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Abstract 

Since the last IAEA-FEC in 2016, the EAST physics experiments have been developed 

further in support of high-performance steady-state operation for ITER and CFETR. First 

demonstration of >100 seconds time scale long-pulse steady-state scenario with a good 

plasma performance (H98(y2) ~ 1.1) and a good control of impurity and heat exhaust with the 

upper tungsten divertor has been achieved on EAST using the pure radio frequency (RF) 

power heating and current drive. The EAST operational domain has been significantly 

extended towards more ITER and CFETR related high beta steady-state regime (βP ~ 2.5 & 

βN ~ 1.9 of using RF & NB and βP ~ 1.9 & βN ~ 1.5 of using pure RF). A large bootstrap 

current fraction up to 47% has been achieved with with q95~6.0-7.0. The interaction effect 

between the electron cyclotron resonant heating (ECRH) and two lower hybrid wave (LHW) 

systems has been investigated systematically, and applied for the improvement of current 

drive efficiency and plasma confinement quality in the steady-state scenario development on 

EAST. Full ELM suppression using the n= 2 RMPs has been achieved in ITER-like standard 

type-I ELMy H-mode plasmas with a range of the edge safety factor of q95 ≈ 3.2-3.7 on 

EAST. Reduction of the peak heat flux on the divertor was demonstrated using the active 

radiation feedback control. An increase in the total heating power and improvement of the 
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plasma confinement are expected using a 0-D model prediction for higher bootstrap fraction. 

Towards long-pulse, high bootstrap current fraction operation, a new lower ITER-like 

tungsten divertor with active water-cooling will be installed, together with further increase 

and improvement of heating and current drive capability.  
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1. Introduction 
 

As a long-term research programme of superconducting tokamaks[1][2][3][4], EAST(major 

radius R≤1.9m, minor radius a≤0.45m, plasma current Ip≤1MA, toroidal BT≤3.5T) aims to 

provide a suitable platform to address physics and technology issues relevant to steady-state 

advanced high-performance H-mode plasmas with ITER-like configuration, plasma control 

and heating schemes [5]. To reach this goal, EAST has equipped the continuous wave of 

lower hybrid current drive systems: 2.45GHz (4MW)/4.6GHz (6MW) klystron power, 

electron cyclotron heating system:140GHz (2MW) gyrotron power, ion cyclotron resonant 

frequency system: 27MHz-80MHz(12MW) generator power and the balanced neutral beam 

injection (NBI) systems: the 2 co-current & 2 counter-current NBI sources (80keV/4 MW). In 

the past few years, EAST has been upgraded with an ITER-like active water-cooling tungsten 

divertor, and it is capable to handle a power load up to 10 MW/m2 for a long-pulse steady-

state operation with high power injection. Therefore, the experience and understanding in 

high-performance long-pulse operation on EAST will be extremely valuable for the next 

generation fusion reactors, i.e. ITER and CFETR.  

In this paper, recent EAST experimental results since the 26th IAEA Fusion Energy 

Conference (FEC) in 2016 are presented with the emphasis on the high normalized poloidal 

beta (βP) scenario development and key physics related to the advanced high-performance 

steady-state H-mode plasmas. The recent achievements of long pulse-operation and extension 

of the EAST operational regime are discussed in section 2. The physics progress in support of 

ITER and CFETR steady-state high performance operation is presented in section 3. A 

discussion of the future prospect of high bootstrap current fraction on EAST is shown in 

section 4. A future plan of the EAST program is descried in section 5.  
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2. Extension of steady-state operational regime with dominant RF H&CD 
 

Demonstration of high performance steady-state H-mode operation with a reactor-like metal 

wall, a low momentum input, and electron dominated heating scheme is a critical step on the 

path towards the success of economical fusion energy. In the EAST superconducting 

tokamak, several key technical challenges related to the development of high performance 

steady-state H-mode operation including RF power coupling, RF heating accessibility, non-

inductive current drive in high-density H-mode plasmas with deuterium as the working gas, 

have been investigated. A series of important breakthrough in frontier physical topics 

including access and sustainment of H-mode plasmas and mitigation of transient heat load 

associated with Edge-Localized-Modes (ELMs) are addressed [6–9].  

A repeatable and stable hundred-second time scale long-pulse steady-state scenario with a 

good plasma performance (H98(y2) ~ 1.1) and a good control of impurity and heat exhaust with 

the tungsten divertor has been successfully achieved on EAST using the RF power heating 

and current drive (H&CD) with a total of ~0.5 MW LHW at 2.45 GHz, ~1.7 MW LHW at 4.6 

GHz, ~0.4 MW ECH and ~0.5 MW ICRF [10]. This steady-state scenario as shown in fig.1 

was characterized with fully non-inductive current drive and high-frequency small-amplitude 

edge localized modes (ELMs), and it verified the stable control capability of heat and particle 

exhausts using the ITER-like tungsten divertor in hundred-second level. Plasma parameters 

are as follows: plasma current Ip = 0.4MA, normalized poloidal beta (βP) ~ 1.2 toroidal 

magnetic field BT=2.5 T, upper single null with the elongation k=1.6, the safety factor at the 

95% normalized poloidal flux surface q95~6.6. This long-pulse discharge reaches wall 

thermal and particle equilibration[11], with the steady-state peak heat flux on the divertor 

plates being maintained at ~ 3.3MWm-2 and the particle exhaust rate being maintained at ~ 

6.6×1020 D/s. It should be noted that a gradual increase of loop voltage after 90s causes by 

the ECRH protection of the cut-off, which suggests that ECH has the effect on the avoidance 
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of impurity accumulation. The maximum tungsten surface temperature monitored by the IR 

camera shows that the temperature raises quickly in several seconds and reaches a stable 

value, ~500oC, which suggests the EAST tungsten divertor with a good power handling 

capability.  

