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ABSTRACT OF THE DISSERTATION

ACCURACY AND PRIVACY IN SPEECH-BASED MODELING OF MAJOR

DEPRESSION: INNOVATIVE APPROACHES THROUGH DATA AUGMENTATION,

AND SPEAKER IDENTITY DISENTANGLEMENT

by

Vijay Ravi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Abeer Alwan, Chair

Major Depressive Disorder (MDD) is a prevalent mental illness that affects a significant

portion of the global population. Despite its severity, traditional diagnostic methods often

fail to identify and treat MDD effectively, highlighting the need for automated diagnostic

tools. Recent research has identified speech signals as promising biomarkers for objectively

detecting depression. However, the development of speech-based depression detection systems

faces several challenges including data scarcity and privacy preservation. The sensitive nature

of mental health data makes it difficult to collect large datasets required for training robust

models. Moreover, many current approaches rely on features that can compromise patient

confidentiality, hindering the adoption of these systems in clinical settings. This thesis

presents novel methods to address these challenges and to enhance the performance and

privacy of speech-based depression detection. The contributions include a frame rate-based

data augmentation technique (FrAUG) to increase training data while preserving depression-

related acoustic information. Additionally, five speaker identity disentanglement methods are

proposed: adversarial loss maximization, loss equalization via Cross-Entropy, Variance, and

KL Divergence, and unsupervised speaker disentanglement via cosine similarity minimization.

ii



These methods aim to reduce the reliance on speaker identity during depression detection.

The proposed techniques are evaluated on multiple datasets in two languages - English

(DAIC-WoZ dataset) and Mandarin (EATD and CONVERGE datasets), demonstrating

improved depression detection accuracy and reduced speaker separability compared to state-

of-the-art approaches. Furthermore, the privacy preservation capabilities of these methods

are quantified using gain of voice distinctiveness and de-identification scores, showcasing their

potential for safeguarding patient privacy. By advancing speech-based depression detection

in terms of accuracy and privacy, this thesis aims to facilitate the development of effective

and secure diagnostic tools that can be readily adopted in clinical settings.
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Chapter 1

Introduction

1.1 Speech-based Depression Detection

Major Depressive Disorder (MDD) is a severe mental health condition that negatively impacts

an individual’s emotions, thoughts, and behaviors. In extreme cases, MDD can lead to suicide.

Globally, MDD affects more than 264 million people [47] and is projected to become the

second leading cause of disability by 2030 [63]. The effects of mental health issues like MDD

extend beyond significant economic and healthcare costs; they also have profound negative

consequences for the affected individuals, their loved ones, and the wider community. The

burden of MDD is further compounded by the fact that many individuals suffering from the

disorder do not receive adequate treatment due to societal stigma, lack of access to mental

health services, or insufficient awareness about the condition.

The diagnosis of MDD currently relies on subjective interviews conducted by psychologists

and self-reported surveys [50]. However, this approach can be influenced by several factors,

such as the availability of mental health professionals, patients’ willingness to disclose their

symptoms, and the societal stigma surrounding mental health treatment [39]. These barriers

can lead to delayed diagnosis or under-reporting of symptoms, hindering timely intervention.
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Additionally, MDD is currently diagnosed based on a set of symptoms and this approach leaves

open the possibility that MDD may actually consist of several distinct conditions, each with

its own unique causes and optimal treatment approaches. Accumulating evidence suggests

that MDD is not a single, homogeneous disorder, but rather a heterogeneous collection of

related conditions [49]. This heterogeneity in the presentation and underlying causes of

MDD poses challenges in developing targeted treatments and predicting treatment outcomes.

Early intervention through automatic evaluations for individuals showing initial signs and

symptoms of MDD can therefore be crucial in preventing the condition from progressing to

more severe stages. By identifying and treating MDD early, it may be possible to alleviate

some of the worst consequences associated with the disorder, including suicidal thoughts and

behaviors.

Such objective assessment techniques must be secure, efficient, accessible, and scalable

so as to ensure widespread adoption and effective early detection of MDD across diverse

populations. These techniques should prioritize patient privacy, utilize resources optimally,

be capable of adapting to the varying needs of different communities and demographics, and

be easily integrated into existing healthcare systems. By meeting these criteria, objective

assessment methods can play a critical role in identifying individuals at risk for MDD and

in facilitating timely intervention, ultimately improving patient outcomes and reducing the

overall burden of the disorder on society.

Automatic objective screening mechanisms based on Electroencephalogram (EEG) and

Magnetic Resonance Imaging (MRI) have been used to automatically predict mental health

states in the past [1, 56, 62]. These methods have proven to be highly effective in clinical

settings. However, these techniques are often impractical for widespread use due to several

limitations. First, they require specialized equipment that is expensive to acquire and

maintain, making them inaccessible to many healthcare providers and patients. Second,

conducting these tests is logistically challenging, as they often require dedicated facilities and
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appointments, which can be inconvenient for patients and limit the number of individuals

who can be assessed. Finally, interpreting the results of these tests requires highly trained

personnel, such as radiologists or neurologists, who may not be readily available in all

healthcare settings. These factors combined make it difficult to scale up the use of EEG and

MRI for the early detection and diagnosis of MDD in large populations.

Among other methods, the human voice has emerged as a promising biomarker for mental

health. Speech, as an information-rich data source, has been shown to effectively capture the

mental [19, 82] and emotional states [72, 77] of the human mind. Some characteristics speech,

such as tone, pitch, rhythm, and rate, can provide significant insights into a person’s mental

state. Moreover, speech data can be collected and analyzed non-invasively, without the need

for expert supervision, making it a practical and efficient alternative. Unlike EEGs and MRIs,

which require a controlled environment and specialized equipment, speech can be recorded

using readily available devices like smartphones or voice-assistants (eg: Siri, Alexa [81]) and

analyzed using advanced machine learning algorithms. This accessibility allows for continuous

monitoring and early detection of mental health issues in a more naturalistic setting.

By extracting representations from speech data, a model can be trained to predict the

prevalence of mental health disorders (see Figure 1.1). Advanced algorithms can analyze

various features of speech, such as prosody, articulation, and fluency, to detect subtle changes

that may be indicative of mental health conditions. These models can then be integrated

into mobile applications or telehealth platforms, providing users with real-time feedback and

facilitating timely interventions.

1.2 Current Challenges

Although speech-based automatic objective screening mechanisms for MDD have gained

popularity in recent years [10,71,91], several challenges remain unresolved. Among others,
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Figure 1.1: Schematic representation of the speech-based automatic assessment system for
MDD diagnosis. The system utilizes speech representation learning techniques to extract
meaningful features from speech data. These features are then fed into a mental health
disorder diagnosis model, which classifies the input speech as belonging to either individuals
with depression or healthy individuals.

data scarcity and privacy preservation are two critical issues that hinder the development

and deployment of these systems.

Data scarcity limits the ability to train robust machine learning models, as high-quality,

annotated datasets are often difficult to obtain. Without sufficient data, the models may fail

to capture the variability in speech patterns across different populations, leading to reduced

effectiveness and potential biases in mental health assessments.

Privacy preservation is a major concern because speech data contains sensitive personal

information that must be protected to maintain user trust and comply with data protection

regulations. Safeguarding the highly personal and confidential mental health information

of patients is crucial to prevent harm such as discrimination, stigma, or social exclusion.

Moreover, breaches of privacy could lead to misuse of data, further exacerbating these issues.

Additionally, individuals may hesitate to seek mental health care if they feel their information

is not secure, which can hinder the adoption of objective screening systems and result in

untreated conditions and negative health outcomes.
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1.2.1 Data Scarcity in Speech-based Depression Detection

In the realm of speech-based depression detection, data scarcity presents a significant obstacle,

particularly highlighted by the limitations of publicly available datasets such as DAIC-

WoZ [104] and EATD [96] and the proprietary dataset, CONVERGE [55]. The DAIC-

WoZ (Distress Analysis Interview Corpus-Wizard of Oz) dataset, while valuable, contains a

relatively small number of speakers (142 speakers), with an even smaller subset diagnosed

with depression (42 speakers). This limited representation hinders the development of

robust machine learning models capable of generalizing across diverse populations. Similarly,

the EATD (Extended Audio-Visual Depression Corpus) faces the same challenge, offering

a restricted number of recordings from depressed individuals (162 speakers in total, 30

speakers with depression). The CONVERGE dataset (from the China, Oxford and Virginia

Commonwealth University Experimental Research on Genetic Epidemiology study), however,

presents an interesting case, providing a large number of recordings from depressed speakers

(4217 non-depressed speakers and 3742 depressed speakers). Despite this, a noteworthy

limitation is that the dataset comprises solely female participants in order to focus on a more

genetically homogeneous sample. While datasets like CONVERGE provide valuable insights,

the absence of gender diversity and the overall scarcity of data underscore the urgent need

to adopt techniques to maximize the utilization of available dataset resources. One such

technique is data augmentation, which involves artificially expanding the training data by

generating transformations of the original samples. Augmentation methods enhance dataset

diversity and richness by applying operations such as pitch or formant shifting, speaking

rate changes [3], or adding noise to existing data, thereby boosting the robustness and

generalization ability of machine learning models. However, in the context of depression

detection, data augmentation isn’t as straightforward due to the counterproductive nature of

manipulating acoustic cues such as pitch or speed, which are correlates of depression [19].
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1.2.2 Privacy-preservation in Speech-based Depression Detection

Speech-based methods for depression detection often rely on speaker-related information, also

known as speaker-identity features [25,28,30,57,84]. However, the use of these features raises

privacy concerns, as they can be used to uniquely identify individuals through automatic

speaker identification (SID) [99] and verification models [80]. One specific privacy threat

is the membership inference attack [44, 97], in which malicious actors could compromise

a patient’s privacy by determining whether their data was used to train the model. The

potential misuse of speaker-identity features presents a significant challenge in developing

speech-based depression detection systems. While these features have proven to be effective

in capturing depression-related cues, their ability to uniquely identify individuals poses a risk

to patient privacy.

To mitigate these concerns, it’s essential for models in speech-based depression detection

to prioritize safeguarding individuals’ privacy. Rather than depending on speaker-specific

details, the emphasis should be on capturing broader patterns that differentiate between

depressed and non-depressed groups. By prioritizing the extraction of non-identifying features,

these models can foster a more privacy-oriented approach within speech-based mental health

research.

While the above-mentioned privacy concerns are significant, an excessive reliance on

individual speaker characteristics in depression detection models can introduce dataset biases,

ultimately impairing their modeling capability. These biases may manifest in overfitting

to speakers in the training set, resulting in inaccurate diagnoses for unseen speakers. This

raises important questions about whether depression detection can be performed in a manner

invariant to speaker identity and whether certain components of speech characterize a speaker

without relevance to their mental health status. However, these critical questions remain

largely unexplored within the speech research community.
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1.3 Literature Review

The widespread adoption of digital voice assistants has simplified the process of collecting

speech data, leading to a surge in research and development efforts aimed at creating objective

speech-based screening systems for Major Depressive Disorder (MDD) [58, 89, 104]. This

increased accessibility to speech data has opened up new possibilities for early detection and

monitoring of mental health disorders.

Early research in this domain focused on understanding the impact of MDD on human

speech patterns. Seminal studies, such as those conducted by Nilsonne et al. [67] and

Andreasen [5], revealed that MDD is characterized by distinct verbal cues, including monotonic

speech, specific vocabulary choices, and abnormal disfluencies. These findings laid the

foundation for further exploration of speech-related features in the context of depression.

In recent years, researchers have built upon these initial findings and have identified

clear differences in the acoustic features of speech between individuals with and without

depression [19,35]. These studies have leveraged advanced signal processing techniques and

machine learning algorithms to extract and analyze a wide range of acoustic parameters,

such as pitch, formants, and spectral characteristics. The results have consistently shown

that depressed individuals exhibit unique patterns in their speech, such as reduced pitch

variability, slower speaking rate, and altered voice quality.

1.3.1 Acoustic Features

Researchers have investigated a wide array of acoustic features for speech-based depression

detection. One study [93] utilized statistics of spectral features, such as spectral tilt and

formant frequencies, in combination with pitch and energy, to predict depression. Another

study [116] focused on vocal prosody features, including switching pauses and pitch, for

estimating depression severity. A third study [4] demonstrated that jitter, shimmer, energy,
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and loudness features were robust indicators of depression in both read and spontaneous

speech. In [22, 23], pitch features were used to identify a common locus for tonal and

non-tonal languages in the context of depression detection through a multisite genetic

study. While frame-level features have been commonly used, several studies have proposed

alternative representations. Some researchers [18,21,78] introduced the use of fixed-length

i-vectors for depression detection, drawing inspiration from speaker identification research [37].

Another study [2] extended the i-vector representation to encompass voice quality features

and performed a score-level fusion with Opensmile features [31] achieving an impressive

F1-classification score of 94.9% using the pilot portion of the CONVERGE dataset. A

comparative study [24] investigated the effectiveness of voice source-related features, such

as linear prediction residual signals, homomorphically filtered voice source signals, and zero

frequency filtered signals, against vocal tract-related high-frequency features. They found

that voice source-related features outperformed vocal tract-related features in detecting

depression. More recently, a novel approach [95] proposed the use of articulatory features

obtained through acoustic inversion for depression detection.

1.3.2 Model Architectures

In addition to exploring various acoustic features, researchers have also focused on improving

the backend model architectures for depression detection. Early studies employed traditional

machine learning methods, such as Support Vector Machines (SVM) [92], Gaussian Mixture

Models [100], and Random Forest classifiers [66]. However, in recent years, deep learning ap-

proaches have gained prominence due to their superior performance compared to conventional

pattern recognition techniques [17,41,61,88,96,110].

Among the deep learning architectures, Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), particularly Gated Recurrent Units (GRUs) and Long

Short-Term Memory (LSTM) networks, have been extensively applied in depression detection
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tasks. For instance, a study proposed DepAudioNet, a CNN-LSTM framework that utilized

mel-spectrogram features for depression detection [61]. The DepAudioNet model has been

used as a baseline in many prior studies [8, 34], including this thesis, and achieved an F1-

Score of 0.52 for depression classification using the DAIC-WoZ dataset. Another approach

combined Mel Frequency Cepstral Coefficients (MFCCs) with a pre-trained RNN model, which

was initially trained on a Speech Emotion Recognition (SER) task, to enhance depression

prediction performance [88]. The effectiveness of an encoder-decoder structure, where the

encoder was pre-trained on Automatic Speech Recognition (ASR) and subsequently fine-tuned

for depression detection, was also investigated [41].

More recently, researchers have proposed innovative techniques to further improve the

performance of deep learning models. One study introduced a method that aggregated

mel-spectrograms using a NetVLAD network [6] to generate fixed-length segment-level

embeddings, which were then used to train a GRU model for depression classification [96].

This setup achieved an F1-Score of 0.66 on the EATD dataset. Another study employed an

Emphasized Channel Attention, Propagation, and Aggregation in Time-Delay Neural Network

(ECAPA-TDNN) model with MFCC features for depression detection [107]. Moreover, a novel

self-supervised learning mechanism called instance-discrimination learning was specifically

designed for depression detection tasks [109].

1.3.3 Data Augmentation

Data augmentation techniques have been widely explored in speech processing to improve

the robustness and generalization of models, particularly when dealing with limited training

data. One popular method is Vocal Tract Length Perturbation (VTLP) [46], which simulates

variations in speaker characteristics by modifying the frequency spectrum of speech. This

technique has been shown to enhance the performance of automatic speech recognition

systems by generating diverse training samples. Another approach, proposed in [42], involves
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rotating spectrograms to create new samples, effectively increasing the amount of training

data. Similarly, [87] employed a combination of noise addition, pitch-shifting, and speed

perturbation to augment the training data, resulting in improved robustness of speech emotion

recognition models. In [70], a multi-window data augmentation technique was introduced

specifically for emotion recognition tasks. This method leverages multiple frame-widths

to capture varying temporal contexts, enabling the model to learn more comprehensive

representations of emotional cues in speech. These data augmentation techniques have

demonstrated significant potential in enhancing the performance and generalization of speech

processing models, particularly in scenarios where labeled data is scarce.

1.3.4 Speaker-Identity and Depression Detection

Numerous prior studies have investigated the utilization of speaker-related features in depres-

sion detection, particularly concerning speaker identity. Acoustic features like x-vectors [30,84]

and other speaker embeddings [25,28] have demonstrated effectiveness in diagnosing a speaker’s

mental state. Nevertheless, these features inherently encode information about the speaker’s

identity [99], which poses challenges to privacy preservation, a pivotal aspect in the acceptance

of digital mental health screening systems [59].

1.3.5 Privacy Preserving Speech Processing

In previous research, adversarial speaker normalization has been assessed within the domain of

Speech Emotion Recognition (SER) [38,52,117]. In [117], speaker-invariant domain adaptation

was conducted on multi-modal features, including speech, text, and video. Another study [52]

proposed a technique employing gradient reversal with entropy loss to disentangle emotion

and speaker information. Furthermore, [38] fine-tuned a pre-trained Hubert model using

gradient-based adversarial learning. However, fine-tuning such models often necessitates large
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amounts of in-domain data and is computationally intensive. Moreover, these investigations

utilized the IEMOCAP and MSP-Improv datasets, which are mono-lingual and comprise

acted audio data [13,14].

Given the critical importance of privacy preservation in speech-based depression detection,

numerous studies have endeavored to tackle this challenge. Approaches such as federated

learning [11] and sine wave speech [29] have been explored to protect patient identity;

however, these methods frequently result in a performance decline in depression detection.

More recently, adversarial learning (ADV) has shown an improvement in depression detection

performance at the expense of reduced speaker classification accuracy [83,85]. These techniques

are discussed in Chapters 5 and 6. In the study [108], non-uniform adversarial weights

(NUSD) were identified as superior to vanilla adversarial methods when applied to raw audio

signals. Additionally, [119] demonstrated the effectiveness of incorporating reconstruction

loss alongside an autoencoder for achieving speaker disentanglement, leading to enhanced

depression detection performance.

1.4 Technical Contribution

In this thesis, we address the problems of data scarcity and privacy preservation by introducing

two frameworks: 1) Frame-rate based data augmentation and 2) speaker-disentanglement for

depression detection.

The first framework focuses on data augmentation to alleviate the issue of limited training

data. We propose a novel method that creates new feature samples by varying the frame-

width and frame-shift during the feature extraction process. By adjusting these frame-rate

parameters, the model is exposed to different sets of time-frequency resolutions during

training. This approach ensures that the acoustic parameters thought to correlate with the

speaker’s mental state (e.g., pitch, formant frequencies, speaking rate) [2, 19] are preserved
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and not inadvertently modified. The proposed method is evaluated on two different datasets,

input acoustic features, and models, and is shown to outperform two commonly used data

augmentation techniques. This demonstrates the effectiveness and versatility of our frame-rate

based data augmentation approach in improving the performance of depression detection

models, particularly when faced with limited training data.

The second framework addresses the privacy concerns associated with using speaker-

identity features in speech-based depression detection. We introduce five novel speaker-

disentanglement method that aim to separate depression-related cues from speaker-specific

characteristics. By minimizing the presence of speaker-identity information in the extracted

features, we reduce the risk of individuals being uniquely identified through their speech data.

This is achieved through the use of adversarial learning , loss equalization and unsupervised

cosine similarity minimization techniques, where the model is trained to generate features

that are discriminative for depression detection but uninformative for speaker identification.

The effectiveness of our speaker-disentanglement approach is validated through experiments

on multiple datasets, demonstrating its ability to maintain depression detection performance

while preserving speaker privacy.

1.5 Thesis Organization

The thesis is organized into eight chapters, each focusing on a specific aspect of the research.

Chapter 2 describes the databases used in the study and the feature extraction process.

Chapter 3 discusses the models employed, the evaluation metrics used to assess their perfor-

mance, and the training scheme adopted. Chapter 4 delves into the details of the frame-rate

based data augmentation technique, presenting the methodology, experiments, and results.

Chapter 5 introduces the adversarial speaker disentanglement approach, which aims to sepa-

rate depression-related cues from speaker-specific characteristics to protect patient privacy.
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Chapter 6 presents loss equalization based speaker disentanglement methods, comparing its

performance with the adversarial approach. Chapter 7 explores an unsupervised speaker

disentanglement technique, which aims to extract depression-related features without relying

on speaker-labels for the training data. Finally, Chapter 8 concludes the thesis, summarizing

the key findings, contributions, and potential future directions for research in speech-based

depression detection with a focus on data augmentation and privacy preservation.
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Chapter 2

Databases, and Features

In this chapter, we present the details of the databases and feature extraction methods used

in our work. We begin with a description of the characteristics of each database, including

the number of speakers, utterances, sampling rate, and any relevant metadata. Subsequently,

we discuss the specific acoustic features and the corresponding extraction techniques used

with these databases to evaluate the proposed methods.

