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Abstract

Over recent years, our understanding of the tricarboxylic acid cycle (TCAC) in living organisms 

has expanded beyond its canonical role in cellular energy production. In plants, TCAC metabolites 

and related enzymes have important roles in physiology, including vacuolar function, chelation 

of metals and nutrients, photorespiration, and redox regulation. Research in other organisms, 

including animals, has demonstrated unexpected functions of the TCAC metabolites in a number 

of biological processes, including signaling, epigenetic regulation, and cell differentiation. Here, 

we review the recent progress in discovery of non-canonical roles of the TCAC. We then discuss 

research on these metabolites in the context of plant development, with a focus on research 

related to tissue-specific functions of the TCAC. Additionally, we review research describing 

connections between TCAC metabolites and phytohormone signaling pathways. Overall, we 

discuss the opportunities and challenges in discovering new functions of TCAC metabolites in 

plants.
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Introduction

The tricarboxylic acid cycle (TCAC) metabolites have long been recognized as vital 

biomolecules needed to produce cellular energy and synthesize macromolecules such as 

proteins, lipids, and nucleotides. The TCAC constantly oxidizes carbon to form NADH and 

FADH2, connecting glycolysis to the electron transport chain and cellular respiration. The 

TCAC is the central metabolic hub, with many anabolic and catabolic pathways stemming 

from individual metabolites. In response to cellular demands, TCAC metabolites can be 
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exported and imported by specific transporters and compartmentalized in organelles instead 

of being constrained to the mitochondria. The flux through the TCAC pathway is also 

flexible and is capable of undergoing noncyclic flow [1]. TCAC intermediates can undergo 

cataplerotic reactions, in which they are consumed for the biosynthesis of macromolecules. 

The conversion of citric acid to fatty acids is a classic example of cataplerosis. In contrast, 

anaplerotic reactions replenish the consumed metabolites by converting various precursors, 

such as pyruvate and amino acids, into TCAC metabolites. Phosphoenolpyruvate (PEP) 

carboxylase (PEPC) catalyzes the β-carboxylation of PEP to form oxaloacetate [2–5]. In 

higher plants, PEPC plays a crucial anaplerotic role in replenishing oxaloacetate and malate, 

which are consumed for nitrogen assimilation and amino acid biosynthesis. The combination 

of anaplerosis and cataplerosis are important for regulating TCAC intermediate levels. 

Interestingly, anaplerotic and cataplerotic fluxes vary between different developmental 

stages of leaves, reflecting differential needs for energy and protein synthesis [6]. By 

modulating TCAC intermediates, these processes can play an important role in cellular 

redox state and signaling, as well as aiding recycling pathways and nitrogen trafficking 

during catabolism [7].

There are a number of excellent reviews that describe the extensive work that has gone 

into characterizing the regulation and functions of the TCAC in plants [8,9]. Here, we 

review functions of the TCAC beyond the typically discussed topics of energy production 

and biosynthesis in non-photosynthetic organisms. First, we summarize research that has 

elucidated non-canonical roles for the TCAC in plant and animal systems. We then review 

examples of important functions for the TCAC in plant development, focusing on instances 

where TCAC metabolites and related genes have been shown to contribute to tissue-specific 

regulatory processes. Finally, we discuss the intersection of the TCAC with phytohormone 

signaling pathways, which are critical for development.

Evidence for non-canonical roles of the TCAC in diverse organisms

Emerging work reveals that TCAC metabolites can function as regulatory molecules in 

diverse biological processes. In mammals, individual TCAC metabolites have been linked 

to inflammation, tumorigenesis, and development [10–12]. In a critical paper for elucidating 

novel functions of TCAC metabolites, it was discovered that succinate and AKG are ligands 

for G-protein coupled receptors, which led to characterization of their roles in cellular 

signaling [13]. Succinate has also been shown to stabilize Hypoxia Inducible Factor 1 alpha 

(HIF-a), a DNA-binding complex that is a master regulator of hypoxia [14]. Additionally, 

changes in TCAC flux have been shown to impact cellular behavior and lead to disease 

states in animals [15]. In mammalian cancer cell lines, a non-canonical TCAC that relies on 

using cytosolic enzymes was identified. This rewiring of the TCAC was also found to be 

required for stem cell differentiation [12]. In addition, alternative forms of the TCAC are 

generated during different stages of the cell cycle in mammalian cells, resulting in effects on 

cell proliferation [16].