To achieve a high RF input power with good plasma-wave coupling efficiency, optimization 

of the plasma shape and the local gas puffing in front of the lower hybrid wave (LHW) 

antenna has been performed on EAST. It is found that the LHW-induced hot spots on the 

protection limiter of the LHW antenna, which limits very often the maximal LHW injection 

power and the duration of a long-pulse operation, can be avoided or mitigated by adjusting 

the plasma outer gap. Both the LHW accessibility and the current drive efficiency are 

sensitive to the global operational parameters, such as the toroidal magnetic field BT and the 

line-averaged electron density <ne>. An optimized operational window for higher current 

drive efficiency of LHW has been identified in support of the high performance steady-state 

scenario development on EAST. The on-axis ECRH was applied for electron heating and the 

avoidance of high-Z impurity accumulation. A peaked electron temperature profile has been 

observed during the application of the on-axis ECRH, and the electron thermal diffusivity 

calculated by the power balance analysis indicates the improved confinement at the plasma 

core as shown in figure 2.   

More recently, experimental explorations of high βP scenario for the demonstration of high 

bootstrap current fraction long-pulse H-mode operation capability on EAST are performed 

with the installation of the new LHW guide limiter to avoid hot spot issue and the use of the 

second ECRH system. A summary plot of βP versus line-averaged density (<ne>) is shown in 

figure 3 for both pure RF and the combined RF and neutral beam injection (NBI) discharges. 

Significant extension of the operational domain of βP and electron density towards the high 
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performance regime is achieved with a range of q95 from 6.0 to 7.0. Two typical plasma 

waveforms of the EAST high βP scenario are shown in figure 4. The H-mode plasma with 

plasma current Ip = 0.4MA, toroidal field BT = 2.5T, edge safety factor q95 ~ 6.8, is 

successfully sustained with a high beta (βP ~ 1.9, normalized beta βN ~ 1.5) at the high density 

regime (<ne>/nGW ~ 0.80) for 24s (~ 40 times current relaxation time) (figure 4 left), where 

nGW is the Greenwald density limit. A total of ~ 4MW RF power was applied for H&CD. A 

very low loop voltage of ~0.005V was obtained. No sawtooth actives were observed during 

the whole discharge which is consistent with the measured q profile (qmin>1.0), where the 

minimum q, qmin, is above 1. Here, the q profile was measured by using the external magnetic 

measurements and the POlarimeter-INTerferometer (POINT) constraints [12]. Transport 

analysis shows that a high bootstrap current fraction fbs of ~45% has been achieved, and it 

can be stably maintained in the EAST high βp scenario.  

On EAST, a higher plasma beta (βP ~ 2.5 and βN ~ 1.9) for a period of 8s has been also 

achieved when both co- and ctr-Ip NBI were applied. The experiments have been carried out 

with the conventional 10s setting since the EAST NBI cannot sustain long-pulse operation at 

a high beam voltage (Vbeam>60kV). It should be stressed here that high density (<ne> = 4.0-

5.0 ×1019/m3) was routinely used for those discharges using NBI to avoid strong shine-

through loss [13]. 

In addition to the exploration of the high βP scenarios, extensive experiments of high βN 

scenario development have been carried out on EAST. Figure 5 shows an example of the high 

βN plasma discharge (Ip = 400- 500 kA, BT = 1.5-1.6 T, q95 =3.4 - 4.4) with the ITER-like 

tungsten divertor. In this high βN experiment, the plasma density increases up to 5.5×1019 m-

3 (Greenwald factor up to 0.75), and a high βN of 2.1 has been obtained with a good plasma 

confinement (H98(y2) = 1.1). The operation domain of this scenario is shown in figure 6. The 
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value of βN reaches above 3×li, where li is the internal inductance calculated from the 

equilibrium analysis. By comparing the EAST results with the advanced inductive scenario 

database [14] from DIII-D, JT-60U, JET and ASDEX-U, the EAST high βN scenario is still in 

the heating power limited regime, rather than the MHD limited regime as indicated by the 

4×li line. This is supported by the fact that no clear NTM has been observed in this scenario.  

In these high βN scenario H-mode plasmas, the internal transport barrier (ITB) has been often 

observed after step-up of the NBI power as shown in figure 7. It is rather important to note 

that the ITB can be obtained on EAST with various different types of plasma current profiles, 

including monotonic, central flat (q(0)~1) and reversed shear current profiles [15]. The MHD 

instabilities associated with these different types of current profiles have been studied. It is 

found that the fishbone mode (m/n = 1/1) can be beneficial to sustain the central flat (q(0)~1) 

q profile, thus a stable ITB can be obtained. The reverse-sheared Alfvén eigenmodes 

(RSAEs) have been observed in the reverse sheared plasma with a transient ITB formation. 

