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Abstract

This report is a continuation of the work of (Douglas et al. 1996) which concerns vehicle

fault detection and identification and describes a vehicle health management approach based

on analytic redundancy. A point design of fault detection filters and parity equations is

developed for the vehicle longitudinal mode. Data from analytically redundant sensors and

actuators are fused in a way that unique, identifiable static patterns emerge in response to a

fault. Sensor noise, process disturbances, system parameter variations, unmodeled dynamics

and nonlinearities can distort these static patterns. A Shiryayev probability ratio test that

has been extended to multiple hypotheses examines the filter and parity equation residuals

and generates the probability of the presence of a fault. Tests in a high-fidelity vehicle

simulation where nonlinearities and road variations are significant are very encouraging. A

preliminary design of a range sensor fault monitoring system is outlined as an application of

a new decentralized fault detection filter. This system combines dynamic state information

already generated by the existing filter designs with inter-vehicle analytic redundancy.

Keywords. Automated Highway Systems, Automatic Vehicle Monitoring, Fault Detection

and Fault Tolerant Control, Reliability, Sensors, Vehicle Monitoring.
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Executive Summary

This report is a continuation of the work of (Douglas et al. 1996) which concerns vehicle

fault detection and identification and describes a vehicle health management approach based

on analytic redundancy. A point design of fault detection filters and parity equations is

developed for the vehicle longitudinal mode. Data from analytically redundant sensors and

actuators are fused in a way that unique, identifiable static patterns emerge in response to a

fault. Sensor noise, process disturbances, system parameter variations, unmodeled dynamics

and nonlinearities can distort these static patterns. A Shiryayev probability ratio test that

has been extended to multiple hypotheses examines the filter and parity equation residuals

and generates the probability of the presence of a fault. Tests in a high-fidelity vehicle

simulation where nonlinearities and road variations are significant are very encouraging. A

preliminary design of a range sensor fault monitoring system is outlined as an application of

a new decentralized fault detection filter. This system combines dynamic state information

already generated by the existing filter designs with inter-vehicle analytic redundancy.
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Chapter 1

Introduction

This report is a continuation of the work of (Douglas et al. 1996) which concerns vehicle

fault detection and identification and describes a vehicle health management approach based

on analytic redundancy. A system view of vehicle health management is summarized by

Figure 1.1. Vehicle dynamics, which could be a high-fidelity nonlinear simulation or a

real vehicle, are driven by throttle, brake and steering commands, various unmeasured

exogenous influences such as road variations and wind and faults. Sensors measure a possible

nonlinear function of the dynamic states and are corrupted by noise, biases and faults of

their own. A fault detection module uses the sensor measurements and known dynamic

inputs to produce a conditional probability of a fault hypothesis. The fault hypothesis

is generated in two stages. First, a residual generator formed as a combination of linear

observers and algebraic parity equations produces a static pattern uniquely identified with

a given fault or no-fault condition. Since the static patterns are only clearly identifiable

in nominal operating conditions, the second stage, a residual processor, interogates the

1



2 Chapter 1: Introduction

residual and matches it to one of many known patterns. The pattern matching is done with

a probabilistically based algorithm so the residual processor produces a fault hypothesis

probability rather than a simple binary announcement. A simple threshold mapping could

be added very easily to produce a binary announcement if that were needed. A fault

hypothesis probability is passed to a vehicle health monitoring and reconfiguration system.

These components determine the impact of the possible fault on safe vehicle operation

and adjust control laws if necessary to accomodate a degraded operating condition. These

components are being developed by the UC Berkeley team.

Detection
Filters

Residual
Processing

Threshold
Selection

Res
Fault

Declaration

Faults

Commands

Health Management
System

Controller
Reconfiguration

Decision

System
Information
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Figure 1.1: A System View of Vehicle Health Management.

Chapters 2, 3, 4 and 5 describe a fault detection and identification system that is

designed to meet the requirements of a module in a comprehensive health monitoring and

reconfiguration system under development at UC Berkeley. The system is a point design. It

is designed to detect faults in sensors and actuators associated with the longitudinal motion

of the modeled vehicle. The vehicle has a nominal operating speed of 25 meters per second

and is travelling straight ahead. The nonlinear vehicle and road model used for simulation

and the reduced-order linear models used for fault detection filter design are described in

Chapter 2. The fault detection filter design is discussed in Chapter 3. The performance

of the fault detection filter is evaluated in Chapter 4. Finally, a residual processor design
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based on a multiple hypothesis Shiryayev sequential probability ratio test is described in

Chapter 5.

In Chapters 6, 7 and 8 a new disturbance attenuation approach to fault detection filter

design is described. First reported in chapter 9 of (Douglas et al. 1996), this is a completely

rewritten presentation with many improvements. Here, a differential game is defined where

one player is the state estimate and the adversaries are all the exogenous signals except

for the fault to be detected. By treating faults as disturbances to be attenuated, the usual

invariant subspace structure associated with fault detection filters is not present except

in the limit. By treating model uncertainty as another element in the differential game,

sensitivity to parameter variations can be reduced.

Also introduced is the notion of a fault detection filter for time-varying systems. This

is especially important in applications where a vehicle follows a maneuver such as a merge

or a split. While first considered in the game theoretic filter derivation, it is expected that

the Beard-Jones fault detection filter definition will be extended to time-varying systems in

the same way.

In Chapter 9 a decentralized fault detection filter is described. This filter is the result

of combining the game theoretic fault detection filter of Chapters 6, 7 and 8 and introduced

by Chung in (Chung and Speyer 1996) and (Chung and Speyer 1998) with the decentralized

filtering algorithm introduced by Speyer in (Speyer 1979) and extended by Willsky et al.

in (Willsky et al. 1982). This approach to health monitoring is well suited to large-scale

systems as it breaks the problem into smaller pieces and is easily scalable to the dimensions

of the problem. For systems of interest to PATH, such as the multi-car platoons which

will populate advanced highway systems, a decentralized approach may be the ideal way

to monitor sensors that measure quantities defined by relative vehicle motion, for example,

the range and range rate between a vehicle and the vehicle immediately ahead of it. An

example illustrates the application of a decentralized fault detection filter to the health

monitoring of a range sensor.

In Chapter 10 an approach to fault detection is described that combines the residual
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generation and residual processing components into a single coherent design. This is a

specialization of a class of adaptive estimation problems where a system is an undetermined

element of a set of system models.

A common approach to adaptive estimation is the Multiple Model Adaptive Estimation

algorithm as first proposed by (Magill 1965) and later generalized by (Lainiotis 1976) to

form the framework of partitioned algorithms. Here the problem domain is restricted to

linear stochastic systems with time-invariant parametric uncertainty. With the parametric

uncertainty expressed as a set of hypotheses, the multiple model estimation algorithm is

formed as a joint estimation and system identification algorithm consisting of a bank of

Kalman filters, each matched to one hypothesis, and an identification subsystem, which may

be interpreted as a sub-optimal multiple hypothesis Wald’s sequential probability ratio test.

In addition to a system state estimate, a product of the algorithm is a set of probabilities,

conditioned on the measurement history, that the hypotheses match the true system, that

is, the system underlying the measurement history. As shown in (Athans 1977), there is no

proof that the probability of the hypothesis associated with the ’true’ system will converge

to one. Furthermore, the algorithm exhibits beta dominance (Menke and Maybeck 1995),

which arises out of incorrect system modeling and leads to irregular residuals. Finally, the

algorithm is computationally intensive since filters for each hypothesis are propagated.

A new approach to adaptive estimation is based on a single adaptive Kalman filter where

time-varying system model parameters are updated by feeding back the posterior probability

of each hypothesis conditioned on the residual process. It is shown that the expected value

of the true posterior probability converges to one and, under certain assumptions, the

expected value of the norm of the difference between the constructed error covariance and

the true posterior error covariance converges to a lower bound. It is also shown that in

the presence of modeling errors, the filter converges to the hypothesis which maximizes a

certain information function. The application to fault detection and identification follows

the use the dynamics of a multiple hypothesis Shiryayev sequential probability ratio test,

an algorithm that explicitly allows for parametric transitions in the system model.
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In Chapter 11 a new approach to the residual generation problem for fault detection

and identification based on linear quadratic optimization is presented. A quadratic cost

encourages the input observability of a fault that is to be detected and the unobservability

of disturbances, sensor noise and a set of faults that are to be isolated. Since the filter is

not constrained to form unobservability subspace structures, adjustment of the quadratic

cost could realize improved performance as reduced sensor noise and dynamic disturbance

components in the residual and reduced sensitivity to parametric variations. In the present

form, the filter detects a single fault so the structure could also be described as that of an

unidentified input observer. A bank of filters are constructed when multiple faults are to

be detected.

In Chapter 12 a new model input reduction algorithm is presented. This work was

motivated by the need for improved disturbance direction modeling for fault detection filter

design. Another application is to control blending but that is not used here. In disturbance

decoupling problems where the disturbance is meant to model neglected higher-order or

nonlinear dynamics, determination of the direction from first principles is not always possible

or practical. When the disturbance direction is found empirically, typically several directions

are found, each one associated with a different operating point, and a suitable representative

direction must be chosen. The problem is complicated further when the rank of the

disturbance map is not known, that is, when it is not clear how many directions should

be chosen from the empirically derived set.





Chapter 2

Vehicle Model

In this chapter, vehicle models are developed for the design and evaluation of fault

detection filters. A high-fidelity six degree of freedom nonlinear vehicle model described

in last year’s report (Douglas et al. 1996) allows for arbitrary variations in road slope and

road noise. An object-oriented vehicle simulation is implemented in C++ and is currently

hosted on an Apple Macintosh PowerPC 8100 computer.

Linear models for the longitudinal vehicle dynamics are derived numerically from the

nonlinear vehicle simulation using a central differences method. The models are described

in Section 2.1 and the derivation method is described in (Douglas et al. 1996). Model order

reduction issues related to the suspension model are discussed in Section 2.2.

The manifold temperature measurement model is discussed in Section 2.3. To monitor

the health of the manifold temperature sensor, an analytically redundant relationship for

the manifold temperature has to be found. Since the temperature enters the engine model

as a constant, a state model would introduce an unobservable integrator. An alternative is

to let the temperature be a known, that is measured, input to the engine.

7
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2.1 Linear Model

The linearized longitudinal dynamics of the vehicle are derived numerically from high-fidelity

nonlinear simulation using a central differences method. The nonlinear model and the

central differences method are described in detail in (Douglas et al. 1996). The linearization

is done at a single nominal operating point of 25 meters per second, about 56 miles

per hour, where the car is travelling straight ahead. Since the car is not in a turn,

the linear longitudinal dynamics decouple completely from the linear lateral dynamics.

The longitudinal model has thirteen states and three inputs. Two of the inputs, throttle

and brake actuator commands are regarded as controls. The third input is the manifold

temperature and is regarded as a known, that is measured, exogenous input.

States: ma : Manifold air mass.

ωe : Engine speed.

vx : Longitudinal velocity.

z : Vertical position.

vz : Vertical velocity.

θ : Pitch angle.

q : Pitch rate.

ω̄f : Sum of front wheel speeds.

ω̄r : Sum of rear wheel speeds.

F̄f : Sum of front suspension forces.

F̄r : Sum of rear suspension forces.

α : Throttle state.

Tb : Brake state.

Control inputs: uα : Throttle command.

uTb : Brake command.
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Exogenous input: ωTm : Manifold temperature.

The lateral model states and inputs are given for completeness although they are not used.

States: vy : Lateral velocity.

φ : Roll angle.

p : Roll rate.

r : Yaw rate.

ω̃f : Difference of front wheel speeds.

ω̃r : Difference of rear wheel speeds.

F̃f : Difference of front suspension forces.

F̃r : Difference of rear suspension forces.

γ : Steering state.

Control inputs: uγ : Steering command.

2.1.1 Linear Model Reduction

The thirteenth-order longitudinal model has eigenvalues: −215.62, −160.79, −136.03±1.67i,

−90.91, −31.56, −26.26, −2.00±6.55i, −1.32±5.56i, −1.25 and −0.0418. Observe that five

of these eigenvalues are significantly faster than the rest. By inspection of the eigenvectors,

it is determined that the fast eigenvalues are associated with the states ω̄f , ω̄r, F̄f , F̄r and

α.

A model order reduction is done by dynamic truncation with a steady-state correction.

First, the derivatives of the fast states ω̄f , ω̄r, F̄f , F̄r and α are set to zero. Then, the linear

dynamic equations are solved for the fast states in terms of the remaining states: ma, ωe,

vx, z, vz, θ, q and Tb. The result is substituted into the state equations of the remaining

states. This process is described in more detail in Section 2.3 of (Douglas et al. 1996).

The eigenvalues of the eighth-order reduced-order longitudinal model are −33.01, −25.87,

−2.08 ± 6.45i, −1.44 ± 5.47i, −1.25 and −0.0451 which are close to the eigenvalues of the
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full-order longitudinal model. Also the frequency responses of the reduced and full-order

models are close to each other.

The reduced-order linear longitudinal dynamics data are given in Appendix A.

2.1.2 Vehicle Measurements

There are thirteen sensors on the car.

yma : Manifold air mass sensor.

yωe : Engine speed sensor.

yTm : Manifold temperature sensor.

ypm : Manifold pressure sensor.

yvx : Longitudinal velocity sensor.

yax : Longitudinal accelerometer.

yaz : Vertical accelerometer.

yωfl : Front left wheel speed sensor.

yωfr : Front right wheel speed sensor.

yωrl : Rear left wheel speed sensor.

yωrr : Rear right wheel speed sensor.

yα : Throttle sensor.

yTb : Brake sensor.

Since the dynamics naturally decompose into longitudinal and lateral components, the

following processed wheel speed sensors form a more natural set of measurements:

yω̄f : Sum of front wheel speeds.

yω̄r : Sum of rear wheel speeds.

yω̃f : Difference of front wheel speeds.

yω̃r : Difference of rear wheel speeds.
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For the longitudinal dynamics, the wheel speed difference sensors yω̃f and yω̃r are not

relevant. Also, the throttle and brake sensors yα and yTb measure control inputs rather

than states. The manifold temperature sensor yTm measures an exogenous input. Finally,

the manifold pressure ypm and manifold air mass yma are linearly dependent. Thus, there

are only seven sensors that provide measurements linearly related to the vehicle longitudinal

states: yma , yωe , yvx , yax , yaz , yω̄f and yω̄r

The reduced-order linear longitudinal measurement data are given in Appendix A.

2.2 Suspension Model

The suspension system is modelled as a nonlinear spring and linear damper. The tire is

a mass and linear spring. Since the mass of the tire is very small relative to the car,

the tire model is simplified to a linear spring as shown in Figure 2.1. It is possible to

C1 D1

Kt

mg

r

x1

x2

x3

Figure 2.1: Simplified suspension and tire model.

express the dynamics of the suspension model using either suspension force or suspension

length as states. Although both realizations are meant to model the same physical system,

their reduced-order linearized dynamics can be very different. In the following sections,
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two representations of the suspension model and their reduced-order linearized models are

derived. In Section 2.2.1, suspension length is used as the suspension state. In Section 2.2.2,

suspension force is used as the suspension state. Section 2.2.3 provides more discussion and

a numerical example is given to illustrate the modelling difficulty.

2.2.1 Suspension Model With Suspension Length State

In this section, the suspension model uses suspension length as the state. The suspension

force Fs acting on each wheel is given by

Fs = −C1(x3 − x30)[1 + C2(x3 − x30)4]−D1ẋ3 + mg (2.1)

where x30 is the length of the suspension system when a nominal load mg is applied.

Compare this with Equation 2.3 of (Douglas et al. 1996).

The force Ft transmitted to the suspension by the tire spring is given by

Ft = −Kt(x2 − x3 − r − x10) (2.2)

where Kt is the tire spring stiffness and x10 is the nominal tire radius. Since the tire is

massless, the tire spring force is equal to the suspension force.

Ft = Fs (2.3)

Put (2.1) and (2.2) into (2.3),

ẋ3 =
1

D1
[−(Kt + C1)x3 + Ktx2 − C1C2(x3 − x30)5 −Ktr + (mg + C1x30 −Ktx10)] (2.4)

An equation of motion for the chassis given by

mẍ2 = Kt(−x2 + x3 + r + x10) (2.5)

provides another relation between x2 and x3.

The dynamics (2.4, 2.5) after a linearization become

d

dt

 x2

ẋ2

x3

 =

 0 1 0
−Kt

m 0 Kt
m

Kt
D1

0 −Kt+C1
D1

 x2

ẋ2

x3

+

 0
Kt
m

−Kt
D1

 r
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with the characteristic equation

s3 +
Kt + C1

D1
s2 +

Kt

m
s +

KtC1

mD1
= 0 (2.6)

The linearized dynamics order is reduced by noting that the suspension length state x3

is fast. See the example in Section 2.2.3. Let ẋ3 = 0 and algebraically eliminate x3 as a

linear combination of x2 and ẋ2.

d

dt

[
x2

ẋ2

]
=

[
0 1

− KtC1
m(Kt+C1) 0

] [
x2

ẋ2

]
+

[
0

KtC1
m(Kt+C1)

]
r

The reduced-order dynamics characteristic equation is

s2 +
KtC1

m(Kt + C1)
= 0 (2.7)

Clearly, the reduced-order dynamics (2.7) are very different from the full-order dynamics

(2.6) since the reduced-order dynamics exhibit no damping. The eigenvalues of the full and

reduced-order linearized models are evaluated in the example of Section 2.2.3.

2.2.2 Suspension Model With Suspension Force State

In this section, the suspension model uses suspension force as the state. Start with (2.1,

2.2, 2.3) of the last section

Fs = −C1(x2 − x1 − x30)[1 + C2(x2 − x1 − x30)4]−D1(ẋ2 − ẋ1) + mg (2.8a)

Ft = −Kt(x1 − r − x10) (2.8b)

Ft = Fs (2.8c)

The tire spring force Ft is eliminated by rearranging (2.5) to get

x1 = r + x10 −
Ft

Kt
(2.9a)

ẋ1 = ṙ − Ḟt

Kt
(2.9b)
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and then combining (2.8a), (2.8c) and (2.9) as

Ḟ =
Kt

D1
{−F + mg − C1(x2 − r − x10 − x30 +

F

Kt
)

[1 + C2(x2 − r − x10 − x30 +
F

Kt
)4]−D1(ẋ2− ṙ)}

where F
4
= Fs. An equation of motion for the chassis is given by combining (2.5) with (2.8b)

and (2.8c)

mẍ2 = F

The linearized model is

d

dt

 x2

ẋ2

F

 =

 0 1 0
0 0 1

m

−KtC1
D1

−Kt −Kt+C1
D1

 x2

ẋ2

F

+

 0 0
0 0

KtC1
D1

Kt

[ r
ṙ

]
with the characteristic equation

s3 +
Kt + C1

D1
s2 +

Kt

m
s +

KtC1

mD1
= 0 (2.10)

which is the same as (2.6) as expected.

Again, since the suspension force state F is fast, the reduced-order linearized model is

derived by letting Ḟ = 0 and algebraically eliminating F as a linear combination of x2 and

ẋ2.

d

dt

[
x2

ẋ2

]
=

[
0 1

− KtC1
m(Kt+C1) − KtD1

m(Kt+C1)

] [
x2

ẋ2

]
+

[
0 0

KtC1
m(Kt+C1)

KtD1
m(Kt+C1)

] [
r
ṙ

]

The reduced-order dynamics characteristic equation is

s2 +
KtD1

m(Kt + C1)
s +

KtC1

m(Kt + C1)
= 0 (2.11)

This reduced-order model includes a damping term and is probably a more realistic model

than the reduced-order model of Section 2.2.1. However, note that this model regards road

displacement r and road displacement rate ṙ as two independent inputs. In the physical

system being modelled, they are not independent. The eigenvalues of this model are also

evaluated in Section 2.2.3.
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2.2.3 Example

Here is a numerical example of a suspension model. The parameters are obtained from the

vehicle simulation code from U.C. Berkeley.

m = 393.25 kg Mass of a quarter car.

Kt = 190632
N
m

Tire spring constant.

C1 = 17000
N
m

Suspension spring constant.

D1 = 1500
N · s
m

Suspension damper constant.

The eigenvalues of both full-order models in Section 2.2.1 and 2.2.2 are the same: −135.13,

−1.64± 6.16i. The eigenvalues of the reduced-order model in Section 2.2.1 are ±6.30i and

the eigenvalues of the reduced-order model in Section 2.2.2 are −1.75 ± 6.05i. The light

damping of the force-state model of Section 2.2.2 is more realistic so this model is considered

to be a better representation of the suspension dynamics.

Remark 1. If the model reduction is done by balanced realization and truncation, the

length-state and force-state realizations should have similar reduced-order linear models.

Balanced realization and truncation, discussed in detail in (Douglas et al. 1996), truncates

the least observable and controllable modes as determined by inspection of the observability

and controllability Grammians. By this method, the truncated modes are not necessarily

the fast modes so that the eigenvalues of the reduced-order model might be very different

from those of the full-order model. Further, when fast modes are truncated, the simple

state truncation with steady-state correction method illustrated in Sections 2.2.1 and 2.2.2

produces results that are dependent on the state basis. Regarding a balanced realization

as just another basis, it is possible that for some problems, a balanced realization does not

provide a best reduced-order model. Best is problem dependent but is generally determined

by comparing the full and reduced-order frequency responses and eigenstructures.
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2.3 Manifold Temperature Model

In the engine model the manifold temperature is taken to be a constant. If a manifold

temperature sensor is to be monitored for a fault, two sensor models are possible. One model

has the manifold temperature as an engine state and appends an integrator to the engine

dynamics. Another model considers the manifold temperature as a measured exogenous

input.

Since manifold temperature changes are on a much longer time scale than the engine

dynamics, it is a natural choice to model the manifold temperature as a constant. With a

constant manifold temperature as an engine state, an integrator is appended to the engine

dynamics. [
ẋ

ẋTm

]
=
[

A BTm

0 0

] [
x

xTm

]
+
[

B
0

]
u

y =
[

C 0
0 1

] [
x

xTm

]
where xTm is the manifold temperature state and x are the rest of the states. A problem

with this model is that the observability Grammian is ill-defined because the eigenvalue at

the origin is associated with a measured state, the temperature xTm .

An alternate model has the temperature as a known, that is measured, input to the

engine.

ẋ = Ax + Bu + BTmωTm

yx = Cx

yω = ωTm

This approach avoids the observability Grammian problem and seems more reasonable in

that the manifold temperature is an environmental factor which cannot be controlled.
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Fault Detection By Analytic Redundancy

Analytic redundancy is an approach to health monitoring that compares dissimilar

instruments using a detailed system model. The approach is to find dynamic or algebraic

relationships between sensors and actuators. That is, information provided by a monitored

sensor is, in some form, also provided by other sensors or, through the dynamics, by actuator

commands. In automated vehicles, these requirements preclude monitoring nonredundant

sensors such as obstacle detection or lane position sensors. The information provided by

a radar or infrared sensor designed to detect objects in the vehicle’s path has no dynamic

correlation with other sensors on the vehicle. A sensor that detects the vehicle’s position in

a lane is the only sensor that can provide this information. Actuators that do no observable

action are also difficult to monitor. For example, the health of a power window actuator is

easily monitored by the driver. But, unless specialized sensors are installed, no other part

of the car is affected by the operation of this actuator and there is no analytic redundancy.

A range sensor is another example of a sensor for which a vehicle has no redundant

information. In some configurations, range information is provided by several different

17
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types of sensors, for example, radar and optical range sensors. In this type of design, the

sensor measurements are fused at the vehicle regulation layer. So, for the purposes of vehicle

control and fault detection, the range sensors are regarded as providing a single synthesized,

and nonredundant, measurement.

Analytic dynamic redundancy requires a detailed model of the dynamic relationship

between sensors and actuator commands. This information is encoded in a fault detection

filter that detects and isolates faults by producing a static pattern in a linear observer

residual. Most sensors and actuators associated with the vehicle longitudinal dynamics

are monitored this way. Fault detection filter design is described in Section 3.1. Algebraic

redundancy provides a simple algebraic parity equation that must be satisfied. For example,

since the throttle actuator dynamics are very fast, the throttle actuator command minus

the throttle actuator position is nominally zero. Parity equation design is described in 3.2.

The fault detection and isolation system is summarized in Section 3.3.

3.1 Analytic Redundancy

Eleven sensors and two actuators are to be monitored. The sensors are the manifold air mass

sensor yma , engine speed sensor yωe , manifold temperature sensor yTm , manifold pressure

sensor ypm, longitudinal velocity sensor yvx and accelerometer yax , vertical accelerometer

yaz , the sum of front wheel speed sensors yω̄f , the sum of rear wheel speed sensors yω̄r ,

throttle sensor yα and brake sensor yTb . The two actuators are the throttle uα and brake

uTb . Three of the sensors yα, yTb and ypm, are monitored with algebraically redundant

information. Hence, eight sensors and two actuators are included in the fault detection

filter design.

A very brief review of the fault detection filter is provided in Section 3.1.1. Section 3.1.2

describes the sensor and actuator fault models. Section 3.1.3 discusses several design

considerations that are specific to the longitudinal vehicle dynamics health monitoring

problem. Section 3.1.4 discusses how multiple faults are grouped among several filters. The

fault detection filter designs are sensor and actuator fault groups described in Sections 3.1.5
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and 3.1.6.

3.1.1 Beard-Jones Fault Detection Filter Background

A detailed review of fault detection filter design is provided in Appendix A of last year’s

report (Douglas et al. 1996). For a thorough background, several references are available,

a few of which are (Douglas 1993), (White and Speyer 1987) and (Massoumnia 1986).

Consider a linear time-invariant system with q failure modes and no disturbances or

sensor noise

ẋ = Ax + Bu +
q∑

i=1

Fimi (3.1a)

y = Cx + Du (3.1b)

The system variables x, u, y and the mi belong to real vector spaces and the system maps

A, B, C, D and the Fi are of compatible dimensions. Assume that the input u and the

output y both are known. The Fi are the failure signatures. They are known and fixed and

model the directional characteristics of the faults. The mi are the failure modes and model

the unknown time-varying amplitude of faults. The mi do not have to be scalar values.

A fault detection filter is a linear observer that, like any other linear observer, forms a

residual process sensitive to unknown inputs. Consider a full-order observer with dynamics

and residual

˙̂x = (A + LC)x̂ + Bu− Ly (3.2a)

r = Cx̂ + Du− y (3.2b)

Form the state estimation error e = x̂− x and the dynamics and residual are

ė = (A + LC)e−
q∑

i=1

Fimi

r = Ce

In steady-state, the residual is driven by the faults when they are present. If the system

is (C, A) observable, and the observer dynamics are stable, then in steady-state and in the
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absence of disturbances and modeling errors, the residual r is nonzero only if a fault has

occurred, that is, if some mi is nonzero. Furthermore, when a fault does occur, the residual

is nonzero except in certain theoretically relevant but physically unrealistic situations. This

means that any stable observer can detect the presence of a fault. Simply monitor the

residual and when it is nonzero a fault has occurred.

In addition to detecting a fault, a fault detection filter provides information to determine

which fault has occurred. An observer such as (3.2) becomes a fault detection filter when

the observer gain L is chosen so that the residual has certain directional properties that

immediately identify the fault. The gain is chosen to partition the residual space where each

partition is uniquely associated with one of the design fault directions Fi. A fault is identified

by projecting the residual onto each of the residual subspaces and then determining which

projections are nonzero.

In a detection filter, the state estimation error in response to a fault in the direction

Fi remains in a state subspace T ∗i , an unobservability subspace or detection space. See

Appendix A of last year’s report (Douglas et al. 1996) for details. The ability to identify

a fault, to distinguish one fault from another, requires, for an observable system, that the

detection spaces be independent. Thus, the number of faults that can be detected and

identified by a fault detection filter is limited by the size of the state space and the sizes of

the detection spaces associated with each of the faults. If the problem considered has more

faults than can be accommodated by one fault detection filter, then a bank of filters will

have to be constructed.

For a fault Fi, the approach to finding the detection space T ∗i is to find the minimal

(C, A)-invariant subspaceW∗i that contains Fi and then to find the invariant zero directions

of the triple (C, A, Fi), if any. With the invariant zero directions denoted by V i, the minimal

unobservability subspace T ∗i is given by

T ∗i =W∗i + V i

Before the fault detection filter design (3.2) can begin, a system model with faults has

to be found with the form (3.1). This is discussed in the next section.
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3.1.2 Fault Modelling

This section describes sensor and actuator fault models used for fault detection filter design.

Two classes of sensor fault are considered. One measures a linear combination of states. For

the longitudinal vehicle dynamics these include yma , yωe , yvx , yax , yaz , yω̄f and yω̄r . Another

class of sensor fault is one that measures exogenous inputs. The manifold temperature sensor

is the only sensor in this class.

The fault of a sensor which measures system states can be modelled as an additive term

in the measurement equation

y = Cx + Eiµi (3.3)

where Ei is a column vector of zeros except for a one in the ith position and where µi is an

arbitrary time-varying scalar. This is explained in last year’s report (Douglas et al. 1996)

but is included here for completeness. Since, for fault detection filter design, faults are

expressed as additive terms to the system dynamics, a way must be found to convert the

Ei sensor fault form of (3.3) to an equivalent Fi form as in (3.1). Let Fi satisfy

CFi = Ei

and define a state estimation error e as

e = x− x̂ + Fiµi

Using (3.2), the error dynamics are

ė = (A + LC)e + Fiµ̇i −AFiµi (3.4)

and a sensor fault Ei in (3.3) is equivalent to a two-dimensional fault Fi

ẋ = Ax + Bu + Fimi with Fi =
[
F 1

i , F 2
i

]
where the directions F 1

i and F 2
i are given by

Ei = CF 1
i (3.5a)

F 2
i = AF 1

i (3.5b)
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An interpretation of the effect of a sensor fault on observer error dynamics follows from

(3.4) where F 1
i is the sensor fault rate µ̇i direction and F 2

i is the sensor fault magnitude

µi direction. This interpretation suggests a possible simplification when information about

the spectral content of the sensor fault is available. If it is known that a sensor fault has

persistent and significant high frequency components, such as in the case of a noisy sensor,

the fault direction could be approximated by the F 1
i direction alone. Or, if it is known

that a sensor fault has only low frequency components, such as in the case of a bias, the

fault direction could be approximated by the F 2
i direction alone. For example, if a sensor

were to develop a bias, a transient would be likely to appear in all fault directions but, in

steady-state, only the residual associated with the faulty sensor should be nonzero.

A linear model partitioned to isolate first-order actuator dynamics can be expressed as

[
ẋ
ẋa

]
=
[

A B
0 −ω

] [
x
xa

]
+
[

0
ω

]
u + Bωω

where xa is a vector of actuator states and ω is an exogenous input. Typically, exogenous

inputs are dynamic disturbances such as road noise and wind gusts and are not known or

measured. However, as described in Section 2.3, the manifold temperature is modelled as a

dynamic input and is measured. A fault in this sensor is modelled as a direction given by

the associated column of the Bω matrix.

A fault in a control input is also modeled as an additive term in the system dynamics.

In the case of a fault appearing at the input of an actuator, that is the actuator command,

the fault has the same direction as the associated column of the [0, ω]T matrix. A fault

appearing at the output of an actuator, the actuator position, has the same direction as the

associated column of the [BT , 0]T matrix. In the vehicle model, the actuator dynamics are

relatively fast and, in an approximation made here, are removed from the system model.

Thus, the control inputs are applied directly to the system through a column of the B

matrix.
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3.1.3 Special Design Considerations

Several design considerations arise that are specific to the longitudinal vehicle dynamics

health monitoring problem. One problem is a conditioning problem that arises from the

model order reduction done in Section 2.1. Another concerns the output separability of the

modeled faults. A third problem concerns a reasonable expectation that a fault detection

filter should produce a nonzero fault residual for as long as a modeled fault is present.

Ill-conditioned fault direction

For all sensor and throttle actuator faults described in Section 3.1.2, the detection or

minimal unobservability subspaces are given by the fault directions themselves, that is,

T ∗i =W∗i + V i = Im Fi

For example, for the brake actuator, T ∗i = Im Fi because CFuTb
6= 0, (Douglas et al. 1996).

However, CFuTb
6= 0 only holds for the reduced, eighth-order model. For the full-order

model, CFuTb
= 0 so FuTb

should be considered as a very weakly observable direction. For

fault detection filter design, the brake actuator unobservability subspace is taken to be the

second-order space given by

T ∗uTb = Im
[
FuTb

, AFuTb

]
Output separability

The output separability design requirement states that the residuals produced by design

faults be pairwise linearly independent. Faults that are not output separable generate

co-linear residuals and cannot be isolated. Output separability of two faults Fi and Fj is

determined by

CT ∗i ∩ CT ∗j = 0 (3.6)

which may be checked by the column independence of realizations for CT i and CT j .
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Performing the check (3.6) reveals that two pairs of faults are not output separable.

The throttle actuator uα and manifold air mass sensor yma faults are not output separable

and the manifold temperature sensor yTm and manifold air mass sensor yma faults are not

output separable. The problem is summarized as

T ∗uα = Fuα

T ∗yTm = FyTm

T ∗yma =
[
Fyma AFyma

]
Fuα = Fyma

FyTm = AFyma

First, consider the throttle actuator and manifold air mass sensor faults where CFuα =

CFyma indicates that they cannot be isolated. As explained in Section 3.1.2, the direction

of the air mass sensor fault magnitude is AFyma while the direction of the fault rate is Fyma .

The throttle actuator and air mass sensor faults become output separable if only the sensor

fault magnitude direction is used. This design decision could allow a noisy but zero mean

sensor fault to remain undetected through the direction CAFyma . Also, since the throttle

fault detection space is spanned by Fuα = Fyma , an air mass sensor fault rate will stimulate

the throttle fault residual. However, a throttle actuator fault could never stimulate the

air mass sensor fault residual. In summary, as long as the air mass sensor fault spectral

components are low frequency, the throttle actuator and manifold air mass sensor faults

should be detectable and isolatable.

Next, consider the manifold temperature and air mass sensor faults where CFyTm =

CAFyma indicates that they cannot be isolated. Since AFyma represents the fault magnitude

direction, this direction can not be dropped from the detection space. One remedy is

to design a second fault detection filter that does not take the manifold air mass as a

measurement. Such a filter will be unaffected by air mass sensor faults but will respond to

manifold temperature sensor faults. A problem with this fix is that the throttle actuator and

temperature sensor faults are not output separable without an air mass sensor measurement.
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Responses of the two filter designs are summarized in Figure 3.1. Each row represents

a bias (hard) fault in either the throttle actuator, the air mass sensor or the temperature

sensor. The columns are the residual responses to the given fault conditions. The first

column is the response of the throttle actuator fault residual of the first filter. The

second column is the response of the air mass sensor and temperature sensor fault residuals

also from the first filter. The third column is the response of the throttle actuator and

temperature sensor fault residuals of the second filter.

Figure 3.1 shows that neither filter alone can detect and isolate the three faults: the

throttle actuator, the air mass sensor and the temperature sensor. Taken together, the two

filters produce a pattern unique to each fault so that the faults may be isolated. However,

the picture is not yet complete. A problem with the second fault detection filter is described

in the next section.

Tempera ture
Manifold

Air Mass
Manifold

Actua tor
Throttle

Detection Filte r #1 Detection
Filte r #2

Fault

Res idua l

Thro ttle Ma nifold Air Ma s s
a nd Te mpe ra tureAc tu a to r

Figure 3.1: Fault Signatures.

Zero steady-state fault residual

It is a reasonable expectation that a fault detection filter should produce a nonzero fault

residual for as long as a modeled fault is present. A necessary and sufficient condition is

given in the following theorem.
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Theorem 3.1. A necessary and sufficient condition for a fault detection filter residual to

hold a non-zero steady-state value in response to a bias fault is CA−1F 6= 0, that is,

C(sI −A− LC)−1F |s=0 = 0 ⇔ CA−1F = 0

Proof. Let F̄
4
= (A + LC)−1F . (⇒)

F = (A + LC)F̄ = AF̄ because CF̄ = C(A + LC)−1F = 0.

⇒ F̄ = A−1F

⇒ CA−1F = CF̄ = 0

(⇐)

AF̄ + LCF̄ = F

⇒ F̄ = A−1F because CA−1F = 0 and (A + LC) is unique.

⇒ C(A + LC)−1F = CF̄ = CA−1F = 0

Since CA−1FyTm = 0, the second fault detection filter will not see the temperature sensor

faults in the steady state. When a temperature bias fault occurs, the residual responds

with only a transient. Figure 3.1 is corrected in Figure 3.2 to illustrate the transitory

response. Once again, the fault patterns for the three faults are not unique, at least not in

steady-state.

Since a second fault detection filter no longer fixes the output separability problem,

another fix is needed. An algebraic relation between the manifold pressure and manifold

air mass is useful

manifold pressure− 19.9635 ∗manifold air mass = 0 (3.7)

This convenient relation arises from the perfect gas law. The magic number 19.9635 includes

the gas constant, a nominal temperature and the manifold volume. Equation (3.7) is a
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Figure 3.2: Fault Signatures.

parity equation that is satisfied when the manifold pressure and manifold air mass sensors

are working and is not satisfied when either sensor has failed. The parity equation by itself

cannot isolate a fault.

By combining the parity equation (3.7) with the first fault detection filter of the last

section, a residual pattern unique to each fault is formed and the faults may be isolated. The

faults are the throttle actuator, the air mass sensor, the temperature sensor and the manifold

pressure sensor. The residual patterns are summarized in Figure 3.3 Each row represents

a bias (hard) fault in either the throttle actuator, the air mass sensor, the temperature

sensor or the manifold pressure sensor. The columns are the residual responses to the given

fault conditions. The first column is the response of the throttle actuator fault residual of

the first filter. The second column is the response of the air mass sensor and temperature

sensor fault residuals also from the first filter. The third column is the response of the parity

equation for the manifold air mass and pressure sensors. The parity equation is discussed

further in Section 3.2.

3.1.4 Fault Assignment to Multiple Fault Detection Filters

The ability to identify a fault, to distinguish one fault from another, requires for an

observable system that the detection spaces be independent. Therefore, the number of
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Figure 3.3: Fault Signatures.

faults that can be detected and identified by a fault detection filter is limited by the size of

the state space and the sizes of the detection spaces associated with each of the faults. If the

problem considered has more faults than can be accommodated by one fault detection filter,

then a bank of filters will have to be constructed. The health monitoring system described

in this section for a vehicle going straight, considers nine system faults: seven sensor faults

and two actuator faults. Since the reduced-order longitudinal model has eight states and

seven measurements, clearly more than one fault detection filter is needed. The dimension

of the throttle actuator, the manifold air mass sensor and the manifold temperature sensor

detection spaces is one. The dimension of the brake actuator and the rest of the sensor

faults is two. Therefore, for this problem at least three filters are needed.

One consideration in grouping the faults among the fault detection filters is to group

faults which are robust to system nonlinearities. Note that an actuator fault changes the

vehicle operating point possibly introducing nonlinear effects into all measurements. The

nonlinear effect is small if the residual response is small compared to that for some nominal

fault. Also, sensor faults that are open-loop are easily isolated since they do not stimulate

any dynamics. One approach to fault grouping is to always group actuator and sensor faults
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with different fault detection filters.

Usually an attempt is made to group as many faults as possible in each filter. When

full-order filters are used, this approach minimizes the number of filters needed. When

reduced-order filters are used, this approach minimizes the order of each complementary

space and, therefore, the order of each reduced-order filter. Note that each fault included in

a fault detection filter design imposes more constraints on the filter eigenvectors. Sometimes,

the objective of obtaining well-conditioned filter eigenvectors imposes a tradeoff between

robustness and the reduced-order filter size.

With all the considerations above in mind, now we should decide how many fault

detection filters are needed and which faults should go together. Robustness to nonlinearities

requires all the actuator faults to be in the same filter. The output separability consideration

of Section 3.1.3 requires the throttle actuator and manifold air mass sensor fault to be in

the same filter. Thus, one fault detection filter has the throttle actuator uα, brake actuator

uTb and manifold air mass sensor yma . Note that this filter is also sensitive to faults in the

manifold temperature sensor yTm since manifold temperature and manifold air mass sensor

faults are not output separable.

The six remaining sensor faults, yωe , yvx , yax , yaz , yω̄f and yω̄r are assigned to two more

fault detection filters. Each filter has three faults. There are ten different combinations

for these two filters and they are all non-mutually detectable which means the invariant

zeros arising from the fault combinations will be the eigenvalues of the filters, that is, some

poles of the filters cannot be assigned. In six of these cases, the invariant zeros, hence the

fixed poles, are in the right-half plane resulting in an unstable fault detection filter. The

remaining four configurations are stable. Each stable case has been designed and tested.

The most robust combination is to put yωe , yax and yω̄f into the second filter and put yvx ,

yaz and yω̄r into the third filter. Here, most robust is taken to mean the filter with left

eigenvectors that are least ill-conditioned. This hedges against eigenstructure sensitivity to

small variations in system parameters. The three fault detection filters are
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Fault detection filter 1.

uα : Throttle actuator.

uTb : Brake actuator.

yma : Manifold air mass sensor.

yTm : Manifold temperature sensor.

Fault detection filter 2.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yω̄f : Sum of front wheel speed sensors.

Fault detection filter 3.

yvx : Longitudinal velocity sensor.

yaz : Vertical accelerometer.

yω̄r : Sum of rear wheel speed sensors.

3.1.5 Fault Detection Filter Design For Sensors

In this and the following sections, Beard-Jones fault detection filters have been designed

using eigenstructure assignment while ensuring that the eigenvectors are not ill-conditioned.

