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Abstract

Background: Animal and epidemiological studies suggest that prenatal exposure to polycyclic 

aromatic hydrocarbons (PAHs) may negatively impact toddler neurodevelopment.

Methods: We investigated this association in 835 mother-child pairs from CANDLE, a diverse 

pregnancy cohort in the mid-South region of the U.S. PAH metabolite concentrations were 

measured in mid-pregnancy maternal urine. Cognitive and Language composite scores at ages 

2 and 3 years were derived from the Bayley Scales of Infant and Toddler Development, 3rd 

edition (Bayley-3). Behavior Problem and Competence scores at age 2 were derived from the 

Brief Infant and Toddler Social Emotional Assessment (BITSEA). We used multivariate linear 

or Poisson regression to estimate associations with continuous scores and relative risks (RR) of 

neurodevelopment delay or behavior problems per 2-fold increase in PAH, adjusted for maternal 

health, nutrition, and socioeconomic status. Secondary analyses investigated associations with 

PAH mixture using Weighted Quantile Sum Regression (WQS) with a permutation test extension.

Results: 1- hydroxypyrene was associated with elevated relative risk for Neurodevelopmental 

Delay at age 2 (RR = 1.20, 95% CI: 1.03,1.39). Contrary to hypotheses, 1-hydroxynaphthalene 

was associated with lower risk for Behavior Problems at age 2 (RR = 0.90, 95% CI: 0.83,0.98), 

and combined 1- and 9-hydroxyphenanthrene was associated with 0.52-point higher (95% CI: 

0.11,0.93) Cognitive score at age 3. For PAH mixtures, a quintile increase in hydroxy-PAH 

mixture was associated with lower Language score at age 2 (βwqs = −1.59; 95% CI: −2.84,−0.34; 

ppermutation=0.07) and higher Cognitive score at age 3 (βwqs = 0.96; 95% CI: 0.11,1.82; 

ppermutation=0.05). All other estimates were consistent with null associations.

Conclusion: In this large southern U.S. population we observed some support for adverse 

associations between PAHs and neurodevelopment.

Graphical Abstract
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1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs)1, a group of chemicals formed during the 

incomplete combustion of oil, coal, gas, and other substances (Agency for Toxic Substances 

and Disease Registry (ATSDR), 1995), are linked to cytotoxic, genotoxic, endocrine 

disrupting, and carcinogenic effects in both animal and human studies (Schroeder, 2011; 

Deanna D Wormley et al., 2004). PAHs are predominantly metabolized into hydroxy-

PAHs (OH-PAHs)(Onyemauwa et al., 2009), which exhibit enhanced genotoxicity over 

parent PAHs(Wei et al., 2010). Prenatal exposure to PAHs is associated with a number 

of adverse health outcomes in the fetus, infants and children, including preterm birth, 

intrauterine growth restriction and reduced birthweight, airway inflammation and asthma, 

and neurodevelopmental deficits (Edwards et al., 2010; Jedrychowski et al., 2012, 2015, 

2014; F. Perera et al., 2005; F. P. Perera et al., 2005). Research in animals suggests several 

potential pathophysiologic mechanisms for perturbations in healthy brain development. 

These include direct neurotoxic and genotoxic effects (Saunders et al., 2003, 2002), neuronal 

death (Dutta et al., 2010), and the disruption of pathways regulating neuroplasticity and 

neurodifferentiation (Slotkin and Seidler, 2009), any of which may have long lasting, if 

not permanent, effects on the brain. Animal studies have also observed impaired cortical 

function and behavior changes in rodents exposed either prenatally or directly to PAHs 

(McCallister et al., 2008; Zhang et al., 2016).

11-NAP= 1-hydroxynaphthalene, 2-NAP=2-hydroxynaphthalene, 2-PHEN=2-hydroxyphenanthrene, 3-PHEN=3-
hydroxyphenanthrene, 1/9-PHEN=1/9-hydroxyphenanthrene, 2/3/9-FLUO=2/3/9-hydroxyfluorene, 1-PYR=1-hydroxypyrene, 95% CI 
= 95% Confidence Interval, BITSEA= Brief Infant and Toddler Social Emotional Assessment, BMI=Body mass index, BSI = Brief 
Symptom Index, GSI = Global Severity Index, HOME = Home Observation Measurement of the Environment, KIDI = Knowledge of 
Infant Development Inventory, OH-PAH = Hydroxy-Polycyclic Aromatic Hydrocarbon, RR = Relative Risk, SD = Standard deviation, 
WQS = Weighted Quantile Sum Regression
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International and U.S.-based studies have examined the impact of prenatal PAH exposure 

on neurodevelopment in infancy, early childhood, and into the school years, with mixed 

findings across age and cohort (Mortamais et al., 2017; F. Perera et al., 2005; Perera et al., 

2012, 2007, 2006; Peterson et al., 2015; Tang et al., 2008; Vishnevetsky et al., 2015). In the 

lifestage most relevant to this study, i.e. the toddler years, evidence from 4 studies based in 

New York City and China show inconsistent associations between prenatal PAH exposure 

and neurodevelopment, with two out of three studies finding neurodevelopmental deficits at 

12 and 24 months (Lin et al., 2021; Perera et al., 2006; Tang et al., 2008), and at 36 months 

in one of two studies (Perera et al., 2007, 2006). Sample sizes were small (<300 participants) 

across all studies and adjustment for confounding was minimal in both of the Chinese 

cohorts that observed neurodevelopmental deficits associated with PAH exposure, which 

may partially explain the inconsistency in findings (Lin et al., 2021; Tang et al., 2008). The 

limited geographical scope, small sample sizes, differing neurodevelopmental assessments in 

existing studies and inadequate confounding adjustment represented in the current evidence 

precludes confidence in the findings and clear extrapolation to other populations in the U.S.

This study builds on understanding of the potential adverse neurodevelopmental toxicity 

of PAH exposure in pregnancy in several ways. First, we examine associations between 

individual PAH metabolites and early-life neurodevelopment in a diverse and well-

characterized large prospective cohort of mother-child pairs from the urban southern U.S. 

with rich adjustment for sociodemographic and maternal health confounders. In addition to 

examining effects of individual PAH metabolites individually, we employ novel methods 

to examine the association of exposure to PAH mixtures on neurodevelopment. We are 

also, to our knowledge, the first to assess the potential buffering role of nutritional 

factors. A mother’s prenatal nutrition, including factors known to influence a child’s 

neurodevelopment, such as folate (Castillo-Lancellotti et al., 2013; Julvez et al., 2009; Roth 

et al., 2011) and vitamin D (Melough et al., 2021; Tylavsky et al., 2015), may modify the 

neurotoxic effects of in utero PAH exposure. We previously observed effect modification 

in prenatal PM10 exposure and child IQ by maternal plasma folate levels (Loftus et al., 

2019) in this cohort and hypothesized that nutritional factors may similarly modify PAH 

and neurodevelopmental associations. Therefore, we tested the hypothesis that adverse 

associations between PAH and neurodevelopment would be stronger among children whose 

mothers had lower prenatal plasma levels of either vitamin D or folate.

2. METHODS

2.1 Study Population

This study includes mother and child pairs participating in the Conditions Affecting 

Neurocognitive Development and Learning in Early Childhood (CANDLE) study, a 

prospective pregnancy cohort in Shelby County, Tennessee (Sontag-Padilla et al., 2015) 

which was designed to identify early-life determinants of neurocognitive development. The 

study design, recruitment experience, and data collection have been described elsewhere 

(LeWinn et al., 2020). Briefly, between 2006 and 2011, CANDLE recruited pregnant women 

aged 16–40 years old with a low-risk pregnancy (e.g. without chronic hypertension requiring 

therapy, insulin-dependent diabetes, renal disease) in the second trimester of a singleton 
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pregnancy with the intent to deliver at one of five health care settings in Shelby County. Of 

the 5228 women screened, 3320 were determined to be eligible and of these, 1503 enrolled 

in CANDLE (Sontag-Padilla et al., 2015).

