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Abstract: Growing evidence supports the concept that bidirectional brain–gut microbiome interac-
tions play an important mechanistic role in aging, as well as in various neuropsychiatric conditions
including depression. Gray matter volume (GMV) deficits in limbic regions are widely observed
in geriatric depression (GD). We therefore aimed to explore correlations between gut microbial
measures and GMV within these regions in GD. Sixteen older adults (>60 years) with GD (37.5%
female; mean age, 70.6 (SD = 5.7) years) were included in the study and underwent high-resolution
T1-weighted structural MRI scanning and stool sample collection. GMV was extracted from bilat-
eral regions of interest (ROI: hippocampus, amygdala, nucleus accumbens) and a control region
(pericalcarine). Fecal microbiota composition and diversity were assessed by 16S ribosomal RNA
gene sequencing. There were significant positive associations between alpha diversity measures and
GMV in both hippocampus and nucleus accumbens. Additionally, significant positive associations
were present between hippocampal GMV and the abundance of genera Family_XIII_AD3011_group,
unclassified Ruminococcaceae, and Oscillibacter, as well as between amygdala GMV and the genera
Lachnospiraceae_NK4A136_group and Oscillibacter. Gut microbiome may reflect brain health in
geriatric depression. Future studies with larger samples and the experimental manipulation of gut
microbiome may clarify the relationship between microbiome measures and neuroplasticity.

Keywords: gray matter volume (GMV); gut–brain axis; geriatric depression (GD)

1. Introduction

Major depression affects over 265 million people worldwide [1]. Major depressive
disorder (MDD) is a disabling mental illness characterized by consistent mood changes
accompanied by a variety of symptoms such as sadness, sleep disturbances, anhedonia,
disturbances in appetite and sexual functioning, and suicidal ideation [2]. Geriatric de-
pression (GD) is a serious public health issue associated with high morbidity, mortality
and suicide [3,4]. Compared to depression in younger adults, geriatric depression has
worse outcomes marked by a lower treatment response and remission rates, and significant
cognitive and physical comorbidities [5,6]. More accurate multi-modal biomarker models
to further our understanding of the interaction of different biological systems relating to
GD are urgently needed for the development of novel treatment approaches.
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There is a known relationship between depression, brain aging and neurodegenerative
disorders. GD is a known risk factor for developing Alzheimer’s disease, a devastating neu-
rodegenerative disease associated with the hippocampal atrophy and cognitive decline [7,8].
While limbic regions regulating emotions, which include the hippocampus and the amyg-
dala, demonstrate volume reduction in depression across all ages, posterior cortical regions
(e.g., the occipital cortex) appear to be spared [9]. Lower GMV in fronto-limbic regions,
including the medial frontal gyri, prefrontal cortices, hippocampus, and amygdala have
been found in both younger and older adults with depression compared to healthy con-
trols [10–15]. Age-related brain atrophy with a reduction in GMV has also been indicated in
older adults with cognitive impairment [16–20]. Positive responses to antidepressant treat-
ment in depression have led to increases in GMV along with improvements in depression
severity [21–23]. Furthermore, orbitofrontal volume can distinguish non-remitted from
remitted patients with depression, suggesting a neurobiological prediction model of GMV
for GD [24]. Additionally, genetic risk alleles such as APOE-4 are associated with GMV in
geriatric depression, including cerebrovascular and neurodegenerative changes [25,26].

In addition to the existing neuroimaging data, an emerging and promising area of
biological GD mechanisms is that of gut microbiota [27]. The gut microbiota, as the largest
reservoir of microbes in the human body, have an essential role in the central nervous
system (CNS) functioning through the bidirectional gut–brain axis [28–30]. In particular,
gut dysbiosis has been linked to several mental health disorders including depression,
anxiety, schizophrenia, and insomnia, as well as neurodegenerative disorders such as
Parkinson’s disease and Alzheimer’s disease [31–41]. The literature on gut dysbiosis
associated with GD compared to age-matched healthy controls is limited, but the meta-
analysis of several case-control studies of younger adults with MDD shows a decreased
abundance of genera Faecalibacterium, Dialister, Bifidobacterium, Escherichia/Shigella
and Ruminococcus [42–45]. Interestingly, in a cross-sectional study of a large population
cohort, Faecalibacterium was associated with higher quality of life indicators [46]. Several
different mechanisms of how microbiota modulates the gut–brain axis have been described.
This includes the regulation of the hypothalamus–pituitary–adrenal (HPA) axis, signaling
through the vagal nerve, as well as producing molecular candidates such as neuropeptides,
endocrine hormones, neurotransmitters and immunomodulators [28,47].