The essential feature of a fault detection filter is the detection space structure embedded

in the filter dynamics. A left eigenvector assignment design algorithm explicitly places

eigenvectors to span these subspaces. An eigenvector assignment design algorithm also

has to balance the objective of having well-conditioned eigenvectors for robustness against

the objective of each fault being highly input observable for fault detection performance.

System disturbances, sensor noise and system parameter variations are not considered in

the fault detection filter designs described in this report. Note that they are considered

in performance evaluation. For such a benign environment, the filter designs are based on
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spectral considerations only; there is little else that can be used to distinguish a good design

from a bad design.

Since the calculations are somewhat long and they are the similar for each detection

filter, the calculation details are given for only the first and third fault detection filters. In

this section, the fault detection filter is designed for the third fault group which has the

longitudinal velocity sensor yvx , the vertical accelerometer yaz and the sum of rear wheel

speed sensors yω̄r . In next section, a filter is designed for the first fault group which has the

throttle actuator uα, the brake actuator uTb and the manifold air mass sensor yma . Note

once again that the manifold air mass sensor yma is not output separable with respect to

the manifold temperature sensor yTm .

The eight state reduced-order longitudinal model derived in Section 2.1 is used. The

dimension of each detection space was found in Section 3.1.4 as

νyvx = dim T ∗yvx = 2

νyaz = dim T ∗yaz = 2

νyω̄r = dim T ∗yω̄r = 2

The dimension of the fault detection filter complementary space T 0 is also needed. The

complementary space is any subspace independent of the detection spaces that completes

the state-space.

X = T ∗yvx ⊕ T
∗
yaz
⊕ T ∗yω̄r ⊕ T 0

Thus the dimension of T 0 is two

ν0 = n− νyvx − νyaz − νyω̄r

= 8− 2− 2− 2

= 2

Next define the complementary faults sets. There are three faults Fyvx , Fyaz and Fyω̄r
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so there are four complementary fault sets which are:

F̂yvx =
[
Fyaz , Fyω̄r

]
(3.8a)

F̂yaz =
[
Fyvx , Fyω̄r

]
(3.8b)

F̂yω̄r =
[
Fyvx , Fyaz

]
(3.8c)

F̂0 =
[
Fyvx , Fyaz , Fyω̄r

]
(3.8d)

Now choose the filter closed-loop eigenvalues. As discussed in Section 3.1.4, these three

faults are not mutually detectable. Therefore the invariant zero −14.52 has to be one of

the eigenvalues of the complementary subspace. Since the system model includes no sensor

noise, no disturbances and no parameter variations, there is little basis for preferring one

set of detection filter closed-loop eigenvalues over another. The poles are chosen here to

give a reasonable response time but are not unrealistically fast. The assigned eigenvalues

are

Λyvx = {−3,−4}

Λyaz = {−3,−4}

Λyω̄r = {−3,−4}

Λ0 = {−3,−14.52}

The next step is to find the closed-loop fault detection filter left eigenvectors. For each

eigenvalue λij ∈ Λi, the left eigenvectors vij generally are not unique and must be chosen

from a subspace as vij ∈ Vij where Vij and another space Wij are found by solving[
AT − λijI CT

F̂ T
i 0

] [
Vij

Wij

]
=
[

0
0

]
(3.9)

There are eight Vij associated with eight eigenvalues. To help desensitize the fault detection

filter to parameter variations, the left eigenvectors are chosen from vij ∈ Vij as the set with

the greatest degree of linear independence. The degree of linear independence is indicated

by the smallest singular value of the matrix formed by the left eigenvectors. Upper bounds
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on the singular values of the left eigenvectors are given by the singular values of

V = [V01 , V02 , Vyvx1
, Vyvx2

, Vyaz1
, Vyaz2

, Vyω̄r1
, Vyω̄r2

]

These singular values are

σ(V ) = {2.83, 2.50, 1.69, 1.41, 1.32, 0.333, 0.080, 0.0088} (3.10)

If the left eigenvector singular value upper bounds were small, then all possible combinations

of detection filter left eigenvectors would be ill-conditioned and the filter eigenstructure

would be sensitive to small parameter variations. Since (3.10) indicates that the upper

bounds are not small, continue by looking for a set of fault detection filter left eigenvectors

that are reasonably well-conditioned. For this case, one possible set of left eigenvectors

from the set V nearly meets the upper bound and should be well-conditioned. The singular

values of this set of left eigenvectors are

σ(Ṽ ) = {1.95, 1.12, 1.00, 1.00, 0.92, 0.285, 0.063, 0.00691}

Since the difference between the largest and the smallest singular values is only three orders

of magnitude, the detection filter gain will be reasonably small and the filter eigenstructure

should not be sensitive to small parameter variations.

The fault detection filter gain L is found by solving

Ṽ T L = W̃ T (3.11)

where Ṽ is the matrix of left eigenvectors as found above, and W̃ is a matrix of vectors wij[
AT − λijI CT

F̂ T
i 0

] [
vij

wij

]
=
[

0
0

]
If the left eigenvector vij is a linear combination of the columns of Vij , wij is the same linear

combination of the columns of Wij where Vij and Wij are from (3.9).

To complete the detection filter design, output projection matrices Ĥyvx , Ĥyaz and Ĥyω̄r

are needed to project the residual along the respective output subspaces CT̂ ∗yvx , CT̂ ∗yaz and
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CT̂ ∗yω̄r . What this means is that, for example, T̂ ∗yvx becomes the unobservable subspace

of the pair (ĤyvxC, A + LC). Remember that by the definition of the complementary

faults (3.8), faults Fyaz and Fyω̄r lie in T̂ ∗yvx and fault Fyvx does not. The effect is that the

projected residual is driven by fault Fyvx and only fault Fyvx .

A projection Ĥi is computed by first finding a basis for the range space of CT̂ ∗i where

again, T̂ ∗i is any basis for the detection space T̂ ∗i . This is done by finding the left singular

vectors of CT̂ ∗i . Denote this basis for now as hi. Then Ĥi is given by

Ĥi = I − hih
T
i

In summary, a fault detection filter for the system with sensor faults Eyvx , Eyaz and

Eyω̄r

ẋ = Ax + Bu + BTmωTm

y = Cx + Du + Eyvxµyvx + Eyazµyaz + Eyω̄rµyω̄r

is equivalent to a fault detection filter for the system with faults Fyvx , Fyaz and Fyω̄r

ẋ = Ax + Bu + BTmωTm + Fyvxmyvx + Fyazmyaz + Fyω̄rmyω̄r

y = Cx + Du

and has the form

˙̂x = (A + LC)x̂ + (B + LD)u + BTmyTm − Ly

zyvx = Ĥyvx (Cx̂ + Du− y)

zyaz = Ĥyaz (Cx̂ + Du− y)

zyω̄r = Ĥyω̄r (Cx̂ + Du− y)

where L, Ĥyvx , Ĥyaz and Ĥyω̄r are shown in Appendix A.

A fault detection filter design for the second fault group is carried out in the similar way

and is not shown here. However, the filter gain L and projections Ĥyωe , Ĥyax and Ĥyω̄f
are

shown in Appendix A.
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3.1.6 Fault Detection Filter Design For Actuators

In next section, a fault detection filter is designed for the first fault group which has the

throttle actuator uα, the brake actuator uTb and the manifold air mass sensor yma . Note

once again that the manifold air mass sensor yma is not output separable with respect to

the manifold temperature sensor yTm .

The design procedure is similar to the previous section but does have a twist. As

discussed in Section 3.1.3, a reduced-order manifold air mass sensor fault is used to achieve

output separability with the throttle actuator fault. Also manifold air mass and manifold

temperature sensor faults cannot be isolated.

The dimension of each detection space was found in Section 3.1.4 as

νuα = dim T ∗uα = 1

νuTb
= dim T ∗uTb = 2

νyma = dim T ∗yma = 1

and the dimension of the fault detection filter complementary space T 0 where

X = T ∗uα ⊕ T
∗
uTb
⊕ T ∗yma ⊕ T 0

is four

ν0 = n− νuα − νuTb
− νyma

= 8− 1− 2− 1

= 4

Next define the complementary faults sets. There are three faults Fuα , FuTb
and Fyma

so there are four complementary fault sets which are:

F̂uα =
[
FuTb

, Fyma

]
(3.12a)

F̂uTb
=
[
Fuα , Fyma

]
(3.12b)

F̂yma =
[
Fuα , FuTb

]
(3.12c)

F̂0 =
[
Fuα , FuTb

, Fyma

]
(3.12d)
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Now choose the fault detection filter closed-loop eigenvalues. Since these three faults are

mutually detectable, all eigenvalues are freely assignable.

Λuα = {−3}

ΛuTb
= {−3, −4}

Λyma = {−3}

Λ0 = {−3, −4, −5, −6}

The next step is to find the closed-loop fault detection filter left eigenvectors. The left

eigenvectors vij for each eigenvalue λij ∈ Λi generally are not unique and must be chosen

from a subspace as vij ∈ Vij where Vij is found by solving[
AT − λijI CT

F̂ T
i 0

] [
Vij

Wij

]
=
[

0
0

]
(3.13)

There are eight Vij associated with eight eigenvalues. Upper bounds on the singular values

of the left eigenvectors are given by the singular values of

V = [V01 , V02 , V03 , V04 , Vuα , VuTb1
, VuTb2

, Vyma ]

These singular values are

σ(V ) = {2.83, 2.83, 2.82, 1.98, 1.41, 0.290, 0.174, 0.021} (3.14)

Since (3.14) indicates that the upper bounds are not small, continue by looking for a set

of fault detection filter left eigenvectors that are reasonably well-conditioned. One possible

choice has the following singular values

σ(Ṽ ) = {1.46, 1.41, 1.35, 1.00, 1.00, 0.235, 0.056, 0.0028}

Since these singular values are quite close to their respective upper bounds, the detection

filter gain should not be large and the filter eigenstructure should not be sensitive to small

parameter variations. As in Section 3.1.5, the fault detection filter gain L is found by solving

Ṽ T L = W̃ T (3.15)
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where the columns of Ṽ and W̃ are found from (3.13). Output projection matrices Ĥuα ,

ĤuTb
, Ĥyma and ĤyTm are found in the same way as for the sensor fault example of

Section 3.1.5. The filter gain L and projections Ĥuα , ĤuTb
, Ĥyma and ĤyTm are shown

in Appendix A

A note should be made regarding the throttle actuator fault residual. By the definition

of the complementary faults (3.12), FuTb
and Fyma lie in T̂ ∗uα while Fuα does not. The effect

is that the projected residual is not driven by fault FuTb
or Fyma . Now recall that Fyma is a

reduced-order approximation for Eyma so the throttle actuator residual is not only driven by

Fuα , but also the part of Eyma not modeled by Fyma . As shown in Figure 3.4, the throttle

actuator residual can only isolate faults well at low frequency while other residuals isolate

all faults.
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Figure 3.4: Singular value frequency response from all faults to throttle residual.

3.2 Algebraic Redundancy

Algebraic parity equations provide a second component to the fault detection and isolation

system. The following algebraically redundant pairs are available: the throttle sensor yα
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and throttle actuator, the brake sensor yTb and brake actuator uTb and the manifold pressure

sensor ypm and manifold air mass sensor yma. Three parity equations are defined:

1. 0 = Throttle sensor yα− Throttle actuator uα

2. 0 = Brake sensor yTb− Brake actuator uTb

3. 0 = Manifold pressure sensor ypm− Manifold air mass sensor yma ∗ 19.9635

None of the parity equations can by itself identify a fault. But by combining the parity

equations with the first fault group detection filter of Section 3.1.4, a unique residual pattern

is presented allowing each fault to be isolated. The patterns are summarized in Figure 3.5.

Each row of Figure 3.5 represents a bias (hard) fault in either the throttle actuator,

the throttle sensor, the brake actuator, the brake sensor, the manifold air mass sensor,

the manifold temperature sensor or the manifold pressure sensor. The columns are the

residual responses to the given fault conditions. The first column is the response of the

throttle actuator fault residual of the first filter. The second column is the response of the

brake actuator fault residual of the first filter. The third column is the response of the air

mass sensor and temperature sensor residuals of the first filter. The fourth, fifth and sixth

columns are responses of the first, second and third parity equations.

3.3 Structure

Combining the fault detection filters of Section 3.1 and parity equations in Section 3.2, a

set of six analytic redundancy relationships either dynamic or algebraic are presented. The

designs are given in Appendix A.

Fault detection filter 1.

uα : Throttle actuator.

uTb : Brake actuator.

yma : Manifold air mass sensor.

yTm : Manifold temperature sensor.
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Figure 3.5: Fault Signatures.

Fault detection filter 2.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yω̄f : Sum of front wheel speed sensors.

Fault detection filter 3.

yvx : Longitudinal velocity sensor.

yaz : Vertical accelerometer.

yω̄r : Sum of rear wheel speed sensors.
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Parity equation 1.

yα : Throttle sensor.

uα : Throttle actuator.

Parity equation 2.

yTb : Brake sensor.

uTb : Brake actuator.

Parity equation 3.

ypm : Manifold pressure sensor.

yma : Manifold air mass sensor.



Chapter 4

Fault Detection Filter Evalution

Fault detection filter performance is evaluated using the nonlinear simulation

discussed in Section 2. The fault detection filters designed in Sections 3 are tested on smooth

and rough roads and at an off-nominal condition. The off-nominal operating condition is

with the vehicle travelling straight ahead at 27 meters per second. Recall that the fault

detection filters were designed for the vehicle traveling straight ahead at 25 meters per

second. Performance is evaluated with respect to robustness to model nonlinearities and

road noise. A smooth road model has no irregularities at all and a rough road model has

roughness similar to what would be found on a reasonably well maintained freeway.

With the filters operating at an off-nominal condition, it is expected that the residuals

will be nonzero but small even when no fault is present. Section 4.1 discusses the issue of

when a residual is small and when a residual is large enough to indicate that a fault has

occurred. Section 4.2 discusses the detection filter performance when the vehicle operates

on smooth roads. Section 4.3 discusses the detection filter performance when the vehicle

operates on rough roads.

41



42 Chapter 4: Fault Detection Filter Evalution

4.1 Residual Scaling

Since most residuals are not zero, as is to be expected, the natural question to ask is what

magnitude residual should be considered small. The answer lies in comparing the size of

a nonzero residual due to non-linearities and the size of a nonzero residual due to a fault.

A residual scaling factor is chosen such that when a fault is introduced into the linearized

dynamics the magnitude of the corresponding reduced-order fault detection filter residual

is one. Since all residuals generated by the off-nominal operating condition have magnitude

less than 0.12, they should not be easily mistaken for residuals generated by a fault.

Of course, the size of the residual is proportional to the size of the fault. The size of the

fault used for finding the residual scaling factors is determined as follows. For most sensors,

the size of the fault is given by the difference in magnitude between the sensor output at

the nominal and off-nominal steady state operating conditions. For accelerometers, the

output is zero in any steady state condition and another method has to be used. The value

0.5 m
sec2 ≈ 0.05g is chosen as a reasonable value for an accelerometer bias fault.

4.2 Smooth Road

In this section, the fault detection filters of Section 3 are tested on smooth, flat roads at

an off-nominal operating point, that is, the vehicle operates in a steady state condition but

not the same one used to generate the linearized dynamics. This is achieved by letting the

car run at 27 meters per second rather than the nominal 25 meters per second. The road

is flat and smooth so only vehicle nonlinearities corrupt the filter residuals. If the vehicle

dynamics were linear, the increased throttle setting would have only a transient effect, if

any, on the linear fault detection filter state estimates. The state estimate errors and the

filter residuals would asymptotically go to zero. Since the vehicle dynamics are not linear

and the vehicle operating condition is not the same as it would be if the dynamics were

linear, the filter state estimates and the residuals are not zero.

The performance of the fault detection filter for the first fault group which includes

throttle and brake actuator faults, manifold air mass and temperature sensor faults is shown
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in Figures 4.1 and 4.2. A throttle fault is simulated by sending a two-degree incremental

or decremental step throttle command after two seconds to the nonlinear simulation but

not to the fault detection filter. This increases or decreases the speed of the car by about 2

meters per second or 4.5 miles per hour. Even though a throttle fault stimulates the vehicle

nonlinear dynamics and the residuals associated with other faults, Figure 4.1 shows that

both positive and negative throttle faults are clearly identifiable from other faults.

A brake fault is simulated by applying a brake torque just large enough to slow the

vehicle from 25 meters per second to 23 meters per second. This changes the vehicle steady

state operating point by the same amount as a minus two degree throttle fault. Figure 4.1

shows that the brake fault is clearly identified. It is important to note that when any of the

faults from the first fault design group occur, the residuals associated with a fault detection

filter designed for other faults have no meaning. This is why only four residuals are shown

in each plot of Figures 4.1 and 4.2.

A few interesting observations that follow from the discussion of Section 3.1.3 are

illustrated in Figure 4.2. First, since one direction of the throttle actuator fault corresponds

to the air mass sensor fault rate, a bias fault in the air mass sensor causes a transient response

in the throttle actuator residual. Because the transient dies out quickly, there should be no

problem distinguishing throttle actuator and air mass sensor faults as long as the air mass

sensor faults have only low frequency components. Second, since manifold air mass and

temperature sensor faults are not output separable, the fault detection filter has the same

residual response for both faults. However, the throttle actuator and manifold temperature

sensor faults are output separable so there is no transient in the throttle residual when a

manifold temperature fault occurs. Finally, note that the fault detection filter does not

respond to the manifold pressure sensor fault because the filter does not use a manifold

pressure measurement.

Figure 4.3 shows the magnitudes of the residuals for the fault detection filter derived

from the second fault design group: the engine speed sensor, the longitudinal accelerometer

and the sum of front wheel speed sensors. For each test, a sensor bias fault is added after two
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seconds. Only one sensor fault is added at a time since simultaneous faults are not allowed.

As with the first detection filter tests, when any of the sensor faults from the second fault

design group occur, the residuals of fault detection filters designed for other faults have no

meaning. This is why only three residuals are shown in each plot of Figures 4.3 and 4.4.

Distinguishing a meaningful residual from a non-meaningful residual is left to the residual

processing system . The residual associated with the fault quickly approaches one and other

residuals in the fault group remain unaffected.

Figure 4.4 shows the residuals for the three fault detection filters derived from the third

fault design group: the longitudinal velocity sensor, the vertical accelerometer and the sum

of the rear wheel speed sensors. Residual scaling factors are chosen in the same way as for

the first fault design group. The fault detection filter performance indicated by Figure 4.4

is the same as that indicated by Figure 4.3.

Figure 4.5 shows the residual from the parity equation derived for the fourth fault design

group: the throttle actuator and throttle sensor. Note that there is only one residual. The

scaling factor is chosen in the same way as for the other fault design groups. As discussed

in Section 3.1, a nonzero residual could mean that either or both components have failed.

Figures 4.6 and 4.7 show the residuals from parity equations derived for the fifth, the

brake actuator and brake sensor, and sixth, manifold air mass and temperature sensor, fault

design groups. They are similar to Figure 4.5.

4.3 Rough Road

Tests performed on the fault detection filters in this section closely follow those of the last

section except that the road is no longer smooth. The same types and sizes of faults are

used here as in Section 4.2.

To start, residuals for fault detection filter one in the no-fault case are illustrated

in Figure 4.8. Since actuator faults stimulate the nonlinear vehicle dynamics, alter the

operating point and cause all residuals to respond, plots of all residuals are provided when

actuator faults are simulated. Figures 4.9, 4.10, 4.11, 4.12 and 4.13 show each residual as a
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Figure 4.1: Residuals for fault detection filter one.
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Figure 4.2: Residuals for fault detection filter one.
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Figure 4.3: Residuals for fault detection filter two.
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Figure 4.4: Residuals for fault detection filter three.
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Figure 4.5: Residual for fault detection filter four.
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Figure 4.6: Residual for fault detection filter five.
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Figure 4.7: Residual for fault detection filter six.

separate plot for clarity.

Figure 4.14 shows the residuals for fault detection filter two derived from the second

fault group. Figure 4.14 illustrates a visually obvious contrast between cases where no fault

occurs and where a step fault occurs in the engine speed sensor, longitudinal accelerometer

and the sum of front wheel speed sensors.

Figure 4.15 shows the residuals for fault detection filter three derived from the third

fault group. Figures 4.16, 4.17 and 4.18 show the residuals for parity equations derived for

the third, fourth and sixth fault groups. They are the same as on a smooth road.
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Figure 4.8: Residuals for fault detection filter one when there is no fault.
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Figure 4.9: Residuals for fault detection filter one when a +2 deg throttle actuator fault
occurs.
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Figure 4.10: Residuals for fault detection filter one when a -2 deg throttle actuator fault
occurs.
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Figure 4.11: Residuals for fault detection filter one when a brake actuator fault occurs.
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Figure 4.12: Residuals for fault detection filter one when a manifold air mass sensor fault
occurs.
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Figure 4.13: Residuals for fault detection filter one when a manifold temperature sensor
fault occurs.
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Figure 4.14: Residuals for fault detection filter two.
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Figure 4.15: Residuals for fault detection filter three.
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Figure 4.16: Residual for fault detection filter four.
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Figure 4.17: Residual for fault detection filter five.



54 Chapter 4: Fault Detection Filter Evalution

0 2 4
0

0.5

1

1.5
Manofold Air Mass Sensor Fault

Time (sec)
0 2 4

0

0.5

1

1.5
Manifold Pressure Sensor Fault

Time (sec)
0 2 4

0

0.5

1

1.5
No Fault

Time (sec)

Figure 4.18: Residual for fault detection filter six.
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Residual Processing

A primary objective of any analytic redundancy management scheme is to generate

residuals with sufficient statistics and to analyze these signals. The fault detection filters

perform this task by constraining the residual to respond in a known and fixed direction

for each fault, thereby aiding the fault isolation process. However, in the presence of

nonlinearities and process uncertainties, the directional properties of the residual process

are no longer well defined. Further analysis of the signals is needed.

In this scenario, fault isolation may be viewed as a pattern recognition problem. The

residual processor could be a Bayesian neural network whose input is the residual process

and the outputs, in some sense, approximate the posteriori probabilities of each fault

(Douglas et al. 1995). However, the Bayesian neural network, while easy to implement, is

not easily amenable to mathematical analysis. Moreover, due to feedback, the performance

deteriorates in the presence of noise at the input.

A better approach is to use a Sequential Probability Ratio Test (SPRT). We derived a

multiple hypothesis Shiryayev SPRT by adopting a dynamic programming viewpoint and

55
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Fault detection filter 1: Throttle actuator
Brake actuator
Manifold air mass sensor
Manifold temperature sensor

Fault detection filter 2: Engine speed sensor
Longitudinal accelerometer
Front wheel symmetric speed sensor

Fault detection filter 3: Longitudinal velocity sensor
Vertical accelerometer
Rear wheel symmetric speed sensor

Parity equation 1: Throttle actuator
Throttle sensor

Parity equation 2: Brake actuator
Brake sensor

Parity equation 3: Manifold air mass sensor
Manifold pressure sensor

Table 5.1: Faults organized into analytically redundant groups.

showed that for a certain criterion of optimality, it detects and isolates a fault in minimum

time (Malladi and Speyer 1996, Malladi and Speyer 1997). The fault isolation problem is

now solved by assuming that each fault corresponds to a particular hypothesis. The multiple

hypothesis Shiryayev SPRT is described in detail in last year’s report (Douglas et al. 1996)

and in (Malladi and Speyer 1996) and (Malladi and Speyer 1997). The notation of this

chapter is the same as in Chapter 7 of (Douglas et al. 1996).

5.1 Residual Processor Design

As discussed in Sections 3.1.4 and 3.2, sensor and actuator faults are organized into the

analytically redundant groups of Table 5.1. The combined residual processes, xk ∈ R12,

from the fault detection filters and parity equations are considered to be the measurement

sequence for the Shiryayev sequential probability ratio test. The measurement sequence is

assumed to have a Gaussian distribution and be conditionally independent, that is, once a

fault occurs, the measurement process is independent.

There are 14 hypotheses {H0 . . .H13}, including the no-fault case. For convenience,
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H0 : No fault H1 : Manifold air mass sensor

H2 : Manifold temperature sensor H3 : Manifold pressure sensor

H4 : Throttle sensor H5 : Throttle actuator

H6 : Brake sensor H7 : Brake actuator

H8 : Engine speed sensor H9 : Front wheel speed sensor

H10 : Rear wheel speed sensor H11 : Longitudinal velocity sensor

H12 : Longitudinal accelerometer H13 : Vertical accelerometer

Table 5.2: Fault hypotheses for residual processing.

they are listed below. Each hypothesis is a given residual probability density function. The

density functions for all hypotheses are constructed as follows. First, since the residuals

are assumed to have Gaussian distribution, the only required statistics are the mean and

covariance. Next, model a step fault as a sudden increase in the mean of the residual

process. While a ramp fault could be modelled as a gradual increase in the mean, no

hypothesis models this type of fault signature directly. Using the nonlinear simulation,

apply a design step fault of some particular size to one component at a time and compute

the resulting residual mean and covariance matrix.

It is important to state that while the hypothesis statistics are associated with a given

design step fault, the statistics remain fixed throughout all residual processor testing. The

hypothesis statistics are not recomputed when the size of an applied fault does not match

the design fault or when ramp faults are applied.

As an example, the bias vector for the design fault size in the manifold air mass sensor,

hypothesis {H1}, is

[ 0.197 5.226 1.799 6.595 1.639 5.504 0.448 0.533 6.620 − 0.001 0.012 1.392 ]
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while the covariance matrix is

0.011 0.016 0.008 0.018 −0.001 0.008 0.002 0.005 . . .
0.016 11.26 0.113 0.070 0.104 0.135 −0.003 −0.015 . . .
0.008 0.113 0.158 0.575 0.205 0.721 0.033 0.037 . . .
0.018 0.070 0.575 2.142 0.756 2.668 0.121 0.132 . . .
−0.001 0.104 0.205 0.756 0.318 1.074 0.043 0.042 . . .

0.008 0.135 0.721 2.668 1.074 3.692 0.151 0.156 . . .
0.002 −0.003 0.033 0.121 0.043 0.151 0.008 0.008 . . .
0.005 −0.015 0.037 0.132 0.042 0.156 0.008 0.013 . . .
0.018 0.072 0.577 2.148 0.758 2.675 0.121 0.132 . . .

0.0001 −0.001 0.0004 −0.0001 0.001 0.002 0.0001 0.001 . . .
0.001 −0.017 0.001 0.003 0.002 0.007 0.0002 0.001 . . .
−0.001 −0.026 −0.003 −0.010 −0.002 −0.011 −0.001 −0.001 . . .

. . . 0.018 0.0001 0.001 −0.001

. . . 0.072 −0.001 −0.017 −0.026

. . . 0.577 0.0004 0.001 −0.003

. . . 2.148 −0.0001 0.003 −0.010

. . . 0.758 0.001 0.002 −0.002

. . . 2.675 0.002 0.007 −0.011

. . . 0.121 0.0001 0.0002 −0.001

. . . 0.132 0.001 0.001 −0.001

. . . 2.154 −0.0001 0.003 −0.010

. . . −0.0001 0.010 0.001 0.0002

. . . 0.003 0.001 0.010 −0.001

. . . −0.010 0.0002 −0.001 0.010


5.2 Simulations

The statistics of the residual process {x} are exactly modeled by the Shiryayev sequential

probability ratio test as

Under Hi : x ∼ N (mi,Λi)

where mi and Λi are a known mean and covariance. Therefore it is not surprising that

when a hard fault of the same magnitude as the design step fault is applied in the nonlinear

simulation, the residual processor isolates the fault almost immediately. However, real

faults have an unknown magnitude and never match the design case so it seems reasonable

to evaluate the residual processor by applying ramp faults to the nonlinear simulation.



5.2 Simulations 59

Manifold air mass sensor: x3 derived from fault detection filter 1

Throttle actuator: x1 derived from fault detection filter 1

Brake actuator: x11 derived from parity equation 2

Vertical accelerometer: x8 derived from fault detection filter 3

Table 5.3: Applied faults for residual processor testing.

To illustrate typical results, ramp faults in the manifold air mass sensor, throttle

actuator, vertical accelerometer and brake actuator are considered. Figures 5.1, 5.3, 5.4

and 5.5 show the residuals given in Table 5.3.

Figure 5.1 shows a 10 second simulation of a ramp fault applied to the manifold air mass

sensor. The size of the fault is gradually increased from zero at two seconds to the design

size of 0.07 kg/s at seven seconds. It is seen that the posteriori probability of a fault in the

manifold air mass sensor, hypothesis H1, becomes one at around five seconds.

Figure 5.2 shows the posteriori probability of a fault in the manifold temperature sensor,

hypothesis H2. The probability increases initially, but goes back to zero as the fault size in

the manifold air mass sensor increases.

Figure 5.3 shows a ten second simulation of a ramp fault applied to the throttle actuator.

The size of the fault is gradually increased from zero at two seconds to the design size of two

degrees at seven seconds. In this case, the posteriori probability of a fault in the throttle

actuator, hypothesis H5, increases to one at around three seconds.

Figure 5.4 shows a ten second simulation of a ramp fault applied to the brake actuator.

The size of the fault is gradually increased from zero at two seconds to the design size of

fifty at seven seconds. Here, the posteriori probability of a fault in the brake actuator,

hypothesis H7, increases to one at around three seconds.

In Figure 5.5, a ten second simulated ramp fault is applied to the vertical accelerometer.

The size of the fault is gradually increased from zero at two seconds to the design size

of 0.5 m
sec2 at seven seconds. Here, the posteriori probability of a fault in the vertical
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Figure 5.1: Ramp fault in manifold air mass sensor.

accelerometer, hypothesis H13, increases to one at around three seconds.

5.3 Conclusions

The simulation studies clearly illustrate the efficacy of a health monitoring scheme which

blends a classical fault detection filters approach with hypothesis testing ideas.



5.3 Conclusions 61

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

P
ro

b 
 o

f  
H

3

Temperature sensor

Figure 5.2: Probability of a fault in the manifold temperature sensor as a ramp fault in
manifold air mass sensor is applied.

0 5 10

0.2

0.4

0.6

A
ir 

M
as

s

Sensors

0 5 10

0.5

1

1.5

T
hr

ot
tle

Actuators

0 5 10

-0.2

0

0.2

B
ra

ke

0 5 10

0.5

1

1.5

Z
 A

cc
el

er
om

et
er

0 5 10
0

0.5

1

P
ro

b.
 o

f H
0

0 5 10
0

0.5

1

P
ro

b.
 o

f T
hr

ot
le

Figure 5.3: Ramp fault in throttle actuator.
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Figure 5.4: Ramp fault in Brake actuator.
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Figure 5.5: Ramp fault in Vertical accelerometer.



Chapter 6

A Game Theoretic Fault Detection Filter

The fault detection filter was introduced by Beard (Beard 1971) in his doctoral thesis

and later refined by Jones (Jones 1973) who gave it a geometric interpretation. Since then,

the fault detection filter has undergone many refinements. White (White and Speyer 1987)

derived an eigenstructure assignment design algorithm. Massoumnia (Massoumnia 1986)

used advances in geometric theory to derive a complete and elegant geometric version of a

fault detection filter and derived a reduced-order fault detector (Massoumnia et al. 1989).

Most recently, Douglas robustified the filter to parameter variations (Douglas 1993) and

(Douglas and Speyer 1996) and also derived a version of the filter which bounds disturbance

transmission (Douglas and Speyer 1995). The fault detection filter background and design

methods discussed in Appendices A,B and C of last year’s report (Douglas et al. 1996) as

well as the application to vehicle fault detection of Sections 2 through 4 all follow from

these sources.

Common to all of these sources is an underlying structure of independent, invariant

subspaces. Most design algorithms, an exception being (Douglas and Speyer 1995), rely

63
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on spectral methods, that is, specifying eigenvalues and eigenvectors, since these methods

lead directly to the needed filter structure. Spectral methods, however, also limit the

applicability of fault detection filters to linear, time-invariant systems and filters designed

by these methods can have poor robustness to parameter variations (Lee 1994).

For these reasons, we take a different approach to detection filter design. We look at the

fault detection process as a disturbance attenuation problem and convert the process into

a differential game which leads to the final design. The game is one in which the player is

a state estimate and the adversaries are all of the exogenous signals, save the fault to be

detected. The player attempts to exclude the adversaries from a specified portion of the

state-space much in the same way that the invariant subspace structure of the fault detection

filter restricts state trajectories when driven by faults. The end result is an H∞-type filter

which bounds disturbance transmission.

Since fault detection filters block transmission, it would seem reasonable to expect that

in the limiting case when the H∞ transmission bound is brought to zero, the game filter

no longer approximates, but actually becomes a fault detection filter. We will prove that

this is indeed the case. For linear time-invariant (LTI) systems, we will show, in fact,

that the game filter becomes a Beard-Jones fault detector in the sense of (Douglas 1993):

faults other than the one to be detected are restricted to a subspace which is invariant and

unobservable.

The method developed here has wider applicability than current techniques since time-

invariance is never assumed in the game solution. Thus, for a class of time-varying systems,

results analogous to the LTI case exist in the limit as disturbance bounds are taken to

zero. It is also possible with this method to deal with model uncertainty by treating it as

another element in the differential game (Chichka and Speyer 1995, Mangoubi et al. 1994).

In this manner, sensitivity to parameter variations can be reduced. Finally, by using a game

theoretic approach, the designer has the freedom to choose the extent to which the game

filter behaves as an H∞ filter and the extent to which it behaves like a detection filter. This

flexibility is unique to this method of fault detection filter design.
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The development of game theoretic estimation closely followed the development of game

theoretic control theory. The most notable and the most cited (and most unreadable) work

in the latter was the paper by Doyle et al. (Doyle et al. 1989). The ascendant of the work

presented here is the paper by Rhee and Speyer (Rhee and Speyer 1991) which derived the

two Riccati solution of (Doyle et al. 1989) via the calculus of variations. It is hard to credit

the first derivation of the game theoretic estimator, though (Banavar and Speyer 1991) or

(Yaesh and Shaked 1993) are probable candidates.

In Section 6.1, we motivate the disturbance attenuation approach to FDI by showing

how it approximates the actions of a detection filter. In Section 6.2, we solve a disturbance

attenuation problem patterned after the fault detection process. The game theoretic fault

detection filter is a product of this solution. In Sections 6.3.1 and 6.3.2, we demonstrate

the effectiveness of the new filter with a pair of examples.

6.1 The Approximate Detection Filter Design Problem

6.1.1 Modeling the Detection Problem

The general class of systems that we will look at are linear, observable, possibly time-varying,

and driven by noisy measurements:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + v. (6.1)

We will also assume that our state matrices have sufficient smoothness to guarantee the

existence of derivatives various order.

Beard (Beard 1971) showed that failures in the sensors and actuators, and unexpected

changes in the plant dynamics can be modeled as additive signals:

ẋ = Ax + Bu + F1µ1 + · · ·+ Fqµq. (6.2)

Let n be the dimension of the state-space. The n × pi matrix, Fi, i = 1 · · · q, is called a

failure map and represents the directional characteristics of the ith fault. The pi×1 vector,
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µi, is the failure signal and represents the time dependence of the failure. It will always

be assumed that each Fi is monic, i.e. Fiµi 6= 0 for µi 6= 0. We will look at Fi and µi in

more detail in Section 6.1.2, and we will show the importance of the monicity assumption

in Section 6.1.3. Throughout this paper, we will refer to µ1 as the “target fault” and the

other faults, µj , j = 2 · · · q, as the “nuisance faults”. Without loss of generality, we can

represent the entire set of nuisance faults with a single map and vector:

ẋ = Ax + Bu + F1µ1 + F2µ2.

Suppose that it is desired to detect the occurrence of the failure, µ1, in spite of the

measurement noise, v, and the possible presence of the nuisance faults, µ2. As described

earlier, a detection filter-based solution to this problem,

˙̂x = Ax̂ + L(y − Cx̂), (6.3)

works by keeping the reachable subspaces of µ1 and µ2 in separate and nonintersecting

invariant subspaces. Thus, with a properly chosen projector, H, we can project the filter

residual, (y−Cx̂), onto the orthogonal complement of the invariant subspace containing µ2

and get a signal,

z = H(y − Cx̂), (6.4)

such that

z = 0 when µ1 = 0 and µ2 is arbitrary. (6.5)

To be useful for FDI, z must also be such that

z 6= 0 when µ1 6= 0. (6.6)

If we restrict ourselves to time-invariant systems, (6.6) will be equivalent to requiring that

the transfer matrix between µ1(s) and z(s)1 be left-invertible. Left-invertibility, however, is

1µ1(s) and z(s) are the Laplace transforms of the time-domain signals µ1(t) and z(t).
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a severe restriction, and has no analog for the general time-varying systems that considered

here. Previous researchers (Douglas 1993, Massoumnia et al. 1989) have, in fact, only

required that the mapping from µ1(t) to z(t) be input observable, i.e. z 6= 0 for any µ1 that

is a step input. It is then argued (Massoumnia et al. 1989) that with input observability

z will be nonzero for “almost any” µ1, since µ1 is unlikely to remain in the kernal of the

mapping to z for all time.

We formulate the approximate detection filter problem by requiring input observability

and relaxing the requirement for strict blocking that is implied by (6.5). We, instead, only

require that the transmission of the nuisance fault be bounded above by a pre-set level,

γ > 0:

‖z‖2
‖µ2‖2

≤ γ. (6.7)

Equation (6.7) is clearly a disturbance attenuation problem, and it is an H∞ problem if

we assume L2 norms for µ2 and z in (6.7). We refer to the solution to the approximate

detection filter problem as the game theoretic fault detection filter.

Remark 2. Detection filters typically make no assumptions about the time dependence

of nuisance faults. The L2 assumption that we make above is, thus, a new restriction. We

will, however, recover the full generality of the detection filter in the limiting case when we

take the disturbance attenuation bound to zero.

Remark 3. The terms, “H∞” and “game theoretic,” are used interchangeably throughout

this chapter. Doyle (Doyle et al. 1989) showed that the solution to the infinite-horizon

linear quadratic game (Mageirou 1976) provides a fundamental solution to many H∞-norm

minimizing problems, all other solutions being expressible in terms of this solution and a

free parameter2, Q. Other researchers established a direct equivalence between the two

problems by using a disturbance attenuation interpretation of the H∞ problem to recover

Doyle’s result with the calculus of variations (Rhee and Speyer 1991) and with dynamic

2The free parameter, Q, is a real rational transfer function matrix.
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programming (Başar and Bernhard 1995)3. These researchers, moreover, derive significant

extensions of the H∞ result, obtaining solutions for finite-horizon problems and time-varying

systems. The differential game approach to solving H∞ problems has since been revisited

by a number of researchers (Limebeer et al. 1992, Mills and Bryson 1994) and has led

to new results in estimation (Banavar and Speyer 1991, Yaesh and Shaked 1993), robust

control (Ghaoui et al. 1992), robust estimation (DeSouza et al. 1992, Mangoubi 1995), and

adaptive control (Chichka and Speyer 1995). The differential game approach has even made

its way into textbooks such as (Green and Limebeer 1995).

6.1.2 Modeling Failures

In this section, we will show how to construct failure maps and signals for each type of

failure. Existing methods (Beard 1971, Douglas 1993, White and Speyer 1987) exist for

time-invariant systems. For actuator faults and plant changes, these methods can be

extended “as is” to time-varying systems. In the actuator fault case, this means that the

map is taken to be the corresponding column of the input matrix. In the plant fault case,

the map is similarly derived by pulling out the corresponding entries in the state matrix.

The failure signals in both cases can be found by choosing an appropriate time function4.

Sensor faults require a generalization of the time-invariant result. Because these failures

enter the system through the measurements, we can initially model them as an additive

input in the measurement equation:

y = Cx + Ejµj . (6.8)

C is an m × n matrix, and Ej is an m × 1 unit vector with a one at jth position, which

corresponds to a failure in the jth sensor.

Following (Douglas 1993), we determine the sensor failure map by finding the input to

the plant which drives the error state in the same way that µj will in (6.8). This is elegantly

accomplished by a Goh transformation on the error space (Jacobson 1971). Defining the

3This approach was significantly extended by Chichka and Speyer in (Chichka and Speyer 1995).
4For example, hard failures or saturation failures can be modeled as step inputs.
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estimation error, e, as x− x̂, the filter residual is then

r
4
= y − Cx̂ = Ce

when there is no sensor noise (6.1). When a sensor failure occurs,

r = Ce + Ejµj . (6.9)

Let fj be the solution to Ej = Cfj . The transformation begins by defining a new error

state,

ē
4
= e + fiµi, (6.10)

which allows us to rewrite (6.9) as r = Cē. Assuming a generic form for the observer, (6.3),

and a homogeneous dynamic system, ẋ = Ax, we differentiate ē,

˙̄e = ė + ḟjµj + fjµ̇j

= Ae + LCē + Afjµj −Afjµj + ḟjµj + fjµ̇j

= (A + LC)ē +
[

fj (Afj − ḟj)
]{ µ̇j

−µj

}
,

to get a differential equation for the transformed error trajectory. Clearly, the equivalent

input is one which enters the system through

Fj =
[

fj f∗j
]
, (6.11)

where f∗j = Afj − ḟj . When the system is time-invariant, ḟj = 0 and (6.11) will match

the time-invariant failure map given in (Beard 1971) and (White and Speyer 1987). For

our purposes, finding Fj is the key result. The actual time history of the failure signal is

not important and so undue importance should not be attached to the “equivalent” input,[
µ̇T

j −µT
j

]T .