In plants, TCAC metabolites also have diverse physiological functions. TCAC metabolites 

and related proteins have been reported to be involved in vacuole physiology [17–19], 

plastid function [20,21], stomatal behavior [22–25], metal chelation [26–30], nutrient 
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uptake [31], allosteric effects [32–34], and stress response [35–39]. Citrate and malate 

are particularly important for vacuolar physiology, their vacuolar levels are regulated by 

the dicarboxylate transporter, tDT, in Arabidopsis leaves [19]. It was discovered that the 

affinity of tDT for malate and citrate is dependent on external pH. Malate is critical for 

regulating stomatal aperture through the vacuolar chloride channel AtALMT9, which is 

required for normal stomatal opening [40]. Furthermore, starch degradation in guard cells 

has been shown to serve as a critical malate precursor for modulating stomatal opening 

[41]. Malate and citrate can also act as metal chelators in the presence of aluminum and 

hard dissolved inorganic phosphate [26,31]. Moreover, the malate and citrate valves are 

essential for maintaining the redox equilibrium in cells, which regulate the activity of the 

TCAC enzymes [42]. TCAC metabolites are also allosteric regulators of proteins, in both 

plants and animals. For example, the plant NAD-dependent malic enzyme has an allosteric 

site that can bind either fumarate or malate. The activity of this enzyme is inhibited by 

malate but promoted by fumarate, which have contrasting effects on its substrate affinity 

[33]. The TCAC metabolites also contribute to balancing reactive oxygen species (ROS) 

in subcellular compartments, generating ion gradients, and regulating extracellular pH [42]. 

Malate, citrate, and oxalate, in particular, are found to be involved in numerous processes 

in the rhizosphere, such as nutrient acquisition, metal detoxification, alleviation of anaerobic 

stress in roots, mineral weathering, and pathogen attraction [31]. In addition, genes that 

modulate biosynthesis and transport of TCAC enzymes are regulated by transcription factors 

[43], metabolons [44], calcium [45], thioredoxins (TRX) [46], and extra-pathway protein 

interactions [47] in response to developmental and environmental cues, indicating a wealth 

of connections between the TCAC and signaling pathways. Researchers have also taken 

inspiration from animal research to reveal non-canonical roles for the TCAC in plants. 

For instance, Chen et al. followed up on research in yeast that demonstrated that cleavage 

of citrate to acetyl-CoA affects histone acetylation in multiple residues of H3 and H4. 

The authors found that cytosolic acetyl-CoA production also induces histone acetylation 

in Arabidopsis, primarily at lysine 27 of H3 [48]. In the future, it will be interesting to 

investigate whether more non-canonical mechanisms of TCAC metabolites are conserved 

across kingdoms of life.

TCAC metabolites can have specific effects in plant development

The TCAC is an essential process for all eukaryotic cells and the complete knockdown of 

any of the biosynthetic steps in the cycle is often lethal, as the TCAC connects glycolysis 

to cellular respiration (Figure 1). Therefore, assessing the more subtle functions of any 

individual TCAC metabolite is a major challenge. For example, mitochondrial pyruvate 

dehydrogenase (PDH) plays a key role in linking glycolysis to the production of citrate 

and acetyl-CoA. Mutants in mitochondrial PDH complex subunits have a number of severe 

defects, including aberrant development of embryos, pollen, cotyledons, and roots [49–51]. 

While it would be reasonable to ascribe these deleterious phenotypes solely to reduced 

ATP production, it was found that pyruvate acts as a substrate for Trp aminotransferases 

during a key step in the synthesis of the major form of auxin, indole-3-acetic acid (IAA) 

[52]. The link between TCAC metabolites and phytohormones will be discussed in more 

detail in subsequent sections, but pyruvate’s role in auxin biosynthesis highlights both the 
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complications and the potential for understanding the multifaceted developmental effects of 

primary metabolites.

Each step of the TCAC has been linked to defects in development, beginning with the 

catalytic formation of citrate from acetyl-CoA and oxaloacetate by citrate synthase (CS). 

Double mutants for peroxisomal citrate synthase (CS), csy2csy3, fail to perform fatty acid 

respiration, leading to stalled germination [53]. Single mutants were much more robust and 

were only phenotypically distinguishable by their reduced growth in sucrose-free media 

[53]. In another study, inhibition of mitochondrial citrate synthase (CS) in potatoes was 

found to decrease citrate synthase activity and reduce flower formation, while having 

no impact on vegetative growth [54]. This may suggest tissue-specific roles for citrate 

– however, changes in enzyme activity or levels do not necessarily change the levels of 

TCAC metabolites. A challenge of studying the TCAC is that inhibition of biosynthesis 

can have minimal effects on the cycle, due to replenishing of the pathway by anaplerosis. 