2.1 Datasets

Experiments were conducted using two publicly available depression-related datasets - the

DAIC-WOZ [104], and EATD [96] and one proprietary dataset - CONVERGE [55]. The

datasets are described in the following subsections and the datasets’ details are summarized

in Table 2.1

2.1.1 DAIC-WOZ

The Distress Analysis Interview Corpus Wizard of Oz (DAIC-WOZ) [104] database comprises

audio-visual interviews of 189 participants, male and female, who underwent evaluation of
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Table 2.1: Summary of depression datasets used in this study. Cases refers to ‘depressed’
class and Controls is ‘non-depressed’ class.

DAIC-WOZ EATD CONVERGE
Language English Mandarin Mandarin
Number of Participants 142 162 7959
Gender M&F M&F F
Cases/Controls 42/100 30/132 3742/4217
Train/Evaluation 105/37 83/79
Sampling Rate (Hz) 16000 16000 16000
Total Duration (Hours) 22.56 2.26 391
Publicly Available ✓ ✓ X

psychological distress. Each participant was assigned a self-assessed depression score through

the patient health questionnaire (PHQ-8) method [50]. Audio data belonging only to the

participants were extracted using the time-labels provided with the dataset. Recordings

from session numbers 318, 321, 341 and 362 were excluded from the training set because

of time-labelling errors. The test partition of the database was not used in this thesis

because of the unavailability of the ground-truth labels resulting in a total of 142 speakers.

The resulting dataset consists of a total of 22.56 hours of audio data. In line with prior

research [9, 24, 34, 61, 111], methods using the DAIC-WOZ dataset are trained using data

from 105 speakers and evaluated using the data from 37 speakers from the development split

of the dataset.

2.1.2 EATD

The EATD Corpus (Emotional Audio-Textual Depression dataset) [96] consists of audio record-

ings and corresponding text transcripts obtained from interviews with 162 Mandarin-speaking

participants, including both males and females. During the interviews, each participant

responds to three randomly chosen questions and completes the Self-Rating Depression Scale

(SDS) questionnaire [118], a widely used screening tool for assessing depression. In this
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dataset, participants with an SDS score exceeding 52 are classified as depressed. The dataset

includes 30 depressed volunteers and 132 non-depressed volunteers. For the purpose of our

study, we focus solely on the audio portion of the dataset, which has a total duration of 2.26

hours and a sampling rate of 16kHz. We adhere to the provided database description for

data partitioning, utilizing 83 speakers for training and 79 speakers for evaluation.

2.1.3 CONVERGE

The second depression database used in this paper is in Mandarin and was developed as a

part of the China, Oxford and Virginia Commonwealth University Experimental Research

on Genetic Epidemiology (CONVERGE) study [55]. The CONVERGE study focused on

subjects with increased genetic risk for MDD, and to obtain a more genetically homogeneous

sample, only women participants were recruited. Each participant was interviewed by a

trained interviewer. The diagnoses of depressive (dysthymia and MDD) disorders were

made with the Composite International Diagnostic Interview (Chinese version) [102], which

classifies diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders

fourth edition (DSM-IV) criteria. The database includes recordings of the interviews from

3742 individuals classified as suffering from MDD and 4217 healthy individuals. All audio

recordings were collected with a sampling rate of 16kHz. The database was randomly split

into 60%, 20%, and 20% for the train, development, and evaluation sets, respectively. This

database contains a total of 391 hours of audio data and is characterized by a large degree of

phonetic and content variability.

2.1.4 Speaker Recognition Datasets

The speaker identification (SID) models are pretrained using two publicily available datasets

- VoxCeleb for English SID and CN-Celeb for Mandarin SID. The MUSAN library is used to
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augment noise during the SID training process.

VoxCeleb

The VoxCeleb dataset is a large-scale audio-visual dataset designed for speaker recognition

research [65]. It consists of over 1 million utterances from more than 7,000 speakers, extracted

from YouTube videos. The dataset is divided into two parts: VoxCeleb1 and VoxCeleb2.

VoxCeleb1 contains over 100,000 utterances from 1,251 speakers, while VoxCeleb2 expands

the dataset to include over 1 million utterances from 6,112 speakers. The development part

of the VoxCeleb2 dataset with 5994 speakers is used as training data to train English Speaker

ID model.

CN-CELEB

This is a large-scale Mandarin speaker recognition dataset collected ’in the wild’. The dataset

consists of two subsets, CN-Celeb1 and CN-Celeb2. All the audio files are coded as single

channels and sampled at 16kHz with 16-bit precision. For CN-Celeb1, it contains more than

130,000 utterances from 1,000 Chinese celebrities, and covers 11 different genres in real world.

CN-Celeb2 contains more than 520,000 utterances from 2,000 Chinese celebrities, and covers

11 different genres [33]. A combination of data from CN-Celeb1 and CN-Celeb2 with 2800

speakers is used as training set to train the Mandarin Speaker ID model.

MUSAN

Data augmentation techniques, including additive noises and reverberation, are employed to

increase the diversity and amount of training data during SID training. The process involves

using the MUSAN dataset [98], which contains over 900 noises, 42 hours of music, and 60

hours of speech, as well as simulated room impulse responses (RIRs) for reverberation. A

3-fold augmentation strategy is used, combining the original "clean" training list with two
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augmented copies, where each recording is randomly modified using one of the following

techniques: babble (adding 3-7 speakers), music (adding a single music file), noise (adding

MUSAN noises at intervals), or reverb (convolving with simulated RIRs).

2.2 Feature extraction

2.2.1 Mel Frequency Cepstral and spectral features

Mel-frequency cepstral coefficients (MFCCs) and Mel frequency spectrograms represent

the overall spectral envelope of the speech signal, and are closely related to the phonetic

information in speech at the frame level. Inspired by speech processing literature, we use

MFCCs and mel-spectrograms as input features [80,88]. For the data-augmentation study,

the English experiments were performed using 20-dimensional mel spectrograms whereas the

Mandarin experiments used 30-dimensional MFCCs. The window size and shift for feature

extraction were varied as explained in Chapter 4. For the speaker identity disentanglement

study, Mel-spectrograms are extracted using a Hanning window of length w = 1024 samples

(64ms) and a hop size of h = 512 samples (32ms). The dimensionality of Mel-spectrogram

features is either 40 or 80, depending on the model size.

2.2.2 ComParE 2016 Acoustic Feature Set

The ComParE (Computational Paralinguistics ChallengE) 2016 feature set has been used in

paralinguistics analysis [48,66,90,94]. This set consists of 130 features which includes, among

others, F0, energy, spectral, cepstral coefficients (MFCCs) and voicing related frame-level

features which are referred to as low-level descriptors (LLDs). They also include the zero

crossing rate, jitter, shimmer, the harmonic-to-noise ratio (HNR), spectral harmonicity and

psychoacoustic spectral sharpness. We used the TUM’s open-source openSMILE system to
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extract the ComParE16 features [32].

2.2.3 High-level Features

Recently, self-supervised learning (SSL) models have emerged as powerful tools in speech-

processing applications [115]. These models can learn general speech representations from

large volumes of unlabeled data, capturing patterns that are not specific to any particular

task. One of the key advantages of SSL models is that they can be adapted to various

downstream tasks, either through fine-tuning or by using them as feature extractors. In our

research, we employ SSL models as feature extractors, maintaining the pre-trained weights

without further adjustment. We extract frame-level features from a selection of SSL models

and utilize these representations as input for our depression detection system.The specific

SSL models used in this dissertation are as follows:

1. Wav2vec2.0 [7]: We employ the base pre-trained Wav2vec2.0 model, which is readily

accessible through the fairseq toolkit [69]. The model’s hidden dimension is set to

768. Our choice of Wav2vec2.0 is motivated by its remarkable performance across

a wide range of speech-related tasks, as evidenced by its results on the SUPERB

benchmark [115]. Notably, Wav2vec2.0 stands out as one of the earliest SSL models

developed specifically for speech processing applications.

2. ContentVec [74]: As an extension of the HuBERT model [43], ContentVec incorporates

speaker disentanglement to capture more content-related information while minimizing

speaker-related information, hence its name. In our studies, we utilize the 100-cluster

base model of ContentVec, which has a hidden dimension of 768. The feature extraction

process for ContentVec closely resembles that of Wav2vec2.0, ensuring consistency in

our approach.

3. WavLM [15]: WavLM is an SSL model known for its robustness in domain-mismatched
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scenarios, such as noisy conditions, which is attributed to its signal reconstruction

component. To extract features, we employ the base model configuration of WavLM,

resulting in a feature dimension of 768.

4. Whisper [76]: Recently introduced, Whisper is a large-scale, weakly supervised model

that has demonstrated state-of-the-art performance on speech-recognition tasks, sur-

passing other SSL models. Although it is weakly supervised, we include Whisper in

this section for comparison with other large-scale pre-trained speech models. For our

research, we select the base English-only model, which has a hidden dimension of 512.

The feature extraction process is carried out using the OpenAI toolkit [12].

Since these pre-trained models are unavailable in Mandarin, high-level features are only

investigated on the English DAIC-WOZ dataset.
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Chapter 3

Models, Evaluation Metrics and Training

Scheme

3.1 Models

In this study, multiple models were used to demonstrate that the proposed methods are

generalizable and do not depend on architectural choices for improved performance. Table 3.1

provides a summary of the model architectures used in our experiments. It is important to

note that all models were trained from scratch, ensuring a fair comparison and avoiding any

potential bias from pre-training.

3.1.1 CNN-LSTM

The CNN-LSTM model, based on the DepAudioNet framework [61] and implemented fol-

lowing [8], was chosen as one of the baselines. The DepAudioNet model is a well-accepted

baseline in the speech-based depression detection literature [9, 34]. The network parameters,

including the number of hidden layers, learning rate, dropout probability, etc., were selected

empirically. The architecture consists of 1D convolutional layers (Conv1D) with parameters
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Table 3.1: Summary of Model architectures used in this study. ‘Conv’ indicates convolutional
layer. ‘LSTM’ indicates Long Short-term Memory Layer. ‘FC’ indicates fully connected
layer. The number of layers and dimensions of each varies with the dataset size and/or input
features.

Model
Architecture

Initial
Layers

Hidden
Layers

Output
Layer

CNN-LSTM Conv LSTM FC
X-Vector+CNN Conv Conv FC
ECAPA-TDNN Conv Time-Dilated Conv FC

LSTM-only LSTM LSTM FC

such as channels (C), kernel size (K), and stride (S), as well as recurrent LSTM layers with

a hidden state dimension (H).

The Conv1D layers were followed by ReLU non-linearity, a max-pooling layer with a

kernel size of 3, and a dropout layer. The final prediction layers (fully connected layers, whose

inputs were the last hidden state of the preceding LSTM layer) generated the depression

state predictions. In case of speaker disentanglement experiments, two branches of separate

prediction layers were applied where one branch predicted the depression label and the other

predicted the speaker label. The dimensions of the speaker branch prediction layer were

dataset dependent: 107 for DAIC-WOZ, 83 for EATD and 1185 for CONVERGE. For MDD

prediction, a sigmoid activation was applied, and the binary cross-entropy loss was used. For

the SID branch in speaker disentanglement experiments, cross-entropy loss was used without

any output activation.

3.1.2 X-vector Embeddings with CNN

This model consists of two parts - 1) the x-vector extractor and the downstream CNN model.

This model setup was selected because the x-vector backend generates fixed length embeddings

for variable length inputs which allows us to analyze the effects of the proposed data
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augmentation method on such model architectures. In this setting, bottleneck embeddings

extracted from the pretrained X-vector model [99] are used with a fully convolutional

downstream classification model. The x-vector model, made up of time-dilated neural

network (TDNN) consists of 5 layers of TDNN convolutional layers followed by average

pooling and two fully-connected layers. The implementation of the TDNN model is based

on [51]. The downstream depression classification model is made up of two CNN layers

followed by two fully connected layers.

3.1.3 ECAPA-TDNN

ECAPA-TDNN is a model architecture originally proposed for speaker recognition tasks [20]

and currently represents the state-of-the-art in speaker identification (SID) and Speech

Emotion Recognition (SER [79]). In this thesis, we propose a modified version of the original

ECAPA model to adapt to the smaller training dataset of depression classification and address

the inherent class imbalance problems. The modifications include empirically adjusting the

kernel (K) and stride (S) of the input convolution layer, the number of channels (C) in the

intermediate layers, the attention dimension, the embedding dimension, and the dimensions

of the prediction layers. For speaker disentanglement experiments, the prediction layer

dimension is 107 based on the number of speakers in the training set of the DAIC-WoZ

dataset.

3.1.4 LSTM-only

The LSTM-only architecture was employed for high-level features of the DAIC-WOZ dataset.

This architecture was utilized to process the latent representations obtained from the SSL

models, which were used as encoders (feature extractors) in this study. By leveraging

the LSTM-only architecture, we aim to capture the temporal dependencies and long-term
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contextual information present in the high-level features extracted from the SSL models,

enabling effective depression classification.

The model architecture consisted of an input LSTM layer with a hidden state dimension

of H = 256, followed by 5 hidden LSTM layers, each having the same hidden state dimension

as the input layer. Similar to the CNN-LSTM model, the output of the last hidden state of

the preceding LSTM layer served as input to the prediction layer. The dimensions of the

final prediction layer were 107 for the DAIC-WoZ dataset and 83 for EATD.

3.2 Evaluation Metrics

The evaluation metrics used to compare models are presented in this section. Every model is

evaluated on it’s ability to classify depression status. In addition, for the speaker disentangle-

ment experiments, the ability to disentangle speaker identity is also measured.

3.2.1 Depression Detection

Depression detection is evaluated using the macro average F1-score (F1-AVG) of depression

(F1-D) and non-depression (F1-ND) classes computed at the speaker level. We opted to

report F1-AVG because it provides a balanced representation of both D (Depression) and

ND (Non-Depression) prediction capabilities. For a givenconfusion matrix [TN, FP, FN, TP],

then the F1-AVG is calculated as:

PrecisionD =
TP

TP + FP
(3.1)

RecallD =
TP

TP + FN
(3.2)

F1D = 2× PrecisionD × RecallD
PrecisionD + RecallD

(3.3)
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PrecisionND =
TN

TN + FN
(3.4)

RecallND =
TN

TN + FP
(3.5)

F1ND = 2× PrecisionND × RecallND

PrecisionND + RecallND

(3.6)

F1-AVG =
F1D + F1ND

2
(3.7)

Where:

• TP is the number of True Positives

• TN is the number of True Negatives

• FP is the number of False Positives

• FN is the number of False Negatives

• D represents the Depressed class

• ND represents the Non-Depressed class

3.2.2 Speaker-Separability and Identification

Inspired by the Voice-privacy literature [68, 103], we employ two metrics to quantify speaker

separability and identification: Gain of Voice Distinctiveness (GV D) and De-Identification

Score (DeID). GV D is measured in decibels (dB), while DeID is expressed as a percentage. A

GV D value of 0 dB indicates that the voice distinctiveness remains the same before and after

disentanglement. A negative GV D value signifies a decrease in speaker distinctiveness, while

a positive value suggests an increase. In the case of DeID, a score of 100% represents an

optimal de-identification strategy, whereas a score of 0% indicates that the disentanglement
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approach has no effect on speaker identification. The following equations define GV D and

DeID as described in [68,103].

GV D = 10log10
Ddiag(Mdd)

Ddiag(Moo)
(3.8)

DeID = 1− Ddiag(Mod)

Ddiag(Moo)
(3.9)

where Mdd, Moo and Mod are voice similarity matrices and Ddiag(M) is called the diagonal

dominance. In this paper, o stands for the baseline (original) model and d stands for the

disentangled model. A voice similarity matrix MAB = (M(i, j))1≤i≤N,1≤j≤N is defined for a

set of N speakers where each entry M(i, j) defines the similarity between speaker i and j,

calculated as:

MAB(i, j) = sigmoid(
1

ninj

∑
1≤k≤ni and 1≤l≤nj

k ̸=l if i=j

LLR(x
(i)
k , x

(j)
l )) (3.10)

where LLR(x
(i)
k , x

(j)
l ) is the log-likelihood-ratio obtained from Probabilistic Linear Discrimi-

nant Analysis (PLDA) model between segment k from speaker i and segment l from speaker

j. ni and nj are number of segments from speaker i and speaker j, respectively. A and B

denoted the models from which speaker representations x
(i)
k and x

(j)
l are taken, respectively.

The diagonal dominance is defined as the absolute difference between average diagonal

and off-diagonal elements as follows:

Ddiag(M) =

∣∣∣∣∣∣∣∣
∑

1≤i≤N

M(i, i)

N
−

∑
1≤j≤N and 1≤k≤N

j ̸=k

M(j, k)

N(N − 1)

∣∣∣∣∣∣∣∣ (3.11)
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3.3 Training and Evaluation Scheme

In general, to avoid overfitting the models to the training set, one or more of the following

mechanisms were adopted - 1) random cropping and selection of segments to ensure class

imbalance does not influence results along with aggregation of 5 models (empirically chosen,

similar to 5-fold cross validation) trained with different random seeds to average the effects of

random segmentations, 2) reduction of learning rate using a factor of 0.9 when the validation

loss does not reduce for two successive epochs and 3) dropout with p = 0.6 for LSTM-only,

0.5 for ECAPA-TDNN, and 0.05 for CNN-LSTM models.

In the case of the DAIC-WOZ dataset, all three above-mentioned methods were used.

Each utterance was randomly cropped into fragments of the length of the shortest utterance,

and each fragment was further segmented into multiple segments. Segment lengths were set

to 3.84 seconds, which corresponds to 120 frames for Mel-spectrogram, 61440 samples for

raw-audio, 200 frames for Wav2vec2.0 features, and 193 frames for ContentVec, WavLM, and

Whisper. A training subset was generated by randomly sampling, without replacement, an

equal number of depression and non-depression segments. Five separate models were trained

for each experiment using randomly generated training subsets.

In contrast, for the EATD and the CONVERGE datasets, only mechanisms 2 and 3 were

used. Since EATD had utterances with equal duration and CONVERGE had a sufficient

number of samples, segments were generated without random cropping and sampling but the

segment length was kept the same as DAIC-WOZ (3.84s). Each experiment was performed

by training only one model using all of the training data. Same as before, this was done to

ensure that the improvements observed from the proposed approach were not attributed to

training data sub-sampling.

At the evaluation stage, segment-level prediction scores are rounded to 0 or 1, representing

“non-depressed’ or “depressed’ classes, respectively. Then, each model generates a speaker-level
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prediction score by averaging all segment-level scores. For experiments conducted on the

DAIC-WOZ dataset where more than one model is trained, 5-model prediction aggregation is

performed using two different methods - averaging (5M-AVG) or majority voting (5M-MV).

For the averaging method (5M-AVG), speaker-level scores from all models are averaged

and rounded for each individual. In contrast, for the majority voting method (5M-MV),

speaker-level scores for all models are first rounded, and then a majority vote is taken. All

rounding operations use a threshold of 0.5 to determine the final predicted class label for

each individual.

For the speaker-separability experiments, Probabilistic Linear Discriminant Analysis

(PLDA) models are trained using embeddings of 25 speakers (randomly selected). For GV D

computation, two PLDA models are trained separately - one using embeddings from the

baseline and the other using embeddings from the disentangled model. On the other hand,

for DeID computation, a single PLDA model is trained by combining embeddings from both

baseline and disentangled models. Evaluation of GV D and DeID is done on the remaining 10

speakers. For each speaker, to reduce computational complexity, 50 segments are randomly

chosen and similarity matrices are generated from the equations described in Section 3.2.2.

The Log-likelihood scores in the referenced equations are computed using the trained PLDA

models. The experiments are repeated three times using different random seeds and the

average GV D and DeID are reported.

Lastly, all model hyperparameters, including learning rate, batch size, and learning

rate decay, are kept the same for both the baseline and the corresponding disentanglement

experiments. The only hyperparameter that varies is the λ parameter, which controls the

degree of disentanglement. For baseline experiments, λ is set to 0, while for disentanglement

experiments, λ is selected empirically to achieve the desired level of disentanglement in the

latent representations.
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3.4 Chapter Summary

In this chapter, we provide a comprehensive overview of the models, evaluation metrics

and the model training scheme employed in our study. We describe the characteristics and

properties of each dataset, including the DAIC-WOZ (English), EATD (Mandarin), and

CONVERGE (Mandarin) datasets, highlighting their relevance to our research. Furthermore,

we discuss the various input features utilized, such as Mel-spectrograms, raw audio signals,

and high-level features extracted from pre-trained self-supervised learning models. We also

present the architectures of the models used in our experiments, including the CNN-LSTM,

X-vector with CNN, ECAPA-TDNN, and LSTM-only models, along with the training and

evaluation mechanism. Finally, we introduce the depression classification evaluation metrics,

such as the F1 score, as well as the privacy-related metrics, including the Gain of Voice

Distinctiveness (GVD) and De-Identification Score (DeID), which are used to assess the

performance and effectiveness of our proposed methods in terms of both depression detection

accuracy and speaker privacy preservation.
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Chapter 4

Data Augmentation for Depression

Detection from Speech

In this chapter, we discuss our work, FrAUG, [84] on a frame rate-based data augmentation

method for depression detection from speech.

