad 

70 

Rnf208, Cited1, Dnai1, 
Prr15l, Pals1 

Up: Cd300ld3, Pals1, Bik, Adck5, Capn5 
Down: Prr15l, Dnai1, Cited1, Rnf208, Tcfap2b 

Cell Cell Communication 
YAP1 and WWTR1 TAZ 
stimulated gene expression 
Epidermis Development 

Chr 10 
Xist, Pals1, Rnf208, Cited1, 
Dnai1 

Up:  Pals1, Ddx3y, Rnf208, Prr15l, Cited1 
Down: Xist, Eif2sx, Kdm6a 

Tight Junction interactions 
Electron Transport 
Rig I like receptor signaling 

 
 
 
 
 
 
 
 

1-way 
ANOVA 
post-hoc 

 
XXF 

 
T 

 
26 

Rad9b, Rfwd3, BC049762, 
Dusp15, Crtac1 

Up: Slc47a1, Pitpnc1, Pals1, scl0003251.1_21, 
Rfwd3 
Down: H2-Q10, Crtac1, Slc4a1, Dusp15, Rad9b 

Cell Carcinoma 
Cell 
Development/Differentiation/Wnt 
Signaling 
Immune (Antigen Presentation) 

XYF T 1 Fabp5 Down Only: Fabp5 Development Processes 

 
XXM 

 
T 

 
13 

P2rx5, Krt36, Grik5, F2rl3, 
AA792892 

Up: Mt2, Krt36, Hp, Serpina3n, Lrg1 
Down: Aspg, Clca5, F2rl3, Grik5, AA792892 

Organ Development/Cell 
Division/cycle 
Immune (haemostasis, antigen 
presentation) 

 
XYM 

 
T 

 
13 

Sephs1, Col4a5, Abp1, Tnnt1 Up: Mt2, Apom, Tnnt1, Fam25c, Col4a5 
Down: Cxcl15, Aoc1, Sephs1, Rnf144a 

Cell proliferation/Migration 

 
XXF 

 
 

E 

 
 

395 

Echdc1, Ptpn6, II10, Rad9b, 
S100a14 

Up: Ppp1r27, Adamts19, Saa3, Thbs1, Krt15 
Down:  Dnai1, Cited1, Aida, Lratd1, Clca2 

Immune System (Interferon, 
Antigen presentation)/ ERK 
pathways 
Metabolism (Porphyrins, 
tryptophan) 
Cancer/Protein Stabilization 
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6.6 Figures 
 

Figure 6.1. Overall Study Design. A. Transfer of the Sry gene to Chromosome 3. Sry which is 
usually located on the Y Chromosome was deleted (a spontaneous deletion) and inserted as a 
transgene onto Chromosome 3, making Sry independent of the Y Chromosome. B.  The production 
of a gonadal male XY- Chr3

Sry+, which has the ability to produce 4 types of gametes resulting in the 
four core genotypes (FCG). C. The generation of the FCG mice. Mating of XY- Chr3

Sry+ male and 
XX female produces four types of mouse offspring (two gonadal males and two gonadal females): 
XY-