Furthermore, TCAC carboxylates like malate and citrate can be dynamically sequestered 

in vacuoles and exported intracellularly to match cellular demand or exudated for defense 

and nutrient acquisition [19,55–58]. Despite the flexibility of the TCAC pathway, there are 

a number of examples demonstrating that alterations in elements of the TCAC pathway 

have tissue-specific effects in plants. Figure 2 summarizes the lethal and tissue-specific 

effects of alterations in the TCAC that have been characterized in different plant organs 

across different species. Next, we highlight several examples of this research, focusing on 

two important steps in the TCAC: isocitrate dehydrogenase and succinate dehydrogenase 

reactions.

Recently, Isocitrate Dehydrogenases (IDH) was shown to be regulated by redox state, which 

is critical in developing tissues [59,60]. Mitochondrial IDH is inactivated under oxidation 

and reactivated by thioredoxindependent reduction in Arabidopsis [61], while cytosolic IDH 

is regulated by glutathionylation [62]. Overexpression of IDH in poplar trees resulted in 

taller plants with longer internodes, a phenotype consistent with the increased expression 

of cataplerotic glutamine synthase seen in these transgenic trees. Additionally, the stem 

diameter and vascular system width in overexpression (OE) lines were increased compared 

to wild type [63]. In contrast to poplar, overexpressing maize IDH in Arabidopsis resulted 

in shorter primary roots and increased sensitivity to salt stress [37]. Other studies have also 

shown that alterations of TCAC biosynthesis genes can have different effects depending 

on the species, which raises challenges in studying and engineering the pathway for crop 

improvement.

Succinate dehydrogenase (SDH), or Complex II of the electron transport chain, is a key 

enzyme that directly connects the TCAC to cellular respiration. SDH oxidizes succinate to 

fumarate in the mitochondria and transfers electrons to ubiquinone, the critical substrate 

for Complex III of the Electron Transport Chain (ETC). SDH can be allosterically 

regulated by both ATP and ADP [64]. SDH plays complex roles in various physiological 

processes in plants, including photosynthesis, stomatal function, ROS regulation, root 

growth, and fungal defense [23,36]. Knock-out of SDH1-2 in Arabidopsis does not show any 

obvious phenotypes, but knock-out of SDH1-1 in Arabidopsis results in failed gametophyte 

development [65]. Similarly, antisense inhibition of SDH1-1 leads to pollen abortion and 
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reduced seed set, showing that SDH1-1 has an important role in reproductive development 

[65]. Interestingly, while heterozygous SDH1-1/sdh1-1 shows improved photosynthesis and 

resiliency in nitrogen-limited conditions due to enhanced stomatal conductance and nitrogen 

assimilation, homozygous sdh1 is lethal [66]. In rice, LPS1, which encodes the iron-sulfur 

subunit SDH2-1 of succinate dehydrogenase, has been shown to affect both leaf senescence 

and grain yield [67]. Knockdown of SDHAF2, an assembly factor for SDH1 in Arabidopsis, 

exhibits an inhibition of primary root growth but has normal leaves with unaffected 

stomatal conductance and photosynthetic rate. However, knockout of SDHAF2 leads to 

seed abortion [68]. High-resolution measurements of TCAC metabolites in developing roots 

using mass spectrometry imaging revealed that succinate is enriched in the root meristem. 

In contrast, aconite, malate, and fumarate were all found to be enriched in differentiating 

tissue. Exogenous succinate treatment leads to increases in meristematic cell divisions and 

root hair growth [69]. The effects on root hairs correspond with increases in H2O2, a 

predominant form of ROS shown to accumulate in bulging root hairs and necessary to 

activate Ca2+ influx channels for elongation [70,71]. It has also been demonstrated that SDH 

is a direct source of mitochondrial ROS production capable of affecting broad aspects of 

plant development including branching, cell signaling, cell cycle and stress response [36]. In 

mammals, the relationship between SDH and ROS has mainly been studied in the context of 

elevated ROS in cancer cells [72]. However, a mammalian study demonstrated that succinate 

can regulate stem cell differentiation through chromatin modifications [73]. Future work 

may help clarify the contribution of the ETC, ROS, epigenetics, and other mechanisms to the 

developmental phenotypes induced by alterations in succinate levels and SDH activity.

Crosstalk between the TCAC and phytohormone pathways is critical for 

development and stress response

A key set of mechanisms that link the TCAC to development are the connections between 

the cycle and phytohormone signaling. Phytohormones, including auxin, gibberellin (GA), 

jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA), are critical for the 

regulation of plant development and stress response. The TCAC metabolites affect the 

production of hormones and other signaling molecules in plants, while hormones also 

regulate TCAC metabolism [74]. The following work described represents some of the 

important research describing this intertwined relationship.