4.1 Background

Recently, speech-based automatic diagnosis of depression has gained significant momentum [2,

4,24] and advancements in deep learning have pushed their performance to newer heights [41,

42,61,70,87,114]. However, data scarcity still remains one of the major challenges in building

reliable systems for MDD modeling purposes because collection of such data can be expensive

and challenging. Therefore, there is a need to adopt data augmentation strategies to increase

the amount of training data. However, conventional data augmentation techniques (e.g.,

Vocal-Tract Length Perturbation, VTLP [46], pitch-shifting and speed perturbation [87])

can be counter-productive when applied to para-linguistic applications such as depression

detection because manipulation of acoustic features such as pitch or formants may result in
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loss of useful information related to the underlying health condition.

Previously, Generative Adversarial Network (GAN) [40] based data augmentation was

proposed for depression detection [114]. However, GANs themselves require a significant

amount of training data to be effective. In [70], a multi-window data augmentation was

proposed for emotion recognition which used multiple frame-widths. However, the methods

proposed in [42,70,87] were not compared with conventional data augmentation techniques

and were only evaluated using one model that is trained from scratch.

In contrast, in our work, a frame rate based data augmentation technique is proposed

for the task of depression detection from speech signals. New feature samples were created

by varying the frame-width as well as the frame-shift during the feature extraction process.

By changing the frame rate parameters, the model was provided with different sets of time-

frequency resolutions during the training stage. This ensured that acoustic parameters which

are thought to correlate with the mental state of the speaker (e.g., pitch, formant frequencies,

speaking-rate etc. [2, 19]) were not inadvertently modified. Additionally, it is shown that

the proposed method outperforms conventional data augmentation methods and can also be

applied in the pretraining stage of a model.

4.2 Method

In this section, we describe the proposed data augmentation technique, FrAUG. Given an

input speech signal x[n], the windowing and feature extraction process for spectral features

can be represented as:

Xr[k] =
L−1∑
m=0

x[m]w[rR−m]e−j(2πk/N)m, (4.1)

where, w[rR−m] is the sliding window, r ∈ Z, N is the DFT size, L is the frame-width and

R is the frame-shift [75]. The windows overlap by O = L−R. R and O are usually specified
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as a fraction of L, which is specified in time or number of samples.

Changing the values of L and R and thereby the frame rate, changes the time-frequency

resolution of the extracted features. A smaller window length leads to a wide-band spectro-

gram with better time-resolution whereas a larger window length results in a narrow-band

spectrogram with better frequency resolution (See Figure 4.1). Conventionally, to balance

resolutions between time and frequency, the parameters L, R and O are fixed. A Hamming

window with L = 25ms and R = 40% (i.e R = 10ms) is the most common configuration [73].

Figure 4.1: Wide-band and Narrow-band spectrograms for the same speech signal

In FrAUG, given a baseline frame-rate with parameters (L1, R1), we augment the training

data with features extracted using multiple frame rates with parameters Li and Rj where

i, j ∈ N. For example, to perform an 8-fold augmentation, frame widths of L2, L3 and frame-

shifts R2, R3 are used along with baseline parameters, resulting in 9 different combinations

such as (L1, R2),(L2, R3),(L3, R2), etc. Thus, the model is provided with 8 additional time-

frequency resolutions in the training stage. The main advantage of the proposed method is

that it does not alter vocal tract or voice source parameters and is independent of the dataset

and model used. FrAUG can be extended to other acoustic features as well.
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Figure 4.2: FrAUG provides multiple time-frequency resolutions at the training stage

4.3 The Experimental Setup

The proposed method was applied on two different models using three distinct datasets and

two different input acoustic features. For the English DAIC-WOZ dataset and the Mandarin

EATD dataset, a DepAudioNet [61] was trained using mel-spectrograms. To demonstrate that

the proposed method generalizes to other model frameworks, for the CONVERGE dataset,

a pretrained x-vector embedding generator trained on MFCCs followed by a convolutional

neural network (CNN) backend was used. The models used in this work are described in the

following subsections.

4.3.1 Models

DepAudioNet

For the English DAIC-WoZ dataset, the CNN-LSTM model based on the DepAudioNet

framework (explained in Section 3.1) was used. The inputs to the model were 40-dimensional

Mel-Spectrograms and the model parameters were - one Conv1D layer (C = 128, K = 3,

S = 1) and two unidirectional LSTM layers (H = 128). Pre-processing of features, as

explained in Section 3.3, using random sampling and cropping, was applied.

For the baseline experiments, mel-spectrograms were extracted with frame rate parameters
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of L = 64ms, and R = 50%, as proposed in [61]. When FrAUG was applied, training data

were augmented with up to 8 folds using additional frame rates with parameters L = 32ms

and L = 128ms and an overlap R of 25% and 10%. The augmentation frame rates were

chosen empirically. Even when augmentation was applied, mel-spectrograms for test and

development sets were extracted at the baseline frame rate.

For the EATD dataset, the model parameters were the same as those used for the DAIC-

WOZ dataset when Mel-spectrograms were used as input features. However, pre-processing of

the training data was not adopted. Similar to the DAIC-WoZ dataset, baseline experiments

used mel-spectrograms with frame rate parameters of L = 64ms, and R = 50% and up to 8

folds of data augmentation was evaluated.

4.3.2 X-vector Embedding with CNN Classifier

For the CONVERGE dataset, the x-vector embeddings with downstream CNN classifier

framework was used (explained in Section 3.1). The x-vector model was pre-trained using

CN-Celeb [33], a Mandarin speaker ID dataset. A Kaldi recipe was followed for training the

x-vector model [53]. After pre-training the x-vector model, embeddings for the CONVERGE

dataset were generated which were then used to train a downstream CNN network for

classifying depression. Frame-rate-based data augmentation was only applied during the

training of the downstream network i.e. embeddings were extracted for the augmented

depression training data along with the unaugmented development and test data.

x-vector embeddings for the baseline experiments were generated using MFCCs extracted

with frame rate parameters of L = 25ms and R = 40%, as proposed in [99]. When

FrAUG was applied, x-vectors were generated using MFCCs extracted with additional

frame rate parameters of L = 10ms, L = 32ms and R = 50%, R = 25%. Similar to the

previous experiment, augmentation frame rates were chosen empirically and up to 8-fold data

augmentation was evaluated. Test and development set features were always extracted at the
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baseline frame rates.

4.4 Results and Discussion

The effectiveness of the proposed approach is demonstrated in three stages – first, using the

DAIC-WoZ English data. Then, the performance of the proposed method is compared to

conventional data augmentation techniques and lastly, the generalizability of the proposed

method is evaluated by applying it to two different datasets in Mandarin. For the EATD

dataset, the training data was used with no pre-processing. For the CONVERGE dataset a

different backend system was used with different input acoustic features compared to the

DAIC-WoZ dataset. Model performance is reported in terms of the F1-score [16] which is the

harmonic mean of precision and recall. Statistical significance (p < 0.05) was evaluated using

the McNemar’s test [64]

4.4.1 Multi Frame Rate Training

In the first set of experiments, DepAudioNet models were trained on the DAIC-WOZ dataset

using different combinations of single frame rate and multiple frame rates. In this work,

DepAudioNet was chosen as a baseline mainly because of DepAudioNet’s open-source code [9].

Performance comparison of single rate training versus multiple frame rate training on the

development set of the DAIC-WOZ dataset is shown in Table 4.1. The baseline frame rate of

L = 64ms,R = 50% has an F1-score of 0.619. This is comparable to the reported F1-scores

of 0.610 in prior works [9, 61]. In contrast, the best performing configuration is the one with

5-fold data augmentation with multiple frame rate hyper-parameters of L = 64ms, 128ms

and R = 50%, 25%, 10%. Higher folds of data augmentation were also evaluated but 5-fold

produced the best results.

The best performing system has an F1-score of 0.656, a relative improvement of 5.97%
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(p = 4.72e−6) when compared to the baseline. This best performing configuration is

better than any of the single frame rate performances, including when only the frame-

widths are manipulated as in [70]. A possible explanation for this result might be that

a particular combination of time-frequency resolutions, provided to the model in FrAUG,

contains depression-related information that is not available to the model when trained using

single frame rate features.

Table 4.1: Results, in terms of F1-score, comparing single frame rate training versus multi
frame rate training using DepAudioNet and the DAIC-WOZ development set. L and R
represent frame-width and frame-shift, respectively. ∗ denotes the baseline F1-score. The
best F1-score is boldfaced.

↓ L\R → 50% 25% 10% 50%, 25% 50%, 10% 25%, 10% 50%, 25%, 10%
32ms 0.601 0.604 0.569 0.606 0.633 0.562 0.604
64ms 0.619∗ 0.638 0.587 0.612 0.620 0.599 0.613
128ms 0.648 0.627 0.588 0.618 0.628 0.638 0.616

32ms, 64ms 0.637 0.607 0.579 0.615 0.617 0.623 0.602
64ms, 128ms 0.635 0.612 0.576 0.620 0.625 0.617 0.656
32ms, 128ms 0.623 0.633 0.590 0.647 0.610 0.602 0.615

32ms, 64ms, 128ms 0.626 0.607 0.546 0.655 0.600 0.582 0.596

4.4.2 FrAUG versus Conventional Data Augmentation Methods

To compare FrAUG with conventional data augmentation techniques, DepAudioNet models

were trained using the DAIC-WOZ dataset with FrAUG, noise augmentation [99] and VTLP-

based augmentation [60,113]. The noise augmentation method was similar to the one used in

Kaldi. The MUSAN library [98] was used to augment every utterance with randomly chosen

foreground noise samples at SNRs of 0,5,10, or 15 dB [99]. The VTLP augmentation was

based on the nlpaug library [60] and the method proposed in [46]. For every augmentation

method, up to 8-folds of data augmentation was applied and the best performing configuration

was selected. The results comparing these augmentation methods are presented in Table 4.2.

In case of noise, 7-fold augmentation performed the best and for VTLP, 3-fold augmentation
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was the best. In contrast, for FrAUG, 5-fold augmentation performed the best.

Table 4.2: Results, in terms of F1-score, for depression detection on the DAIC-WOZ dataset
comparing proposed method with conventional data augmentation techniques. The best
F1-score is boldfaced.

Augmentation
Strategy F1-AVG Data

Augmentation
Baseline 0.619 None
Noise [98] 0.579 7x
VTLP [46] 0.630 3x
FrAUG 0.656 5x

As seen in Table 4.2, FrAUG outperforms noise augmentation by 13.2% (p = 3.43e−6) and

VTLP by 4.1% (p = 4.92e−6). One possible explanation for this result is that VTLP alters

the spectral shape and therefore might be preserving less information about the depressive

state of the speaker. In case of noise augmentation, a domain mis-match between training and

development data (noisy vs clean) may be the reason for degraded performance. This shows

that FrAUG can serve as an effective data augmentation strategy for depression detection

without interfering with task-related acoustic information.

4.4.3 Extension to EATD and CONVERGE Dataset

To show that the proposed approach is independent of the dataset, the pre-processing, the

model or the input acoustic feature, it was evaluated on the EATD and the CONVERGE

datasets using embeddings extracted from a pre-trained x-vector system and the DepAudioNet

without pre-processing, respectively. For the Converge dataset, the extracted embeddings

were used to train a CNN model to classify utterances as cases (depressed) or controls

(healthy). 3x, 5x and 8x data augmentation was applied.

The effectiveness of FrAUG when applied to the EATD and CONVERGE datasets is

evident from the results presented in Tables 4.4 and 4.3. For the CONVERGE dataset,

in comparison to the baseline F1-score of 0.674 (development) and 0.664 (test), the best
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Table 4.3: Results, in terms of F1-score, for depression detection on the EATD dataset using
DepAudioNet model, with and without FrAUG. The best F1-score is boldfaced.

L,R Configuration F1-Avg Data
Augmentation

Baseline
(L=64ms,R=50%) 0.517 None

L=64ms, 128ms
R=50%, 25% 0.523 3x

L=64ms, 128ms
R=50%, 25%, 10% 0.549 5x

L=32ms, 64ms, 128ms
R=50%, 25%, 10% 0.551 8x

Table 4.4: Results, in terms of F1-score, for depression detection on the CONVERGE dataset
using x-vector embeddings with a CNN classifier as the backend, with and without FrAUG.
The best F1-score is boldfaced.

L,R Configuration development Test Data
Augmentation

Baseline
(L=25ms,R=40%) 0.674 0.664 None

L=10ms, 25ms
R=40%, 25% 0.708 0.699 3x

L=10ms, 25ms
R=40%, 50%, 25% 0.721 0.710 5x

L=10ms, 25ms, 32ms
R=40%, 50%, 25% 0.729 0.723 8x

performing configuration (8-fold augmentation) has a performance of 0.729 and 0.723, respec-

tively. This is an improvement of 8.21% on the development set (p = 6.03e−6) and 8.77%

on the test set (p = 5.91e−6). Even though the downstream model was trained on x-vector

embeddings and not on the acoustic features themselves, FrAUG improves the classification

performance. This is a rather significant outcome because this shows that FrAUG can be

beneficial in improving system performance even when applied to downstream tasks after

the pre-training step. An important implication of this result is that FrAUG can be applied

irrespective of the model training style - supervised pre-training, training from scratch, etc.
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Similarly, when FrAUG is applied to the EATD dataset, the baseline performance (0.517)

improves by 6.57% when 8x data augmentation is applied showing that the performance

gains from the proposed method cannot be attributed to the random cropping and segment

selection. Additionally, the performance of both models improves consistently with increasing

amounts of training data. These results also show that the proposed approach does not

depend on specific frame rates. Instead, the FrAUG configuration can be considered as a

hyperparameter and can be tuned in a way similar to other model parameters.

4.5 Chapter Summary

In this chapter, a data augmentation method, called FrAUG, was proposed for depression

detection from speech. Training data were augmented with new feature samples created by

varying the frame-width as well as the frame-shift parameters during feature extraction. Thus,

the proposed approach did not modify vocal tract or voice source related parameters and

hence preserved acoustic information that may be important for MDD modeling purposes.

The proposed method of data augmentation performed better than a baseline system with

no augmentation and two commonly used data augmentation methods. Lastly, the generaliz-

ability of the said method was demonstrated by improvements in classification performance

on two different datasets with a different model and different input features.

FrAUG improved the classification performance of DepAudioNet [61] trained using mel-

spectrograms on the DAIC-WOZ and the EATD datasets, and of a downstream network

trained with x-vector embeddings generated from a pre-trained model [99] using MFCCs

on the CONVERGE dataset. It can therefore be suggested that the proposed method is

independent of the dataset, the language, the input acoustic features, data pre-processing,

the model or the model training style. Frame rate based data augmentation, therefore, can

be reliably used to increase the amount of training data and will prove to be useful in the
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development of large-scale MDD screening systems.

40



Chapter 5

Adversarial Speaker Disentanglement

5.1 Introduction

Depression detection through speech analysis is gaining traction in the research community.

Various acoustic features, such as x-vectors [84], i-vectors [21], and other speaker embed-

dings [26], have demonstrated their effectiveness in diagnosing a speaker’s mental state.

However, these features also carry information about the speaker’s identity [99], which can

be detrimental to privacy preservation, a crucial factor in the adoption of digital mental

health screening systems [59]. Consequently, a significant question that remains unanswered

is whether depression detection can be performed in a manner that is invariant to speaker

identity. Furthermore, it is unclear if there are components of the speech signal that char-

acterize a speaker but may not be relevant to their mental health status. Recently, two

studies introduced algorithms to preserve privacy during depression detection: [27] proposed

sine-wave speech representation, and [101] employed federated learning. However, both

studies reported a degradation in depression detection performance while attempting to

preserve patient privacy. In this chapter, we introduce the paradigm of adversarial learning

as a means to disentangle speaker and depression characteristics, aiming to address the
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challenges of privacy-preserving depression detection while maintaining high accuracy.

Adversarial speaker normalization has previously been explored in the context of emotion

recognition [38, 52, 117]. Yin et al. [117] utilized multi-modal features (speech, text, and

video) to perform speaker-invariant domain adaptation for emotion recognition. Li et al. [52]

proposed a gradient reversal technique combined with an entropy loss to disentangle emotion

and speaker information. Gat et al. [38] fine-tuned a pre-trained Hubert-base model [43], which

has 300M parameters, using gradient-based adversarial learning. However, fine-tuning such

large models can be data and computationally intensive, requiring substantial amounts of in-

domain data. Furthermore, these studies employed the IEMOCAP and MSP-Improv datasets,

which consist of monolingual and acted audio data [13,14], limiting the generalizability of

their findings to real-world scenarios. Additionally, previous work does not quantify the

amount of speaker information that was disentangled, making it challenging to understand

and analyze the effectiveness of the proposed methods.

In contrast, we propose adversarial disentanglement of speaker-identity and depression

information, using speech-features only, on datasets with conversational and non-acted speech.

In addition to Mel-spectrograms and raw-audio signals, we propose the use of ComparE16

features as well as latent representations from four large-scale pretrained models as the input

features. Further, unlike prior studies in emotion recognition, we show that the benefits

of the proposed method extend to another language (Mandarin). Lastly, we measure the

voice-privacy attributes using metrics like De-Identification Scores (DeID) and Gain of Voice

Distinctiveness (GV D) to show that the proposed method improves depression detection

performance while simultaneously reducing speaker-separability and identification. The two

above-mentioned metrics quantify the amount of speaker information that is disentangled.
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5.2 Preliminary Experiments

Preliminary experiments are conducted on the English dataset, DAIC-WOZ [104], to in-

vestigate the aspects of privacy preservation and speaker bias in the context of depression

detection. The database is described in detail in Section 2.1.

5.2.1 Privacy Preservation in Depression Detection

As previously mentioned, the utilization of speaker-related features, such as speaker embed-

dings, can inadvertently lead to individual identification. For instance, in our preliminary

work, embeddings from an ECAPA-TDNN model, recognized for its state-of-the-art perfor-

mance in Speaker Identification (SID), were employed to train a straightforward support

vector classifier (SVC) SID system. This configuration achieved an SID accuracy of 88% on the

DAIC-WOZ dataset, a well-known dataset for depression detection in English [104]. Notably,

the ECAPA-TDNN model was primarily optimized for depression detection rather than

speaker prediction. This underscores the potential privacy risks associated with depression

detection frameworks heavily reliant on speaker-related features.

5.2.2 Speaker-Bias in Depression Detection

In addition to the well-documented privacy concerns linked with an excessive reliance on

speaker features [83], another potential issue is the model’s susceptibility to overfitting on

the speakers present in the training set. To explore this matter, a straightforward approach

involves normalizing speaker information across all utterances in a dataset. This is achieved

by utilizing a voice conversion (VC) system to transform all speakers’ utterances into the voice

of a single speaker, followed by training the depression classification system on the converted

dataset. An improvement in depression classification performance following the single-speaker

conversion process compared to the baseline suggests that speaker-identity-related features
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might introduce bias in depression detection. Therefore, this section presents a preliminary

VC experiment conducted using the DAIC-WOZ dataset.

The VQMIVC (Vector Quantization and Mutual Information-Based Unsupervised Speech

Representation Disentanglement for One-shot Voice Conversion, [106]) system, known for its

state-of-the-art performance in voice conversion (VC), was employed to convert all speakers in

the DAIC-WOZ dataset into a single speaker(p334_047). Several additional steps were taken

to ensure the quality of the converted utterances. Firstly, each utterance was segmented

into non-overlapping 50-second clips, and the conversion was applied to each clip separately,

followed by concatenation. Secondly, to address the issue of audio loudness discrepancy, the

loudness of each segment in DAIC-WOZ was scaled to match the maximum loudness of the

reference waveform before conversion. Additionally, the quality of the converted audio files

was manually verified. The target speaker p334_047 was chosen because it was provided

with the demo of the VC model. Another target speaker, p225_038, was evaluated, but the

conversion quality was found to be poor.

For major depressive disorder (MDD) classification, the DepAudioNet model [61] is selected.

Both the baseline and voice conversion (VC) experiments use the same feature processing,

model hyperparameters, configurations, and dataset splits, as described in Section 2.2 and 3.1.

The results of the VC experiment are reported in Table 5.1 in terms of F1-AVG, which is the

macro average of the F1-Scores for the two classes - depressed (D) and non-depressed (ND).

The metric is explained in Section 3.2.

Table 5.1: Depression Detection performance in terms of F1-AVG on the DAIC-WOZ dataset,
with and without voice conversion (VC), using the DepAudioNet model trained using Mel-
Spectrograms.

Experiment F1-AVG
DepAudioNet [61] 0.6081
DepAudioNet+VC 0.6237

Table 5.1 illustrates that converting all utterances into a single speaker improves depression

44



classification performance, with the F1-AVG increasing from 0.6081 for the DepAudioNet

baseline to 0.6237 for the VC DepAudioNet. This finding supports the hypothesis that some

speaker-related features may introduce bias in depression detection.