Recently, all these three ITB operational regimes have been further extended in the EAST 

2018 campaign. The role of the plasma current profile on the formation of the ITB will be 

further investigated. In particular, the non-inductive current fraction in the central flat 

(q(0)~1) q profile plasma is larger than 40%. Further investigation of this operation regime 

might be important for the development of the hybrid scenario for ITER and CFETR. 
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3. Progress on physics studies in support of steady-state operation for ITER and 

CFETR operation 

Physics studies on EAST are continued to figure out the critical issues in supporting of the 

high performance long-pulse steady-state operation with RF heating and current drive. In this 

section, several new approaches on the ITER and CFETR relevant key physics issues are 

highlighted.    

3.1 Heating and current drive 

3.1.1 Effects of parametric instability  

Being an effective non-inductive method with high current drive (CD) efficiency, the lower 

hybrid current drive (LHCD) can be also exploited as a tool for active control of plasma 

current profile. Parametric instability (PI) is a non-linear interaction between radio-frequency 

RF waves and plasma [16], which have been observed in many LH experiments such as 

Alcator C-Mod [17], Tore Supra[18], FTU [19] and also EAST[20]. PI is known to excite the 

LH waves that has a relatively high parallel refractive index (N//) [21], which can be Landau 

damped at low temperatures with low CD efficiency in the outer plasma region. In EAST, 

new experiments with 2.45 GHz and 4.6 GHz LH waves are performed by scanning plasma 

density to demonstrate the effect of PI on plasma current profile in the edge region. The 

spectrum measurements show that the PI behaviour observed in the 2.45 GHz case is stronger 

than that in the 4.6 GHz case, especially at higher density (shown in figure 8). Although the 

spectral broadening increases with increasing density in both cases, the increment of spectral 

broadening in the 2.45 GHz case is larger than that in the 4.6 GHz case at high density, 

documenting the stronger occurrence of the non-linear decay of the pump wave, which may 

be responsible for the loss of CD efficiency. Simultaneously, the plasma current density in 

the edge region (r/a > 0.8) obtained from equilibrium reconstruction using an EFIT code 

constrained by the measurements with the external magnetic coils and POINT diagnostic was 
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increased with a reduction in the source frequency or with the increase in plasma density as 

shown in figure 8. So, it can be concluded that the plasma current profile modification by 

LHCD in the edge region shows well correlation with PI activities. It is worth mentioning 

that the PONIT measurements mainly focus on the core plasma and the uncertainty in the 

edge region is difficult to estimate at present since no direct measurement is available for the 

reference. However, the obtained relative trend in the edge current profile constrained by 

magnetic measurements is reliable. Figure 9 shows a link between the degradation of CD 

efficiency and the PI induced spectral broadening. It indicates that the spectral broadening 

has a negative and significant effect on CD efficiency for both of two LHWs on EAST. PI 

modeling results show that the ion-sound quasi-mode-driven PI effect cannot fully account 

for the loss of CD efficiency. These novel results are significant in that they give insight for 

the first time into how nonlinear wave-plasma interactions such as PI may directly impact the 

edge current profile, the control of which is critical in order to achieve optimized modes of 

operation in a steady-state fusion reactor.  

3.1.2 Interaction effect between ECRH and LHW  

In EAST, the interaction between ECRH and LHW has been investigated. A significant 

performance degradation in an electron heating dominant H-mode plasma was observed after 

ECRH termination[22] (shown in figure 10). This performance degradation is accompanied 

by a slow decrease of 𝑙!. The energy confinement enhancement factor 𝐻!"(!,!) decreases 

from 1.15 to 0.78 in 2.6 s after ECRH termination, and the internal inductance drops 

following the stored energy with some delay. Line averaged electron density is kept as 

constant during this period. The stable surface loop voltage suggests that the total non-

inductive current is not changed very much. 
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The analysis using GENRAY and CQL3D code shows that both the LHW electron heating 

and current drive move from plasma core to large radius after turning off ECRH (see in figure 

11). It should be noted that the total LHW electron heating power and driven current are 

almost unchanged. In other words, with the early on-axis heating of ECRH before the plasma 

current plateau, LHW deposited more power near the plasma centre. Thus, the driven current 

also peaked in the core. So, from this point of view, heating of ECRH provides a way to 

control the LHW power deposition and also the total plasma current profile, which is crucial 

for the ITB formation in plasma. 