Data collection for the CANDLE cohort included two prenatal clinic visits, multiple 

postnatal study visits attended by children and mothers, and two home visits in early 

childhood. All participants provided informed consent. Research activities were approved 

by the University of Tennessee Health Sciences Center Institutional Review Board (IRB). 

The current analyses were conducted as part of the PATHWAYS Consortium, a cohort award 

of the Environmental Influences on Child Health Outcomes (ECHO) initiative, and were 

approved by the IRB of the University of Washington, Seattle.

The analytic sample included CANDLE mother-child dyads with a mid-pregnancy urinary 

PAH measure (median gestational age=22.9 weeks, range 15.3 to 29.6 weeks) and at least 

one neurodevelopmental outcome at the child’s age 2- or 3-year visit (n=965)., We excluded 

(n=11) children born prior to 32 weeks gestation due to the known much higher risk for 

neurodevelopmental delay in children born very pre-term (Blencowe et al., 2013; Soleimani 

et al., 2014). Because one of the primary aims of this study was to assess associations 

of PAH exposure and neurodevelopment independent of the effects of prenatal maternal 

smoking, we also excluded women who reported any smoking during pregnancy or with 

urinary cotinine levels > 200 ng/mL at the second or third trimester study visits (n=119), 

considered a common cutoff to define smokers (Schick et al., 2017), yielding a final analytic 

sample of 835 children. Figure 1 illustrates cohort retention from enrollment to the time of 

outcome assessments and sizes of the analytic samples.

2.2 PAH Assessment

Maternal prenatal PAH exposure was determined using urinary monohydroxylated OH-

PAH metabolite concentrations from mid-pregnancy. Extraction of OH-PAHs from urine 

was performed by liquid-liquid extraction followed by LC-MS/MS analysis, as described 

elsewhere (Guo et al., 2013). Briefly, urine samples (500 μL) were fortified with 10 ng 

each of an isotopically labeled internal standard mixture, and mixed with 1 mL of 0.5 

M ammonium acetate buffer containing 200 units/mL of β-glucuronidase/sulfatase enzyme 

(MP Biomedicals, LLC, Solon, OH, USA). The samples were gently mixed and incubated 

overnight at 37°C, and then diluted with 2 mL of HPLC-grade water and extracted with 

7 mL of 80% pentane: 20% toluene (v:v), by shaking on a reciprocating shaker for one 

hour, centrifuged at 3600 x g for 20 minutes, the supernatant was transferred into a new 

glass tube for instrumental analysis. The chromatographic separation of OH-PAHs was 

accomplished using a Waters Acquity I-Class UPLC system (Waters; Milford, MA, USA) 

connected with an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm, Waters; 

Milford, MA, USA). Identification and quantification of PAH metabolites was performed 

on an ABSCIEX 5500 triple quadrupole mass spectrometer (Applied Biosystems; Foster 

City, CA, USA). Quality assurance protocols include, analysis of two Standard Reference 

Materials (SRM 3672, SRM 3673) containing certified values for several OH-PAHs PAHs 

metabolites (1- and 2-hydroxynaphthalene; 1-, 2-, 3-, and 9-hydroxyphenanthrene; 2-, 3-, 

and 9-hydroxyfluorene, and 1-hydroxypyrene), method blanks, matrix (urine) blanks, and 
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matrix (urine) spiked samples. Recoveries of analytes in SRMs ranged from 79 to 109%. 

Synthetic urine purchased from Cerilliant (Round Rock, Texas, USA) was used for the 

matrix blank and matrix spiked samples and the recoveries of target analytes spiked into 

synthetic urine matrix was >80% HPLC-grade water was used for sample/procedural 

blanks. A quadratic 13-point standard calibration curve (0.02 ng/mL – 200 ng/mL) with 

a 1/x weighting (and a regression coefficient value >0.99 for each analyte) was used for 

quantification. Periodic injections of PAH metabolite calibration standards are included 

throughout the sample run to ensure instrument stability in responses. Periodic instrumental 

blanks are also injected throughout the sample run to ensure no carryover or contamination. 

The laboratory participated in several external quality assurance schemes to validate OH-

PAHs assay successfully(Kannan et al., 2021). The limits of detection (LOD) ranged from 

0.02 to 0.12 ng/mL. Samples below the limit of detection (LOD) were calculated as: 

LOD/√2. For this analysis we established that each OH-PAH metabolite was detected in 

greater than 80% of the study population, which yielded sufficient samples for the following 

OH-PAHs: 1- and 2-hydroxynaphthalene; 1-, 2-, 3-, and 9-hydroxyphenanthrene; 2-, 3-, 

and 9-hydroxyfluorene, and 1-hydroxypyrene. Measurements were unable to distinguish 

the hydroxyfluorenes or 1- and 9-hydroxyphenanthrene, and so these measurements were 

quantified together and combined into 2/3/9-hydroxyfluorene and 1/9-hydroxyphenanthrene, 

respectively. While raw OH-PAH measures (in ng/mL) were used in the main analysis, we 

calculated and adjusted OH-PAHs for urine specific gravity in sensitivity analyses using the 

following formula:

Pc = P ∗ [
SGmedian − 1

SG − 1 ]

Where P is the measured urinary PAH concentration, SG is the specific gravity for each 

participant, and SGmedian is the median SG(Levine and Fahy, 1945).

2.3 Neurodevelopmental and Behavioral Outcomes

Child behavioral assessments were performed using the Brief Infant-Toddler Social and 

Emotional Assessment (BITSEA) (Briggs-Gowan et al., 2004). The BITSEA (Briggs-

Gowan et al., 2004) measures caregiver-report of social-emotional and behavioral function 

and was administered at the age 2 visit. The BITSEA yields continuous Problem and 

Competence scores that are summed across the 42-item questionnaire. Using cut-points, we 

also identified children meeting the threshold for Behavior Problems, defined as BITSEA 

Problem scores ≥75th percentile for age (Briggs-Gowan et al., 2013, 2004). Competence 

scores were not examined dichotomously in this analysis due to the low proportion (<10%) 

of children in this study with BITSEA Competence scores ≥ 75th percentile for age.

Child neurodevelopment assessments were performed using the Bayley Scales of Infant 

Development, Third Edition (Bayley-3) (Bayley, 2006), which is used to identify infants and 

young children at risk for neurodevelopmental delay (Bayley, 2006). Trained developmental 

psychologists administered the Bayley-3 at the age 2 and age 3 visit. Scores are standardized 

to age and sex to yield Cognitive and Language composite scores with a normative mean of 
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100 (standard deviation=15; SD). We also identified children at risk of Neurodevelopmental 
Delay, defined as Bayley Cognitive or Language composite scores <85 (Bayley, 2006).

The primary outcomes for this study were the continuous BITSEA Problem and 

Competence and Bayley-3 Cognitive and Language scores at each age. Binary outcomes 

indicating whether the child’s results exceeded thresholds for Behavior Problems and 

Neurodevelopmental Delay were considered secondary outcomes. For the Bayley-3 

Cognitive, Language, and BITSEA Competence scores, higher scores represent better 

neurodevelopmental or behavioral function, whereas higher scores on the BITSEA Problem 

scale score indicate poorer behavioral development.

2.4 Covariates

Maternal characteristics were collected at prenatal and postnatal study visits, including 

pre-pregnancy BMI, age at delivery, race and ethnicity, educational attainment, marital 

status, insurance coverage, parity, gestational age and birthweight of the child, and child 

breastfeeding. Maternal IQ was directly assessed using the Wechsler Abbreviated Scale of 

Intelligence (WASI) short form (Axelrod, 2002). Maternal psychopathology was assessed 

using the Brief Symptom Inventory (BSI) (Derogatis, 1993).Maternal parenting knowledge 

was ascertained using the Knowledge of Infant Development Inventory (KIDI) (MacPhee, 

1981). Child opportunity at the neighborhood level was measured using the total score 

of the Child Opportunity Index and was based on maternal address at enrollment (Acevedo-

Garcia et al., 2014). A postnatal home visit included direct observation of the care-taking 

environment using the Home Observation Measurement of the Environment (HOME) 

inventory (Frankenburg and Coons, 1986). Post-natal tobacco exposure from the child’s 

mother or from other family members in the home was self-reported at age 4. Maternal 

cotinine (in ng/mL), used to measure prenatal secondhand tobacco exposure, was assessed 

using urine samples collected in the second and third trimester and the average of the two 

samples was used for analysis.