6.1.3 Constructing the Failure Signal

We complete our formulation of the disturbance attenuation problem for fault detection by

constructing a projector, H, which determines the failure signal, z, (6.4). For time-invariant
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systems, this projector is constructed to map the reachable subspace of the fault signal µ2

to zero (Beard 1971, Douglas 1993), i.e.

H = I − CF̂
[(

CF̂
)T

CF̂
]−1(

CF̂
)T

, (6.12)

where

F̂ =
[

Aβ1f1, . . . , Aβp2 fp2

]
. (6.13)

The vector, fi, i = 1 · · · p2, is the ith column of F2, and the integer, βi, is the smallest

natural number such that CAβifi 6= 0. The time-varying extension of this result is

H = I − CF̂ (t)
[(

CF̂ (t)
)T

CF̂ (t)
]−1(

CF̂ (t)
)T

. (6.14)

The columns of the matrix,

F̂ (t) =
[

bβ1
1 (t), . . . , b

βp2
p2 (t)

]
,

are constructed with the Goh transformation:

b1
i (t) = fi(t), (6.15)

bj
i (t) = A(t)bj−1

i (t)− ḃj−1
i . (6.16)

In the time-varying case, βi is the smallest integer for which the iteration above leads

to a vector, bβk
i (t), such that C(t)bβk

i (t) 6= 0 for all t ∈ [t0, t1]. It will be assumed

that A(t), C(t), and F2(t) are such that βi exists. Since the state-space has dimension

n, βi is such that 0 ≤ βi ≤ n − 1. This restricts the class of admissible systems, but

such assumptions seem to be unavoidable when dealing with the time-varying case (see,

for example, (Clements and Anderson 1978)). The Goh transformation will be introduced

explicitly in Section 7.3, where we will also give an alternate representation of (6.12) and

(6.14).

We are now ready to discuss the conditions under which the solution to (6.7) will also

generate an input observable mapping from µ1 to z. The key requirement is that the system
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be output separable. That is, F1 and F2 must be linearly independent and remain so when

mapped to the output space by C and A. For time-invariant systems, the test for output

separability is

rank
[

CAδ1 f̃1, . . . , CAδp1 f̃p1 , CAβ1f1, . . . , CAβp2 fp2

]
= p1 + p2. (6.17)

As in (6.13), fi is the ith column of F2, and βi is the the smallest integer such that CAβifi 6=

0. Similarly, f̃j is the jth column of F1, and δj is the smallest integer such that Aδj f̃j 6= 0.

The integer sum, p1 + p2, is the total number of columns in F1 and F2.

For time-varying systems, the output separability test becomes

rank
[

C(t)b̃δ1
1 (t), . . . , C(t)b̃δp1

p1 (t), C(t)bβ1
1 (t), . . . , C(t)bβp2

p2 (t)
]

= p1 + p2, ∀t ∈ [t0, t1], (6.18)

where the vectors, bβi
i and b̃

δj
j , are found from the iteration defined by (6.15) and (6.16).

The initial vector, b̃1
j , is set equal to the jth column of F1, and b1

i is initialized as the ith

column of F2.

The following proposition connects output separability to input observability and shows

the importance of the monicity assumption:

Proposition 6.1. Suppose that we have an approximate detection filter which satisfies

(6.7) and generates the failure signal, z, given by (6.4). If F1 and F2 are output separable

and F1 is monic, then the mapping, µ1(t) 7→ z(t), is input observable.

Proof. The input observability of the mapping, µ1(t) 7→ z(t), is equivalent (Douglas 1993,

Massoumnia et al. 1989) to requirement that F1 be monic and that its image not intersect

the unobservable subspace of (HC, A). We have already assumed the former. To show the

latter, let us assume the converse, i.e. that there exists a vector,

ξ1(t) =
p1∑
i=1

αif̃i(t), (6.19)



72 Chapter 6: A Game Theoretic Fault Detection Filter

such that

H(t)C(t)Φ(t, τ)ξ1(τ) = 0, ∀ t and τ ≤ t. (6.20)

The vector, f̃i, is the ith column of F1, and the coefficient, αi, is a real number. At least

one αi is nonzero. Φ(t, τ) is the state transition matrix of A(·) from τ to t.

Equation (6.20) implies that ξ1(t) ∈ Ker H(t)C(t), since we can set τ = t and get

Φ(t, t) = I. Since the vectors, f̃i, are independent by the monicity assumption, this implies

that

f̃i(t) ∈ Ker H(t)C(t), ∀ i = 1, · · · , p1. (6.21)

Now, if one of these vectors, say f̃i0(t), is not also in KerC(t), then (6.21) can hold only if

Cf̃i0(t) is linearly dependent upon the vectors, Cbβi
i , which form the projector, H(t). This,

in turn, would imply that the output separability test, (6.18), will fail, which implies the

proposition. Thus, for argument’s sake, let us suppose that all the f̃i lie in KerC(t), so that

we can continue with the proof.

Now, because we have assumed that the underlying matrices are smooth enough to allow

for derivatives of arbitrary order, a necessary and sufficient condition for (6.20) is that the

derivatives of HCΦξ1 be zero for all t and τ . Thus,

d

dτ
[H(t)C(t)Φ(t, τ)ξ1(τ)] = H(t)C(t)Φ(t, τ)

[
−A(τ)ξ1(τ) + ξ̇1(τ)

]
= H(t)C(t)Φ(t, τ)ξ2(τ) = 0, ∀ t, τ,

(6.22)

where ξ2
4
= − Aξ1 + ξ̇1. Again, setting τ = t in (6.22) implies that ξ2(t) ∈ KerH(t)C(t).

From the definition of ξ1 and the iteration formulas (6.15,6.16), we can rewrite ξ2 as

ξ2 = α1b̃
2
1 + . . . + αp1 b̃

2
p1

. (6.23)

The same arguments as before will lead us to the conclusion that either b̃2
j (t) ∈ KerC(t),∀j, t

or that our proposition holds. We will again assume the former for argument’s sake.
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In the general case, we consider the vector, ξk, which is the kth iteration of formula,

ξj = −Aξj−1 + ξ̇j−1, (6.24)

in which the initial vector, ξ1, is given by (6.19)5. We can also write ξk as

ξk =
p1∑
i=1

αib̃
k
i (t),

where b̃k
i is the kth step of the iteration (6.15,6.16) with b̃1

i taken to be f̃i, the ith column

of F1. Previously, we saw for the case, k = 1, that

H(t)C(t)Φ(t, τ)ξk(τ) = 0, ∀ t and τ ≤ t (6.25)

implies

C(t)b̃k
i (t) = 0, ∀ i, t, (6.26)

H(t)C(t)Φ(t, τ)ξk+1(τ) = 0, ∀ t and τ ≤ t, (6.27)

where ξk+1
4
= − Aξk + ξ̇k is the next step in the iteration (6.24). The arguments used for

k = 1 are independent of the particular value of k, which means that (6.26,6.27) hold for

all k. Thus, by induction, we can claim that ξ1 unobservable through (HC, A) implies that

all of the vectors b̃i
k(t), i = 1 . . . n−1, k = 1 . . . p1 from (6.15,6.16) lie in the kernal of C(t).

This, implies that the output separability test matrix,

[
Cb̃δ1

1 , . . . , Cb̃
δp1
p1 , Cbβ1

1 , . . . , Cb
βp2
p2

]
,

will fail to be full-rank. Therefore, the contrapositive argument,

image F2 ∩Ker HC 6= 0 =⇒ F1 and F2 not output separable,

implies our proposition.

5Note that this formula is simply the Goh transformation.
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Remark 4. Although output separability is a necessary condition for the existence of

Beard-Jones filters (Beard 1971, Douglas 1993), Edelmayer et al. (Edelmayer et al. 1996),

show that even without output separability it is still possible to find approximate detection

filters which can distinguish the target input from nuisance inputs. There is no guarantee,

however, that this will always be the case, and our example in Chapter 8 will show that the

loss of output separability severely reduces our ability to distinguish the two faults.

Remark 5. A property of the unknown input observer such as described by (Frank 1990,

Patton and Chen 1992, Saif and Guan 1993), and its approximations, such as the filter we

are about to derive, is the ability to distinguish only one fault out of a set of faults. In

general, this is a disadvantage when compared to the Beard-Jones Fault Detection Filter

which can identify several faults. An exception to this rule, however, is in the number of

faults which can be included in the nuisance set. In the unknown input observer, any fault

which is output separable from the target fault can be included, though a minimal set that

spans the range of the nuisance set may have to be used as the failure map in order to

preserve monicity. In a Beard-Jones Filter, all of the faults in the model will be target

faults at one point or another and so they must be pairwise output separable. This severely

limits the number of faults which can be included in a single Beard-Jones Filter6.

6.2 A Game Theoretic Solution to the Approximate Detection Filter
Design Problem

6.2.1 The Disturbance Attenuation Problem

We now turn our attention to the disturbance attenuation problem implied by (6.7). We

begin by defining a disturbance attenuation function,

Daf =

∫ t1
t0
‖HC(x− x̂)‖2Qdt∫ t2

t1

[
‖µ2‖2M−1 + ‖v‖2

V −1

]
dt + ‖x(t0)− x̂0‖2P0

, (6.28)

6In general, one can include, at most, only as many faults as there are measurements in the
system (Douglas 1993, Massoumnia et al. 1989).
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which is a ratio of the outputs to the disturbances (Rhee and Speyer 1991). Equation (6.28)

is patterned roughly after (6.7). We have added the sensor noise, v, and the initial error,

x(t0)− x̂0, to the set of disturbance signals to incorporate tradeoffs for noise rejection and

settling time into the problem. M, V, Q, and P0 are weighting matrices. Note that we do not

include the target fault, µ1, at this stage of the design problem, since we are now focusing

on nuisance blocking. Our only concern with µ1 is that it be visible at the output, which is

what Proposition 6.1 guarantees.

The disturbance attenuation problem is to find the estimate, x̂, so that for all µ2,

v ∈ L2[t1, t2], x(t0) ∈ Rn,

Daf ≤ γ,

where γ ∈ R is called the disturbance attenuation bound. Since Daf is defined with L2

norms, the disturbance attenuation problem is equivalent to a suboptimal H∞ problem.

(C, A) will always be assumed to be an observable pair.

To solve this problem, we convert (6.28) into a cost function,

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q − γ

(
‖µ2‖2M−1 + ‖y − Cx‖2V −1

)]
dt− ‖x(t0)− x̂0‖2Π0

, (6.29)

where we have used (6.1) to rewrite the measurement noise term. Note that we have also

rewritten the initial error weighting, defining Π0
4
= γ−1P0. The disturbance attenuation

problem is then solved via the differential game,

min
x̂

max
y

max
µ2

max
x(t0)

J ≤ 0, (6.30)

subject to

ẋ = Ax + F2µ2, (6.31)

y = Cx + v.
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6.2.2 The Differential Game Solution

We will solve the differential game in two steps beginning with the subproblem,

max
µ2

max
x(t0)

J ≤ 0,

subject to (6.31) with y and x̂ fixed. The first step in this solution is to append the problem

constraints, which are the system dynamics, (6.31), to the cost, (6.29), through a Lagrange

multiplier, λT :

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q − γ

(
‖µ2‖2M−1 + ‖y − Cx‖2V −1)

+ λT (Ax + F2µ2 − ẋ
)]

dt− ‖x(t0)− x̂0‖2Π0
.

Integrate λT ẋ by parts,

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q − γ

(
‖µ2‖2M−1 + ‖y − Cx‖2V −1

)
+ λT

(
Ax + F2µ2

)
+ λ̇T x

]
dt− ‖x(t0)− x̂0‖2Π0

+ λ(t0)T x(t0)− λ(t1)T x(t1), (6.32)

and then take the variation of (6.32) with respect to µ2 and x(t0):

δJ =
∫ t1

t0

{[
(x− x̂)T CT HQHC + γ(y − Cx)T V −1C + λ̇T + λT A

]
δx

+
[
−γµT

2 M−1 + λT F2

]
δµ2

}
dt− λ(t1)T δx(t1)

−
[
(x(t0)− x̂0)T Π0 − λ(t0)T

]
δx(t0). (6.33)

Note that since H is a projector, H = HT = H2. Equation (6.33) implies that the first-order

necessary conditions to maximize (6.29) with respect to x(t0) and µ2 are
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µ∗2 =
1
γ

MF T
2 λ, (6.34)

−λ̇ = AT λ + CT HQHC(x− x̂) + γCT V −1(y − Cx), (6.35)

λ(t1) = 0, (6.36)

λ(t0) = Π0

[
x∗(t0)− x̂0

]
. (6.37)

The asterisks in (6.34) and (6.37) denote that the extremizing value for the given variable is

being used. By substituting the maximizing strategy for µ2, (6.34), into the state equation

(6.31), we get a nonhomogeneous two-point boundary value problem (TPBVP),

{
ẋ

λ̇

}
=
[

A 1
γ F2MF T

2

−CT (HQH − γV −1)C −AT

]{
x
λ

}
+
{

0
CT HQHCx̂− γCT V −1y

}
, (6.38)

by coupling (6.31) with (6.35). We will assume solutions x∗ and λ∗ to (6.38) such that

λ∗ = Π(x∗ − xp). (6.39)

The vector, xp, is a measurement-dependent variable which will reduce to the optimal state

estimate in the second-half of this game. If we take

Π(t0) = Π0, (6.40)

xp(t0) = x̂0, (6.41)

then (6.39) will match the boundary condition for λ at t0, (6.37). By differentiating (6.39)

and substituting in the equations for ẋ and λ̇ from (6.38), we get

0 =
[
Π̇ + AT Π + ΠA +

1
γ

ΠF2MF T
2 Π + CT

(
HQH − γV −1

)
C
]
x∗

− Π̇xp −Πẋp −AT Πxp − CT HQHCx̂ + γCT V −1y. (6.42)
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Now, add and subtract γCT V −1Cx̂ and [ΠA+CT (HQH−γV −1)C]xp to (6.42) and collect

terms:

0 =
[
Π̇ + AT Π + ΠA +

1
γ

ΠF2MF T
2 Π + CT

(
HQH − γV −1

)
C
]
(x∗ − xp)

−Πẋp + ΠAxp −
[
CT
(
HQH − γV −1

)
C
]
(x̂− xp) + γCT V −1(y − Cx̂). (6.43)

We, thus, find that (6.39) solves the TPBVP identically if

−Π̇ = AT Π + ΠA +
1
γ

ΠF2MF T
2 Π + CT (HQH − γV −1)C, (6.44)

Πẋp = ΠAxp −
[
CT (HQH − γV −1)C

]
(x̂− xp) + γCT V −1(y − Cx̂). (6.45)

Equation (6.44) is clearly a Riccati equation, and its boundary condition is given by (6.40).

Equation (6.45) looks like an estimator equation, except that it propagates the intermediate

variable, xp, and not the state estimate, x̂.

Substituting the maximizing values for µ2 and x(t0), (6.34,6.37), into the original cost

function, (6.29), gives us

J̄ =
∫ t1

t0

[
‖x− x̂‖2CTHQHC − ‖λ‖21

γ
F2MFT2

− γ‖y − Cx‖2V −1

]
dt− ‖λ(t0)‖2Π−1

0
. (6.46)

The second half of the game is then

min
x̂

max
y

J̄ ≤ 0,

subject to (6.45). By adding the identically zero term,

‖λ(t0)‖2Π(t0)−1 − ‖λ(t1)‖2Π(t1)−1 +
∫ t1

t0

d

dt
‖λ(t)‖2Π−1dt = 0,

to (6.46) and applying the boundary conditions for λ, (6.36,6.37), we get

J̄ =
∫ t1

t0

[
‖x− x̂‖2CTHQHC − ‖λ‖21

γ
F2MFT2

− γ‖y − Cx‖2V −1

+ λ̇T Π−1λT + λT Π̇−1λ + λT Π−1λ̇
]
dt. (6.47)



6.2 A Game Theoretic Solution to the Approximate Detection Filter Design Problem 79

If we substitute the differential equation for λ from (6.38) into (6.47), we then have

J̄ =
∫ t1

t0

{
‖x− x̂‖2CTHQHC + λT (−AΠ−1 −Π−1AT − F2MF T

2 + Π̇−1)λ

− (x− x̂)T CT HQHCΠ−1λ− λT Π−1CT HQHC(x− x̂)

− γ
[
‖y − Cx)‖2V −1 + (y − Cx)T V −1CΠ−1λ + λT Π−1CT V −1(y − Cx)

]}
dt. (6.48)

From (6.44), the differential equation for Π−1 is

Π̇−1 = −Π−1Π̇Π−1 = Π−1AT + AΠ−1 +
1
γ

F2MF T
2

+ Π−1CT (HQH − γV −1)CΠ−1, (6.49)

which, when substituted into the second term in (6.48), gives us

J̄ =
∫ t1

t0

[
‖Π−1λ− (x− x̂)‖2CTHQHC − γ‖CΠ−1λ + (y − Cx)‖2V −1

]
dt. (6.50)

Substituting the optimal value for λ, (6.39), into (6.50) then leads to

J̄ =
∫ t1

t0

[
‖x̂− xp‖2CTHQHC − γ‖y − Cxp‖2V −1

]
dt. (6.51)

From (6.51), the minimizing strategy for x̂ and the maximizing strategy for y are clearly

x̂∗ = xp, (6.52)

y∗ = Cxp.

This implies that our game optimal estimate, x̂, is found from

˙̂x = Ax̂ + γΠ−1CT V −1(y − Cx̂), x̂(t0) = x̂0, (6.53)

which is simply the extremizing value of x̂, (6.52), applied to (6.45) and (6.41). Π is found

by propagating (6.44) with the initial condition, (6.40).

Remark 6. The derivation presented in this section follows that presented by Banavar

and Speyer (Banavar and Speyer 1991).
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6.2.3 Steady-State Results

In many cases, it is desired to extend finite-time solutions of game theoretic problems to

the steady-state condition. Whenever it is possible to find a steady-state solution to the

disturbance attenuation problem, the optimal estimator will be given by (6.53) with Π being

the solution of the algebraic Riccati equation (Green and Limebeer 1995),

0 = AT Π + ΠA +
1
γ

ΠF2MF T
2 Π + CT

(
HQH − γV −1

)
C. (6.54)

However, unlike the algebraic Riccati equation of linear-quadratic optimal control problems,

there are no conditions which guarantee the existence of a unique, nonnegative definite,

stabilizing solution to the steady-state Riccati equation (6.54), except in the special case

where A is asymptotically stable (Green and Limebeer 1995).

6.3 Applications

This section demonstrates the effectiveness of the new game theoretic fault detection filter

with a pair of examples.

6.3.1 Accelerometer Fault Detection in an F16XL

In this application, the F16XL example of (Douglas and Speyer 1996) is re-examined. The

objective is to detect a normal accelerometer fault in the presence of wind gusts and sensor

noise.

Aircraft Dynamics Model

The aircraft dynamics are linearized about trimmed level flight at 10,000 ft altitude and

Mach 0.9. For simplicity, a reduced-order, five-state model of the longitudinal dynamics

(including a first-order wind gust model) is considered:

ẋ = Ax + Bwgwwg,

y = Cx + v.

The five components of the state vector are
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x =


u
w
q
θ
wg


long. velocity (ft/sec)
normal velocity (ft/sec)
pitch rate (deg/sec)
pitch (deg)
wind gust (ft/sec)

with the measurements,

y =


q
θ

Az

Ax


pitch rate (deg/sec)
pitch (deg)
long. acceleration (ft/sec2)
normal acceleration (ft/sec2).

(6.55)

The input, wwg, is windgust and v is the sensor noise. The system matrices are

A =


−.0674 .0430 −.8886 −.5587 .0430
.0205 −1.4666 16.5800 −.0299 −1.4666
.1377 −1.6788 −.6819 0 −1.6788

0 0 1 0 0
0 0 0 0 −1.1948

 , (6.56)

BT
wg =

[
0 0 0 0 2.0156

]
, (6.57)

and

C =


0 0 1 0 0
0 0 0 1 0

0.0139 1.0517 0.1485 −0.0299 0
−0.0677 0.0431 0.0171 0 0

 . (6.58)

Full-Order Filter Design

Following the modeling techniques described in Section 6.1, we convert the accelerometer

fault into an input to the system,

ẋ = Ax + FAzµAz + Fwgµwg,

y = Cx + v,
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where

FAz =


0.6003 0
0.9429 −1.3706

0 −1.5003
0 0
0 0

 .

In order to distinguish the accelerometer fault from the windgust disturbance, we model the

windgust as the nuisance fault. Hence, Fwg is simply Bwg and µwg is the wind gust input,

wwg. A quick check shows that FAz and Fwg are output separable. Finally, we generate the

residual projector, H. Since CFwg = 0, we must go through the Goh iteration one time to

find that

F̂ = AFwg.

The projector is then

H = I − CAFwg

[
(CAFwg)T CAFwg

]−1
(CAFwg)T

=


0.5330 0 −0.4982 −0.0264

0 1 0 0
−0.4982 0 0.4685 −0.0281
−0.0264 0 −0.0281 0.9985

 .

(6.59)

The full-order filter design problem boils down to finding a solution to the game Riccati

equation, (6.44), that leads to acceptable filter performance. Acceptable, in this example,

means that the filter transmits the target fault and attenuates the nuisance fault so that

there is good separation between the respective transmission levels. Since the inverse of Π

is used in the filter gain, we directly solve for this inverse using the steady-state version of

(6.49),

0 = Π−1AT + AΠ−1 +
1
γ

F2MF T
2 + Π−1CT

(
HQH − γV −1

)
CΠ−1, (6.60)

with
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γ = 5× 10−7, Q = M = I, γ−1V =


1 0 0 0
0 1 0 0
0 0 10, 000 0
0 0 0 1

 . (6.61)

The solution to (6.60) is

Π−1 = 105 ×


0.000001 −0.000050 −0.000053 −0.000000 0.002291
−0.000050 0.001603 0.001661 0.000009 −0.077892
−0.000053 0.001661 0.001704 0.000010 −0.088760
−0.000000 0.000009 0.000010 0.000000 −0.000020
0.002291 −0.077892 −0.088760 −0.000020 9.219357

 . (6.62)

The peculiar form of γ−1V is necessitated by the fact that, in the true system, the target

fault is a sensor fault which appears in the measurements,

y = Cx + EAzµAz ,

and, as a result, directly feeds through to the failure signal:

z = H(y − Cx̂) = HCe + HEAzµAz .

Analysis

The effect of this feedthrough can be seen in Figure 6.1, which is a plot of the singular values

of the transfer function matrix between µAz and µwg and the failure signal, z. As Figure 6.1

shows, the direct feedthrough of the target fault prevents its transmission from rolling off

at higher frequencies and detrimentally effects its DC gain, as evidenced by the dashed-dot

line which depicts the performance of a filter designed with γ−1V = I. By choosing γ−1V

as in (6.61), the contribution of the accelerometer channel is minimized because its gain and

bandwidth are kept small. In terms of detection performance, it can been seen that that

the filter does a good job of separating the target fault from nuisance fault transmissions

when the filter is designed with the weightings, (6.61).

Our choice of γV −1, (6.61), and the solution Π−1, (6.62), to (6.60) also result in high-gain

feedback for the other sensor channels (see Remark 6.3.1). High gain means high bandwidth
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Figure 6.1: F-16XL example: singular value plot of accelerometer fault transmission vs.
wind gust transmission (solid line - output due to µAz ; dashed line - output due
to µwg; dashed-dot line - output due to µAz for filter with γV −1 = I).
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which works against our ability to quench noise coming through these channels. As shown

in Figure 6.2, sensor noise is transmitted to the failure signal at distressingly amplified

levels. Ideally, we would like to be able to reverse this situation, i.e. keep the high gain on

the accelerometer channel and turn down the gain on the other channels to reject noise.
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Figure 6.2: F-16XL example: target fault transmission vs. sensor noise transmission (The
solid line represents the accelerometer fault and the dash-dot line represents
sensor noise from all four channels. The dashed line is the windgust input).

It should be noted that, with a different measurement suite, we might be able to mitigate

the detrimental effects of the direct feedthrough term. With our current measurement set,

(6.55), there are no other sensors that can observe the portion of the state-space covered

by accelerometer, and so there is nothing to compensate for the loss of this measurement.

Thus, augmenting the sensor set may be needed to improve our ability to health monitor

the system. This, of course, reduces some of the advantage to using analytical redundancy.

Finally, we note that we may not always be able to choose such an extreme form for

γ−1V and still get a solution to the game Riccati equation. In those cases, one simply



86 Chapter 6: A Game Theoretic Fault Detection Filter

has to do the best that one can and rely on residual post-processing to help with failure

identification.

Remark 7. The result that our solution is a high-gain filter, while not predicted, should not

be altogether surprising; since, as we will show in Chapter 7, we are asymptotically imposing

an invariant subspace structure on our filter. Previous work on asymptotic structures,

such as “almost invariant subspaces” (Willems 1981) and “almost disturbance decoupling”

(Ozcetin et al. 1992), also report high-gain feedback.

6.3.2 Position Sensor Fault Detection for a Simple Rocket, A Time-Varying
System

In this section, we present, quite likely, the first example ever given for detection filtering

applied to a time-varying system. Our example is taken from (Rugh 1996) and is a rocket

moving in the vertical plane. The problem is to detect a fault in the rocket position sensor

without triggering a false alarm due to uncertainty in the rocket motor mass rate.

Rocket Dynamics Model

Consider a rocket moving in the vertical plane with height, h(t), and velocity, v(t). The

rocket is propelled against gravity, g, by thrust generated from expelled fuel mass:

Fthrust = −Veu(t),

u(t) = ṁ(t).

The variable, ṁ, is the rate of change of the mass due to spent fuel, and Ve is the exit

velocity of the fuel through the nozzle.

Kinematics gives us ḣ(t) = v(t), and Newton’s Second Law of Motion gives us

v̇(t) = −g +
Veu(t)
m(t)

.

Defining x1
4
= h, x2

4
= v, and x3

4
= m, we get
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
ẋ1(t)
ẋ2(t)
ẋ3(t)

 = f(t) =

 x2(t)
−g + Veu(t)/x3(t)

u(t)

 (6.63)

as our state equation. If we assume that the mass rate, u(t), is nominally a constant, i.e.

u(t) = u0, then integrating each of the state equations in turn gives us


x̄1(t)
x̄2(t)
x̄3(t)

 =


−g

2 t2 + m0Ve
u0

[(
1 + u0

m0
t

)
ln
(

1 + u0
m0

t

)
− u0

m0
t

]
−gt + Ve ln

(
1 + u0

m0
t

)
m0 + u0t

 (6.64)

as the nominal solution to (6.63). The scalar constant, m0, is the initial mass of the rocket.

If the true mass rate of the rocket, however, is u(t) = u0 + δu(t) (where δu is some “small”,

time-varying perturbation), then the system will be perturbed away from the nominal state,

i.e. x(t) = x̄(t) + δx(t). Using a Taylor expansion of (6.63) about (6.64) and neglecting

terms higher than first-order, we find that the behavior of the system about the nominal

trajectory can be described by

δẋ =

 0 1 0
0 0 − Veu0

(m0+u0t)2

0 0 0

 δx(t) +


0
Ve

m0+u0t

1

 δu(t).

For this example, we will assume that we have sensors that measure the height and velocity

of the rocket so that

y(t) =
[

1 0 0
0 1 0

]
δx.

With these measurements, our system is observable.

Full-Order Filter Design

Suppose that we want to detect a position sensor fault in spite of uncertainty about the

mass rate input, u(t). We can apply the game theoretic detection filter to this problem by

treating the perturbation, δu(t), as the nuisance fault:
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F2(t) =


0
Ve

m0+u0t

1

 , µ2(t) = δu(t).

To check for output separability, we also need to find the failure map for the position sensor

fault. As described in Section 6.1.2, we begin with

y = Cx + Eµ1,

where ET =
[

1 0
]
. The first column of the sensor failure map is found as the solution

to the equation,

E = Cf.

It can easily be verified that fT =
[

1 0 0
]
. The second column is found from Af − ḟ ,

which in this case turns out to be zero. Thus, we only need a single column failure map for

the position sensor. The output separability test is then

M(t) =
[

CF2 Cf
]

=
[

0 1
Ve

m0+u0t 0

]
which is full rank so long u0t 6= −m0 (note that u0 is a negative quantity since it represents

the rate of mass loss). Finally, we get

H = I − CF2

[
(CF2)T CF2

]−1
F T

2 CT

=
[

1 0
0 1

]
−
{

0
Ve

m0+u0t

}
(m0 + u0t)2

V 2
e

[
0 Ve

m0+u0t

]

=
[

1 0
0 0

]
as the failure signal projector.

The detection filter is obtained by propagating the equations,

˙δx̂ = Aδx̂ + PCT V −1(y − Cδx̂),

Ṗ = PAT + AP − CT (V −1 −HQH)C +
1
γ

F2MF T
2 .
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A failure is then declared whenever the failure signal,

z = H(y − Cδx̂),

exceeds some a priori chosen threshold. After some trial and error, the following values for

the weighting matrices were chosen:

V =
[

.2 0
0 .045

]
, Q =

[
.01 0
0 1

]
, P (t0) =

 10 0 0
0 10 0
0 0 10

 , M = 10, 000,

along with γ = 0.25. The initial conditions were arbitrarily picked to be

δx(t0) =


0
0
0

 , e(t0) =


0
−0.3
0.2

 . (6.65)

A nonzero initial error state was chosen to demonstrate the filter’s convergence properties.

The physical parameters of the rocket were taken from (Sutton 1986, pg. 263–264) and are

the characteristics of the first-stage Minuteman Missile Motor:

m0 = 50, 550 lb−mass, u0 = −855
lb−mass

sec
, Ve = −5180

ft
sec

.

Q and V were chosen to maximize the low frequency transmission of the target fault;

though, in this example, we were limited in our choices for Q and V by the existence of a

finite escape time for the Riccati solution. The escape time turned out to be a function of

these weightings.

Analysis

The rocket dynamics along with the filter were simulated from t0 = 0 seconds to t1 = 25

seconds. In Figure 6.3, the response of the failure signal generated by the time-varying

game theoretic fault detection filter is displayed for a hard failure of the position sensor at

t = 10 seconds and for a step bias in the mass rate also occurring at t = 10 seconds.



90 Chapter 6: A Game Theoretic Fault Detection Filter

0 5 10 15 20 25
-5

-4

-3

-2

-1

0
x 10

-4

Time Seconds

S
ig

na
l M

ag
ni

tu
de

Failure Signal Response to Nuisance Failure (Mass Rate Bias)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time Seconds

S
ig

na
l M

ag
ni

tu
de

Failure Signal Response to Target Failure (Position Sensor)

Figure 6.3: Rocket example: failure signal response (failures occur at t = 10 seconds).

The detrimental effect of the direct feedthrough can clearly be seen in this figure. The

response to the target fault has a transient quality which dies away noticeably after t = 15

seconds. The magnitude of the target fault response, however, is still quite a bit greater

than the nuisance fault transmission and remains so for a substantial period of time. Thus,

a reasonably designed post-processing scheme should be able to detect and declare a sensor

fault. We should note that, as with the previous example, a different sensor suite might

improve our ability to detect a position sensor fault; since, with the current set, the position

bias is unobservable to the velocity sensor.

The initial response at the beginning of Figure 6.3 is the transient response of the filter

to the nonzero initial condition, (6.65). It must be noted that in this example the Riccati

matrix loses definiteness past t = 50 seconds. For this application, however, this may not

be a liability, since the rocket motor is on for only a brief period of time.



Chapter 7

The Asymptotic
Game Theoretic Fault Detection Filter

The asymptotic properties of the game theoretic fault detection filter are examined

in this chapter. In Section 7.1, we show how the limiting case disturbance attenuation

problem can be made into a singular differential game. In Section 7.2, we derive sufficient

conditions for a nonpositive cost in the original game and in the singular game. These

conditions turn out to be the key to our understanding of the asymptotic game theoretic

fault detection filter. In Section 7.3, we solve the singular game; and, in Section 7.4, we

explore the relationship between this solution and a pair of long standing detection filter

structures: the unknown input observer and the reduced-order residual generator. The

latter we accomplish by deriving our own reduced-order filter out of the singular game

solution. We conclude in Section 7.5 by returning to the example of Section 6.3.1 and

applying the new reduced-order filter.

91
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7.1 Finding the Limiting Solution: Singular Difierential Game Theory

We motivated the disturbance attenuation problem of Chapter 6 by formulating it in such

a way as to approximate the detection filter problem. It is clear, however, that when the

disturbance attenuation bound is zero the two problems are equivalent. It is logical to

then ask whether the solution to the disturbance attenuation problem likewise becomes a

detection filter at this limit. The answer to this question is by no means obvious, since it

is not clear that a limiting case solution even exists.

It is a well-known phenomena of game Riccati equations such as (6.44) that positive

semi-definite, symmetric solutions exist only for values of γ larger than a critical value, γcrit.

This would seem to immediately imply the nonexistence of limiting solutions. However, we

can prevent the onset of the γcrit phenomenon by taking the weighting, V , to zero along

with γ so that their product, γV −1, does not disappear in the limit. This, in and of itself,

does not resolve the existence question, but it does turn the limiting case problem into a

singular optimization problem since the game cost loses the input term, γ‖µ2‖2M−1 , i.e.

J∗ = lim
γ→0

J =
∫ t1

t0

[
‖x− x̂‖2CTHQHC − ‖y − Cx‖2V̄ −1

]
dt− ‖x(t0)− x̂‖2Π̄0

. (7.1)

We define V̄ −1 4= limγ→0 γV −1 and Π̄0
4
= limγ→0 Π0. This is a problem that we can solve.

Remark 8. Singular optimization theory has a rich legacy dating back to the beginning

of the modern control period. Much of the work from this period is summarized nicely in

the book by Bell and Jacobson (Bell and Jacobsen 1973), which is the source for many of

the singular optimal control techniques that we will use in this chapter. We should note

that a significant portion of this book originally appeared in (Jacobson and Speyer 1971).

Other important summaries from this period can be found in the survey article by Jacobson

(Jacobson 1971) and in the book by Bryson and Ho (Bryson and Ho 1975). The original

work on singular estimation, is due to Bryson and his students (Bryson and Johansen 1965,

Mehra and Bryson 1968). In more recent times, singular optimal control theory has taken

on a geometric flavor, e.g (Schumacher 1985, Stoorvogel 1991, Willems et al. 1986).



7.2 Conditions for the Nonpositivity of the Game Cost 93

7.2 Conditions for the Nonpositivity of the Game Cost

In this section, we will determine the properties of the limiting case filter by converting the

nonpositivity condition on the game cost, (6.30), into an equivalent linear matrix inequality

condition. The latter falls out when we manipulate the cost function to look like a simple

quadratic,

J(x̂, x(t0), µ2, v) =
∫ t1

t0

ξT Wξdt.

The vector, ξ, consists of linear combinations of the game elements. Nonpositivity of the cost

then hinges on the sign definiteness of W . In singular optimal control theory, W is called the

“dissipation matrix,” because its nonnegative definiteness ensures that the system will be

dissipative (Bell and Jacobsen 1973, Clements and Anderson 1978, Schumacher 1983). For

our purposes, W needs to be nonpositive definite, or opposite in sign to the dissipation

matrix, in order to guarantee a nonpositive game cost. A nonpositive game cost, in

turn, implies that the disturbance attenuation objective is satisfied, giving us a sufficiency

condition for an attenuating solution.

This sufficiency condition, however, is strongly tied to the game solution. Results from

the game solution are used1 in several places to construct W , and the sufficiency condition

is really nothing more than the first half of the saddle point inequality that is implicit in

every differential game,

J(x̂∗, x(t0), µ2, µ3, v) ≤ J(x̂∗, x∗(t0), µ∗2, µ
∗
3, v
∗) = 0 ≤ J(x̂, x∗(t0), µ∗2, µ

∗
3, v
∗).

As before, the asterisk indicates that the game optimal strategy is being used for that

element.

We begin by appending the dynamics of the system, (6.31), to the cost, (6.29), through

the Lagrange multiplier2, (x− x̂)T Π:

1One can think of this as x̂ playing its optimal strategy before the adversaries get to play theirs.
2Note that this form of the Lagrange multiplier comes from the TPBVP solution in Section 6.2,

(6.39).
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J =
∫ t1

t0

[
‖x− x̂‖2CTHQHC − γ‖µ2‖2M−1 − γ‖y − Cx‖2V −1 +

(x− x̂)T Π(Ax + F2µ2 − ẋ)
]
dt− ‖x(t0)− x̂0‖2Π0

. (7.2)

Add and subtract (x− x̂)T ΠAx̂ and (x− x̂)T Π ˙̂x to (7.2) and collect terms to get

J =
∫ t1

t0

{
‖x− x̂‖2ΠA+CTHQHC − γ‖µ2‖2M−1

− γ‖y − Cx‖2V −1 + (x− x̂)T ΠF2µ2 − (x− x̂)T Π(ẋ− ˙̂x)

+ (x− x̂)T
[
ΠAx̂−Π ˙̂x

]}
dt− ‖x(t0)− x̂0‖2Π0

.

Integrate (x− x̂)T Π(ẋ− ˙̂x) in the above by parts and substitute the state equation, (6.31),

into the appropriate places. Add and subtract x̂T AT Π(x− x̂) to the result and collect terms

to get

J =
∫ t1

t0

{
‖x− x̂‖2

Π̇+ΠA+ATΠ+CTHQHC
− γ‖µ2‖2M−1

+ (x− x̂)T ΠF2µ2 + µT
2 F T

2 Π(x− x̂)− γ‖y − Cx‖2V −1

+ (x− x̂)T
[
−Π ˙̂x + ΠAx̂

]
+
[
−Π ˙̂x + ΠAx̂

]T
(x− x̂)

}
dt

− ‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− x̂(t1)‖2Π(t1). (7.3)

Finally, by expanding ‖y − Cx‖2V −1 into ‖(y − Cx̂) − C(x − x̂)‖2V −1 and collecting terms,

(7.3) can be rewritten as

J =
∫ t1

t0

{
‖x− x̂‖2

Π̇+ΠA+ATΠ+CTHQHC
− γ‖µ2‖2M−1

+ (x− x̂)T ΠF2µ2 + µT
2 F T

2 Π(x− x̂)− γ‖y − Cx̂‖2V −1

+ (x− x̂)T
[
−Π ˙̂x + ΠAx̂ + γCT V −1(y − Cx̂)

]
+
[
−Π ˙̂x + ΠAx̂ + γCT V −1(y − Cx̂)

]T
(x− x̂)

}
dt

− ‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− x̂(t1)‖2Π(t1). (7.4)
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Using the estimator equation, (6.53), we can eliminate the third and fourth lines in (7.4).

The remainder can then be compactly written as

J =
∫ t1

t0

[
ξT W (Π)ξ − γ‖y − Cx̂‖2V −1

]
dt− ‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− x̂(t1)‖2Π(t1),

where

ξ
4
=
{

(x− x̂)
µ2

}
and

W (Π)
4
=
[

Π̇ + AT Π + ΠA + CT
(
HQH − γV −1

)
C ΠF2

F T
2 Π −γM−1

]
. (7.5)

Thus, for matrices Π ≥ 0 such that

W (Π) ≤ 0,

Π0 −Π(t0) ≥ 0, (7.6)

Π(t1) ≥ 0, (7.7)

we will have J ≤ 0. For γ > 0, it is easy to see that the Riccati equation, (6.44), of the

previous section is embedded in W (Π)3; but, unlike (6.44), W (Π) can be evaluated in the

limit, γ → 0. In fact, from (7.5), it is clear that the sufficient conditions for the limiting

case cost, J∗ (7.1), to be nonpositive are:

ΠF2 = 0, (7.8)

Π̇ + AT Π + ΠA + CT
(
HQH − V̄ −1

)
C ≤ 0. (7.9)

The boundary conditions are (7.7) and a modification of (7.6) to account for a possible

jump in the value of Π from t0 to t+
0 (we will show this in the next section).

3In fact, the solution of (6.44) is the solution of W (Π) which minimizes its rank
(Schumacher 1983).
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Equation (7.8) clearly shows that, in the limit, the Riccati matrix, Π, obtains a nontrivial

null space which contains the image of the nuisance map, F2. Moreover, those familiar with

singular optimal control theory will recognize (7.8) and (7.9) as conditions seen previously

for the singular linear quadratic regulator (Bell and Jacobsen 1973).

7.3 The Solution to the Singular Difierential Game

In this section, we solve the singular differential game obtained in Section 7.1. The key

result will be a Riccati equation for the limiting case problem. We will find, in subsequent

sections, that the solution to this equation is central to understanding the structure of the

limiting case game theoretic fault detection filter.

To get our Riccati equation, we must recast the limiting case problem to look like

the differential game solved in Section 6.2. This is done with the Goh transformation,

which is the same technique that was used in Section 6.1 to construct various elements of

the disturbance attenuation problem. The transformation begins when we define a new

nuisance fault vector, φ1, and a new state vector, α1:

φ1(t)
4
=
∫ t

t0

µ2(τ) dτ, (7.10)

α1
4
= x− F2φ1. (7.11)

Differentiating (7.11) gives us

α̇1 = Aα1 + B1φ1, (7.12)

B1
4
= AF2 − Ḟ2. (7.13)

Equation (7.12) is the new state equation. The need for the subscript on B1 will become

obvious later. Substituting (7.10) and (7.11) into the limiting case game cost (7.1) gives us

J∗ =
∫ t1

t0

[
‖α1 − x̂‖2CTHQHC − ‖y − Cα1‖2V̄ −1

+ (y − Cα1)T V̄ −1CF2φ1 + φT
1 F T

2 CT V̄ −1(y − Cα1)

− ‖φ1‖2FT2 CT V̄ −1CF2

]
dt− ‖α1(t0) + F2φ1(t+

0 )− x̂0‖2Π̄0
. (7.14)
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At first glance, the term, φ1(t+
0 ), may seem odd, since φ1(t) is defined to be the integral

of µ2 from t0 to t. However, µ2 need not be an L2 function, or even a function at all,

since it no longer appears in the game cost, (7.1). Thus, we must be able to account

for impulsive jumps in φ1 at t0. Classical results from singular optimization theory, in

fact, contain many examples of control inputs (Bell and Jacobsen 1973) or state estimates

(Bryson and Johansen 1965, Mehra and Bryson 1968) that are impulsive at the initial time.