 

3.2 Pedestal stability 

3.2.1 Small ELMy regime 

A highly reproducible stationary grassy ELM regime has been achieved in the EAST 

superconducting tokamak with water-cooled tungsten upper divertor and molybdenum first 

wall, exhibiting good energy confinement (H98y2 up to 1.4), strong tungsten impurity exhaust 

capability, and compatibility with low rotation, high density (up to ~1.1nGW), radiative 

divertor and fully non-inductive operations. Figure 12 shows statistics of ELM frequency of 

H-mode discharges on EAST in 2016-2018 with the plasma stored energy Wp>120kJ. The 

ELM size generally decreases with increasing ELM frequency, fELM. The grassy ELM regime 

has been obtained with both Bt directions. The statistics indicate that the most sensitive 

parameters for the grassy ELM regime access is q95 and βp. The lower boundaries of the 

regime access for fELM>0.5kHz is q95≥5.3, βp≥1.1 and nel/nGW≥0.46. βN is up to 2, limited by 

the total heating power currently available. This parameter space overlaps with that of the 

projected baseline scenario of CFETR. Higher q95, βp and upper triangularity δu appear to 

facilitate the access to higher ELM frequency, which is consistent with the JT-60U grassy-

ELM prescription[23]. Although the access parameter space is similar to that of JT-60U in 
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terms of q95, βp and δ, it appears to be in different density range. The grassy ELM regime in 

JT-60U is accessible at low density nel/nGW<0.5 [24], while at high density in EAST. It may 

be due to different wall material: metal in EAST vs. carbon in JT-60U. 

In addition, access to this regime appears to be independent of the LHCD power. The LHCD 

can thus be excluded as a generation mechanism of the grassy ELMs. Nonlinear pedestal 

simulations with BOUT++ code uncovers the generation mechanism of the grassy ELMs, 

indicating that the characteristic radial profiles in the pedestal is the key to suppressing large 

ELMs. The radial profiles feature a relatively high ne,sep/ne,ped (up to 0.6), wide pedestal, mild 

pedestal density gradient and low pedestal bootstrap current density. Because of the low 

bootstrap current density in the pedestal, the kink/peeling-dominated low-n PBMs, which 

usually leads to large ELMs, are stabilized when the pressure gradient just slightly decreases, 

thus the pedestal collapse stops, leading to small ELM. 

 

3.2.2 Type-I ELM control  

ELM suppression using resonant magnetic perturbations (RMPs) has been extended recently 

to low q95 (≈ 3.2-3.7) and high beta (βN ≈ 1.5 − 2) standard type-I ELMy H-mode operational 

window in the summer campaign in 2018 in EAST. Here the auxiliary heating power in this 

experiment in EAST includes 2.5MW NBI and 1MW LHCD. Limited by the available 

operational window in previous experiments in EAST, ELM suppression or strong mitigation 

was only achieved previously in EAST with n = 1 and 2 RMPs in a relatively high q95 (≥ 5) 

and low beta (βN ≤ 1) [25][26].  Plasma stored energy often decreases due to strong density 

pump out after ELM suppressed with low n RMP in previous experiments. Recently, full 

ELM suppression is achieved by all n = 2 − 4 RMPs in this new standard type-I ELMy H-

mode operational window. ELM suppression with n = 3 and 4 shows a relative minor change 
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of stored energy, although strong density pumps out also occurs during this process. Ion 

temperature increases a lot after ELM suppression compensated the drop of energy due to 

density pump out. This is similar to the observations of recovery of plasma confinement after 

ELM suppression in DIII-D[27]. Like the observations in DIII-D[28], the ELM suppression 

window for n = 3 is quite narrow. However, a large q95 window for ELM suppression has 

been achieved by using the n = 2 RMP in a similar target plasma mentioned above. Figure 13 

shows that full ELM suppression was sustained during the ramp down of q95 (via ramp up of 

plasma current) started from different levels. This covers a q95 window from 3.2 to 4.2. It 

demonstrated an effective ELM suppression with n = 2 RMP in standard H mode operational 

window in EAST. 

The maximal resonance in plasma response field modelled by linear MHD code MARS-F 

agrees with the optimal phasing for ELM control during the scan the phasing (the phase 

difference between the upper and lower coil current) [26]. Recently, a multi-modal plasma 

response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. The 

signature of the multi-modal response is the magnetic polarization (ratio of radial and 

poloidal components) of the plasma response field measured on the low field side device 

mid-plane, which is reproduced by GPEC modelling.  

Controlling the steady-state particle and heat flux impinging on the plasma facing 

components is still necessary when the transient power loads induced by ELMs have been 

eliminated by RMPs. This is especially true for long-pulse operation. One promising solution 

is to use the rotating perturbed field, which has been tested in EAST [29]. The particle flux 

patterns on the divertor targets change synchronously with both rotating and phasing RMP 

fields as predicted by the modelled magnetic footprint patterns. Experiments using mixed 

toroidal harmonic RMPs with a static n = 3 and a rotating n = 2 harmonics have validated 
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predictions that divertor heat and particle flux can be dynamically controlled while 

maintaining ELM suppression in both DIII-D and EAST[30]. 

3.2.3 Impact of the 𝐸!×𝐵 flow shear on ballooning-driven ELM 

The theoretical works predict that E!×B shear can affect the magnitude and evolution of the 

cross phase of the velocity and pressure fluctuations in the peeling-ballooning-mode-driven 

heat flux [31]. By using the specific co-NBI and ctr-NBI systems on EAST, an alternating 

E!×B flow shear discharge has been performed to study the impact of the E!×B flow shear 

on ballooning-driven ELM at a fixed high collisionallity (ν∗ = 2.3) [32]. The collisionallity 

was kept the same by the density feedback with the super molecular beam injection (SMBI) 

and well matching of the injecting power of co-NBI and ctr-NBI. 