However, employing voice conversion (VC) to address speaker bias in depression detection

may not be an ideal solution for several reasons. Firstly, even state-of-the-art (SOTA) VC

systems can lead to content loss for certain speakers [74], potentially resulting in the loss of

depression-related information during conversion. Secondly, there may be a dataset-domain

discrepancy between the VC training data (e.g., VCTK [105]) and the target dataset (e.g.,

DAIC-WOZ), which could still preserve speaker information and introduce bias. Notably,

the VCTK dataset comprises accented read speech by native English speakers from the UK,

while DAIC-WOZ features spontaneous American English speech directed towards a robotic

AI assistant. Furthermore, differences in channel attributes such as loudness between the

two datasets could affect the success of VC systems trained on VCTK when evaluated on

DAIC-WOZ [45]. Lastly, converting an entire dataset using VC can be computationally

intensive and necessitates meticulous manual verification, rendering it impractical for real-

world applications.

5.3 Adversarial Learning

We propose a loss-based adversarial learning mechanism for speaker-disentangled depression

detection. Inspired by the domain-adversarial training proposed in [36], our approach involves

a loss minimization-maximization technique.

Let the number of samples in a training batch be N . The loss used for the prediction of

MDD binary labels is:

LMDD = − 1

N

N∑
n=1

[Yn · log (pn) + (1− Yn) · log (1− pn)] (5.1)
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Figure 5.1: Block diagram representing adversarial disentanglement of speaker and depression
characteristics.
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Yn ∈ {0, 1} is the class label for the nth sample and pn is the probability that sample n’s

label is depressed. If we denote the total number of unique speakers as M , the adversarial

loss for speaker ID prediction is defined as -

Ladv = − 1

N

N∑
n=1

[log
exp (xn,n̂)∑M

m=1 exp (xn,m)
], (5.2)

where xn,m is the score of the nth sample’s speaker ID being predicted as speaker m where

m ∈ 1, 2, ...,M . And, n̂ is the coordinate for the ground-truth speaker ID of sample n.

To train the model in a speaker-identity-invariant manner, during optimization, we

minimize the depression loss and maximize the speaker prediction loss. This can be written

as:

Ltotal_adv = LMDD − λ(Ladv) (5.3)

where λ is an empirically determined hyperparameter that controls how much of the speaker

loss contributes to the total loss. Initial λ values were selected to be similar to those reported

in the adversarial learning literature for emotion recognition(1e-3) [117]. We experimented

with higher and lower values and chose the best performing λ values. By minimizing depression

loss and maximizing speaker prediction loss, we force the model to focus more on depression-

discriminatory information and ignore some speaker-discriminatory information, thereby

making the model invariant to changes in some speaker-specific characteristics.

5.4 Experimental Details

In this chapter, we conducted experiments using three datasets: DAIC-WOZ (English) [104],

a subset of CONVERGE (Mandarin) [55], and EATD [96]. We employed three different

backend models: 1) a modified version of DepAudioNet [61], 2) an ECAPA-TDNN model,
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and 3) an LSTM-only model. For the English dataset, we evaluated the performance using

all seven input features, while for the Mandarin datasets, we focused on Mel-Spectrogram

and Raw-Audio signals only. The choice of model parameters and features were empirically

determined during baseline pilot experiments.

5.4.1 Models

CNN-LSTM

For the DAIC-WOZ dataset, when using 40-dimensional Mel-spectrograms as input, the

model comprised one Conv1D layer (C = 128, K = 3, S = 1) and two unidirectional

LSTM layers (H = 128). When using raw audio signals, two Conv1D layers (C_1 = 128,

K_1 = 1024, S_1 = 512, C_2 = 128, K_2 = 3, S_2 = 1) and two LSTM layers (H = 128)

were employed. For 130-dimensional ComParE16 features, the model consisted of one Conv1D

layer (C = 256, K = 3, S = 1) and two unidirectional LSTM layers (H = 256).

For the EATD dataset, the model parameters were the same as those used for the DAIC-

WOZ dataset when Mel-spectrograms and raw audio signals were used as input features.

In contrast, for the CONVERGE dataset and 40-dimensional Mel-spectrograms, the model

included two Conv1D layers (K_1 = 3, S_1 = 1, K_2 = 3, S_2 = 1) and four unidirectional

LSTM layers (H = 128). When using raw audio signals, two Conv1D layers (K_1 = 1024,

S_1 = 512, K_2 = 3, S_2 = 1) and four LSTM layers (H = 512) were utilized.

ECAPA-TDNN

For the DAIC-WOZ dataset with Mel-spectrograms as input, the model consists of one Conv1D

layer (C = 128, K = 5, S = 1) followed by three SE-Res2Blocks, each with identical channel

dimension, kernel size, and stride (C = 128, K = 5, S = 1). The three SE-Res2Blocks have

increasing dilation steps of 2, 3, and 4. Our experiments revealed that using 80-dimensional
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Mel-spectrograms yielded better performance compared to 40-dimensional ones. In addition

to Mel-spectrograms, we also investigate the use of raw audio signals as input features. In

this case, one input convolution layer (C = 128, K = 1024, S = 512) is followed by three

SE-Res2Blocks with the same dimensions as those used with Mel-spectrograms.

For both Mel-spectrograms and raw audio signals, the attention dimension is set to 64,

and the embedding dimension is set to 128. The final projection layer is similar to the

CNN-LSTM architecture, but the input to the prediction layers comes from the embedding

layer, as opposed to the last hidden state of the LSTM layer in the CNN-LSTM model.

LSTM-only

The LSTM-only model, explained in Section 3.1 is used with the SSL features (Section 2.2)

and the DAIC-WOZ datasets.

5.5 Results and Discussion

The experimental results are organized and discussed as follows - First, we focus on the

DAIC-WOZ dataset and compare the performance of the proposed adversarial speaker

disentanglement methods with the baseline approaches that do not employ disentanglement.

We evaluate all considered model-feature combinations and limit our discussion of results to

segment-level probability averaging, following previous studies [8,34,61]. Next, we extend the

proposed method to the EATD and CONVERGE datasets to assess its generalizability and

effectiveness across different languages and domains. Unless otherwise specified, the reported

relative improvements are statistically significant, as determined by the McNemar’s test [64].
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5.5.1 Speaker Disentanglement with DAIC-WOZ

Figures 5.2 and 5.3 shows the relative change in MDD classification F1-AVG, and the speaker

separability metrics GV D (in dB) and De− ID (in%) for each model-feature combination

when ADV is applied, respectively. Detailed results, in terms of F1-Score for 5M-AVG and

5M-MV are presented in Tables 5.2 and 5.3, respectively. Speaker-separability results are

presented in Table 5.4.
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Figure 5.2: Relative improvements, in percentage, in MDD classification F1-Score when
speaker disentanglement is applied in the form of ADV. The X-axis of each plot represents
the 9 different feature-model combinations. 5M-AVG and 5M-MV refer to the averaging and
majority voting aggregation of the 5 models, respectively. A higher value indicates a greater
improvement in depression detection after speaker disentanglement is applied.

Across all experiments, it was observed that the MDD F1-AVG score increases when

speaker disentanglement is applied, while the GV D is negative in 8 out of 9 scenarios indicating

a reduction in speaker separability. On average, over 9 experiments, there was an improvement

of 6.53% in MDD F1-AVG. Improvements in MDD detection were statistically significant [64]

in 6 out of the 9 experiments (relative change obtained with ComparE16, ContentVec, and

Whisper were not statistically significant). Although positive trends were observed in all
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Figure 5.3: (a) GV D in dB and (b) De− ID in %, respectively, for each experiment when
speaker disentanglement is applied in the form of ADV. The X-axis of each plot represents
the 9 different feature-model combinations.
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experiments, results for Raw-Audio with ECAPA-TDNN, ContentVec with LSTM-only, and

WavLM with LSTM-only are selectively discussed below.

The ECAPA-TDNN model is trained with raw-audio signals, and the baseline setup

without disentanglement achieves an F1-AVG score of 0.6196 (5M-AVG) and 0.6941 (5M-

MV). Recall that 5M-AVG and 5M-MV refer to the averaging and majority voting aggregation

of the 5 models, respectively. The best-performing configuration is obtained when adversarial

loss maximization is applied to the ECAPA-TDNN model with raw audio signals as input.

The F1-AVG increases to 0.6939 (5M-AVG) and 0.7900 (5M-MV). This configuration has a

GV D of -0.48 dB which indicates a reduction in speaker separability when ADV is applied

and a DeID of 22% that indicates a partially successful masking of speaker identities.

ContentVec with LSTM-only, on the other hand, resulted in smaller improvements when

speaker disentanglement was applied. For example, the improvement in F1-AVG is only 0.88%

for both 5M-AVG and 5M-MV. Although the improvements in F1-AVG were small, the GV D

was -2.13 dB, the lowest among all features with a DeID of 42.5%. It is possible that because

ContentVec already includes 3 speaker disentanglement stages, features extracted from it

have lost much speaker-identity-related information, and therefore, another disentanglement

approach improves depression detection performance only marginally but can severely degrade

speaker separability, which is desirable in the context of speaker disentanglement.

In contrast, it was observed that Speaker GV D was negative for all scenarios except

WavLM LSTM-only experiments where GvD was 0.863 dB. However, the DeID for WavLM

was 83.55% indicating that although the speaker identities were successfully masked when

ADV was applied (because of positive DeID), they were still separable (positive GV D).

5.5.2 Extension to EATD and CONVERGE datasets

To evaluate the generalizability of the proposed speaker-disentanglement method to a different

language, we applied it to the EATD and the CONVERGE datasets. Results are summarized
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Table 5.2: Results, in terms of F1-Score (5 model logit average - 5M-AVG), for speaker
disentanglement through ADV using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Logit Average
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6081 0.6977 0.5185 15 8 5 7
Yes

(α = 4e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7

∆ (in %) - - 8.17 8.30 8.00 - - - -

ECAPA-TDNN No 515k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 5e-6) 529k 0.6941 0.7727 0.6154 17 6 4 8

∆ (in %) - - 5.52 2.26 9.89 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6259 0.7755 0.4762 19 4 7 5
Yes

(α = 3e-6) 459k 0.7086 0.8085 0.6087 19 4 5 7

∆ (in %) - - 13.21 4.26 27.82 - - - -

ECAPA-TDNN No 595k 0.6196 0.7391 0.5000 17 6 6 6
Yes

(α=2e-4) 609k 0.6939 0.8163 0.5714 20 3 6 6

∆ (in %) - - 11.99 10.45 14.28 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.5791 0.7234 0.4348 17 6 7 5
Adv

(α = 5e-3) 1.18M 0.6261 0.8077 0.4444 21 2 8 4

∆ (in %) - - 8.12 11.65 2.21 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=4e-6) 3.7M 0.7472 0.8627 0.6316 22 1 6 6

∆ (in %) - - 9.40 10.24 8.28 - - - -

Contentvec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=1e-2) 3.7M 0.7351 0.7805 0.6897 16 7 2 10

∆ (in %) - - 0.88 -1.29 3.45 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6429 0.7143 0.5714 15 8 4 8
Yes

(α=4e-7) 3.7M 0.6684 0.7442 0.5926 16 7 4 8

∆ (in %) - - 3.97 4.19 3.71 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6438 0.7660 0.5217 18 5 6 6
Yes

(α = 3e-5) 3.4M 0.6500 0.8000 0.5000 20 3 7 5

∆ (in %) - - 0.96 4.44 -4.16 - - - -
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Table 5.3: Results, in terms of F1-Score (5 model majority voting - 5M-MV), for speaker
disentanglement through ADV using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Majority Voting
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 4e-5) 293k 0.6941 0.7727 0.6154 17 6 4 8

∆ (in %) - - 5.52 2.26 9.89 - - - -

ECAPA-TDNN No 515k 0.7086 0.8085 0.6087 19 4 5 7
Yes

(α = 5e-6) 529k 0.7464 0.8261 0.6667 19 4 4 8

∆ (in %) - - 5.33 2.18 9.53 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 3e-6) 459k 0.7086 0.8085 0.6087 19 4 5 7

∆ (in %) - - 5.98 2.12 11.59 - - - -

ECAPA-TDNN No 595k 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=2e-4) 609k 0.7900 0.8800 0.7000 22 1 5 7

∆ (in %) - - 13.82 13.89 13.75 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.6941 0.7727 0.6154 17 6 4 8
Adv

(α = 5e-3) 1.18M 0.7619 0.8571 0.6667 21 2 5 7

∆ (in %) - - 9.77 10.92 8.34 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=4e-6) 3.7M 0.7472 0.8627 0.6316 22 1 6 6

∆ (in %) - - 9.40 10.24 8.28 - - - -

Contentvec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=1e-2) 3.7M 0.7351 0.7805 0.6897 16 7 2 10

∆ (in %) - - 0.88 -1.29 3.45 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=4e-7) 3.7M 0.7200 0.8000 0.6400 18 5 4 8

∆ (in %) - - 3.73 3.53 4.00 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 3e-5) 3.4M 0.6749 0.8235 0.5263 21 2 7 5

∆ (in %) - - 0.94 4.02 -3.52 - - - -
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Table 5.4: Speaker separability results, in terms of GV D (in dB) and DeID (in%), for speaker
disentanglement through ADV using the DAIC-WOZ dataset. The best GV D and DeID are
bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

GV D

(in dB)
DeID
in (%)

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k - -
Yes

(α = 4e-5) 293k -0.4584 14.01

ECAPA-TDNN No 515k - -
Yes

(α = 5e-6) 529k -0.2118 3.69

Raw-Audio
(61440x1)

CNN-LSTM No 445k - -
Yes

(α = 3e-6) 459k -0.5868 55.83

ECAPA-TDNN No 595k - -
Yes

(α=2e-4) 609k -0.4843 22.32

ComparE16
( 384x130) CNN-LSTM No 1.15M - -

Adv
(α = 5e-3) 1.18M -1.8526 68.37

Wav2Vec2.0-base
(200x768) LSTM-only No 3.6M - -

Yes
(α=4e-6) 3.7M -0.6503 52.43

Contentvec-100
(193x768) LSTM-only No 3.6M - -

Yes
(α=1e-2) 3.7M -2.1326 42.50

WavLM-base
(193x768) LSTM-only No 3.6M - -

Yes
(α=4e-7) 3.7M 0.863 83.55

Whisper-base
(193x512) LSTM-only No 3.4M - -

Yes
(α = 3e-5) 3.4M -1.7630 90.29
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in Tables 5.5 and 5.6.

Table 5.5: Results, in terms of F1-AVG, Confusion-Matrix, GV D and DeID, for speaker
disentanglement through ADV using the development set of EATD dataset. TN, FP, FN,
and TP are True Negative, False Positive, False Negative, and True Positive, respectively.
The best F1-Score is bold-faced.

Confusion Matrix

Feature-Model Speaker
Disentanglement # Params F1-AVG TN FP FN TP GV D

(in dB)
DeID
(in %)

Mel-Spectrogram
CNN-LSTM

No 415k 0.5166 58 10 9 2 - -
ADV ( α = 2e− 4) 430k 0.5756 56 12 7 4 -1.3478 63.49

Raw-Audio
CNN-LSTM

No 445k 0.643 62 6 7 4 - -
ADV ( α = 4e− 5) 456k 0.720 62 6 5 6 -0.8827 51.21

For the EATD dataset, the results demonstrate that applying ADV to the CNN-LSTM

model trained on Mel-Spectrograms leads to a 5.9% increase in F1-AVG, from 0.5166 to

0.5766, with a GV D of -1.3478dB and a DeID of 63.49%. When Raw-audio is used as the

input feature, similar improvements in depression detection are observed. The F1-AVG for

MDD prediction increases by 11.99%, from 0.6430 for the baseline model to 0.7201 for the

proposed method (λ = 3e − 5), with a GV D of -0.8827dB and a DeID of 51.21%. These

findings suggest that speaker-identity-related information poses a significant challenge across

multiple datasets, and our proposed method demonstrates the potential to effectively mitigate

these issues. Recall that for the EATD dataset, the evaluations were performed using the

development splits as provided with the dataset description (see Section 2.1 for details)

For the CONVERGE dataset, the results show improvements in depression detection per-

formance, but the privacy attribute enhancements are limited. When using Mel-Spectrograms,

the depression detection F1-AVG increases from 0.879 to 0.890, but the GV D is only -0.12

dB, with a DeID score of 17.53%. Similarly, when RAW-Audio signals are used as input, the

F1-AVG improves from 0.829 to 0.857%, but the GV D is a mere -0.0147 dB, and the DeID

is only 4.13%. The homogeneity of the dataset, which consists of only female speakers and

severely depressed participants, may contribute to the limited effectiveness of the speaker
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disentanglement methods in this case. It is possible that the characteristics of this dataset

hinder its ability to fully benefit from the proposed approach.

Table 5.6: Results, in terms of F1-AVG, Confusion-Matrix, GV D and DeID, speaker disentan-
glement through ADV using the test set of the CONVERGE dataset. TN, FP, FN, and TP
are True Negative, False Positive, False Negative, and True Positive, respectively. The best
F1-Score is bold-faced.

Confusion Matrix

Feature-Model Speaker
Disentanglement # Params F1-AVG TN FP FN TP GV D

(in dB)
DeID
(in %)

Mel-Spectrogram
CNN-LSTM

No 415k 0.879 475 139 125 446 - -
ADV ( α = 2e− 4) 430k 0.890 512 102 94 477 -0.1217 17.53

Raw-Audio
CNN-LSTM

No 445k 0.829 443 131 147 424 - -
ADV ( α = 3e− 5) 456k 0.857 456 144 132 439 -0.0147 4.13%

5.6 Chapter Summary

Rewritten paragraph: In the field of depression detection, features such as x-vectors and

i-vectors have proven to be valuable. However, despite their effectiveness, these features also

carry information about the speaker’s identity, which can raise concerns about privacy in

the context of a major depressive disorder (MDD) diagnosis system. Excessive reliance on

speaker-identity features may hinder the adoption of speech-based assessment methods due

to privacy considerations.

To address this challenge, we propose an adversarial disentanglement approach in this

chapter, aiming to separate speaker identity from depression status. Our method demonstrates

that speaker-identity invariant models can enhance MDD classification performance across

various features and multi-lingual datasets. When applied to the English DAIC-WoZ dataset,

our approach yields a 13.82% improvement over the baseline when using an ECAPA-TDNN

model trained on Raw-Audio signals. Similar improvements are observed across all seven

model-feature combinations, along with a reduction in speaker separability, as measured by

the Gain of Voice Distinctiveness (GV D) and De-Identification (DeID) metrics.
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Furthermore, we show that our method generalizes to datasets in another language,

specifically Mandarin, through experiments on the EATD and CONVERGE datasets. On

the EATD dataset, an 11.99% improvement is achieved when using Raw-Audio with a

CNN-LSTM model, resulting in an F1-Avg of 0.72. For the CONVERGE dataset, using

Mel-Spectrograms with a CNN-LSTM model leads to an F1-Avg of 0.890, compared to the

baseline F1 score of 0.879, representing a 1.25% improvement. These results demonstrate

that by mitigating the influence of speaker-specific characteristics, our approach emphasizes

the essential features related to depression, ultimately enhancing diagnostic performance.
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Chapter 6

Speaker Disentanglement via Loss

Equalization

6.1 Introduction

Speaker information can hinder the privacy attribute of a depression detection system and,

in some cases, act as a bias factor, leading to incorrect decision-making. To address this

challenge, Chapter 5 proposed a speaker-identification (SID) loss-maximization approach

using an adversarial training mechanism. While such loss maximization approaches have

been widely used in speech-related tasks, the adversarial SID loss is unbounded due to

the log-function in Eq.5.2, which can sometimes result in poor model convergence [112].

Furthermore, during cross-entropy loss optimization in the SID branch, as shown in Eq. 5.2,

only the probability of the specific speaker n̂ corresponding to that sample xn is considered.

In other words, the numerator contains only the probability of the target speaker, while the

denominator uses probabilities for all speakers. Since the denominator serves as a normalizer,

its value is shared across all samples. As a result, the numerator becomes the primary

contributor to the loss term for the given target speaker, leaving the other probabilities

59



unused, which can limit the potential for disentangling speaker information.

To address the limitations of adversarial loss maximization, this chapter introduces

loss equalization-based approaches. Three variants of loss equalization are proposed: loss

equalization with variance, loss equalization with cross-entropy, and loss equalization with

KL (Kullback–Leibler) divergence. We start with an L2-regularization-based approach

in loss equalization with variance followed by classification-loss-based approach in loss

equalization with cross-entropy, and finally a probability-distribution matching approach

in loss equalization with KLD. The main idea behind these methods is to equalize the loss

contributions across all speaker coordinates, ensuring that the model does not rely on any

specific speaker information for depression detection. By doing so, the proposed approaches

aim to effectively disentangle speaker information from the depression-related features, leading

to a more privacy-preserving and unbiased depression detection system. Experiments are

conducted across various settings to evaluate the performance of the proposed loss equalization

methods and compare them with their adversarial counterpart. The voice-privacy attributes

are measured using DeID and GV D as was done in Chapter 5. The results demonstrate that

the loss equalization approaches can achieve comparable or even better performance than

the adversarial loss maximization method, highlighting their effectiveness in addressing the

challenges associated with speaker information in depression detection systems.