If F T
2 CT V̄ −1CF2 > 0, we have a new differential game,

min
x̂

max
y

max
φ1

max
α1(t0)

J∗ ≤ 0,

subject to (7.12). This is the essentially the same game that we examined in Section 6.2, the

only difference being new cross-terms between the nuisance input and measurement noise.

We should note that we are only able to recover the game from Section 6.2, because the

projector, H, (6.12,6.14), has been constructed so that HCF2 = 0. Without this property,

there would be cross-terms involving x̂ and φ1 in the cost, (7.14), which changes the game.

Begin by appending the state dynamics (7.12) to the cost (7.14) with a Lagrange

multiplier λT :

J∗ =
∫ t1

t0

[
‖α1 − x̂‖2CTHQHC − ‖y − Cα1‖2V̄ −1 − ‖φ1‖2FT2 CT V̄ −1CF2

+ (y − Cα1)T V̄ −1CF2φ1 + φT
1 F T

2 CT V̄ −1(y − Cα1)

+ λT (Aα1 + B1φ1 − α̇1)
]
dt− ‖α1(t0) + F2φ1(t+

0 )− x̂0‖2Π̄0
. (7.15)

By maximizing (7.15) with respect to α1(t0) and φ1, the first-order necessary conditions are

λ̇ = −AT λ + CT V̄ −1CF1φ1 − CT V̄ −1(y − Cα1)− CT HQHC(α1 − x̂), (7.16)

φ1 =
(
F T

2 CT V̄ −1CF2

)−1
BT

1 λ +
(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1(y − Cα1), (7.17)

λ(t+
0 ) = Π̄0

[
α1(t0) + F2φ1(t0)− x̂0

]
, (7.18)

λ(t1) = 0,

φ1(t+
0 ) =

(
F T

2 Π̄0F2

)−1
F T

2 Π̄0

[
α1(t0)− x̂0

]
. (7.19)
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Note that (7.19) results when we maximize the initial error term, ‖α1(t0)+F2φ1(t+
0 )−x̂0‖2Π̄0

,

with respect to φ1(t+
0 ). Substituting this term into (7.18) gives us

λ(t+
0 ) =

[
Π̄0 − Π̄0F2

(
F T

2 Π̄0F2

)−1
F T

2 Π̄0

](
α1(t0)− x̂0

)
. (7.20)

Using (7.17), we can rewrite our state equation, (7.12), and our co-state equation, (7.16),

as

α̇1 =
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]
α1

+ B1

(
F T

2 CT V̄ −1CF2

)−1
BT

1 λ + B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1y, (7.21)

λ̇ =−
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]T

λ− CT HQHC(α− x̂)

− CT
[
V̄ −1 − V̄ CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1
]
(y − Cα). (7.22)

It will turn out that our notation can be greatly simplified if we rearrange the term in

front of (y − Cα) in (7.22),

V̄ −1−V̄ −1CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1

=V̄ −
1
2

[
I − V̄ −

1
2 CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −
1
2

]
V̄ −

1
2 .

(7.23)

Since the term inside the square brackets on the right hand side of (7.23) is a projector, we

can rewrite (7.23) as

V̄ −1−V̄ −1CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1

=V̄ −
1
2

[
I − V̄ −

1
2 CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −
1
2

]
×
[
I − V̄ −

1
2 CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −
1
2

]
V̄ −

1
2 .

Pulling the V̄ −
1
2 terms through the projectors and in towards the center gives us
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V̄ −1−V̄ −1CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1

=
[
I − V̄ −1CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT
]

× V̄ −1
[
I − CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1
]

=H
T
V̄ −1H,

where we have defined

H
4
= I − CF2

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1. (7.24)

Aside from greatly condensing our equations, H has the same effect as a projector since it

is idempotent, i.e. H
2 = H. Thus, its eigenvalues will be either one or zero. H, in fact,

maps vectors onto the same subspace as H, since HCF2 = 0. If V is of the form, νI, then

H is identically H. This becomes evident if one looks at (6.14) or (6.12) and substitutes F2

in for F̂ .

Using (7.24), we can write (7.21) and (7.22) compactly as a two-point boundary value

problem,

{
α̇1

λ̇

}
=

[
A B1

(
F T

2 CT V̄ −1CF2

)−1
BT

1

CT
(
H

T
V̄ −1H −HQH

)
C −A

T

]{
α1

λ

}

+
{

B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1y

−CT (H)T V̄ −1Hy + CT HQHCx̂

}
.

The matrix A is defined to be

A
4
= A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C.

If we assume a solution of the form,

λ = S(α1 − αp), (7.25)

where αp is analogous to xp from Section 6.2, then differentiating (7.25) gives us
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− Ṡ = S
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]

+
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]T

S

+ CT
(
HQH −H

T
V̄ −1H

)
C + SB1

(
F T

2 CT V̄ −1CF2

)−1
BT

1 S (7.26)

and

Sα̇p = SAαp + SB1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1(y − Cαp)

+ CT HQHC(αp − x̂) + CT (H)T V̄ −1H(y − Cαp) (7.27)

with the boundary conditions,

S(t+
0 ) = Π̄0 − Π̄0F2

(
F T

2 Π̄0F2

)−1
F T

2 Π̄0, (7.28)

αp(t+
0 ) = x̂0.

The boundary conditions fall out when we match (7.25) with the boundary condition for λ

at t+
0 , (7.20). Note that

S(t+
0 )F2 = Π̄0F2 − Π̄0F2

(
F T

2 Π̄0F2

)−1
F T

2 Π̄0F2 = Π̄0F2 − Π̄0F2 = 0, (7.29)

which shows that S(t) takes an impulsive jump at t0. Equation (7.26) is sometimes referred

to in singular optimal control literature as the Goh Riccati equation. The existence of the

game optimal estimator, (7.27), will hinge upon the existence of a nonnegative definite,

symmetric solution to this equation. To get the final form of (7.27), we need to solve the

second half of the game,

min
x̂

max
y

J̄∗ ≤ 0,

J̄∗ =
∫ t1

t0

[
‖α1 − x̂‖CTHQHC − ‖y − Cα1‖HT

V̄ −1H

− ‖α1 − αp‖SB1(FT2 CT V̄ −1CF2)−1BT1 S

]
dt

− ‖α1(t+
0 )− x̂0‖Π̄0−Π̄0F2(FT2 Π̄0F2)−1FT2 Π̄0

.
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J̄∗ is the singular game cost, (7.14), with the extremizing value of φ1 - including φt(t+
0 ) -

substituted into the appropriate places. For simplicity, we define

ê = α1 − x̂,

v̂ = y − Cα1,

r̂ = α1 − αp,

so that the game is now

min
ê

max
v̂

J̄∗ ≤ 0,

J̄∗ =
∫ t1

t0

[
‖ê‖CTHQHC − ‖v̂‖HT

V̄ −1H
− ‖r̂‖SB1(FT2 CT V̄ −1CF2)−1BT1 S

]
dt

− ‖r̂(t+
0 )‖Π̄0−Π̄0F2(FT2 Π̄0F2)−1FT2 Π̄0

, (7.30)

subject to

S ˙̂r = S(α̇1 − α̇p)

=
{

S
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]

+ SB1

(
F T

2 CT V̄ −1CF2

)−1
BT

1 S

+ CT
(
HQH −H

T
V̄ −1H

)
C

}
r̂ − CT (H)T V̄ −1Hv̂ − CT HQHCê. (7.31)

After appending (7.31) to (7.30) through the Lagrange multiplier, ψT , and taking the first

variation, we find that the first-order necessary conditions to extremize the cost with respect

to ê and r̂ are

0 =CT HQHC(ê− r̂), (7.32)

0 =H
T
V̄ −1H(v̂ + Cr̂), (7.33)

Sψ̇ =S
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]
ψ

+ SB1

(
F T

2 CT V̄ −1CF2

)−1
BT

1 Sr̂, (7.34)

0 =
(
Π̄0 − Π̄0F2

(
F T

2 Π̄0F2

)−1
F T

2 Π̄0

)[
ψ(t+

0 )− r̂(t+
0 )
]

(7.35)
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Because of (7.28), (7.35) can be rewritten as

0 = S(t+
0 )
[
ψ(t+

0 )− r̂(t+
0 )
]
. (7.36)

Using (7.31–7.33), we get

S ˙̂r =
{

S
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C
]

+ SB1

(
F T

2 CT V̄ −1CF2

)−1
BT

1 S

}
r̂

+
[
CT (H)T V̄ −1HC − CT HQHC

]
(r̂ − ψ). (7.37)

Equations (7.36) tells us that

ψ = r̂ mod KerS at t = t+
0

which implies that

ψ = r̂ mod KerHC (= KerHC) at t = t+
0 ,

since Ker S = KerHC at t = t+
0 (7.29). Equation (7.37), therefore, simplifies to

S ˙̂r = S
[
A−B1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1C

+ SB1

(
F T

2 CT V̄ −1CF2

)−1
BT

1 S
]
r̂ (7.38)

at t = t+
0 , which is the same equation as (7.34). Hence,

ψ = r̂ mod KerS

over the entire time interval since they are equal (mod ker S) at t+
0 and are propagated by

the same equations for t > t+
0 . This means that

ê = r̂ mod KerS, ∀ t,



7.3 The Solution to the Singular Differential Game 103

which implies that

x̂ = αp mod KerS, ∀ t.

The optimal estimate is, thus, given by

S ˙̂x = SAx̂ + SB1

(
F T

2 CT V̄ −1CF2

)−1
F T

2 CT V̄ −1(y − Cx̂)

+ CT (H)T V̄ H(y − Cx̂), (7.39)

where S is the solution of (7.26). While it is possible to generate an estimate from (7.39)

in full-order form, it may not be practical since S is not invertible. We will see in the next

section, however, that an easily implementable reduced-order estimator can be derived from

these results.

If F T
2 CT V̄ −1CF2 fails to be positive definite, we will still have a singular problem and our

results from above will be invalid, since (7.26) requires that the inverse, (F T
2 CT V̄ −1CF2)−1,

exists. We must, therefore, continue to transform our problem until it is nonsingular. The

way we proceed, however, depends on the type of singularity that we are dealing with.

1. If F T
2 CT V̄ −1CF2 is totally singular, i.e. equal to zero, we can repeat the Goh

transformation,

φ2(t) =
∫ t

t0

φ1(τ)dτ,

α2 = α1 −B1φ1,

α̇2 = Aα2 + B2φ2,

B2 = AB1 − Ḃ1, (7.40)

since we have the same problem that we started out with.

2. If F T
2 CT V̄ −1CF2 is only partially singular, that is, singular but nonzero, we can always

assume that this quantity takes the form,

F2C
T V̄ −1CF2 =

[
Qa 0
0 0

]
,
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where Qa is positive definite. This assumption is reasonable since we can reshuffle

the state-space if needed (Moylan and Moore 1971). In fact, we can also group the

nuisance input, φ1, accordingly:

α̇1 = Aα1 + Ba
1φa

1 + Bb
1φ

b
1,

so that the game cost is singular with respect to φb
1, but not φa

1. The transformation

proceeds on φb
1 only:

φb
2(t) =

∫ t

t0

φb
1(τ) dτ

α2 = α1 −Bb
1φ

b
2.

The new input matrix is then

B2 =
[

Ba
1 ABb

1 − Ḃb
1

]
, (7.41)

and the new game is formed as before.

In both cases, we can stop with the transformation process if BT
1 CT V̄ −1CB1 is positive

definite. Otherwise, we must continue the transformation in the appropriate manner. When

we finally get a Bk such that BT
k−1C

T V̄ −1CBk−1 is positive definite, the differential game

will be

min
x̂

max
y

max
φk

max
αk(t0)

J∗ ≤ 0,

J∗ =
∫ t1

t0

[
‖αk − x̂‖2CTHQHC − ‖y − Cαk‖2V̄ −1

+ (y − Cαk)T V̄ −1CBk−1φk + φT
k BT

k−1C
T V̄ −1(y − Cαk)

− ‖φk‖2BTk−1CT V̄ −1CBk−1

]
dt− ‖αk(t0) + Bφ̂(t+

0 )− x̂0‖2Π̄0
,

subject to

α̇k = Aαk + Bkφk,
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where

αk = x + Bφ̂(t+
0 ).

B is a matrix formed by eliminating the redundant columns of the composite matrix,[
F2 · · · Bk−1

]
, and φ̂(t+

0 ) is the corresponding vector,
[

φT
1 · · · φT

k

]T , with the

redundant elements eliminated. These columns and elements must be removed to avoid

accounting for the same signal more than once. The potential for repeating elements

exists, because in the partially singular case the columns of Bj−1 which correspond to

the nonsingular inputs (denoted Ba
j ) are simply carried over unchanged to the next input

matrix, Bj , e.g. (7.41).

The corresponding Goh Riccati equation for the general problem is

− Ṡ = S
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k−1C
T V̄ −1C

]
+
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k−1C
T V̄ −1C

]T
S

+ CT
(
HQH −H

T
V̄ −1H

)
C + SBk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k S (7.42)

with the boundary condition,

S(t+
0 ) = Π̄0 − Π̄0B(BT Π̄0B

)−1
B

T Π̄0. (7.43)

The general form of the estimator is

S ˙̂x = SAx̂ + SBk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k−1C
T V̄ −1(y − Cx̂)

+ CT (H)T V̄ −1H(y − Cx̂). (7.44)

Implicit in the general form of the Goh Riccati equation is the assumption that the

projector, H, will be such that HCBi = 0, ∀i < k − 1, where k is the iteration step which

leads to a nonsingular problem. If one examines the construction of H, however, he will

see that this is always indeed the case. Bk−1 is constructed by operating on the columns of

the nuisance map, F2, with the Goh transformation until they lie outside the kernal of C
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(7.13,7.40,7.41). This is the same way that the matrices, F̂ or F̂ (t), from the definition of

H, (6.14,6.12), are derived. Thus, one could equivalently define H as

H = I − CBk−1

[
(CBk−1)T CBk−1

]−1
(CBk−1)T

and H as

H = I − CBk−1

[
BT

k−1C
T V̄ −1CBk−1

]−1
BT

k−1C
T V̄ −1. (7.45)

We can relate the Goh Riccati equation to our game Riccati equation and to the limiting

case analysis through the following theorem taken directly from (Bell and Jacobsen 1973):

Theorem 7.1. The solution to (7.42), S, is such that

SBi−1 = 0, ∀t ∈ [t0, t1], (7.46)

Ṡ + SA + AT S + CT
(
HQH − V̄ −1

)
C ≤ 0. (7.47)

Proof. Rewrite (7.42) as

Ṡ + SA + AT S + CT
(
HQH −H

T
V̄ −1H

)
C =

− SBk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k S + SBk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k−1C
T V̄ −1C

+ CT V̄ −1CBk−1

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k S. (7.48)

Using (7.45), we can expand H in (7.48) and collect terms to get

Ṡ + SA + AT S + CT
(
HQH − V̄ −1

)
C = −

[
SBk − CT V̄ −1CBk−1

]
×
(
BT

k−1C
T V̄ −1CBk−1

)−1
[
BT

k S −BT
k−1C

T V̄ −1C
]
. (7.49)

Equation (7.49) clearly implies our first claim, (7.47). To prove our second claim, (7.46),

we first rearrange (7.49) as
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Ṡ = −SA−AT S − CT
(
HQH − V̄ −1

)
C −

[
SBk − CT V̄ −1CBk−1

]
×
(
BT

k−1C
T V̄ −1CBk−1

)−1
[
BT

k S −BT
k−1C

T V̄ −1C
]
. (7.50)

Multiply both sides of (7.50) by BT
k−1 and then subtract ḂT

k−1S from both sides of the result

to get

−BT
k−1Ṡ − ḂT

k−1S = −BT
k−1SA− ḂT

k−1S + BT
k−1A

T S

−BT
k−1C

T V
−1

C −
[
BT

k−1SBk −BT
k−1C

T V
−1

CBT
k−1

]
×
(
BT

k−1C
T V
−1

CB−1
k−1

)−1
[
BT

k S −BT
k−1C

T V
−1

C
]
.

If we collect terms, making use of the fact that Bk = ABk−1 − Ḃk−1, we get

d

dt

[
BT

k−1S
]

=

−BT
k−1S

[
A + Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1(
BT

k S −BT
k−1C

T V̄ −1C
)]

. (7.51)

Equation (7.51) is a homogeneous differential equation in the BT
k−1S. The boundary

condition to (7.51) is derived from (7.43), where we make use of fact that S(t+
0 ) is a projector

that maps Bk−1 to zero since B contains the columns of Bk−1:

BT
k−1S(t+

0 ) = BT
k−1Π̄0 −BT

k−1Π̄0B(BT Π̄0B
)−1

B
T Π̄0 = 0. (7.52)

Equations (7.51) and (7.52) together imply (7.46).

The same arguments used to prove Theorem 7.1 are used in (Moylan and Moore 1971)

to show that (7.46) implies SF2 = 0, ∀t ∈ [t0, t1]. Hence, the Goh Riccati solution satisfies

all of the sufficient conditions for nonpositivity.

Remark 9. Equations (7.19) and (7.52) show that the nuisance input acts impulsively at

t0 to move the error trajectory onto the singular arc defined by (7.46). The projector, H,
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restricts z to this singular arc so that the transformed game becomes the same game that

was solved in Section 6.2, except restricted to the singular arc. In this sense, S is the limit

of Π on the singular arc.

Remark 10. The requirement that BT
i CT V̄ −1CBi be invertible is the Generalized

Legendre-Clebsch Condition (Bell and Jacobsen 1973). Note that taking V to zero along

with γ so that γV −1 has a nonzero limit is crucial to satisfying this condition.

7.4 The Relationship Between the Limiting Game Filter and Detection
Filters

7.4.1 A Reduced-Order Detection Filter from the Limiting Game Solution

The results that we will present in this subsection are most easily derived for time-invariant

systems. We will, therefore, limit ourselves to this case to simplify the presentation.

To begin, we consider the initial condition, S(t0), (7.43), to the Goh Riccati equation,

(7.42). This matrix is symmetric, nonnegative definite with a nontrivial nullspace which

means that there exists a nonsingular, orthonormal transformation, Γ, such that

ΓT S(t0)Γ =
[

S̄(t0) 0
0 0

]
. (7.53)

S̄(t0) is positive definite and symmetric. Applying the same transformation to our system

matrices, gives us

CΓ =
[

C1 C2

]
, ΓT AΓ =

[
A11 A12

A21 A22

]
,

ΓT Bk−1 =
[

D1

D2

]
, ΓT Bk =

[
G1

G2

]
.

Note that since SBk−1 = 0, applying the transformation, Γ, within the product, SBk−1,

gives us ΓT SΓΓT Bk−1 = S̄D1 = 0, which implies that D1 = 0 since S̄ is positive definite.

Hence,

ΓT Bk−1 =
[

0
D2

]
.
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We can apply this transformation to the estimator state,

η̂ =
{

η̂1

η̂2

}
= ΓT x̂,

to get a reduced-order estimator by transforming (7.44):

[
S̄ 0
0 0

]{ ˙̂η1
˙̂η2

}
=
[

S̄ 0
0 0

] [
A11 A12

A21 A22

]{
η̂1

η̂2

}
+
{

CT
1

CT
2

}
H

T
V̄ −1H

(
y −

[
C1 C2

]{ η̂1

η̂2

})

−
[

S̄ 0
0 0

] [
G1

G2

]([
0 DT

2

] [ CT
1

CT
2

]
V̄ −1

[
C1 C2

] [ 0
D2

])−1

×
[

0 DT
2

] [ CT
1

CT
2

]
V̄ −1(y − C1η̂1 − C2η̂2). (7.54)

From (7.54), we get a pair of equations:

S̄ ˙̂η1 =S̄A11η̂1 + S̄A12η̂2 + CT
1 (H)T V̄ −1H(y − C1η̂1 − C2η̂2)

− S̄G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1(y − C1η̂1 − C2η̂2), (7.55)

0 =CT
2 (H)T V̄ −1H(y − C1η̂1 − C2η̂2). (7.56)

Since the residual signal, y − C1η̂1 − C2η̂2, is arbitrary, (7.56) implies that

HC2 = 0. (7.57)

Since Ker S ⊂ Ker HC at t+
0 by construction (7.29), we can take a vector, ξ ∈ Ker S(t+

0 ),

and then pre- and post-multiply (7.42) by ξT and ξ respectively to get ξT Ṡ(t+
0 )ξ = 0. This

implies that

ΓT Ṡ(t+
0 )Γ =

[
˙̄S 0
0 0

]
.

Thus, if we apply the Goh transformation to the Goh Riccati equation, (7.42), we get three

equations:
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0 =CT
2

(
HQH −H

T
V̄ −1H

)
C2, (7.58)

0 =S̄
[
A12 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2

]
+ CT

1

(
HQH −H

T
V̄ −1H

)
C2, (7.59)

˙̄S =S̄
[
A11 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C1

]
+
[
A11 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C1

]T
S̄

+ S̄G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
GT

1 S̄ + CT
1

(
HQH −H

T
V̄ −1H

)
C1. (7.60)

Equation (7.60) is a reduced-order Goh Riccati equation with a boundary condition taken

from (7.53). Equations (7.57) and (7.58) imply that

HC2 = 0. (7.61)

By applying (7.57,7.61) to (7.59), we find that

S̄
[
A12 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2

]
= 0

which means that

A12 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2 = 0, (7.62)

since S̄ is positive definite. Together (7.57,7.61, and 7.62) reduce (7.55) to

˙̂η1 = A11η̂1 + G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1(y − C1η̂1)

+ S̄−1CT
1 (H)T V̄ −1H(y − C1η̂1). (7.63)

Equations (7.57), (7.61), and (7.62) also imply that for all t ∈ [t0, t1], the kernal of the Goh

Riccati matrix does not increase or decrease in size. Thus, the Goh Riccati equation, (7.42),

reduces to (7.60).
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To get the error equation, we define

η =
{

η1

η2

}
4
= ΓT αk, e1

4
= η1 − η̂1, e2

4
= η2 − η̂2.

If we transform the state dynamics, (6.31), and the measurements, (6.1), we get

η̇1 =A11η1 + A12η2 + G1φk, (7.64)

η̇2 =A21η1 + A22η2 + G2φk,

y =Cαk + CBφ̂ + v = C1η1 + C2η2 + C2D2φk + v. (7.65)

The expression on the furthest right hand side of (7.65) results from the fact that the only

columns in B which lie outside the kernal of C are those which correspond to Bk−1. Using

(7.63–7.65), the error equation for our reduced-order estimator is

ė1 =
[
A11 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
1 V̄ −1C1 − S̄−1CT

1 (H)T V̄ −1HC1

]
e1

+
[
A12 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2

]
η2 + G1φk

−G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2(D2φk + v)

− S̄−1CT
1 (H)T V̄ −1H(C2D2φk + v). (7.66)

By using (7.57) and (7.62), (7.66) can be further simplified to

ė1 =
[
A11 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
1 V̄ −1C1 − S̄−1CT

1 (H)T V̄ −1HC1

]
e1

−
[
G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2 + S̄−1CT

1 (H)T V̄ −1H
]
v. (7.67)

Equation (7.67) clearly shows that the error, e1, is not influenced by the nuisance fault. In

practice, however, we will not be able to monitor e1 directly, since our information about

the system comes from the filter residual, (y − Cη̂1), which is not free from the influence
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of η2. The use of the projector, H, on this residual, however, will eliminate this influence.

The failure signal for the reduced-order filter is then

z = H(y − C1η̂1).

It is fairly easy to show:

Theorem 7.2. The reduced-order estimator, (7.63), is asymptotically stable.

Proof. From (7.67), it is clear that the stability of the reduced-order estimator depends

on the eigenvalues of the closed-loop matrix,

Ācl = A11 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
1 V̄ −1C1 − S̄−1CT

1 (H)T V̄ −1HC1. (7.68)

We can show that Ācl is Hurwitz, i.e. its eigenvalues are in the open left-half plane, by

rewriting (7.60) as

˙̄S + S̄Ācl + ĀT
clS̄ = −CT

1

(
HQH + H

T
V̄ −1H

)
C1

− S̄G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
GT

1 S̄. (7.69)

The first term on the right-hand side of (7.69) is negative semi-definite. The second

term is negative definite, since S̄ and (DT
2 CT

2 V̄ −1C2D2)−1 are positive definite and G1

has independent columns by construction. Therefore,

˙̄S + S̄Ācl + ĀT
clS̄ < 0.

Lyapunov’s Stability Theorem (Khalil 1996) then implies that Ācl is Hurwitz.

Remark 11. The reduced-order filter that we find here is similar to the “residual

generator” introduced by Massoumnia et al. in (Massoumnia et al. 1989) and establishes

an important link between our limiting case results and classical detection filters. A stronger

link will be established shortly when we show the equivalence between the limiting solution

and the unknown input observer.
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Remark 12. The difficulty in deriving a reduced-order filter for the time-varying case

lies in finding a way to transform S so that the reduced-order estimator, (7.63), and the

reduced-order Riccati equation, (7.60), remain valid over the entire time interval. Note that

Theorem 7.1, Equation (7.46), gives insight on how to form the transformation matrix and

(Oshman and Bar-Itzhack 1985) gives similar insights on the propagation structure.

Remark 13. Taking the limit of γV −1 allows us to give a rigorous accounting of the

measurement uncertainty, v, in the lower-dimensional subspace determined by the singular

arc. The authors of (Massoumnia et al. 1989) claim that they can choose a reduced-order

filter structure to deal with such issues, though their analyses do not explicitly consider

sensor noise, making it unclear how such noise projects onto their reduced state-space.

7.4.2 The Invariant Subspace Structure of the Limiting Case Filter

Unknown input observers work by placing the image of the nuisance failure map into the

unobservable subspace. We will show that the asymptotic game filter works in the same

way. Getting to this result, however, will require that we first introduce some concepts from

geometric control theory (Basile and Marro 1992, Wonham 1985).

Geometric control theory gets its name from its use of abstract subspaces and operators,

without specific bases, to define and solve problems in systems theory. Of particular

importance in this theory are subspaces which are invariant with respect to operators.

If we consider a system, (6.1,6.31), defined by the triple, (C, A, F2), and let X denote the

state-space, then a subspace W ⊂ X is said to be A-invariant if for every x ∈ W, Ax ∈ W.

This can be equivalently symbolized as AW ⊂W. W is said to be (C,A)-invariant if there

exists an output injection feedback matrix, L, such that (A + LC)W ⊂W.

Another important element in geometric control theory, and in control theory in general,

is the concept of invariant zeros. Invariant zeros are the complex numbers, λ, which cause

the matrix,

P (λ) =
[

A− λI F2

C 0

]
,
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to lose column rank (Macfarlane and Karcanias 1976). Associated with each zero is an

invariant zero direction, z, such that[
A− λI F2

C 0

]{
z
w

}
= 0. (7.70)

By (Moore and Laub 1978), when (7.70) holds, the vector w is such that w = Kz for

some matrix K. Invariant zeros behave like multivariable analogs to the transfer function

zeros of classical control theory. They play a fundamental role in determining the limits

of performance for optimal control systems (Francis 1979, Kwakernaak and Sivan 1972,

Shaked 1990), and they are also essential to defining special (C, A)-invariant subspaces,

called (C,A)-unobservability subspaces, which are used in Beard-Jones Fault Detection

Filters (Douglas 1993, Massoumnia 1986) and in reduced-order residual generators (see

(Massoumnia et al. 1989) and Remark (7.4.2)) for design.

The following theorem tells us that KerS is a (C, A)-invariant subspace, and it also

tells us something of KerS’s invariant zero structure. The second claim will require the

following lemma:

Lemma 7.3. Let λ and z be an invariant zero and zero direction for the triple, (C, A, F2).

Let W ⊂ X be a (C, A)-invariant subspace with the image of F2 contained in W and let L

be any map such that (A + LC)W ⊂ W. Then z 6∈ W implies that λ is an eigenvalue of

(A + LC) restricted to the factor space, X/W.

Proof. See (Douglas 1993), Proposition 2.9

Theorem 7.4.

1. KerS is a (C, A)-invariant subspace.

2. The invariant zero directions corresponding to the right-half plane and jω-axis zeros

of (C, A, F2) lie in Ker S.
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Proof. Consider the “state matrix,”

Acl = SA− SBk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k−1C
T V̄ −1C + CT (H)T V̄ HC,

of the full-order estimator found from the singular game solution, (7.44). If we pre- and

post-multiply Acl by ΓT and Γ respectively, we get

ΓT AclΓ =
[

S̄ 0
0 0

] [
Ācl Ā12

Ā21 Ā22

]
, (7.71)

where Ācl is as defined in (7.68) and

Ā12
4
= A12 −G1

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2,

Ā21
4
= A21 −G2

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C1,

Ā22
4
= A22 −G2

(
DT

2 CT
2 V̄ −1C2D2

)−1
DT

2 CT
2 V̄ −1C2.

From (7.62), Ā12 = 0, which means that (7.71) simplifies to

ΓT AclΓ =
[

S̄ 0
0 0

] [
Ācl 0
Ā21 Ā22

]
. (7.72)

Equation (7.72) clearly implies that KerS is (C, A)-invariant, since the error e, if it initially

lies in Ker S, must be of the form,

e(t0) =
{

0
e(t0)

}
,

in the basis corresponding to the transformation, Γ. In the absence of exogenous inputs,

(7.72) implies that e(t) will then be propagated by way of

ė(t) =
[

S̄ 0
0 0

]{
0

Ā22 e(t)

}
.
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This clearly shows that the error trajectory will never leave Ker S.

The second part of our theorem follows from Lemma 7.3. Applied to our case, this

lemma tells us that any zero directions which do not lie in KerS will show up as eigenvalues

of the submatrix, Ācl, in (7.72). We have just shown in Theorem 7.2, however, that Ācl is

asymptotically stable. Therefore these zero directions cannot lie outside of Ker S.

Since the image of F2 lies in KerS, the following theorem implies that the limiting case

game filter has the structure of an unknown input observer:

Theorem 7.5. Ker S is contained in the unobservable subspace of (HC, A), where H is

the projector defined by (6.12) or (6.14).

Proof. Let ξ be a constant vector which lies in Ker S at t = t+
0 . Define

ΓT ξ =
{

0
ξ

}
and pre- and post-multiply the Goh Riccati equation, (7.42), by ξT and ξ respectively to

get

0 = ξT Ṡξ + ξT CT
(
HQH −H

T
V̄ H

)
Cξ. (7.73)

However,

ξT ΓΓT ṠΓΓT ξ =
[

0 ξT
] [ ˙̄S 0

0 0

]{
0
ξ

}
= 0, (7.74)

which implies that

ξT CT
(
HQH −H

T
V̄ H

)
Cξ = 0. (7.75)

Since HC and HC project onto the same space4, we can define ξ̄
4
= HCξ = HCξ and then

rewrite (7.75) as

‖ξ̄‖2Q−V̄ −1 = 0.

4See the discussion which follows (7.24).
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So long as Q 6= V̄ −1, this implies that ‖ξ̄‖ = 0, which, in turn, implies that

ξ ∈ KerHC = KerHC. (7.76)

We will now consider the general case. We define the vector, ξk, to be

ξk
4
=
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
BT

k−1C
T V̄ −1C

]k
ξ

and assume that ξk ∈ Ker S. Note that this implies that

Γξk =
{

0
ξ
k

}
which, in turn, means that Ṡξk = 0, since we can transform Ṡξk into a form similar to (7.74).

ξk lying in the kernals of both S and Ṡ then implies that ξk also lies in KerHC since we

can pre- and post-multiply the Goh Riccati equation, (7.42), by ξT
k and ξk respectively to

get

ξT
k CT

(
HQH −H

T
V̄ H

)
Cξk = 0.

Thus, if we post-multiply, (7.42) by ξk, the remainder,

0 = S
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
Bk−1C

T V̄ −1C
]
ξk

= S
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
Bk−1C

T V̄ −1C
]k+1

ξ,

tells us that

ξk+1
4
=
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
Bk−1C

T V̄ −1C
]k+1

ξ

lies in the kernal of S. The same arguments as before then lead to ξk+1 ∈ Ker Ṡ and

ξk+1 ∈ Ker HC. Thus, ξk lying the the kernal of S implies it also lies in the kernal of HC

and that ξk+1 lies in the kernal of S. By induction, we can claim that this holds for all k,

in particular, k = 0, . . . , n− 1, so that
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HCξ = 0,

HC
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
Bk−1C

T V̄ −1C
]
ξ = 0,

... =
...

HC
[
A−Bk

(
BT

k−1C
T V̄ −1CBk−1

)−1
Bk−1C

T V̄ −1C
]n−1

ξ = 0.

This leads us to the conclusion that our original vector, ξ, lies in the unobservable subspace

of (HC, A − Bk(BT
k−1C

T V̄ −1CBk−1)−1Bk−1C
T V̄ −1C). Since output injection feedback

cannot change the observability of a system, ξ lies in the unobservable subspace of (HC, A).

Since ξ is an arbitrary vector in KerS, this implies the proposition.

Remark 14. The fault-embedding state subspace of the residual generator described

by (Massoumnia et al. 1989) is a (C, A)-unobservability subspace. These subspaces are

distinguished by the fact that they contain all of the invariant zero directions associated

with the triple, (C, A, F2). This characteristic allows for complete eigenvalue assignment

on both the (C, A)-unobservability subspace and the associated factor space. The authors

of (Massoumnia et al. 1989) claim that this not only ensures the stability of their residual

generator, but that it also enables them to address other design issues such as sensor noise

rejection (see Remark 7.4.1). Our invariant subspace, KerS, on the other hand, can only

be said to be (C, A)-invariant, since we cannot account for all of the invariant zeros with

Theorem 7.4. The game theoretic filter, however, provides the analyst the freedom to adjust

his designs through the use of the weighting matrices, and it has also been shown to be

asymptotic stable (Theorem 7.2).

Remark 15. The proof to Theorem 7.4 is patterned after the proof to Lemma 3.1(b) from

(Limebeer and Halikias 1988). It is also possible to prove the second part of Theorem 7.4

using the proof given in Part 3 of Appendix B in (Francis 1979). Other reported results

concerning the null space of Riccati solutions are cited in (Saberi et al. 1995).
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7.5 Revisited: Accelerometer Fault Detection in an F-16XL

In this section, we revisit the F-16XL example of Section 6.3.1 to demonstrate the use of the

reduced-order filter of Section 7.4.1. A description of this problem is given in Section 6.3.1.

The nominal failure model is

ẋ = Ax + FAzµAz + Fwgµwg, (7.77)

y = Cx + v, (7.78)

z = H(y − Cx̂) (7.79)

with the system matrices given by (6.56–6.59).

The first step is to determine the transformation matrix, Γ. This, in turn, comes from

the boundary condition of the Goh Riccati equation, (7.43). In this example,

B =
[

Fwg AFwg

]
.

Using an initial weighting of Π0 = 10× I, we get

S(t+
0 ) = 10×

[
I −B

(
B

T
B
)−1

B
T
]

=


9.9963 0.1269 0.1452 0 0
0.1269 5.6732 −4.9528 0 0
0.1452 −4.9528 4.3305 0 0

0 0 0 10 0
0 0 0 0 0

 .

Using eigenvalue decomposition of S(t+
0 ), we get the transformation matrix,

Γ =


−0.0000 0.9998 0 0.0173 0.0086
−0.7531 0.0127 0 −0.5896 −0.2917
0.6579 0.0145 0 −0.6749 −0.3339

0 0 1 0 0
0 0 0 0.4434 −0.8963

 , (7.80)
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by using the eigenvectors of S(t+
0 ) as the columns of Γ. By applying (7.80) to the F-16XL

model (7.77–7.79) and (6.56–6.59), we get a decomposition of the system and a steady-state

solution to the reduced-order Goh Riccati equation, (7.60),

S̄ =

 0.0637 0.0341 0.8387
0.0341 0.0577 0.4814
0.8387 0.4814 11.1811

 . (7.81)

Our choice of weightings is

V =


2 0 0 0
0 2 0 0
0 0 200 0
0 0 0 2

 , Q = I.
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Figure 7.1: Reduced-Order Detection Filter Performance for the F-16XL Example.

Figure 7.1 shows that the resulting reduced-order filter effectively blocks the nuisance

fault transmission while preserving the target fault transmission. If one compares the Goh

Riccati solution, (7.81), to the game Riccati solution used in Section 6.3.1, (6.62), he will

notice that the reduced-order filter does not necessarily lead to a high-gain filter. Looking
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back on the discussion on high-gain feedback in Section 6.3.1, this is an important aspect

of the reduced-order filter.





Chapter 8

A Parameter Robust
Game Theoretic Fault Detection Filter

A game theoretic fault detection filter which is robust to uncertainty in the plant

dynamics is derived and analyzed in this chapter. In Section 8.1, we discuss the various

strategies that have been used to robustify detection filters. In Section 8.2, we discuss how

fault detection and parameter robustness can act as competing objectives and in Section 8.3

we formulate a new disturbance attenuation problem in which plant parameter variations

are modeled as additional disturbances. The parameter robust detection filter falls out from

the problem solution. In Section 8.4, we analyze the limiting case properties of the new

filter, and in Section 8.5 we work through an example which compares the performance of

filters designed with and without an accounting of model uncertainty.

8.1 Parameter Robustness and FDI

A fundamental issue in fault detection and identification is the sensitivity of the given

method to plant parameter variations. Detection filters and other analytical redundancy

123
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techniques rely on accurate representations of the systems that they monitor. FDI under

modeling error, however, is still an open question.

For unknown input observers, it has been proposed to treat model uncertainty as another

disturbance, for example, (Patton and Chen 1992). Using standard design techniques, the

uncertainty disturbance is then embedded in the unobservable subspace along with the other

inputs in the disturbance set. In general however, it is not always possible to separate the

effects of parameter variations from the target fault. Thus, some, (Ding and Frank 1989),

have proposed filters which maximize the ratio of the fault transmission to disturbance

transmission with model uncertainty, again, thrown into the disturbance set. Still others

(Viswanadham and Minto 1988) have considered bounding the effect of model perturbations

on the estimation error using stable factorization and H∞ optimization.

Beard-Jones detection filters (Douglas 1993, Massoumnia 1986, White and Speyer 1987)

are difficult to robustify because of their reliance upon geometric methods. Schemes have

been introduced which robustify the detection filter to ill-conditioning in the eigenstructure

(Douglas and Speyer 1996) and to exogenous disturbances (Douglas and Speyer 1995); but,

to date, no significant progress has been made in handling plant parameter robustness. We

should note that it is possible to model plant uncertainty as an additional fault as in

(Patton and Chen 1992), but this approach, as shown in Section 8.5, leads to a filter with

poor performance if the plant uncertainty is not output separable from the target fault.

Approximate detection filter designs, such as the game theoretic fault detection filter,

can be robustified via the method of DeSouza et al. Here, plant parameter variations are

formulated as an additional element in the disturbance attenuation problem. The resulting

filter is still an H∞ filter, but one with the added property of parameter robustness. In this

chapter, we will apply the methods of (DeSouza et al. 1992) to derive a parameter robust

version of the game theoretic filter introduced in Chapter 6.

Remark 16. We must acknowledge the work of Edelmayer et al. who derive a pair

of robust H∞ detection filters in (Edelmayer et al. 1994). Their first approach uses the

DeSouza method (as we will do), and their second is a modification of their original filter
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which was first presented in (Edelmayer et al. 1996). We contribute further analysis on the

filter which arises from the DeSouza construction, including an analysis of its asymptotic

properties. We will also show that the two filters proposed by Edelmayer et al. are actually

variations on the same theme, the second being a simplification of the first.

Remark 17. The benefit of DeSouza’s approach is that it provides an easy and elegant

way to incorporate parameter robustness into the design problem. Classic detection filter

structures already have the freedom to incorporate features into their designs beyond basic

FDI objectives (Douglas 1993, Massoumnia et al. 1989). However, it is not always clear how

to make use of this freedom. An analogous situation is the well-known “Q-parameterization”

of H∞ or H2 solutions (Doyle et al. 1989). Existence of this design freedom is well-known;

finding a way to use it is not. See the discussion in (Iwasake and Skelton 1994)).

Remark 18. A good survey of the robust FDI problem is given in (Frank 1994).

8.2 Parameter Robustness versus FDI

Suppose that instead of the system described by (6.2), we have one in which there is

uncertainty in the plant:

ẋ =
(
A + ∆A

)
x + Bu + F1µ1 + F2µ2. (8.1)

Clearly if we attempt to monitor (8.1) with a fault detection filter designed for the nominal

model, A, the error equation (e
4
= x− x̂),

ė =
(
A + LC

)
e + ∆Ax + F1µ1 + F2µ2 + Lv, (8.2)

will be biased by the uncertainty term. Equation (8.2), however, suggests that we can

deal with modeling uncertainty by simply defining F3
4
= ∆A and µ3

4
= x. If F3 is output

separable from F1, conventional detection filter designs are applicable, since the effect

of plant uncertainty is completely decoupled from the target fault input. In general,

however, F1 and F3 will not be output separable, and non-output separable faults cannot

be distinguished by a detection filter (Beard 1971).



