
UC San Diego
Technical Reports

Title
Weak leader election for receive-omission process failures

Permalink
https://escholarship.org/uc/item/62v3t6sw

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2005-01-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62v3t6sw
https://escholarship.org
http://www.cdlib.org/

Weak leader election for receive-omission process failures

Flavio P. Junqueira

flavio@cs.ucsd.edu

Keith Marzullo

marzullo@cs.ucsd.edu

University of California, San Diego

Department of Computer Science and Engineering

9500 Gilman Drive

La Jolla, CA – USA

1 Introduction

Leader election is an important primitive in fault-tolerant

distributed computing because it enables the solution of

problems broadly applicable in real systems such as Con-

sensus, as illustrated by the Paxos algorithm [1], and

Primary-Backup, as in [2].

The particular version of the Leader Election problem

we develop upon first appeared in the context of Primary-

Backup algorithms. In the Primary-Backup approach for

fault-tolerant services, clients issue requests that the pri-

mary is responsible for handling and replying to. When

the primary fails, one of the backup replicas emerges as

the new primary. Thus, a Primary-Backup algorithm must

embed a Leader Election algorithm to infinitely often se-

lect a primary.

In [2], Budhiraja and Marzullo show a lower bound of

n > 3t/2 for such algorithms when processes can fail

to receive messages. The basic idea of the lower bound

proof is that multiple primaries can be elected if fewer

than (3t/2) + 1 processes compose the system. In a later

section, we repeat this result for exposition purposes.

Still on the early work by Budhiraja and Marzullo

on Primary-Backup algorithms, the degree of replication

necessary is higher because they assume that faulty pro-

cesses cannot be elected [2]. According to their statement

of the problem, if a process does not crash but it com-

mits receive-omission failures, then it cannot be elected.

This is due to the assumption that responses to client re-

quests are bounded in time. Failure detection for receive-

omission failures, however, requires at least twofold repli-

cation.

When implementing a system based on the Primary-

Backup approach, servers should be connected by a local

area network to bound response time to client requests,

which implies bounded fail-over time. For such settings,

partitions are unlikely to occur if processors operate at a

reasonable speed. Messages, however, can be lost due

to, for example, buffer overflows at the receiver. One

can imagine using retransmissions to cope with such fail-

ures. A retransmission mechanism, however, only guar-

antees eventual delivery, bounded response is not possi-

ble with eventual delivery of messages. Due to the re-

quirements on bounded response and failure-over time,

Primary-Backup algorithms are usually synchronous.

In this paper, we describe a synchronous algorithm for

leader election under receive-omission process failures

and prove its correctness. The novelty in this algorithm

is fourfold: 1) it proves tight a lower bound that has been

known for over 10 years; 2) in permitting faulty (but not

crashed) processes to be elected, it requires fewer repli-

cas; 3) it is based on cores and survivor sets which are

abstractions that enables one to more expressively repre-

sent failure patterns by considering failures that are not

independent or not identically distributed; 4) although it

allows for faulty processes to be elected, correct processes

are able to detect it, enabling the use of alarms to indi-

1

cate failures in the system. Relating to our discussion on

Primary-Backup protocols, by assuming that faulty pro-

cesses can be elected, we cannot bound response time for

a Primary-Backup algorithm. We can guarantee, how-

ever, that there is a single primary at any time, and that

response is bounded whenever a correct process emerges

as the primary. We further discuss this and other issues

with Primary-Backup protocols later in the paper.

The remainder of this paper is as follows. We detail the

system model in Section 2. We then introduce the prob-

lem by stating the properties an algorithm should fulfill

(Section 3). Still in Section 3, we repeat the lower bound

proof for process replication, and generalize this bound to

our model of dependent failures. Section 4 describes our

WLE algorithm for Leader Election. As we shall see, the

algorithm depends on a primitive that we call RO Consen-

sus. The properties for RO Consensus resembles the ones

for the traditional Consensus primitive. The differences,

however, are significant enough for naming the problem

differently. In Section 4, we also provide an algorithm for

RO Consensus. Sections 5 and 6 provide proofs of cor-

rectness for ROC and WLE, respectively. In Section 7,

we strengthen the definition of leader election to disable

executions in which different leaders are elected infinitely

often, and provide a simple modification of the algorithm

that enables it. Before concluding, we provide a discus-

sion on the implications of the properties of our algorithm

in a Primary-Backup protocol in Section 8. We finally

conclude in Section 9.

2 System model

A system is a collection of processes Π = {p1, p2, . . . , pn}

that communicate by messages.1 For every pair of pro-

cesses pi, p j ∈ Π, there is a channel that pi uses to send

messages to p j.

In such a system, an algorithmA is a collection of state

machines, one for each process. A then proceeds in steps

of processes. In a step, a process pi executes atomically

the following:
∧ ∨

receives a message from a process p j

1We use pi to denote a process and i to denote the identifier of this

process.

∨
sends a message to a process p j

∨
executes a local operation∧
undergoes a state transition

We define an execution φ ofA as a tuple 〈F, I, S ,T,T〉,

where F is the set of processes that are faulty in φ; I is the

set of initial values, one for each process; S is a set of

steps; T is a set of real values; T : S → T is a mapping

from steps to real values. The real values in T correspond

to the global time in which steps execute. T (s) therefore

is the global time in which step s ∈ S executes. We use

global time in proofs, and we do not assume such a virtual

clock that produces global time is available to processes.

We also use Correct(φ) for the set of processes that are

correct in φ = 〈F, I, S ,T,T〉. That is, Correct(φ) = Π \

F. Finally, Φ is the set of valid executions of A. An

execution is valid if it does not violate any assumption

made regarding the system and is correct with respect to

the algorithm.

We assume that processes can fail by crashing or by

omitting to receive messages. If a process pi crashes in

an execution φ, then there is step s of pi such that pi exe-

cutes no further steps after T (s). We call this step a crash

step. On the other hand, if a process is receive-omission

faulty, it can selectively fail in receiving messages. To

describe valid failure patterns, we use our model of de-

pendent process failure based on the abstractions of cores

and survivor sets. We define cores and survivor sets as

follows:

Definition 2.1 A subset C ⊆ Π is a core if and only if: 1)

∀φ ∈ Φ, Correct(φ) ∩ C , ∅; 2) ∀pi ∈ C, ∃φ ∈ Φ such

that C \ {pi} ∩ Correct(φ) = ∅.

Definition 2.2 A subset S ⊆ Π is a survivor set if and

only if: 1) ∃φ ∈ Φ, Correct(φ) = S ; 2) ∀φ ∈ Φ, pi ∈ S ,

Correct(φ) 1 S \ {pi}.

By the definition of a survivor set, every subset of pro-

cessesΠ′ ⊂ Π is a valid failure pattern if and only if exists

S ∈ SΠ such that S ∩ Π′ = ∅.

We use the term system profile to denote a description

of the possible failure patterns. In the threshold model, a

system profile is a pair 〈Π, t〉, which means that any subset

2

of t processes in Π can be faulty. In our dependent failure

model, the system profile is a triple 〈Π,CΠ, SΠ〉, where

CΠ is the set of cores and SΠ is the set of survivor sets.

We assume that systems are synchronous: the steps of

every execution of some algorithm A can be split into

rounds. That is, there is a mapping Round : S → R

from steps of processes to round numbers, where R = Z
∗

and round numbers monotonically increase with time. We

then have the following properties for rounds:

P-Liveness : If a process executes all the steps of a round

r, then every process that does not crash by r exe-

cutes at least one step of r.

C-Liveness : If a process pi sends a message m to a cor-

rect process p j at round r and pi does not crash by

round r, then p j receives m at round r.

Integrity : If pi receives a message m from p j, then p j

sent m to pi.

No duplicates : No message m is received more than

once.

3 Problem specification

For the following description of the problem, we assume

that each process pi in Π has a boolean variable pi.elected

that is set to true if the process elects itself, and to false

otherwise. We then define the Weak Leader Election

problem with the following three properties:

Safety �|{pi ∈ Π : pi.elected}| < 2.

LE-Liveness �^(|{pi ∈ Π : pi.elected}| > 0).

FF-Stability In a failure-free execution, only one pro-

cess ever has elected set to true.

These properties basically state that infinitely often

some process elects itself, and no more than one process

elects itself at any time. The third property eliminates

the possibility of an algorithm that, for example, elects

processes in a round-robin fashion. It does not rule out,

however, executions in which processes alternate as lead-

ers forever. For this reason, we propose another property

called E-Stability stated as follows:

E-Stability ∃pi ∈ Π : ^�(∀p j ∈ Π : p j.elected ⇒ (j =

i))

An algorithm satisfying this property eventually elects

the same process forever in every execution.

In the following sections, we first derive an algorithm

that satisfies the first three properties. Later we modify

this algorithm to also satisfy E-Stability. First, we show a

lower bound for this problem.

3.1 Lower bound on process replication

In [2], the following lower bound was shown. The proof

was given in the context of showing a lower bound on

replication for Primary-Backup protocols.

Lemma 3.1 Weak leader election for receive-omission

failures requires n > ⌊3t/2⌋.

Proof:

Assume that leader election for receive-omission failures

can be solved with n = ⌊3t/2⌋. Partition the processes into

three blocks A, B and C where |A| = ⌊t/2⌋, |B| = ⌊t/2⌋,

and |C| = ⌈t/2⌉. Consider an execution φA in which the

processes in B and C initially crash. From LE-Liveness,

eventually a process in A will be elected. Similarly, let

φB be an execution in which the processes in A and C

crash. From LE-Liveness, eventually a process in B will

be elected.

Finally, consider an execution φ in which the processes

in A fail to receive all messages except those sent by pro-

cesses in A, and the processes in B fail to receive all mes-

sages except those sent by processes in B. This run is

indistinguishable from φA to the processes in A and is in-

distinguishable from φB to the processes in B. Hence,

there will eventually be a process in A elected and a pro-

cess in B elected, violating Safety.

�

3.2 Replication predicate

To develop the protocol, we first generalize the replica-

tion predicate for this problem for the core/survivor set

model, where a replication predicate is a predicate that

3

establishes whether there is sufficient replication to en-

able the solution of a particular problem. From the lower

bound proof of Lemma 3.1, we consider any partition

of the processes into three blocks. Then, one constructs

three executions, where in each execution all of the pro-

cesses in two of the three subsets are faulty. If we can con-

struct such a partition, then we cannot solve the problem.