Gut microbiota composition and diversity change across the lifespan and are likely
responsible for higher susceptibility to immune weaknesses and diseases at older ages [48].
We previously demonstrated that antidepressant treatment response in GD was predicted
by an enrichment in Faecalibacterium, Agathobacter, and Roseburia: individual taxa
which significantly distinguished remitters from non-remitters [27]. In addition, we previ-
ously found treatment-related changes in differential abundance in remitters. Specifically,
Flavonifractor was significantly increased, while Roseburia was significantly decreased af-
ter successful antidepressant treatment. On the contrary, there were no significant changes
in the non-remitter group. These results suggest a role for gut microbiota in predicting and
modulating an antidepressant treatment response which seems to parallel the known corre-
lation between GMV and depression, though the relationship between the gut microbiota
and GMV has not been directly investigated in GD. In this exploratory cross-sectional study,
we investigated correlations between GMV in subcortical limbic regions of interest that are
widely implicated in depression pathophysiology with the abundance and diversity of the
gut microbiota in elderly subjects with major depression.

2. Materials and Methods
2.1. Participants

Participants were recruited from geriatric ambulatory care settings (UCLA Geriatric
Medicine-Psychiatry clinics) and from local advertisements to participate in the parent
clinical trial of levomilnacipran for geriatric depression (NCT 02466958) that was previously
reported elsewhere [27,49]. Of 29 randomized patients, 16 older adults (37.5% female; mean
age, 70.6 (SD = 5.7) years; Table 1) completed both MRI and stool sample collection and
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were included in this report. Inclusion criteria included age of 60 years or older with a
diagnosis of MDD and a Mini-Mental State Examination (MMSE) score of >24 (absence of
mild cognitive impairment or dementia). MDD criteria were assessed via the Structured
Clinical Interview DSM-5 (SCID-5) [50]. Depressive symptom severity was assessed using
the Hamilton Depression Rating Scale (HAMD-24) [51,52] and the Montgomery–Åsberg
Depression Rating Scale (MADRS) [53]. Exclusion criteria and recruitment have previously
been described in more detail [49]. This study was approved by the UCLA Institutional
Review Board. All participants signed an informed consent form prior to the initiation
of assessments.

Table 1. Demographic and clinical characteristics of the participants with GD.

Variables 1 Cohort (N = 16)

Age (years), mean +/− SD 70.6 +/− 5.7
Female, n (%) 6 (37.5)

Education (years), mean +/− SD 16.0 +/− 1.5
Age of onset (years), mean +/− SD 47.2 +/− 25.0

BMI (kg/m2), mean +/− SD 26.6 +/− 3.6
MMSE, mean +/− SD 28.9 +/− 3.6

MADRS, mean +/− SD 14.6 +/− 3.6
HAMD, mean +/− SD 18.6 +/− 2.4

1 BMI = Body mass index; MMSE = Mini-Mental State Examination; MADRS = Montgomery-Åsberg Depression
Rating Scale; HAMD = Hamilton Depression Rating Scale (24 item).

2.2. MRI

At the Ahmanson-Lovelace Brain Mapping Center at UCLA, T1-weighted images
(3D multi-echo magnetization prepared rapid gradient-echo sequences, MEMPRAGE)
were acquired using a Siemens 3T Prisma system (Siemens, Erlangen, Germany) and a 32-
channel head coil. The acquisition parameters were as follows: echo times = 1.74, 3.6, 5.46,
and 7.32 ms; repetition time = 2530 ms; inversion time = 1260 ms; flip angle = 7 degrees;
voxel size = 1 mm3; double GRAPPA and matrix size = 256 × 192; total acquisition
time = 5:18 min. We used Freesurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/ accessed on
6 January 2022) for cortical surface reconstruction. Preprocessing included the correction
of magnetic field inhomogeneities, removal of nonbrain tissues from the images, cortical
parcellation, and segmentation of subcortical gray matter. Cortical parcellation was based
on the Desikan–Killiany atlas [54] and GMV was extracted from the following regions
of interest: bilateral amygdala, hippocampus, nucleus accumbens, and the pericalcarine
cortex, which served as a control region. Bilateral subcortical volumes were generated by
the sums of left and right regional subcortical volumes.