Chr3
Sry+ (XYM), XX Chr3

Sry+ (XXM), XX (XXF), XY- (XYF). D. Modulation of sex hormones 
in mouse offspring of each genotype after gonadectomy (GDX). Each of the four core genotypes 
underwent GDX at day 75 and was implanted with a capsule that contained either estradiol, 
testosterone or blank (n = 5/genotype/treatment). E. Dissection of the liver and inguinal adipose 
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tissue for RNA isolation. F. Gene expression profiling and quality control. Using an Illumina 
microarray, we measured the transcriptome and then carried out a principal component analysis 
(PCA) to identify outliers and global patterns. G. Bioinformatics analyses. Differentially expressed 
genes (DEGs) influenced by individual sex-biasing factors were identified using 3-way ANOVA 
(chromosomal, gonadal and hormonal effects), 2-way ANOVA (gonadal and chromosomal effects 
under each hormone condition), and a 1-way ANOVA (estradiol and testosterone treatment effects 
in individual genotypes). Gene coexpression networks were constructed using MEGENA and 
differential coexpression modules (DMs) affected by individual sex-basing factors were identified 
using 3-way, 2-way, and 1-way ANOVAs. DEGs and DMs were analyzed for enrichment of 
functional categories or biological pathways. The relevance of the DEGs to human disease was 
assessed via integration with human genome-wide association studies (GWAS) for >70 diseases 
using the Marker Set Enrichment Analysis (MSEA). Transcription factor analysis and gene 
regulatory network analysis were additionally conducted on the DEGs derived from the one-way 
ANOVA. 
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Figure 6.2. PCA plots of inguinal adipose and liver samples colored by different factors A. 
Inguinal adipose tissue PCA plot, with samples labelled by hormone types - blank (red), estradiol 
(green), and testosterone (blue). B. Inguinal adipose tissue PCA plot, with samples were labelled 
by sex chromosome categories - XX (red) and XY (blue). C. Inguinal adipose tissue PCA plot, 
with samples labelled by gonadal sex categories - ovaries (red) and testes (blue). D. Liver tissue 
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PCA plot, with samples were labelled by hormone types - blank (red), estradiol (green), and 
testosterone (blue). E. Liver tissue PCA plot, with samples labelled by sex chromosome categories 
- XX (red) and XY (blue). F. Liver tissue PCA plot, with samples labelled by gonadal sex 
categories - ovaries (red) and testes (blue). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Figure 6.3. Bar graphs (A-F) and heatmaps (G-H) representing the number of DEGs for each sex-biasing factor and differential co-
expression modules from a 3-way, 2-way, and 1-way ANOVA, respectively. Each bar graph represents the number of DEGs based on 
each specific statistical analysis at FDR<0.05. A, D represent results from 3-way ANOVAs run separately in testosterone vs. blank 



 