126 Chapter 8: A Parameter Robust Game Theoretic Fault Detection Filter

Output separability is not a necessary condition, however, for approximate detection

filters like the game theoretic fault detection filter (Edelmayer et al. 1996). Thus, we can

still design a filter which treats the plant parameter variations as another nuisance fault,

though the loss of this property eliminates the only guarantee we have that the target fault

will be visible at the output (Proposition 6.1). Our only recourse, therefore, is to proceed

with a design and attempt to find the best tradeoff between target fault transmission,

nuisance fault attenuation, and plant parameter robustness.

8.3 A Disturbance Attenuation Problem with Parameter Variations

8.3.1 The Modified Disturbance Attenuation Problem

This section repeats the derivation and analysis of Chapter 6 with the additional element

of model uncertainty. Start with a system described by (8.1) and measurements given by

the additive noise model, (6.1). As before, the disturbance attenuation function is

Daf =

∫ t1
t0
‖HC(x− x̂)‖2Qdt∫ t1

t0

[
‖µ2‖2M−1 + ‖v‖2

V −1

]
dt + ‖x(t0)− x̂0‖2P−1

0

,

where M, V, Q, and P0 are weighting matrices. As in Chapter 6, the disturbance attenuation

problem is to find an estimator so that for all adversaries, µ2, v ∈ L2 [t1, t2], x(t0) ∈ Rn,

Daf ≤ γ. (8.3)

We solve (8.3) by converting it into a differential game,

min
x̂

max
v

max
µ2

max
x(t0)

J ′ ≤ 0,

J ′ =
∫ t1

t0

[
‖HC(x− x̂)‖2Q − γ

(
‖µ2‖2M−1 + ‖v‖2V −1

)]
dt− ‖x(t0)− x̂0‖2Π0

,

subject to (8.1). Π0
4
= γP−1

0 . Following DeSouza, we assume that the plant uncertainty,

∆A, can be decomposed as

∆A = F3ΛG. (8.4)
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F3 and G are known matrices of dimension, n × r and r × n, respectively. Λ is an r × r

matrix whose elements are unknown L2[t0, t1] functions. Defining

µ3
4
= ΛGx,

we get a new dynamical equation,

ẋ = Ax + Bu + F1µ1 + F2µ2 + F3µ3. (8.5)

Additionally, we will augment the output, z,

z =
{

HC(x− x̂)√
εGx

}
,

so that the disturbance attenuation function is now

D∗af =

∫ t1
t0

[
‖HC(x− x̂)‖2Q + ε‖Gx‖2

]
dt∫ t2

t1

[
‖µ2‖2M−1 + ‖µ3‖2N−1 + ‖v‖2

V −1

]
dt + ‖x(t0)− x̂0‖2P−1

0

. (8.6)

To solve the disturbance attenuation problem, we convert (8.6) into the cost function,

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q + ε‖Gx‖2 − γ

(
‖µ2‖2M−1

+ ‖µ3‖2N−1 + ‖v‖2V −1

)]
dt− ‖x(t0)− x̂0‖2Π0

,

where Π0
4
= γP−1

0 , and solve the differential game,

min
x̂

max
v

max
µ2

max
µ3

max
x(t0)

J ≤ 0,

subject to

ẋ = Ax + F2µ2 + F3µ3. (8.7)

Note that we have eliminated a pair of elements from Equation (8.5). As in Chapter 6,

µ1 is taken to be zero in the the derivation of the solution, since it is the target fault and
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should not be attenuated. We also take u to be zero for convenience. When the plant model

is perfectly known, it is possible to simply subtract out known signals such as u to nullify

their effects. However, in the case of model uncertainty, such signals can have a significant

impact upon filter performance (DeSouza et al. 1992). The inclusion of the control input

is an obvious extension of the work that we present here.

The following proposition, modified from (DeSouza et al. 1992), shows that the solution

to the new game also solves the original game under a mild restriction:

Proposition 8.1. If Λ is such that ‖Λ‖∞ ≤ 1
√

γ ‖N−
1
2 ‖∞

, then for any ε > 0,

max
v

max
µ2

max
µ3

max
x(t0)

J ′ ≤ max
v

max
µ2

max
µ3

max
x(t0)

J.

Proof. If one simply compares the terms in J ′ and J , he would find that:

J = J ′ + ε
[
‖Gx‖2 − γ‖ΛGx‖2N−1

]
Now,

γ‖ΛGx‖2N−1 = γ‖N− 1
2 ΛGx‖2

≤ γ‖N− 1
2 Λ‖2∞‖Gx‖2

≤ γ‖N− 1
2 ‖2∞‖Λ‖2∞‖Gx‖2.

Thus, ‖Λ‖∞ ≤ 1
√

γ ‖N−
1
2 ‖∞

implies the proposition.

As in Chapter 6, rewrite the sensor noise term, ‖v‖2V −1 , as the equivalent ‖y−Cx‖2V −1 :

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q + ε‖Gx‖2 − γ

(
‖µ2‖2M−1 + ‖µ3‖2N−1

+ ‖y − Cx‖2V −1

)]
dt− ‖x(t0)− x̂0‖2Π0

, (8.8)

so that the game becomes

min
x̂

max
y

max
µ2

max
µ3

max
x(t0)

J ≤ 0.
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The differential game solution comes in two steps, beginning with

max
µ2

max
µ3

max
x(t0)

J ≤ 0.

We start by appending the system dynamics, (8.7), to the cost function, (8.8), through a

Lagrange multiplier, λT ,

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q + ε‖Gx‖2 − γ

(
‖µ2‖2M−1 + ‖µ3‖2N−1 + ‖y − Cx‖2V −1

)
+ λT

(
Ax + F2µ2 + F3µ3 − ẋ

)]
dt− ‖x(t0)− x̂0‖2Π0

,

and then integrate λT ẋ by parts:

J =
∫ t1

t0

[
‖HC(x− x̂)‖2Q + ε‖Gx‖2

− γ
(
‖µ2‖2M−1 + ‖µ3‖2N−1 + ‖y − Cx‖2V −1

)
+ λT

(
Ax + F2µ2 + F3µ3

)
+ λ̇T x

]
dt

− ‖x(t0)− x̂0‖2Π0
+ λ(t0)T x(t0)− λ(t1)T x(t1). (8.9)

Taking the first variation of (8.9) with respect to µ2, µ3 and x(t0), then gives us

µ∗2 =
1
γ

MF T
2 λ, (8.10)

µ∗3 =
1
γ

NF T
3 λ, (8.11)

−λ̇ = AT λ + εGT Gx + CT HQHC
(
x− x̂) + γCT V −1(y − Cx), (8.12)

λ(t1) = 0, (8.13)

λ(t0) = Π0

[
x(t0)∗ − x̂0

]
(8.14)

as the first-order necessary conditions for the maximization of J . The asterisk is indicative

of the extremizing value of the variable. Substituting (8.10) and (8.11) into our dynamics,

(8.7), and combining the result with (8.12), gives us a two point boundary value problem,
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{
ẋ

λ̇

}
=
[

A 1
γ

(
F2MF T

2 + F3NF T
3

)
−CT

(
HQH − γV −1

)
C − εGT G −AT

]{
x
λ

}

+
{

0
CT HQHCx̂− γCT V −1y

}
, (8.15)

with initial conditions,

x∗(t0) = x̂0 + Π−1
0 λ(t0), (8.16)

λ∗(t1) = 0.

Following Chapter 6, we will assume solutions, x∗ and λ∗, to (8.15) such that

λ∗ = Π(x∗ − xp). (8.17)

If we take

Π(t0) = Π0, (8.18)

xp(t0) = x̂0, (8.19)

then (8.17) is in agreement with the boundary condition for λ, (8.14), at the initial time,

t0. In Chapter 6 we found that, in the absence of model uncertainty, xp is equivalent to the

optimal state estimate. With model uncertainty, however, xp will act like the state variable

in the second half of the game solution.

As we did in Chapter 6, we can substitute our assumed solution, (8.17), into the TPBVP,

(8.15), and manipulate the equations to find that the TPBVP is solved identically if

− Π̇ = AT Π + ΠA +
1
γ

Π
(
F2MF T

2 + F3NF T
3

)
Π

+ CT
(
HQH − γV −1

)
C + εGT G (8.20)

and
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Πẋp = ΠAxp + εGT Gxp − CT HQHC(x̂− xp) + γCT V −1(y − Cxp). (8.21)

Equation (8.20) is an estimator Riccati equation and its boundary condition is given by

(8.18). The boundary condition for (8.21) is given by (8.19). We will often need the inverse

of Π in derivations and applications. Thus, we can alternatively propagate

Π̇−1 = AΠ−1 + Π−1AT + Π−1CT
(
HQH − γV −1

)
CΠ−1

+ εΠ−1GT GΠ−1 +
1
γ

(
F2MF T

2 + F3NF T
3

)
. (8.22)

The second half of our solution begins by substituting the game optimal values of µ2,

µ3, and x(t0), (8.10,8.11,8.16), into the cost function, (8.8). The new cost, J̄ , is then

J̄ =
∫ t1

t0

[
‖x− x̂‖2CTHQHC + ε‖Gx‖2 − ‖λ‖21

γ
(F2MFT2 +F3NFT3 )

− γ‖y − Cx‖2V −1

]
dt− ‖λ(t0)‖2Π−1

0
. (8.23)

Add the identically zero term,

0 = ‖λ(t0)‖2Π(t0)−1 − ‖λ(t1)‖2Π(t1)−1 +
∫ t1

t0

d

dt
‖λ(t)‖2Π−1dt,

to (8.23) and use the inverse Riccati equation, (8.22), the boundary condition for Π at t0,

(8.18), and the boundary condition for λ at t1, (8.13), to get

J̄ =
∫ t1

t0

[
‖x− x̂‖2CTHQHC + ε‖Gx‖2 − γ‖y − Cx‖2V −1

− (x− x̂)T CT HQHCΠ−1λ− λT Π−1CT HQHC(x− x̂)− ελT Π−1GT Gx

− εxT GT GΠ−1λ + (y − Cx)T V −1CΠ−1λ + λT Π−1CT V −1(y − Cx)

+ ελT Π−1GT GΠ−1λ + λT Π−1CT
(
HQH − γV −1

)
CΠ−1λ

]
dt. (8.24)
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We can group all the terms in (8.24) into three quadratics,

J̄ =
∫ t1

t0

[
‖(x− x̂)−Π−1λ‖2CTHQHC + ε‖x−Π−1λ‖2GTG

− γ‖(y − Cx) + CΠ−1λ‖2V −1

]
dt, (8.25)

and then use the solution, (8.17), to replace λ in (8.25). This leaves us with

J̄ =
∫ t1

t0

[
‖xp − x̂‖2CTHQHC + ε‖xp‖2GTG − γ‖y − Cxp‖2V −1

]
dt. (8.26)

The game is now

min
x̂

max
y

J̄ ≤ 0,

subject to (8.21). As in the first subproblem, we find the solution to this game by appending

the dynamics, (8.21), to the cost, (8.26), through a Lagrange multiplier, ρT :

J̄ =
∫ t1

t0

{
‖xp − x̂‖2CTHQHC + ε‖xp‖2GTG − γ‖y − Cxp‖2V −1

+ ρT
[
Axp + εΠ−1GT Gxp −Π−1CT HQHC(x̂− xp)

+ γΠ−1CT V −1(y − Cxp)− ẋp

]}
dt. (8.27)

After integrating ρT ẋp by parts, we get

δJ̄ =
∫ t1

t0

{[
(xp − x̂)T CT HQHC + εxT

p GT G + γ(y − Cxp)T V −1C + ρT A

+ ερT Π−1GT G + ρT Π−1CT HQHC − γρT Π−1CT V −1C + ρ̇T
]
δxp

+
[
−(xp − x̂)T CT HQHC − ρT Π−1CT HQHC

]
δx̂ +

[
−γ(y − Cxp)T V −1

+ γρT Π−1CT V −1
]
δy

}
dt + ρT (t0)δxp(t0)− ρT (t1)δxp(t1) (8.28)
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by taking the variation of (8.27) with respect to y and x̂. Note that δxp(t0) = 0, because

xp is fixed at t0 by the boundary condition, (8.19). From (8.28), the first order necessary

conditions to extremize (8.26) with respect to x̂ and y are

x̂∗ = xp + Π−1ρ mod KerHC, (8.29)

y∗ = C(xp + Π−1ρ), (8.30)

ρ̇ =
[
−
(
A + εΠ−1GT G

)T − CT
(
HQH − γV −1

)
CΠ−1

]
ρ

− CT HQHC(xp − x̂)− γCT V −1(y − Cxp)− εGT Gxp, (8.31)

ρ(t1) = 0. (8.32)

If we substitute (8.29) and (8.30)1 into (8.21) and (8.31), we get

ẋp =
(
A + εΠ−1GT G

)
xp −Π−1CT

(
HQH − γV −1

)
CΠ−1ρ, (8.33)

ρ̇ = −
(
A + εΠ−1GT G

)T
ρ− εGT Gxp, (8.34)

which is a homogeneous two-point boundary value problem in xp and ρ with boundary

conditions, (8.19) and (8.32). Using the sweep method, we take

ρ = Sxp (8.35)

and substitute (8.35) into (8.29) to get

x̂∗ =
(
I + Π−1S

)
xp (8.36)

as the optimal estimate. The vector, xp, is propagated by

ẋp =
(
A + εΠ−1GT G−Π−1CT HQHCΠ−1S

)
xp + γΠ−1CT V −1(y − Cxp), (8.37)

1We can ignore any differences between x̂ and xp that lie in kerHC since these differences will
not show up at our controlled output, z.
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which is the result of substituting (8.36) into (8.21). S is found by propagating

− Ṡ =
(
A + εΠ−1GT G

)T
S + S

(
A + εΠ−1GT G

)
− SΠ−1CT

(
HQH − γV −1

)
CΠ−1S + εGT G (8.38)

from the terminal condition,

S(t1) = 0. (8.39)

Equation (8.38) is found by differentiating (8.35) and using (8.33) and (8.34) where needed.

Equation (8.39) is determined from (8.32) and (8.35).

Remark 19. If we take ε = 0, S will be identically zero since (8.38) will be an unforced

differential equation with zero as its boundary condition. Thus, from (8.36), x̂ = xp, and

the robust game theoretic fault detection filter simplifies to

˙̂x = Ax̂ + γΠ−1CT V −1(y − Cx̂),

−Π̇ = AT Π + ΠA +
1
γ

Π
(
F2MF T

2 + F3NF T
3

)
Π + CT

(
HQH − γV −1

)
C,

Π(t0) = Π0.

This is identical to the results of Chapter 6, except that we still have the map, F3, which

corresponds to plant uncertainty. Thus, the filter is still robustified, though in a much

simpler way. As it turns out, this is Edelmayer’s alternative approach robustifying the

approximate detection filter (see Remark 8.1 and (Edelmayer et al. 1994)). Our results,

however, show that this “alternative” is just DeSouza’s method with ε = 0.

8.3.2 Equivalence to the H∞ Measurement Feedback Control Problem

The robust game theoretic fault detection filter requires the solutions to two differential

Riccati equations: one that is integrated forward in time, (8.20), and one that is integrated

backwards in time, (8.38). This is strikingly similar to the “two Riccati” solution to the
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H∞ measurement feedback problem given in (Doyle et al. 1989, Green and Limebeer 1995,

Rhee and Speyer 1991). We will now show that the robust approximate detection filter

problem and the H∞ measurement feedback control problem are one in the same problem.

We begin by making the following definitions:

x̌
4
= xp, Q̌

4
= εGT G, Ǎ

4
= A + εΠ−1GT G,

u
4
= xp − x̂, R

4
= CT HQHC, B

4
= Π−1CT HQHC,

w
4
= y − Cxp, W

4
= γV −1, Γ

4
= γΠ−1CT V −1.

Assume for argument’s sake that R = CT HQHC is invertible. Substituting these definitions

into the cost function for the second half of the game, (8.26), gives us

J̌ =
∫ t1

t0

[
‖x̌‖2

Q̌
+ ‖u‖2R − ‖w‖W

]
dt.

If we also make these substitutions into the differential equation for xp, (8.37), we then get

˙̌x = Ǎx̌ + Bu + Γw. (8.40)

Our game is now given by the following which is subject to (8.40):

min
u

max
w

J̌ ≤ 0,

This is the classic, linear quadratic differential game. If we apply our definitions to the

well-known feedback solution for the game (Başar and Bernhard 1995, Mageirou 1976),

u = −R−1BT Sx, (8.41)

−Ṡ =ǍT S + SǍ− S
(
BR−1BT − ΓT W−1Γ

)
S + Q, (8.42)

we find that we recover the differential game solutions of Section 8.3. That is, from (8.41),

we get the optimal state estimate, (8.36):

u = −R−1BT Sx̌

=⇒ xp − x̂ = −
(
CT HQHC

)−1(
CT HQHC

)
Π−1Sxp

=⇒ x̂ =
(
I + Π−1S

)
xp,
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and from (8.42) we get the our second Riccati equation, (8.38):

−Ṡ = ǍT S + SǍ− S
(
BR−1BT − ΓW−1ΓT

)
S + Q

=⇒ −Ṡ =
(
A + εΠ−1GT G

)T
S + S

(
A + εΠ−1GT G

)
− S

[
Π−1CT HQHC

(
CT HQHC

)−1
CT HQHCΠ−1

−
(
γΠ−1CT V −1

)(
γ−1V

)(
γV −1CΠ−1

)]
S + εGT G

=⇒ −Ṡ =
(
A + εΠ−1GT G

)T
S + S

(
A + εΠ−1GT G

)
− SΠ−1CT

(
HQH − γV −1

)
CΠ−1S + εGT G.

Thus, if we think of the first half of the differential game as giving us an estimator, the

equivalence between the second-half and the classic linear quadratic game implies that the

entire game is equivalent to H∞ measurement feedback problem.

Remark 20. The results presented here imply that the results derived by DeSouza

(DeSouza et al. 1992) are also equivalent to a variation of the H∞ measurement feedback

problem. This equivalence, to our knowledge, has not been recognized previously.

8.4 The Robust Game Theoretic Fault Detection Filter in the Limit

In Chapter 7, it was shown that in the limit, γ → 0, the game theoretic fault detection

filter becomes an unknown input observer in that it obtains the same invariant subspace

structure. In this section, we will examine whether the parameter robust filter derived in

the previous section also possesses this limiting property. As in Chapter 7, we will begin by

trying to find the conditions which guarantee that the game cost will be nonpositive. These

fall out after we manipulate the cost function to look like a single quadratic,

J(x̂, x(t0), µ2, µ3, v) =
∫ t1

t0

ξT Wξdt.

A nonpositive definite W ensures a nonpositive cost which ensures an attenuating solution.

We begin with the cost function as given by (8.8),
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J =
∫ t1

t0

[
‖x− x̂‖2CTHQHC + ‖x‖2εGTG − γ‖µ2‖2M−1 − γ‖µ3‖2N−1

− γ‖y − Cx‖2V −1

]
dt− ‖x(t0)− x̂0‖2Π0

. (8.43)

Appending the dynamic equations for x, (8.7), and xp, (8.21), to game cost, (8.43), through

the Lagrange multipliers, (x− x̂)T Π and xT
p S, we get

J =
∫ t1

t0

{
‖x− x̂‖2CTHQHC + ‖x‖2εGTG − γ‖µ2‖2M−1 − γ‖µ3‖2N−1

− γ‖y − Cx‖2V −1 + (x− x̂)T Π
[
Ax + F2µ2 + F3µ3 − ẋ

]
+ xT

p S
[
Axp + εΠ−1GT Gxp −Π−1CT HQHC(x̂− xp)

+ γΠ−1CT V −1(y − Cxp)− ẋp

]}
dt− ‖x(t0)− x̂0‖2Π0

. (8.44)

Now expand some of the quadratic terms in (8.44) to introduce xp into the cost:

‖x− x̂‖2CTHQHC −→ ‖(x− xp)− (x̂− xp)‖2CTHQHC

‖x‖2εGTG −→ ‖(x− xp) + xp‖2εGTG

‖y − Cx‖2V −1 −→ ‖(y − Cxp)− C(x− xp)‖2V −1 .

After we introduce these expansions into (8.44) and collect terms, we get

J =
∫ t1

t0

{
‖x− xp‖2CT (HQH−γV −1)C+εGTG + ‖xp‖2S(A+εΠ−1GTG)+εGTG

+ ‖x̂− xp‖2CTHQHC − γ‖µ2‖2M−1 − γ‖µ3‖2N−1 − γ‖y − Cxp‖2V −1

+ (x− xp)T
[
−CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]
+
[
−CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]T
(x− xp)

+ xT
p S
[
Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)− ẋp

]
+ (x− xp)T Π

[
Ax + F2µ2 + F3µ3 − ẋ

]}
dt− ‖x(t0)− x̂0‖2Π0

.
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Add and subtract (x− xp)T ΠAxp and (x− xp)T Πẋp to the above and collect terms to get

J =
∫ t1

t0

{
‖x− xp‖2ΠA+CT (HQH−γV −1)C+εGTG + ‖xp‖2S(A+εΠ−1GTG)+εGTG

+ ‖x̂− xp‖2CTHQHC − γ‖µ2‖2M−1 − γ‖µ3‖2N−1 − γ‖y − Cxp‖2V −1

+ (x− xp)T
[
−Πẋp + ΠAxp − CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]
+
[
−CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]T
(x− xp)

+ xT
p S
[
Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)− ẋp

]
+ (x− x̂)T Π

(
F2µ2 + F3µ3

)
− (x− xp)T Π(ẋ− ẋp)

}
dt− ‖x(t0)− x̂0‖2Π0

. (8.45)

The third line of (8.45) can be eliminated by using (8.21), which comes from the first half

of the game solution derived in Section 8.3. We now integrate the terms, (x−xp)T Π(ẋ− ẋp)

and xT
p Sẋp, in (8.45) by parts so that the cost now becomes

J =
∫ t1

t0

{
‖x− xp‖2Π̇+ΠA+CT (HQH−γV −1)C+εGTG

+ ‖x̂− xp‖CTHQHC

+
[
−Πẋp − CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]T
(x− xp)

+ (x− xp)T Π
(
F2µ2 + F3µ3

)
+ ẋT Π(x− xp) + ẋT

p Sxp − γ‖y − Cxp‖2V −1

+ xT
p S
[
Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)

]
− γ‖µ2‖2M−1

− γ‖µ3‖2N−1 + ‖xp‖2Ṡ+S(A+εΠ−1GTG)+εGTG

}
dt + ‖xp(t0)‖2S(t0) − ‖xp(t1)‖2S(t1)

− ‖x(t0)− x̂0‖2Π0
+ ‖x(t0)− xp(t0)‖2Π(t0) − ‖x(t1)− xp(t1)‖2Π(t1). (8.46)

The first two terms on the last line of (8.46) can be combined by using the boundary

condition for xp at t0, (8.19). Moreover, if we insert the state equation for x, (8.7), and xp,

(8.21), into the third line of (8.46), we get
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J =
∫ t1

t0

{
‖x− xp‖2Π̇+ΠA+CT (HQH−γV −1)C+εGTG

+ ‖x̂− xp‖2CTHQHC

+
[
−Πẋp − CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]T
(x− xp)

− γ‖µ2‖2M−1 − γ‖µ3‖2N−1 + ‖xp‖2Ṡ+S(A+εΠ−1GTG)+(A+εΠ−1GTG)TS+εGTG

+ (x− xp)T Π
(
F2µ2 + F3µ3

)
+
(
Ax + F2µ2 + F3µ3

)T Π(x− xp)− γ‖y − Cxp‖2V −1

+
[
−Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)

]T
Sxp

+ xT
p S
[
−Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)

]}
dt

+ ‖xp(t0)‖2S(t0) − ‖x(t0)− x̂0‖2Π0−Π(t0) − ‖xp(t1)‖2S(t1) − ‖x(t1)− xp(t1)‖2Π(t1).

Now, add and subtract xT
p AT Π(x − xp) to the above and collect terms so that we end up

with

J =
∫ t1

t0

{
‖x− xp‖2Π̇+ΠA+ATΠ+CT (HQH−γV −1)C+εGTG

+ ‖x̂− xp‖CTHQHC

+
[
−Πẋp + ΠAxp − CT HQHC(x̂− xp) + εGT Gxp + γCT V −1(y − Cxp)

]T
(x− xp)

+ ‖xp‖2Ṡ+S(A+εΠ−1GTG)+(A+εΠ−1GTG)TS+εGTG
− γ‖µ2‖2M−1 − γ‖µ3‖2N−1

+ (x− xp)T Π
(
F2µ2 + F3µ3

)
+
(
F2µ2 + F3µ3

)T Π(x− xp)− γ‖y − Cxp‖2V −1

+
[
−Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)

]T
Sxp

+ xT
p S
[
−Π−1CT HQHC(x̂− xp) + γΠ−1CT V −1(y − Cxp)

]}
dt

+ ‖xp(t0)‖2S(t0) − ‖x(t0)− x̂0‖2Π0−Π(t0) − ‖xp(t1)‖2S(t1) − ‖x(t1)− xp(t1)‖2Π(t1). (8.47)

Using (8.21), we can eliminate the second line of (8.47). The remainder can then be

compactly written as

J =
∫ t1

t0

ξT Wξdt + ‖xp(t0)‖2S(t0) − ‖x(t0)− x̂0‖2Π0−Π(t0)

− ‖xp(t1)‖2S(t1) − ‖x(t1)− xp(t1)‖2Π(t1),
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where

ξ =



(x− xp)
µ2

µ3

xp

(x̂− xp)
(y − Cxp)


.

The matrix, W , has the form,

W =
[

W1(Π) 0
0 W2(S)

]
,

in which

W1(Π)
4
=

 L1(Π) ΠF2 ΠF3

F T
2 Π −γM−1 0

F T
3 Π 0 −γN−1

 , (8.48)

L1(Π)
4
= Π̇ + AT Π + ΠA + CT

(
HQH − γV −1

)
C + εGT G

and

W2(S)
4
=

 L2(S) −SΠ−1CT HQHC γSΠ−1CT V −1

−CT HQHCΠ−1S CT HQHC 0
γV −1CΠ−1S 0 −γV −1

 ,

L2(S)
4
= Ṡ +

(
A + εΠ−1GT G

)T
S + S

(
A + εΠ−1GT G

)
+ εGT G.

Therefore, for matrices Π > 0 and S > 0 such that

W1(Π) ≤ 0,

W2(S) ≤ 0,

Π0 −Π(t0) ≥ 0,

S(t0) = 0 or x̂0 = 0,

S(t1) ≥ 0,

Π(t1) ≥ 0,
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the cost, J , will be nonpositive.

In the special case, ε = 0, we know from Remark 8.3.1 that S will be zero, which allows

us to ignore W2(S) altogether. The limiting conditions for γ → 0 then come from (8.48)

and are

ΠF2 = 0, (8.49)

ΠF3 = 0, (8.50)

L1(Π) ≤ 0. (8.51)

Equations (8.49–8.51) are identical to the conditions found in Chapter 7 for the standard

problem with no model uncertainty, which is what we would expect. Note that (8.49) and

(8.50) clearly show that, in the limit, the Riccati matrix, Π, obtains a nontrivial null space

which contains the image of the nuisance failure maps, F2 and F3. This, in turn, implies

that a limiting solution does not exist for the case, ε 6= 0, since W2(S) requires that an

inverse exist for Π. Thus, robustifying the game theoretic fault detection filter destroys the

limiting property found in Chapter 7. The loss of this asymptotic property can be thought

of as a vivid example of the tradeoff between fault detection and parameter robustness.

8.5 Example: Accelerometer Fault Detection in an F16XL with Model
Uncertainty

8.5.1 Problem Statement

To show how the robust game theoretic detection filter can be used for fault detection and

identification, we once again revisit the F-16XL example introduced in Chapter 6. In this

section, we will add model uncertainty to the problem. A description of the states and the

measurements is given in Section 6.3.1. The nominal failure model is given by

ẋ = Ax + FAzµAz + Fwgµwg,

y = Cx + v,

z = H(y − Cx̂).
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The system matrices are given by (6.56–6.59). To complete our model, incorporate plant

uncertainty into the equations. In this example, we will assume that the system eigenvalues

are only known to within a certain range. The perturbation in A corresponding to this

uncertainty is found by decomposing A into its eigenvalues and eigenvectors:

A = XDX−1.

X is a matrix whose columns are the eigenvectors of A; D is a diagonal matrix whose

diagonal elements are the corresponding eigenvalues. ∆A is then obtained by perturbing

the eigenvalues by 10%, reforming the matrix, and taking the difference from the nominal

A:

Ã = V (1.1×D)V −1,

∆A = Ã−A.

We do not need all of the elements of ∆A, however. Since any element in the fifth column of

∆A enters the system in the same way as the nuisance fault, µwg, it is redundant to include

these perturbations. Also, the fourth state, θ, is the integral of the third state, q. There is

no uncertainty in this dynamic relationship (since an integral is always an integral), and so

we can eliminate the corresponding element in ∆A, to get

∆A =


−0.0067 0.0043 −0.0889 0 0
0.0020 −0.1467 1.6580 0 0
0.0138 −0.1679 −0.0682 0 0

0 0 0 0 0
0 0 0 0 0

 .

Now implicit in this perturbation model is a perturbation size, 10 %. We remove this

assumption when we decompose ∆A into the form given by (8.4). We must also point out

that we are only interested in finding the map, F3, since this represents the way in which

the plant uncertainty drives the system. By using the singular value decomposition,

∆A = USV T ,
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we construct F3 from unitary matrix,

U =


−0.0533 −0.0156 −0.9985 0 0
0.9981 −0.0331 −0.0528 0 0
−0.0322 −0.9993 0.0173 0 0

0 0 0 1 0
0 0 0 0 1

 ,

which gives an orthonormal basis for the image of ∆A and its orthogonal complement

(Klema and Laub 1980). Since the first three columns of U correspond to the three nonzero

singular values of ∆A, these correspond to the image of ∆A and, thus, are the only columns

we will use for F3:

F3 =


−0.0533 −0.0156 −0.9985
0.9981 −0.0331 −0.0528
−0.0322 −0.9993 0.0173

0 0 0
0 0 0

 .

To complete the decomposition, we take G to be the least-squares solution to F3G = ∆A,

G =

 0.0020 −0.1412 1.6617 0 0
−0.0137 0.1726 0.0147 0 0
0.0069 0.0005 0.0000 0 0

 ,

and assume that Λ has the form,

Λ =

 λ1(t) 0 0
0 λ2(t) 0
0 0 λ3(t)

 .

Again, for our purposes, F3 is the only important element of the uncertainty model. Note,

also, that F3 is not output separable from FAz , our target fault.

8.5.2 Parameter Robust Filter Design

Our ultimate objective is to design a filter which transmits the accelerometer fault input

with little or no attenuation over a reasonable frequency range while simultaneously rejecting
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sensor noise and the windgust disturbance. Additionally, the filter must also be insensitive

to uncertainty in the eigenvalues, and it must be stable. To achieve this design goal, we

have the parameters, γ and ε, and the weighting matrices: Q, V , M , and N .

A critical element in our design is the value chosen for the parameter, ε. As we discussed

in Remark 8.3.1, with ε = 0, the robust game theoretic detection filter simplifies to standard

game theoretic fault detection filter of Chapter 6. With ε 6= 0, additional elements appear in

the estimator equation which bias the estimate in anticipation of variations in the plant. We

will, therefore, look at two different designs: one with ε = 0 and the other with ε nonzero.

After much trial and error, in which target fault transmission was traded off for nuisance

fault attenuation, the following weightings,

V =


1 0 0 0
0 1 0 0
0 0 4000 0
0 0 0 1

 , N =

 10 0 0
0 10 0
0 0 10

 Q = I, M = 1000, (8.52)

were used along with γ = 0.0015 and ε = 0.000005. These values were found to give the

best design for nonzero ε. The corresponding Riccati solutions are

Π−1 = 105 ×


0.4723 −0.0065 0.0019 −0.0012 0.0393
−0.0065 0.0004 0.0006 0.0001 −0.0138
0.0019 0.0006 0.0011 0.0000 −0.0162
−0.0012 0.0001 0.0000 0.0034 −0.0002
0.0393 −0.0138 −0.0162 −0.0002 1.0895

 ,

S = 10−5 ×


0.0006 −0.0054 −0.0010 0.0001 −0.0045
−0.0054 0.0699 −0.0262 −0.0011 0.0597
−0.0010 −0.0262 0.5650 0.0012 −0.0597
0.0001 −0.0011 0.0012 0.0171 −0.0003
−0.0045 0.0597 −0.0597 −0.0003 0.0729

 .

If we take ε = 0, we find that the best results come when we keep all other parameters

as before, with the exception of γ, which we change to 0.0000005. For this case, the

corresponding Riccati solutions are
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Π−1 = 108 ×


0.1406 −0.0019 0.0005 0.0000 0.0134
−0.0019 0.0000 0.0000 0.0000 −0.0006
0.0005 0.0000 0.0000 0.0000 −0.0010
0.0000 0.0000 0.0000 0.0010 −0.0000
0.0134 −0.0006 −0.0010 −0.0000 2.0780

 ,

S = 0.
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Figure 8.1: F-16XL example: signal transmission in the parameter robust game theoretic
fault detection filter with a 15% Shift in eigenvalues (The accelerometer fault and
nominal windgust transmission are represented by the solid line. The windgust
is the lower of the two. The dash-dot line corresponds to windgust transmission
when modeled eigenvalues are in error by 15%. The dashed line corresponds to
transmission under a -15% modeling error).

Figure 8.1 shows the performance of both filters for the nominal plant and for a perturbed

plant with a 15% shift in the eigenvalues. As we saw from before, the direct feedthrough

of the target fault has a very pronounced effect on target fault transmission. There is no

high frequency roll-off, and the low frequency transmission is degraded. This degradation
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Figure 8.2: F-16XL example: signal transmission in the standard game theoretic fault
detection filter with a 15% shift in eigenvalues (The accelerometer fault and
nominal windgust transmission are represented by the solid line. The windgust
is the lower of the two. The dash-dot line corresponds to windgust transmission
when modeled eigenvalues are in error by 15%. The dashed line corresponds to
transmission under a -15% modeling error).

is mitigated somewhat by choosing the particular form of weighting, V , seen in (8.52).

We also note that the accelerometer fault transmission is invariant under plant parameter

changes. This is because the accelerometer fault comes in through the measurements and,

as a result, only drives the filter.

From Figure 8.1, we can see that the loss of the output separability property severely

degrades our ability to both maintain target fault sensitivity and achieve good separation

between the target fault and nuisance fault. This separation is particularly poor in the low

frequency region. Experience with this example has shown that little can be done to improve

the low frequency separation without severely degrading low frequency accelerometer fault

transmission. Figure 8.1 also shows that the ε parameter has a negligible, perhaps even

detrimental, effect upon the filter design. This result is due to the sensitivity of the Riccati

solution, S, to the values of ε and γ used in the problem. It was found that S will quickly
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lose its symmetry property when more aggressive values of ε and γ are used. This hurts the

performance of the robust filter by preventing the additional elements of the filter associated

with ε and S from having an impact on the design. It also prevents the designer from using

lower values of γ to improve nominal performance.

If one compares Figure 8.1 to Figure 8.2, which shows the performance of the filter

designed in Chapter 6 under a 15% perturbation, he will see that the parameter robust

filter achieves its robustness at the cost of nominal performance. The original filter design

from Chapter 6, in fact, has far superior low frequency performance, even under plant

parameter variations. This is critical for detecting “hard failures,” which look like step

inputs.





Chapter 9

A Decentralized Fault Detection Filter

For many of the larger scale systems of interest to PATH, such as multi-car platoons, the

design of a fault detection filter may best be done using a decentralized scheme, particularly

for the monitoring of sensors which measure relative states between cars. By this, we refer

to a filter that is formed indirectly by combining the state estimates generated by several

”local” estimators to form an estimate of the overall, or ”global,” system. This is distinct

from the standard approach, which is to design a single filter directly for the ”global”

system.

For large-scale systems, a decentralized filter may offer several advantages over using just

a single filter. First, by decentralizing the problem one simplifies it by decomposing it down

into a collection of smaller problems. Second, there are times when the decentralized point

of view reflects the actual physical structure of the system, such as a platoon of automated

cars. Third, the element of scalability is introduced into the fault detection filter with a

decentralized approach. When a car joins the platoon, for instance, there is a step change

149
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in the order of the problem. If the system is being monitored with a single filter, it may

be impossible to make a graceful adjustment. Finally, fault tolerance can be built into

the system by checking for faults in the local sensors and actuators prior to allowing their

outputs to be passed onto the global level as suggested by (Kerr 1985).

9.1 Decentralized Estimation Theory and its Application to FDI

The decentralized fault detection filter is the result of combining the game theoretic fault

detection filter of the Chapter 6 with the decentralized filtering algorithm introduced by

Speyer in (Speyer 1979) and extended by Willsky et al. in (Willsky et al. 1982). For

completeness, we will review the basics of decentralized estimation theory in this section.

The general theory was first presented in (Chung and Speyer 1995) which was research

sponsored in part by the PATH program.

9.1.1 The General Solution

Consider the following system driven by process disturbances, w, and sensor noise, v,

ẋ = Ax + Bw, x(0), x ∈ Rn, (9.1)

y = Cx + v, y ∈ Rm. (9.2)

for which it is desired to derive an estimate of x. The standard approach is a full-order

observer,

˙̂x = Ax̂ + L(y − Cx̂), x̂(0) = 0, (9.3)

which we will call a centralized estimator. An alternative to this method is to derive the

estimated with a decentralized estimator. In the decentralized approach, x̂ is found by

combining estimates based upon “local” models,

ẋj = Ajxj + Bjwj , xj ∈ Rnj , (j = 1...N), (9.4)

yj = Ejxj + vj , yj ∈ Rmj
, (j = 1...N), (9.5)
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which together provide an alternate representation of the original system, (9.1, 9.2), which,

as one might guess, is called the “global” system. The vector, x, is likewise called the

“global” state. The number of local systems, N , is bounded above by the number of

measurements in the system, i.e. N ≤ m.

The global/local decomposition is really of only secondary importance, since, as argued

by (Chung and Speyer 1995), there are no real restrictions on how one forms the global and

local models. The real key to the decentralized estimation algorithm is the relationship

between the global set of measurements, y, and the N local sets, yj . The two basic

assumptions are that the local sets are simply segments of the global set,

y =


y1

y2

...
yN

 , (9.6)

and that the local sets can be described in terms of both the local state and the global

state. In other words, yj can be given by (9.5) or by

yj = Cjx + vj , (j = 1 . . . N). (9.7)

Equations (9.2), (9.6), and (9.7), consequently, imply that

C =

 C1

...
CN


and that

v =

 v1

...
vN

 . (9.8)

The decentralized estimation algorithm falls out when we attempt to estimate the global

state by first generating estimates of the local systems, (9.4), using the local measurement

sets, yj , and the local models, Aj :

˙̂x
j

= Aj x̂j + Lj(yj − Ej x̂j), x̂j(t0) = 0, (j = 1...N). (9.9)
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The global state estimate, x̂, is then found via

x̂ =
N∑

j=1

(
Gj x̂j + hj

)
. (9.10)

where hj is a measurement-dependent variable propagated by

ḣj = Φhj + (ΦGj − Ġj −GjΦj)x̂j , hj(0) = 0. (9.11)

The constituent matrices are defined as

Φ := A−
N∑

j=1

GjLjCj ,

Φj := Aj − LjEj .

The Gj matrices are chosen “blending matrices”. In (Chung and Speyer 1995) it was found

that in order for the dectralized esimation algorithm, (9.10,9.11), to generate the same

estimate, x̂, as a standard centralized estimator, (6.3), the blending matrices have to be

related to the gain of the centralized estimator and the gains of the local estimators through

the equation:

L =
[

G1 . . . GN
]


L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LN

 . (9.12)

L is the gain for the global estimator, and Lj is the gain for the jth local estimator. This

is simply the requirement that a solution exists to a linear algebraic equation. In general,

however, this condition can not be met because of an insufficient number of equations with

which to solve for the unknowns.

There is, however, one general class of estimator for which (9.12) is satified almost

automatically. This class is comprised of estimators which take their gains from Riccati

solutions, that is Kalman filters (Speyer 1979, Willsky et al. 1982) or H∞-norm bounding

filters (Jang and Speyer 1994). In this case, the local gains are found from

Lj = P j(Ej)T (V j)−1, (9.13)
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where, in the case of the Kalman Filter, the matrix, P j is the solution of the Riccati

equation:

Ṗ j = AjP j + P j(Aj)T + BjW j(Bj)T − P j(Ej)T (V j)−1EjP j ,

P j(0) = P j
0 .

The initial condition, P j
0 , is chosen by the analyst based upon his knowledge of the system.

In the global system, the global gain is

L = PCT V −1

where

V =


V 1 0 · · · 0
0 V 2 0 0
... 0

. . .
...

0 · · · · · · V N

 , (9.14)

is restricted to a block diagonal form comprised of the local weightings, V j , and P is the

solution to the global Riccati equation,

Ṗ = AP + PAT + BWBT − PCTVCP, P (0) = P0.