The conclusion of the lower bound proof is the following

property for k = 3:

Property 3.2 : (k,k-1)-Partition, k > 1

For every partitionB = {B1, . . . , Bk} ofΠ, there is a subset

B′ = {Bℓ1
, . . . , Bℓk−1

} ⊂ B such that ∪iBℓi
contains a core.

�

Let Gb(A) be all subsets of A of size b. The equivalent

intersection property is:

Property 3.3 : (k,k-1)-Intersection, k > 1

∀S ∈ Gk(SΠ) : ∃P ∈ G2(S) : (∩S∈PS) , ∅ �

Stated more simply, (k,k-1)-Intersection says that for

any set of k survivor sets, at least two of them have a non-

empty intersection.

Here is an example of a system that satisfies (3,2)-

Intersection. It is based on a simple two-cluster system.

Each cluster has the same number of processes. A pro-

cess can fail by crashing, and there is a threshold t on the

number of crash failures that can occur in a cluster. A

cluster can also suffer a catastrophic failure, which causes

all of the processes in that cluster to fail. Such a catas-

trophic failure can result from the failure of a cluster re-

source such as a disk array or a power supply, or from an

administrative error. We assume that catastrophic failures

are rare enough that the probability of both clusters suf-

fering catastrophic failures is low. Processes can crash in

one cluster at the same time that the other cluster suffers

a catastrophic failure.

Assuming that each cluster has three processes and t =

1, we have the following system profile:

• Π = {pA1
, pA2

, pA3
, pB1

, pB2
, pB3
};

• CΠ = {{pi1 , pi2 , pi3 , pi4 }|(i1, i2 ∈ {A1, A2, A3}) ∧

(i3, i4 ∈ {B1, B2, B3})};

• SΠ = {{pi1 , pi2 }|(i1, i2 ∈ {A1, A2, A3}) ∨ (i1, i2 ∈

{B1, B2, B3})};

To see why this system satisfies (3, 2), we just have to

observe that for any three survivor sets, at least two of

them intersect each other.

Theorem 3.4 (k,k-1)-Partition ≡ (k,k-1)-Intersection

Proof:

(k,k-1)-Partition→ (k,k-1)-Intersection:

We show the contrapositive. Consider a system profile

such that, for some subset S = {S 1, S 2, . . . , S k} ⊂ SΠ, no

pair of survivor sets S i, S j intersects. That is, ∪P∈G2(S) ∩

P = ∅. We then build a partition B = {B1, B2, . . . , Bk} as

follows:

B1 = Π \ (S 2 ∪ S 3 ∪ . . . ∪ S k)

B2 = Π \ (S 1 ∪ S 3 ∪ . . . ∪ S k ∪ B1)

...

Bi = Π \ (S 1 ∪ S 2 ∪ . . . ∪ S i−1 ∪ S i+1 ∪ . . .

. . . ∪ S k ∪ B1 ∪ B2 . . . ∪ Bi−1)

...

Bk = Π \ (S 1 ∪ S 2 ∪ . . . S k−1 ∪ B1 . . . ∪ Bk−1)

We have to show that: 1) B1, . . . , Bk is a partition; 2)

For every subset {Bi1 , Bi2 , . . . , Bik−1
} ⊂ {B1, . . . , Bk}, ∪ jBi j

does not contain a core. To show 1), let ψi = ∪(S j∈S\S i)S j,

i ∈ {1, . . . , k}. We then have the following derivation:

∪ Bi = (Π \ ψ1) ∪ (Π \ ψ2 ∪ B1) ∪ . . .

. . . ∪ (Π \ (ψk ∪ B1 ∪ B2 . . . ∪ Bk−1)) (1)

= Π \ ((ψ1 ∩ (ψ2 ∪ B1)) ∩ . . .

. . . ∩ (ψk ∪ B1 ∪ B2 . . . ∪ Bk−1)) (2)

= Π \ (ψ1 ∩ ψ2 ∩ . . .

. . . ∩ (ψk ∪ B1 ∪ B2 . . . ∪ Bk−1)) (3)

...

= Π \ (∩iψi) (4)

= Π (5)

• Line 1 to Line 2 follows from the observation that for

any subsets A, B ofΠ, we have that (Π\A)∪(Π\B) =

Π \ (A ∩ B);

4

• Line 2 to Line 3: the intersection between ψ1 and

B1 has to be empty, since ψ1 contains exactly the

elements we removed from Π to form B1.

• Line 3 to Line 4: by repeating inductively the pro-

cess used to derive Line 3, we are able to remove

every term Bi present in the equation.

• Line 4 to Line 5: Transforming from a conjunctive

form to a disjunctive form, we have that ∩P∈Gk−1(S) ∪

P = ∪P∈G2(S) ∩ P. To see why this is true, note that

for every pair S i, S j ∈ S, i , j, and P ∈ Gk−1(S), we

have that (S i ∈ P) ∨ (S j ∈ P). Finally, we have that

∪P∈G2(S)(∩S i∈PS i) = ∅ by assumption.

By the construction of the partition and from the as-

sumption that for every S i, S j ∈ S, S i ∩ S j = ∅, we

have that for every i ∈ {1, . . . , k}, there is S i ∈ S such

that S i ⊆ Bi. From this, we conclude that for any

{Bi1 , Bi2 , . . . , Bik−1
} ⊂ B, ∪ jBi j

does not contain elements

from some survivor set, and consequently it does not con-

tain a core.

(k,k-1)-Partition← (k,k-1)-Intersection:

We also prove the contrapositive for this direction.

Suppose a system profile 〈Π,CΠ, SΠ〉 such that there is

a partition B = {B1, B2, . . . , Bk} in which no union of

k − 1 subsets of B contains a core. We then have that

for Bi there is a S i ∈ SΠ such that S i ⊆ Bi. Thus, for all

Bi, B j ∈ B, i , j, we have by assumption that Bi∩B j = ∅,

and consequently S i ∩ S j = ∅. We conclude that no pair

S i, S j ∈ {S 1, S 2, . . . , S k} is such that S i ∩ S j , ∅.

�

4 The algorithm

In this Section, we describe our algorithm WLE for Weak

Leader Election (Figure 2). It assumes a system with

a profile 〈Π,CΠ, SΠ〉 that satisfies (3,2)-Intersection and

uses as a building block an algorithm ROC that imple-

ments a weak version of Uniform Consensus that we call

RO Consensus. We call it RO Consensus because its defi-

nition resembles the one of Consensus. It is tailored, how-

ever, to fulfill the requirements of WLE.

Each process pi has an initial value pi.a ∈ V ∪ {⊥},

where V is the set of initial values, and a decision value

pi.d [1 . . . n], where pi.d[j] ∈ V ∪ {⊥}. We use v ∈ pi.d to

denote that there is some pℓ ∈ Π such that pi.d[ℓ] = v. If a

process pi crashes, then we assume that its decision value

pi.d is N . To avoid repetition throughout the discussion

of our algorithm, we say that a process p decides in an

execution φ if p.d is different than N .

As we descibe later, we execute ROC multiple times in

electing a leader. We then have that processes may crash

before starting an execution φ of ROC. Such processes

consequently have initial value undefined in φ. We there-

fore use⊥ to denote the initial value of crashed processes.

That is, if pi.a =⊥, then pi has crashed.

Let the relation x ⊆ y for x and y lists of n elements be

that, for all i : 1 ≤ i ≤ n, (x[i] ,⊥) ⇒ (x[i] = y[i]).

We use the symbol N to stand for the n element list

[⊥, . . . ,⊥].

The specification of RO Consensus is given by four

properties as follows:

Termination: Every process that does not crash eventu-

ally decides on some value.

Agreement: If p j.d[ℓ] ,⊥, then for every non-faulty pi,

pi.d[ℓ] = p j.d[ℓ];

RO Uniformity: Let vals be {d : ∃pi ∈ Π s.t. (pi.d =

d)} \ N . Then,∧
1 ≤ |vals| ≤ 2∧
∀d, d′ ∈ vals : d ⊆ d′ ∨ d′ ⊆ d∧
∀d f , dc ∈ vals, d f ⊆ dc : ∃S f , S c ∈ SΠ :

∧ ∀p ∈ S f : ∨ p crashes

∨ p.d = d f

∧ ∀p ∈ S c : ∧ p.d = dc

∧ p is not faulty

That is, there can be no more than two non-N deci-

sion values, and if there are two then one is a subset

of the other. Furthermore, if there are two different

decision values, then these are the values that pro-

cesses in two disjoint survivor sets decide upon, one

for the processes of each survivor set.

Validity:∧
If p j does not crash, then for all non-faulty pi,

pi.d[j] = p j.a

5

∧
If p j does crash, then exists v ∈ {⊥, p j.a} such that

for all non-faulty pi, pi.d[j] = v;∧
If there are survivor sets S f , S c ∈ SΠ

and values v f , vc ∈ V , v f , vc, such that

∧ ∀p ∈ S f :p.a ∈ {v f ,⊥}

∧ ∀p ∈ S c :∧ p.a = vc

∧ p is not faulty

∧ ∃pi, pℓ ∈ Π : pi.d[ℓ] = v f

then for all p j that does not crash, v f ∈ p j.d

That is, if a process pi is not faulty and pi.d[j] ,⊥,

then the value of pi.d[j] must be p j.a. The value of

pi.d[j], however, can be ⊥ only if p j crashes. The

third case exists because we use the decision values

of an execution as the initial values for another exe-

cution. From RO Uniformity, there can be two dif-

ferent non-N values d f and dc. If this is the case,

then there is a survivor set S c containing only cor-

rect processes such that all processes in S c decide

upon dc, and another survivor set S f containing only

faulty processes such that all the processes in S f ei-

ther crash or decide upon d f . Let v f be d f and vc be

dc. By the third case, if some process that decides

includes v f = d f in its decision value, then every

process that does not crash also includes v f = d f in

its decision value.

We now describe our algorithm ROC for RO Consen-

sus called. Figure 1 shows the pseudocode for a single

process. From the figure, the algorithm ROC executes

exactly in t+1 rounds, where t = mins{s = |S i|∧S i ∈ SΠ}

or alternatively t = maxc{c = |Ci| ∧ Ci ∈ CΠ}
2. For the

proof of correctness we present in the next section, we as-

sume that the value of t is at least one (t ≥ 1). Note that

for t = 0 there is a trivial, much simpler algorithm.