2.3. Microbial Analysis
2.3.1. Intestinal Microbial Composition: Stool Collection, Processing, and Analysis of 16S
rRNA Gene Sequencing Data

Stool specimens were collected at home, stored in a home freezer, and returned to
UCLA on cold packs for storage in an RNA stabilizing reagent (RNALater) at −80 ◦C.
Genomic DNA was extracted from fecal samples using the Powersoil kit and bead beating
as per the manufacturer’s instructions (QIAGEN, Germantown, MD, USA) [55]. 16S ribo-
somal RNA (rRNA) gene sequence libraries were generated with the fecal genomic DNA
as a template for polymerase chain reaction (PCR) amplification of the V4 hypervariable
region with barcoded primers (F515/R806) [56]. The Illumina MiSeq sequencing platform
(San Diego, CA, USA) was used to perform paired-end sequencing (2 × 250 bp). DADA2
algorithm was used to perform quality filtering, merge paired-end reads, remove chimeras,
and cluster sequences into exact amplicon sequence variants (ASVs) [57]. Taxonomic assign-
ments were performed using the Silva database version 132 as a reference [58]. Sequence
depth ranged from 36,341 to 113,025 sequences per sample with a total of 2245 assigned
ASVs. Output sequences were classified at the domain, phylum, family, genus, and species
levels where possible, depending on the depth of reliable classifier assignments [41].

http://surfer.nmr.mgh.harvard.edu/
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2.3.2. Within-Sample Diversity Analysis

Alpha-diversity metrics (i.e., bacterial diversity within a sample) were assessed in
QIIME using Faith’s phylogenetic diversity (fraction of a phylogenetic tree represented
in each sample), Chao1 (species richness), and the Shannon index (species evenness and
richness) with the data were rarefied to 36,341 sequences. Associations between alpha-
diversity metrics and regional GMV were tested using multivariable linear regression
models with standardized regression coefficients (β), which facilitated comparison across
models. The selection of covariates for the regression analyses relied on the univariate
testing of demographic and clinical variables in association with regional GMV (Table S1)
and alpha diversity metrics (Table S2). Pearson’s correlations or t-tests were used and
significance was determined at an alpha level of 5% (p < 0.05). Due to the small sample size,
Cohen’s d was utilized as an additional covariate selection criterion for binary variables
(e.g., sex) (|d| > 0.8).

2.3.3. Between-Sample Diversity Analysis

β-diversity assessment was performed by compositional distance metric based on
robust Aitchison distances implemented with the DEICODE plugin in QIIME2 and visu-
alized with principal coordinates analysis [59]. ASV count data were filtered to remove
ASVs present in less than 12.5% of the samples. The statistical significance of differences
in β-diversity in association with regional GMV was assessed using Adonis, a permuta-
tional multivariate analysis of variance using distance matrices, implemented in the Vegan
package in R [60].

2.3.4. Differential Taxonomic Abundance Analysis

Differential abundance of microbial genera in association with regional GMV was
determined using multivariate negative binomial mixed models using DESeq2 in R [61].
The unrarefied genus counts were normalized by the size factor (median value of all ratios
for a given sample). After filtering genera present in less than fifty percent of the sample
size, a total of 81 genera were tested. The Benjamini–Hochberg false discovery rate (FDR)
correction was used to adjust for multiple hypothesis testing and a significant association
was defined at the FDR q-value < 0.05 [62]. Each individual genus identified from the
DESeq2 analysis (q < 0.05) was then tested for associations with regional GMV using linear
regression analyses and adjusted for age and sex (p < 0.05). The unrarefied genus counts
were regularized log transformed (rlog), which normalizes the count with respect to the
library size and minimizes differences between samples with low counts of the taxon.