2.5 Prenatal Folate and Vitamin D Assessment in Maternal Plasma

Maternal blood samples were collected in the 2nd and 3rd trimesters. Plasma was separated 

by centrifuging at 3000 pm for 10 minutes and stored at −70°C until analysis. Folate 

concentrations were assessed using the 96-well plate adaptation of the Lactobacillus case 

microbiological assay, with a minimum detection limit of 3 ng/mL (Roy et al., 2018) and 

the mean of the two measures was used for analysis. Vitamin 25(OH)D levels were available 

from the 2nd trimester sample, quantified by commercial enzymatic immunoassay (IDS, 

Boldon, Tyne and Wear, UK) (Tylavsky et al., 2015). Minimum detection range of this assay 

was 2 ng/mL, with interassay variability <6% and precision within 1 SD of mean, using 

NIST SRM972 as standard. All measurements were performed within 3 months of sample 

collection. Serum folate and vitamin D were dichotomized at “possible” deficiency, defined 

as ≤13.4 ng/mL for folate and <20 ng/mL for vitamin D (Holick, 2007; Organization, 2015) 

for effect modification analyses.
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2.5 Statistical Analysis

We used descriptive statistics to characterize the study sample and the distributions of 

maternal OH-PAH exposure in the analytic sample. Multivariate linear regression with 

robust standard errors was used to estimate associations of individual OH-PAHs and 

the primary continuous neurodevelopmental outcome scores with corresponding 95% 

confidence intervals (95% CI). Separate models were run for each OH-PAH and each 

neurodevelopmental outcome. Individual OH-PAHs were natural-log transformed prior to 

analysis and modeled continuously for all analyses. Multivariate Poisson regression was 

used to estimate the relative risk (RR) and corresponding 95% CIs for the associations 

of each OH-PAH and dichotomous outcomes of neurodevelopmental delay and social-

emotional/behavior problems. For all models, OH-PAH concentrations were log transformed 

(not specific gravity-adjusted) and analyzed in separate regression models that included 

specific gravity as a covariate. To ease in interpretability, estimates were multiplied by ln(2) 

to calculate estimates per 2-fold increase in ln-OH-PAH.

We took a staged approach to confounder adjustment and inclusion of precision variables. 

All covariates were identified a priori as potential confounders between OH-PAH and 

neurodevelopmental outcomes or well-established predictors of pediatric neurodevelopment 

(Eriksen et al., 2013; Kendler et al., 2015; Lawlor et al., 2006; Lewinn et al., 2020; Ritchie 

and Tucker-Drob, 2018; Turkheimer et al., 2003). The minimally adjusted model includes 

child age at assessment (continuous year, to two decimal places), child sex (binary), and 

specific gravity (modeled as a 4-degree of freedom natural spline). The fully adjusted 
model, considered the main analyses, includes terms in the minimally adjusted model as 

well as maternal education (categorical), adjusted income by household count (continuous) 

(Burniaux et al., 1998), maternal race (binary, Black vs. not), insurance status (binary, 

Medicaid or no insurance vs. Private/Mixed Private with Medicaid or Medicare/Other, 

maternal IQ (continuous), maternal age at child’s birth (continuous), marital status (married 

or living with partner vs. not, child birth order (binary, first born vs. not), recruitment 

site (binary; Memphis/safety-net hospital vs. other), pre-pregnancy BMI (continuous), 

breastfeeding status (categorical; None, <6 months., ≥ 6 months), Child Opportunity Index 

(COI total score, modeled as splines with 4 parameters), prenatal maternal mental health 

using the Global Severity Index from the Brief Symptom Inventory (GSI total score, 

continuous), prenatal maternal cotinine level (continuous), postnatal secondhand smoke 

exposure (self-reported; any vs. none; measured at child’s visit at age 4), and postnatal 

maternal smoking (self-reported; any vs. none; measured at age 4).

2.5.1 Secondary Analyses—We used Weighted Quantile Sum regression (WQS) 

(Brunst et al., 2017; Carrico et al., 2015; Czarnota et al., 2015a, 2015b) to characterize 

the association between OH-PAH mixtures and neurodevelopmental outcomes. OH-PAHs 

were normalized by converting to quintiles, and WQS scores comprised of weighted sums 

of individual OH-PAHs were estimated. Weights were selected using bootstrap resampling 

methods (1000 bootstrap runs for each analysis) to optimize the association between 

the WQS score and outcomes in multivariate linear regression models adjusted for the 

covariates in the fully adjusted models. We estimated mixture effects in the positive or 

negative direction separately. We applied a permutation test extension to WQS regression, 
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an approach we recently developed to allow accurate estimation of p-values in full-sample 

WQS analyses (Loftus et al., 2021). We estimated a permutation test p-value (ppermutation) 

for every full sample WQS analysis that resulted in a 95% CI that did not include 

the null. We applied three levels of evidence against the null: 1) full-sample 95% CIs 

overlap the null (weakest evidence); 2) full-sample 95% CIs do not overlap the null but 

ppermutation>0.05 (moderate evidence); and 3) full-sample 95% CIs do not overlap the null 

and ppermutation<0.05 (strongest evidence). Evidence for differences in all other analyses was 

evaluated using a significance threshold of p<0.05.

We examined potential effect modification by prenatal folate or vitamin D deficiency using 

linear regression with robust SEs and included all covariates in the primary fully adjusted 

models. Models included interaction terms between either continuous ln-transformed OH-

PAHs and dichotomous folate or vitamin D deficiency status, and p-values for interaction 

were estimated using the Wald test.

All statistical analyses were conducted at the UW Pathways Data Center and analyzed using 

STATA IC 16.1 and R Studio (RStudio Team, 2020; StataCorp, 2020). The R package 

“gWQS” version 2.0 package was used for the WQS analyses (Renzetti et al., 2020).

2.5.2 Sensitivity Analyses—We performed four sets of sensitivity analyses for all 

analyses of OH-PAHs and continuous neurodevelopmental outcomes. The purpose of these 

sensitivity analyses were to evaluate the robustness of the estimates of the primary analyses 

to different modeling approaches: (1) method of adjusting OH-PAHs for urinary dilution; 

(2) inclusion of additional covariates for the purposes of adjustment for confounding and 

improvement of precision that were excluded from the fully adjusted model due to data 

missingness; (3) inclusion of covariates hypothesized to be confounding factors that may 

also mediate associations between OH-PAH exposure and neurodevelopmental outcomes 

and (4) to examine patterns of associations (e.g. non-linearity, outliers) in evident findings. 

First, the main analyses were repeated to use specific gravity-corrected OH-PAH as the 

predictor variable in place of using raw OH-PAH with specific gravity as a covariate 

in the model. Second, we repeated all main analyses with additional adjustment for the 

Knowledge of Infant Development inventory (KIDI) Total score (maternal-report, assessed 

at maternal visit 2, continuous, missing n=33), and Home Observation Measurement of 

the Environment Inventory (HOME) total score (objectively assessed by rater at home 

visit 2, measured continuously, missing in n=334). Third, we repeated the main analyses 

after additional adjustment for birthweight (in grams, continuous) and gestational age (in 

weeks, continuous), which were excluded from the fully adjusted model because they were 

hypothesized to be both confounders as well as potential mediators between prenatal PAH 

exposure and neurodevelopment. Finally, in OH-PAH and neurodevelopmental associations 

from the main analyses where estimates excluded the 95% CI, we used generalized additive 

models (GAMs) to explore whether the exposure-response relationships deviated from 

linearity(Wood, 2011). Models were run with all covariates in the fully adjusted model 

and we inspected exposure-response curves and associated 95% CI for evidence of deviation 

from linearity.
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We were primarily interested in examining associations of PAH exposure and 

neurodevelopment in non-smoking women due to the well-known deleterious effects of 

tobacco smoke, a known source of PAH exposure, on the developing brain. We nonetheless 

recognized the interest the effects of PAH in populations of women who smoke, particularly 

because existing cohorts of PAHs and neurodevelopment in the U.S. have excluded smoking 

women from their studies. Therefore, as a final sensitivity analysis we repeated the primary 

analyses including prenatal smokers and adjusting for pre- and post-natal smoking (any vs. 

none and adjustment for continuous prenatal cotinine).