6.1.1 SID-loss Equalization with Variance

To overcome the limitations of adversarial loss maximization, a loss equalization-based

approach is proposed. Instead of forcing the model to make wrong predictions about

speaker identity, equalization methods tend to confuse the model so that it is unable to

distinguish speaker classes through a uniform regularization process similar to an L2 norm.

The equalization loss is formulated as follows:
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LEvar =
1

N

N∑
n=1

[||σ(xn)− e||2] (6.1)

where e = [1/M, 1/M, ..., 1/M ] is the vector that assigns equal probability to each speaker

in a uniform manner, with length M and xn is the M-dimensional output logit obtained

from the model and σ is the softmax function to convert logits to probabilities. The number

of samples in a training batch is denoted as N . Since the new loss term is meant to be

minimized, the objective function is defined as follows:

Ltotal_Evar = LMDD + λ(LEvar), (6.2)

In the initial experiments using Eq. 6.1, it was observed that the model learned to predict

the e-vector very easily within a few epochs without learning to disentangle speakers i.e., the

speaker prediction branch was overfitting to directly predict the e-vector without tangible

speaker disentanglement. We refer to this situation as the “trivial” solution. To avoid this

scenario, additive noise (U(0, 1)) is injected into the vector e. This method is referred to as

Loss equalization with Variance (LEV) in further sections.

6.1.2 SID-loss Equalization with Cross-Entropy

In LEV, loss-equalization is achieved via the L2 loss. Alternatively, loss-equalization can

also be achieved by minimizing the Cross-Entropy loss between the speaker prediction

probabilities and a ones-vector of the same dimension. Mathematically, the equalization loss

can be formulated as:

LEce = − 1

N

N∑
n=1

M∑
m=1

[yn,m · log σ(xn,m) + (1− yn,m) · log (1− σ(xn,m))] (6.3)

Where yn = [1, 1, ..., 1] is the M-dimensional target vector and xn is the M-dimensional

61



output logits of the models for the nth sample, respectively. σ is a Softmax function to convert

logits to probabilities. Since yn,m = 1 for all n,m, the above equation can be simplified as -

LEce = − 1

N

N∑
n=1

M∑
m=1

[log σ(xn,m)] (6.4)

Therefore, the total loss can be written as -

Ltotal_ECE = LMDD + λ(LEce), (6.5)

This method is referred to as Loss equalization with Cross-Entropy (LECE) in further

sections.

6.1.3 SID-loss Equalization with KL Divergence

Another approach to achieve speaker disentanglement is by manipulating the distribution

of the SID-prediction logits. We hypothesize that a uniform distribution for SID logits can

help in disentangling speaker identity and MDD characteristics. To achieve this, we propose

to minimize the KL-divergence loss between the normalized predicted logits and a uniform

vector e. We denote this method as LEKLD in the following sections. The KL-divergence

based equalization loss is formulated as:

LEKL = LKL(x, e)

=
1

N

N∑
n=1

M∑
m=1

em · (log(em)− log(σ(xn,m)))
(6.6)

where xn,m and em stand for the mth element in predicted logits xn and uniform vector e,

respectively and σ is the Softmax function. Thus, the final loss with KL-divergence term is

computed as:
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Ltotal_EKL = LMDD + λ(LEKL), (6.7)

6.2 Experimental Details

In this chapter, we conducted experiments using two datasets: DAIC-WOZ (English) [104],

and the EATD [96]. Unlike the experiments in Chapter 5, the CONVERGE dataset was

not included in the evaluations for this chapter. This decision was made based on the

observations reported in Chapter 5, where minimal gains were achieved when applying

speaker disentanglement techniques to the CONVERGE dataset. The limited improvements

in performance and privacy metrics on this dataset suggest that the speaker information

may not be a significant factor in the depression detection task for this particular dataset.

This could be attributed to the homogeneous nature of the CONVERGE dataset, which

consists of only female speakers and severely depressed participants. As a result, focusing

on the DAIC-WOZ and EATD datasets, which showed more promising results with speaker

disentanglement, allows for a more targeted evaluation of the proposed loss equalization

methods and their effectiveness in improving depression detection while preserving speaker

privacy.

In terms of the backend model, we employed three different backend models: 1) a modified

version of DepAudioNet [61], 2) an ECAPA-TDNN model, and 3) an LSTM-only model.

For the English dataset, we evaluated the performance using all seven input features, while

for the Mandarin dataset, we focused on Mel-Spectrogram and Raw-Audio signals only. All

model parameters such as number of layers, number of channels of convolutional filters, stride,

kernel size, etc were the same as those described in Section 5.4
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6.3 Results and Discussion

The results section is organized in a similar way to that used in Chapter 5 and is as follows

- first, we present the results of the DAIC-WOZ dataset and compare the performance of

the proposed loss-equalization based speaker disentanglement methods with the baseline

approaches that do not employ disentanglement. Next, we compare the performance of

loss-equalization methods with the adversarial method proposed in Chapter 5. Lastly,

the proposed method is extended to the EATD dataset to assess its generalizability and

effectiveness across different languages and domains. Unless otherwise specified, the reported

relative improvements are statistically significant, as determined by the McNemar’s test [64].

6.3.1 Loss Equalization with Variance (LEV)

Figures 6.1 and 6.2 show the relative improvement in MDD classification F1-AVG, and

the speaker separability metrics GV D (in dB) and De− ID (in %) for each model-feature

combination when LEV is applied, respectively. Detailed results, in terms of F1-Score for

5M-AVG and 5M-MV are presented in Tables 6.1 and 6.2, respectively. Speaker-separability

results are presented in Table 6.3. Similar to ADV, this loss function results in improvements

in MDD detection across all 9 experiments, with an average improvement in F1-AVG of 6.69%.

This is accompanied by a negative GV D in 8 out of the 9 experiments. Improvements in MDD

detection were statistically significant [64] in 5 out of the 9 experiments (relative change

obtained with Raw-Audio, ComparE16, ContentVec, and Whisper were not statistically

significant). For LEV, we discuss results from Wav2vec2 LSTM-only, ComparE16 CNN-

LSTM, Whisper LSTM-only, and WavLM LSTM-only, which considers models with the best

overall performance, highest improvement, lowest GV D and highest DeID, respectively.

In the case of LEV, Wav2vec2 features with LEV result in the best MDD classification

performance. For the baseline model without disentanglement, the F1-AVG scores are 0.6830
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Figure 6.1: Relative improvements, in percentage, in MDD classification F1-Score when
speaker disentanglement is applied in the form of LEV. The X-axis of each plot represents
the 9 different feature-model combinations. 5M-AVG and 5M-MV refer to the averaging and
majority voting aggregation of the 5 models, respectively. A higher value indicates a greater
improvement in depression detection after speaker disentanglement is applied.
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Figure 6.2: (a) GV D in dB and (b) De− ID in %, respectively, for each experiment when
speaker disentanglement is applied in the form of LEV. The X-axis of each plot represents
the 9 different feature-model combinations.
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(5M-AVG) and 0.6830 (5M-MV). When the proposed method with a hyperparameter value of

λ = 5e− 3 is applied, the F1-AVG increases to 0.6939 (5M-AVG) and 0.7619 (5M-MV). For

this case, the GV D is -0.3126 dB, and the DeID is 30.41%. A negative GV D further shows that

the disentangled speaker representations are less separable than their baseline counterparts.

The highest improvements in MDD detection are observed when ComparE16 features are

used, with a 17.94% increase in F1-AVG (5M-AVG), from 0.5791 for the baseline to 0.683

for the proposed method (λ = 2e− 4). The GV D for this model is -0.0551 dB whereas the

DeID is 79.62% indicating a successful speaker-identity masking mechanism but only a small

reduction in speaker-separability.

The lowest GV D of -2.589 dB is achieved in LEV when Whisper-base features are used with

the LSTM-only model. This feature also has a high DeID of 84.49%. Lastly, similar to ADV,

WavLM with LSTM-only and LEV results in the highest GV D of 1.5854 dB but has a DeID

of 72.71%. Although this points to a (partially) successful speaker-identity masking method,

the disentangled speaker representations are more separable than the baseline embeddings.

6.3.2 Loss Equalization with Cross-Entropy (LECE)

Figures 6.3 and 6.4 show the relative improvement in MDD classification F1-AVG, and

the speaker separability metrics GV D (in dB) and De− ID (in %) for each model-feature

combination when LECE is applied, respectively. Detailed results, in terms of F1-Score for

5M-AVG and 5M-MV are presented in Tables 6.4 and 6.5, respectively. Speaker-separability

results are presented in Table 6.6. Similar to ADV and LEV, this loss function results in

improvements in MDD detection across all 9 experiments, with an average improvement

in F1-AVG of 8.86%. Unlike the results reported for LEV in Section 6.3.1, a negative

GV D is observed in all 9 experiments. Improvements in MDD detection were statistically

significant [64] in 4 out of the 9 experiments (relative change obtained with Raw-Audio,

ContentVec, WavLM, and Whisper were not statistically significant). Similar to LEV, we
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Table 6.1: Results, in terms of F1-Score (5 model logit average - 5M-AVG), for speaker
disentanglement through LEV using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Logit Average
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6081 0.6977 0.5185 15 8 5 7
Yes

(α = 5e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7

∆ (in %) - - 8.17 8.30 8.00 - - - -

ECAPA-TDNN No 515k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 5e-2) 529k 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 3.83 3.57 4.16 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6259 0.7755 0.4762 19 4 7 5
Yes

(α = 1e-3) 459k 0.6686 0.7917 0.5455 19 4 6 6

∆ (in %) - - 6.82 2.09 14.55 - - - -

ECAPA-TDNN No 595k 0.6196 0.7391 0.5000 17 6 6 6
Yes

(α=3e-3) 609k 0.7086 0.8085 0.6087 19 4 5 7

∆ (in %) - - 14.36 9.39 21.74 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.5791 0.7234 0.4348 17 6 7 5
Yes

(α = 2e-4) 1.18M 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 17.94 8.18 34.15 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=5e-3) 3.7M 0.6939 0.8163 0.5714 20 3 6 6

∆ (in %) - - 1.60 4.31 -2.04 - - - -

ContentVec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=2e-2) 3.7M 0.7287 0.7907 0.6667 17 6 3 9

∆ (in %) - - 0.00 0.00 0.00 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6429 0.7143 0.5714 15 8 4 8
Yes

(α=2e-3) 3.7M 0.6939 0.8163 0.5714 20 3 6 6

∆ (in %) - - 7.93 14.28 0.00 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6438 0.7660 0.5217 18 5 6 6
Adv

(α = 5e-3) 3.4M 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 6.09 2.17 11.81 - - - -
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Table 6.2: Results, in terms of F1-Score (5 model majority voting - 5M-MV), for speaker
disentanglement through LEV using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Majority Voting
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 5e-5) 293k 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 3.83 3.57 4.16 - - - -

ECAPA-TDNN No 515k 0.7086 0.8085 0.6087 19 4 5 7
Yes

(α = 5e-2) 529k 0.7464 0.8261 0.6667 19 4 4 8

∆ (in %) - - 5.33 2.18 9.53 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 1e-3) 459k 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 9.90 5.25 16.66 - - - -

ECAPA-TDNN No 595k 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=3e-3) 609k 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 5.86 7.84 3.41 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α = 2e-4) 1.18M 0.7552 0.8182 0.6923 18 5 3 9

∆ (in %) - - 8.80 5.89 12.50 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=5e-3) 3.7M 0.7619 0.8517 0.6667 21 2 5 7

∆ (in %) - - 11.55 8.83 14.30 - - - -

ContentVec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=2e-2) 3.7M 0.7351 0.7805 0.6897 16 7 2 10

∆ (in %) - - 0.88 -1.29 3.45 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=2e-3) 3.7M 0.7200 0.8400 0.6000 21 2 6 6

∆ (in %) - - 3.73 8.71 -2.50 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6686 0.7917 0.5455 19 4 6 6
Adv

(α = 5e-3) 3.4M 0.6939 0.8163 0.5714 20 3 6 6

∆ (in %) - - 3.78 3.11 4.75 - - - -
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Table 6.3: Speaker separability results, in terms of GV D (in dB) and DeID (in%), for speaker
disentanglement through LEV using the DAIC-WOZ dataset. The best GV D and DeID are
bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

GV D

(in dB)
DeID
in (%)

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k - -
Yes

(α = 5e-5) 293k -0.1787 2.90

ECAPA-TDNN No 515k - -
Yes

(α = 5e-2) 529k -0.5296 5.37

Raw-Audio
(61440x1)

CNN-LSTM No 445k - -
Yes

(α = 1e-3) 459k -1.3189 61.98

ECAPA-TDNN No 595k - -
Yes

(α=3e-3) 609k -0.5953 24.06

ComparE16
( 384x130) CNN-LSTM No 1.15M - -

Yes
(α = 2e-4) 1.18M -0.0551 79.62

Wav2Vec2.0-base
(200x768) LSTM-only No 3.6M - -

Yes
(α=5e-3) 3.7M - 0.3126 30.41

ContentVec-100
(193x768) LSTM-only No 3.6M - -

Yes
(α=2e-2) 3.7M -0.1416 18.50

WavLM-base
(193x768) LSTM-only No 3.6M - -

Yes
(α=2e-3) 3.7M 1.5854 72.71

Whisper-base
(193x512) LSTM-only No 3.4M - -

Adv
(α = 5e-3) 3.4M -2.8950 84.49
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Figure 6.3: Relative improvements, in percentage, in MDD classification F1-Score when
speaker disentanglement is applied in the form of LECE. The X-axis of each plot represents
the 9 different feature-model combinations. 5M-AVG and 5M-MV refer to the averaging and
majority voting aggregation of the 5 models, respectively. A higher value indicates a greater
improvement in depression detection after speaker disentanglement is applied.

specifically discuss results for models with best overall performance, highest improvement,

lowest GV D and highest DeID. For LECE, we discuss results from ComparE16 CNN-LSTM,

Raw-Audio ECAPA-TDNN, and Whisper LSTM-only.

ComparE16 features when used with CNN-LSTM features achieved the best MDD

classification performance. In the baseline model without disentanglement, the F1-AVG

scores are 0.5791(5M-AVG) and 0.6941 (5M-MV). When the proposed method with a

hyperparameter value of λ = 1e− 7 is applied, the F1-AVG increases to 0.5800 (5M-AVG)

and 0.8011 (5M-MV). For this case, the GV D is -1.0688 dB, and the DeID is 85.10%. A

negative GV D along with a high DeID shows that identity has been successfully masked

and that the disentangled speaker representations are less separable than the corresponding

baseline representations.

The highest improvement in F1-Score is observed when Raw-Audio signals are used to
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Figure 6.4: (a) GV D in dB and (b) De− ID in %, respectively, for each experiment when
speaker disentanglement is applied in the form of LECE. The X-axis of each plot represents
the 9 different feature-model combinations.
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train the ECAPA-TDNN model. The baseline F1-AVG score improves by 18.60%, from 0.6196

(5M-AVG) to 0.7348. his feature-model combination has the highest GV D of -0.0446 dB with

a corresponding DeID of 15.62%. Although this is the highest value for GV D in the LECE

experiments, since it is still less than zero the speaker representations after disentanglement

are less separable than the corresponding baseline representations.

Similar to LEV, Whisper-base features with the LSTM model resulted in the lowest GV D

of -3.767 dB and a DeID of 86.09%.

6.3.3 Loss Equalization with KLD (LEKLD)

Figures 6.5 and 6.6 show the relative improvement in MDD classification F1-AVG, and

the speaker separability metrics GV D (in dB) and De− ID (in %) for each model-feature

combination when ADV is applied, respectively. Detailed results, in terms of F1-Score for

5M-AVG and 5M-MV are presented in Tables 6.7 and 6.8, respectively. Speaker-separability

results are presented in Table 6.9. As seen before in ADV, LEV, and LECE, every experiment

leads to an improvement in MDD detection performance with an average improvement in

MDD F1-AVG by 7.07% and a negative GV D is 8 out of 9 experiments. Improvements

in MDD detection were statistically significant [64] in 7 out of the 9 experiments (relative

change obtained with ComparE16 and ContentVec were not statistically significant). For

this method, we discuss the results from Whisper LSTM-only, Raw-Audio ECAPA-TDNN,

WavLM LSTM-only, and ComparE16 CNN-LSTM to cover models representing the best

overall performance, the highest improvement, the lowest GV D and the highest DeID.

In the case of LEKLD, the best-performing model is the Whisper LSTM-only model

with speaker disentanglement. The baseline F1-AVG of 0.6438 (5M-AVG), 0.6686 (5M-MV)

increases by 6.09% and 18.16% to 0.6830 (5M-AVG), 0.7900 (5M-MV), respectively when the

proposed method is applied (λ = 1e− 5). For this model-feature combination, the GV D is

-3.93 dB and the corresponding DeID is 69.42%.
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Table 6.4: Results, in terms of F1-Score (5 model logit average - 5M-AVG), for speaker
disentanglement through LECE using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Logit Average
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6081 0.6977 0.5185 15 8 5 7
Yes

(α = 4e-1) 293k 0.6684 0.7442 0.5926 16 7 4 8

∆ (in %) - - 9.91 6.66 14.29 - - - -

ECAPA-TDNN No 515k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 2e-7) 529k 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 3.83 3.57 4.17 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6259 0.7755 0.4762 19 4 7 5
Yes

(α = 4e-5) 459k 0.7086 0.8085 0.6087 19 4 5 7

∆ (in %) - - 13.21 4.26 27.82 - - - -

ECAPA-TDNN No 595k 0.6196 0.7391 0.5000 17 6 6 6
Yes

(α=3e-5) 609k 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 18.60 12.75 27.27 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.5791 0.7234 0.4348 17 6 7 5
Yes

(α = 1e-7) 1.18M 0.5800 0.7600 0.4000 19 4 8 4

∆ (in %) - - 0.16 5.06 -8.00 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=5e-5) 3.7M 0.7619 0.8571 0.6667 21 2 5 7

∆ (in %) - - 11.55 9.53 14.29 - - - -

ContentVec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=5e-4) 3.7M 0.7552 0.8182 0.6923 18 5 3 9

∆ (in %) - - 3.64 3.48 3.84 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6429 0.7143 0.5714 15 8 4 8
Yes

(α=2e-2) 3.7M 0.7472 0.8627 0.6316 22 1 6 6

∆ (in %) - - 16.22 20.78 10.53 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6438 0.7660 0.5217 18 5 6 6
Adv

(α = 5e-6) 3.4M 0.6684 0.7442 0.5926 16 7 4 8

∆ (in %) - - 3.82 -2.85 13.59 - - - -
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Table 6.5: Results, in terms of F1-Score (5 model majority voting - 5M-MV), for speaker
disentanglement through LECE using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Majority Voting
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 4e-1) 293k 0.6684 0.7442 0.5926 16 7 4 8

∆ (in %) - - 1.61 -1.51 5.82 - - - -

ECAPA-TDNN No 515k 0.7086 0.8085 0.6087 19 4 5 7
Yes

(α = 2e-7) 529k 0.7464 0.8261 0.6667 19 4 4 8

∆ (in %) - - 5.33 2.18 9.52 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 4e-5) 459k 0.7086 0.8085 0.6087 19 4 5 7

∆ (in %) - - 5.98 2.12 11.58 - - - -

ECAPA-TDNN No 595k 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=3e-5) 609k 0.7734 0.8511 0.6957 20 3 4 8

∆ (in %) - - 11.42 10.14 13.04 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α = 1e-7) 1.18M 0.8011 0.8750 0.7273 21 2 4 8

∆ (in %) - - 15.42 13.24 18.18 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=5e-5) 3.7M 0.7619 0.8571 0.6667 21 2 5 7

∆ (in %) - - 11.55 9.53 14.29 - - - -

ContentVec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=5e-4) 3.7M 0.7464 0.8261 0.6667 19 4 4 8

∆ (in %) - - 2.43 4.48 0.00 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=2e-2) 3.7M 0.7756 0.8846 0.6667 23 0 6 6

∆ (in %) - - 11.75 14.48 8.33 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6686 0.7917 0.5455 19 4 6 6
Adv

(α = 5e-6) 3.4M 0.7552 0.8182 0.6923 18 5 3 9

∆ (in %) - - 12.96 3.34 26.91 - - - -

75



Table 6.6: Speaker separability results, in terms of GV D (in dB) and DeID (in%), for speaker
disentanglement through LECE using the DAIC-WOZ dataset. The best GV D and DeID
are bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

GV D

(in dB)
DeID
in (%)

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k - -
Yes

(α = 4e-1) 293k -3.5427 72.13

ECAPA-TDNN No 515k - -
Yes

(α = 2e-7) 529k -0.489 5.91

Raw-Audio
(61440x1)

CNN-LSTM No 445k - -
Yes

(α = 4e-5) 459k -0.5476 53.56

ECAPA-TDNN No 595k - -
Yes

(α=3e-5) 609k -0.0446 15.62

ComparE16
( 384x130) CNN-LSTM No 1.15M - -

Yes
(α = 1e-7) 1.18M -1.0668 85.10

Wav2Vec2.0-base
(200x768) LSTM-only No 3.6M - -

Yes
(α=5e-5) 3.7M -2.6701 63.55

ContentVec-100
(193x768) LSTM-only No 3.6M - -

Yes
(α=5e-4) 3.7M -1.6775 59.11

WavLM-base
(193x768) LSTM-only No 3.6M - -

Yes
(α=2e-2) 3.7M -0.5155 76.98

Whisper-base
(193x512) LSTM-only No 3.4M - -

Adv
(α = 5e-6) 3.4M -3.7670 86.09
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Figure 6.5: Relative improvements, in percentage, in MDD classification F1-Score when
speaker disentanglement is applied in the form of LEKLD. The X-axis of each plot represents
the 9 different feature-model combinations. 5M-AVG and 5M-MV refer to the averaging and
majority voting aggregation of the 5 models, respectively. A higher value indicates a greater
improvement in depression detection after speaker disentanglement is applied.
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Figure 6.6: (a) GV D in dB and (b) De− ID in %, respectively, for each experiment when
speaker disentanglement is applied in the form of LEKLD. The X-axis of each plot represents
the 9 different feature-model combinations.
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Further, the ECAPA-TDNN model trained with Raw-Audio signals achieves the highest

improvement in MDD detection with an improvement of 18.59% in F1-AVG (5M-AVG) from

0.6196 for the baseline to 0.7348 for the proposed method (λ = 5e− 3). The GV D for this

model is -2.26 dB and the DeID is 29.56%.