In every round r of ROC, processes send their list of

values to a subset of the processes Π′ in Π. If process pi

does not crashes or stops3 in round r, then Π = Π′. Oth-

erwise, this subset is arbitrary. Before the end of round

2The first and the last rounds in the algorithms are actually half

rounds, and we then consider that both together constitute a single

round. Put it another way, we can easily rearrange the order of send-

ing and receiving messages to make it fit into t + 1. We have chosen the

former for expositional convenience.
3A stop instruction is equivalent to a crash in that a process does not

execute any further steps after executing a stop instruction. A process,

r, every process pi that does not execute a crash step at r

receives all the messages sent to it at round r. Note that

if a process pi crashes at round r, but sends a message mi

to process p j, then p j does not necessarily receives mi by

C-Liveness. We then use Mi to denote the set of messages

pi receives by the end of any round r, and p.s(r) to denote

the set of processes from which process p receives mes-

sages in round r, where 0 ≤ r ≤ t. Processes send no

messages at the last round. Note that, by the algorithm,

messages received by the end of round r are available for

processing at the beginning of round r + 1.

If a process detects that it has failed to receive mes-

sages, then it stops by deciding on N . In the discussion

that follows, we treat processes that crash and processes

that stop indistinctly. If a distinction is necessary, then we

clearly state it. There are two ways a processes pi can de-

termine that it is faulty: 1) By receiving messages from a

set of processes at round r such that pi.s(r) 1 pi.s(r − 1),

r > 1; 2) By determining that in its set of messages of

round r, there is no survivor set potentially containing

only correct processes. The second form of detection re-

lies on the set of values pi receives from another process

p j. If pi notices that p j did not receive a previous mes-

sage from pi, then pi declares p j faulty. By removing the

obviously faulty processes and looking at the remaining

set, if there is no survivor set in the remaining set, then pi

must be faulty as well.

Figure 2 shows the pseudocode for an algorithm that

solves the Weak Leader Election problem. It proceeds in

iterations of an infinite repeat loop. In each iteration, a

process executes ROC twice, and decide if it has to elect

itself by the end of the second phase.

In the following sections, we prove the correctness of

both ROC and WLE.

5 Correctness of ROC

We provide a proof of correctness for the ROC algorithm.

We say that a process pi is live at round r if either one of

the following happens:

however, executes a stop instruction based on the code, and hence it is

not arbitrary.

6

Algorithm ROC on input pi.a

round 0:

pi.s(0)← Π; pi.sr(0)← pi.s(0)

pi.A [i]← pi.a

for all pk ∈ Π, pk , pi : pi.A [i]← ⊥

pi.A
′ ← pi.A

send pi.A to all

round 1:

pi.sr(1)← pi.s(1)

if ∨∄S ∈ SΠ : S ⊆ pi.s(1)

then decide [⊥, . . . ,⊥]

else

for each message m j ∈ Mi, pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m j.A [k]

send pi.A to all

round r: 2 ≤ r ≤ t:

pi.sr(r)← pi.s(r) \ {p j :∃m j ∈ Mi :

pi.A
′ * m.A}

if ∨pi.s(r) * pi.s(r − 1)

∨∄S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]

else

pi.A
′ ← pi.A

for each message m ∈ Mi, pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]

send pi.A to all

round t + 1:

pi.sr(t + 1)← pi.s(t + 1) \ {p j :∃m j ∈ Mi :

pi.A * m.A}

if ∨ pi.s(t + 1) * pi.s(t)

∨∄S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]

else for each message m ∈ Mi, pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]

decide pi.A

Figure 1: Algorithm run by process pi.

Algorithm WLE

repeat {

pi.elected← FALSE

Phase 1:

Run ROC with

pi.a← i.

if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:

Run ROC with

pi.a← pi.d from Phase 1.

if (pi.d = [⊥, . . . ,⊥]) then stop

let x be a value of pi.d [1 . . . n]

such that pi.d [x] , [⊥, . . . ,⊥]

and it has the least number of non-⊥ values

if (pi is the first index of x such that x[i] , ⊥)

then pi.elected← TRUE

}

Figure 2: Algorithm run by process pi.

• if pi sends at least one message mi to some process

p j at round r, 0 ≤ r ≤ t, and p j receives mi by the

end of round r;

• if pi decides at round r, r = t + 1.

We use Live(r) to denote the processes that are live at

round r. For an execution φ = 〈F, I, S ,T,T〉 of ROC we

define the following to use in the proofs of this section:

• T i
φ(i, r) ∈ T denotes the value of T (s f), where pi ∈

Live(r) and s f ∈ S is the first step pi executes of

round r, r ∈ {0, . . . , t + 1}. If pi executes no steps in

r, then T i
φ(pi, r) is undefined;

• T u
φ(i, r) ∈ T denotes the value of T (sm), where pi ∈

Live(r) and sm ∈ S is the first step of round r in

which pi sends a message, 0 ≤ r ≤ t. If pi < Live(r),

then T i
φ(pi, r) is undefined;

• T u
φ(i, t+1) ∈ T denotes T (sd), where pi ∈ Live(t+1)

and sd ∈ S is the step in which pi decides at round

t + 1. If pi < Live(r), then T i
φ(pi, t + 1) is undefined;

• A(i, r) denotes the value of pi.A at T u
φ(i, r), if pi ∈

Live(r). Otherwise, A(i, r) is undefined;

7

• M(i, r) denotes the value of Mi at T i
φ(i, r), if pi ∈

Live(r). Otherwise, M(i, r) is undefined;

• Mr
i

is a list of n values, one for each process in Π

such that the following holds: If {v : v = m.A[j] ∧

m ∈ M(i, r)∧m.A[j] ,⊥} is not empty, then Mr
i
[j] =

p j.a. Otherwise, Mr
i
[j] =⊥;

Processes that are alive in a round r may send messages

to a strict subset of Π. Thus, in executions in which pro-

cesses fail, we have that processes may have a different

knowledge of the initial values. For the purpose of ana-

lyzing these cases, we define a process chain (or simply a

chain) ωℓ = (i0 ◦ i1 ◦ . . . ◦ ik)ℓ, k ≤ t + 1, to be a string

over the set of process identifiers. Let ωℓ[x] be the pro-

cess identifier at position x of the chain ωℓ. The following

holds for a process chain ωℓ:

1. ωℓ[r] , ωℓ[r
′], if r , r′;

2. If ωℓ[r] = i, then (A(i, r)[ℓ] ,⊥) ∧ (∀r′ ∈ {x ∈ Z
∗ :

x ≤ r − 1} : A(i, r′)[ℓ] =⊥);

3. If ωℓ[r] = i, r > 0, then ∃m j ∈ M(i, r) : (m j.A[ℓ] ,⊥

) ∧ ωℓ[r − 1] = j;

4. If ωℓ[0] = i, then i = ℓ.

We say that a process pi is in ωℓ (pi ∈ ωℓ) if and only if

there exists an index r such that ωℓ[r] = i. We use process

chains in the proofs below to represent the propagation of

knowledge in executions with failures.

Figure 5 shows the structure of the proof of proposi-

tion 5.1, which is stated as follows:

Proposition 5.1 ROC implements RO Consensus.

We prove Proposition 5.1 with the following lemmas.

Lemma 5.2 Let φ be an execution of ROC, r be a round

of φ, 0 ≤ r ≤ t + 1, pi be a process in Live(r), and p j be a

process in Π. If A(i, r)[j] ,⊥, then A(i, r) = p j.a.

Proof:

We show with an induction on the round numbers ρ, 0 ≤

ℓ ≤ r′, that for every round r′ ≤ r, if pℓ ∈ Live(r′) and

A(ℓ, r′)[j] ,⊥, then A(ℓ, r′)[j] = p j.a. The base case is

ρ = 0. From the algorithm, at round 0 a process pℓ has

Proposition

5.1: {5.19, 5.20, 5.21, 5.22}

Theorems

5.20: {}

5.21: {5.15}

5.22: {5.15, 5.16, 5.18}

5.23: {5.2, 5.15, 5.17}

Lemmas

5.2: {}

5.3: {5.2}

5.4: {5.2, 5.3}

5.5: {5.3, 5.4}

5.6: {5.5}

5.7: {5.4, 5.6}

5.8: {5.6}

5.9: {}

5.10: {5.9}

5.11: {5.4, 5.5}

5.12: {5.6, 5.7, 5.10, 5.11}

5.13: {5.2, 5.6, 5.7, 5.10, 5.11, 5.12}

5.14: {5.2, 5.4, 5.12, 5.13}

5.15: {5.13}

5.16: {5.2, 5.4, 5.5, 5.11, 5.12}

5.17: {5.13, 5.16}

5.18: {5.5, 5.11, 5.13, 5.14, 5.15, 5.16, 5.17}

5.19: {5.3, 5.4, 5.13, 5.16}

Figure 3: ROC hierarchy.

A(ℓ, 0)[j] =⊥, if ℓ , j, and A(ℓ, 0)[j] = pℓ.a otherwise.

Thus, A(ℓ, 0)[j] ,⊥ only if ℓ = j, and A(ℓ, 0)[ℓ] = pℓ.a

by construction.

Now suppose that for every pℓ ∈ Live(ρ) if

A(ℓ, ρ)[j] ,⊥, then A(ℓ, ρ)[j] = p j.a. We show that

for every pℓ ∈ Live(ρ + 1), if A(ℓ, ρ + 1)[j] ,⊥, then

A(ℓ, ρ + 1)[j] = p j.a. By the algorithm, if pℓ ∈ Live(ρ)

is such that A(ℓ, ρ)[j] = p j.a, then for every message m it

sends at round ρ, m.A[j] = p j.a. For pℓ′ ∈ Live(ρ + 1), if

pℓ′ .A[j] ,⊥ at T i
φ(ℓ′, ρ + 1), then A(ℓ′, ρ)[j] ,⊥ and must

be equal to p j.a by the induction hypothesis. Otherwise,

for every message m it receives such that m.A[j] ,⊥,

m.A[j] = p j.a. Thus, by the algorithm, if pℓ′ receives

at least one such a message, it sets pℓ′ .A[j] to p j.a, and

we have that A(ℓ′, ρ + 1)[j] = p j.a.

From the previous induction, we conclude that

A(i, r)[j] = p j.a.

8

�

Lemma 5.3 Let φ be an execution of ROC, r be a round

of φ, 0 < r ≤ t + 1, and pi be a process in Live(r). For

every message m ∈ M(i, r) such that m.A[ℓ] ,⊥, for some

pℓ ∈ Π, m.A[ℓ] = pℓ.a.