groups, and estradiol vs. blank groups to examine hormone, gonad, and sex chromosome effects as well as the interaction terms. B and 
E represent results from 2-way ANOVAs with factors of gonadal sex and sex chromosomes as well as the interaction term, run separately 
on data from testosterone (T), estradiol (E), and blank (B) treatment groups. C and F represent results from 1-way ANOVAs testing 
effects of hormonal treatments (vs. Blank) in each of the four genotypes for liver and inguinal adipose tissue. In A and D, pink bars 
indicates estradiol vs. blank; blue bars indicates testosterone vs. blank. In panels B and E, colors represent the hormonal treatment 
condition (testosterone groups blue, estradiol groups pink, and blank groups white). In panels C and F, colors show effects of testosterone 
vs blank (blue) or estradiol vs blank (pink) in each of the four genotypes. Horm = Hormone, Chr = Sex Chromosome, M = Testes/Sry 
present, F = Ovaries present, no Sry. G represents the heatmap for liver. H represents the heatmap for adipose tissue. Each heatmap 
shows results from 1-way, 2-way, and 3-way ANOVAs for hormone (H), chromosome (C), and gonad (G) when treated with testosterone 
(T), estradiol (E) and blank (B). Interaction terms among H, C, and G were also tested. For instance, C:G:H indicates the interaction 
term among the 3 factors in 3-way ANOVA. The influence of each sex-biasing factor on the coexpression modules was assessed using 
the first principal component of each module to represent the expression of that module, followed by 3-way, 2-way, 1-way ANOVAs to 
identify differential modules (DMs) at FDR <0.05 that are influenced by the various sex-biasing factors. Each module was annotated 
with canonical pathways from GO and KEGG. Modules without pathway annotations did not show significant enrichment for genes in 
any pathways tested. Colors correspond to the statistical significance of the effects of sex factors on modules in the form of -log10(FDR). 
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Figure 6.4. Bar graphs representing the 3-way ANOVA DEG numbers across various statistical 
cutoffs. Across the cutoffs there is a consistent trend of which sex biasing factor produces greater 
influence on DEG numbers: hormones (testosterone T or estradiol E) > gonad > sex chromosome. 
(A) Liver 3WA DEG counts when Testosterone (T) and blank groups are considered. (B). Liver 
3WA DEG counts when Estradiol (E) and blank groups are considered. (C) Adipose 3WA DEG 
counts when Testosterone (T) and blank groups are considered. (D) Adipose 3WA DEG counts 
when Estradiol (E) and blank groups are considered. 
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Figure 6.5. Bar Plots highlighting genes that showcase significant interactions between estradiol 
and gonad type in adipose tissue. T-test was used to calculate within genotype statistical 
significance. FDR<0.0001****, FDR<0.001***, FDR<0.01**, FDR<0.05* 
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Figure 6.6. Bar Plots highlighting genes that showcase significant interactions between 
testosterone and genotypes in liver. T-test was used to calculate within genotype statistical 
significance. FDR<0.0001****, FDR<0.001***, FDR<0.01**, FDR<0.05* 
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Figure 6.7. Bar Plots highlighting genes that showcase sex bias in the human GTEx study (Oliva 
et al. 2020) which also show a matched sex bias through one of the sex biasing factors in adipose 
tissue. We highlight in the heading of each panel the statistical test conducted and their associated 
FDR value. 
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Figure 6.8. Bar Plots highlighting genes that showcase sex bias in the human GTEx study (Oliva 
et al. 2020) which also show a matched sex bias through one of the sex biasing factors in liver 
tissue. We highlight in the heading of each panel the statistical test conducted and their associated 
FDR value. 
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Figure 6.9. Deconvolution results for the liver, highlighting cell types that showed a statistical 
difference in cell type proportion between hormone treatments (A-E), gonads (F-I), and sex 
chromosome (J-L). * FDR<0.05, ** FDR <0.01, ns. not significant. For hormonal comparison we 
used the 1 Way ANOVA followed by post hoc analysis and for gonad and chromosome we used 
a T-test to calculate statistics. 
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Figure 6.10. Deconvolution results for the adipose tissue, highlighting cell types that showed a 
statistical difference in cell type proportion between hormone treatments (A-J), gonads (K), and 
sex chromosome (L-O). * FDR<0.05, ** FDR <0.01, ns. not significant. 1 Way ANOVA followed 
by post hoc analysis to calculate statistics for those with three groups and T-test was used for those 
with two groups. 