The H-mode plasmas are achieved in a low-recycling regime due to extensive lithium wall 

coating, with the combined LHW and ICRF hydrogen minority heating, at a power of 

P!"#,!.!"#$ = 1.5MW , P!"#,!.!"#$% = 0.5MW . Deposition of ICRF is at the center of 

deuterium plasmas. After the L-H mode transition, the H-mode plasma are modulated by 

periodically alternating the direction of NBI, either co-NBI or ctr-NBI with P!"!!"# =

0.4 MW   and P!"#!!"# = 0.5 MW , respectively, as shown in figure 14 (c). With the 

alternating of the co-NBI and ctr-NBI, the velocity of the toroidal rotation in plasma centre is 

changed periodically from ~50km/s (co-NBI) to ~− 10km/s (ctr-NBI), as illustrated as 

the red-dash line in Figure14 (d).  

Figure 15 illustrates the profiles of Doppler frequency f!"##$%& measured from the Doppler 

Backscatter System (DBS) on EAST, here the radial electric field E! is proportional to 

f!"##$%& for E! = −B ∗ u! = − !"!
!!
f!"##$%& ∝ f!"##$%& with a fixed launch angle of DBS. It 

can be found that the Doppler frequency f!"##$%& wells in the pedestal region show big 

differences upon periodically altering the direction of NBI. The well becomes more negative 
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at the ctr-NBI case. The maximum value of E! ~6.2kV/m at the bottom of E! well. As 

shown in Figure 1 (d), the toroidal rotation changed from ~50km/s to ~− 10km/s after 

the counter neutral beam injection, which contributed the negative radial electric field in the 

ion force balance equation E! =
!

!!!!!

!!!
!!
− v!B! + v!B! . Here, the v!  is the velocity of 

toroidal rotation. The ELMs are suppressed by ~80% at the ctr-NBI case with the maximal 

E!  increased by a factor of ~2.7.  

 

The results reveal that the increased E!×B flow shear can significantly mitigate the ELM, or 

even totally suppress the ELM when the shear is large enough. Our simulations with 

BOUT++ support the observations on EAST, and further indicates that the increased E!×B 

can both reduce the linear growth rate of ballooning mode and shorten its growth time (phase 

coherence time, PCT). The enhanced nonlinear interactions shorten the PCT of ballooning 

mode, which is validated by the bispectrum study on EAST. All those studies suggest a new 

way to control the ELM.   

3.3 Power and particle exhaust 

3.3.1 High Z impurity control 

It has been widely accepted that tungsten (W) will be used in ITER divertor, and it is the top 

candidate plasma facing material for DEMO and CFETR. On EAST, it is often observed that 

the long-pulse steady-state H-mode is restricted by largely increased radiated power in 

plasma core due to the tungsten accumulation [33]. Tungsten control is therefore a crucial 

issue for the EAST long-pulse H-mode operation. A dedicated experiment of high Z impurity 

accumulation avoidance (discharge #73886) has been performed on EAST by applying the 

on-axis ECRH during the H-mode phase as shown in Fig. 16. In this experiment, the power 

of ECRH is deposited at ρ<0.1. After the ECRH is turned off at t = 36.5s, the high-Z impurity 
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of W build up quickly, thus a steady-state H-mode could not be sustained. A comparison of 

density profiles of W45+ measured with and without ECRH is shown in Figure 16. The result 

indicates the W45+ ion is dramatically pumped out from plasma core with ECRH. The 

maximal density of the W45+ ion, nW
45+, decrease from 3.5 to 1.9×108 cm-3, and its peak 

deposition moves outward from ρ=0.13 to 0.2. In recent EAST long-pulse H-mode operation, 

the on-axis ECRH has been routinely superimposed on the LHW and ICRH sustained H-

mode phase to avoid the high-Z impurity accumulation and control high-Z impurity content.   

3.3.2 Radiation feedback control 

Impurity seeding has been recognized as an attractive method for the steady-state heat flux 

control in a long-pulse high power H-mode operation, especially for superconducting 

tokamaks like EAST, ITER and CFETR. The seeding impurities can dissipate a large fraction 

of the thermal energy into radiation, and thus reduce the peak heat flux and total power 

incident on the divertor target plates. The active feedback control of radiation power and thus 

heat load towards long-pulse operation has been developed and successfully achieved in 

EAST using neon (Ne) impurity seeding [34]. By seeding a sequence of short neon impurity 

pulses with the SMBI from the outer mid-plane, the plasma radiation power can be well 

controlled. Reliable control of the total radiated power of the bulk plasma has been 

successfully achieved in long-pulse upper single null (USN) discharges with a tungsten 

divertor. The achieved control range of frad is 20%–30% in L-mode regimes and 18%–36% in 

H-mode regimes, where frad is the radiation fraction with respect to the total injected power. 