Proof:

By Lemma 5.2, for every p j ∈ Live(r − 1), if A(j, r −

1)[ℓ] ,⊥, then A(j, r−1)[ℓ] = pℓ.a. If p j sends a message

m j to pi at round r − 1, then m.A[ℓ] = pℓ.a. We conclude

that for every m ∈ M(i, r) such that m.A[ℓ] ,⊥, m.A[ℓ] =

pℓ.a.

�

Lemma 5.4 Let φ be an execution of ROC and r be a

round of φ, 0 < r ≤ t + 1. For every pi ∈ Live(r), Mr
i
=

A(i, r).

Proof:

By the algorithm, if pi ∈ Live(r), then for every j ∈

[1 . . . n], such that pi.A[j] =⊥ at T i
φ(i, r), pi sets pi.A[j] to

a value v ∈ V = {v : v = m.A[j]∧m ∈ M(i, r)∧m.A[j] ,⊥

}, j ∈ [1 . . . n] at t if V , ∅, where T i
φ(i, r) ≤ t ≤ T u

φ(i, r),

t = T (s), and s is a step of pi that updates pi.A[j] at

round r. Otherwise, if pi.A[j] ,⊥ at T i
φ(i, r), then no

step of pi in round r modifies the value of pi.A[j], and

A(i, r)[j] = A(i, r − 1)[j].

Let p j be a process of Π. By Lemma 5.3, we have

that V = {v : v = m.A[j] ∧ m ∈ M(i, r) ∧ m.A[j] ,⊥},

j ∈ [1 . . . n], is either empty or contains a single value. If

|V | = 1, then V = {p j.a}. There are two cases to consider:

1) A(i, r − 1)[j] ,⊥; 2) A(i, r − 1) =⊥.

If A(i, r − 1)[j] ,⊥, then, by the algorithm, pi does not

modify the value of pi.A[j] in round r. By Lemma 5.2,

A(i, r−1)[j] = p j.a. By the algorithm, pi sends A(i, r−1)

to itself. Finally, by Lemma 5.3, every message m ∈

M(i, r) is such that m.A[j] = p j.a. We the have that

A(i, r)[j] = Mr
i
[j].

If A(i, r − 1) =⊥ and V = {p j.a}, then A(i, r)[j] = p j.a.

If V = ∅, then A(i, r)[j] =⊥. In both cases, A(i, r)[j] =

Mr
i
[j].

We conclude that A(i, r) must be equal to Mr
i
.

�

Lemma 5.5 Let φ be an execution of ROC. For every r ∈

{z ∈ R : z ≤ t + 1}, Correct(φ) ⊆ Live(r).

Proof:

By definition, a process is alive at round t+1 of φ if it nei-

ther crashes nor stops before deciding in this round. We

show this claim by showing that for every pc ∈ Correct(φ)

and every r ∈ {x ∈ R : x ≤ t + 1}, pc ∈ Live(r). Let pc

be a process in Correct(φ). By definition, pc does not

crash in any round. It remains to show that, for every

pc ∈ Correct(φ) and every r ∈ {z ∈ R : z ≤ t + 1}, pc

does not stop in r. We show this with an induction on the

round numbers ρ, ρ ∈ {z ∈ R : z ≤ t + 1}.

By the algorithm, no process stops at round 0. At round

1, a process only stops if it does not receive messages

from a survivor set. Let pc be a process in Correct(φ). By

definition, there is a survivor set S c containing only cor-

rect processes, and every process pc′ ∈ S c sends a mes-

sage to pc at round 0. By Liveness, pc must have mes-

sages in M(c, 1) at least from the processes in S c. That is,

S c ⊆ pc.s(1). Consequently, pc does not stop at round 1.

Now suppose that the claim holds for every ρ, ρ ∈ {z ∈

R : 1 ≤ z ≤ t}, and we show for ρ + 1. Let pc be a

process in Correct(φ). By assumption, if pc does not re-

ceive a message from some process pi in round ρ, then pi

must have crashed by round ρ. This implies that all pro-

cesses in Π \ pc.s(ρ) crashed by round ρ, and pc.s(ρ + 1)

therefore cannot contain a process pi that is not in pc.s(ρ).

Consequently, pc.s(ρ + 1) ⊆ pc.s(ρ).

For the induction step, it remains to show that pc.sr(ρ+

1) contains some survivor set. From the algorithm, a pro-

cess pi is in pc.sr(ρ+1) if there is a message mi ∈ M(c, ρ+

1) and pc.A
′ ⊆ mi.A, where pc.A

′ = A(c, ρ − 1). By as-

sumption, no correct process stops by round ρ. Thus, for

every pc′ ∈ Correct(φ), there is a message mc ∈ M(c′, ρ)

from pc. By Lemma 5.3, for every pℓ ∈ Π such that

mc.A[ℓ] ,⊥, we have that mc.A[ℓ] = A(c, ρ − 1)[ℓ] = pℓ.a

and M
ρ

c′ [ℓ] = pℓ.a. By Lemma 5.4, we then have that for

every pc′ ∈ Correct(φ), A(c, ρ−1) ⊆ A(c′, ρ). By the algo-

rithm and by the assumption that no correct process stops

at round ρ, for every pc′ ∈ Correct(φ), pc′ sends a mes-

sage to pc. We then have that Correct(φ) ⊆ pc.s(ρ+1). By

the observation that for every pc′ , A(c, rho−1) ⊆ A(c′, ρ),

we have that Correct(φ) ⊆ pc.sr(ρ + 1). By assumption,

9

there is a survivor set S c ∈ SΠ such that S c ⊆ Correct(φ).

We conclude that S c ⊆ pc.sr(ρ + 1).

This concludes the proof of the lemma.

�

Lemma 5.6 Let φ be an execution of ROC such that ωℓ

is a chain in φ, 1 ≤ |ωℓ | ≤ t+ 1. If ωℓ[r] is the identifier of

a correct process for some r, then Mr+1
j

[ℓ] ,⊥ for every

process p j ∈ Correct(φ).

Proof:

Let r be an index such that ωℓ[r] is the identifier of a

correct process in φ and i be the process identifier in

ωℓ[r]. By the definition of a process chain, we have that

(A(i, r)[ℓ] ,⊥)∧ (∀r′ ∈ {x ∈ R : x ≤ r−1} : A(i, r′)[ℓ] ,⊥

). By the algorithm, process pi sends A(i, r) to all the pro-

cesses inΠ. By Lemma 5.5, every correct process decides

in φ (Correct(φ) ⊆ Live(t + 1)). By C-Liveness, for ev-

ery p j ∈ Correct(φ), there is mi ∈ M(j, r + 1) such that

mi.A[ℓ] ,⊥. Again by the algorithm, Mr+1
j

[ℓ] must be dif-

ferent than ⊥ for every correct process p j in φ.

�

Lemma 5.7 Let φ be an execution of ROC such that there

is a chain ωℓ of length at least three in φ. There are no

three correct processes pc1
, pc2

, pc3
such that c1, c2, c3 ∈

ωℓ.

Proof:

Proof by contradiction. Suppose that there are three pro-

cesses pc1
, pc2

, pc3
∈ Correct(φ) such that c1, c2, c3 ∈ ωℓ,

and that r is the smallest index such that ωℓ[r] is the iden-

tifier of a correct process. Observe that |ωℓ | must be at

least as large as r+3 (|ωℓ | ≥ r+3), otherwise the assump-

tion does not hold.

Without loss of generality, let ωℓ[r] = i. By

Lemma 5.6, for every correct process pc in Correct(φ)

we have that Mr+1
c [ℓ] different than ⊥ and by Lemma 5.4

A(c, r + 1)[ℓ] = Mr+1
c [ℓ]. Consequently, we have that

A(c2, r + 1)[ℓ] ,⊥ and A(c3, r + 1)[ℓ] ,⊥. By the defi-

nition of a process chain, c2 and c3 cannot be both in ωℓ,

a contradiction.

�

Lemma 5.8 Let φ be an execution of ROC such that there

is a chain ωℓ of length at least three. There is no two

correct processes pi, p j such that i, j ∈ ωℓ and ωℓ = (ω′ ◦

i ◦ ω ◦ j ◦ ω′′)ℓ, where ω,ω′, ω′′ are substrings of ωℓ and

ω is not the empty string.

Proof:

Proof by contradiction. Suppose that there are two correct

processes pi and p j in φ such that ωℓ[r] = i and ωℓ[r
′] =

j, r + 1 < r′. By Lemma 5.6 and by the definition of a

process chain, for every correct process p j in Correct(φ),

Mr+1
j
,⊥. We hence have that r′ must be equal to r + 1,

and ωmust be empty, contradicting out initial assumption

that r + 1 < r′.

�

Lemma 5.9 Let φ be an execution of ROC and pi be a

process in Live(r), r ≥ 2, such that A(i, r)[ℓ] ,⊥ and for

all r′ ∈ {x ∈ R : x ≤ r−1}, A(i, r′)[ℓ] =⊥. For every round

ρ ∈ {x ∈ R : 1 ≤ x ≤ r}, there are processes p j1 ∈ Live(ρ)

and p j2 ∈ Live(ρ − 1) such that the following holds:

1. A(j1, ρ)[ℓ] ,⊥, and for all ρ′ ∈ {x ∈ R : x ≤ ρ − 1},

A(j1, ρ
′)[ℓ] =⊥;

2. A(j2, ρ − 1)[ℓ] ,⊥, and for all ρ′ ∈ {x ∈ R : x ≤

ρ − 2}, A(j2, ρ
′)[ℓ] =⊥;

3. ∃m j2 ∈ M(j1, ρ) : (m j2 .A[ℓ] ,⊥).

Proof:

We now show with an induction on the values of ψ, 0 ≤

ψ ≤ r − 1, that for every round ρ = r −ψ, the claim holds.

The base case is ψ = 0, ρ = r. By assumption, pi is

such that A(i, r)[ℓ] ,⊥ and for all r′ ∈ {x ∈ R : x ≤

r − 1}, A(i, r′)[ℓ] =⊥. This is implies that Mr
i
[ℓ] ,⊥.