3. RESULTS

The demographic, maternal, and child characteristics of the analytic cohort at study baseline 

and at subsequent maternal and child home visits from birth to early life are shown in 

Table 1. Sixty-three percent of mothers were Black, 31% White, 1% Asian, and 5% of 

mixed or other race. Approximately half had Medicaid or no health insurance at enrollment. 

Sixty percent of children were first-born, and 29% of mothers reported that their child was 

breastfed for at least 6 months. Twenty four percent of children had postnatal secondhand 

smoke exposure from a family member living in the home and 8% of mothers reported 

postnatal smoking (Table 1).

Tables 2 and 3 display the distribution of neurodevelopmental scores at each visit 

and urinary OH-PAH concentrations (ng/mL), respectively. OH-PAH concentrations 

(in geometric mean) ranged from 0.08 to 4.14 ng/mL and were lowest for 2- and 

3-hydroxyphenanthrene and highest for 2-hydroxynaphthalene (Table 3). Descriptive 

examination of the distribution of OH-PAHs across selected characteristics showed that 

PAH concentrations were consistently higher in mothers who were black, had less than a 

high school education, were on Medicaid, and who lived in homes with secondhand smoke 

exposure (Supplemental Table 1).

3.1 Associations with individual metabolites

3.1.1 BITSEA age 2—At age 2, we observed negative associations between BITSEA 

Competence scores and OH-PAH concentrations across most metabolites, all of which were 

attenuated in the fully adjusted models (Figure 2). There was little evidence for associations 

between any OH-PAH and Problem scores and no evidence in fully adjusted models for any 

metabolites (Figure 2). In fully adjusted models, a 2-fold increase in 3-hydroxyphenanthrene 

was associated with a 0.24-point decrease in Competence score (95% CI: −0.48 to 0.00) 

(Figure 2). Null associations were observed for other OH-PAHs and Competence scores 

(Figure 2).

3.1.2 Bayley-3 age 2—At age 2, deficits in Bayley-3 Cognitive scores were observed 

in minimally adjusted models across all but one OH-PAH, which were all attenuated after 

full adjustment (Figure 2). A 2-fold increase in 1-hydroxypyrene was associated with a 

0.82-point lower Cognitive score, although confidence intervals in fully adjusted models 

included the null (95% CI −1.68 to 0.04). No other metabolites were associated with 

Bayley-3 Cognitive scores in fully adjusted models (Figure 2). For Bayley-3 Language 
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scores at age 2, deficits were observed in most minimally adjusted models, but these were 

also uniformly attenuated after full adjustment (Figure 2).

3.1.3 Bayley-3 age 3.—At age 3 Bayley-3 assessments, negative associations were 

observed for several, but not all, metabolites (Figure 2) on Language and Cognitive 

scores in minimally adjusted models. After full adjustment, a 2-fold increase in 1/9-

hydroxyphenanthrene was associated with 0.52 point higher Cognitive score (95% CI: 0.11 

to 0.93) (Figure 2). Estimates reached borderline significance for 1-hydroxypyrene and 

Language scores, although confidence intervals included the null (β per 2-fold increase = 

−0.75, 95% CI: −1.56 to 0.05). All other estimates were consistent with null associations 

(Figure 2).

3.1.4 Behavior Problems and Neurodevelopmental Delay—Using clinically 

relevant cut-offs, 19% of children met the threshold for Behavior Problems on the age 2 

BITSEA assessment, and 16% and 6% met the threshold for Neurodevelopmental Delay on 

the Bayley-3 at age 2, and 3, respectively (Table 4). Contrary to our hypothesis, increasing 

1-hydroxynaphthalene was associated with a lower risk for BITSEA Behavior problems at 

age 2 in fully adjusted models (RR = 0.90, 95% CI: 0.83 to 0.98). In contrast, increasing 

1-hydroxypyrene was associated with an elevated relative risk for Neurodevelopmental 

Delay at age 2 (RR for 2-fold increase = 1.20, 95% CI: 1.03 to 1.39). No other OH-PAHs 

were associated with clinical cutoffs for Neurodevelopmental Delay or Behavior Problems at 

the age 2 and 3 assessments (Table 4).

3.2 Associations with PAH mixtures (WQS Analyses)

Results from analyses of urinary OH-PAHs as mixtures using WQS regression are provided 

in Table 5 and Supplemental Table 2. We did not find evidence to support associations of 

urinary PAH mixtures with BITSEA Problem scores and Competence scores at age 2 in 

either the positive or negative direction. We observed moderate strength in evidence for 

associations of the OH-PAH mixture with Bayley-3 Language scores at age 2, and Cognitive 

scores at age 3. A 1-quintile increase in OH-PAH mixture with high index weights for 2/3/9-

hydroxyfluorene and 1-hydroxynaphthalene was associated with a lower age 2 Bayley-3 

Language score (βwqs = −1.59; full sample 95% CI: −2.84 to −0.34; ppermutation=0.07; Table 

5 and Supplemental Table 2). A 1-quintile increase in OH-PAH mixture with high index 

weights for 1/9-hydroxyphenanthrene, 2-hydroxynaphthalene, and 2-hydroxyphenanthrene 

was associated with higher Bayley-3 Cognitive scores at age 3 (βwqs = 0.96; full sample 

95% CI: 0.11 to 1.82; 1.82; ppermutation=0.05) (Table 5 and Supplemental Table 2). There 

was no evidence for associations between OH-PAH mixtures and Bayley-3 Language scores 

in either direction at age 3.

3.3 Effect Modification by Maternal Folate and Vitamin D

Seventeen percent of mothers were deficient or possibly deficient in folate, and 44% had 

vitamin D deficiency or possible deficiency.

There was no evidence for interactions of OH-PAHs and BITSEA outcomes for either 

folate or vitamin D deficiency (Figure 3). At age 2, there was evidence for interaction 
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in associations of 1-hydroxynaphthalene and age 2 Bayley-3 Language scores for folate 

deficiency, however, the direction was contrary to what was expected. In mothers 

without folate deficiency, we observed lower Bayley-3 Language scores with higher 

1-hydroxynaphthalene levels, whereas there was no evidence for associations for folate 

deficient mothers (β in non-deficient mothers = −0.71; 95% CI: −0.10, −1.32; β in 

deficient mothers = 0.77; 95% CI: 1.70, −0.15; Wald p=0.006) (Figure 3). Effects of 1-

hydroxynapthalene were modest in the overall cohort and 95% confidence intervals included 

the null (β = −0.45, 95% CI: −1.01, 0.10) (Figure 3). There was no evidence for differences 

by folate deficiency on age 3 Bayley-3 outcomes (Figure 3). For vitamin D deficiency, we 

observed some evidence for differences for 1-hydroxynaphthalene and Bayley-3 Cognitive 

scores at ages 2 and 3 (Figure 4). At age 2, increasing 1-hydroxynaphthalene was associated 

with lower Cognitive scores in mothers without vitamin D deficiency and higher scores in 

vitamin D deficient mothers, but confidence intervals for both estimates included the null (β 
in non-deficient mothers = −0.45, 95% CI: 0.14 to −1.04; β in deficient mothers = 0.45 95% 

CI: 1.19 to −0.28; Wald p=0.05) (Figure 4). Similar results were observed at age 3, (Figure 

4).