. The blending matrix solution is then,

Gj = P (Sj)T (P j)−1 j = 1, . . . , N, (9.15)

where Sj is any matrix such that

Cj = EjSj . (9.16)

One can, in fact, always take Sj = (Ej)†Cj where (Ej)† is the pseudo-inverse of Ej

(Willsky et al. 1982). Note that the solutions for Gj will always exist for Riccati-based

observers so long as P j is invertible or, equivalently, positive-definite. This will always be

the case if the triples, (Cj , Aj , Bj), are controllable and observable for each of the local

systems.
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9.1.2 Implications for Detection Filters

The analysis of the previous section implies that will we be able to form a decentralized

fault detection filter in the general case only if we are able to find a Riccati-based observer

which is equivalent to a Beard-Jones Filter or unknown input observer. The most direct

way to achieve this is to find a linear-quadratic optimization problem which is equivalent

to the fault detection and identification problem. This is an analog of the famous inverse

optimal control problem first posed by Kalman (Kalman 1964). In (Chung 1997), however,

a counterexample was given which showed that FDI observers do not correspond one-to-one

with linear-quadratic problems.

Another way to address this problem, of course, is to use the Riccati-based game

theoretic fault detection filter that we have painstaking developed in the previous three

chapters. This filter is entirely suitable for use in the decentralized estimation algorithm.

One might, in fact, take the following steps to use the game theoretic fault detection filter

in this way:

1. Identify the sensors and actuators which must be monitored at the global level, i.e.

define the target faults for the global filter.

2. Identify the faults which should be included in the global nuisance set. The remaining

faults should be monitored at the local levels.

3. Derive global and local models for the system including failure maps. (Chung 1997)

contains a brief discussion about this process. In Section 9.2, we will demonstrate one

method in which the local models are derived from the global model via a minimum

realization.

4. Design game theoretic fault detection filters for the local and global systems. Solve

the corresponding Riccati equations and store the solutions for later use.

5. Determine the blending solutions, Gj , from Equation (9.15).
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6. Propagate the local estimates, x̂j , and vectors, hj , and then use the decentralized

estimation algorithm (9.10) to derive a global estimate, x̂.

7. Determine the global failure signal from (y − Cx̂) where y is the total measurement

set, C is the global measurement matrix, and x̂ is the global fault detection filter

estimate just derived.

We will now apply these steps in an example.

9.2 Range Sensor Fault Detection in a Platoon of Cars

Car #2

Range

Car #1 X

Z

Figure 9.1: A two-car platoon with a range sensor.

9.2.1 Problem Statement

We will now examine the utility of the decentralized approach to FDI by working through

an example. The problem that we will look at involves the detection of failures within

a system of two cars traveling as a platoon. See Figure 9.1. The cars are controlled to

maintain a uniform speed and constant separation.

The platoon is the central component of automated highway schemes in which groups of

cars line up single file and travel as a unit, thereby eliminating the possibility of individual

vehicles impeding one another (Douglas et al. 1995, Douglas et al. 1996). With careful

coordination, these platoons will allow traffic to move with much the same order and

protocol as electrical signals on the Internet. The viability of the platooning scheme,

however, will depend on many factors, not the least of which are reliability and safety.



156 Chapter 9: A Decentralized Fault Detection Filter

The FDI schemes that we have examined to this point are capable of monitoring

individual cars, but may not be ideal for monitoring elements that deal with the interactions

between cars. For example, to maintain uniform speed throughout the platoon and to keep

the spacing between the cars constant, additional sensors will be needed to measure the

relative speed and the relative distance, or “range”, between the cars. In order to detect

a failure in the range sensor using analytic redundancy, however, it is necessary to have a

dynamic relationship between the range sensor and other sensors on the vehicles. Range,

however, involves the dynamics of both of the cars and so would require a higher-order

model for its detection filter.

While this is not necessarily prohibitive, it does not make use of the many different

state estimates that are already being propagated throughout the platoon. The sensors on

each of the cars, for instance, will be monitored by detection filters, and it is more than

likely that a state estimate would also be generated by the vehicles’ control loops. Given

these pre-existing estimates, it seems logical to make use of the decentralized estimation

algorithm to carry out range sensor fault detection.

9.2.2 System Dynamics and Failure Modeling

Our example starts with the car model used in (Douglas et al. 1995). In this model, the

nonlinear, six degree-of-freedom dynamics of an representative automobile are linearized

about a straight, level path at a speed of 25 meters/sec (roughly 56 miles per hour).

The linearized equations are found to decouple nicely into latitudinal and longitudinal

dynamics, much like an airplane. Moreover, the linearized equations can be further reduced

by eliminating “fast modes” and actuator states. For simplicity, we will only use the

longitudinal dynamics which we represent as

ẋ = ALx,

y = CLx.
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The vehicle states are

x =



ma

ωe

vx

vz

z
q
θ



engine air mass (kg)
engine speed (rad/sec)
long. velocity (m/sec)
vertical velocity (m/sec)
vertical position (m)
pitch rate (rad/sec)
pitch (rad)

(9.17)

and are propagated by the state matrix,

AL = 103 ×

−0.0226 −0.0001 0 0 0 0 0
0.3070 −0.0354 0.3974 −0.2381 −2.6980 −3.7530 −0.3311

0 0.0001 −0.0008 0.0006 0.0068 0.0168 0.0015
0 −0.0000 0.0000 −0.0036 −0.0404 −0.0091 −0.0008
0 0 0 0.0010 0 0 0
0 0 0 0 0 0 0.0010
0 −0.0000 0.0002 −0.0006 −0.0072 −0.0396 −0.0036


. (9.18)

The measurements are

y =



ma

ωe

v̇x

v̇z

q
ωf

ωr



engine air mass (kg)
engine speed (rad/sed)
long. acceleration (m/sec2)
heave acceleration (m/sec2)
pitch rate (rad/sec)
front symmetric wheel speed (rad/sec)
rear symmetric wheel speed (rad/sec)

(9.19)

with the corresponding measurement matrix,

CL =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0.0713 −0.8177 0.5934 6.7786 16.8068 1.5162
0 −0.0020 0.0221 −3.5646 −40.4210 −9.0765 −0.8141
0 0 0 0 0 0 1
0 0 7.1220 −4.5806 −51.9152 58.8718 5.1944
0 0.0888 5.9738 −3.5782 −40.5542 −56.4109 −4.9773


. (9.20)

The rear and front symmetric wheel speeds are states that were eliminated when the fast

modes were factored out of the linearized system.



158 Chapter 9: A Decentralized Fault Detection Filter

In order to build a detection filter for the range sensor, we need to use (9.17–9.20) to

build state space models for the platoon,

η̇ = Aη + F1µ1 + F2µ2,

y = Cη,

and the two cars,

η̇1 = A1η1 + F 1
1 µ1

1 + F 1
2 µ1

2,

y1 = E1η1,

η̇2 = A2η2 + F 2
1 µ2

1 + F 2
2 µ2

2,

y2 = E2η2.

We will build up our models with the following steps:

1. Using (9.17–9.20), we will derive the global state matrices, A and C.

2. Using the modelling techniques described in (Douglas 1993), we will determine the

failure maps, Fi.

3. We will then obtain the local state matrices, Ai, Ei, and F i
j , from the minimum

realization of the triples (C1, A, F2) and (C2, A, F2).

Our general strategy is to derive the global equation first and then get the local equations

from decompositions based upon observability and controllability. While this is by no means

the only way to obtain the global and local representations of a system, it is a logical method

that can be applied to any problem.

The obvious way the get the global matrices, A and C, is to form block diagonal

composite matrices with AL and CL repeated on the diagonal, i.e.

A′ =
[

AL 0
0 AL

]
, C ′ =

[
CL 0
0 CL

]
.
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This, however, is not sufficient, since there is no way to describe the range, R, between the

two vehicles with the given states, (9.17). Range is the relative distance between the cars,

R = x1 − x2,

where xi is the longitudinal displacement of car i. Displacement, however, is not a state of

the vehicle (9.17). We must, therefore, add a range state to the platoon dynamics, using

the equation,

Ṙ = v1
x − v2

x.

The end result is that the platoon will be a fifteen-state system,

η =



m1
a

ω1
e

v1
x

v1
z

z1

q1

θ1

m2
a

ω2
e

v2
x

v2
z

z2

q2

θ2

R



engine air mass (kg) - Car#1
engine speed (rad/sec) - Car#1
long. velocity (m/sec) - Car#1
vertical velocity (m/sec) - Car#1
vertical position (m) - Car#1
pitch rate (rad/sec) - Car#1
pitch (rad) - Car#1
engine air mass (kg) - Car#2
engine speed (rad/sec) - Car#2
long. velocity (m/sec) - Car#2
vertical velocity (m/sec) - Car#2
vertical position (m) - Car#2
pitch rate (rad/sec) - Car#2
pitch (rad) - Car#2
Range (m).

The corresponding state matrix is

A =

 AL 0
0 AL

E1 −E1

 , (9.21)

E1 =
[

0 0 1 0 0 0 0
]
.

The measurement matrix is

C =

 CL 0

0
CL 0
0 1

 =
[

C1 0
0 C2

]
, (9.22)
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where C1 and C2 can be inferred from (9.22). Finally, the local measurement sets are

y1 =



m1
a

ω1
e

v̇1
x

v̇1
z

q1

ω1
f

ω1
r



engine air mass (kg)- Car#1
engine speed (rad/sed)- Car#1
long. acceleration (m/sec2)- Car#1
heave acceleration (m/sec2)- Car#1
pitch rate (rad/sec)- Car#1
front symmetric wheel speed (rad/sec) - Car#1
rear symmetric wheel speed (rad/sec) - Car#1.

and

y2 =



m2
a

ω2
e

v̇2
x

v̇2
z

q2

ω2
f

ω2
r

R



engine air mass (kg)- Car#2
engine speed (rad/sed)- Car#2
long. acceleration (m/sec2)- Car#2
heave acceleration (m/sec2)- Car#2
pitch rate (rad/sec)- Car#2
front symmetric wheel speed (rad/sec) - Car#2
rear symmetric wheel speed (rad/sec) - Car#2
range (rad/sec).

Our ultimate objective is to design a filter which will detect a range sensor fault in the

presence of potential failures in the other sensors.

In an actual health monitoring system, we would design the global filter to block out

all of the nuisance faults that are output separable from the range sensor fault and then

rely upon the local filters to monitor the remaining faults. Given the size of our example,

however, the full analysis required to do a detailed design would clutter our presentation.

We will, therefore, limit ourselves to constructing only one local filter and will choose simple

nuisance sets at both the global and local levels.

For this example, we choose to monitor the front symmetric wheel speed sensor at the

local level. The nuisance set is then chosen to be the engine air mass sensor and the heave

accelerometer. At the global level, the range sensor has already been designated as the

target fault. We, therefore, complete the problem definition by choosing the engine speed

sensor and longitudinal accelerometer as the global nuisance set. There is no particular

significance attached to any of our choices for the nuisance and target sets, aside from the

choice of the range sensor as the global target fault.
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Following standard modelling techniques (Douglas 1993), we construct the two engine

speed sensor failure maps,

Fω1
e

=



0 −0.1168
1.0000 −41.3189
−0.0022 0
19.5036 0
−1.7202 19.5036
0.0009 0

0 0.3094
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 −0.0022



, Fω2
e

=



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 −0.1168

1.0000 −41.3189
−0.0022 0
19.5036 0
−1.7202 19.5036
0.0009 0

0 0.3094
0 0.0022



,

and the two longitudinal accelerometer failure maps,

Fv̇1
x

=



0 0
0 0

−0.0707 1
−214.9888 0
18.9591 −214.9888
−0.0003 0

0 −3.9921
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 −0.0707



, Fv̇2
x

=



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

−0.0707 1.0000
−214.9888 0
18.9591 −214.9888
−0.0003 0

0 −3.9921
0 0.0707



.

To check for output separability, we need the the range sensor failure map,

F T
R = {0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} .
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For the local filters, we need the need the airmass sensor failure maps,

Fm1
a

=



1 −22.5605
0 307.0298
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0



, Fm2
a

=



0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 −22.5605
0 307.0298
0 0
0 0
0 0
0 0
0 0
0 0



,

and the heave accelerometer sensor failure maps,

Fv̇1
z

=



0 0
0 0

−0.1767 0
−7.8747 1
0.6698 −7.8747
−0.0007 0

0 0.0197
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 −0.1767



, Fv̇2
z

=



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

−0.1767 0
−7.8747 1
0.6698 −7.8747
−0.0007 0

0 0.0197
0 0.1767



.

Finally, to check for output separability in the local filters, we will need the front wheel
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speed sensor failure maps,

Fω1
f

=



0 0
0.0001 −0.3401
0.0645 0.0046
14.0371 0.0114
−1.2399 14.0371
0.0079 0
0.0000 −0.0241

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.0645



, Fω2
f

=



0 0
0 0
0 0
0 0
0 0
0 0
0 0

1.0000 −22.5605
0 307.0298

0.0675 0
14.9324 0
−1.3186 14.9324
0.0079 0

0 −0.0087



.

A quick application of (6.17) will show that all of our failure sets are output separable.

We are now in position to generate the local state equations. The local dynamics for

car #1 come from the minimum realization of (C1, A,
[

Fm1
a

Fv̇1
z

]
). The corresponding

matrices are

A1 = 103 ×



−0.0001 −0.0000 −0.0001 0.0000 −0.0040 −0.0426 0.0013
−0.0000 −0.0017 −0.0571 0.0072 0.0263 −0.6658 −0.4966
0.0000 0.0000 −0.0226 −0.0001 0.0000 −0.0000 −0.0000
0.0001 0.0078 0.3017 −0.0386 −0.1372 3.6120 2.8167
0.0001 −0.0001 −0.0025 0.0002 0.0009 −0.0191 −0.0091
0.0009 −0.0003 0.0002 −0.0001 −0.0004 −0.0025 −0.0002
−0.0003 −0.0009 0.0001 −0.0002 0.0000 0.0013 −0.0014


,

E1 =



0 0 −1 0 0 0 0
0.0004 0.1861 0 −0.9825 0.0081 −0.0007 −0.0004
−0.0044 −0.0142 0 −0.0903 −0.2118 11.2661 14.3096
−0.0002 −0.0007 0 −0.0048 −4.0642 −41.3183 2.4264
0.0001 −0.9787 0 −0.1854 0.0016 0.0245 0.0845
0.0003 0.0017 0 0.0069 1.4478 −34.1025 71.3771
−0.0010 −0.0039 0 −0.0192 2.1041 −55.2068 −42.9870


,
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F 1
m1
a

=



0 0.1213
0 57.1230
1 −22.5605
0 −301.6586
0 2.4980
0 −0.2041
0 −0.1202


, F 1

v̇1
z

=



7.9031 −1.6879
−0.0007 −0.0213

0 0
−0.0048 −0.0057
−0.1760 −0.7911
−0.0068 −7.4136
−0.0003 −2.1388


.

A model for Car #2 is similarly found as a minimal realization of (C2, A,
[

Fm2
a

Fv̇2
z

]
).

The corresponding matrices are

A2 = 103 ×

−0.0003 −0.0003 0.0010 −0.0000 0.0000 0.0000 0.0000 −0.0000
0.0003 0.0003 0.0000 0.0010 −0.0000 −0.0000 −0.0000 0.0000
−0.0125 −0.0121 −0.0015 −0.0008 −0.0000 0.0000 0.0000 0.0000
−0.0283 −0.0275 −0.0021 −0.0030 0.0000 0.0081 0.0067 −0.0001
0.1951 0.1939 −0.0024 0.0389 −0.0002 −0.1529 −0.1262 0.0027
0.0039 0.0046 0.0004 0.0005 −0.0000 −0.0213 −0.0184 0.0000
−0.0041 −0.0048 −0.0004 −0.0005 0.0000 0.0228 0.0178 −0.0000
−2.6548 −2.6391 0.0323 −0.5294 −0.3044 2.0805 1.7175 −0.0578


,

E2 =



−0.0000 0.0000 1.0000 −0.0000 0.0000 0.0000 −0.0000
−0.0004 0.1861 0 −0.9825 0.0081 −0.0007 0.0004
0.0044 −0.0142 −0.0000 −0.0903 −0.2118 11.2661 −14.3096
0.0002 −0.0007 −0.0000 −0.0048 −4.0642 −41.3183 −2.4264
−0.0001 −0.9787 0 −0.1854 0.0016 0.0245 −0.0845
−0.0003 0.0017 0 0.0069 1.4478 −34.1025 −71.3771
0.0010 −0.0039 0 −0.0192 2.1041 −55.2068 42.9870


,

F 2
m2
a

=



0 0
0 0
0 0
0 0

0.9973 0.0002
0 0
0 0

0.0733 −307.8575


, F 2

v̇2
z

=



0 0
0 0
0 0
0 0
0 0

−5.0327 −4.9282
6.0961 −6.2254

0 0


.
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With all of these system matrices in place, we can now form the residual projectors, H,

(6.12) needed generate the failure signal, z. In the global filter, we define

F̂ =
[

Fω1
e

Fv̇1
x

Fω2
e

Fv̇2
x

]
so that the projector for the global filter is

H = I − CF̂
[
(CF̂ )T CF̂

]−1
(CF̂ )T .

In the local filters, we define

F̂ i =
[

F i
mi
a

F i
v̇iz

]
i = 1, 2

so that the projector is

H i = I − CF̂ i
[
(CF̂ i)T CF̂ i

]−1
(CF̂ i)T .

We do not show either of these matrices explicitly because of their size.

9.2.3 Decentralized Fault Detection Filter Design

We will first design filters for the local systems. For simplicity, we will once again use the

steady-state version of the game theoretic fault detection filter. The design process boils

down to finding the design weightings which give the best tradeoff between target fault

transmission and nuisance fault attenuation. For this example, it was found that

M1 = 10× I7, V 1 = diag
[

1 1 10 1 1 1 1
]
,

Q1 = I7, γ = 0.18

leads to the filter for Car #1 depicted in Figure 9.2. The minimum separation over frequency

is only 35 dB, but the filter has particularly good separation in the low frequency range.

For Car #2, the same weightings, adjusted for the different dimensions of the Car #2

dynamics,

M2 = 10× I8, V 2 = diag
[

1 1 10 1 1 1 1 1
]
,

Q2 = I8, γ = 0.18,
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Figure 9.2: Platoon example: signal transmission in the local detection filter on car
# 1 (accelerometer fault transmission shown with solid line, nuisance fault
transmission shown with dashed line).
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Figure 9.3: Platoon example: signal transmission in the local detection filter on car
# 2 (accelerometer fault transmission shown with solid line, nuisance fault
transmission shown with dashed line).
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Figure 9.4: Platoon example: signal transmission in the global detection filter (position
sensor fault transmission shown with solid line, nuisance fault transmission
shown with dashed line).
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Figure 9.5: Platoon example: failure signal response of the decentralized fault detection
filter (Nuisance fault is a step failure in the longitudinal accelerometer on car #
1).
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lead to a filter with the performance depicted in Figure 9.3.

Finally, we turn to the global system. The decentralized fault detection filter for range

sensor health monitoring in the platoon is found by solving,

0 = Π−1AT + AΠ−1 +
1
γ

F2MF T
2 + Π−1CT (HQH − γV −1)CΠ−1, (9.23)

which is simply a variation of (6.54). The weightings,

γV −1 = I17, Q = I17,

M = 100× I8, γ = 0.18.

were used in the design. The resulting filter has the properties depicted in Figure 9.4. The

decentralized estimator should also exhibit this level of performance. As a check, a simple

time domain simulation was run comparing the response of the residual signal when the

system is driven by the target fault (a step failure of the range sensor) to when it is driven

by a nuisance fault (a step failure of the longitudinal accelerometer on Car #1). Because

we are using Riccati-based estimators, the blending matrices, Gj , are given by (9.15). The

connecting matrices, Sj , are taken to be the pseudo-inverses of Ej . The remaining vectors

and matrices that form the decentralized estimation algorithm are as given in Section 9.1.

As Figure 9.5 shows, the resulting decentralized fault detection filter does a good job of

distinguishing the target fault from the nuisance fault.

It must be noted that we have assumed that the lead car will transmit its measurements,

y1, its local state estimates, η̂2, and the vector, h1, back to car #2 so that the latter can

form the global estimate via the decentralized estimation algorithm. Transmission issues

and limitations, quite obviously, open up the potential for new problems. We have also

assumed that each car will have stored on-board the needed Riccati solutions for all likely

scenarios.



Chapter 10

Multiple Model Adaptive Estimation

A class of adaptive estimation problems is considered where an unknown system

model is assumed to correspond to one of a number of specified models and the model

uncertainty is summarized as a time-varying parametric uncertainty. In particular, we

concern ourselves with estimation in linear stochastic systems with time-varying parameters.

Early attempts to solve this problem produced the Multiple Model Adaptive Estimation

(MMAE) algorithm, first proposed by (Magill 1965) then generalized by (Lainiotis 1976)

to form the framework of partitioned algorithms. This algorithm addresses the most basic

adaptive estimation problem, estimation in a linear stochastic system with time-invariant

parametric uncertainty. It is a joint estimation and system identification algorithm with of

a bank of Kalman filters, each matched to one hypothesis and an identification subsystem,

which may be construed as the dynamics of a sub-optimal multiple hypothesis Wald’s

Sequential Probability Ratio Test (WSPRT). We denote the underlying dynamics of the

WSPRT by Fw
ki , which is defined as the posterior probability of hypothesis Hi conditioned

169
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on the residual history up to tk. The use of Fw
ki is motivated by the implicit assumption

that we are dealing with a time-invariant parametric uncertainty. However, as stated in

(Athans 1977), there is no rigorous proof that the posterior probability associated with the

true model will converge to unity. Moreover, apart from being computationally intensive,

this algorithm suffers from beta dominance (Menke and Maybeck 1995), which arises out of

incorrect system modeling and leads to irregular residuals.

Recently, there have been efforts to improve the performance of the MMAE algorithm

(Maybeck and Hanlon 1995). Recall that the recursive relation for the generation of Fw
ki

does not allow for transitions from one hypothesis to another: It can be shown that if the

conditional probability of a particular hypothesis becomes unity/zero, it stays at unity/zero

irrespective of what the correct hypothesis is. To avoid this, the recursive relation was

modified by upper and lower bounding the conditional probabilities of all hypotheses.

Secondly, in an effort to remove beta dominance, the conditional density functions were

altered by removing the covariance term from the denominator. The probabilities still sum

to one, though the “density” functions are no longer scaled. However, there appears to be

no rigorous theoretical justification for both these procedures.

We develop a new algorithm based on a single adaptive Kalman filter wherein the

time-varying parameters are updated by feeding back the posterior probability of each

hypothesis conditioned on the residual process. It is then shown that the expected value

of the true posterior probability converges to unity and, under certain assumptions, the

expected value of the norm of the difference between the constructed error covariance and

the true posteriori error covariance converges to a lower bound. It is also shown that in the

presence of modeling errors, the filter converges to the hypothesis which maximizes a certain

information function. We also make a comment about the extension of the MMAE algorithm

by using the dynamics F s
ki of a multiple hypothesis Shiryayev sequential probability ratio

test (MHSSPRT), which explicitly allows for transitions to occur.

This chapter is organized as follows. In Section 10.1, we form the framework of the

time-varying parameter estimation problem. In Section 10.2, we highlight the salient
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features of the MMAE scheme. In Section 10.3, we develop the adaptive Kalman filter

algorithm and in Section 10.4, we derive the properties of this scheme. In Section 10.5, we

compare the two algorithms in various numerical simulations. Finally, in Section 10.6,

we conclude by summarizing the adaptive Kalman filter algorithm and its theoretical

properties.

10.1 Problem Statement

Consider a linear time-varying stochastic system:

xk+1 = Akxk + bk + wk (10.1a)

yk = Ckxk + dk + vk (10.1b)

wherein xk ∈ Rn is the state, yk ∈ Rs is the measurement, bk ∈ Rn and dk ∈ Res are bias

vectors. Matrices Ak and Ck have the appropriate dimensions. Under each hypothesis Hi,

the process noise {wk} and measurement noise {vk} sequences are white, with the following

statistics:

vk ∼ N (0, Vi) Ak = Aki bk = bi (10.2)

wk ∼ N (0, Wi) Ck = Cki dk = di (10.3)

Note that instead of being parameterized, the noise statistics and other model parameters

are hypothesized. Clearly they are equivalent.

Now, as a particular application, we can reduce the problem of detection and isolation of

the occurrence of a change in a correlated measurement sequence, by assuming an ARMA

model for the measurement process. Assuming the AR-coefficients to be time-varying, we

can formulate a state-space equivalent of the ARMA process as:

xk+1 = Akxk + bk + wk (10.4a)

yk = Ckxk + dk + vk (10.4b)

wherein yk ∈ Rs is the measurement, Ck = [yk−1| . . . |yk−n] is the measurement matrix,

xk ∈ Rn are the AR-coefficients, Ak is a given matrix and bk and dk are appropriate bias
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vectors. Again, from (10.2–10.3), the process and sensor noise sequences are white with

different statistics under different hypotheses.

The problem may be stated as follows. Identify the current system model in minimum

time by detecting and isolating a change in the measurement process. As stated earlier, all

existing algorithms have an embedded identification subsystem construed as the recursive

relation for Fw
ki. It is assumed that no change occurs in the measurement process when the

test is in progress. However, in our AKF algorithm, we explicitly model the probability of a

transition from one hypothesis to another thereby allowing for time-varying hypotheses and

using the recursive relation for F s
ki (Malladi and Speyer 1996, Malladi and Speyer 1997).

We also extend the MMAE algorithm to time-varying hypotheses by using this F s
ki instead

of the bounded Fw
ki. Finally, we develop sufficient conditions for the convergence of this

adaptive filter structure.

10.2 MMAE Algorithm

The Multiple Model Adaptive Estimation algorithm and its variations are widely applied

to linear stochastic system parameter estimation (Athans 1977, Menke and Maybeck 1995).

Let there be L + 1 linear, discrete-time stochastic dynamic system models, each generating

measurements corrupted by white noise. It follows that the available measurement sequence

may be assumed to correspond to one of the m different hypotheses. The sensor and

process noise statistics vary with each hypothesis. One can then construct a bank of L + 1

discrete-time Kalman filters, each matched to one hypothesis, generating a white residual

process provided the corresponding hypothesis is the true one. The residual process becomes

the input to the recursive relation for Fw
ki, which generates the posterior probability of

each hypothesis, conditioned on the measurement sequence. This leads to a neat parallel

structure shown in Figure 10.1.
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Figure 10.1: Multiple Model Adaptive Estimation - Lainiotis Filters.

The update equations for a generic Kalman filter for hypothesis Hi are

Ski = CkiMkiC
T
ki + Vi (10.5a)

Kki = MkiC
T
kiS
−1
ki (10.5b)

x̂ki = x̄ki + Kki[yk − Ckix̄ki − dki] (10.5c)

Pki = [I −KkiCki]Mki (10.5d)

rki = yk − Ckix̄ki − dki (10.5e)

Rki
4
= [r1i . . . rki] (10.5f)

Rk
4
= [Rk1 . . .RkM ] (10.5g)

wherein Mki is the apriori error covariance matrix, Pki is the posteriori covariance matrix,

x̄ki is the apriori state estimate and x̂ki is the posteriori state estimate at time tk. The

propagation equations are

x̄k+1,i = Akix̂ki + bki (10.6a)

Mk+1,i = AkiPkiA
T
ki + Wi (10.6b)
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In the cited literature and in the figure, Fw
ki is generated. However, allowing transitions

from one hypothesis to another, we generate F s
ki

F s
kj
4
= P (Hj/Rk)

The overall posteriori state estimate and error covariance become

x∗k =
∑

j

x̂kjF
s
kj (10.7a)

P ∗k =
∑

j

{Pkj + (x∗k − x̂kj)(x∗k − x̂kj)T }F s
kj (10.7b)

Remark 21. The noise characteristics of each filter are time-invariant.

Remark 22. As the number of hypotheses grows, the algorithm becomes computationally

intensive, as one needs to compute all the time-varying filter gains. To alleviate this problem,

sometimes the steady-state gains of each Kalman filter are used, instead of the time-varying

gains (Athans 1977). But this can lead to convergence to the wrong hypothesis.

Remark 23. There is no rigorous proof that in the posterior probability associated with

the correct hypothesis will converge to unity.

Remark 24. The recursive relation for F s
ki or Fw

ki assumes that the residual sequence

is conditionally independent, but when Hi is true, Rkj is not conditionally independent

for allj 6= i. Hence the generated Fw
ki or F s

ki is always wrong no matter what the correct

hypothesis is.

Remark 25. Under certain circumstances (Athans 1977), the algorithm leads to the

convergence to the wrong hypothesis. This phenomenon has been termed as beta dominance

in (Menke and Maybeck 1995).

10.2.1 Beta Dominance

Let Hi be true. Then, one would expect the residual process rki to be small while the

residuals of the mismatched Kalman filters to be large. If for some reason this doesn’t
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happen, for example, if the wrong noise statistics are chosen, it can be shown that the

posterior probability of Hi might actually decrease, depending upon Skj for all j. Refer to

Section 10.7.1 for the proof.

10.3 Adaptive Kalman Filter Algorithm

We formulate an algorithm based on a structure which uses a single adaptive Kalman filter

in conjunction with the recursive relation for F s
ki. Consider Figure 10.2. An approximate

posterior probability Fki of each hypothesis conditioned on the residual history is generated

and fed back to the filter. All the bias vectors and system matrices, including the process

and sensor noise statistics, are updated in the following way:

Adaptive

Kalman

Filter

Posteriori

Probability

Update

Delay

yk
rk Fk

Figure 10.2: Adaptive Kalman Filter Algorithm.

vk ∼ N (0, Vk) wk ∼ N (0, Wk) Rk
4
= [r0 r1 . . . rk] (10.8)

Fkj
4
= approximate F s

kj Fk
4
= [Fk0 Fk1 . . . FkL]T (10.9)

Ak =
∑

j

FkjAj bk =
∑

j

Fkjbj Wk =
∑

j

FkjWj (10.10)

Ck =
∑

j

Fk−1,jCj dk =
∑

j

Fk−1,jdj Vk =
∑

j

Fk−1,jVj (10.11)
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We derive sufficient conditions for the convergence of Fkj to F s
kj in the next section. As

mentioned earlier, the structure of the MMAE algorithm never permits the exact calculation

of F s
ki or Fw

ki. Note that Ak, bk and Wk are updated using Fkj , as it is already available.

That is not the case for Ck, dk and Vk. However, this does not produce any difference in

the theoretical results presented later on in Section 10.4. The filter equations remain the

same except that we remove the subscript i from Equations (10.5–10.6). Therefore

Sk = CkMkC
T
k + Vk (10.12a)

Kk = MkC
T
k S−1

k (10.12b)

x̂k = x̄k + Kk[yk − Ckx̄k − dk] (10.12c)

Pk = [I −KkCk]Mk (10.12d)

rk = yk − Ckx̄k − dk (10.12e)

x̄k+1 = Akx̂k + bk (10.12f)

Mk+1 = AkPkA
T
k + Wk (10.12g)

The true error covariance, M̃k , of this sub-optimal state estimate is not computed in this

algorithm as it requires the knowledge of the correct hypothesis. Instead, as shown later

on, it is approximated by Mk. Of course, if Hi is true, we can compute M̃k in the following

way:

êk
4
= xk − x̂k ēk

4
= xk − x̄k

mk
4
= E{xk/Rk} m̂e

k
4
= E{êk/Rk} m̄e

k
4
= E{ēk/Rk}

Xk
4
= E{xkx

T
k /Rk} Êk

4
= E{xkê

T
k /Rk} Ēk

4
= E{xkē

T
k /Rk}

P̃k
4
= E{êkê

T
k /Rk} Ēk

4
= E{xkē

T
k /Rk} (10.13)

The error update and propagation become

êk = (I −KkCk)ēk −Kk(Cki − Ck)xk −Kk(dki − dk)−Kkvk (10.14)

ēk+1 = Akêk + (Aki −Ak)xk + (bki − bk) + wk (10.15)
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and the difference equations become

P̃k = (I −KkCk)M̃k(I −KkCk)T + Kk(Cki − Ck)Xk(Cki − Ck)T KT
k

+ Kk(dki − dk)(dki − dk)T KT
k + KkViK

T
k

− 2(I −KkCk)ĒT
k (Cki − Ck)T KT

k − 2(I −KkCk)m̄e
k(dki − dk)T KT

k

+ 2Kk(Cki − Ck)mk(dki − dk)T KT
k

(10.16)

M̃k+1 = AkP̃kA
T
k + (Aki −Ak)Xk(Aki −Ak)T + (bki − bk)(bki − bk)T + Wi

+ 2AkÊ
T
k (Aki −Ak)T + 2Akm̂

e
k(bki − bk)T

+ 2(Aki −Ak)mk(bki − bk)T

(10.17)

Xk+1 = AkiXkA
T
ki + bkib

T
ki + Wi + 2Akimkb

T
ki (10.18)

Êk = Ēk(I −KkCk)T −Xk(Cki − Ck)T KT
k −mkKk(dki − dk) (10.19)

Ēk+1 = AkiÊkA
T
k + AkiXk(Aki −Ak)T + Akm̂

e
kb

T
ki

+ Akimk(bki − bk)T + (Aki −Ak)mkb
T
ki + bki(bki − bk)T + Wi

(10.20)

mk+1 = Akimk + bki (10.21)

m̂e
k = (I −KkCk)m̄e

k −Kk(Cki − Ck)mk −Kk(dki − dk) (10.22)

m̄e
k+1 = Akm̂

e
k + (Aki −Ak)mk + (bki − bk) (10.23)

The initial conditions become:

X0 = P̃0 + x̂0x̂
T
0 Ê0 = P̃0

m0 = x̂0 m̂e
0 = 0

These equations are computationally intensive, but can be computed off-line to assess

the performance of the AKF algorithm for specific applications. In certain cases, the off-line

computation becomes necessary to analyze the steady-state behavior of the AKF algorithm,

in particular, its convergence to the correct hypothesis.

Given Hi, the true distribution of rk is

f̃ki(rk)
4
= fk(rk/Hi,Rk−1) (10.24)

E[rk/Hi,Rk−1] = (Cki − Ck)x̄k + (dki − dk)
4
= b̃ki (10.25)

E[rkr
T
k /Hi,Rk−1] = CkiM̃kC

T
ki + Vi

4
= S̃ki (10.26)
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Therefore,

(rk/Hi,Rk−1) ∼ N (b̃ki, S̃ki) (10.27)

However, since the correct hypothesis is unknown, the AKF algorithm is designed

to approximate the true error covariance M̃k with the error “covariance” Mk , which is

computed on-line from (10.12d) and (10.12g). In Section 10.4, this assumption is justified

by showing that under certain conditions, E{Mk/Hi} →Mki, where Mki is the apriori error

covariance corresponding to the ith filter in the MMAE algorithm. It is also shown that

E{Mk/Hi} → M∗
k , wherein M∗

k is the exact apriori error covariance derived from (10.7b)

and E{Mk/Hi} → M̃k. At each tk, we assume

E[rk/Hi,Rk−1] = 0

E[rkr
T
k /Hi,Rk−1] = CkiMkC

T
ki + Vi

4
= Λki (10.28)

Under the Gaussian assumption, we explicitly construct the density function fki(·) as

fki(rk)
4
= Approx. f̃ki(rk)

(rk/Hi,Rk−1) ∼ N (0,Λki) (10.29)

We make a crucial observation that {rk} is no longer an independent residual process.

Now, F s
ki requires the knowledge of the density functions f̃ki(·). Since we approximate

these functions with fki(·), F s
ki has been approximated by Fki.

Note that, by removing the parallel structure of the MMAE approach while retaining the

time-varying filter gain, the AKF algorithm is computationally less intensive, especially if

the number of hypotheses is large. Further, following the argument used in Section 10.7.1,

it can be shown that beta dominance cannot exist in this structure as there is only one

residual process here.

10.4 Performance of AKF Algorithm

The following sections consider the convergence and robustness properties of the AKF

algorithm and prove the following:
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• If hypothesis Hi is true, then the generated posterior probability of Hj (called Fkj)

decreases monotonically in time for all j 6= i, that is, Fk+1,j ≤ Fkj ∀j 6= i.

• If hypothesis Hi is true, then the posterior error covariance Pk of the AKF algorithm

converges to Pki of the “correct” filter from the MMAE algorithm.

• If hypothesis Hi is true but not included in the set of probable hypotheses, Θ
4
= {Hj},

then, the generated posterior probability converges to that hypothesis Hm ∈ Θ which

maximizes a particular information function.

10.4.1 Underlying Assumptions of MHSSPRT

We briefly rederive the MHSSPRT (Malladi and Speyer 1996, Malladi and Speyer 1997) by

defining the following notation:

πi
4
= P (Hi)

p̃i
4
= Apriori probability of change from H0 to Hi from tk to tk+1, for all k

fki(·)
4
= Approximate probability density function of rk conditioned on Hi and Rk−1

fk0(·)
4
= Approximate probability density function of rk conditioned on H0 and Rk−1

L + 1
4
= Number of hypotheses

θi
4
= Time of occurence of Hi

At stage t1

P (θi ≤ t1/r1) =
P (r1/θi ≤ t1)P (θi ≤ t1)

P (r1)
(10.30)

P (r1) =
L∑

i=1

P (r1/θi ≤ t1)P (θi ≤ t1) + P (r1/θi > t1)P (θi > t1)

P (θi ≤ t1) = P (θi ≤ t0) + P (θi = t1/θi > t0)

= πi + p̃i(1− πi)

P (r1/θi ≤ t1) = f1i(r1)dr1 (10.31)
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Strictly, (10.31) denotes the probability that the measurement lies between r1 and r1 + dr1

given the occurrence of Hi at or before t1.

L∑
i=1

P (θi > t1) = 1−
L∑

i=1

P (θi ≤ t1)

From (10.30), we get:

F1,i =
[πi + p̃i(1− πi)]f1i(r1)∑L

i=1[πi + p̃i(1− πi)]f1i(r1) + [1−
∑L

i=1 πi + p̃i(1− πi)]f10(r1)

At stage t2

P (θi ≤ t2/R2) =
P (R2/θi ≤ t2)P (θi ≤ t2)

P (R2)
(10.32)

P (r2/θi ≤ t2, r1) = f2i(r2)dr2 (10.33)

P (r1/θ ≤ t2) =
P (θi ≤ t2/r1)P (r1)

P (θi ≤ t2)
(10.34)

P (R2) = P (r2/r1)P (r1) (10.35)

Since from (10.29), we know the density function fk(rk/Hi,Rk−1) for all k, from (10.32):

P (θi ≤ t2/R2) =
P (r2/θi ≤ t2, r1)P (r1/θi ≤ t2)P (θi ≤ t2)

P (R2)

Now, from (10.33), (10.34) and (10.35) we have

P (θi ≤ t2/R2) =
f2i(r2)P (θi ≤ t2/r1)dr2

P (r2/r1)
(10.36)

P (θi ≤ t2/r1) = P (θi ≤ t1/r1) + P (θi = t2/θi > t0, r1)

= F1,i + p̃i(1− F1,i)
(10.37)

P (r2/r1) =
L∑

i=1

P (r2/θi ≤ t2, r1)P (θi ≤ t2/r1) + P (r2/θi, r1 > t2)P (θi > t2/r1)

=
L∑

i=1

[F1,i + p̃i(1− F1,i)] f2i(r2)dr2

+

[
1−

L∑
i=1

F1,i + p̃i(1− F1,i)

]
f20(r2)dr2

(10.38)
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Clearly, by induction, we can now write the recursive relation for Fk+1,i in terms of Fk,i as

Fk+1,i =
[Fk,i + p̃i(1− Fk,i)] fk+1,i(rk+1)∑L

i=1 [Fk,i + p̃i(1− Fk,i)] fk+1,i(rk+1) +
[
1−

∑L
i=1 Fk,i + p̃i(1− Fk,i)

]
fk+1,0(rk+1)

(10.39)

F0,i = πi (10.40)

Nowhere have we made any assumptions about the independence of the residual process.

From (10.29), we explicitly construct fki(·) for all i and at each tk. This approximates F s
ki

by Fki as mentioned in the earlier section. In the next section, we derive sufficient conditions

for the convergence of Fki and the associated error covariance.

10.4.2 Convergence of the Posterior Probability

We seek to prove that when Hi is true, the posterior probabilities of all hypotheses Hj for

all j 6= i decrease. We define the following:

F 4= {f(r/H) : H ∈ Θ} (10.41)

J ji(k)
4
= E [ln{fkj(rk)}/Hi,Rk−1] (10.42)

ρjmi
4
= max

k
E

[[
fkj(rk)
fkm(rk)

]t

/Hi,Rk−1

]
for some t ∈ (0, 1)

4
= max

k
ρjmi(Rk−1)

(10.43)

Assumption 10.1. The family of density functions F is identifiable, that is,

f(r/Hi) = f(r/Hj) ⇔ θi = θj ∀r

This assumption is invoked to prove Claim 10.1.

Claim 10.1. By Assumption 10.1, beta dominance cannot exist in the AKF algorithm.

Proof. Refer to Section 10.7.2.
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In an effort to illustrate the classes of problems for which J ji is an information function,

we consider a time-varying ARMA process of order n, wherein the measurement noise is

different for each hypothesis. Therefore under each hypothesis Hi, the process noise {wk}
and measurement noise {vk} sequences are white, with the following statistics:

vk ∼ N (0, Vi) Ak = Ak bk = bk

wk ∼ N (0, Wk) Ck = Ck dk = dk (10.44)

wherein Ck = [yk−1| . . . |yk−n] is the measurement matrix. We now prove the following

lemma.