The temperature of the divertor target plates was maintained at a low level due to increased 

power during the radiative control phase. The peak particle flux on the divertor target was 

decreased by feedforward Ne injection in the L-mode discharges, while the Ne pulses from 

the SMBI had no influence on the peak particle flux because of the very small amount of 

injected Ne particles. Figure 17 shows the control results for a serial of sequent long-pulse H-
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mode discharges. During the entire duration of the feedback control phase, the temperature of 

the divertor target plates is maintained constant, however, it starts to increases immediately 

after the feedback control was turned off. At the strike point of the outer target plates, the 

temperature descends around 250 - 300 K during the feedback control phase, which suggests 

that the heat flux incident on the divertor target is well reduced. In addition, the simulations 

on the edge impurity transport and radiation using SOLPS code have been carried out with 

different seeding impurity species, and the results have been applied for optimization of the 

radiation feedback control in EAST [35]. In the 2018 campaign, the radiation feedback 

control with neon seeding from divertor region was successfully extended in the small ELMy 

regime [36]. The neon seeding from divertor region also exhibits a great success for 

detachment feedback control [11]. 

3.3.3 Recycling and particle exhaust 

Fuel recycling strongly affects plasma density and confinement performance, especially in 

the high power long pulse plasma operation[33,37]. In EAST, the first wall baking and 

alternate D2/He glow discharge cleaning of up to ~ 1 month is employed to reduce impurity 

and hydrogen content in the vacuum vessel and first wall surface, and an ultimate vacuum of 

~ 3.6×10-6 Pa is achieved after long time wall conditioning, which provides a good wall 

condition for the plasma operation. Fuel recycling is usually very high in the initial plasma 

operation, and it’s decreased gradually along with discharges. Moreover, low-Z material of 

silicon and lithium coating on the first wall is effective to control fuel recycling, and lithium 

is proven to be more effective than silicon, and lithium coating assisted with ICRF discharge 

cleaning is a routine wall conditioning method to control fuel recycling in EAST[38].   

In EAST 2018 campaign, helical wave plasmas (HWP) are successfully excited by the RF 

wave power via a helical antenna, with the following parameters: Prf =10 – 30 kW@27MHz, 
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helium ~0.27 Pa, BT=0.5 – 1 T. The HWP plasmas are almost toroidally uniform, and mainly 

localized inside helical antenna in poloidal direction, as shown in figure 18(a). This is for the 

first time applying the HWP for conditioning the first wall under a strong magnetic field (~ 1 

T) in tokamaks, the retained deuterium particles are obviously desorbed during the HWP 

discharge cleaning, with a removal rate of ~ 1019 D-atoms/s, mainly in the form of HD via 

isotope exchange. Moreover, Direct-Current Glow Discharge Cleaning (DC-GDC) under 

strong magnetic field of 2 T is also successfully operated in EAST tokamak in 0.5 – 4.5 Pa 

helium atmosphere by using 1 – 4 GDC anodes with 1 – 4 A GDC current per anode, leading 

to a total GDC current of 1 – 24 A. The DC-GDC plasmas flow along magnetic field as 

shown in figure 18(b). It was considered that the GDC could not work under strong magnetic 

field because glow discharge current is hard to flow cross magnetic field line. However, in 

toroidal direction along with magnetic field line, glow discharge current could be kept 

between the GDC anodes and the vessel walls, this may be the main reason why the DC-

GDC works stably in strong magnetic field. Both the HWP and the DC-GDC works well 

under strong magnetic field, providing more choices of wall conditioning in the future fusion 

devices with strong magnetic field. 

4. Extrapolation from EAST long pulse operation to >50% bootstrap current fraction 

After achieving >100 s long pulse H-mode, EAST is now proposing a new milestone, to 

achieve 50% bootstrap current fraction at q95 comparable to those of ITER and CFETR 

steady-state scenarios, for its next development. Unlike the more compact conventional 

tokamak, EAST, the superconducting tokamak, which shares its inner space with the 

shielding, cryo-subsystem, has relatively high aspect ratio (R/a=1.85/0.45=4.11). This feature 

makes it more difficult in pursing high bootstrap current fraction in plasma operation due to 

the proportional relation between the bootstrap current fraction and the inversed aspect ratio. 

For example, the joint EAST/DIII-D research team developed a high confinement, high βp 
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scenario on DIII-D as one of the candidate scenarios for EAST future long-pulse high 

performance plasma [19]. This scenario achieves H98(y2)>1.5 and realizes fbs~80% at βp≥3.0. 

Considering the relation, fbs~ ε0.5×βp, EAST will have nearly 20% lower bootstrap current in 

the same confinement and beta. The same 0-D extrapolation suggests that EAST may 

need βp≥2.5 in order to achieve fbs~50%， which depends on collisionality as well. The fact 

is that in the EAST long-pulse discharges, plasma poloidal beta is only around 1.2 and the 

bootstrap current fraction is usually about 30% or below. There is still a large gap toward the 

goal of fbs~50% in the plasma operational space. Nevertheless, the EAST team will focus on 

this research and break through the scope of the operational space.  

A path to the goal of fbs~50% can be illustrated in fig. 19. Based on the 0-D modelling of 

EAST parameters, this figure shows the possible operational space expressed by the bootstrap 

current fraction, H98(y2) and the line-average density for the plasma, which has 400 kA of the 

plasma current, i.e. q95~6.5. In fig. 16, the long-pulse regime achieved in EAST 2017 

campaign is highlighted in large red ellipse. To achieve the fbs target, the 0-D simulation 

suggests three working directions. Firstly, enhance the effective auxiliary heating capability. 