3.4 Sensitivity Analyses

Results of sensitivity analyses to utilize alternative methods for the modeling of OH-PAH 

dilution (i.e. for specific gravity adjustment), for additional adjustment for confounding or 

precision variables, for consideration of mediating variables, and for consideration of non-

linear OH-PAH and neurodevelopmental associations and are shown in Supplemental Tables 

3 through 8 and Supplemental Figure 1. Application of alternative methods for specific 

gravity adjustment resulted in a modest shift in estimates away from the null, but most 

findings were not materially changed (Supplemental Tables 3 and 4). New notable adverse 

effects were observed for 1-hydroxypyrene and Cognitive scores at age 2 (β = −0.87; 95% 

CI: −1.72 to −0.02) (Supplemental Tables 3 and 4). Other estimates at age 2, including 

adverse effects for 2-hydroxyphenanthrene and BITSEA Competence scores and positive 

associations between 1/9-hydroxyphenanthrene and age 3 Cognitive scores, were consistent 

with the primary analyses. Adjustment for birthweight and gestational age resulted in a 

similar shift in estimates away from the null (Supplemental Tables 5 and 6). Maternal 

1-hydroxypyrene was associated with a 0.93-point lower Cognitive score at age 2 (95% 

CI: −1.79, −0.06) (Supplemental Table 5). Other results were consistent with the primary 

analyses. Analyses which were restricted to 449 participants with KIDI and HOME scores 

and included additional adjustment for those scores are shown in Supplemental Tables 7 and 

8. Compared to fully adjusted estimates in the full analytic sample, fully adjusted (but not 

additional adjustment for KIDI and HOME score) estimates in the restricted sample were 

shifted away from the null for most metabolites, but confidence intervals were also widened. 

Additional adjustment for KIDI and HOME scores among the restricted sample had little 

effect on the estimates (Supplemental Tables 7 and 8). At age 2, 1-hydroxynapthlathene was 

associated with lower Language scores in both fully adjusted models and with additional 

adjustment for KIDI and HOME scores, a finding we had not observed in the primary 

analysis with the full analytic sample (Supplemental Table 7). Results of GAM analyses to 

examine non-linearity in associations for evident findings in the main analyses are shown 

in Supplemental Figure 1. Plots of the partial residuals showed evidence of outliers in 
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the association of 3-hydroxyphenanthrene and age 2 BITESA Competence, and adverse 

associations were attenuated to the null after removing the top and bottom 2.5% of 3-

hydroxyphenanthrene observations (data not shown). All other associations were consistent 

with linearity (Supplemental Figure 1).

Results of analyses repeated to include 119 maternal smokers that were excluded a priori 
from the main analytic sample and adjusted for pre- and post-natal smoking are shown in 

Supplemental Tables 9 and 10. Null associations were observed across most metabolites. At 

age 2, 2/3/9-hydroxyfluorene was associated with a 0.96 lower Bayley-3 Language score 

(95% CI −1.86 to −0.05), which we had not observed in prior analyses.

4. DISCUSSION

To the best of our knowledge, this is the largest study to analyze prenatal PAH exposure 

and neurodevelopment and the first study to utilize novel methods to study mixtures of 

PAH metabolites and neurodevelopment. We examined associations with validated measures 

of age 2 behavior encompassing Problems and Competency (BITSEA) and of age 2 and 

3 year Cognition and Language (Bayley-3). Most associations were null and were mixed 

in direction across metabolites and outcomes. Of the individual OH-PAHs, we observed 

that 1-hydroxypyrene was associated with a higher risk for meeting clinical cutoff scores 

for neurodevelopmental delay at age 2. Other associations were in the opposite direction. 

Higher levels of 1/9-hydroxyphenanthrene were associated with higher Cognitive scores at 

age 3 and 1-hydroxynaphthalene was associated with a lower risk of the clinical cutoff for 

Behavior Problems at age 2, a finding we had not observed when behavior problems from 

the BITSEA were analyzed as a continuous score. Descriptively, we observed that OH-PAH 

metabolite concentrations were higher in mothers with a high school education or less, or 

those with Medicaid insurance without health insurance.

Our WQS analyses questioned whether mixtures of OH-PAHs may be important for 

neurodevelopmental outcomes, even for metabolites where no effects were seen when 

analyzed individually. We observed negative associations between age 2 Bayley Language 

scores and an OH-PAH mixtures with high index weights for 2/3/9-hydroxyfluorene and 1-

hydroxynaphthalene, although these were not significant after application of the permutation 

tests, and positive associations between age 3 Bayley Cognitive scores and an OH-PAH 

mixture with high index weights for 1/9-hydroxyphenanthrene, 2-hydroxynaphthalene, 

and 2-hydroxyphenanthrene, which were robust to the permutation test. The mechanisms 

underlying potential adverse effects of particular PAH combinations remain to be 

understood. Existing toxicological studies have focused on the effects of individual PAHs 

or sums over parent compounds or the total PAHs experienced via a specific pathway 

(e.g. air concentrations). Yet it is likely the harmful effects of PAHs in human populations 

occur from the experience of exposure to complex mixtures with unique pathophysiological 

mechanisms reflecting the components (Agency for Toxic Substances and Disease Registry 

(ATSDR), 1995).

We also provide novel data on potential interaction of nutritional factors (vitamin D and 

folate sufficiency) with maternal prenatal OH-PAHs,. We did not observe support for our 
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hypotheses that maternal deficiency in folate or vitamin D would be associated with more 

pronounced adverse effects of maternal OH-PAHs on child neurodevelopment A previous 

CANDLE study reported a positive and dose-dependent association of maternal 25(OH)D 

levels with cognitive and language scores at age 2 years (Tylavsky et al., 2015) and IQ at 

age 4 (Melough et al., 2020), motivating our interest in examining a potential protective 

modifying effect of vitamin D (and folate) status. In this study overall, effect estimates based 

on these factors were generally not in the hypothesized direction, i.e., they did not suggest 

sufficient vitamin D or folate in pregnancy protected against adverse PAH effects. For 

example, for 1-hydroxynapthalene and age 2 Language, a positive effect was observed in the 

group with mothers who met the clinical cutoff for folate deficiency, whereas the estimate 

was negative for mothers who met definition of sufficient levels of folate in pregnancy. A 

somewhat similar unexpected interaction effect for this metabolite (1-hydroxynaphthalene) 

was observed in relation to vitamin D status and cognition. Toddlers of mothers who met 

the clinical cut off for deficiency of vitamin D in pregnancy had on average higher cognitive 

scores at age 2 and 3 with increasing exposure to this metabolite. Contrarily, the effect 

estimate was negative in the toddlers of mothers with sufficient vitamin D in pregnancy. 

Our findings related to 1-hydroxynaphthalene are difficult to explain from a biological 

mechanism perspective and may reflect type 1 error.

The mechanisms through which PAHs are believed to cause harm to the developing brain 

are not well understood. Proposed mechanisms include damages to DNA resulting in 

activation of apoptotic pathways(Nicol et al., 1995), endocrine disruption (Takeda et al., 

2004), oxidative stress(Saunders et al., 2006), and disruption to pathways regulating fetal 

development of the central nervous system. Toxicological studies point to impairment 

to long-term potentiation in the hippocampus(D. D. Wormley et al., 2004; Deanna D 

Wormley et al., 2004), a critical component of learning and memory, and dysregulation 

of N-methyl-D-aspartate receptor mRNA expression, essential to multiple processes of 

neuronal developmental include neuronal differentiation, synapse formation, and synaptic 

plasticity(Brown et al., 2007; McCallister et al., 2008; D. D. Wormley et al., 2004; Deanna 

D Wormley et al., 2004; Zhang et al., 2016).