As mentioned previously, there are regulatory links between pyruvate and auxin 

biosynthesis. Additional research has identified IAR4, a subunit of mitochondrial pyruvate 

dehydrogenase (PDH), by its resistance to IAA-Alanine treatment in Arabidopsis [75]. 

It was found that iar4 plants make fewer root hairs, show reduced lateral root number, 

and have disruptions in auxin homeostasis. Despite IAA-amino conjugates levels being 

significantly altered in iar4 plants, the phenotype can be rescued by overexpressing the 

YUCCA1 enzyme, which increases auxin biosynthesis [76]. Another phenotype of the iar4 
mutant was increased sensitivity to salt stress, as measured by its inhibited primary root 

growth and reduced survival. Moreover, salt stress inhibited levels of the auxin transporter 

(PIN1, PIN2 and PIN3) and DR5-GFP in iar4 [77]. Treatment with glutathione, a ROS 

scavenger, and exogenous IAA can both rescue the iar4 phenotype during salt stress, 
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indicating that IAR4 may function as a mediator between ROS and auxin to regulate the 

root growth [77]. Auxin and pyruvate have also been linked through MAB1, which encodes 

a mitochondrial PDH Complex (PDC) E1β subunit with decreases PDC enzymatic activity. 

The mab1 mutant has increased pyruvate levels and defects in auxin efflux [51]. Recent 

enzymatic activity assays confirm that pyruvate participates in the TAA-YUC mediated IAA 

synthesis pathway. Cytoplasmic localization of TAA1 converts tryptophan to alanine and 

IPyA, an IAA precursor [52]. Overall, this work demonstrates a direct relationship between 

auxin and pyruvate.

The knockdown of Succinate Dehydrogenase Assembly Factor 2 (SDHAF2), which is 

required for activity of the succinate dehydrogenase complex in Arabidopsis, provides 

another example of TCAC interactions with auxin signaling. Knocking down SDHAF2 
alters pH-dependent root elongation; sdhaf2 plants have decreased DR5-GUS signal, but 

increased IAA in the root tip. Increased IAA in sdhaf2 is thought to be caused by the 

mutant’s effect on ROS levels, which regulates auxin [78]. In addition to auxin, SDH also 

interconnects with ABA and SA. SDH2-3 expression during seed maturation is regulated 

by ABA [79] and SDH is shown to be required for SA-dependent H2O2 production during 

stress [80]. In cotton, SDH1-1 has been shown to contribute to SA-mediated systemic 

resistance to Verticillium dahlia, a fungal pathogen [81]. However, many of the molecular 

mechanisms that enable SDH interactions with phytohormones are still unclear, and it would 

be informative to investigate the relationships between succinate, SDH, ROS, and hormones 

in plants.

TCAC metabolites have also been found to interact with other phytohormones pathways 

that regulate growth, development, abiotic stress response, and defense. Inhibition of 

mitochondrial malate dehydrogenase (MDH) in tomato reduces GA and ABA levels [82]. In 

addition, malate is reduced under ABA treatment in Brassica napus [83]. Recently, it was 

demonstrated that brassinosteroid (BR) signaling regulates phosphate-starvation induced 

malate secretion in Arabidopsis [84]. 2-OG is a precursor of the gibberellin biosynthesis 

pathway [85] and antisense of 2-OGDH transgenic plants displayed changes in both 

gibberellin and ABA responses, alterations in the GABA shunt, and perturbed levels of 

TCAC metabolites [86]. Interestingly, 2-OG can be a substrate for a range of oxidative 

reactions, including plant hormone biosynthesis. For example, the rice 2-OG-dependent 

(Fe II) dioxygenase degrades IAA to OxIAA, which is important for regulating IAA 

homeostasis in plants [87]. In another example, citrate and fumarate prime against early 

bacterial infections by inducing SA and camalexin accumulation [58]. Finally, citrate binds 

to trigger a confirmational switch in D3/MAX2, an F-box E3 ubiquitin ligase critical 

for strigolactone perception and signaling [88]. This switch has a major regulatory effect 

on strigolactone-mediated protein degradation and is a prime example demonstrating the 

ability of TCAC metabolites to bind to regulatory proteins and directly affect developmental 

processes.

Importantly, phytohormone homeostasis also regulates TCAC metabolism. For example, 

upregulating the auxin signaling gene SIIAA9 in tomato increases the rate of flux of the 

TCAC, whereas downregulating auxin signaling diminishes it [89]. In barley, auxin is 

required for the influx of hexoses in glycolysis and causes increases in pyruvate, citrate, 
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and succinate levels [90]. As previously described, ABA regulates malate biosynthesis. 