Lemma 10.2. Let Hi be true. Then, for the ARMA process shown in (10.44):

• If Vi > Vk and M̃k ≥Mk, then M̃k+1 > Mk+1 ∀k.

• If Vi < Vk and M̃k ≤Mk, then M̃k+1 < Mk+1 ∀k.

Proof. From (10.16), (10.17), (10.12d) and (10.12g)

P̃k = (I −KkCk)M̃k(I −KkCk)T + KkViK
T
k

Pk = (I −KkCk)Mk(I −KkCk)T + KkVkK
T
k

M̃k+1 = AkP̃kA
T
k + Wk

Mk+1 = AkPkA
T
k + Wk

Therefore

P̃k − Pk = (I −KkCk)(M̃k −Mk)(I −KkCk)T + Kk(Vi − Vk)KT
k

M̃k+1 −Mk+1 = Ak(P̃k − Pk)Ak

from which the conclusion follows

Vi > Vk, M̃k ≥Mk ⇒ M̃k+1 > Mk+1 ∀k

Vi < Vk, M̃k ≤Mk ⇒ M̃k+1 < Mk+1 ∀k
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As a consequence, from (10.12a), (10.26) and (10.28)

Vi > Vj ⇒ Λkj < Λki < S̃ki ∀k

Vi < Vj ⇒ Λkj > Λki > S̃ki ∀k (10.45)

We could consider another class of problems similar to (10.44) wherein the hypotheses differ

only in the process noise statistics, that is, under Hi

wk ∼ N (0, Wi) (10.46)

We now prove the following lemma.

Lemma 10.3. Let Hi be true. Then, for the process shown in (10.46)

• If Wi > Wk and M̃k ≥Mk, then M̃k+1 > Mk+1 ∀k.

• If Wi < Wk and M̃k ≤Mk, then M̃k+1 < Mk+1 ∀k.

Proof. The proof is very similar to the one of Lemma 10.2. From (10.16), (10.17),

(10.12d) and (10.12g)

P̃k = (I −KkCk)M̃k(I −KkCk)T + KkVkK
T
k

Pk = (I −KkCk)Mk(I −KkCk)T + KkVkK
T
k

M̃k+1 = AkP̃kA
T
k + Wi

Mk+1 = AkPkA
T
k + Wk

Therefore

P̃k − Pk = (I −KkCk)(M̃k −Mk)(I −KkCk)T

M̃k+1 −Mk+1 = Ak(P̃k − Pk)Ak + (Wi −Wk)

from which the conclusion follows

Wi > Wk, M̃k ≥Mk ⇒ M̃k+1 > Mk+1 ∀k

Wi < Wk, M̃k ≤Mk ⇒ M̃k+1 < Mk+1 ∀k
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So, from (10.12a), (10.26) and (10.28):

Wi > Wj ⇒ Λkj < Λki < S̃ki ∀k

Wi < Wj ⇒ Λkj > Λki > S̃ki ∀k

These results are used in proving the following claim.

Claim 10.4. If the state estimate bias is sufficiently small and

Λkj < Λki < S̃ki or Λkj > Λki > S̃ki ∀k

then J ji is an information function. Therefore, when Hi is true:

J ii(k) > J ji(k) ∀j 6= i , ∀k (10.47)

Proof. See Section 10.7.3.

Remark 26. Claim 10.4 assumes that convergence to the wrong hypothesis has occurred

and proves that under certain conditions, the filter cannot remain in the wrong hypothesis.

The conditions spelt out are sufficient but not necessary. Moreover for the processes shown

in (10.44) and (10.46), the state estimate is unbiased and from Lemmas 10.2 and 10.3,

Claim 10.4 is always valid.

Lemma 10.5. Let Hi be true and Hm ∈ Θ be such that:

Jmi(k)
4
= max

j
J ji(k) ∀Hj ∈ Θ ∀k (10.48)

Then

ρjmi < 1 ∀j 6= m

Proof. See Section 10.7.4.
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For the classes of problems that we consider, in view of Claim 10.4 and Lemma 10.5, if

Hi ∈ Θ then Hi ≡ Hm and

ρjii < 1 (10.49)

From now on, we only consider the classes of problems for which Claim 10.4 is valid.

We now proceed to prove the following theorem.

Theorem 10.6. Let the family F be identifiable and Hi ∈ Θ be true. Then

E[Fk,j/Hi] < E[Fk−1,j/Hi] ∀j 6= i (10.50)

Proof. Let hypothesis Hi ∈ Θ be true. Since Fkj ≤ 1, we have

Fkj ≤ F t
kj for some t ∈ (0, 1) (10.51)

This is a crucial observation and is invoked to use ρjii < 1 from (10.49). All the terms in

the denominator of the recursive relation (10.40) are positive. Therefore we get

Fkj ≤
[Fk−1,j + p̃j(1− Fk−1,j)] fkj(rk)
[Fk−1,i + p̃i(1− Fk−1,i)] fki(rk)

φji
4
=

Fk−1,j + p̃j(1− Fk−1,j)
Fk−1,i + p̃i(1− Fk−1,i)

(10.52)

We note that the density functions fkj(·) are the approximate conditional density functions

as defined in (10.29). Assume that p̃j = p̃ for all j. Let

Fk−1,j ≥ Fk−1,i ∀j 6= i, ∀k ≤ N

Then

φji =
p̃ + (1− p̃)Fk−1,j

p̃ + (1− p̃)Fk−1,j

=
Fk−1,j

Fk−1,i
·
(1− p̃) + p̃

Fk−1,j

(1− p̃) + p̃
Fk−1,i

≤ Fk−1,j

Fk−1,i

(10.53)
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From (10.51), (10.52), (10.53):

Fkj ≤
[
Fk−1,j

Fk−1,i

]t [fkj(rk)
fki(rk)

]t

≤
[
Fk−2,j

Fk−2,i

]t [fk−1,j(rk−1)
fk−1,i(rk−1)

]t [fkj(rk)
fki(rk)

]t

≤
[
πj

πi

]t [f1j(r1)
f1i(r1)

]t

. . .

[
fkj(rk)
fki(rk)

]t

(10.54)

We note that fki(rk) are the constructed density functions fk(rk/Hi,Rk−1) in (10.26). Take

the expectation conditioned on Hi

E[Fkj/Hi] ≤
[
πj

πi

]t

E

[[
f1j(r1)
f1i(r1)

]t

. . .

[
fkj(rk)
fki(rk)

]t

/Hi

]

=
[
πj

πi

]t ∫ [f1j(r1)
f1i(r1)

]t

. . .

[
fkj(rk)
fki(rk)

]t

f̃ki(Rk/Hi)dRk

4
=
[
πj

πi

]t

Ik

(10.55)

where Ik is the integral. Now

f̃ki(Rk/Hi) = f̃ki(rk/Rk−1,Hi)f̃k−1,i(rk−1/Rk−2,Hi) . . . f̃1i(r1/Hi)

Ik =
∫ [

f1j(r1)
f1i(r1)

]t

. . .

[
fk−1,j(rk−1)
fk−1,i(rk−1)

]t

f̃k−1,i(Rk−1/Hi)dRk−1

×
∫ [

fkj(rk)
fki(rk)

]t

f̃ki(rk/Rk−1,Hi)drk

=
∫ [

f1j(r1)
f1i(r1)

]t

. . .

[
fk−1,j(rk−1)
fk−1,i(rk−1)

]t

f̃k−1,i(Rk−1/Hi)dRk−1ρjii(Rk−1)

≤ Ik−1ρjii

Therefore, from (10.55):

E [Fk,j/Hi] ≤
[
πj

πi

]t

ρk
jii (10.56)

From Claim 10.4 and Lemma 10.5, ρjii < 1. Hence, the posterior probability rapidly

decreases as k →∞ and the assumption of Fk−1,j ≥ Fk−1,i for all j 6= i and for all k is no
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longer valid. Let Fk−1,j ≤ Fk−1,i for all j 6= i and for all k ≥ N . Then

φji =
Fk−1,j

Fk−1,i
· 1 + p̃(1/Fk−1,j − 1)
1 + p̃(1/Fk−1,j − 1)

≤ Fk−1,j

Fk−1,i
[1 + p̃(1/Fk−1,j − 1)]

≤ Fk−1,j

Fk−1,i
+ p̃

(1− Fk−1,j)
Fk−1,i

≤ Fk−1,j

Fk−1,i
+ p̃

(10.57)

Following the argument used above, we get:

F t
kj ≤

(
Fk−1,j

Fk−1,i
+ p̃

)t [fkj(rk)
fki(rk)

]t

≤
[(

Fk−1,j

Fk−1,i

)t

+ p̃t

] [
fkj(rk)
fki(rk)

]t

(
Fk−1,j

Fk−1,i

)t

≤
[(

Fk−2,j

Fk−2,i

)t

+ p̃t

] [
fk−1,j(rk−1)
fk−1,i(rk−1)

]t

Therefore:

F t
kj ≤

[
Fk−2,j

Fk−2,i

]t [fkj(rk)fk−1,j(rk−1)
fki(rk)fk−1,i(rk−1)

]t

+ p̃t

[
fkj(rk)fk−1,j(rk−1)
fki(rk)fk−1,i(rk−1)

]t

+ p̃t

[
fkj(rk)
fki(rk)

]t

(10.58)

Again, taking an expectation conditioned on Hi and from (10.43)

E[Fkj/Hi] ≤ E

[[
FNj

FNi

]t

/Hi

]
ρk−N

jii + p̃t
(
ρjii + ρ2

jii + . . . + ρk−N
jii

)
4
= εk

(10.59)

εk+1 − εk = ρk−N
jii E

[(
FNj

FNi

)t

/Hi

]
(ρjii − 1) + ρk+1−N

jii p̃t

< 0 ∀k ≥ Nk

(10.60)

Hence

ε < . . . < εk+1 < εk < εk−1 < . . . ∀k ≥ Nk (10.61)

Clearly, for the WSPRT, p̃ = 0, and hence, the lower bound ε = 0.
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Corollary 10.7. Let the family F be identifiable, Hi 6∈ Θ be true. Then

E[Fk,j/Hi] < E[Fk−1,j/Hi] ∀j 6= m (10.62)

where Hm maximizes the information function defined in (10.48).

Proof. The proof remains essentially the same as at appropriate places we replace the

subscript i by m, except that now ρjmi < 1. The corollary is relevant to the robustness

issues associated with any multiple model adaptive estimation scheme.

10.4.3 Convergence of the Posterior Error Covariance

Let Hi be true. We now compare the posteriori error covariance matrices of the adaptive

filter and the “true” filter matched to Hi in the MMAE algorithm. From (10.5–10.6) and

(10.12a–10.12g)

Pki = (I −KkiCki)Mki (10.63)

Pk = (I −KkCk)Mk (10.64)

Mk −Mki = Ak−1Pk−1A
T
k−1 −Ak−1,iPk−1,iA

T
k−1,i + (Wk−1 −Wi) (10.65)

Therefore

Pk − Pki = (I −KkCk)(Mk −Mki)(I −KkiCki)T

+ (I −KkCk)MkC
T
kiK

T
ki −KkCkMki(I −KkiCki)T

= (I −KkCk)(Mk −Mki)(I −KkiCki)T + Gki

(10.66)

Now from the definitions of Kk and Kki in (10.5b) and (10.12b)

Gki = KkiCkiMk −KkCkMkC
T
kiK

T
ki −KkCkMki + KkiCkiMkiC

T
k KT

k

= MkiC
T
kiS
−1
ki CkiMk −MkC

T
k S−1

k CkMkC
T
kiS
−1
ki CkiMki −

MkC
T
k S−1

k CkMki + MkiC
T
kiS
−1
ki CkiMkiC

T
k S−1

k CkMk

= Mki

[
CT

kiS
−1
ki Cki − CkS

−1
k Ck − CT

kiS
−1
ki Cki (Mk −Mki)CT

k S−1
k Ck

]
Mk

Now

CT
kiS
−1
ki Cki − CkS

−1
k Ck = CT

ki

(
S−1

ki − S−1
k

)
Ck −

(
CT

k S−1
k + CT

kiS
−1
ki

)
(Ck − Cki)
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Therefore

Gki = MkiC
T
ki

[
S−1

ki − S−1
k − S−1

ki Cki (Mk −Mki)CT
k S−1

k

]
CkMk

−Mki

(
CT

k S−1
k + CT

kiS
−1
ki

)
(Ck − Cki)Mk

= MkiC
T
kiS
−1
ki

[
Sk − Ski − Cki (Mk −Mki)CT

k

]
S−1

k CkMk

−Mki

(
CT

k S−1
k + CT

kiS
−1
ki

)
(Ck − Cki)Mk

= Kki

(
CkMkC

T
k + Vk − CkiMkiC

T
ki − Vi − CkiMkC

T
k + CkiMkiC

T
k

)
Kk

−Mki

(
CT

k S−1
k + CT

kiS
−1
ki

)
(Ck − Cki)Mk

= Kki (Vk − Vi)Kk + Kki (Ck − Cki)
(
MkC

T
k + CkiMki

)
KT

k

−Mki

(
CT

k S−1
k + CT

kiS
−1
ki

)
(Ck − Cki)Mk

(10.67)

Similarly from (10.65)

Mk −Mki = Ak−1 (Pk−1 − Pk−1,i)AT
k−1,i

+ (Ak−1,iPk−1,i + Ak−1Pk−1) (Ak−1 −Ak−1,i)
T + (Wk−1 −Wi)

and from (10.65–10.67)

Pk − Pki = (I −KkCk)Ak−1(Pk−1 − Pk−1,i)AT
k−1i(I −KkiCki)T

+ (I −KkCk)(Ak−1,iPk−1,i + Ak−1Pk−1)(Ak−1 −Ak−1,i)T (I −KkiCki)T

+ (I −KkCk)(Wk−1 −Wi)(I −KkiCki)T + Kki(Vk − Vi)Kk

+ Kki(Ck − Cki)(MkC
T
k + CkiMki)KT

k

−Mki(CT
k S−1

k + CT
kiS
−1
ki )(Ck − Cki)Mk (10.68)

The filter equations are

x̂ki = (I −KkiCki)Ak−1,ix̂k−1,i + Kki(yk − Ckibk−1,i − dki)

x̂k = (I −KkCk)Ak−1x̂k−1 + Kk(yk − Ckbk−1 − dk)
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Denote the state transition matrices as

Φi(k, k − 1)
4
= (I −KkiCki)Ak−1,i

Φ(k, k − 1)
4
= (I −KkCk)Ak−1

Ψki
4
= (I −KkCk)(Ak−1,iPk−1,i + Ak−1Pk−1)(Ak−1 −Ak−1,i)T (I −KkiCki)T

+ (I −KkCk)(Wk−1 −Wi)(I −KkiCki)T + Kki(Vk − Vi)Kk

+ Kki(Ck − Cki)(MkC
T
k + CkiMki)KT

k

−Mki(CT
k S−1

k + CT
kiS
−1
ki )(Ck − Cki)Mk

(10.69)

Therefore:

δPki
4
= Pk − Pki

= Φ(k, k − 1)δPk−1,iΦT
i (k, k − 1) + Ψki (10.70)

We now prove the following theorem:

Theorem 10.8. If the system in (10.1a–10.3) is uniformly completely controllable and

uniformly completely observable, and if {Ψki} is uniformly bounded and decreasing, then

E[ ‖δPki‖/Hi ] ≤ Lki

where

Li < . . . < Lk+1,i < Lki < Lk−1,i < . . . ∀k ≥ Nk (10.71)

Proof. From (10.70)

δPki = Φ(k, 0)δP0iΦT
i (k, 0) +

k∑
l=1

Φ(k, l)ΨliΦT
i (k, l)

so that

E[δPki/Hi] = Φ(k, 0)δP0iΦT
i (k, 0) +

k∑
l=1

Φ(k, l)E[Ψli/Hi]ΦT
i (k, l) (10.72)
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Since the system is uniformly completely controllable and observable

‖Φ(k, l)‖ ≤ C1e
−c2(k−l)

‖Φi(k, l)‖ ≤ C3e
−c4(k−l) ∀C1, C2, c3, c4 > 0 (10.73)

Further

‖Wk−1 −Wi‖ =

∥∥∥∥∥∥
L−1∑
j=0

Fk−1,jWj −Wi

∥∥∥∥∥∥
≤ ‖(1− Fk−1,i)Wa − (1− Fk−1,i)Wi‖ where Wa = max

j
Wj

≤ Fk−1,a‖Wa −Wi‖ (10.74)

Similarly

‖Ak−1 −Ai‖ ≤ Fk−1,b‖Ab −Ai‖ where Ab = max
j

Aj

‖Vk − Vi‖ ≤ Fk−1,c‖Vc − Vi‖ where Vc = max
j

Vj

‖Ck − Ci‖ ≤ Fk−1,d‖Cd − Ci‖ where Cd = max
j

Cj (10.75)

From (10.69), (10.74) and (10.75)

E[ ‖Ψki‖/Hi ] ≤ ‖Ψ‖‖εki‖ (10.76)

wherein from Theorem 10.6 and (10.61), {εki} is monotonically decreasing for all k ≥ Nk

and bounded from below, and Ψ is some matrix defined from (10.69). From (10.72–10.76)

E[ ‖δPki‖/Hi ] ≤ ‖C1‖‖δP0i‖‖C3‖e−(c2+c4)k + ‖C1‖‖Ψ‖
[

k∑
l=1

e−(c2+c4)(k−l)‖εli‖
]
‖C3‖

4
= Lki

Lk+1,i − Lki = ‖C1‖‖δP0i‖‖C3‖e−(c2+c4)k[e−(c1+c2) − 1]

+ ‖C1‖‖Ψ‖‖ε1i‖‖C3‖e−(c2+c4)k

+ ‖C1‖‖Ψ‖
[

k∑
l=1

e−(c2+c4)(k−l)(‖εl+1,i‖ − ‖εli‖)
]
‖C3‖
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so that

Lk+1,i − Lki < 0 ∀k ≥ Nk

Hence

Li < . . . < Lk+1,i < Lki < Lk−1,i < . . . ∀k ≥ Nk

Remark 27. Note that the lower bound is governed by the factor p̃ of the MHSSPRT as

it controls the lower bound of the sequence {εki}, as shown in Theorem 10.6. This theorem,

based upon our adaptive filter structure, shows that the apriori “covariance” assumed for

the conditional density function of the residual fki(rk) approaches the true apriori error

covariance, that is, E{Mk/Hi} → Mki. As a special case, consider the Wald SPRT, where

p̃ = 0. From Theorem 10.6, it can be seen that for ρ < 1

εk ∼ ερk

so that

E[ ‖δPki‖/Hi ] ≤

‖C1‖‖δP0i‖‖C3‖e−(c2+c4)k + ‖C1‖‖Ψ‖
[

ρk+1e(c2+c4)(k+1) − e(c2+c4)k

ρec2+c4 − 1

]
‖C3‖

and

E[ ‖δPki‖/Hi ] = 0 as k →∞ (10.77)

So, for the Wald SPRT, Li = 0. The adaptive filter converges exactly to the “true” filter

of the MMAE scheme.

The assumptions in the AKF algorithm may be justified in yet another way, by looking

at the exact expressions for the overall state estimate and posteriori error covariance, as
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developed in the MMAE algorithm. Recall from (10.7a) and (10.7b)

x∗k =
∑

j

xkjFkj

P ∗k =
∑

j

[Pkj + (x∗k − xkj)(x∗k − xkj)T ]Fkj

Let

δP ∗k
4
= P ∗k − Pk (10.78)

We now show that the expected value of δP ∗k conditioned on any hypothesis decreases as

k →∞.

Theorem 10.9. If the system in (10.1a–10.3) is uniformly completely controllable and

uniformly completely observable, then

E[ ‖δP ∗k ‖/Hi ] ≤ L∗ki ∀Hi

where

L∗i < . . . < L∗k+1,i < L∗ki < L∗k−1,i < . . . ∀k ≥ Nk

Proof. From the above equations

δP ∗k =
∑

j

[(Pkj − Pk) + (x∗k − xkj)(x∗k − xkj)T ]Fkj

=
∑

j

[δPkj + (x∗k − xkj)(x∗k − xkj)T ]Fkj

=
∑
j 6=i

[δPkj + (x∗k − xkj)(x∗k − xkj)T ]Fkj

+ [δPki + (x∗k − xki)(x∗k − xki)T ]Fki

(10.79)

Taking the norm and using an analysis similar to (10.75)

δP ∗k ≤
∑
j 6=i

[
‖δPkj‖+ ‖(x∗k − xkj)(x∗k − xkj)T ‖

]
Fkj

+
[
‖δPki‖+ ‖(x∗k − xki)(x∗k − xki)T ‖

]
Fki
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‖δPkj‖ = ‖Pkj − Pk‖

= ‖Pkj − Pki + Pki − Pk‖

≤ ‖δPkji‖+ ‖δPki‖ ≤ ‖δPji‖+ ‖δPki‖ j 6= i

(10.80)

‖δXkj‖
4
= ‖(x∗k − xkj)(x∗k − xkj)T ‖

≤ (1− Fkj)2‖xkm − xkj‖2, m 6= j

≤ (1− Fkj)2‖δXj‖

(10.81)

so that

δP ∗k ≤
∑
j 6=i

[
‖δPki‖+ ‖δPji‖+ (1− Fkj)2‖δXj‖

]
Fkj

+
[
‖δPki‖+ (1− Fki)2‖δXi‖

]
Fki (10.82)

From Theorem 10.6 and Theorem 10.8, for all k ≥ Nk

E[Fk+1,j/Hi] ≤ E[Fkj/Hi]

E[ ‖δPk+1,i‖/Hi ] ≤ E[ ‖δPki‖/Hi ]

E[Fk+1,i/Hi] ≥ E[Fki/Hi] (10.83)

Therefore:

E[δP ∗k /Hi] ≤ E

∑
j 6=i

[ ‖δPki‖+ ‖δPji‖+ (1− Fkj)2‖δXj‖ ]Fkj/Hi


+ E

[
[ ‖δPki‖+ (1− Fki)2‖δXi‖ ]Fki/Hi

]
= E

∑
j 6=i

[ ‖δPji‖+ (1− Fkj)2‖δXj‖ ]Fkj/Hi


+ E

[
(1− Fki)2‖δXi‖Fki/Hi

]
+ E[ ‖δPki‖/Hi ]

4
= L∗ki

Now

L∗k+1,i − L∗ki =
∑
j 6=i

‖δPji‖E [(Fk+1,j − Fkj)/Hi] + E [(‖δPk+1,i‖ − ‖δPki‖)/Hi]

+
∑

j

‖δXj‖E
[
(1− Fk+1,j)2Fk+1,j − (1− Fkj)2Fkj/Hi

]
(10.84)
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Consider the function:

E
[
(1− Fkj)2Fkj/Hi

]
= E[Fkj/Hi] + E[F 3

kj/Hi]− 2E[F 2
kj/Hi]

≤ 2E[Fkj/Hi]− 2E[F 2
kj/Hi]

Now

E[F 2
kj/Hi] ≥ (E[Fkj/Hi])

2

which implies that

E
[
(1− Fkj)2Fkj/Hi

]
≤ 2

{
E[Fkj/Hi]− (E[Fkj/Hi])2

}
4
= ϕ(E[Fkj/Hi])

Since ϕ(·) is an increasing function in the interval [0, 1/2) and a decreasing function in the

interval (1/2, 1], it follows from (10.83) and (10.84) that

E[(1− Fk+1,j)2Fk+1,j/Hi] ≤ E[(1− Fkj)2Fkj/Hi] ∀j 6= i

E[(1− Fk+1,i)2Fk+1,i/Hi] ≤ E[(1− Fki)2Fki/Hi]

so that

L∗k+1,i − L∗ki ≤ 0 k ≥ Nk (10.85)

and

L∗i < . . . < L∗k+1,i < L∗ki < L∗k−1,i < . . . ∀k ≥ Nk

Clearly the posteriori “covariance” of the AKF algorithm approaches the exact posteriori

error covariance as computed in the MMAE algorithm.

Finally, we analyze the difference between the assumed error “covariance” Pk and the

exact error covariance P̃k. Let Hi be true. From (10.12d), (10.16) and (10.17)

δP̃ki
4
= Pk − P̃k (10.86)

= (I −KkCk)Ak(Pk−1 − P̃k−1)AT
k (I −KkCk)T + Ψ̃k

= Φ(k, k − 1)δP̃k−1Φ(k, k − 1)T + Ψ̃k (10.87)
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wherein:

Ψ̃k = Kk[(Vk − Vi)− (Ck − Cki)Xk(Ck − Cki)T + (dk − dki)(dk − dki)T

+ 2(Ck − Cki)mk(dki − dk)T ]KT
k

− (I −KkCk)[2ĒT
k (Ck − Cki)T − 2m̄e

k(dk − dki)T ]KT
k

+ (I −KkCk)[(Wk−1 −Wi)− (Ak−1 −Ak−1,i)Xk−1(Ak−1 −Ak−1,i)T

− (bk−1,i − bk−1)(bk−1,i − bk−1)T + 2Ak−1Ê
T
k−1(Ak−1 −Ak−1,i)T

+ 2Ak−1m̂
e
k−1(bk−1 − bk−1,i)T

− 2(Ak−1 −Ak−1,i)mk−1(bk−1 − bk−1,i)T ](I −KkCk)T

We now prove that the expected value of δP̃ki conditioned on Hi decreases as k →∞.

Theorem 10.10. If the system in (10.1a–10.3) is uniformly completely controllable and

uniformly completely observable, then

E[ ‖δP̃ki‖/Hi ] ≤ L̃ki, ∀Hi

wherein:

L̃i < . . . < L̃k+1,i < L̃ki < L̃k−1,i < . . . ∀k ≥ Nk

Proof. From (10.87)

δP̃ki = Φ(k, 0)δP̃0iΦT (k, 0) +
k∑

l=1

Φ(k, l)Ψ̃liΦT (k, l)

so that

E[δP̃ki/Hi] = Φ(k, 0)δP̃0iΦT (k, 0) +
k∑

l=1

Φ(k, l)E[Ψ̃li/Hi]ΦT (k, l)

The rest of the proof follows that of Theorem 10.8.

This concludes our analysis to justify the structure of the AKF algorithm. Under Hi,

we derived sufficient conditions for the convergence of Fki to F s
ki and Pk to P̃k, Pki, and P ∗k .

In the next section, we test the AKF algorithm in a few numerical simulations
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10.5 Simulations

10.5.1 Example 1

Consider a scalar dynamic system:

xk+1 = Akxk + bk + wk

yk = Ckxk + dk + vk

wherein under each hypothesis

H0 : Ak = −0.5, bk = 0.0, Ck = 1.0, dk = 0.0

vk ∼ N (0, 1.0), wk ∼ N (0, 0.001)

H1 : Ak = −0.6, bk = 0.25, Ck = 1.25, dk = 0.25

vk ∼ N (0, 2.0), wk ∼ N (0, 0.001)

H2 : Ak = −0.7, bk = 0.50, Ck = 1.50, dk = 0.50

vk ∼ N (0, 3.0), wk ∼ N (0, 0.001)

The Adaptive Kalman Filter algorithm was compared to the MMAE algorithm. In the

MMAE approach, Fw
ki was replaced by F s

ki to allow for transitions from one hypothesis to

another. Of course, from our earlier discussion, it is clear that the recursive relation is not

strictly F s
ki but an approximation to it. In order to design the AKF algorithm, it is essential

to consider scenarios when a particular hypothesis is true and the filter is “matched” to

the wrong hypothesis. An off-line computation of the true residual error covariance was

conducted for all scenarios. It is seen from Figure 10.3 that when Hi is true and the filter

is matched to Hj , either Λkj < Λki < S̃ki or Λkj > Λki > S̃ki. Moreover the matrix Bki

in the exponential term is always positive definite and so, from Section 10.7.3, the system

satisfies Claim 10.4. This implies that the filter cannot remain matched to Hj .

We now test the AKF algorithm. At t = 40 sec, the hypothesis was changed from H0

to H1. The posterior probabilities of the three hypotheses are shown in Figure 10.4. The

bold line denotes the AKF approach while the dotted line denotes the MMAE approach.
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Figure 10.3: Off-line computation of Λkj , Λki and Ski: Hi vs Hj denotes Hi is true while
the filter is matched to Hj : Λki is shown by the dotted line.

However, the computational time taken by the MMAE approach is much larger than the

AKF approach. These plots have been averaged over ten different realizations.

Figure 10.5 shows the normed differences between the posteriori error covariance matrix

of the AKF and each of the Lainiotis filters. For t ≤ 40 seconds, H0 is true. As proved in

Theorem 10.8, E[ ‖δPk0‖/H0 ] → 0 while E[ ‖δPk1‖/H0 ] and E[ ‖δPk2‖/H0 ] are high.

For t > 40 seconds, H1 is true. Therefore E[ ‖δPk1‖/H1 ] → 0 while E[ ‖δPk0‖/H1 ] and

E[ ‖δPk2‖/H1 ] are high.

10.5.2 Example 2

Consider another dynamic system wherein under each hypothesis:

H0 : Ak = 0.5, bk = 0.00, Ck = 1.00, dk = 0.00

vk ∼ N (0, 1.0), wk ∼ N (0, 0.001)
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Figure 10.4: Adaptive Kalman Filter Performance - Change from H0 to H1.

H1 : Ak = 0.6, bk = 0.25, Ck = 1.25, dk = 0.25

vk ∼ N (0, 1.5), wk ∼ N (0, 0.001)

H2 : Ak = 0.7, bk = 0.50, Ck = 1.50, dk = 0.50

vk ∼ N (0, 2.0), wk ∼ N (0, 0.001)

Again, we compared the Adaptive Kalman Filter to the MMAE algorithm. At t = 3 sec, the

hypothesis was changed from H0 to H2. The posterior probabilities of the three hypotheses

are shown in Figure 10.6. The plots have been averaged over ten different realizations.

Figure 10.7 shows the normed differences between the posteriori error covariance matrix

of the AKF and each of the Lainiotis filters.
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Figure 10.5: E[|δPki|] vs. tk.

10.5.3 Example 3

Consider three hypotheses wherein:

H0 :vk ∼ N (0, 1.0)

H1 :vk ∼ N (0, 1.5)

H2 :vk ∼ N (0, 2.0)

A fourth order ARMA measurement process was simulated thus:

yk = 0.1 · [ yk−1 − yk−2 + yk−3 − yk−4 ] + vk

Since the order of the ARMA process typically is unknown, a fifth order ARMA model

was assumed for the measurement process. The assumed system model is the same as
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Figure 10.6: Adaptive Kalman Filter Performance - Change from H0 to H2.

(10.1a–10.3) and for all Hj

A = I Wj = 0.001 ∗ I d = 0

Ck = [yk−1| . . . |yk−5] b = [0 0 0 0 0]T

Recall from Lemma 10.2 and Section 10.7.3 that for ARMA processes, Claim 10.4 is always

valid thereby obviating any off-line computation. At t = 40 sec, the hypothesis was changed

fromH0 toH1. The posterior probabilities of the three hypotheses are shown in Figure 10.8.

The plots have been averaged over ten different realizations. Figure 10.9 shows the normed

differences between the posteriori error covariance matrix of the AKF and each of the

Lainiotis filters.
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10.5.4 Example 4

For the same system, the hypothesis was changed from H0 to H2 at t = 40 seconds. The

posterior probabilities of the three hypotheses are shown in Figure 10.10. Again the plots

have been averaged over ten different realizations. Figure 10.11 shows the normed differences

between the posteriori error covariance matrix of the AKF and each of the Lainiotis filters.

10.6 Conclusions

An AKF algorithm and sufficient conditions for its convergence have been developed for

adaptive estimation in linear time-varying stochastic dynamic systems. In the simulated

examples, it performs comparably to the modified MMAE algorithm, while significantly
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Figure 10.8: Adaptive Kalman Filter Performance - Change from H0 to H1.

reducing the computational intensity. It has also been shown that for a class of problems, the

expected value of the true posterior probability conditioned on the residual history converges

to unity. In its most general form, an off-line computation is necessary to investigate the

convergence of the true posterior probability. Under assumptions of uniform complete

controllability and observability, the expected value of the norm of the difference between

the constructed error covariance and the true posteriori error covariance converges to a

lower bound. This lower bound is determined by the apriori probability of change from

one hypothesis to another in the MHSSPRT. In the presence of modeling errors, the AKF

algorithm has been shown to converge to the hypothesis which maximizes a particular

information function, while the MMAE algorithm might show beta dominance.
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10.7 Proofs

Proofs of some results developed in this chapter are presented in this section.

10.7.1 Proof A

From (10.40), for the MMAE scheme:

φki
4
= Fk,i + p̃i(1− Fk,i)

fk+1,i(rk+1,i) =
1

(2π)s/2‖Sk+1,i‖1/2
exp(−1

2
rk+1,iS

−1
k+1,irk+1,i)

4
= βk+1,iαk+1,j

Fk+1,i =
φkifk+1,i(rk+1,i)∑m

j=0 φkjfk+1,j(rk+1,j)
=

φkiβk+1,iαk+1,i∑m
j=0 φkjβk+1,jαk+1,j

Fk+1,i − Fki =
φki(1− Fki)βk+1,iαk+1,i −

∑
j 6=i φkjβk+1,jαk+1,jFki∑m

j=0 φkjβk+1,jαk+1,j
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Figure 10.10: Adaptive Kalman Filter Performance - Change from H0 to H2.

If Hi is true, then we would expect:

αk+1,j ≈ 0 ∀j 6= i

so that

Fk+1,i − Fki ≥ 0

However, if for some unknown reason, αkj ≈ α∀j for a prolonged sequence of measurements

then

Fk+1,i − Fki =
(1− p̃)

∑
j 6=i Fkj(βk+1,i − βk+1,j)Fki + p̃

∑
j 6=i(βk+1,i − βk+1,j)Fki∑m

j=0 φkjβk+1,j

If βki < βkj∀j 6= i, then the posterior probability corresponding to the dominant β increases

irrespective of the true hypothesis.
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10.7.2 Proof B1

For the AKF algorithm, there is only one residual process. Hence, if for some reason,

αkj ≈ α for all j for a prolonged sequence of measurements this implies that

rT
k+1[Sk+1,i − Sk+1,j ]rk+1 = 0

and

Sk+1,i ≡ Sk+1,j ∀k

This violates the identifiability assumption of the family F . Moreover, since now βki ≡

βkj∀j, one β cannot dominate over the other.
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10.7.3 Proof B2

From (10.42):

J ji(k)
4
= E [ln {fkj(rk)} /Hi,Rk−1]

Let Hi be true. Then

J ji(k)− J ii(k) =
∫

ln
{

fkj(rk)
fki(rk)

}
f̃ki(rk)drk

Since lnx ≤ x− 1

J ji(k)− J ii(k) ≤
∫ {

fkj(rk)
fki(rk)

− 1
}

f̃ki(rk)drk

≤
{∫ {

fkj(rk)
fki(rk)

}
f̃ki(rk)drk

}
− 1 ∀j 6= i

4
= Ik − 1

From (10.25), (10.26) and (10.28),

Ik
4
=
‖Λki‖1/2‖Λk‖1/2

‖Λkj‖1/2‖S̃k‖1/2
exp

{
−aki

2

}
where

aki
4
= b̃T

ki[S̃ki + (Λ−1
kj − Λ−1

ki )−1]−1b̃ki

= b̃T
kiBkib̃ki

and

Λ−1
k

4
= S̃−1

k + Λ−1
kj − Λ−1

ki

with Λ−1
k > 0 for the integral to exist.

Now, it must be true that either Λkj < Λki < S̃ki or Λkj > Λki > S̃ki for all k. Clearly,

the integral always exists and Λk > 0. Since the bias terms are small, neglect the exponential

term aki. However, note that if

Λkj < Λki ⇒ Bki > 0

⇒ aki > 0 ∀bki

⇒ exp
{
−aki

2

}
< 1
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Hence, in certain cases, the bias terms need not be small. Anyway, by removing the

exponential term from Ik, we can show that

Ik = ‖Λ−1
ki Λkj + Λ−1

ki S̃k − Λ−1
ki ΛkjΛ−1

ki S̃k‖−1/2

≤ 1

with the equality sign if and only if Λki = Λkj or Λki = S̃k for all k. The former situation

violates the identifiability assumption while the latter assumes that Mk = M̃k for all k in

which case the algorithm has already converged. Therefore:

J ji(k)− J ii(k) ≤ 0

Now, the equality sign in holds if and only if fki(·) = fkj(·) almost everywhere. Since we

assumed the family F to be identifiable, the J ji(k) is strictly less than J ii(k)∀j 6= i and

∀k.

10.7.4 Proof B3

The proof follows the analysis in (Liporace 1971). Let Hi 6∈ Θ be true. We first prove that

whenever J ji(k) < Jmi(k) ∀k the following holds true

E

[{
fkj(rk)
fkm(rk)

}t

/Hi,Rk−1

]
4
= ρjmi(Rk−1) < 1 forsomet ∈ (0, 1) ∀k

By definition:

J ji(k)− Jmi(k) = E

[
ln
{

fkj(rk)
fkm(rk)

}
/Hi,Rk−1

]
= E

[
lim
t→0

({
fkj(rk)
fkm(rk)

}t

− 1

)
t−1/Hi,Rk−1

]
Using the Lebesgue dominated convergence theorem, the limit and expectation may be

interchanged. Therefore, for any δ ∈ (0, 1), there exists a t ∈ (0, 1) such that

lim
t→0

t−1

(
E

[{
fkj(rk)
fkm(rk)

}t

/Hi,Rk−1

]
− 1

)
≤ [J ji(k)− Jmi(k)] (1− δ)

E

[{
fkj(rk)
fkm(rk)

}t

/Hi,Rk−1

]
≤ 1 + t(1− δ) [J ji(k)− Jmi(k)]

< 1
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The same analysis can be carried out ∀k, that is, for any realization of Rk

ρjmi(Rk−1) < 1 ∀k

⇒ ρjmi
4
= max

k
ρjmi(Rk−1) < 1





Chapter 11

Fault Detection and Identification
Using Linear Quadratic Optimization

A new approach to the residual generation problem for fault detection and identification

based on linear quadratic optimization is presented. A quadratic cost encourages the input

observability of a fault that is to be detected and the unobservability of disturbances, sensor

noise and a set of faults that are to be isolated. Since the filter is not constrained to form

unobservability subspace structures, adjustment of the quadratic cost could realize improved

performance as reduced sensor noise and dynamic disturbance components in the residual

and reduced sensitivity to parametric variations. In the present form, the filter detects a

single fault so the structure could also be described as that of an unidentified input observer.

A bank of filters are constructed when multiple faults are to be detected.

211
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11.1 Problem Formulation

Consider a dynamic system described by the equations

ẋ = Ax + B1u1 + B2u2; x(t0) = x0 (11.1)

y = Cx + w (11.2)

In (11.1) and (11.2), y is a p×1 measurement vector, w is the p×1 measurement error, and

u1 and u2 are unknown disturbance inputs representing faults. Our goal is to derive a fault

detection filter which processes the measurement y(t) and produces a scalar output h(t)

which is small if u1 is zero and large only if u1 is different from zero. Thus the filter should

respond to a non zero input u1, but not to the inputs u2, w, and x0. In this development

we shall consider filters in the form:

h(t1) = fT

[
y(t1)−

∫ t1

t0

CMT (τ, t1)y(τ)dτ

]
(11.3)

Procedures for choosing the matrix f(t1) and the p×n matrix M(τ, t1) are developed below.

A filter with the properties described above can be used to detect a fault corresponding to

u1. The roles of u1 and u2 can be interchanged to detect faults corresponding to u2.

Introduce an n× n square matrix Z(t; t1) satisfying

d

dt
Z(t; t1) = −AT Z(t; t1) + CT M(t; t1); Z(t1; t1) = I (11.4)

Form ZT x and differentiate with respect to t.

d

dt
(ZT x) = ŻT x + ZT ẋ

= [−ZT A

/
+ MT C]x + ZT [Ax

/
+ B1u1 + B2u2]

= MT Cx + ZT B1u1 + ZT B2u2

(11.5)

Substitute (11.2) into (11.5).

d

dt
(ZT x) = MT (y − w) + ZT B1u1 + ZT B2u2 (11.6)
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Integrate (11.6) from t0 to t1.

ZT (t1; t1)x(t1)− ZT (t0; t1)x(t0)

=
∫ t1

t0

MT (τ ; t1)y(τ)dτ −
∫ t1

t0

MT (τ ; t1)w(τ)dτ

+
∫ t1

t0

ZT (τ ; t1)B1u1dτ +
∫ t1

t0

ZT (τ ; t1)B2u2dτ

(11.7)

Using Z(t1; t1) = I and rearranging (11.7) we get

x(t1)−
∫ t1

t0

MT (τ ; t1)y(τ)dτ = ZT (t0; t1)x(t0)−
∫ t1

t0

MT (τ ; t1)w(τ)dτ

+
∫ t1

t0

ZT (τ ; t1)B1u1dτ +
∫ t1

t0

ZT (τ ; t1)B2u2dτ (11.8)

Multiply (11.8) from the left by fT C where f is a vector to be determined. For the time

being, regard f as given. Later we will have more to say about choosing f .

fT Cx (t1)− fT

∫ t1

t0

CMT wdτ = fT [y (t1)− w (t1)]− fT

∫ t1

t0

CMT wdτ

= h (t1)− fT w (t1)

= fT CZT (t0; t1)x(t0)−
∫ t1

t0

fT CMT wdτ

+
∫ t1

t0

fT CZT B1u1dτ +
∫ t1

t0

fT CZT B2u2dτ

(11.9)

Thus

h (t1) = fT CZT (t0; t1)x (t0) + fT w (t1)

+
∫ t1

t0

[
fT CZ(τ, t1) (B1u1 + B2u2)− fT CMT (τ, t1)w

]
dτ (11.10)

Note that h(t1) in Equation (11.9) is a scalar. We want to choose f and M such that h(t1)

is responsive to u1, but not to u2, w and x0. To accomplish this, set up the cost function

J =
fT C

{
ZT (t0; t1)WZ(t0) +

∫ t1
t0

[
ZT B2Q2B

T
2 Z + MT RM

]
dτ
}

CT f + fT V f

fT C
{∫ t1

t0
ZT B1Q1BT

1 Zdt
}

CT f
(11.11)

Equation (11.11) is subject to

d

dt
Z(t; t1) = −AT z(t; t1) + CT M(t; t1); Z(t1; t1) = I (11.12)
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The cost function J penalizes the impulse response of h(t1) due to the input u2, but seeks

to maximize the impulse response of h(t1) due to the input u1. The cost function also

penalizes impulse response of the filter itself, and the response due to initial conditions. We

want to choose M and f such that J is minimized.