Direct comparison of the magnitude of our observed associations to other published 

work is challenged by the fact that most studies to date have analyzed PAH exposures 

dichotomously (e.g. high vs. low exposure), do not employ urinary metabolite levels for 

exposure assessment, and in most cases use a summed measure of prenatal PAH exposure, 

not individual metabolites. Findings are mixed across studies and within cohort over 

time. In the United States, the Columbia Center for Children’s Environmental Health 

(CCCEH) cohort in New York City, comprised of African-American and Dominican 

mothers, prenatal PAH exposure based on maternal personal sampling of airborne PAH 

and neurodevelopmental outcomes assessed as 12, 24, and 36 months. No differences 

were found in neurodevelopmental outcomes at age 12 and 24 months, but at 36 months 

children in the highest quartile of PAH exposure experienced a nearly 6 point drop in 

Bayley-2 Mental Development Index scores at 36 months and a nearly 3-fold odds of 

being developmentally delayed compared to children’s whose mothers below the 4th quartile 

(Perera et al., 2006). These effect sizes were greater than those observed for any individual 

OH-PAH metabolite in our own study that utilized the newer Bayley-3 assessment, which 

Wallace et al. Page 14

Environ Int. Author manuscript; available in PMC 2023 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



separates the previous Mental Development Index into the cognitive and language domains. 

Later analyses at age 5 showed that children with prenatal air PAH exposures above the 

median scored 4.3 to 4.7 points lower on IQ and verbal scores compared to those below 

the median (Perera et al., 2009). A second NYC cohort, comprised of a diverse sample of 

approximately 100 mother-child pairs located in the vicinity of the World Trade Center 

disaster, observed no direct associations between continuous prenatal cord blood PAH 

levels and Bayley-2 neurodevelopmental scores at age 3, although the authors did observe 

interaction by environmental tobacco smoke exposure. (Perera et al., 2007). Cross-sectional 

evidence in the U.S. comes from children aged 6-15 years participating in the National 

Health and Nutrition Examination Survey (NHANES) (Abid et al., 2014). Children with 

urine OH-PAH levels of 2/3-hydroxyfluorene above the median had a 2-fold greater odds 

of receiving special education services compared to children with concentrations below the 

median but results were null when OH-PAHs were modeled continuously. No associations 

were found for any other OH-PAHs, parent compounds, or for other outcomes, including 

parent-reported ADHD and learning disability (Abid et al., 2014).

Internationally, three cohorts in China have examined prenatal PAH exposures in urine or 

cord blood and toddler-age neurodevelopment using the Gesell Developmental Schedules 

(GDS), with mixed findings across studies(Cao et al., 2020; Lin et al., 2021; Tang et al., 

2008). The first study was conducted in 158 mother-child pairs residing in Taiyuan City, 

a region with heavy pollution from coal burning and chemical and metallurgical industries 

(Cao et al., 2020). Inverse trends were observed for several individual urinary OH-PAH 

metabolites as well as sum OH-PAHs for GDS motor score, but there were no associations 

for other domains of the GDS, including adaptive behavior, language, and social scores. 

In the second study, conducted in Tongliang where the major source of PAH exposure 

was a seasonally operated coal-fired power plant, the authors observed large but imprecise 

adverse effect sizes at age 2 when comparing woman above vs. below the median umbilical 

cord blood leukocyte benzo(a)pyrene (BaP)-DNA adduct levels and motor, language, and 

average GDS scores (Tang et al., 2008). Later findings showed no associations between 

cord leukocyte BaP-DNA adducts and age 5 year IQ, although they observed interactions 

between BaP-DNA adducts and secondhand tobacco smoke exposure on IQ (Perera et al., 

2012). The second study conducted in Qingdao examined associations of BaP-DNA adducts 

collected in umbilical cord blood leukocytes as well as postnatal urine OH-PAHs collected 

in the children at 12 months of age (Lin et al., 2021). The authors observed negative 

associations prenatally for BaP-DNA adducts and fine and gross motor domains and social 

behavior quotient scores and for postnatal associations of 1/9-hydroxyphenanthrene and 

fine motor skills. Covariate adjustment in the Tongliang and Qingdao Chinese studies 

was minimal however and lacked the demographic and prenatal characteristics included 

in other studies of prenatal PAH exposure and neurodevelopment, including this study 

(e.g. maternal IQ, home or neighborhood characteristics), and results of these studies 

may reflect confounding bias. In our own study we observed significant attenuation of 

estimates between minimally and fully adjusted models, supporting the need for careful 

consideration of confounding. Other international cohorts in Europe have assessed PAH 

exposures and neurodevelopment at older ages than examined in this study, with evidence 

for neurodevelopmental or behavioral deficits in some (Edwards et al., 2010; Genkinger et 
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al., 2015; Jedrychowski et al., 2015), but not all, studies (Jorcano et al., 2019; Mortamais et 

al., 2017).

Differing sources and magnitudes of PAH exposures may contribute to the mixed findings 

across studies. We observed approximately similar distributions in urinary metabolite 

concentrations in CANDLE mothers to those in other PAH exposure studies of pregnant 

and non-pregnant women conducted in the U.S. and Canada, as well as in the cross-sectional 

assessments of postnatal urine OH-PAHs in toddlers (Cathey et al., 2018; Lin et al., 2021; 

Nethery et al., 2012; Wheeler et al., 2014). Some epidemiological studies of PAHs and 

neurodevelopment, such as the one in Tongliang, China, were situated in an area with a 

known source of high PAH exposure (i.e. coal-fired power plant), while other cohorts, such 

as those in New York City, and Krakow, Poland, were recruited in urban or inner-city 

settings (Edwards et al., 2010; Tang et al., 2008).

Our study suggests that both individual OH-PAHs, particularly 1-hydroxypyrene, as well 

as mixtures of hydroxyfluorene, hydroxynaphthalene, and hydroxyphenanthrene, may 

adversely influence neurodevelopment in very early childhood. Research on sources of 

individual OH-PAHs suggests that 1-hydroxypyrene levels are consistently associated with 

smoking, occupational exposures, living in areas of higher ambient air pollution, proximity 

to major roadways (i.e. higher traffic exposure), and the consumption of charbroiled and 

barbequed meat (Ciarrocca et al., 2014; Kang et al., 1995; Nethery et al., 2012; Roggi et 

al., 1997; Rostron et al., 2020; Strickland et al., 1996; Yuan et al., 2015). Naphthalene, 

fluorene, and phenanthrene share sources in common with 1-hydroxypyrene, including 

tobacco smoke and industrial sources (i.e. oil and coal tar refineries) (Ding et al., 2005; Jia 

and Batterman, 2010). Additional common sources of naphthalene include off-gassing of 

mothballs, pesticides, and fumigants (Jia and Batterman, 2010).

Interpretation of our results should consider several study limitations. OH-PAH exposures 

were based a single urine collection during pregnancy and we lacked multiple measurements 

to capture variability in concentrations over pregnancy although evidence also shows that 

PAHs can accumulate in fatty tissue compartments such as fat and brain(Pastor-Belda 

et al., 2019) and urinary OH-PAHs may reflect chronic exposures. Urine is known to 

approximate short-term exposures to PAH, with a half-life of 6-35 hours (Jongeneelen et al., 

1990), and does not represent a measure of cumulative PAH burden over pregnancy. One 

study in Puerto Rico where OH-PAH urine measurements were performed at two points in 

pregnancy showed weak to moderate intraclass correlation coefficients, ranging from 0.1 

to 0.4 (Cathey et al., 2018). A second study in Canada observed no consistent trends in 

OH-PAH concentrations across trimesters of pregnancy (Nethery et al., 2012). Furthermore, 

PAH exposure occurs as a complex mixture of unsubstituted PAHs and PAHs with hydroxy, 

oxo, nitro, and organic functional groups(Andersson and Achten, 2015; Gbeddy et al., 2020) 

and the monohydroxylated PAH metabolites may not fully capture this complex exposure 

nor fully characterize the toxicity of other potentially more toxic metabolites, such as 

tetrols (Luo et al., 2019). Similar limitations apply to assessments of prenatal nutritional 

and smoking status. We defined all study hypotheses and analyses a priori and did not 

adjust analyses for multiple comparisons; as a result we cannot exclude the possibility for 

chance findings. Vitamin D deficiency was based on a single measure in pregnancy and 
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folate deficiency based on two prenatal measures, and the conflicting results we observed 

for these modifying factors may reflect bias from misclassification. Likewise we used up to 

two measures of urinary cotinine to define prenatal smoking status and to adjust for prenatal 

secondhand smoke exposure and lacked a biomarker for longer-term or cumulative smoking. 