ABA signaling can also modulate the TCAC metabolism via the SnRK2 pathway [91]. 

Jasmonate-depletion in Arabidopsis shifts production of the TCAC metabolites. While 

citrate, aconite, isocitrate, malate and fumarate increase, 2-OG and oxaloacetate are reduced 

[92]. Finally, SA can bind to the E2 subunit of AKG dehydrogenase, leading to a subsequent 

decrease in 2-OGDH activity. This reduction in activity then affects both the mitochondrial 

electron transport chain and basal pathogen resistance [93,94]. Further exploration of the 

mechanisms that regulate crosstalk between hormones and TCAC metabolism may lead to 

important regulatory controls and checkpoints in development and stress response.

Conclusion

The TCAC has many non-canonical functions in plants, and elements of the TCAC are 

important in every known facet of plant development. Evidence suggests that is not only 

due to their essential as energy sources, but that the metabolites can also bind signaling 

proteins, affect redox states, and serve as precursors for phytohormone pathways. In 

turn, numerous hormones have been shown to regulate the TCAC pathway. Optimizing 

TCAC metabolism in plants to increase growth has shown promise, but still faces many 

unsolved challenges. For example, while upregulating biosynthetic enzymes in the TCAC 

pathway can improve growth in certain plants and tissues, there are variable responses to 

pathway perturbation across tissues and species. Therefore, understanding the mechanisms 

underlying the effects of TCAC metabolites in specific crops is critical for future agricultural 

applications. In particular, it will be important to understand how to precisely control 

spatial distribution of TCAC metabolites in specific tissues and cellular compartments. 

Furthermore, temporal control of TCAC metabolites may also be essential for promoting 

desirable effects at specific developmental stages, without compromising overall metabolism 

during the lifetime of the plant. Finally, elucidating key regulatory mechanisms, such as 

protein-metabolite interactions, will be vital for robust engineering of desirable traits using 

the pathway. In animals and plants, TCAC metabolites have been shown to bind to signaling 

proteins, regulate epigenetic states, modify proteins to alter their function, and contribute to 

signaling pathways. Due to the challenges of investigating non-canonical functions of TCAC 

metabolites, there may be many more examples of similar regulatory processes that depend 

on TCAC metabolites. Elucidation of such mechanisms will be valuable for deepening our 

understanding of these essential compounds.
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Figure 1. 
A model depicting TCAC metabolites biosynthesis and distribution in the plant cell. 

Abbreviations: PDH, pyruvate dehydrogenase; CS, citrate synthase; ACO, aconitase; IDH, 

isocitrate dehydrogenase; 2-OGDH, 2-oxoglutarate dehydrogenase; SCL, succinyl-CoA 

ligase; SDH, succinate dehydrogenase; FUM, fumarase; MDH, malate dehydrogenase; 

FA, fatty acids. The cytosol, mitochondria, chloroplast, and peroxisome are respectively 

labeled. The different color boxes shown in the cellular compartments indicate TCAC 

metabolites transporters or carriers – DiT1, Dicarboxylate transporter 1, located in 

chloroplast membrane [95]; ALMT1, malate transporter, located in cell membrane; MATE, 

citrate transporter, located in cell membrane; SFC1, succinate/fumarate carrier 1, AtSFC1 

transports citrate, isocitrate and aconite and, to a lesser extent, succinate and fumarate 

[96]; ?, unidentified TCAC transporters or carriers.
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Figure 2. 
Schematic showing genetic elements of the TCAC that have specific effects on the growth 

and development of distinct plant tissues. Plant organs in seedlings and mature plants are 

labeled and TCAC related genes with effects on those tissues are listed. Unless otherwise 

labeled, all genes are from Arabidopsis. IDH1-OE (Maize) specifically means IDH1 from 

maize transformed into Arabidopsis. The other genes from non-Arabidopsis plants were 

studied in their native context, as described in the text. Citrate, malate, and oxaloacetate are 

labeled as known TCA metabolites that are exudated in Arabidopsis. Abbreviations: OE, 

overexpression. All other abbreviations can be found in Figure 1 iar4 [76], csy2 csy3 [53], 

mab1 [51] LPS1 (Rice) [67], fum1 [97], aco1 aco3 [98], sdh1-1 [65], sdh2-3 [79], IDH-OE 
(Poplar) [63], IDH1-OE (Maize) [37], pSMR1::ACO and pCYCB1::A-CO1 [69].
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