3. Results
3.1. Participant Characteristics

A total of 41 older adults with GD were recruited, and sixteen (37.5% women, mean
age = 70.6 years, SD = 5.7) completed both brain imaging and stool sample collection for
microbiota analysis (Table 1). All but one participant was Caucasian (data not shown). The
mean HAMD score was 18.6 (SD = 2.4) and the mean MADRS score was 14.6 (SD = 3.6).

3.2. Gut Microbiota Diversity Association with GMV

Univariate testing revealed significant negative correlations between age and hip-
pocampal (R = −0.57, p = 0.02), amygdala (R = −0.69, p = 0.003) and nucleus accumbens
volumes (R = −0.66, p = 0.006; Table S1). Age correlated negatively with alpha diversity
measures, Chao1 (R = −0.54, p = 0.03) and Faith’s PD (R = −0.5, p = 0.05; Table S2). Addi-
tionally and as expected, there were large, albeit non-significant, differences between men
and women in amygdala (D = 0.92, p = 0.09) and nucleus accumbens volumes (D = 0.97,
p = 0.08) (Table S1). Consequently, we selected age and sex as covariates in the subsequent
analyses of associations between microbiota composition and GMV.

After controlling for age and sex, we found significant positive associations between
hippocampus volume and alpha diversity (community diversity within subjects) including
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Chao1 index (β = 0.571, p = 0.032) and Faith’s PD (β = 0.617, p = 0.028). We also found
significant positive associations between nucleus accumbens volume and all three mea-
sures of alpha diversity, including Chao1 index (β = 0.791, p = 0.006), Faith’s PD (β = 0.752,
p = 0.018) and Shannon index (β = 0.809, p = 0.020). However, what appeared as a positive
association between amygdala volume and alpha diversity measures upon visual inspec-
tion, was not statistically significant after correcting for age and sex (Table 2 and Figure S1).
There was no association between alpha diversity and GMV in the control region (Table 2
and Figure S1).

Table 2. Fecal microbial alpha diversity association with regional GMV by multivariable linear
regression with age and sex as covariates. Alpha diversity measures included Chao1, Faith’s PD,
and Shannon index. GMV regions included hippocampus, amygdala, nucleus accumbens and
pericalcarine. β = standardized regression coefficient. p-value less than 0.05 are bolded. * p < 0.05.
** p < 0.01.

GMV Region Chao1 Faith’s PD Shannon
β p β p β p

Hippocampus 0.571 0.032 * 0.617 0.028 * 0.528 0.097
Amygdala 0.516 0.116 0.495 0.159 0.401 0.303

Nucleus accumbens 0.791 0.006 ** 0.752 0.018 * 0.809 0.020 *
Pericalcarine (control) −0.148 0.554 −0.256 0.328 0.173 0.549

Beta diversity (community diversity between subjects) testing by robust Aitchison
PCA revealed a graphical change in the association with amygdala volume, but did not
reach statistical significance after adjusting for age and sex (Adonis p = 0.093; Figure 1).
GMV in the hippocampus, nucleus accumbens and pericalcarine cortex (control) did not
demonstrate associations with the microbiota beta diversity.

Figure 1. Gray matter volume (GMV) association with fecal microbial β-diversity. GMV regions
include hippocampus, amygdala, nucleus accumbens and pericalcarine (control). Microbial β-
diversity measured by robust Aitchison distance is visualized by principal coordinates analysis
(PCoA) plots. Each symbol represents a sample with voxel-based GMV represented by the color
gradient. p-values for microbial β-diversity association with GMV are calculated by Adonis adjusting
for age and sex.
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3.3. Individual Taxa Association with Gray Matter Volumes

We performed differential abundance testing to identify the specific genera of gut
microbiota that were associated with regional GMV in GD. After generating genus-level tax-
onomic summaries in QIIME, we conducted a multivariate DESeq2 analysis and controlled
for age and sex. This revealed that seven individual genera were positively associated with
hippocampal GMV, two with amygdala volume and two with nucleus accumbens volume at
a false discovery rate of q < 0.05 (Figure 2A). Subsequently, we tested these genera individu-
ally with the corresponding regional GMV using a linear regression model with age and sex
as covariates (Table S3). Out of the seven genera tested, genus Family_XIII_AD3011_group
(β = 0.7, p = 0.024), an unclassified Ruminococcaceae (β = 0.856, p = 0.002), and genus Oscil-
libacter (β = 0.805, p = 0.001) demonstrated significant positive associations with hippocam-
pal volume (Figure 2B–D). Genera Lachnospiraceae_NK4A136_group (β = 0.897, p = 0.017)
and Oscillibacter (β = 1.055, p = 0.00008) were positively associated with amygdala volume
(Figure 2E,F). However, the two genera initially identified by DESeq2 to be associated with
nucleus accumbens volume did not show significant associations when tested individually.