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Figure 6.11: Venn diagrams representing 3-way ANOVA DEG comparison between testosterone 
(T)- and estradiol (E)-treated group in liver and inguinal adipose tissue.  
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Figure 6.12. Venn Diagrams of DEG comparisons and Bar Graphs of overlapping DEGs between 
estradiol (E vs blank, abbreviated as E) and testosterone (T vs blank, abbreviated as T) treatment 
for each genotype in liver and adipose. A. Liver XXM. B. Liver XYM. C. Liver XXF. D. Adipose 
XXM. E. Adipose XYM. F. Adipose XXF. The bar graphs focused on the DEGs that passed an 
FDR < 0.05 and were overlapping between testosterone and estradiol treatment for each genotype 
and tissue. To understand the effects of each hormone, we plotted the log2 fold change (log2FC) 
of the hormonal effects. The Venn diagrams showcase comparison of DEGs of T effect vs E effect, 
as well as the top 5 up and down regulated genes for T or E in liver or adipose tissue for each 
genotype. There was no statistically significant overlap between any comparisons in the Venn 
diagrams. *represents genes that are not expressed in one of the comparison groups and thus have 
infinite log2FC values. 
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Figure 6.13. Venn diagrams representing 1-way ANOVA DEG comparison between testosterone 
(T)- and estradiol (E)-treated group across all genotypes in liver and inguinal adipose tissue. 
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Figure 6.14. Transcription factor analysis (A-H) and key driver analysis (I-J) of DEGs informed 
by estradiol and testosterone treatment in liver and adipose. A-D represents TF analysis for liver. 
E-H represents TF analysis for adipose. For the TF network we utilized DEGs (FDR <0.05) from 
our 1WA for testosterone and estradiol treatment analysis using the BART tool, where a TF was 
considered significant by an Irwin-Hall p<0.01 analogous to -log10(p-value) = 2. Red color 
signifies the TF is present in at least one other genotype and the blue color signifies if the TF is 
only present in the given genotype. Turquoise color and red font denote a hormonal receptor 
relevant to testosterone and estradiol. Labelled TFs showcase the Top 5 by rank and additional 
hormonal receptors. I. Liver gene regulatory network (GRN). J. Adipose GRN. For GRN 
construction we overlaid DEGs (FDR <0.05) from our post hoc 1WA for testosterone and estradiol 
treatment onto our previously built adipose and liver Bayesian networks utilizing a KDA analysis 
from the Mergeomics package. We visualized the top 5 KDs for the testosterone or estradiol DEGs 
from each genotype group. KDs are labeled as larger nodes and DEGs as smaller nodes. Direction 
of DEGs is annotated with red or green borders for upregulation or downregulation, respectively. 
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Figure 6.15. Bar graphs showing enrichment of the hormone DEGs (A-D) and gonadal DEGs (E-
F) for known cardiometabolic and autoimmune diseases based on MSEA analysis. The 
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cardiometabolic category included Coronary Artery Disease (CAD), Type 2 Diabetes (T2D), 
fasting glucose level, BMI in women, BMI during childhood, BMI, total cholesterol (TC), 
triglyceride (TG), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) 
cholesterol (Figure 3.15A-B). The autoimmune category included Irritable Bowel Disease (IBD), 
Ulcerative Colitis (UC), Crohn's Disease (CD), and Type 1 Diabetes (T1D) (Figure 3.15C; 
3.15D).  A. Association of adipose testosterone (T) and estradiol (E) DEGs with cardiometabolic 
diseases/traits. B. Association of liver T and E DEGs with cardiometabolic diseases/traits. C. 
Association of adipose T and E DEGs with autoimmune diseases. D. Association of liver T and E 
DEGs with autoimmune diseases. E. Association of adipose gonadal DEGs with cardiometabolic 
diseases/traits. F. Association of liver gonadal DEGs for cardiometabolic diseases/traits. A-D. 
Hormone DEGs at an FDR <0.05 derived from the posthoc one-way ANOVA were tested against 
genetic association signals with cardiometabolic and autoimmune diseases and traits. E and F 
Gonadal DEGs at an FDR < 0.05 from two-way ANOVA were tested against genetic association 
signals with cardiometabolic diseases. Dotted line signifies FDR <0.05 and *denotes enrichment 
minimally below the FDR< 0.05 cutoff. 
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Figure 6.16. Study Summary. Utilizing the FCG model, we separated the effects of three major 
classes of sex-biasing agents and uncovered their relative contribution to transcriptional alterations 
in the liver and adipose tissue, the resulting biological processes enriched and finally the diseases 
associated. 
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Chapter 7. Conclusion and Future Directions 
 