From the algorithm, we have that pi.s(ρ) ⊆ pi.s(ρ − 1) ⊆

. . . ⊆ pi.s(0). Consequently, there must be some process

p j ∈ Live(ρ−1) such that the following holds: A) A(j, r−

1) ,⊥; B) A(j, ρ′) =⊥ for all ρ′ ∈ {x ∈ R : x ≤ r − 1};

C) ∃m j ∈ M(i, r) : (m j.A[ℓ] ,⊥). If there is no such a

process p j that satisfies both A) and C), then A(i, r) =⊥,

contradicting our initial assumption. By the algorithm,

once p j sets the value of p j.A[ℓ] to a value different than

⊥, then value of p j.A[ℓ] does not change in subsequent

rounds. This implies that for all ρ′, 0 ≤ ρ′ < r−1, A(j, ρ′)

must be equal to ⊥, because by the algorithm pi receives

10

a message from p j at every round (pi.s(̺) ⊆ pi.s(̺ − 1),

r ≥ ̺ > 0) and A(i, ρ′′) is different than ⊥ otherwise, for

some ρ′′ < r.

Suppose the claim is true for ψ. We show for ψ + 1.

If it is true for ψ, then there is a process p j1 live in

ρ = r − (ψ + 1) such that A(j1, ρ)[ℓ] ,⊥, and for all ρ′ ∈

{x ∈ R : x ≤ ρ − 1}, A(j1, ρ
′)[ℓ] =⊥. From the algorithm,

we have that p j1 .s(ρ) ⊆ p j1 .s(ρ−1) ⊆ . . . ⊆ p j1 .s(0). Con-

sequently, there must be some process p j2 ∈ Live(ρ − 1)

such that the following holds: A) A(j2, ρ − 1) ,⊥; B)

A(j2, ρ
′) =⊥ for all ρ′ ∈ {x ∈ R : x ≤ ρ − 1}; C)

∃m j2 ∈ M(j1, ρ) : (m j2 .A[ℓ] ,⊥). If there is no such a

process p j2 that satisfies both A) and C), then A(j1, ρ) =⊥,

contradicting our assumption that the hypothesis hold

for ψ. By the algorithm, once p j2 sets the value of p j2 .A[ℓ]

to a value different than ⊥, then the value of p j2 .A[ℓ] does

not change in subsequent rounds. This implies that for all

ρ′, 0 ≤ ρ′ < ρ − 1, A(j2, ρ
′) must be equal to ⊥, because

by the algorithm p j1 receives a message from p j2 at every

round (p j1 .s(̺) ⊆ p j1 .s(̺ − 1), ρ ≥ ̺ > 0) and A(i, ρ′′) is

different than ⊥ otherwise, for some ρ′′ < ρ.

This concludes the proof of the lemma.

�

Lemma 5.10 Let φ be an execution of ROC and pi be

a process that is live at round r of φ, r ≥ 0, such that

A(i, r)[ℓ] ,⊥ and for all r′ ∈ {x ∈ R : x ≤ r − 1},

A(i, r′)[ℓ] =⊥. There is a chain ωℓ such that |ωℓ | = r + 1,

and ωℓ[r] = i.

Proof:

We have to build a chain ωℓ such that |ωℓ | = r + 1, and

ωℓ[r] = i.

We build such a chain ωℓ as follows:

ωℓ[0] = ℓ

ωℓ[ρ] = j , ∧(0 < ρ < r)

∧(A(j, ρ) ,⊥)

∧(∀ρ′ ∈ {x ∈ R : x ≤ ρ} : A(j, ρ′) =⊥)

∧∃m j ∈ M(ωℓ[ρ + 1], ρ + 1) from p j

ωℓ[r] = i

We can easily verify that ωℓ satisfies the properties of

a process chain. It remains to show that it is a valid con-

struction.

By definition, we have that ωℓ[0] = ℓ. By Lemma 5.9,

we have that for every ρ, 0 < ρ < r, there is a process

p j that satisfies the properties we stated above. Finally,

by assumption, pi is such that A(i, r)[ℓ] ,⊥ and for all

r′ ∈ {x ∈ R : x ≤ r − 1}, A(i, r′)[ℓ] =⊥.

This concludes the proof of the lemma.

�

Lemma 5.11 Let φ be an execution of ROC. If pi, p j ∈

Correct(φ), then pi.d = p j.d in φ.

Proof:

By Lemma 5.5, every correct process decides in φ (no

correct process stops). Now let r, 0 ≤ r ≤ t, be a round

in which no process crashes. Such a round exists in φ

by assumption (no more than t processes can fail in an

execution, where t is |Π| subtracted the size of the smallest

survivor set).

We first show by induction on the values of ρ, r + 1 ≤

ρ ≤ t + 1, the following proposition:

∧
∀pc1

, pc2
∈ Correct(φ) : A(c1, ρ) = A(c2, ρ)

∧
∀pℓ ∈ Live(ρ), pc ∈ Correct(φ) : A(ℓ, ρ) ⊆ A(c, ρ)

The base case is ρ = r + 1. According to the algorithm,

every process pi that is live at round r sends a message

containing A(i, r) to every other process. According to C-

Liveness and the assumption that no process crashes in

round r, for every process pc ∈ Correct(φ), pc.s(r + 1) =

Live(r). This implies that for every pc1
, pc2

∈ Correct(φ),

Mr+1
c1
= Mr+1

c2
. By Lemma 5.4, Mr+1

c = A(c, r+1) for every

pc ∈ Correct(φ). This implies that for every pc1
, p′c2

∈

Correct(φ), A(c1, r + 1) = A(c2, r + 1).

It remains to show the second part of the proposition for

the base case. Let pℓ be a process in Live(r + 1) and pc be

a process in Correct(φ). By the failure assumptions, we

have that pℓ.s(r + 1) ⊆ Live(r). This implies that pℓ.s(r +

1) ⊆ pc.s(r + 1). If pℓ.s(r + 1) ⊆ pc.s(r + 1), then Mr+1
ℓ
⊆

Mr+1
c . By Lemma 5.4, Mr+1

ℓ
= A(ℓ, r + 1) and Mr+1

c =

A(c, r + 1), which implies that A(ℓ, r + 1) ⊆ A(c, r + 1).

This concludes the proof of the base case.

Suppose that the proposition holds for every ρ. We

show for ρ+ 1. By the induction hypothesis and the algo-

rithm, for every process pc ∈ Correct(φ), A(c, ρ) = M
ρ+1
c .

By Lemma 5.4, for every pc ∈ Correct(φ), A(c, ρ + 1) =

11

M
ρ+1
c . We conclude that for every pc1

, pc2
∈ Correct(φ),

A(c1, ρ + 1) = A(c2, ρ + 1).

By our failure assumptions, a faulty process may re-

ceive an arbitrary subset of the messages sent to it in

a round. Let pℓ be a process in Live(ρ + 1) and pc

be a process in Correct(φ). By the induction hypothe-

sis and the algorithm, M
ρ+1

ℓ
⊆ M

ρ+1
c . By Lemma 5.4,

A(ℓ, ρ + 1) = M
ρ+1

ℓ
and A(c, ρ + 1) = M

ρ+1
c . We conclude

that A(ℓ, ρ + 1) ⊆ A(c, ρ + 1), This concludes the proof of

the induction step.

From the previous proposition, we have that A(i, t+1) =

A(j, t + 1). By the algorithm, pi decides upon A(i, t + 1)

and p j decides upon A(j, t+1). Consequently, pi.d = p j.d.

This concludes the proof of the lemma.

�

Lemma 5.12 Let φ be an execution of ROC and pi, p j be

two processes in Live(t + 1), and pℓ be a process in Π.

If (A(i, t + 1)[ℓ] ,⊥) and for all r ∈ {z ∈ R : z ≤ t},

(A(i, r)[ℓ] =⊥), then p j.d[ℓ] ,⊥.

Proof:

By the algorithm, once p j sets the value of p j.A[ℓ] to a

value different than⊥, p j does not change it in subsequent

rounds. Thus, we only need to show that there is some

round r in which p j sets p j[ℓ] to a value different than ⊥.

Suppose that ((A(i, t + 1)[ℓ] ,⊥) ∧ (∀r ∈ {z ∈ R :

z ≤ t} : A(i, r)[ℓ] =⊥)). Assuming that pi and p j can be

either correct or faulty, there are four possible cases, and

we analyze each case separately as follows:

• pi and p j are correct in φ. By Lemma 5.11, we have

that pi.d = p j.d;

• pi is faulty and p j is correct in φ. If pi decides in φ,

then pi is in Live(t + 1). By Lemma 5.10, there is a

chainωℓ such that |ωℓ | = t+2, andωℓ[t+1] = i. Since

there are at most t failures by assumption, there is

at least one correct process in ωℓ. Moreover, such

correct process must be in a position r of the chain

such that 0 ≤ r ≤ t. Thus, A(j, t + 1)[ℓ] must be

different than ⊥, by Lemma 5.6 and the algorithm;

• pi is correct and p j is faulty in φ. If pi is correct,

then, by Lemma 5.10, there is a chain ωℓ such that

|ωℓ | = t + 2, and ωℓ[t + 1] = i. Because we as-

sume that pi is correct, for every r, 0 ≤ r ≤ t − 1

and κ = ωℓ[r], pκ must crash at round r of φ. Oth-

erwise, A(i, r)[ℓ] ,⊥ for some r < t + 1. Because

p j ∈ Live(t+1) by assumption, there must be at least

t + 1 faulty processes, violating our assumptions for

survivor sets. This case is hence not possible;

• pi and p j are faulty in φ. By Lemma 5.10, there is a

chain ωℓ such that |ωℓ | = t + 2, and ωℓ[t + 1] = i. By

Lemma 5.7, there are at most two correct processes

in any chain. Thus, ωℓ contains t faulty processes.

Consequently, there must be an r, 0 ≤ r ≤ t, such

that j = ωℓ[r], and A(j, r) ,⊥.

From the previous analysis, we have that A(j, t + 1) ,⊥.

By the algorithm, we have p j decides upon A(j, t + 1).

Consequenty, p j.d[ℓ] ,⊥. This concludes the proof of

the lemma.

�

Lemma 5.13 Let φ be an execution of ROC, pi, p j be two

processes in Live(t+1), and S i, S j be two survivor sets in

SΠ such that for all r ∈ {z ∈ R : z ≤ t + 1}, S i ⊆ pi.sr(r),

S j ⊆ p j.sr(r), and S i ∩ S j , ∅. pi.d = p j.d in φ.

Proof:

By the algorithm, once a process pi sets the value of

pi.A[ℓ] at round r ∈ {z ∈ R : z ≤ t} to a value differ-

ent than ⊥, it does not change it on subsequent rounds.