Figure 2. Specific microbial genera associated with GMV regions. GMV regions tested include
hippocampus, amygdala, nucleus accumbens and pericalcarine (control). (A) DESeq2 was used to
identify microbial genera associated with GMV with false discovery rate of q < 0.05 after adjusting
for age and sex. Log2 fold change represents effect size and direction of these associations. Dot size is
proportional to the relative abundance of the genus and color corresponds to the specific brain region.
Bolded y-axis text: genera that were confirmed by individual testing of the taxon to be significantly
associated with a specific GMV. (B–F) Scatter plots displaying GMV of a specific brain region and
regularized log transformed (rlog) normalized count of individual genus with significant associations
after adjusting for age and sex (p < 0.05). Regression lines are drawn without controlling for age and
sex. * p < 0.05. ** p < 0.01. *** p < 0.001.

4. Discussion
4.1. Gut Microbiome Diversity and Brain Structures

We report significant positive associations between gut microbiome alpha diversity
and hippocampal and nucleus accumbens volumes after controlling for age and sex. As
for the specific alpha diversity measures, hippocampal volume associated significantly
with Chao1 index (species richness) and Faith’s PD (phylogenetic diversity), while nucleus
accumbens volume associated positively with Chao1 index, Faith’s PD and Shannon index
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(species evenness and richness). Amygdala volume and the pericalcarine region showed
no associations with the alpha diversity metrics. Moreover, no significant relationship was
found between beta diversity and any of the selected ROIs.

Age and sex are important variables in brain volumetric and gut microbiome re-
search [63–65]. As previously reported [9,66], older age was associated with greater decline
in the hippocampus, amygdala, and the nucleus accumbens (Table S1). We additionally
found a significant negative correlation between age and Chao1 index, further suggesting
that age is a confounding factor that needs to be adjusted for in examining the relationship
between GMV and gut microbial diversity (Table S2). Although not statistically signif-
icant, we found smaller volumes of amygdala and nucleus accumbens brain regions in
females (Table S1). We did not find significant relationships between clinical variables and
GMV in our selected ROIs, noting our sample size might have precluded the detection of
smaller effects.

In this pilot study, we focused on hippocampus, amygdala and nucleus accumbens as
subcortical brain regions of interest, as they have been previously implicated in aging and
depression. Healthy aging involves cortical thinning across the brain, with relative sparing
of the lateral temporal cortex and the entorhinal cortex, while the hippocampus declines at
increasingly higher rates with aging [66,67]. There appears to be a complex relationship
between memory and hippocampal volume that is age- and test- dependent [68]. In
depressed samples, hippocampus is consistently found to be reduced compared to non-
depressed controls [69]. Moreover, such hippocampal decline can be detected even in
first-episode depressed patients, including children as early as pre-school age [9,70], and
linked to stress factors [71]. The amygdala and nucleus accumbens are additional limbic
structures with a prominent role in depression [9]. Based on rodent research, it has been
suggested that the nucleus accumbens, as a dopaminergic recipient within the mesolimbic
loop, has a prominent role in depression and potentially its etiology [72].

Despite the paucity of literature on brain–gut communication in human neuropsy-
chiatric disorders, there is one case-control study of 38 schizophrenia patients, directly
investigating the association between gut microbial diveresity and GMV which found
positive correlations between gut microbial alpha diversity and GMV of bilateral insula,
right postcentral gyrus and left inferior operculum frontal cortex [73]. Of note, all pa-
tients showed decreased volumes in all regions compared to the controls. Our exploratory
findings add to the increasing body of evidence demonstrating associations between gut mi-
crobiome and brain structure in neuropsychiatric disorders, wherein greater brain volumes
and increased gut diversity measures appear to correlate with health. The positive associa-
tion between the brain volumes of interest and gut microbial diversity is not only exciting
from a mechanistic perspective in further elucidating the complex brain–gut–microbiota
crosstalk, but it has a practical interventional implication, as it is possible to manipulate the
gut microbiome through diet and probiotic supplementation as a conduit to influence the
brain structure and function.