This dissertation work, had three major aims, which included the development of a user-friendly 

bioinformatic tool (Aim 1), an investigation into the role of sex factors in gene regulation in tissues 

important in MetDs (Aim 2), and examining the gene networks underlying MetDs and drug 

candidates for treatment (Aim 3). These aims fully exploit the power of systems biology through 

computational and experimental approaches to achieve a better understanding of complex MetDs 

and the role of sex factors. 

 As can be seen from this body of work, MetDs are highly complex and have a tremendous 

number of contributing factors, which include different omics layers interacting with one another, 

multiple tissues that cross talk to contribute to disease outcome, sex differences through the three 

sex biasing factors, as well as comorbidities, which can play off one another to exacerbate each 

metabolic outcome. As has been highlighted in our work, we believe this complexity should not 

be considered through one unique layer at a time e.g. genomics alone, but where possible to 

integrate multiple data types (omics, tissues, sex information) to create a complete picture, which 

is more likely to help explain a multifaceted complex disease. 

We have tried to achieve this through a multi-tissue multi-omics systems biology approach, 

which takes into consideration multiple omics types and tissue contributions. With the belief that 

this approach will unravel some of the complexities behind diseases such as MetDs, we developed 

a far more accessible web server Mergeomics 2.0 to allow the wider scientific community access 

to this approach with their own datasets or even sample datasets to highlight the biology that can 

be uncovered as well as pinpoint molecular targets, which may have been previously untapped for 

a role in disease or a given trait. In this dissertation, we highlighted just as previous studies have 

before that our approach is robust in pinpointing novel genes with validation of coagulation factor 
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II (F2) for a role in lipid transport and metabolism in adipose tissue. We have additionally, 

highlighted numerous targets in liver fibrosis, CAD, T2D and T1D, which in the near future will 

be tested through in vivo experiments for their potential to mitigate disease. Another area, which 

we have been exploring is using our newly built drug repositioning tool PharmOmics to target 

disease network genes with matching drug target genes. Through this process we have been trying 

to prioritize drugs that are already FDA approved for another indication to repurpose them for our 

given trait or disease of interest. We are now working with electronic health records from the UK 

Biobank, and UCLA hospital, as a form of in silico validation to see if any of the candidate drugs 

have evidence for improving our phenotype of interest prior to experimental validation.  

Another layer, which is important in disease and treatment is sex differences. In terms of 

understanding where sex differences arise from in health, disease or treatment is a major challenge. 

It is particularly challenging given that there are three major sex biasing factors: sex hormones, 

gonads and sex chromosomes. In human populations it is not possible to tease apart their individual 

contributions and specific interactions, therefore using a unique mouse model the FCG with GDX 

and subsequent hormone replacement, becomes critical to uncover their relative role in gene 

regulation and disease associations. Thus, the analysis we conducted in Chapter 3 now provides a 

rich resource to complement any study of disease, where sex differences are known to play a role. 

For example, as highlighted in the previous Chapter 5 there are known sex differences in disease 

progression and outcome in NASH. We were able to use the FCG data, to help show where the 

sex differences in disease development may be attributed through in terms of hormones, gonads 

or chromosomes. In the future, it will be important to conduct a similar sex difference analysis 

across a broader range of tissues to get a better idea of the effects across the whole system and 

even more importantly to do this at a higher resolution i.e. at the single cell level to understand the 
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interactions that are occurring within a given tissue, which will help us to be more pinpointed with 

future therapies. 

The idea of being more granular is not just limited to the studies of sex differences as 

mentioned above but also to move in general away from bulk tissue data, where signals typically 

are dominated by the most abundant cell type. We are now moving closer to having access to a 

broad array of single cell eQTL datasets, which will help us be more specific when linking causal 

inference from GWAS datasets through Mergeomics, which we aim to visualize in single cell gene 

regulatory networks for hub gene prioritization. In addition, it has been generally challenging to 

incorporate the full array of omics datasets for integration for a given phenotype due to data 

inaccessibility or imperfect population/phenotype matching. In the near future, with more omics 

datasets being collected, I would aim to integrate more layers and explore how to best utilize 

datasets such as microbiome and spatial transcriptomics as options which currently are not 

including in our integrative pipelines. 

Overall, the dissertation work highlights the extreme complexity in MetDs as well as the 

importance of a holistic approach to unravel mechanistic insight and gene targets for therapy. As 

more omics resources become available our ability to integrate through novel approaches in a 

higher resolution manner becomes crucial and will eventually open the door to more precise 

targeting for disease treatment. 
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