In 2017 campaign, the total injected power (not absorbed power) is usually about 3-5 MW in 

long-pulse discharges. Additional 3-5 MW of the steady-state auxiliary heating power is 

expected. Otherwise, we will need to trade confinement for heating power. The regime in 

green ellipse can also be our goal, if the plasma can achieve very high confinement, 

H98(y2)>1.35. Here comes the second working direction - higher confinement (better than 

standard H-mode). In this way, high confinement ensures the ‘economic’ high performance 

plasma operation with relatively low input power. EAST might need 6-7 MW to achieve the 

bootstrap fraction target. However, the high confinement itself is very challenging. It requires 

substantial increase of confinement based on the standard H-mode. An ITB is usually 

essential in these plasmas. The third working direction is fully non-inductive plasma 
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operation with high density. Historically, EAST relies on the lower hybrid wave heating and 

current drive very much, while low density is the favourable condition in this regime. Figure 

19 suggests plasma density like 5.0×1019 m-3 or higher should be tested in the experiment in 

order to pursue the bootstrap fraction target. How to improve the current drive efficiency of 

the lower hybrid wave becomes a very important issue in the high-density scenario. In the 

EAST campaign 2018, more endeavours have been made to pursue the bootstrap current 

target. The representative discharges are shown in stars in figure 19, where ~45% fbs was 

obtained with the pure RF H&CD. It is foreseen that the 50% fbs target is achievable with 2 

extra gyrotrons (2 MW) for H&CD in the campaign 2019.  

5. Summary and future plan 

In all, several great progresses have been made in the development and understanding of 

relevant physics and issues with respect to the long-pulse steady-state operation since the last 

IAEA FEC in 2016. The demonstration of a long-pulse steady-state H-mode of 101.2s with 

small ELMs and a good global performance (H98(y2) ~1.1) was achieved through the 

integrated operation. The long-pulse discharge reaches wall thermal and particle balance with 

the ITER-like tungsten divertor. To demonstrate high β!, high fbs for ITER and CFETR, the 

extension of the EAST operational domain towards the higher beta regime were obtained by 

using different heating schemes, in which βP ~ 2.5 & βN ~ 1.9 of using RF&NB and βP ~ 1.9 

&βN ~ 1.5 of using RF only. Meanwhile, the sustainment of high βP ~ 1.9 of using RF only 

with ne/nGW ~ 80%, fbs ~ 45% at q95 ~ 6.8 for 24s was achieved, which is particularly suited for 

high βP long-pulse operation. The good confinement with ITB was achieved in these plasmas. 

The use of on-axis ECRH was demonstrated to be effective methods to avoid the high-Z 

impurity accumulation for the EAST long-pulse operation. It was also shown that the 

interaction effect between the ECRH and two LHW systems (2.45GHz and 4.6GHz), which 

allows LHW to deposit more power in plasma core regime with enhanced current drive 
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capability. A highly reproducible stationary grassy ELM regime was achieved in EAST with 

exhibition of good energy confinement (H98y2 up to 1.4), strong tungsten impurity exhaust 

capability. Full ELM suppression with the application of n = 2 RMPs was achieved in the 

standard type-I ELMy H-mode plasmas with a window of q95 ≈ 3.2-3.7 and a relative high 

beta (βN ≈ 1.5 − 2). Reduction of the peak heat flux on the divertor using the active radiation 

feedback control shows a promising method for EAST heat flux control in the long-pulse 

steady-state operation. Up-coming EAST experiments, the integration of techniques and 

physics understanding will accelerate the exploration of the EAST high performance, high 

bootstrap current fraction (fbs ≥50%) steady-state scenario.  

With the features such as electron heating dominant, low torque and ITER-like tungsten 

divertor, EAST made unique contributions to some critical issues of ITER and CFETR. 

EAST has demonstrated steady-state operations with similar q95 and good confinement of 

CFETR. As shown in section 2, discharge 81163 has q95=6.8, good confinement and 

relatively high density <ne>/nGW~0.80. However, the βN are still lower than the CFETR 

reference scenario[39]. More experiments need to perform to push the βN up to 2.8, which is 

the target βN of the steady-state operation of ITER and CFETR. EAST also achieved a small 

ELM regime compatible with the CFETR steady-state scenario, as described in section 3.2.1. 

This gives a possible solution to the handle the ELM heat flux on the CFETR divertor target 

plate. For the power and particle exhaust, as shown in section 3.3, EAST clearly shows the 

tungsten impurity accumulation could be controlled by ECRH, and divertor radiation 

feedback control has been realized by impurity seeding, this gives more confidence to control 

the impurity and the heat flux on the target plates.  

Towards very long-pulse, high fbs plasma operation, a further extension of the system with 2 

more gyrotrons is underway and will give total 4.0MW power for heating, current drive and 
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profile control. In order to support the physical research on EAST, two optimization methods 

have been applied in this summer experiment. Firstly, adjusting the voltage gradient on the 

accelerator is employed to raise the electric field in the first gap. By this method, the injected 

beam power is boosted about 25%. Secondly, the technology of beam re-turn on is also 

developed and applied. This enables the neutral beam injection system to have the long-pulse 

operation ability even if there is a spark down. Meanwhile, a new ITER-like monoblock 

structure with ~10MW/m2 power handling capability (shown in fig.20) will be used in the 

target plates and flat-W-tile structure with ~5MW/m2 power handling capability will be used 

in the dome and baffle. The surface of end boxes (water pipe connector) are oriented to avoid 

direct exposure to high heat flux. The capability of water-cooling system will be enhanced 

with water flow velocity increasing from 4 to 8 m/s. The installation of new W lower diveror 

was scheduled in 2019. 
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List of figure captions  
 
Fig. 1 Time histories of plasma current, loop voltage, electron density, RF heating power of 

LHW, ECH and ICRF, divertor temperature by IR camera, radiation power, 
confinement factor H98y2, and Dα (from top to bottom). 