In subsequent work it will be useful to express J in a slightly different form. To this

end, add and subtract to the numerator of (11.12) γ2 times the denominator of (11.12).

Thus

J =

f ′C
{

Z ′(t0; t1)WZ(t0; t1) +
∫ t1
t0

[Z ′QZ + M ′RM ] dτ + γ2
∫ t1
t0

Z ′B1Q1B
′
1Zdτ

}
C ′f + f ′V f

f ′C
[∫ t1

t0
Z ′B1Q1B′1Zdτ

]
C ′f

= γ2 +
f ′V f + f ′C

{
Z ′(t0; t1)WZ(t0; t1) +

∫ t1
t0

[Z ′QZ + M ′RM ] dτ
}

C ′f

f ′C
[∫ t1

t0
Z ′B1Q1B′1Adτ

] (11.13)

where

Q = B2Q2B
T
2 − γ2B1Q1B

T
1 (11.14)

Equation (11.1) can be cast into a still more convenient form by introducing a symmetric

n× n matrix P (t) which satisfies the matrix Riccati equation:

Ṗ = PAT + AP − PCT R−1CP + Q; P (t0) = W (11.15)

Next form ZT PZ and differentiate. Using (11.12) and (11.15) one obtains

d

dt
(ZT PZ) =ZT QZ + MT CPZ

+ ZT PCT M − ZT PCT R−1CPZ

(11.16)

Integrating both sides of (11.16) leads to

ZT (t0; t1)P (t1)Z(t0; t1)− ZT (t0; t1)P (t0)Z(t0; t1) =∫ t1

t0

[ZT QZ + MT CPZ + ZT PCT M − ZT PCT R−1CPZ]dt (11.17)
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After some rearrangement, (11.17) can be written as

ZT (t0; t1)WZ(t0; t1) +
∫ t1

t0

(ZT QZ + MT RM)dt =

ZT (t1; t1)P (t1)Z(t1; t1) +
∫ t1

t0

[M −R−1CPZ]T R[M −R−1CPZ]dt (11.18)

Comparing (11.1) and (11.18) and using the fact that Z(t1; t1) = I we see that J becomes

J = γ2 +
fT C

{
P (t1) +

∫ t1
t0

[M −R−1CPZ]T R[M −R−1CPZ]dτ
}

CT f + f ′V f

f ′C
{∫ t1

t0
Z ′B1Q1B′1Zdτ

}
C ′f

= γ2 +
f ′ [CP (t1)C ′ + V ] f

f ′C
{∫ t1

t0
Z ′B1Q1B′Zdτ

}
C ′f

+
f ′C

{∫ t1
t0

[
M −R−1CPZ

]′
R
[
M −R−1CPZ

]
dτ
}

C ′f

f ′C
{∫ t1

t0
Z ′B1Q1B′1Zdτ

}
C ′f

(11.19)

There are three quantities to be chosen in evaluating (11.19). They are γ2, M(τ, t1) and

f . For any particular values of f and γ2 which are selected, J is minimized by choosing

M(τ, t1) to satisfy

M(τ ; t1) = R−1CP (τ)Z(τ ; t1) (11.20)

With this choice J becomes:

J = γ2 +
f ′ [CP (t1)C ′ + V ] f

f ′C
[∫ t1

t0
Z ′B1Q1B′1zdτ

]
C ′f

(11.21)

Now let’s work on simplifying the demonimator of (11.21). Introduce S(t) defined as

S(t)
4
=
∫ t

t0

Z ′(τ ; t)B1Q1B
′
1Z(τ, t)dt (11.22)

It can be shown (see Section 11.4) that S(t) is the solution of the time varyng Lyapunov

equation

Ṡ(t) = ACL(t)S(t) + S(t)A′CL(t) + B1Q1B
′
1 (11.23)

S(t0) = 0 (11.24)

ACL(t) = A−K(t)C; K(t) = P (t)C ′R−1 (11.25)
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Using S(t), J can be expressed as

J = γ2 +
f ′ [CP (t1)C ′ + V ] f

f ′CS(t1)C ′f
(11.26)

Recall that this expression for J assumes that M(τ ; t1) has been chosen to satisfy (11.20).

Only γ2 and f remain to be chosen. These parameters may be determined by a numerical

search procedure which may be summarized as follows:

1. Select a value for γ2 starting with γ2 = 0 and gradually increasing γ2.

2. For each value of γ2 start with P (t0) = W , and solve the Riccati equation forward in

time to obtain P (t), t0 ≤ t ≤ t1. P (t1) is also determined in this step.

3. Using P (t) from step 2, determine ACL(t) from (11.25). Then use ACL(t) to solve

Equations (11.23 – 11.24) for S(t1).

4. Form the real symmetric matrices N1 = CP (t1)C ′ + V , N2 = CS(t1)C ′, J may be

expressed as

J = γ2 +
f ′N1f

f ′N2f

Solve the generalized eigenvalue problem

[
N1 + λ2

i N2

]
ξi = 0

Choose f as the eigenvector corresponding to the smallest eigenvalue of this system,

and normalize f such that f ′N2f = 1. Then f ′N1f = λ2
min, and

J = γ2 + λ2
min+

5. Gradually increase γ2 and repeat steps 1-4 until one of the following two events occurs:

a. The eigenvalues of the Hamiltonian (i.e., the filter eigenvalues) move onto the

imaginary axis. When this occurs γ2 cannot be increased further because the

filter would then become unstable.
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b. J passes through a smooth minimum (dJ/dγ2 = 0) at which point one of the

eigenvalues found in step 4 becomes zero. In this case f is chosen such that

fT CP (t1)CT f = 0

Thus,

J = γ2

The value of γ which results in either (a) or (b) will lead to the minimum value

of J .

6. Once the minimizing value of γ2 has been found, use this value to compute Q and

hence P (t). See (11.14), (11.12). Then using (11.12) and (11.20), the equation for

Z(t; t1) becomes

Ż(t; t1) =
[
−A′ + C ′R−1CP (t)

]
Z(t, t1); Z(t1; t1) = I

Solve (6) backward in time to obtain Z(τ ; t1), t0 ≤ t ≤ t1.

7. Let

M(τ, t1) = R−1CP (τ)Z(τ, t1)

8. Using f from step 4, construct the filter as

ho(t1) = fT

[
y(t1)−

∫ t1

t0

CM ′(τ, t1)y(τ)dτ

]
(11.27)

11.2 On Line Filter

To develop an online version of the filter, let

ξ(t)
4
=
∫ t

t0

MT (τ, t)y(τ)dτ (11.28)

where

M(τ, t) = R−1CP (τ)Z(τ, t) (11.29)
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dZ(τ, t)
dτ

=
(
−AT + CT R−1CP (τ)

)
Z(τ, t) (11.30)

Z(t, t) = I (11.31)

After some manipulation it can be shown [AM-1, Appendix B] that ξ satisfies the equation

ξ̇ = Aξ + PCT R−1[y − Cξ]; ξ(t0) = 0 (11.32)

Thus, the filter given in (11.27) can also be expressed as

ho(t1) = fT [y(t1)− Cξ(t1)] (11.33)

where ξ(t1) is obtained from (11.32).

11.3 The Steady State Filter

In most cases, the fault detection filter will be implemented as a steady state filter, i.e.,

a linear filter in which the coefficient matrices are constant. Assume the pair (A, C) is

detectable and that

lim
to→−∞

P (t0) = 0 (11.34)

The steady state filter is then obtained as

ho(t1) = fT [y(t1)− Cξ(t1)] (11.35)

ξ̇ = Aξ + PCT R−1[y − Cξ]; ξ(t0) = 0 (11.36)

In (11.35) and (11.36), P satisfies

PAT + AP − PCT R−1CP + Q = 0 (11.37)

and f is chosen as described in step 4 of section 2.
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It is often instructive to look at a frequency domain expression for the steady state filter.

To obtain such an expression, take the Laplace transform of (11.36). This yields:

sξ =
[
A− PCT R−1C

]
ξ + PCT R−1y (11.38)

Letting

K
4
= PCT R−1 (11.39)

this becomes

ξ = (sI −A + KC)−1Ky (11.40)

Substitute (11.40) into the transform of (11.29).

h = f t
[
I − C(sI −A + KC)−1K

]
y (11.41)

After defining Φ as

Φ
4
= (sI −A)−1 (11.42)

Equation (11.41) can be written:

h = fT (I + CΦK)−1y (11.43)

The frequency domain expression for y is:

y = CΦB1u1 + CΦB2u2 + w (11.44)

Thus,

h = fT (I + CΦK)−1CΦB1u1

+ fT (I + CΦK)−1CΦB2u2 + fT (I + CΦK)−1w
(11.45)

Equation (11.45) can be used to study the frequency response functions from u1, u2, and w

to h. This will be illustrated by two examples.
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11.4 Proofs

Proofs of some results developed in this chapter are presented in this section.

Proof A

Given

S(t)
4
=
∫ t

t0

Z ′(τ ; t)B1Q1B
′
1Z(τ ; t)dτ (11.46)

The derivative of S with respect to t becomes

Ṡ(t) = Z ′(t; t)B1Q1B
′
1(t, t)

+
∫ t

t0

d

dt

[
Z ′(τ ; t)

]
B1Q1B

′
1Z(τ ; t) + Z ′(τ ; t)B1Q1B

′
1

d

dt
Z(τ ; t)dt (11.47)

Using (11.12) and (11.20) we obtain

d

dt
Z(t; t1) = −

[
A′ − C ′R−1CP (t)

]
Z(t; t1); Z(t1; t1) = I (11.48)

Let

K(t)
4
= P (t)C ′R−1 (11.49)

ACL(t)
4
= A(t)−K(t)C (11.50)

Then

d

dt
Z(t; t1) = −A′CL(t)Z(t; t1); A(t1; t1) = I (11.51)

Z(t, t1) is a transition matrix. Thus,

Z(t1, t)Z(t; t1) = I

Ż(t1; t)Z(t; t1) + Z(t1; t)Ż(t; t1) = 0

Ż(t1; t)Z(t; t1)− Z(t1; t)A′CL(t)Z(t; t1) = 0

Ż(t1, t) = Z(t1, t)A′CL(t)

Ż(t1, t) = ACL(t)Z ′(t1, t)

(11.52)
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Substitution of τ for t1 gives:

d

dt
Z ′(τ, t) = ACL(τ)Z ′(τ, t) (11.53)

d

dt
Z(τ, t) = Z(τ, t)A′CL(τ) (11.54)

Substitute (11.53) and (11.54) into (11.47) and note that Z(t, t) = I. This yields:

Ṡ(t) = B1Q1B
′
1 +

∫ t

t0

ACL(t)Z ′(τ, t)B1Q1B
′
1Z(τ, t)dτ

+
∫ t

t0

Z ′(τ, t)B1Q1B
′
1Z
′(τ, t)B1Q1B

′
1Z(τ, t)A′CL(t)dτ

= B1Q1B
′
1 + ACL(t)S(t) + S(t)A′CL(t)

(11.55)

Hence, S(t) is the solution of the equation

Ṡ(t) =ACL(t)S(t) + S(t)A′CL(t) + B1Q1B
′
1

S(t0) =0
(11.56)

Proof B

ξ̇(t) = MT (t, t)y(t) +
∫ t

t0

d

dt
MT (τ, t)y(τ)dτ (11.57)

M(t; t) = R−1CP (t)Z(t; t) = R−1CP (t) (11.58)

d

dt
M ′(τ, t) =

d

dt
Z ′(τ, t)P (τ)C ′R−1 (11.59)

Since Z(τ, t) is a transition matrix,

Z(τ, t)Z(t, τ) = I (11.60)

so

d

dt
Z(τ, t)Z(t, τ) + z(τ, t)

d

dt
Z(t, τ) = 0 (11.61)
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Using (11.4) we get

d

dt
Z(τ, t)Z(t, τ) + Z(τ, t)

[
−A′Z(t, τ) + C ′M(t, τ)

]
= 0 (11.62)

d

dt
Z(τ, t)Z(t, τ)− Z(τ, t)A′Z(t, τ) + Z(τ, t)C ′R−1CP (t)Z(t, τ) = 0 (11.63)

d

dt
Z(τ, t) =Z(τ, t)A′ − Z(τ, t)C ′R−1CP (t)

=Z(τ, t)
[
A′ − C ′R−1CP (t)

] (11.64)

From (11.59) and (11.64),

d

dt
M ′(τ, t) =

[
A− P (t)C ′R−1C

]
Z ′(τ, t)P (τ)C1R−1 (11.65)

Substitute (11.58) and (11.65) into (11.57)

ξ̇(t) = P (t)C ′R−1y(t) +
∫ t

t0

[
A− P (t)C ′R−1C

]
Z ′(τ, t)P (τ)C ′R−1y(τ)dτ

= A

∫ t

t0

Z ′(τ, t)P (τ)C ′R−1y(τ)dτ

+ P (t)C ′R−1

[
y(τ)− C

∫ t

t0

Z ′(τ, t)P (τ)C ′R−1y(τ)dτ

]
= A

∫ t

t0

M ′(τ, t)y(τ)dτ − P (t)C ′R−1

[
y(t)− C

∫ t

t0

M ′(τ, t)y(τ)dτ

]
= Aξ − PC ′R−1[y − Cξ]

(11.66)

h = f ′1y =
∫ t1

t0

f ′2CM ′ydτ

Ż = −A′Z + C ′M ; Z(t1) = I

x(t1)−
∫

M ′ydτ = Z ′(t0)x(t0)−
∫ t1

t0

M ′wdτ +
∫ t1

t0

Z ′B1u1dτ +
∫ t1

t0

Z ′B2u2dτ
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f ′2Cx(t1)−
∫ t1

t0

f ′2CM ′ydτ + f ′1y − f ′1y

= f ′2Z
′(t0)x(t0)−

∫ t1

t0

f ′2CM ′wdτ +
∫ t1

t0

f ′2CZ ′B1u1dτ +
∫ t1

t0

f ′2CZ ′B2u2dτ

= f ′2(y − w)− f ′1y + f ′1y − f ′2CM ′ydτ

= h(t1)− f ′2w + (f ′2 − f ′1)y

h(t1) = f ′2w + (f ′2 − f ′1)y + f ′2Z
′(t0)x(t0)





Chapter 12

Model Input Reduction

Two examples of linear system input-order reduction problems are control blending and

disturbance direction identification problems. In control blending problems, system input

dimension is reduced to facilitate control design and implementation. Typically, the system

has dynamically redundant actuators which are to be mapped to a smaller set of generalized

controls and an associated control mapping.

In disturbance decoupling problems where the disturbance is meant to model neglected

higher-order or nonlinear dynamics, determination of the direction from first principles

is not always possible or practical. When the disturbance direction is found empirically,

typically several directions are found, each one associated with a different operating point,

and a suitable representative direction must be chosen. The problem is complicated further

when the rank of the disturbance map is not known, that is, when it is not clear how many

directions should be chosen from the empirically derived set.

One approach to model input reduction, appealing at first, is to inspect, pairwise, the

angle between each rank one input direction. If all the angles are small it might seem

225
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reasonable to choose any one direction or an average of all of them as a rank-one direction

representative of the set (Patton and Chen 1992). However, given that the input directions

form a linearly independent set, the angles depend on the chosen state-space basis. For

m ≤ n linearly independent input directions where n is the dimension of the state-space,

state transformations may be found that make the pairwise angles between the directions

arbitrarily close to zero or 90 deg. It is, therefore, not clear whether the rank of the input

map should be 1 or m or something in between.

A second approach is to group the input directions into a single multi-input mapping

and to consider the singular values of this map (Sobel and Lallman 1989). If Bi is a linear

system input map and B = [B1, . . . , Bm] an aggregate mapping, a reduced rank map is

formed by combining the left singular vectors associated with the largest singular values of

B, that is, once a threshold is chosen for what is to be considered a small singular value.

However, this approach amounts to the first since the left singular vectors and singular

values of B depend on the basis chosen for the state-space unless, of course, only unitary

transformations on the state-space are allowed.

The underlying difficulty with both approaches is that the dynamics and input-output

characteristics of the system are neglected. The following section introduces some notation.

Section 12.2 presents an approach to model input reduction based on maximizing a system

Hankel norm. Section 12.3 illustrates an application to a disturbance direction identification

problem. A numerical example is included. Section 12.4 discusses an extension to input and

output order reduction as applied to an internal feedback loop parameter variation model.

12.1 Notation

Let G be a linear time-invariant system with k inputs

ẋ = Ax + B1u1 + · · ·+ Bkuk

y = Cx

All system variables belong to real vector spaces x ∈ X , ui ∈ U i and y ∈ Y with n = dimX ,

mi = dimU i and p = dimY. Define an aggregate control u ∈ U = U1⊕· · ·⊕Uk and control
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mapping B = [B1, . . . , Bk] where m = dimU . Also, define a reduced-input system G(q) as

ẋ = Ax + Bqū

y = Cx

where q : R 7→ Rm and ‖q‖ = 1.

12.2 Input-Output Mappings and Model Input Reduction

The following sections build towards a Hankel norm maximization approach to model input

reduction. Section 12.2.1 considers only the system output dynamic characteristics, that is,

the pair (C, A) in forming a model input reduction problem. Section 12.2.2 considers only

the system input dynamic characteristics, that is, the pair (A, B). Section 12.2.3 considers

both system input and output characteristics in the triple (C, A, B) and a Hankel norm cost

function is formed.

12.2.1 Output Point of View

Consider the output of the system y(t) for t ∈ [0,∞) generated only by a state initial

condition x(0) = x0. The L2 norm of y(t) is given by

‖y‖2L2[0,∞)
=
∫ ∞

0
xT

0 eATτCT CeAτx0dτ = xT
0 Lox0

where Lo, the observability gramian, is found as a solution to a steady-state Lyapunov

equation

0 = AT Lo + LoA + CT C

Now, define a reduced-order input map as B̄ = Bq where q : R 7→ Rm and ‖q‖ = 1, that

is, a dimension m input is to be reduced to a dimension one input. If the state initial

condition x0 is restricted to Im B as x0 = Bq, a model input reduction problem is to find

q that maximizes ‖y‖

max
q

Jo = qT BT

∫ ∞
0

eATτCT CeAτdτBq

= qT BT LoBq

(12.1)
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This is solved as an eigenvalue problem

Jo
max = λmax

(
BT LoB

)
with q taken to be the associated eigenvector. Since only the observability of the system

pair (C, A) is considered, no weighting is given to the control energy required to reach the

initial state x0.

12.2.2 Input Point of View

Having found an initial state direction x0 ∈ Im B, note that the control energy required to

reach x0 by applying a control ω(t) over t ∈ (−∞, 0] could be arbitrarily large. A well-known

result (Doyle et al. 1989) is that for a given state x0, the smallest signal ω ∈ L(−∞, 0] that

produces x0 has a norm given by

inf
ω

{
‖ω‖2|x(0) = x0

}
= xT

0 L−1
c x0

where Lc is the controllability gramian,

Lc =
∫ 0

−∞
e−AτBBT e−ATτdτ

also found as a solution to a steady-state Lyapunov equation

0 = ALc + LcA
T + BBT

A best initial state x0 is considered here as one requiring the smallest signal ω ∈ L2(−∞, 0].

sup
ω

‖x0‖2Rn
‖ω‖2L2(−∞,0]

= max
x0

xT
0 x0

xT
0 L−1

c x0

= λmax (Lc)

where λmax (Lc) is the largest eigenvalue of Lc and x0 is the associated eigenvector

Lcx0 = λmaxx0

A model input reduction problem that follows is to find q, ‖q‖ = 1 and the reduced-input

map B̄ = Bq by solving the following maximization problem

Jc
max = max

q
max

x0

xT
0 x0

xT
0

[∫ 0
−∞e−AτBqqT BTe−ATτdτ

]−1
x0

= max
q

max
x0

xT
0

∫ 0
−∞ e−AτBqqT BT e−ATτdτx0

xT
0 x0

(12.2)
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subject to ‖q‖ = 1 which is equivalent to

Jc
max = max

q
max

x0

xT
0

∫ 0

−∞
e−AτBqqT BT e−ATτdτ x0 (12.3)

subject to ‖q‖ = 1 and ‖x0‖ = 1. The maximization problem (12.3) may be solved by

adjoining the two constraints to the cost using Lagrange multipliers as in

Jc
max = max

q
max

x0

xT
0

∫ 0

−∞
e−AτBqqT BT e−ATτdτx0 − λx(xT

0 x0 − 1)− λq(qT q − 1)

The first-order variation of Jc with respect to x0 and q,

δJc =
(

xT
0

∫ 0

−∞
e−AτBqqT BT e−ATτdτ − λxxT

0

)
δx0

+
(

qT BT

∫ 0

−∞
e−ATτx0x

T
0 e−AτdτB − λqq

T

)
δq

provides a pair of eigenvalue problems as necessary conditions for Jc maximization∫ 0

−∞
e−AτBqqT BT e−ATτdτx0 = λxx0

BT

∫ 0

−∞
e−ATτx0x

T
0 e−AτdτBq = λqq

(12.4)

Furthermore, since ‖q‖ = ‖x0‖ = 1, it follows that λx = λq = Jc. Thus Jc
max is the largest

eigenvalue of (12.4) and the necessary condition for maximizing Jc is∫ 0

−∞
e−AτBqqT BT e−ATτdτx0 = λmaxxx0 (12.5a)

BT

∫ 0

−∞
e−ATτx0x

T
0 e−AτdτBq = λmaxqq (12.5b)

There is no known closed form solution to (12.2.2) but a convergent iterative solution

is to solve (12.5a) for x0 while holding q fixed, then to solve (12.5b) for q while holding

x0 fixed and repeat. The convergence of the proposed iteration can be shown as follows.

First, the cost (12.2.2), either Jc
k = λmaxx,k or Jc

k = λmaxq,k , increases monotonically with

each iteration since the eigenvalue problems (12.2.2) may be expressed as maximization

problems. First, holding q fixed, (12.5a) gives λmaxx for iteration k as

λmaxx,k = max
x0

xT
0

∫ 0
−∞e−AτBqqT BT e−ATτdτx0

xT
0 x0

(12.6)
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Now, holding x0 fixed, (12.5b) gives λmaxq for iteration k + 1 as

λmaxq,k+1
= max

q

qT BT
∫ 0
−∞e−ATτx0x

T
0 e−Aτdτ Bq

xT
0 x0

= max
q

xT
0

∫ 0
−∞e−AτBqqT BT e−ATτdτ x0

xT
0 x0

(12.7)

Therefore,

λmaxq,k+1
≥ λmaxx,k ≥ λmaxq,k−1

≥ · · · ≥ λmaxx,1

Clearly, as long as ‖q‖ = ‖x0‖ = 1, the cost Jc
k is bounded above. Thus Jc

k approaches a

limit and the iteration must converge.

lim
k→∞

Jc
k = Jc

max

While the uniqueness of the limit is not guaranteed, the experience of the authors has shown

that in several practical applications the limit achieved is close to the upper bound given

by λmax (Lc) of the full-input system.

This approach is a dual to that of Section 12.2.1 in the sense that only the controllability

of the system pair (A, B) is considered. No weight is given to the energy required to

reconstruct the initial state x0 from the output pair (C, A).

12.2.3 Output and Intput Point of View

Both input (12.1) and output (12.2.2) considerations are combined by maximizing the

Hankel norm of the system triple G
4
= (C, A, Bq) as in

Jmax = max
q

ΓG(q)

= max
q

sup
ω

‖y‖2L2[0,∞)

‖ω‖2L2(−∞,0]

= max
q

max
x0

xT
0 Lox0

xT
0

[∫ 0
−∞e−AτBqqT BT e−ATτdτ

]−1
x0

= max
q

max
x0

xT
0

∫ 0
−∞ e−AτBqqT BT e−ATτdτ x0

xT
0 L−1

o x0
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Necessary conditions for this problem are a pair of eigenvalue problems similar to (12.2.2)

but with the premultiplication of an observability gramian

Lo

∫ 0

−∞
e−AτBqqT BT e−ATτdτx0 = λmaxxx0 (12.8a)

BT

∫ 0

−∞
e−ATτx0x

T
0 e−AτdτBq = λmaxqq (12.8b)

An iterative solution to (12.8) that is similar to that for (12.2.2) has been successfully

applied.

12.3 Application to Disturbance Direction Estimation

Parametric uncertainties in a linear system model can often be modeled as scalar or low

dimensional unknown inputs. Given the disturbance direction, a disturbance decoupling or

bounding controller may be constructed to provide robustness to variations in the unknown

system parameters. In practice, identifying this direction has its own uncertainty in the

sense that usually a set of directions is formed from which a representative direction is

chosen. For the purpose of illustration, an observer based method (Patton and Chen 1992)

for identifying a disturbance direction is outlined below.

Consider a linear time invariant system with a scalar disturbance d

ẋ = Ax + Bu + Ed

The vector E is unknown and represents the direction of uncertainty acting on the system

model. The direction E may be estimated by defining Ed = w, and forming an observer

to estimate w. First, assume that w is a slowly time varying vector of dimension n. Then

append it to the state vector to form a 2n-dimensional system[
ẋ
ẇ

]
=
[

A I
0 0

] [
x
w

]
+
[

B
0

]
u (12.9)

Since (12.9) is a system model, full state information may be assumed so that the observation

relation is

y =
[

I 0
] [ x

w

]
(12.10)
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An observer based on the model (12.9, 12.10) is used to estimate w. The measurements

provided to the observer are from the full higher-order or nonlinear system or simulation.

It is assumed that constant controls u are applied so that the observer eventually reaches

a steady-state and an estimate for w, that is ŵ, becomes a constant. The disturbance

direction E is a normalized ŵ. In general, the direction E found will depend on the size

and direction of the control vector u applied to the nonlinear plant. Thus a system model

with several disturbance directions is formed as

ẋ = Ax + Bu +
[

E1 E2 . . . Em

]


d1
d2
...

dm


The problem now is to determine an appropriate reduced dimension and range for the

disturbance distribution matrix [E1, E2, . . . , Em].

A numerical example follows from the longitudinal dynamics of an automobile linearized

as the vehicle is driven on a straight and level road at a constant speed 25 m/s. A small

slope in the road appears as a disturbance in the dynamics. Thus the model becomes

ẋ = Ax + Bu + E1d1 + E2d2 + E3d3 + E4d4

y = Cx

The states are engine manifold air mass, engine speed, longitudinal and vertical velocity,

vertical position, the sum of two front wheel speeds and the sum of two rear wheel speeds.

The control inputs are throttle and brake commands. The disturbance directions E =

[E1, E2, E3, E4] are found for road slopes of −1, −2, −3 and 0 degrees respectively when

the brake is held fixed at the trim value and the throttle is held fixed slightly away from

the trim value. Data for the system are as follows.

A =



−0.0521 −0.2213 0.2681 −0.0121 0.0136 0.0084 −0.0078
−0.3007 −8.0277 19.0734 −1.1013 0.0795 0.2471 0.0378
−0.3263 −19.7571 −51.0638 −3.2675 −4.8766 −2.4258 0.0040

0.0454 2.4036 15.7922 −2.1857 6.4655 −0.2062 0.0495
0.0219 1.1136 8.6428 −7.1817 −0.6526 −0.2171 0.9316
0.0116 0.5928 3.8335 −1.0926 −0.6513 −0.9851 5.9628
0.0154 0.7868 4.8494 −1.4900 −1.0329 −6.5688 −2.5996


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B =



0.0362 0.0711 0.0976 0.0164
0.0786 0.1585 0.2222 0.0343
0.2191 0.3765 0.4450 0.1128
0.0404 0.0452 0.0628 0.0419
0.1057 0.1292 0.1559 0.0943
0.3199 0.2969 0.2822 0.3294
−0.9107 −0.8492 −0.7970 −0.9310



E =



0.0362 0.0711 0.0976 0.0164
0.0786 0.1585 0.2222 0.0343
0.2191 0.3765 0.4450 0.1128
0.0404 0.0452 0.0628 0.0419
0.1057 0.1292 0.1559 0.0943
0.3199 0.2969 0.2822 0.3294
−0.9107 −0.8492 −0.7970 −0.9310



C =



0.0075 0.4605 0.3710 0.1023 0.0513 0.0340 −0.0137
0.7318 2.7938 −2.8640 0.1680 −0.0415 −0.0491 −0.0029
0.0028 0.1711 −0.2654 0.0765 −0.0161 0.0093 −0.0008
0.0000 −0.0007 −0.0005 −0.0216 −0.0496 −0.0438 0.0697
−0.0000 −0.0024 0.0050 0.0111 0.0205 −0.0027 0.0009

0.4214 −0.1440 0.0371 0.2203 −0.1764 −0.0129 0.1051
0.4211 0.1318 −0.4410 −0.2741 −0.0304 −0.0734 0.0585


Using the iterative approach of Section 12.2.3, it is found that the maximum Hankel norm

of the reduced-input system is 1.343161 where

q =
[

0.2816 0.5588 0.7699 0.1252
]T

and is found in two iteration steps. The Hankel norm of the full-input system is 1.343171.

By considering the Hankel norm and system eigenvectors, the original and reduced-input

systems appear to be quite similar in their input-output properties. This might seem a

bit surprising given that the four disturbance directions are, pairwise, 24.26, 17.91, 17.52,

11.08, 6.85 and 6.64 degrees apart.

12.4 Extension to Parameter Variation Model Reduction

This section discusses an extension to input and output order reduction as applied to

an internal feedback loop parameter variation model (Tahk and Speyer 1987, Doyle 1982).
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Within the context of an uncertain parameter block variation model ∆ of the form

ẋ = Ax + Bu + Bωω

y = Cx

z = Czx

ω = ∆z

consider a model input and output reduction problem posed as follows. Find qω and qz with

‖qω‖ = ‖qz‖ = 1 such that the system triple

G
4
=
(
qT
z Cz, A, Bωqω

)
maximizes the Hankel norm

Jmax = max
qω

max
qz

ΓG(qω, qz)

= maxqω max
qz

max
x0

xT
0 Lox0

xT
0 L−1

c x0

= max
qω

max
qz

λmax(LcLo)

where

Lc =
∫ 0

−∞
e−AτBωqωqT

ω BT
ω e−ATτdτ

Lo =
∫ ∞

0
eATτCT

z qzq
T
z Cze

Aτdτ

This problem is also solved iteratively. First, hold qz fixed and solve for qω, then hold

qω fixed and solve for qz. The former problem is the same problem as that in Section 12.2.3;

the latter is the dual. Necessary conditions that follow are

LoLcx01 = λmaxx01
x01 (12.11a)

BT
ω

∫ 0

−∞
e−ATτx01x

T
01e
−AτdτBωqω = λmaxqω qω (12.11b)

and

LcLox02 = λmaxx02
x02 (12.12a)

Cz

∫ ∞
0

eAτx02x
T
02e

ATτdτCT
z qz = λmaxqz qz (12.12b)
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The proposed iteration is to solve (12.11a) and (12.11b) holding qz fixed until x01 and

qω are found. Then, holding qω fixed, solve (12.12a) and (12.12b) iteratively for x02 and

qz. The stopping condition is when Jmax = λmaxx01 = λmaxx02 within some tolerance. Note

that with both qω and qz as one-dimensional mappings, ∆ is a scalar.

12.5 Conclusions

A reduced-input system problem is formed from the point of view of preserving system

input-output properties. Necessary conditions for maximizing a reduced-input system

Hankel norm are stated and an iterative solution is proposed. An application to disturbance

direction identification is illustrated with a numerical example. Finally, an extension to

include applications to internal feedback loop parameter variation models is developed.





Chapter 13

Conclusions

Analytic redundancy continues to be a viable approach to vehicle health monitoring.

The fault detection filters and parity equations developed here as a point design for the

longitudinal mode are tested in a high-fidelity vehicle simulation where nonlinearities and

road variations are significant. The designed static patterns emerge clearly and quickly

in response to a fault. The residual processor, a multiple hypothesis Shiryayev sequential

probability ratio test, examines the filter and parity equation residuals and generates the

probability of the presence of a fault. This system also works well, responding to soft failures

in the presence of dynamic disturbances and vehicle nonlinearites. Sensor noise has been

omitted pending development of higher fidelity sensor models.

The design as presented is intended to be packaged as a module of a comprehensive

health monitoring and reconfiguration system under development at UC Berkeley. Further

development of this module should involve testing with empirically derived data and the

design and implementation of a software interface compatible with the system at Berkeley.

237
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A preliminary design of a range sensor fault monitoring system is sketched as an

application of a new decentralized fault detection filter structure. This system combines

dynamic state information already generated by the existing filter designs with inter-vehicle

analytic redundancy. This approach will be more fully tested as a high-fidelity multi-vehicle

simulation becomes available.



Appendix A

Fault Detection Filter Design Data

The reduced-order longitudinal linearized system matrices used for fault detection filter

design are

A =



−22.56 −0.12 0 0 0 0 0 0
307.03 −35.41 396.80 −2698.58 −238.10 1901.28 −432.86 −0.08

0 0.07 −0.76 4.87 0.43 −3.29 0.87 −0.00
0 0 0.00 0 1.00 −25.00 0 0
0 −0.00 −0.01 −39.72 −3.50 78.91 24.20 0.00
0 0 0 0 0 0 1.00 0
0 −0.02 0.22 −7.19 −0.61 −25.26 −3.73 0.00
0 0 0 0 0 0 0 −1.25



B =



2.35 0 −0.12
0 0 1.66
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1.25 0


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C =



1.00 0 0 0 0 0 0 0
0 1.00 0 0 0 0 0 0
0 0 1.00 0 0 0 0 0
0 0.07 −0.76 4.87 0.43 −3.29 0.87 −0.00
0 −0.00 −0.01 −39.72 −3.50 78.91 24.20 −0.00
0 0 7.10 −45.34 −4.00 146.48 2.83 −0.00
0 0.09 5.96 −40.56 −3.58 28.58 −6.51 −0.00



D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



The filter gain L and the output projection matrices Ĥuα , ĤuTb
, Ĥyma and ĤyTm for the

first fault detection filter are as follows.

L =



19.56 0.12 0.00 0.00 −0.00 −0.00 0.00
−307.03 523.06 −334.41 −6277.18 8.39 3.99 −832.46
−0.00 11.97 −11.36 −156.00 0.20 0.10 −18.91

0.00 0.00 −1.96 −0.10 −0.06 0.19 0.03
0.00 −0.07 −7.21 −0.00 −1.17 −0.08 0.83
−0.00 −0.00 0.01 −0.01 −0.02 −0.02 0.03

0.00 −3.51 1.38 46.16 −0.26 0.32 5.26
−0.00 −60.65 19.39 784.64 −2.29 0.07 96.37



Ĥuα =



0.93 0.07 −0.02 0.11 0.16 −0.10 −0.11
0.07 0.01 −0.00 0.01 0.00 0.03 −0.05
−0.02 −0.00 0.99 0.04 0.05 −0.03 −0.04

0.11 0.01 0.04 0.16 −0.28 −0.12 −0.18
0.16 0.00 0.05 −0.28 0.62 0.23 0.28
−0.10 0.03 −0.03 −0.12 0.23 0.73 −0.35
−0.11 −0.05 −0.04 −0.18 0.28 −0.35 0.55



ĤuTb
=



0 0.00 0 0.00 −0.00 0 0.00
0.00 0.01 0 −0.07 0.00 0 −0.09

0 0 1.00 0 0 0 0
0.00 −0.07 0 1.00 0.00 0 −0.01
−0.00 0.00 0 0.00 1.00 0 0.00

0 0 0 0 0 1.00 0
0.00 −0.09 0 −0.01 0.00 0 1.00


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Ĥyma = ĤyTm =



0 0 0 0 0 0 0
0 0.08 −0.02 0.13 0.16 −0.07 −0.16
0 −0.02 1.00 0.00 0.00 −0.00 −0.00
0 0.13 0.00 0.35 −0.02 −0.28 −0.36
0 0.16 0.00 −0.02 0.97 0.01 0.03
0 −0.07 −0.00 −0.28 0.01 0.86 −0.19
0 −0.16 −0.00 −0.36 0.03 −0.19 0.74



The filter gain L and the output projection matrices Ĥyωe , Ĥyax , Ĥyωf
for the second fault

detection filter are as follows.

L =



18.56 0.12 −0.00 0.00 0.00 −0.00 0.00
−307.03 38.32 −0.00 −0.00 −0.00 0.00 −66.53

0.01 −0.00 −3.00 −1.00 0.00 0.00 0.00
0.75 0.01 0.16 −0.04 0.04 0.21 −0.13
2.16 −0.00 4.11 −0.01 −0.61 −0.00 −0.08
−0.01 −0.00 −0.13 −0.02 −0.03 −0.02 0.05

0.54 0.03 0.02 0.36 −0.12 0.33 −0.38
0.01 −95.97 32.35 1230.72 −3.58 0.10 151.14



Ĥyωe =



1.00 −0.00 −0.00 0.00 0.00 −0.00 −0.00
−0.00 1.00 −0.00 0.00 0.00 0.00 −0.00
−0.00 −0.00 0.99 0.00 0.09 −0.00 −0.02

0.00 0.00 0.00 −0.00 0.00 −0.00 −0.00
0.00 0.00 0.09 0.00 0.01 −0.00 −0.00
−0.00 0.00 −0.00 −0.00 −0.00 0.00 0.00
−0.00 −0.00 −0.02 −0.00 −0.00 0.00 0.00



Ĥyax =



1.00 0.00 0.00 −0.04 0.06 −0.00 −0.06
0.00 0.00 −0.00 0.00 0.00 −0.00 −0.00
0.00 −0.00 1.00 0.00 −0.00 −0.00 0.00
−0.04 0.00 0.00 0.03 0.18 −0.00 −0.03

0.01 0.00 −0.00 0.18 0.94 −0.00 −0.17
−0.00 −0.00 −0.00 −0.00 −0.00 0.00 0.00
−0.01 −0.00 0.00 −0.03 −0.17 0.00 0.03



Ĥyωf
=



1.00− 0.000.000.00− 0.010.03− 0.04
−0.000− 0.00− 0.000.000.000.00

0.00− 0.000.990.000.05− 0.05− 0.02
0.00− 0.000.000.00− 0.00− 0.00− 0.00

−0.010.000.05− 0.000.580.470.15
0.030.00− 0.05− 0.000.470.390.12
−0.040.00− 0.02− 0.000.150.120.04


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The filter gain L and the output projection matrices Ĥyvx , Ĥyaz , Ĥyωr for the third fault

detection filter are as follows.

L =



1.96 0.12 −0.00 0.00 −0.00 −0.00 0.00
−307.03 38.32 −0.00 0.01 −0.00 0.00 −66.53
−0.00 0.00 −3.01 −1.01 0.00 −0.00 0.00

0.00 0.07 −1.11 −0.52 −0.06 0.34 −0.10
0.00 0.38 −0.02 −3.38 −1.14 0.56 0.01
−0.00 −0.00 −0.24 −0.06 −0.03 −0.04 0.05

0.00 0.03 0.26 0.39 −0.15 0.36 −0.35
0.00 −94.97 14.68 1234.19 −3.10 1.68 151.15



Ĥyvx =



1.00 −0.00 −0.00 0.00 −0.00 −0.00 0.00
−0.00 0.00 −0.00 −0.03 0.00 −0.01 0.00
−0.00 −0.00 1.00 0.00 −0.00 −0.00 0.00

0.00 −0.03 0.00 0.90 −0.00 0.30 −0.00
−0.00 0.00 −0.00 −0.00 −0.00 −0.00 −0.00
−0.00 −0.01 −0.00 0.30 −0.00 0.10 −0.00

0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00



Ĥyaz =



1.00 0.00 0.00 0.00 −0.00 0.00 0.00
0.00 0.03 −0.00 −0.08 0.02 0.16 −0.00
0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.00
0.00 −0.08 0.00 0.99 0.07 0.00 0.00
−0.00 0.02 −0.00 0.07 0.03 0.16 −0.00

0.00 0.15 −0.00 0.00 0.16 0.95 −0.00
0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.00



Ĥyωf
=



1.00 −0.00 0.00 −0.00 −0.00 0.0 0.00
−0.00 1.00 0.00 −0.00 0.00 0.00 0.00

0.00 0.00 −0.00 −0.00 −0.00 −0.00 −0.00
−0.00 −0.00 −0.00 0.99 −0.00 0.01 0.12
−0.00 0.00 −0.00 −0.00 0 −0.00 −0.00

0.00 0.00 −0.00 0.01 −0.00 0.00 0.00
0.00 0.00 −0.00 0.12 −0.00 0.00 0.01


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