We then have to show that if pi learns about the initial

value of pℓ at round r (that is, A(i, r)[ℓ] ,⊥ and for all

r′ ∈ {z ∈ R : z ≤ r − 1}, A(i, r′)[ℓ] ,⊥), then there is a

round r′ such that p j learns the initial value of pℓ at round

r′ (that is, A(j, r′)[ℓ] ,⊥ and for all r′′ ∈ {z ∈ R : z ≤

r′ − 1}, A(j, r′′)[ℓ] ,⊥). By Lemma 5.2, if A(i, r)[ℓ] =

A(j, r′)[ℓ] ,⊥, then A(i, r)[ℓ] = A(j, r′)[ℓ] = A(ℓ, 0)[ℓ].

We now analyze each case separately.

First, suppose that ((A(i, t + 1)[ℓ] ,⊥) ∧ (∀r ∈ {z ∈

R : z ≤ t} : A(i, r)[ℓ] =⊥)). This follows directly from

Lemma 5.12.

Now, suppose that (A(i, t)[ℓ] ,⊥) ∧ (∀r ∈ {z ∈ R : z ≤

t − 1} : A(i, r)[ℓ] =⊥):

• pi and p j are correct in φ. By Lemma 5.11, we have

that pi.d = p j.d.

12

• pi is faulty and p j is correct in φ. From Lemma 5.10,

there is a chain ωℓ such that |ωℓ | = t + 1, and

ωℓ[t] = i. Because there are at most t faulty pro-

cesses by assumption, there must be a correct pro-

cess in ωℓ. That is, there must be some r, 0 ≤ r ≤

t−1, such that ωℓ[r] is the identifier of a correct pro-

cess in φ. It follows that A(j, r + 1) must be different

than ⊥, by Lemma 5.6.

• pi is correct and p j is faulty in φ. From Lemma 5.10,

there is a chainωℓ such that |ωℓ | = t+1, andωℓ[t] = i.

Because p j is faulty, either there is some r such that

ωℓ[r] = j or there are at most t − 1 faulty processes

in ωℓ. If the former holds, then we are done. If the

latter holds, then ωℓ[t − 1] must be the identifier of a

correct process. Otherwise there is some r ∈ {z ∈ R :

z ≤ t − 1} such that A(i, r)[ℓ] ,⊥ (by Lemma 5.6).

In addition, because ωℓ contains at least t − 1 faulty

process and p j is faulty, any pχ ∈ (S i ∩ S j) must

be correct. Thus, if there are at most t − 1 faulty

processes in ωℓ and ωℓ[t − 1] is the identifier of a

correct process, then A(χ, t) ,⊥. Since by assump-

tion S j ⊆ p j.sr(r) for every r ∈ {z ∈ R : z ≤ t + 1},

we have that A(j, t + 1) ,⊥, by the algorithm and

Lemma 5.4;

• pi and p j are faulty in φ. From Lemma 5.10, there is

a chain ωℓ such that |ωℓ | = t + 1, and ωℓ[t] = i. Be-

cause ωℓ contains exactly t + 1 process identifiers, at

least one must be correct, and by Lemma 5.7, at most

two correct processes. We then have that either there

is some r such that ωℓ[r] = j or ωℓ[r] , j for every

r. In the former case, we have that A(j, r)[ℓ] ,⊥ for

some r < t. In the latter, ωℓ must have t − 1 faulty

processes (at most two correct processes and p j is

not in ωℓ). We then have that pχ ∈ (S i ∩ S j) is ei-

ther faulty or correct. If pχ is faulty, then either there

is r ∈ {z ∈ R : z ≤ t − 1} such that ωℓ[r] = χ or

χ = j. The case that ωℓ[r] = χ is straightforward.

The second case, in which χ = j, follows from our

assumptions that S i ⊆ pi.sr(r) and S j ⊆ p j.sr(r)

for every r ∈ {z ∈ R : z ≤ t + 1}, the algorithm

(M(i, r) contains a message from p j for every round

r ∈ {z ∈ R : 1 ≤ z ≤ t + 1}), and by Lemma 5.4.

Now suppose pχ is correct. Because there is some

correct process in ωell[r], for r ∈ {z ∈ R : z ≤

t − 1}, by Lemma 5.6, it must be the case that

A(χ, t − 1)[ℓ] ,⊥ and consequently A(j, t)[ℓ] ,⊥, by

the algorithm and Lemma 5.4.

Finally, suppose that ∃r ∈ {z ∈ R : z ≤ t − 1} :

(A(i, r)[ℓ] ,⊥)∧(∀r′ ∈ {z ∈ R : z ≤ r−1} : A(i, r′)[ℓ] =⊥).

By assumption S i ⊆ pi.sr(ρ) for all ρ ∈ {z ∈ R : z ≤ t+1}.

This implies by the algorithm that A(χ, r+1) ⊆ A(i, r+2),

pχ ∈ S i ∩ S j. Because S j ⊆ p j.sr(ρ), for all ρ ∈ {z ∈ R :

z ≤ t + 1}, and pχ ∈ S j, we then have by the algorithm

and Lemma 5.4 that A(j, r + 2)[ℓ] must be different than

⊥, and equal to A(i, r)[ℓ] by Lemma 5.2.

From the previous argument, we conclude that A(i, t +

1) = A(j, t+ 1). By the algorithm, we have that pi decides

upon A(i, t + 1) and p j decides upon A(j, t + 1). Again by

the algorithm, we have that pi.d = p j.d.

�

Lemma 5.14 Let φ be an execution of ROC and pi, p j be

two processes in Live(t + 1) such that p j ∈ pi.sr(r) for

every r ∈ {z ∈ R : z ≤ t + 1}. p j.d ⊆ pi.d in φ.

Proof:

By the algorithm, once a process p j sets the value of

p j.A[ℓ] to a value different than ⊥ in a round r, for some

pℓ ∈ Π and some 0 ≤ r ≤ t + 1, it does not change it

in subsequent rounds. If A(j, t + 1)[ℓ] ,⊥, then there is

some round ρ, 0 ≤ ρ ≤ t + 1, such that A(j, ρ)[ℓ] ,⊥

and for all ρ′ ∈ {z ∈ R : z ≤ ρ − 1}, A(j, ρ′)[ℓ] ,⊥.

We then have to show that for every pℓ ∈ Π such that

A(j, t + 1)[ℓ] ,⊥, there is some ̺ such that A(i, ̺)[ℓ] ,⊥,

̺ ∈ {z ∈ R : z ≤ t + 1}.

Let pℓ be a process such that A(j, ρ)[ℓ] ,⊥ and for all

ρ′ ∈ {x : 0 ≤ x < ρ}, A(j, ρ′)[ℓ] ,⊥. Suppose that ρ =

t + 1. This case follows directly from Lemma 5.12. Now

suppose that ρ ≤ t. Because p j sends a message to pi

in every round by assumption, M
ρ+1

i
[ℓ] must be different

than ⊥, and A(i, ρ + 1)[ℓ] = Mr
i
[ℓ] by Lemma 5.4. Thus,

̺ ≤ ρ + 1. We conclude that if A(j, t + 1)[ℓ] ,⊥, for

some pℓ ∈ Π, then A(i, t + 1)[ℓ] ,⊥. By Lemma 5.2,

A(i, t + 1) = A(j, t + 1) = pℓ.a. By the algorithm, pi

decides upon A(i, t + 1) and p j decides upon A(j, t + 1).

13

Consequently, p j.d ⊆ pi.d.

�

Lemma 5.15 Let φ be an execution of ROC. If pi, p j,

and pℓ decide in φ, then either pi.d = p j.d, pi.d = pℓ.d,

or p j.d = pℓ.d.

Proof:

If pi, p j, and pℓ decide in φ, then there are survivor sets

S i, S j, and S ℓ such that S i ⊆ pi.sr(r), S j ⊆ p j.sr(r), and

S ℓ ⊆ pℓ.sr(r), for all r, 0 ≤ r ≤ t + 1. By the (3,2)-

Intersection property, either S i ∩ S j , ∅, S i ∩ S ℓ , ∅, or

S j ∩ S ℓ , ∅. By Lemma 5.13, we then have that either

pi.d = p j.d, pi.d = pℓ.d, or p j.d = pℓ.d.

�

Lemma 5.16 Let φ be an execution of ROC and pi be a

correct process in φ. If p j decide in φ, then p j.d ⊆ pi.d.

Proof:

By Lemma 5.5, pi ∈ Live(t + 1) (pi decides in φ). If p j is

correct, then the Lemma follows from Lemma 5.11. Now

suppose that p j commits at least one receive-omission

fault in φ. By assumption, both pi and p j decide in φ.

Because pi is correct, we have that there is m j from p j

in M(i, r) for every r, 0 ≤ r ≤ t + 1. By the algorithm,

p j ∈ pi.s(r) for every r, 0 ≤ r ≤ t + 1. This means that

pi receives a message from p j in every round of the ex-

ecution. By Lemma 5.4 and the algorithm, we then have

that if A(j, r)[ℓ] ,⊥, for some pℓ ∈ Π and 0 ≤ r ≤ t,

then A(i, r + 1)[ℓ] = A(j, r)[ℓ]. It remains to show that if

A(j, t + 1)[ℓ] ,⊥, and A(j, r)[ℓ] =⊥, pℓ ∈ Π, for every

r ∈ {z ∈ R : z ≤ t}, then A(i, t + 1)[ℓ] = A(j, t + 1)[ℓ].

By Lemma 5.12, we have that if A(j, t + 1)[ℓ] ,⊥, then

A(i, t + 1)[ℓ] ,⊥. By Lemma 5.2, A(i, t + 1)[ℓ] = A(j, t +

1)[ℓ] = pℓ.a. We conclude that p j.d ⊆ pi.d.

�

Lemma 5.17 Let φ be an execution of ROC. If there are

two processes pi and p j, pi, p j ∈ Live(t + 1), then either

pi.d ⊆ p j.d or p j.d ⊆ pi.d.

Proof:

If at least one of pi and p j is correct, then the proof

follows from Lemma 5.16. Now suppose both pi and

p j are faulty. Because both pi and p j decide in φ by

assumption, there are survivor sets S i and S j such that

(S i ⊆ pi.sr(r))∧ (S j ⊆ p j.sr(r)) for every r, 0 ≤ r ≤ t+ 1.

If S i ∩ S j , ∅, then the lemma follows because by

Lemma 5.13 pi.d = p j.d. Suppose now the contrary:

S i ∩ S j = ∅. By assumption, there must be a survivor

set S c containing only correct processes. By the (3,2)-

Intersection property, either S i ∩ S c , ∅ or S j ∩ S c , ∅.