While this variability is consistent with other prenatal exposures commonly assessed with a 

single urine specimen, such as phthalates (Johns et al., 2015), it nevertheless suggests that 

multiple assessments may yield more accurate estimates of PAH exposure and nutritional 

and smoking status throughout pregnancy. Our use of a single measure may introduce 

nondifferential exposure misclassification and bias our findings toward the null.

There were however, several important strengths of this study. This includes the diverse 

and well-characterized prospective cohort from the U.S. South, a traditionally understudied 

region, with excellent retention of the families over time and rich information about 

socio-demographics, prenatal health and nutrition, factors in the home associated with 

neurodevelopmental outcomes, and measurement of actual urinary biomarkers of exposures. 

The attenuation of findings in our final models with adjustment for these important 

cofactors underscores the importance of adequate confounder control in environmental 

neurodevelopmental epidemiology and strengthens confidence in our null findings after 

full adjustment. This is the largest study to examine associations of PAH and toddler 

age neurodevelopment. While the use of urine to measure PAH exposure does have the 

limitations described above, it has the benefit of capturing all routes of exposure in a mother, 

both hair and diet. This is also the first study to apply methods to assess OH-PAH mixtures 

and to have improved upon existing work in WQS with the application of the permutation 

test.

Future work in this area of inquiry in the ECHO PATHWAYS consortium will examine 

whether these findings persist in children at older ages and include children with harmonized 

data in additional cohorts. As children age, assessments can provide additional, sometimes 

more sensitive measures of cognition and behavior, particularly for subscales of IQ and for 

multiple domains of behavior problems and syndromes (e.g. attention, ADHD). Due to the 

short window of time between the age 2 and 3 year assessment we did not seek to perform 

a repeated measures analysis of developmental trajectory, but future studies with additional 

endpoints at future ages could investigate longitudinal associations.

Conclusions

Importantly, in this well characterized, large, socioeconomically and racially diverse U.S. 

cohort, we observed that prenatal PAH exposure, measured both as individual urinary 

OH-PAHs as well as complex mixtures, had mixed associations with neurodevelopmental 

outcomes in toddler-age children, with evidence for higher risk of neurodevelopmental 

delay but also evidence of positive effects for some metabolites and outcomes. We 

found no evidence for effect modification based on maternal vitamin D or folate status. 

These results complement and build upon a growing literature to further discern potential 

neurodevelopmental harms associated with prenatal PAH exposure and young children. 

While the magnitude of deficits observed for some of the tested associations is small (e.g., 

20% more likely to meet clinical cutoff for age 2 year risk for neurodevelopment delay for 
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doubling of maternal PAH), these confer significant burden and concern for affected families 

and communities. Approximately one in six children in the U.S. have a developmental 

disability, and the prevalence of developmental disabilities, ADHD, autism spectrum 

disorder, and intellectual disabilities have steadily increased over time (Zablotsky et al., 

2019). Results from this and prior studies suggest that populations already susceptible to 

health disparities, such as low socioeconomic status, have higher PAH exposures and may be 

particularly vulnerable. Future studies are needed to hone the science of PAH exposure and 

child neurodevelopment, including assessment of critical windows of exposure, additional 

inquiry into mixture related effects, evaluation of the trajectory of outcomes from early to 

later childhood, and assessment of potential protective effect modifiers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• This study examined associations of prenatal PAH and child 

neurodevelopment

• The study population was a large and diverse longitudinal birth cohort

• We employed novel methods to examine PAH mixtures and child 

neurodevelopment

• This study is the first to examine differences in PAH effects by prenatal 

nutrition

• We observed some support for adverse associations between PAHs and 

neurodevelopment
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Figure 1. Flowchart for inclusion in the analytic samples in CANDLE participants.
Abbreviations: BITSEA= Brief Infant and Toddler Social Emotional Assessment, 

BMI=Body mass index, OH-PAH = Hydroxy-Polycyclic Aromatic Hydrocarbon
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Figure 2. Estimated associations of OH-PAH metabolites and neurodevelopmental scores at age 2 
and 3 in the CANDLE cohort
Models represent effect estimates (symbols) and 95% confidence intervals (bars) 

from linear regressions. Minimally adjusted models include child sex, age at 

assessment, and specific gravity and restricted to participants with complete covariate 

data in the fully adjusted model. Fully adjusted models include child sex, age 

at assessment, specific gravity, race, study site, maternal age, maternal education, 

maternal IQ, income adjusted for household size, marital status, parity, insurance, 

pre-pregnancy BMI, breastfeeding, maternal psychopathology, COI, prenatal cotinine, 

postnatal secondhand tobacco smoke exposure, postnatal maternal smoking. All estimates 

represent effect per 2-fold increase in log OH-PAH. Higher scores represent denote 

positive outcomes for all neurodevelopmental outcomes with the exception of BITSEA 

Problem scores, where higher scores denote worse outcomes. Abbreviations: 1-NAP= 1-

hydroxynaphthalene, 2-NAP=2-hydroxynaphthalene, 2-PHEN=2-hydroxyphenanthrene, 3-

PHEN=3-hydroxyphenanthrene, 1/9-PHEN=1/9-hydroxyphenanthrene, 2/3/9-FLUO=2/3/9-

hydroxyfluorene, 1-PYR= 1-hydroxypyrene, 95% CI = 95% Confidence Interval, BITSEA= 

Brief Infant and Toddler Social Emotional Assessment
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Figure 3. Estimated associations of OH-PAH metabolites and neurodevelopmental scores at age 2 
and 3 in the CANDLE cohort by maternal folate deficiency.
Models represent effect estimates (symbols) and 95% confidence intervals (bars) from 

linear regressions with interaction terms between possible folate deficiency (folate ≤ 13.4 

ng/mL) and individual OH-PAHs. All estimates represent effect per 2-fold increase in 

log OH-PAH. P-values for interaction calculated from Wald tests. Higher scores represent 

denote positive outcomes for all neurodevelopmental outcomes with the exception of 

BITSEA Problem scores, where higher scores denote worse outcomes. Estimates are 

adjusted for child sex, age at assessment, specific gravity, race, study site, maternal age, 

maternal education, maternal IQ, income adjusted for household size, marital status, parity, 

insurance, pre-pregnancy BMI, breastfeeding, maternal psychopathology, COI, prenatal 

cotinine, postnatal secondhand tobacco smoke exposure, postnatal maternal smoking. 

Abbreviations: OH-PAH = Hydroxy-Polycyclic Aromatic Hydrocarbon, 1-NAP= 1-

hydroxynaphthalene; 2-NAP=2-hydroxynaphthalene; 2-PHEN=2-hydroxyphenanthrene; 3-

PHEN=3-hydroxyphenanthrene; 1/9-PHEN=1/9-hydroxyphenanthrene; 2/3/9-FLUO=2/3/9-

hydroxyfluorene; 1-PYR=1-hydroxypyrene; 95% CI = 95% Confidence Interval , BITSEA= 

Brief Infant and Toddler Social Emotional Assessment
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Figure 4. Estimated associations of OH-PAH metabolites and neurodevelopmental scores at age 2 
and 3 in the CANDLE cohort by maternal vitamin D deficiency.
Models represent effect estimates (symbols) and 95% confidence intervals (bars) from 

linear regressions with interaction terms between possible vitamin D deficiency (< 20 

ng/mL) and individual OH-PAHs. All estimates represent effect per 2-fold increase in 

log OH-PAH. P-values for interaction calculated from Wald tests. Higher scores represent 

denote positive outcomes for all neurodevelopmental outcomes with the exception of 

BITSEA Problem scores, where higher scores denote worse outcomes. Estimates are 

adjusted for child sex, age at assessment, specific gravity, race, study site, maternal age, 

maternal education, maternal IQ, income adjusted for household size, marital status, parity, 

insurance, pre-pregnancy BMI, breastfeeding, maternal psychopathology, COI, prenatal 

cotinine, postnatal secondhand tobacco smoke exposure, postnatal maternal smoking. 