Fig. 2 Electron temperature，density profiles by TS,  transport coefficient and electron 
heating power profiles for discharge 73999 

Fig. 3 Normalized poloidal beta versus line-averaged density of low loop voltage plasma 
Fig. 4 Time history of several parameters for high βP discharges. Left from top to bottom, 

normalized poloidal beta & normalized beta, loop voltage & line averaged density over 
Greenwald density limit, LHW&ECH power; Right from top to bottom, normalized 
poloidal beta & normalized beta & loop voltage, LHW&ECH power, NB power 

Fig. 5 High βN scenario development for EAST#78723 with βN >1.9 sustained for 2s. Signals 
from top to bottom are plasma current (Ip) and loop voltage, LHW power (PLHW) and 
NBI power (PNBI), the core line averaged density, plasma normalized beta and 
inductance.  

Fig.6 Operational regime of the high βN scenario, where the βN value has reached 3 times of 
li. 

Fig.7 An example of Ti profiles before and after ITB formation 
Fig.8 Current profile measured by POINT and frequency spectra measured by RF probe with 

different LH frequencies (left) and densities (right). 
Fig.9 Normalized experimental current drive efficiency versus pump spectral width. Here, the 

pump width ΔfP is defined as the full width 20 db below the maximum. 
Fig. 10. Time evolution of ECRH heating power, energy confinement H98y2 and internal 

inductance 𝑙! of EAST shot #66743. ECRH is turned off at 3.91s. 
Fig.11 LHW driven current profiles before and after ECRH termination calculated by 

GENRAY and CQL3D codes. 
Fig. 12 Statistics of ELM frequency as a function of q95, βp, ne/nGW, upper triangularity δu and 

LHCD power PLHCD for EAST H-mode discharges with the plasma stored energy Wp 
>120kJ, indicating the access parameter space of the high-frequency small-ELM 
regime (fELM >0.5kHz) is q95 ≥5.3, βp ≥1.1 and ne/nGW ≥0.46. High upper triangularity 
δu appears to be beneficial for access to this regime. In addition, access to this regime 
appears to be independent of the LHCD power. The magenta curves indicate the lower 
boundaries of the regime access for these parameters. 

Fig. 13 ELM suppression achieved in a large q95 window ranging from 3.2 to 4.2 in EAST. 
Here the n=2 RMP with a coil current 2.9kA has been applied from 3.5s to 6.5s. 

Fig. 14 Time histories of various plasma quantities for a H-mode plasma discharge #55251 
on EAST during the application of periodically alternating neutral beam injection. (a) 
LHW power 𝑃!"# (2.45GHz and 4.6GHz) and ICRF power 𝑃!"#$, (b) line averaged 
density 𝑛! and stored energy 𝑊!, (d) co- and countercurrent NBI power 𝑃!"#, (e) (f) 
the density of particle flux Γ!"# at the divertor target (black solid line) and the 
velocity of toroidal rotation of the central plasma 𝑣! (red dash line). 

Fig. 15 Radial profiles of Doppler shift 𝑓!"##$%& (here, 𝐸! ∝  𝑓!"##$%&) with co- and 
counter-current NBI in H-mode discharge, respectively. The blue line is profiles in L-
mode discharge. 

Fig.16 Time evolution of (a) injected power of 4.6GHz LHW, ICRH and ECRH (b) divertor 
Dα, (c) ne normalized intensity of emission line of Mo XXXII at 127.87 Å and W-
UTA in the range of 45-70 Å (composed of W27+-W45+), (d) Impurity concentration of 
Mo and W Right: Density profile of W45+ ion with (red square) and without (blue 
circle) on-axis ECRH 
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Fig. 17 The time traces of three sequential H-mode discharges for radiative feedback control 
with different target radiated power (Prad,target): (a) 0.6 MW without a feedforward Ne 
injection, (b) 0.8 MW, (c) 1.0 MW with the IR-camera measured temperature for the 
upper outer divertor plate, (d) the contour of the temperature measured by the IR 
camera for the upper outer divertor target plate in the same shot with figure (c), with 
the vertical axis being the distance along the target plate poloidally. 

Fig.18 (a) HWP plasmas under 1T, (b) DC-GDC plasmas under 2 T with 4 anodes working 
and 5 A/anode. 

Fig.19 The path to the goal of fbs~50%, based on the 0D simulation for Ip=400 kA plasma 
operation. Color bar shows the line-averaged density in each case. The stars are two 
typical discharges in EAST campaign 2018. The red ellipse shows the collection of 
the long-pulse regime in 2017, which is also the start point of this extrapolation. 

Fig.20 EAST new W lower divertor. Installation scheduled in 2019. 
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