Let pc be a process in S c. We then have by Lemma 5.13

that either pi and pc decide upon the same value or p j and

pc decide upon the same value. Suppose without loss of

generality that pi and pc decide upon the same value. We

hence have from Lemma 5.16 that p j.d ⊆ pi.d. This con-

cludes the proof of the lemma.

�

Lemma 5.18 Let φ be an execution and vals be {d : ∃pi ∈

Π s.t. (pi.d = d)} \ N . For every d f , dc ∈ vals, d f ⊆ dc,

there are survivor sets S f , S c ∈ SΠ such that the following

properties holds:

∧
∀p ∈ S f : ∨ p crashes

∨ p.d = d f∧
∀p ∈ S c : ∧ p.d = dc

∧ p is not faulty

Proof:

By Lemma 5.5, Correct(φ) ⊆ Live(t + 1). By the algo-

rithm, every non-faulty process pi is such that pi.d[i] =

pi.a. We then have that vals contains at least one value.

By Lemma 5.15, there cannot be more than three different

decision values, and if there are two values d and d′, then

either d ⊆ d′ or d′ ⊆ d by Lemma 5.17. We analyze these

two cases separately.

First, suppose that vals contains a single value, say d,

and d f = dc = d. By assumption, there is a survivor set

S i such that S i contains only non-faulty processes. By

Lemma 5.11, every process pi ∈ S i is such that pi.d = d.

If we make S c = S f = S i, then our claim holds.

Now suppose that vals contains two values d f and dc,

d f ⊆ dc. Let pi be a process such that pi ∈ Live(t + 1)

and pi.d = d f . By the algorithm, there is survivor set

S i such that S i ⊆ pi.sr(r), for every r ∈ {z ∈ R : z ≤

14

t + 1}. Let p j be a process in S i. If p j ∈ Live(t + 1),

then there is a S j ∈ SΠ such that S j ⊆ p j.sr(r), for every

r ∈ {z ∈ R : z ≤ t + 1}. Now let S ′c be a survivor set such

that S ′c ⊆ Correct(φ). By the (3,2)-Intersection property,

either S j ∩ S ′c , ∅ or S j ∩ S i , ∅. Note that S i ∩ S ′c must

be empty, otherwise pi.d = dc according to Lemma 5.13,

contradicting our initial assumption.

If S j ∩ S ′c , ∅, then by Lemma 5.13 we have that

p j.d = dc because p j.d = pc.d for every pc ∈ S ′c

(Lemma 5.13) and pc.d, pc ∈ S ′c, must be equal to dc

(Lemma 5.16). By Lemma 5.14, however, we have that

p j.d ⊆ pi.d. This implies that pi.d = dc, again contradict-

ing our initial assumption. It therefore must be the case

that S i ∩ S j is not empty. By Lemma 5.13, we have that

pi.d = p j.d = d f .

Now suppose that p j < Live(t + 1). We then have that

p j crashes in φ, and p j.d = N . We therefore have have

that p j ∈ S i either decides upon d f or crashes in φ.

It remains to show the second part of the properties in

the statement of the lemma. By Lemma 5.16, every cor-

rect process must decide upon dc. Thus, every process pc

in S is such that pc.d = dc in φ.

To conclude, if we make S f = S i and S c = S ′c, then

our claim holds, as we wanted to show.

�

Lemma 5.19 Let φ be an execution of ROC such that

there are survivor sets S f , S c ∈ SΠ and values v f , vc ∈ V,

v f , vc, such that the following holds:

∧
∀p ∈ S f : p.a ∈ {v f ,⊥}∧
∀p ∈ S c : p.a = vc∧
∀p ∈ S c : p is not faulty

If exists pi, pℓ ∈ Π such that pi.d[ℓ] = v f , then for all

p j ∈ Live(t + 1), v f ∈ p j.d.

Proof:

Suppose that pi.d[ℓ] = v f , for some pi, pℓ ∈ Π. By the

algorithm, if a process p j does not crash in an execution

of ROC, then there is some survivor set S j such that S j ⊆

p j.sr(r) for every r ∈ {z ∈ R : z ≤ t + 1}. S f and S c

must be disjoint, otherwise there is some process with two

different initial values. By the (3,2)-Intersection property,

either S j∩S f , ∅ or S j∩S c , ∅. If S j∩S f , ∅, then: 1)

A(j, r)[x] = Mr
j
[x] by Lemma 5.4, for some px ∈ S j ∩ S f ,

px.a ,⊥, and for every r > 0; 2) Mr
j
[x] = px.a by the

algorithm and Lemma 5.3. We then have by the algorithm

that A(j, t + 1)[x] = p j.d[x] = px.a = v f .

If S j ∩ S c , ∅, then p j.d = pc.d by Lemma 5.13, for

every pc ∈ S c. By Lemma 5.16, pi.d ⊆ pc.d for every

non-faulty pc. That is, we have that pc.d[ℓ] = pi.d[ℓ] =

v f . We then have that p j.d[ℓ] = pc.d[ℓ] = pℓ.a = v f . This

concludes the proof of the lemma.

�

Theorem 5.20 Algorithm ROC satisfies Termination.

Proof:

This is straightforward from the algorithm: every process

that does not crash in an execution of ROC decides at

round t + 1.

�

Theorem 5.21 Algorithm ROC satisfies Agreement.

Proof:

By Lemma 5.16, if a process p j decides in φ, then p j.d ⊆

pi.d for every non-faulty pi. This implies that for every

pℓ such that p j.d[ℓ] ,⊥, we have that pi.d[ℓ] = p j.d[ℓ]

for every non-faulty pi.

�

Theorem 5.22 Algorithm ROC satisfies RO Uniformity.

Proof:

By Lemma 5.5, every correct process decides in φ. By the

algorithm, for every non-faulty process pi, pi.d[i] = pi.a.

Thus, there must be at least one non-⊥ decision value.

By Lemma 5.15, there cannot be three processes in an

execution of ROC such that each process decides upon

a different value. This shows the first statement of the

property: 1 ≤ |vals| ≤ 2, where vals= {p1.d, . . . , pn.d} \N

in any execution of ROC. The second statement follows

directly from Lemma 5.17. The third statement follows

directly from Lemma 5.18.

�

Theorem 5.23 Algorithm ROC satisfies Validity.

15

Proof:

If pi ∈ Live(t + 1) in some execution φ of ROC, then

by Lemmas 5.5 and 5.16 pi.d ⊆ p j.d, for every p j ∈

Correct(φ). By the algorithm, pi.d[i] must be equal to

pi.a. We consequently have that p j.d[i] must be equal to

pi.a. This proves the first statement in the specification of

Validity.

If pi crashes in an execution φ of ROC, then by Lem-

mas 5.2 and 5.11 either p j.d[i] =⊥ or p j.d[i] = pi.a, for

every p j ∈ Correct(φ). This shows the second statement

in the definition of validity. The third statement follows

directly from Lemma 5.19.

�

With Theorems 5.20, 5.23, 5.21, and 5.22, we show

that ROC implements the four RO Consensus properties,

thereby showing Proposition 5.1.

6 Correctness of WLE

Algorithm WLE proceeds in iterations of an infinite re-

peat loop. In each iteration, processes execute two phases,

and in each phase a process participates in the execution

of an algorithm that implements RO Consensus. For the

following description, we assume that such an algorithm

is ROC. As shown in Figure 2, a process that does not

crash in an execution of WLE executes infinitely many

iterations of the repeat loop. According to our system

model, we split an execution of an algorithm into rounds.

We then number the iterations of an execution of WLE

and assume that round numbers map to iteration numbers.

That is, there is mapping Iteration : R → I, where R is

the set of round numbers as before, and I = Z
∗ is the

set of iteration numbers. In addition, we further assume

that iteration numbers increase monotonically with round

numbers, and the number of rounds executed in an itera-

tion is fixed, being a function of the number of rounds in

an execution of ROC
4. For the purpose of the proofs that

follow, we only need to assume that each phase executes

at least two rounds. Note that ROC requires t + 1 rounds,

4Because there are infinitely many executions of ROC in an execu-

tion of WLE and round numbers monotonically increase with time, the

round numbers in the pseudocode for ROC are relative to the first round

in which an execution of ROC starts.

and t + 1 ≥ 2 if t ≥ 1. We therefore have that each phase

must have at least two rounds, assuming systems in which

processes can fail. In fact, because processes can fail by

crashing and we assume cores to model failures patterns,

we can use the same argument as in [3] to show that t + 1

is a lower bound on the number of rounds.

According to the discussion in the previous paragraph,

we associate an iteration number with each iteration of

the algorithm in an execution. In the following, we use

iteration numbers to refer to iterations of the algorithm.

In proving the correctness of WLE, we also use the fol-

lowing definitions:

• valsi, i ∈ {1, 2} is the set {d : ∃pi ∈ Π(pi.d = d)} \ N

after executing ROC at phase i of some iteration ζ,

ζ ∈ I;

• a process pi finishes a phase x ∈ {1, 2} of some itera-

tion ζ in an execution φ if it neither stops nor crashes

before executing the last step of that phase;

• An iteration ζ of an execution φ of WLE starts after a

time τ if the first step s of every process that executes

at least one step in ζ is such that T (s) > τ.

As in Section 4, we assume that WLE uses a system

profile 〈Π,CΠ, SΠ〉 and that this profile satisfies (3,2)-

Intersection.

Now we show the following proposition.

Proposition 6.1 WLE implements Weak Leader Elec-

tion.

We show proposition 6.1 with the following set of the-

orems, each one proving a property of Weak Leader Elec-

tion.

Theorem 6.2 Algorithm WLE satisfies Safety.

Proof:

Let φ = 〈F, I, S ,T,T〉 be an execution of WLE. We have

to show that |{pi ∈ Π : pi.elected}| < 2 for every τ ∈ T .

First, we show that in an iteration of φ, at most one pro-

cess is elected. By the RO Uniformity property of RO

Consensus, there is at least one decision value and at most

two different decision values as a result of phase 1. That

16

is, 1 ≤ |vals1| ≤ 2. Suppose |vals1| = 1. By the algorithm,

every process pi that finishes phase 2 uses a list x in its

decision value pi.d, where x has the minimum number of

non-⊥ values among all lists in pi.d. x must be the ini-

tial value of some processes by Validity. By assumption,

there is a single initial value in phase 2, which implies

that every process that finishes phase 2 uses the same list

x when deciding whether to set elected or not.