Similar to ADV and LEV, the GV D for WavLM was positive (0.9268 dB). However, the

DeID for the same feature was 75%. Again, this shows that LEKLD in this scenario can

successfully mask speaker-identity but the disentangled speaker-representations are more

separable than the baseline speaker-representations. In contrast, ComparE16 features with

the CNN-LSTM model achieved the lowest GV D of -4.66 dB with a DeID of 62.68%.

6.4 Comparison with ADV

After comparing the results of loss equalization-based and adversarial speaker disentangle-

ment methods, we observed that these methods consistently improved depression detection

performance while simultaneously degrading speaker identification and separability. Among

the proposed methods, the combination of ComparE16 features with a CNN-LSTM model

achieved the highest F1-AVG score of 80% for Major Depressive Disorder (MDD) detection

when Loss Equalization with Cross-Entropy (LECE) was applied. The second-best F1-AVG

score of 79% was achieved by both the Whisper/LSTM-only model with Loss Equalization

with KL Divergence (LEKLD) and the Raw-Audio/ECAPA-TDNN model with adversarial

training (ADV). The third-best performance, with an F1-AVG score of 0.7756, was obtained

using WavLM features with an LSTM-only model and LECE. Among the nine model-feature

combinations tested, loss-equalization methods (LEV, LECE, and LEKLD) outperformed

the adversarial method (ADV) in seven scenarios, achieved equal performance in one, and

showed inferior performance in only one case. These results demonstrate the superiority

of loss-equalization methods over adversarial methods for speaker disentanglement in the
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Table 6.7: Results, in terms of F1-Score (5 model logit average - 5M-AVG), for speaker
disentanglement through LEKLD using the development set of the DAIC-WOZ dataset.
The highlighted row (∆) for each feature-model configuration indicates the relative change
in performance of that model without disentanglement versus our proposed method. TN,
FP, FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Logit Average
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6081 0.6977 0.5185 15 8 5 7
Yes

(α = 5e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7

∆ (in %) - - 8.17 8.30 8.00 - - - -

ECAPA-TDNN No 515k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 1e-1) 529k 0.6941 0.7727 0.6154 17 6 4 8

∆ (in %) - - 5.52 2.26 9.89 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6259 0.7755 0.4762 19 4 7 5
Yes

(α = 2e-3) 459k 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 9.12 0.92 22.49 - - - -

ECAPA-TDNN No 595k 0.6196 0.7391 0.5000 17 6 6 6
Yes

(α=5e-3) 609k 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 18.59 12.75 27.28 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.5791 0.7234 0.4348 17 6 7 5
Yes

(α = 1e-2) 1.18M 0.6173 0.6829 0.5517 14 9 4 8

∆ (in %) - - 6.60 -5.60 26.89 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=5e-4) 3.7M 0.7009 0.8462 0.5556 22 1 7 5

∆ (in %) - - 2.62 8.13 -4.75 - - - -

Contentvec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=5e-4) 3.7M 0.7287 0.7907 0.6667 17 6 3 9

∆ (in %) - - 0.00 0.00 0.00 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6429 0.7143 0.5714 15 8 4 8
Yes

(α=5e-1) 3.7M 0.7086 0.8085 0.6087 19 4 5 7

∆ (in %) - - 10.22 13.19 6.53 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6438 0.7660 0.5217 18 5 6 6
Yes

(α = 1e-5) 3.4M 0.6830 0.7826 0.5833 18 5 5 7

∆ (in %) - - 6.09 2.17 11.81 - - - -
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Table 6.8: Results, in terms of F1-Score (5 model majority voting - 5M-MV), for speaker
disentanglement through LEKLD using the development set of the DAIC-WOZ dataset.
The highlighted row (∆) for each feature-model configuration indicates the relative change
in performance of that model without disentanglement versus our proposed method. TN,
FP, FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Majority Voting
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 5e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7

∆ (in %) - - 0.00 0.00 0.00 - - - -

ECAPA-TDNN No 515k 0.7086 0.8085 0.6087 19 4 5 7
Yes

(α = 1e-1) 529k 0.7464 0.8261 0.6667 19 4 4 8

∆ (in %) - - 5.33 2.18 9.53 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 2e-3) 459k 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 9.90 5.25 16.66 - - - -

ECAPA-TDNN No 595k 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=5e-3) 609k 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 5.86 7.84 3.41 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α = 1e-2) 1.18M 0.7287 0.7907 0.6667 17 6 3 9

∆ (in %) - - 4.98 2.33 8.34 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=5e-4) 3.7M 0.7472 0.8627 0.6316 22 1 6 6

∆ (in %) - - 9.40 10.24 8.28 - - - -

Contentvec-100
(193x768)

LSTM-only No 3.6M 0.7287 0.7907 0.6667 17 6 3 9
Yes

(α=5e-4) 3.7M 0.7351 0.7805 0.6897 16 7 2 10

∆ (in %) - - 0.88 -1.29 3.45 - - - -

WavLM-base
(193x768)

LSTM-only No 3.6M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=5e-1) 3.7M 0.7348 0.8333 0.6364 20 3 5 7

∆ (in %) - - 5.86 7.84 3.41 - - - -

Whisper-base
(193x512)

LSTM-only No 3.4M 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 1e-5) 3.4M 0.7900 0.8800 0.7000 22 1 5 7

∆ (in %) - - 18.16 11.15 28.32 - - - -
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Table 6.9: Speaker separability results, in terms of GV D (in dB) and DeID (in%), for speaker
disentanglement through LEKLD using the DAIC-WOZ dataset. The best GV D and DeID
are bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

GV D

(in dB)
DeID
in (%)

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k - -
Yes

(α = 5e-5) 293k -0.3079 11.42

ECAPA-TDNN No 515k - -
Yes

(α = 1e-1) 529k -1.1953 1.90

Raw-Audio
(61440x1)

CNN-LSTM No 445k - -
Yes

(α = 2e-3) 459k -0.5503 37.05

ECAPA-TDNN No 595k - -
Yes

(α=5e-3) 609k -2.2619 29.56

ComparE16
( 384x130) CNN-LSTM No 1.15M - -

Yes
(α = 1e-2) 1.18M -4.6687 62.68

Wav2Vec2.0-base
(200x768) LSTM-only No 3.6M - -

Yes
(α=5e-4) 3.7M -4.5179 55.83

Contentvec-100
(193x768) LSTM-only No 3.6M - -

Yes
(α=5e-4) 3.7M -0.1199 24.40

WavLM-base
(193x768) LSTM-only No 3.6M - -

Yes
(α=5e-1) 3.7M 0.9268 75.49

Whisper-base
(193x512) LSTM-only No 3.4M - -

Yes
(α = 1e-5) 3.4M -3.9297 69.42
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context of depression detection.

6.5 Experimental Results for the EATD dataset

To evaluate the generalizability of the proposed loss equalization speaker-disentanglement

methods to a different language, we applied them to the EATD dataset. Depression detection

results for the three loss-equalization disentanglement methods, in terms of F1-Score and

Confusion Matrix, are summarized in Tables 6.10 and 6.12, when using Mel-spectrogram

and Raw-audio signals as input features, respectively. The corresponding speaker separability

results are in Tables 6.11 and 6.13. Similar to the DAIC-WoZ dataset, depression detection

performance improves for all 6 experiments with an average improvement of 11.77% for

Mel-spectrograms and 10.33% for Raw-audio signals. Improvements in MDD detection

were statistically significant in 5 out of the 6 experiments (relative change obtained when

Raw-Audio was used as input feature for LEKLD was not statistically significant).

When Mel-spectrograms are used as inputs, LECE achieves the best performance in

terms of depression detection with an F1-AVG of 0.5988 which represents an improvement

of 15.91% when compared to the baseline setup without disentanglement. In terms of

speaker-separability, LECE achieved the best results with a GV D of -2.86 dB and a DeID of

78.81%.

Similar improvements were observed when Raw-audio signals were used as input features.

The overall best performance for the EATD dataset was achieved when LECE was applied.

In this case, the F1-AVG was 0.7368, outperforming the baseline by 14.57%. The best GV D

and DeID were also obtained using LECE: -3.0941 dB and 84.73%, respectively.

Similar to the results observed on the DAIC-WoZ dataset, the performance of loss-

equalization methods on this dataset surpassed that of adversarial methods. The combination

of Raw-audio signals with a CNN-LSTM model and Loss Equalization with Cluster Em-
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Table 6.10: Results, in terms of F1-AVG and Confusion-Matrix, for all loss-equalization
based speaker disentanglement methods using the development set of EATD dataset and Mel-
Spectrogram as input features. The highlighted row (∆) for each feature-model configuration
indicates the relative change in performance of that model without disentanglement versus
our proposed method. TN, FP, FN, and TP are True Negative, False Positive, False Negative,
and True Positive, respectively. The best F1-Score is bold-faced.

Feature-Model Speaker
Disentanglement

Model
Parameters

F1-Score Confusion Matrix
F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
CNN-LSTM

No 415k 0.5166 0.8593 0.1739 58 10 9 2
LEV

(α=1e-6) 430k 0.5756 0.8550 0.2963 56 12 7 4

∆ (in %) - 11.42 -0.5 70.39 - - - -
LECE

(α=5e-6) 430k 0.5988 0.8527 0.3448 55 13 6 5

∆ (in %) - 15.91 -0.76 98.27 - - - -
LEKLD
(α=4e-4) 430k 0.5578 0.8657 0.2500 58 10 8 3

∆ (in %) - 7.98 0.75 43.76 - - - -

Table 6.11: Results, GV D and DeID, for all speaker disentanglement methods using the
development set of EATD dataset and Mel-Spectrogram as input features. The best GV D

and DeID are bold-faced.

Feature-Model Speaker
Disentanglement

GV D

(in dB)
DeID
(in %)

Mel-Spectrogram
CNN-LSTM

LEV -2.3572 58.47
LECE -2.8661 78.81

LEKLD -2.0146 64.29
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Table 6.12: Results, in terms of F1-AVG and Confusion-Matrix, for all loss-equalization
based speaker disentanglement methods using the development set of EATD dataset and
Raw-audio signals as input features. The highlighted row (∆) for each feature-model
configuration indicates the relative change in performance of that model without dis-
entanglement versus our proposed method. TN, FP, FN, and TP are True Negative,
False Positive, False Negative, and True Positive, respectively. The best F1-Score is bold-faced.

Feature-Model Speaker
Disentanglement

Model
Parameters

F1-Score Confusion Matrix
F1(Avg) F1(ND) F1(D) TN FP FN TP

Raw-audio
CNN-LSTM

No 445k 0.6431 0.9051 0.3810 62 6 7 4
LEV

(α=2e-3) 456k 0.7052 0.9104 0.5000 61 7 5 6

∆ (in %) - 9.66 0.59 31.23 - - - -
LECE

(α=4e-3) 456k 0.7368 0.8070 0.6667 63 5 4 7

∆ (in %) - 14.57 -10.84 75.12 - - - -
LEKLD
(α=1e-6) 456k 0.6865 0.9444 0.4286 68 0 8 3

∆ (in %) - 6.75 4.34 12.49 - - - -

Table 6.13: Results, GV D and DeID, for all loss-equalization based speaker disentanglement
methods using the development set of EATD dataset and Raw-audio signals as input features.
The best GV D and DeID are bold-faced.

Feature-Model Speaker
Disentanglement

GV D

(in dB)
DeID
(in %)

Raw-audio
CNN-LSTM

LEV -1.2572 63.44
LECE -3.0941 84.73

LEKLD -2.5668 69.22
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beddings (LECE) achieved the best performance, with an F1-AVG score of 0.7368. This

was followed by the Raw-audio/CNN-LSTM model with adversarial training (ADV) with

an F1-AVG of 0.720. For both Mel-Spectrogram and Raw-Audio signal representations,

loss-equalization methods consistently outperformed the adversarial method, demonstrating

their superiority in speaker disentanglement for depression detection tasks across different

datasets and input features.

6.6 Chapter Summary

This chapter introduced loss equalization methods as an alternative to adversarial speaker

disentanglement, aiming to overcome its limitations. The proposed methods were evaluated

on two datasets in different languages: the English DAIC-WoZ dataset and the EATD

dataset. On the DAIC-WoZ dataset, the loss equalization via cross-entropy (LECE) method,

combined with ComparE16 features and a CNN-LSTM model, achieved the best depression

detection performance with an F1-AVG score of 80%, surpassing the best adversarial F1-AVG

score of 79%. Among the nine feature-model combinations tested, loss equalization methods

outperformed adversarial speaker disentanglement in seven cases. On the EATD dataset,

the combination of Raw-Audio signals, a CNN-LSTM model, and LECE achieved the best

performance with an F1-AVG score of 73.68%, outperforming the adversarial training method

(ADV), which achieved an F1-AVG score of 72%. These results demonstrate the effectiveness

of loss equalization methods in improving depression detection performance across different

datasets and languages.
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Chapter 7

Unsupervised Speaker Disentanglement

7.1 Introduction

Recent studies on adversarial techniques and loss equalization have made notable progress

in improving depression detection performance while reducing reliance on features related

to patient identity. However, these approaches still face significant challenges. Firstly, they

require speaker labels from patient datasets, compromising the privacy-preserving goals of

depression detection systems. Secondly, many methods employ adversarial loss maximization

for speaker disentanglement, which, despite its effectiveness, is inherently unstable due

to the lack of upper bounds in the adversarial domain objective function [112]. Thirdly,

these methods introduce additional parameters to the model training framework, such as

adversarial domain prediction layers or reconstruction decoders, which are not essential for

the primary task of depression detection. These extra components add complexity without

directly contributing to the main objective of depression detection.

This chapter presents a novel speaker disentanglement method addressing the challenges

mentioned earlier, drawing inspiration from the growing adoption of unsupervised learning

approaches [115].
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7.2 Unsupervised Speaker Disentanglement

Recall from Section 5.3, the total loss for speaker disentanglement via adversarial learning

can be written as -

Ltotal−ADV = LMDD − α · LSPK−ADV , (7.1)

Where LMDD is the depression prediction loss and LSPK−ADV is the speaker prediction

loss for the adversarial method. α is a hyperparameter controlling the contribution of the

adversarial loss to the main loss function where the negative sign indicates that the speaker

prediction loss is maximized thereby forcing the model to learn more depression discriminatory

features and less speaker discriminatory features. The speaker prediction loss LSPK−ADV is

usually the Cross-Entropy loss defined as -

LSPK−ADV (y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

yij · log(ŷij), (7.2)

where y is the ground-truth speaker label and ŷ is the predicted speaker probabilities for N

samples and C speakers.

Similarly, the total loss for speaker disentanglement via loss equalization (refer to Sec-

tion 6.1.1) can be written as:

Ltotal−LE = LMDD + α · LSPK−LE, (7.3)

where LSPK−LE is the speaker prediction loss equalization loss. Although loss equalization is

non-adversarial, it still has a speaker prediction branch to compute the speaker prediction

loss.

The aforementioned methods face several major challenges. They require ground-truth

speaker labels (y) to achieve disentanglement. The speaker identity disentanglement relies on
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loss maximization (−α ·LSPK−ADV ), which lacks an upper bound, leading to reduced training

stability. Moreover, the speaker prediction branch, used to obtain ŷ, adds extra model

parameters that are not essential for depression detection, making the approach inefficient. In

contrast, our proposed approach offers an unsupervised method of speaker disentanglement

that addresses these issues. It eliminates the need for speaker labels from patient datasets,

avoids loss maximization, and does not introduce additional model parameters. Figure 7.1

illustrates our proposed method.

Figure 7.1: The unsupervised speaker disentanglement method (USSD) aims to minimize
cosine similarity between latent spaces of depression classification and speaker classification
models.

Let’s consider two models: a depression classification model (θMDD) and a speaker

classification model (θSPK). Given a speech input X ∈ RN×F , where N represents the batch

size and F denotes the number of features, the latent embeddings of these models can be

represented as:

HMDDX
= θMDD(X) (7.4)
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HSPKX
= θSPK(X) (7.5)

HMDDX
and HSPKX

∈ RN×D, where D represents the embedding size. We then compute

the predicted cosine similarity matrix between the two latent space embeddings. This is done

by calculating the cosine similarity between every pair of embeddings as follows:

Ypred(i,j) =
HMDDXi

·HSPKXj

||HMDDXi
|| · ||HSPKXj

||
(7.6)

where 1 ≤ i, j ≤ N and Ypred ∈ RN×N . The objective of the disentanglement process is to

minimize the cosine similarity between the two embedding spaces by enforcing orthogonality

between the depression and speaker latent spaces. To achieve this, we specifically set Ytarget

to 0, rather than -1. To enhance convergence during implementation, we incorporate a small

noise value, denoted as ϵ [54].

Ytarget(i,j) = 0 + ϵ, (7.7)

ϵ ∈ U(0, 1e− 8) (7.8)

We define the proposed speaker disentanglement loss function LUSSD as follows -

LUSSD = MSE(Ypred, Ytarget) (7.9)

and the total loss as:

Ltotal−USSD = LMDD + α · LUSSD, (7.10)

Minimizing the loss function described in Eq.7.10 drives the model to emphasize learning
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more discriminatory information related to depression while reducing its focus on speaker-

related distinctions. Our proposed method achieves speaker disentanglement through loss

minimization, in contrast to ADV (Eq. 7.1). Furthermore, unlike LE (Eq. 7.3), our approach

does not require additional parameters for a speaker prediction branch.

A key advantage of our approach is that embeddings from θSPK can be extracted without

the need for speaker labels, making the proposed speaker disentanglement method unsuper-

vised. Furthermore, only the parameters of θMDD require updating during training. The

θSPK model can remain a pre-trained model with frozen weights, eliminating the need for

fine-tuning.

7.3 Experimental Details

In this chapter, we conducted experiments using two datasets: DAIC-WOZ (English) [104],

and the EATD [96]. Similar to experiments in Section 6.2, the CONVERGE dataset was not

included in the evaluations for this chapter.

In terms of the backend model, we employed three different backend models: 1) a modified

version of DepAudioNet [61], 2) an ECAPA-TDNN model, and 3) an LSTM-only model.

For the English dataset, we evaluated the performance using Mel-Spectrogram, Raw-Audio,

ComparE16 and Wav2vec2 input features, while for the Mandarin dataset, we focused on

Mel-Spectrogram and Raw-Audio signals only. All model parameters such as number of

layers, number of channels of convolutional filters, stride, kernel size, etc are the same as

those described in Section 5.4
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7.4 Results and Discussion

7.4.1 USSD versus Baseline for DAIC-WOZ

Figures 7.2 and 7.3 show the relative improvement in MDD classification F1-AVG, and

the speaker separability metrics GV D (in dB) and De− ID (in %) for each model-feature

combination when USSD is applied, respectively. Detailed results, in terms of F1-Score for

5M-MV are presented in Table 7.1. Speaker-separability results are presented in Table 7.2.