4.2. Microbial Taxa and Brain Structures

All of the reported positive associations between several individual taxa and hip-
pocampal and amygdala volume in this study were members of Clostridiales at the order
level, Clostridia at the class level, and Firmicutes at the phylum level. Of these, relative
abundance of the genus Oscillibacter demonstrated highly significant and strongly pos-
itive associations with both hippocampal and amygdala volumes. At least two studies
have shown significantly enriched Oscillibacter in MDD patients compared to healthy
controls [43,74]. As cross-sectional studies are unable to establish causal links between
individual taxa and the disorder under investigation, it is unclear whether increased Oscil-
libacter contributed to causing depression, or whether depression of the host brought on
the ‘blooming’ of Oscillibacter in the gut. Although we can only postulate, it is possible
that an increased abundance of Oscillibacter may have conferred protective modulatory
function to the brain that resulted in increased amygdala and hippocampal volumes in our
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cohort of GD patients. For example, the main metabolic end product of Oscillibacter is
n-Valeric acid [75], which has a similar chemical structure to the neurotransmitter GABA.
This is a possible pathway by which Oscillibacter can mediate beneficial effects on the brain
as a psychobiotic agent. However, this idea remains to be investigated through mechanistic
studies wherein manipulation of the gut microbiome can be causally linked to clinical as
well as brain volumetric outcomes.

4.3. Limitations

There are several limitations to our pilot study, with the primary one being the small
sample size. This was due to the fact that many older adults were ineligible for MRI
scanning based on implants that were either unsafe to scan (e.g., pacemakers, hip or
knee replacements), or where exact implant documentation was missing. Due to the
small sample size, we were limited in the number of brain regions investigated given the
risk of multiple testing and false positive results. We were also unable to ascertain any
relationship between gut microbial measures and clinical variables such as depression
severity, cognitive function, ethnicity, and life styles due to the small and homogenious
study sample. Therefore, a larger sample size will be needed to overcome some of these
limitations and also be able to test other potential brain regions of interest that are likely
implicated in GD. Additionally, a longitudinal study will allow for an investigation of the
gut–brain axis in terms of the relationship with depression risk, disease progression, and
prognosis. However, our findings provide promising preliminary data demonstrating a
potential relationship between the gut microbiota, at the community as well as individual
taxonomic levels, and the volumetric brain correlates within the important regions of
interest for GD, opening new avenues for future investigation into brain aging, gut health,
and neural mechanisms of GD. This avenue may support the discovery of new targets
for microbiome-focused interventions for the treatment and prevention of depression and
cognitive decline in older adults.

5. Conclusions

This pilot study explored the associations between the volumetric measures of the
gray matter volume in the limbic subcortical brain regions and fecal microbial diversity
and composition in older adults with depression. We found significant positive associa-
tions between several alpha diversity measures and GMVs of hippocampus and nucleus
accumbens. At the individual taxa level, we identified four genera belonging to the order
Clostridiales that were significantly positively associated with the GMV of either hippocam-
pus or amygdala. Of these, genus Oscillibacter demonstrated highly significant and strongly
positive associations with both hippocampal and amygdala volumes, suggesting a poten-
tially beneficial or protective role of Oscillibacter in GD. This study adds to the growing
literature highlighting the bidirectional communication along the gut microbiome–brain
axis. To our knowledge, this is the first study directly investigating and providing a proof of
concept for the relationship between the brain structural measures and the gut microbiota
composition in otherwise healthy older adults with depression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19042405/s1. Figure S1: Scatter plots of GMV association
with fecal microbial alpha diversity as measured by Chao1, Faith’s PD, and Shannon index. GMV
regions include hippocampus, amygdala, nucleus accumbens and pericalcarine (control). Table S1:
Univariable testing of individual variable association with regional GMV. Table S2: Univariable
testing of individual variable association with alpha diversity measures. Table S3: Individual
microbial genera association with regional GMV by multivariable linear regression with age and sex
as covariates.
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