Abbreviations: OH-PAH = Hydroxy-Polycyclic Aromatic Hydrocarbon, 1-NAP= 1-

hydroxynaphthalene; 2-NAP=2-hydroxynaphthalene; 2-PHEN=2-hydroxyphenanthrene; 3-

PHEN=3-hydroxyphenanthrene; 1/9-PHEN=1/9-hydroxyphenanthrene; 2/3/9-FLUO=2/3/9-

hydroxyfluorene; 1-PYR=1-hydroxypyrene; 95% CI = 95% Confidence Interval; BITSEA= 

Brief Infant and Toddler Social Emotional Assessment
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Table 1.

Characteristics of mothers and children in CANDLE with prenatal OH-PAH and early life neurodevelopmental 

outcomes

Total
All

a

N = 835
Seen at visit 2

a

N = 793
Seen at visit 3

a

N = 798

Child age at visit 2, mean ± SD 2.1 ± 0.1 2.1 ± 0.1 2.1 ± 0.1

Child age at visit 3, mean ± SD 3.1 ± 0.1 3.1 ± 0.1 3.1 ± 0.1

Child sex, n (%)

 Male 405 (48.5%) 387 (48.8%) 391 (49.0%)

 Female 430 (51.5%) 406 (51.2%) 407 (51.0%)

Gestational age, mean ± SD 38.9 ± 1.5 38.9 ± 1.4 38.9 ± 1.5

Birthweight, mean ± SD 3275.3 ± 506.2 3290.2 ± 500.0 3276.5 ± 501.4

Maternal age at birth, mean ± SD 27.1 ± 5.6 27.2 ± 5.6 27.2 ± 5.6

Maternal race, n (%)

 Black 524 (62.8%) 489 (61.7%) 500 (62.7%)

 White 262 (31.4%) 258 (32.5%) 252 (31.6%)

 Asian 9 (1.1%) 9 (1.1%) 9 (1.1%)

 Other or Multiple 40 (4.8%) 37 (4.7%) 37 (4.6%)

Maternal ethnicity

 Not Hispanic or Latino 816 (98.4%) 774 (98.3%) 781 (98.6%)

 Hispanic/Latino 13 (1.6%) 13 (1.7%) 11 (1.4%)

Child is first born

 No 501 (60.0%) 476 (60.0%) 482 (60.4%)

 Yes 334 (40.0%) 317 (40.0%) 316 (39.6%)

Maternal Education

 < High School 67 (8.0%) 57 (7.2%) 63 (7.9%)

 High School 383 (45.9%) 361 (45.6%) 361 (45.3%)

 College or Technical school 271 (32.5%) 263 (33.2%) 262 (32.9%)

 Graduate or Professional degree 113 (13.5%) 111 (14.0%) 111 (13.9%)

Maternal IQ (WASI total score), mean ± SD 96.6 ± 16.3 97.0 ± 16.2 96.7 ± 16.2

Medicaid only

 Medicaid or none 428 (51.3%) 395 (49.8%) 405 (50.8%)

 Private or other 407 (48.7%) 398 (50.2%) 393 (49.2%)

Marital Status

 Married 488 (58.5%) 473 (59.7%) 474 (59.5%)

 No 346 (41.5%) 319 (40.3%) 323 (40.5%)

Pre-pregnancy maternal BMI, mean ± SD 28.1 ± 7.9 28.2 ± 7.9 28.1 ± 7.9

Child was breastfed

 None 257 (31.8%) 238 (30.9%) 243 (31.4%)

 <6 months 319 (39.5%) 308 (39.9%) 304 (39.3%)

 ≥6 months 232 (28.7%) 225 (29.2%) 227 (29.3%)

Child Opportunity Index score, mean ± SD 0.04 ± 0.43 0.04 ± 0.43 0.04 ± 0.43
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Total
All

a

N = 835
Seen at visit 2

a

N = 793
Seen at visit 3

a

N = 798

Maternal GSI total score (from BSI), mean ± SD 50.2 ± 9.2 50.2 ± 9.1 50.1 ± 9.1

KIDI total score, mean ± SD 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1

HOME total score, mean ± SD 39.2 ± 4.4 39.2 ± 4.4 39.1 ± 4.4

Any secondhand smoke exposure

 No 622 (75.9%) 595 (76.3%) 601 (76.5%)

 Yes 198 (24.1%) 185 (23.7%) 185 (23.5%)

Postnatal maternal smoking

 No 757 (92.5%) 724 (93.1%) 727 (92.7%)

 Yes 61 (7.5%) 54 (6.9%) 57 (7.3%)

a
Missingness: Gestational age (n=4), birthweight (n=5), maternal ethnicity (n=6), maternal education (n=1), maternal IQ (n=2), marital status 

(n=1), breastfeeding (n=18), Child Opportunity Index score (n=19), maternal GSI score (n=24), KIDI score (n=33), HOME score (n=334), 
secondhand smoke exposure (n=15), postnatal maternal smoking (n=17)

Abbreviations: BITSEA= Brief Infant and Toddler Social Emotional Assessment, BMI=Body mass index, BSI = Brief Symptom Index, GSI = 
Global Severity Index, HOME = Home Observation Measurement of the Environment, KIDI = Knowledge of Infant Development Inventory, SD = 
Standard deviation
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Table 2.

Distribution of neurodevelopment scores in CANDLE children

Study visit and outcome N Mean ± SD

Child visit 2

 BITSEA Problem 719 9.71 ± 6.41

 BITSEA Competence 719 18.14 ± 2.58

 Bayley-3 Cognitive 720 98.76 ± 13.48

 Bayley-3 Language 720 99.51 ± 15.42

Child visit 3

 Bayley-3 Cognitive 722 97.32 ± 10.69

 Bayley-3 Language 722 101.90 ± 12.31

Abbreviations: BITSEA= Brief Infant and Toddler Social Emotional Assessment, SD = Standard deviation
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Table 3.

Distribution of urinary prenatal OH-PAH metabolite concentrations (ng/mL) in the CANDLE cohort

Metabolite % Detected

Geometric

Mean
a

50th % 95th % Range

1-hydroxynaphthalene 100.0 1.01 0.86 11.05 0.04, 331.00

2-hydroxynaphthalene 99.8 4.14 4.39 21.70 0.02, 228.00

2-hydroxyphenanthrene 85.4 0.08 0.08 0.34 0.02, 6.61

3-hydroxyphenanthrene 85.2 0.08 0.08 0.29 0.02, 4.34

1,9-hydroxyphenanthrene 83.6 0.24 0.30 1.32 0.02, 18.39

2/3/9-hydroxyfluorene 96.2 0.79 0.84 3.42 0.06, 47.1

1-hydroxypyrene 88.0 0.12 0.13 0.62 0.02, 4.91

a
All distributions represent volumetric concentrations of raw OH-PAHs and based on detectible values
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Table 5.

Estimated effects of OH-PAH matrix and child neurodevelopment from Weighted Quantile Sum regression in 

the CANDLE cohort

Outcome and Model Beta
WQS index

95% CI P value
a

Age 2

BITSEA Problem

 Positive −0.28 (−0.82, 0.27)

 Negative −0.49 (−1.08, 0.10)

BITSEA Competence

 Positive −0.14 (−0.39, 0.12)

 Negative −0.22 (−0.47, 0.04)

Bayley-3 Cognitive

 Positive −0.44 (−1.55, 0.66)

 Negative −0.92 (−1.98, 0.13)

Bayley-3 Language

 Positive −0.61 (−1.65, 0.44)

 Negative −1.59 (−2.84, −0.34) 0.07

Age 3

Bayley-3 Cognitive

 Positive 0.96 (0.11, 1.82) 0.05

 Negative 0.33 (−0.53, 1.20)

Bayley-3 Language

 Positive 0.16 (−0.80, 1.13)

 Negative −0.76 (−1.81, 0.28)

a
P values were derived from permutation tests

Abbreviations: 95% CI = 95% Confidence Interval, BITSEA= Brief Infant and Toddler Social Emotional Assessment, WQS = Weighted Quantile 
Sum Regression
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