From Figure 7.2, it can be observed that every experiment leads to an improvement in

MDD detection performance with an average improvement in MDD F1-AVG by 8.2%. The

highest improvement was 11.81%, achieved with ComparE16 features and the LSTM-only

model. The smallest improvement was 3.8%, observed with Mel-Spectrogram features and

the CNN-LSTM model. Improvements in MDD detection were statistically significant [64]

in 4 out of the 6 experiments (relative change obtained with Raw-Audio signals were not

statistically significant). The GV D is negative for all six experiments. In terms of DeID,

ComparE16 input features with CNN-LSTM model resulted in the highest DeID of 92.87%

and Mel-Spectrograms with ECAPA-TDNN models resulted in the lowest DeID of 5.97%.

7.4.2 USSD versus Baseline for EATD

The generalizability of the proposed approach is evaluated by applying the method on the

EATD dataset. The results, summarized in Table 7.3 demonstrate that applying ADV to the

CNN-LSTM model trained on Mel-Spectrograms leads to a 5.2% increase in F1-AVG, from

0.5166 to 0.5660, with a GV D of -2.756dB and a DeID of 84.5%. When Raw-audio is used as

the input feature, similar improvements in depression detection are observed. The F1-AVG

for MDD prediction increases by 12.4%, from 0.6430 for the baseline model to 0.7238 for the

proposed method (λ = 1e− 6), with a GV D of -2.457dB and a DeID of 85.9%.
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Figure 7.2: Relative improvements, in percentage, in MDD classification F1-Score when
speaker disentanglement is applied in the form of USSD. The X-axis of each plot represents
the 6 different feature-model combinations. 5M-MV refer to the averaging and majority voting
aggregation of the 5 models, respectively. A higher value indicates a greater improvement in
depression detection after speaker disentanglement is applied.
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Figure 7.3: (a) GV D in dB and (b) De− ID in %, respectively, for each experiment when
speaker disentanglement is applied in the form of USSD. The X-axis of each plot represents
the 9 different feature-model combinations.
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Table 7.1: Results, in terms of F1-Score (5 model majority voting - 5M-MV), for speaker
disentanglement through USSD using the development set of the DAIC-WOZ dataset. The
highlighted row (∆) for each feature-model configuration indicates the relative change in
performance of that model without disentanglement versus our proposed method. TN, FP,
FN and TP stands for True Negative, False Positive, False Negative and True Positive,
respectively. The best F1-Score is bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

5-Models Majority Voting
F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k 0.6578 0.7556 0.5600 17 6 5 7
Yes

(α = 1e-4) 280k 0.683 0.783 0.583 18 5 5 7

∆ (in %) - - 3.79 3.63 4.11 - - - -

ECAPA-TDNN No 515k 0.7086 0.8085 0.6087 19 4 5 7
Yes

(α = 5e-3) 515k 0.746 0.826 0.667 19 4 4 8

∆ (in %) - - 5.22 2.16 9.57 - - - -

Raw-Audio
(61440x1)

CNN-LSTM No 445k 0.6686 0.7917 0.5455 19 4 6 6
Yes

(α = 3e-4) 445k 0.746 0.826 0.667 20 3 5 7

∆ (in %) - - 11.51 4.33 22.27 - - - -

ECAPA-TDNN No 595k 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α=5e-5) 595k 0.773 0.851 0.696 20 3 5 7

∆ (in %) - - 11.38 10.13 13.09 - - - -

ComparE16
( 384x130)

CNN-LSTM No 1.15M 0.6941 0.7727 0.6154 17 6 4 8
Yes

(α = 2e-5) 1.15M 0.776 0.885 0.667 17 6 3 9

∆ (in %) - - 11.82 14.53 8.38 - - - -

Wav2Vec2.0-base
(200x768)

LSTM-only No 3.6M 0.6830 0.7826 0.5833 18 5 5 7
Yes

(α=4e-5) 3.6M 0.720 0.840 0.600 22 1 6 6

∆ (in %) - - 5.42 7.33 2.86 - - - -
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Table 7.2: Speaker separability results, in terms of GV D (in dB) and DeID (in%), for speaker
disentanglement through USSD using the DAIC-WOZ dataset. The best GV D and DeID
are bold-faced.

Input
Feature

(Seq.len x Num. of Features)

Model
Architecture

Speaker
Disentanglement

Model
Parameters

GV D

(in dB)
DeID
in (%)

Mel-Spectrogram
(120x40), (120x80)

CNN-LSTM No 280k - -
Yes

(α = 1e-4) 280k -0.2147 10.29

ECAPA-TDNN No 515k - -
Yes

(α = 5e-3) 515k -0.3228 5.97

Raw-Audio
(61440x1)

CNN-LSTM No 445k - -
Yes

(α = 3e-4) 445k -1.787 45.35

ECAPA-TDNN No 595k - -
Yes

(α=5e-5) 595k -2.5441 19.90

ComparE16
( 384x130) CNN-LSTM No 1.15M - -

Yes
(α = 2e-5) 1.15M -0.1211 92.87

Wav2Vec2.0-base
(200x768) LSTM-only No 3.6M - -

Yes
(α=4e-5) 3.6M -0.2143 58.65

Table 7.3: Results, in terms of F1-AVG, Confusion-Matrix, GV D and DeID, for speaker
disentanglement through USSD using the development set of EATD dataset. TN, FP, FN,
and TP are True Negative, False Positive, False Negative, and True Positive, respectively.
The best F1-Score is bold-faced.

Confusion Matrix

Feature-Model Speaker
Disentanglement # Params F1-AVG TN FP FN TP GV D

(in dB)
DeID
(in %)

Mel-Spectrogram
CNN-LSTM

No 415k 0.5166 58 10 9 2 - -
USSD ( α = 2e− 4) 415k 0.5660 56 12 7 4 -2.756 84.5

Raw-Audio
CNN-LSTM

No 445k 0.643 62 6 7 4 - -
USSD ( α = 4e− 5) 445k 0.7238 62 6 5 6 -2.457 85.9
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7.4.3 USSD versus Other Speaker Disentanglement Methods

The USSD method demonstrates competitive performance when compared to established

techniques like Adversarial (ADV) and Loss Equalization (LE) approaches. The best F1 scores

achieved by USSD (0.776) are comparable to those of ADV (0.79) and LE (0.8), indicating

that our method maintains high accuracy in depression detection. Notably, USSD outperforms

these methods in terms of speaker de-identification (DeID), showing superior capability in

reducing speaker-specific information. This is particularly advantageous for preserving patient

privacy in clinical applications. A key strength of USSD lies in its applicability to scenarios

where speaker labels are unavailable in the training data. This feature makes USSD especially

valuable in real-world settings where obtaining speaker labels for the training data may be

challenging or impractical.

7.4.4 Chapter Summary

The proposed method introduced in this chapter aims to reduce the cosine similarity between

the latent spaces of two models: one for depression detection and another for speaker

classification. By operating at the embedding level, we eliminate the need for speaker labels in

patient datasets, enhancing privacy protection. We reformulate the training process into a loss

minimization framework, overcoming the unboundedness issues associated with adversarial

methods. Our approach achieves efficiency by utilizing speaker classification models solely as

embedding extractors, without retraining or fine-tuning. Additionally, this strategy avoids

the need for domain prediction or reconstruction, resulting in a more streamlined model with

fewer parameters compared to previous approaches.

To validate the efficacy of our proposed method, we conducted comprehensive experiments.

The results demonstrate its superiority over baseline models lacking speaker disentanglement

in depression detection tasks. Moreover, our approach achieves performance comparable to

97



(a)

(b)

Figure 7.4: Comparison of USSD and other speaker disentanglement methods in terms of(a)
best depression detection F1 and (b) privacy attribute DeID score for DAIC-WOZ and EATD
datasets.

98



adversarial and loss equalization methods. We evaluated the framework across multiple input

features and backend models, establishing its generalizability to diverse architectures.

This approach yields superior performance compared to baseline models without disen-

tanglement. Notably, using ComparE16 features with a CNN-LSTM model and the English

dataset, we achieved an F1-Score of 0.776, outperforming the baseline by 11.7%. Using

the Mandarin EATD dataset and Raw-Audio signals, a 12.4% improvement was observed.

When compared to other speaker disentanglement methods, our Unsupervised Speaker Space

Disentanglement (USSD) achieves comparable performance in depression detection while

demonstrating improved results in speaker de-identification (DeID) - for example, using the

DIAC-WOZ dataset USSD achieves a DeID of 92% compared to ADV’s 90.29% . These

findings highlight the effectiveness of our method in balancing accurate depression detection

with enhanced privacy protection in scenarios where speaker labels are unavailable for the

training data.
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Chapter 8

Summary and Future Work

In recent years, the field of detecting depression through speech analysis has experienced

substantial growth. This innovative approach leverages advancements in machine learning

and signal processing to identify subtle vocal cues that may indicate depressive symptoms. As

a non-invasive and potentially cost-effective method, speech-based depression detection holds

promise for early diagnosis and monitoring of mental health conditions. However, significant

challenges remain.

Data scarcity presents one such challenge in the field of speech-based depression detection,

hampering the development and validation of robust detection models. Obtaining large-

scale, high-quality datasets of speech samples from individuals with depression is inherently

difficult due to several factors. Ethical considerations necessitate careful protocols to ensure

participant well-being and informed consent, adding complexity to data collection efforts.

Accurate labeling of speech samples requires professional clinical diagnoses, which are both

time-consuming and costly to obtain on a large scale. Privacy concerns surrounding mental

health data often make potential participants hesitant to contribute, further limiting data

availability.

Another critical issue that has emerged recently affecting speech-based depression detection

100



is privacy concerns surrounding speaker identity as the collection and analysis of voice data

raise questions about data security, consent, and the potential for misuse of sensitive personal

information. Voice data inherently contains unique bio-metric information that can serve as

an acoustic fingerprint, potentially allowing for the identification of individuals even from

short audio samples. This raises significant privacy risks, as voice recordings collected for

depression analysis could inadvertently compromise a person’s anonymity. The distinctiveness

of voice characteristics means that even if traditional identifiers are removed, re-identification

remains a possibility through voice matching techniques. This risk is particularly concerning

in the context of mental health data, where confidentiality is paramount.

In this dissertation, to address the data-scarcity problem, a novel data-augmentation

method called frame rate-based data augmentation (FrAUG) is proposed and presented in

Chapter 4. Prior to this chapter, the database and features used are presented in Chapter 2

and the models and evaluation metrics are described in Chapter 3.

FrAUG effectively tackles the issue of limited training data by generating new samples

through varying frame-width and frame-shift parameters during feature extraction. This

method provides models with different time-frequency resolutions without modifying vocal

tract or voice source related parameters and hence preserves acoustic information that may

be important for MDD modeling purposes.

To address privacy concerns arising from the use of speaker identity information, the

dissertation investigated several speaker disentanglement techniques. Five distinct methods

were proposed and compared: adversarial SID-loss maximization (ADV) in Chapter 5, SID-

loss equalization with variance (LEV), with cross-entropy (LECE),and with KL divergence

(LEKLD) in Chapter 6 and Unsupervised Speaker Disentanglement via cosine similarity

minimization(USSD) in Chapter 7.
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8.1 Discussion

The research presented in this dissertation represents a significant step forward in the

development of accurate and privacy-preserving speech-based depression detection systems.

By addressing the dual challenges of data scarcity and privacy concerns, this work paves the

way for more reliable and ethically sound deployment of these systems in clinical settings.

The FrAUG technique offers a powerful solution to the perennial problem of limited training

data in mental health applications. By generating diverse and informative training samples

without altering critical depression-related information, FrAUG enables the development

of more robust and generalizable models. This advancement is particularly crucial in the

context of mental health, where data collection can be challenging and time-consuming.

The various speaker disentanglement methods proposed in this dissertation, particularly

the USSD approach, represent a significant leap forward in balancing the need for accurate

depression detection with the imperative of protecting patient privacy. These methods consis-

tently demonstrated improvements in depression detection performance while simultaneously

enhancing privacy attributes, as evidenced by improved speaker de-identification (DeID

)scores. This dual achievement is particularly noteworthy, as it addresses one of the primary

concerns hindering the widespread adoption of speech-based mental health screening tools.

The consistent improvements observed across different datasets, languages, and model

architectures underscore the robustness and versatility of the proposed approaches. This

generalizability is crucial for the practical implementation of these techniques in diverse

clinical settings and populations. Moreover, the success of these methods in both English

and Mandarin contexts suggests their potential applicability to a wide range of linguistic and

cultural backgrounds.

The research presented in this dissertation opens up new avenues for exploring the

intricate relationship between speech characteristics and mental health states. The ability to
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disentangle speaker-specific information from depression-related features not only enhances

privacy but also provides a clearer window into the acoustic markers of depression. This

improved understanding could lead to more targeted and personalized interventions in the

future.

In conclusion, this dissertation makes substantial contributions to the field of speech-based

depression detection, addressing critical challenges of data scarcity and privacy-preservation

and paving the way for more widespread and responsible use of these technologies in clinical

practice. The proposed methods offer a promising foundation for future research and

development in this important area of mental health diagnostics.

8.2 Future Work

While this dissertation has made significant strides in advancing speech-based depression

detection, several promising directions for future research remain. These directions aim to

further enhance the accuracy, robustness, and clinical utility of the proposed methods, as

well as explore their potential applications in broader mental health contexts.

One important area for future investigation is the integration of speech-based features with

other modalities, such as text, facial expressions, or physiological signals. Preliminary work

in this direction shows promising results of score-level fusion between speaker-disentangled

audio models and Word2vec-based text models [86], suggesting that there is significant

potential in multi-modal approaches. Future work should explore more sophisticated ways

to combine text and speech modalities, potentially developing joint embedding spaces that

capture complementary information from both sources while maintaining privacy. Additionally,

investigating the use of advanced natural language processing techniques, such as transformers,

in conjunction with the proposed speaker disentanglement methods could lead to even more

accurate and robust depression detection systems.
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Expanding the cross-cultural validation of the proposed methods is also an important con-

sideration. While this dissertation has shown promising results in both English and Mandarin

contexts, further evaluation across a wider range of languages and cultural backgrounds would

ensure the generalizability and effectiveness of these approaches across diverse populations.

Additionally, exploring the adaptability of the proposed methods to other mental health

conditions is another important area of research. Investigating whether similar approaches

can be effective in detecting conditions such as anxiety disorders or bipolar disorder could

significantly expand the impact of this work in the broader field of mental health diagnostics.

Enhancing the interpretability of the disentangled models represents another valuable

direction for future work. Developing techniques to provide clinicians with more insights

into the specific aspects of speech that contribute to depression detection could greatly

enhance the clinical utility of these systems. This could involve creating visualizations or

explanations of the most salient acoustic features associated with depression, helping to

bridge the gap between machine learning outputs and clinical decision-making. In this regard,

developing adaptive disentanglement methods that can dynamically adjust the degree of

speaker disentanglement based on specific clinical requirements or privacy regulations could

enhance the flexibility and applicability of these systems in various healthcare settings.

Finally, the implementation of these methods in real-time systems for continuous monitor-

ing and early intervention represents a challenging but potentially highly impactful direction

for future work. This would involve optimizing the computational efficiency of the proposed

algorithms and developing strategies for handling streaming audio data in privacy-preserving

ways.

By pursuing these future research directions, the field of speech-based depression detection

can continue to advance, ultimately leading to more accurate, privacy-preserving, and clinically

valuable diagnostic tools. These advancements have the potential to significantly impact

mental health care, enabling earlier detection, more personalized treatment, and improved
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outcomes for individuals suffering from depression and other mental health conditions.

105



Bibliography

[1] U Rajendra Acharya, Vidya K Sudarshan, Hojjat Adeli, Jayasree Santhosh, Joel EW

Koh, and Amir Adeli. Computer-aided diagnosis of depression using eeg signals.

European neurology, 73(5-6):329–336, 2015.

[2] Amber Afshan, Jinxi Guo, Soo Jin Park, Vijay Ravi, Jonathan Flint, and Abeer Alwan.

Effectiveness of Voice Quality Features in Detecting Depression. In Proc. Interspeech

2018, pages 1676–1680, 2018.

[3] Amber Afshan, Jinxi Guo, Soo Jin Park, Vijay Ravi, Alan McCree, and Abeer Alwan.

Variable frame rate-based data augmentation to handle speaking-style variability for

automatic speaker verification. In Interspeech 2020, pages 4318–4322, 2020.

[4] Sharifa Alghowinem, Roland Goecke, et al. Detecting depression: a comparison between

spontaneous and read speech. In ICASSP, pages 7547–7551. IEEE, 2013.

[5] Nancy JC Andreasen et al. Linguistic analysis of speech in affective disorders. Archives

of General Psychiatry, 33(11):1361–1367, 1976.

[6] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad:

Cnn architecture for weakly supervised place recognition. In Proc. CVPR, pages

5297–5307, 2016.

106



[7] Alexei Baevski et al. wav2vec 2.0: A framework for self-supervised learning of speech

representations. Advances in Neural Information Processing Systems, 33:12449–12460,

2020.

[8] Andrew Bailey et al. Gender bias in depression detection using audio features. In 2021

29th EUSIPCO, pages 596–600. IEEE, 2021.

[9] Andrew Bailey and Mark D Plumbley. Raw audio for depression detection can be

more robust against gender imbalance than mel-spectrogram features. arXiv preprint

arXiv:2010.15120, 2020.

[10] Sweta Bhadra and Chandan Jyoti Kumar. An insight into diagnosis of depression

using machine learning techniques: a systematic review. Current Medical Research and

Opinion, 38(5):749–771, 2022.

[11] Suhas Bn and Saeed Abdullah. Privacy sensitive speech analysis using federated learning

to assess depression. In ICASSP, pages 6272–6276. IEEE, 2022.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[13] Carlos Busso, Murtaza Bulut, et al. Iemocap: Interactive emotional dyadic motion

capture database. Language resources and evaluation, 42(4):335–359, 2008.

[14] Carlos Busso et al. Msp-improv: An acted corpus of dyadic interactions to study

emotion perception. IEEE Transactions on Affective Computing, 8(1):67–80, 2016.

[15] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen,

Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale

self-supervised pre-training for full stack speech processing. IEEE Journal of Selected

Topics in Signal Processing, 16(6):1505–1518, 2022.

107



[16] N Chinchor. Muc-4 evaluation metrics in proc. of the fourth message understanding

conference 22–29, 1992.

[17] Karol Chlasta et al. Automated speech-based screening of depression using deep

convolutional neural networks. Procedia Computer Science, 164:618–628, 2019.

[18] Nicholas Cummins, Julien Epps, Vidhyasaharan Sethu, and Jarek Krajewski. Variability

compensation in small data: Oversampled extraction of i-vectors for the classification

of depressed speech. In 2014 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 970–974. IEEE, 2014.

[19] Nicholas Cummins, Stefan Scherer, et al. A review of depression and suicide risk

assessment using speech analysis. Speech Communication, 71:10–49, 2015.

[20] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-TDNN: Em-

phasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker

Verification. In Proc. Interspeech, pages 3830–3834, 2020.

[21] Yazheng Di et al. Using i-vectors from voice features to identify major depressive

disorder. Journal of Affective Disorders, 288:161–166, 2021.

[22] Yazheng Di, Joel Mefford, Elior Rahmani, Jinhan Wang, Vijay Ravi, Aditya Gorla,

Abeer Alwan, Tingshao Zhu, and Jonathan Flint. Genetic association analysis of

human median voice pitch identifies a common locus for tonal and non-tonal languages.

Communications Biology, 7(1):540, 2024.

[23] Yazheng Di, Elior Rahmani, Joel Andrew Mefford, Jinhan Wang, Vijay Ravi, Aditya

Gorla, Abeer Alwan, Kenneth S Kendler, Tingshao Zhu, and Jonathan Flint. Unraveling

the associations between voice pitch and major depressive disorder: A multisite genetic

study. medRxiv, pages 2024–10, 2024.

108



[24] S Pavankumar Dubagunta et al. Learning voice source related information for depression

detection. In ICASSP, pages 6525–6529. IEEE, 2019.

[25] Sri Harsha Dumpala, Katerina Dikaios, Sebastian Rodriguez, Ross Langley, Sheri

Rempel, Rudolf Uher, and Sageev Oore. Manifestation of depression in speech overlaps

with characteristics used to represent and recognize speaker identity. Scientific Reports,

13(1):11155, 2023.

[26] Sri Harsha Dumpala et al. Significance of speaker embeddings and temporal context

for depression detection. arXiv preprint arXiv:2107.13969, 2021.

[27] Sri Harsha Dumpala et al. Sine-Wave Speech and Privacy-Preserving Depression

Detection. In Proc. SMM21, Workshop on Speech, Music and Mind 2021, pages 11–15,

2021.

[28] Sri Harsha Dumpala, Sebastian Rodriguez, Sheri Rempel, Mehri Sajjadian, Rudolf

Uher, and Sageev Oore. Detecting depression with a temporal context of speaker

embeddings. Proc. AAAI SAS, 2022.

[29] Sri Harsha Dumpala, Rudolf Uher, Stan Matwin, Michael Kiefte, and Sageev Oore. Sine-

wave speech and privacy-preserving depression detection. In Proc. SMM21, Workshop

on Speech, Music and Mind, volume 2021, pages 11–15, 2021.

[30] José Vicente Egas-López, Gábor Kiss, Dávid Sztahó, and Gábor Gosztolya. Automatic

assessment of the degree of clinical depression from speech using x-vectors. In ICASSP,

pages 8502–8506. IEEE, 2022.

[31] Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile

and fast open-source audio feature extractor. In Proc. 18th ACM-MM, pages 1459–1462,

2010.

109



[32] Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile

and fast open-source audio feature extractor. Proceedings of ACM Multimedia, pages

1459–1462, 2010.

[33] Yue Fan, JW Kang, et al. Cn-celeb: a challenging chinese speaker recognition dataset.

In ICASSP, pages 7604–7608. IEEE, 2020.

[34] Kexin Feng and Theodora Chaspari. Toward knowledge-driven speech-based models of

depression: Leveraging spectrotemporal variations in speech vowels. In IEEE-EMBS

ICBHI, pages 01–07. IEEE, 2022.

[35] Daniel Joseph France et al. Acoustical properties of speech as indicators of depression

and suicidal risk. IEEE transactions on Biomedical Engineering, 47(7):829–837, 2000.

[36] Yaroslav Ganin et al. Domain-adversarial training of neural networks. The journal of

machine learning research, 17(1):2096–2030, 2016.

[37] Daniel Garcia-Romero and Carol Y. Espy-Wilson. Analysis of i-vector length nor-

malization in speaker recognition systems. In Proc. Interspeech 2011, pages 249–252,

2011.

[38] Itai Gat et al. Speaker normalization for self-supervised speech emotion recognition.

arXiv preprint arXiv:2202.01252, 2022.

[39] Larry S Goldman, Nancy H Nielsen, Hunter C Champion, and American Medical Asso-

ciation Council on Scientific Affairs. Awareness, diagnosis, and treatment of depression.

Journal of General Internal Medicine, 14(9):569–580, 1999.

[40] Ian Goodfellow, Jean Pouget-Abadie, et al. Generative adversarial nets. Advances in

neural information processing systems, 27, 2014.

110



[41] Amir Harati, Elizabeth Shriberg, et al. Speech-based depression prediction using

encoder-weight-only transfer learning and a large corpus. In ICASSP, pages 7273–7277.

IEEE, 2021.

[42] Lang He and Cui Cao. Automated depression analysis using convolutional neural

networks from speech. Journal of biomedical informatics, 83:103–111, 2018.

[43] Wei-Ning Hsu et al. Hubert: Self-supervised speech representation learning by masked

prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 29:3451–3460, 2021.

[44] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun

Zhang. Membership inference attacks on machine learning: A survey. ACM Computing

Surveys (CSUR), 54(11s):1–37, 2022.

[45] Tzu-hsien Huang, Jheng-hao Lin, and Hung-yi Lee. How far are we from robust voice

conversion: A survey. In 2021 IEEE Spoken Language Technology Workshop (SLT),

pages 514–521. IEEE, 2021.

[46] Navdeep Jaitly and Geoffrey E Hinton. Vocal tract length perturbation (vtlp) improves

speech recognition. In Proc. ICML Workshop on Deep Learning for Audio, Speech and

Language, volume 117, page 21, 2013.

[47] Spencer L James et al. Global, regional, and national incidence, prevalence, and years

lived with disability for 354 diseases and injuries for 195 countries and territories,

1990–2017: a systematic analysis for the global burden of disease study 2017. The

Lancet, 392(10159):1789–1858, 2018.

[48] Alexander Johnson, Kevin Everson, Vijay Ravi, Anissa Gladney, Mari Ostendorf, and

Abeer Alwan. Automatic dialect density estimation for african american english. In

Interspeech 2022, pages 1283–1287, 2022.

111



[49] Kenneth S Kendler, Steven H Aggen, and Michael C Neale. Evidence for multiple

genetic factors underlying dsm-iv criteria for major depression. JAMA psychiatry,

70(6):599–607, 2013.

[50] Kurt Kroenke, Tara W Strine, et al. The phq-8 as a measure of current depression in

the general population. Journal of affective disorders, 114(1-3):163–173, 2009.

[51] Manoj Kumar, Tae Jin-Park, et al. Designing neural speaker embeddings with meta

learning, 2020.

[52] Haoqi Li et al. Speaker-invariant affective representation learning via adversarial

training. In ICASSP, pages 7144–7148. IEEE, 2020.

[53] Lantian Li, Ruiqi Liu, et al. Cn-celeb: multi-genre speaker recognition, 2020.

[54] Lu-Qiao Li, Kai Xie, Xiao-Long Guo, Chang Wen, and Jian-Biao He. Emotion

recognition from speech with stargan and dense-dcnn. IET Signal Processing, 16(1):62–

79, 2022.

[55] Yun Li, S Shi, et al. Patterns of co-morbidity with anxiety disorders in chinese women

with recurrent major depression. Psychological medicine, 42(6):1239–1248, 2012.

[56] Shih Cheng Liao, Chien Te Wu, Hao Chuan Huang, Wei Teng Cheng, and Yi Hung

Liu. Major depression detection from eeg signals using kernel eigen-filter-bank common

spatial patterns. Sensors, 17(6):1385, 2017.

[57] Zhenyu Liu, Huimin Yu, Gang Li, Qiongqiong Chen, Zhijie Ding, Lei Feng, Zhijun

Yao, and Bin Hu. Ensemble learning with speaker embeddings in multiple speech task

stimuli for depression detection. Frontiers in Neuroscience, 17:1141621, 2023.

[58] Daniel M Low et al. Automated assessment of psychiatric disorders using speech: A

systematic review. Laryngoscope Investigative Otolaryngology, 5(1):96–116, 2020.

112



[59] Samuel D Lustgarten et al. Digital privacy in mental healthcare: current issues and

recommendations for technology use. Current opinion in psychology, 36:25–31, 2020.

[60] Edward Ma. Nlp augmentation. https://github.com/makcedward/nlpaug, 2019.

[61] Xingchen Ma, Hongyu Yang, et al. Depaudionet: An efficient deep model for audio

based depression classification. In Proceedings of the 6th international workshop on

audio/visual emotion challenge, pages 35–42, 2016.

[62] Rigel Mahmood and Bishad Ghimire. Automatic detection and classification of

alzheimer’s disease from mri scans using principal component analysis and artificial

neural networks. In IWSSIP, pages 133–137. IEEE, 2013.

[63] Colin D Mathers and Dejan Loncar. Projections of global mortality and burden of

disease from 2002 to 2030. PLoS medicine, 3(11):e442, 2006.

[64] Quinn McNemar. Note on the sampling error of the difference between correlated

proportions or percentages. Psychometrika, 12(2):153–157, 1947. Publisher: Springer.

[65] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale

speaker identification dataset. arXiv preprint arXiv:1706.08612, 2017.

[66] Md Nasir, Arindam Jati, Prashanth Gurunath Shivakumar, Sandeep Nal-

lan Chakravarthula, and Panayiotis Georgiou. Multimodal and multiresolution depres-

sion detection from speech and facial landmark features. In Proc. 6th AVEC, pages

43–50, 2016.

[67] A Nilsonne. Speech characteristics as indicators of depressive illness. Acta Psychiatrica

Scandinavica, 77(3):253–263, 1988.

113



[68] Paul-Gauthier Noé, Jean-François Bonastre, Driss Matrouf, N. Tomashenko, Andreas

Nautsch, and Nicholas Evans. Speech Pseudonymisation Assessment Using Voice

Similarity Matrices. In Proc. Interspeech 2020, pages 1718–1722, 2020.

[69] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David

Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In

Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota,

June 2019. Association for Computational Linguistics.

[70] Sarala Padi, Dinesh Manocha, and Ram D Sriram. Multi-window data augmentation

approach for speech emotion recognition. arXiv preprint arXiv:2010.09895, 2020.

[71] Anastasia Pampouchidou, Panagiotis G Simos, Kostas Marias, Fabrice Meriaudeau, Fan

Yang, Matthew Pediaditis, and Manolis Tsiknakis. Automatic assessment of depression

based on visual cues: A systematic review. IEEE Transactions of Affective Computing,

10(4):445–470, 2017.

[72] Soo Jin Park, Amber Afshan, Zhi Ming Chua, and Abeer Alwan. Using voice quality

supervectors for affect identification. In Interspeech, pages 157–161, 2018.

[73] Daniel Povey, Arnab Ghoshal, et al. The kaldi speech recognition toolkit. In ASRU.

IEEE Signal Processing Society, 2011.

[74] Kaizhi Qian, Yang Zhang, Heting Gao, Junrui Ni, Cheng-I Lai, David Cox, Mark

Hasegawa-Johnson, and Shiyu Chang. Contentvec: An improved self-supervised speech

representation by disentangling speakers. In ICML, pages 18003–18017. PMLR, 2022.

[75] Lawrence Rabiner and Ronald Schafer. Theory and applications of digital speech

processing. Prentice Hall Press, 2010.

114



[76] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya

Sutskever. Robust speech recognition via large-scale weak supervision. arXiv preprint

arXiv:2212.04356, 2022.

[77] Srinivasan Ramakrishnan. Recognition of emotion from speech: A review. Speech

Enhancement, Modeling and Recognition–Algorithms and Applications, 7:121–137, 2012.

[78] Barkha Rani. I-vector based depression level estimation technique. In 2016 IEEE Inter-

national Conference on Recent Trends in Electronics, Information & Communication

Technology (RTEICT), pages 2067–2071, 2016.

[79] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cornell,

Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba, Jianyuan

Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-Feng Liao, Elena Rastorgueva,

François Grondin, William Aris, Hwidong Na, Yan Gao, Renato De Mori, and Yoshua

Bengio. SpeechBrain: A general-purpose speech toolkit, 2021. arXiv:2106.04624.

[80] Vijay Ravi, Ruchao Fan, Amber Afshan, Huanhua Lu, and Abeer Alwan. Exploring the

Use of an Unsupervised Autoregressive Model as a Shared Encoder for Text-Dependent

Speaker Verification. In Proc. Interspeech, pages 766–770, 2020.

[81] Vijay Ravi, Yile Gu, Ankur Gandhe, Ariya Rastrow, Linda Liu, Denis Filimonov,

Scott Novotney, and Ivan Bulyko. Improving accuracy of rare words for rnn-transducer

through unigram shallow fusion. arXiv preprint arXiv:2012.00133, 2020.

[82] Vijay Ravi, Soo Jin Park, et al. Voice quality and between-frame entropy for sleepiness

estimation. Interspeech, 2019.

[83] Vijay Ravi, Jinhan Wang, Jonathan Flint, and Abeer Alwan. A Step Towards Preserving

Speakers’ Identity While Detecting Depression Via Speaker Disentanglement. In Proc.

Interspeech, pages 3338–3342, 2022.

115



[84] Vijay Ravi, Jinhan Wang, Jonathan Flint, and Abeer Alwan. Fraug: A frame rate

based data augmentation method for depression detection from speech signals. In

ICASSP, pages 6267–6271. IEEE, 2022.

[85] Vijay Ravi, Jinhan Wang, Jonathan Flint, and Abeer Alwan. Enhancing accuracy

and privacy in speech-based depression detection through speaker disentanglement.

Computer Speech & Language, 86:101605, 2024.

[86] Vijay Ravi, Jinhan Wang, Jonathan Flint, and Abeer Alwan. A privacy-preserving

unsupervised speaker disentanglement method for depression detection from speech. In

CEUR workshop proceedings, volume 3649, page 57. NIH Public Access, 2024.

[87] Emna Rejaibi, Ali Komaty, et al. Mfcc-based recurrent neural network for automatic

clinical depression recognition and assessment from speech. Biomedical Signal Processing

and Control, 71:103107, 2022.

[88] Emna Rejaibi, Ali Komaty, Fabrice Meriaudeau, Said Agrebi, and Alice Othmani.

Mfcc-based recurrent neural network for automatic clinical depression recognition and

assessment from speech. Biomedical Signal Processing and Control, 71:103107, 2022.

[89] Fabien Ringeval et al. Avec 2019 workshop and challenge: state-of-mind, detecting

depression with ai, and cross-cultural affect recognition. In Proceedings of the 9th

AVEC, 2019.

[90] Fabien Ringeval, Björn Schuller, Michel Valstar, Jonathan Gratch, Roddy Cowie, Stefan

Scherer, Sharon Mozgai, Nicholas Cummins, Maximilian Schmitt, and Maja Pantic.

Avec 2017: Real-life depression, and affect recognition workshop and challenge. In

Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages

3–9. ACM, 2017.

116



[91] Atefeh Safayari and Hamidreza Bolhasani. Depression diagnosis by deep learning using

eeg signals: A systematic review. Medicine in Novel Technology and Devices, 12:100102,

2021.

[92] Afef Saidi, Slim Ben Othman, and Slim Ben Saoud. Hybrid cnn-svm classifier for

efficient depression detection system. In 2020 4th International Conference on Advanced

Systems and Emergent Technologies, pages 229–234, 2020.

[93] Michelle Hewlett Sanchez et al. Using prosodic and spectral features in detecting

depression in elderly males. In Interspeech, pages 3001–3004, 2011.

[94] Björn Schuller, Stefan Steidl, Anton Batliner, Julia Hirschberg, Judee K Burgoon,

Alice Baird, Aaron Elkins, Yue Zhang, Eduardo Coutinho, and Keelan Evanini. The

interspeech 2016 computational paralinguistics challenge: Deception, sincerity & native

language. In Interspeech, volume 8, pages 2001–2005. ISCA, 2016.

[95] Nadee Seneviratne, James R. Williamson, Adam C. Lammert, Thomas F. Quatieri, and

Carol Espy-Wilson. Extended Study on the Use of Vocal Tract Variables to Quantify

Neuromotor Coordination in Depression. In Proc. Interspeech, pages 4551–4555, 2020.

[96] Ying Shen et al. Automatic depression detection: An emotional audio-textual corpus

and a gru/bilstm-based model. arXiv preprint arXiv:2202.08210, 2022.

[97] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership

inference attacks against machine learning models. In 2017 IEEE symposium on security

and privacy (SP), pages 3–18. IEEE, 2017.

[98] David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech, and noise

corpus. arXiv preprint arXiv:1510.08484, 2015.

117



[99] David Snyder, Daniel Garcia-Romero, et al. X-vectors: Robust dnn embeddings for

speaker recognition. In ICASSP, pages 5329–5333. IEEE, 2018.

[100] Douglas Sturim, Pedro A. Torres-Carrasquillo, Thomas F. Quatieri, Nicolas Malyska,

and Alan McCree. Automatic detection of depression in speech using Gaussian mixture

modeling with factor analysis. In Proc. Interspeech, pages 2981–2984, 2011.

[101] BN Suhas et al. Privacy sensitive speech analysis using federated learning to assess

depression. ICASSP, 2022.

[102] W Ter Smitten, MH and Smeets, RMW and Van den Brink. Composite international

diagnostic interview (CIDI), version 2.1. Amsterdam: World Health Organization, pages

343–345, 1998.

[103] Natalia Tomashenko, Xin Wang, Emmanuel Vincent, Jose Patino, Brij Mohan Lal

Srivastava, Paul-Gauthier Noé, Andreas Nautsch, Nicholas Evans, Junichi Yamagishi,

Benjamin O’Brien, et al. The voiceprivacy 2020 challenge: Results and findings.

Computer Speech & Language, 74:101362, 2022.

[104] Michel Valstar, Jonathan Gratch, et al. Avec 2016: Depression, mood, and emotion

recognition workshop and challenge. In Proceedings of the 6th international workshop

on audio/visual emotion challenge, pages 3–10, 2016.

[105] Christophe Veaux, Junichi Yamagishi, Kirsten MacDonald, et al. Superseded-cstr vctk

corpus: English multi-speaker corpus for cstr voice cloning toolkit. CSTR, 2016.

[106] Disong Wang, Liqun Deng, Yu Ting Yeung, Xiao Chen, Xunying Liu, and Helen Meng.

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech

Representation Disentanglement for One-Shot Voice Conversion. In Proc. Interspeech,

pages 1344–1348, 2021.

118



[107] Dong Wang, Yanhui Ding, Qing Zhao, Peilin Yang, Shuping Tan, and Ya Li. ECAPA-

TDNN Based Depression Detection from Clinical Speech. In Proc. Interspeech, pages

3333–3337, 2022.

[108] Jinhan Wang, Vijay Ravi, and Abeer Alwan. Non-uniform speaker disentanglement for

depression detection from raw speech signals. arXiv preprint arXiv:2306.01861, 2023.

[109] Jinhan Wang, Vijay Ravi, Jonathan Flint, and Abeer Alwan. Unsupervised Instance Dis-

criminative Learning for Depression Detection from Speech Signals. In Proc. Interspeech,

pages 2018–2022, 2022.

[110] Jinhan Wang, Vijay Ravi, Jonathan Flint, and Abeer Alwan. Speechformer-ctc: Se-

quential modeling of depression detection with speech temporal classification. Speech

Communication, 163:103106, 2024.

[111] Wen Wu, Chao Zhang, and Philip C Woodland. Self-supervised representations in speech-

based depression detection. In ICASSP 2023-2023 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[112] Yue Xing, Qifan Song, and Guang Cheng. On the algorithmic stability of adversarial

training. NIPS, 34:26523–26535, 2021.

[113] Mingke Xu, Fan Zhang, et al. Speech emotion recognition with multiscale area attention

and data augmentation. In ICASSP, pages 6319–6323. IEEE, 2021.

[114] Le Yang, Dongmei Jiang, and Hichem Sahli. Feature augmenting networks for improving

depression severity estimation from speech signals. IEEE Access, 8:24033–24045, 2020.

[115] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia,

Yist Y Lin, Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb:

119



Speech processing universal performance benchmark. arXiv preprint arXiv:2105.01051,

2021.

[116] Ying Yang et al. Detecting depression severity from vocal prosody. IEEE transactions

on affective computing, 4(2):142–150, 2012.

[117] Yufeng Yin et al. Speaker-invariant adversarial domain adaptation for emotion recogni-

tion. In Proceedings of the 2020 International Conference on Multimodal Interaction,

pages 481–490, 2020.

[118] William WK Zung. A self-rating depression scale. Archives of general psychiatry,

12(1):63–70, 1965.

[119] Lishi Zuo and Man-Wai Mak. Avoiding dominance of speaker features in speech-based

depression detection. Pattern Recognition Letters, 173:50–56, 2023.

120


	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Speech-based Depression Detection
	Current Challenges
	Data Scarcity in Speech-based Depression Detection
	Privacy-preservation in Speech-based Depression Detection

	Literature Review
	Acoustic Features
	Model Architectures
	Data Augmentation
	Speaker-Identity and Depression Detection
	Privacy Preserving Speech Processing

	Technical Contribution
	Thesis Organization

	Databases, and Features
	Datasets
	DAIC-WOZ
	EATD
	CONVERGE
	Speaker Recognition Datasets
	VoxCeleb
	CN-CELEB
	MUSAN


	Feature extraction
	Mel Frequency Cepstral and spectral features
	ComParE 2016 Acoustic Feature Set
	High-level Features


	Models, Evaluation Metrics and Training Scheme
	Models
	CNN-LSTM
	X-vector Embeddings with CNN
	ECAPA-TDNN
	LSTM-only

	Evaluation Metrics
	Depression Detection
	Speaker-Separability and Identification

	Training and Evaluation Scheme
	Chapter Summary

	Data Augmentation for Depression Detection from Speech
	Background
	Method
	The Experimental Setup
	Models
	DepAudioNet

	X-vector Embedding with CNN Classifier

	Results and Discussion
	Multi Frame Rate Training
	FrAUG versus Conventional Data Augmentation Methods
	Extension to EATD and CONVERGE Dataset

	Chapter Summary

	 Adversarial Speaker Disentanglement
	Introduction
	Preliminary Experiments
	Privacy Preservation in Depression Detection
	Speaker-Bias in Depression Detection

	Adversarial Learning
	Experimental Details
	Models
	CNN-LSTM
	ECAPA-TDNN
	LSTM-only


	Results and Discussion
	Speaker Disentanglement with DAIC-WOZ
	Extension to EATD and CONVERGE datasets

	Chapter Summary

	Speaker Disentanglement via Loss Equalization
	Introduction
	SID-loss Equalization with Variance
	SID-loss Equalization with Cross-Entropy
	SID-loss Equalization with KL Divergence

	Experimental Details
	Results and Discussion
	Loss Equalization with Variance (LEV)
	Loss Equalization with Cross-Entropy (LECE)
	Loss Equalization with KLD (LEKLD)

	Comparison with ADV
	Experimental Results for the EATD dataset
	Chapter Summary

	Unsupervised Speaker Disentanglement 
	Introduction
	Unsupervised Speaker Disentanglement
	Experimental Details
	Results and Discussion
	USSD versus Baseline for DAIC-WOZ
	USSD versus Baseline for EATD
	USSD versus Other Speaker Disentanglement Methods
	Chapter Summary


	Summary and Future Work
	Discussion
	Future Work

	Bibliography