Now suppose that |vals1| = 2. From RO Uniformity, we

have that there are values d1, d2 ∈ vals1 and S 1, S 2 ∈ SΠ

such that:

∧ ∀p ∈ S 1 : ∨ p crashes

∨ p.d = d1

∧ ∀p ∈ S 2 : ∧ p.d = d2

∧ p is not faulty

By the algorithm, a process that finishes phase 1 of an

iteration executes ROC once more in phase 2 with its de-

cision value of the previous phase as its initial value. If

the above properties hold, then the only processes in S 1

that do not have d1 as initial value are the ones that crash

before phase 2 starts. Let’s call this set Crash1. By Va-

lidity, if some process pi decides upon a value pi.d such

that d1 ∈ pi.d, then every process p j that finishes phase

2 is such that d1 ∈ p j.d. We then again have that there

is a single process that can be elected because every pro-

cess that finishes phase 2 has d1 in its decision value and

d1 ⊆ d2 by Agreement.

It remains to show that if pi is elected in iteration ζ, and

p j is elected in iteration ζ′, and ζ > ζ′, then there is no

τ ∈ T such that both pi.elected and p j.elected are true at

time τ. By the algorithm, every process that starts the ex-

ecution of phase 1 in an iteration, first sets its flag elected

to false. If the iteration is the first of φ, then p j cannot be

elected in a previous iteration, and the hypothesis is vac-

uosly true. Now suppose an iteration ζ > 0. By assump-

tion, every process that executes a phase of an iteration ζ

executes at least two rounds. By P-Liveness, no process

can start a new round r + 1, r ≥ 0, without having every

other live process executing at least one step of r. If a pro-

cess pi starts phase 2 of an iteration at time τ, then every

process that has not crashed by τ must have executed at

least one step of phase 1 of ζ. Otherwise, there is a non-

crashed process p j such that pi executes the first step of

a round r + 1 of ROC whereas p j has not executed any

steps of r. This implies that no process can finish phase

2 of an iteration without having all non-crashed processes

setting elected to false.

This concludes the proof of the theorem.

�

Theorem 6.3 Algorithm WLE satisfies LE-Liveness.

Proof:

We have to show that for every execution φ =

〈F, I, S ,T,T〉 of WLE and for every τ ∈ T , there is some

iteration after τ such that |{pi ∈ Π : pi.elected}| > 1.

Proof by contradiction. Suppose an execution φ =

〈F, I, S ,T,T〉 of WLE and a time τ ∈ T such that

pi.elected is false forever after τ for every pi. By Va-

lidity and RO Uniformity, in every iteration ζ of φ, ζ ∈ I,

there is a value v ∈ vals1 such that v is the list with the

least number of non-⊥ values, and for every process pi

that finishes phase 2 of iteration ζ, v ∈ pi.d. Every pro-

cess that finishes phase 2 of iteration ζ selects the same

value i as the first index of v mapping to a value in v

with a non-⊥ value. If process pi evaluates the last “if”

statement of phase 2, then it sets pi.elected to true. If

pi crashes, however, then it does not set pi.elected to true,

and no process is elected at iteration ζ. By the assumption

that all failures are benign, crashing (or stopping which is

equivalent to crashing in our model) is the only possibil-

ity for having no process elected in an iteration ζ. By the

assumption that t (|Π| subtracted the size of the smallest

survivor set) is the largest number of processes that can

crash in φ, there can be at most t iterations after τ such

that |{pi ∈ Π : pi.elected}| = 0.

�

Theorem 6.4 Algorithm WLE satisfies FF-Stability.

Proof:

Suppose φ is a failure-free execution and zeta is an iter-

ation of φ. By agreement, every process decides upon

the same value in both phases of iteration ζ. We then

have that every process pi uses the same value x to de-

termine whether it sets pi.elected to true in φ. Moreover,

we have that x[i] = pi for every i, by Validity. Assuming

17

that Π = {p1, p2, . . . , pn}, we have by the algorithm that

p1 sets p1.elected to true at phase 2 of ζ.

�

7 Adding E-Stability

WLEallows for executions in which processes alternate

forever as leaders. Such behavior, however, is not desir-

able. As leadership moves to one process to another, the

responsibility of accomplishing the tasks of a leader also

move. Recall that the original motivation is to embed such

a leader election algorithm into a Primary-Backup proto-

col. This cause unnecessary overhead such as requests

being forwarded to the correct Primary or even system in-

stabilities if changes occur too frequently.

In fact, if such executions are allowed, then there is

a simpler algorithm that trivially satisfies Safety, LE-

Liveness and FF-Stability. This algorithm works by hav-

ing every process broadcast the set of process it heard

from in the previous round. If processes detect that some

failure has occurred either by not hearing from some pro-

cess or by learning that some process has not learned from

another process, then processes are elected in a round-

robin fashion from this round on. A process decides when

to switch to round-robin mode depending on how it learns

about failures. If a process learns from other process, then

it starts immediately, i.e, in the current round. Otherwise,

it waits until the following round. It is important to ob-

serve that failures must be detected by all non-crashed

processes within two round. That is, every process that

is alive at round r + 2 detects any failure that occurs by

round r. If processes detect no failures, then some fixed

process can be constantly elected.

An algorithm satisfying E-Stability guarantees that

in every execution eventually there are no more leader

changes. Note that with Stability only, failure-free exe-

cutions are allowed to have multiple leaders elected over,

and hence does not render FF-Stability unnecessary. For

this discussion, we consider that the problem is still de-

scribed by three properties: Safety, LE-Liveness, and E-

Stability. We now show how to modify WLE (and ROC

) to also satisfy this property. We call S-WLE the modi-

fied version of WLE, and S-ROC the modified version of

ROC to distinguish between the original versions and the

modified versions.

First, instead of initializing pi.s(0) to Π as in ROC

pi.s(0) is initialize to a parameter pi.P. We also roll for-

ward the value of pi.s(t + 1) in WLE instead of having

pi.s(0) constant as in ROC. That is, in an iteration ζ > 0,

pi.s(0) in Phase 1 is pi.s(t+1) in Phase 2 of iteration ζ−1.

If ζ = 0, then pi.s(0) in Phase 1 is Π. For the initial value

of pi.s(0) in Phase 2, we use pi.s(t + 1) of Phase 1 of the

same iteration. For clarity, we repeat the pseudcode for

these algorithms with the respective modifications in Fig-

ures 4 and 5. Note that the main modifications in S-ROC

are: 1) S-ROC has two parameters instead of one; 2) in

round 1, pi checks whether pi.s(1) ⊆ pi.s(0). S-WLE is

different from WLE by initializing pi.P to Π and by mov-

ing pi.s(t + 1) forward.

It is straightforward to see that the proof of Section 5

is valid for S-ROC if the following constraint holds for

every execution φ = 〈F, I, S ,T,T〉 of S-ROC: if pc ∈

Correct(φ) and pi ∈ Π is in a process in pc.s(1), then

p j ∈ pc.P. That is, pc.P must contain all the processes

that send messages to pc at round zero if pc is not faulty.

Otherwise, pc can falsely detect that it is faulty, and de-

cide upon N , violating Validity. If p f is faulty, then there

are no restrictions on the input p f .P. Intuitively, a faulty

process p f .P can receive any subset of processes sent to it.

Consequently, it is not possible to impose a similar con-

straint as we did for correct processes. Differently from

correct processes, if faulty process stops, it does not vio-

late any of the RO Consensus properties.

According to the modifications described previously,

pi.P is the set of processes from which pi receives a mes-

sage in the last round of the previous execution of S-ROC

(Π if it is the execution of S-ROC in Phase 1 of iteration

0). By assumption and by the algorithm, once a process

crashes (or stops) it never sends messages again in an ex-

ecution of S-WLE. Thus, if pc is a correct process, then

pc.P must contain all the processes that pc receives mes-

sages from in an execution of S-ROC, satisfying our con-

straint on pc.P for correct processes.

Because the proofs of Theorems 6.2 and 6.3 rely solely

on the properties of RO Consensus, we also have that

these proofs hold for S-WLE. It remains to show that S-

18

Algorithm S-ROC on input pi.a, pi.P

round 0:

pi.s(0)← pi.P; pi.sr(0)← pi.s(0)

pi.A [i]← pi.a

for all pk ∈ Π, pk , pi : pi.A [i]← ⊥

pi.A
′ ← pi.A

send pi.A to all

round 1:

pi.sr(1)← pi.s(1)

if ∨pi.s(1) * pi.s(0)

∨∄S ∈ SΠ : S ⊆ pi.s(1)

then decide [⊥, . . . ,⊥]

else

for each message m j ∈ Mi, pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m j.A [k]

send pi.A to all

round r: 2 ≤ r ≤ t:

pi.sr(r)← pi.s(r) \ {p j :∃m j ∈ Mi :

pi.A
′ * m.A}

if ∨pi.s(r) * pi.s(r − 1)

∨∄S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]

else

pi.A
′ ← pi.A

for each message m ∈ Mi, pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]

send pi.A to all

round t + 1:

pi.sr(t + 1)← pi.s(t + 1) \ {p j :∃m j ∈ Mi :

pi.A * m.A}

if ∨ pi.s(t + 1) * pi.s(t)

∨∄S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]

else for each message m ∈ Mi, pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]

decide pi.A

Figure 4: Algorithm run by process pi.

Algorithm S-WLE

P← Π

repeat {

pi.elected← FALSE

Phase 1:

Run ROC with

pi.a← i; pi.P← P.

P← pi.s(t + 1)

if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:

Run ROC with

pi.a← pi.d from Phase 1; pi.P← P.

P← pi.s(t + 1)

if (pi.d = [⊥, . . . ,⊥]) then stop

let x be a value of pi.d [1 . . . n]

such that pi.d [x] , [⊥, . . . ,⊥]

and it has the least number of non-⊥ values

if (pi is the first index of x such that x[i] , ⊥)

then pi.elected← TRUE

}

Figure 5: Algorithm run by process pi.

WLE satisfies E-Stability. First, we present a few defi-

nitions to be used in the proof of E-Stability. By The-

orem 6.2, in every iteration ζ of an execution φ of S-

WLE it is the case that either one process pi is such that

pi.elected evaluates to true at the end of ζ or no process pi

is such that pi.elected evaluates to true at the end of ζ. We

then use Leader(ζ, φ) to denote the process pi, pi.elected

evaluates to true at the end of iteration ζ of φ, or ⊥ if no

such process exists. Finally, we need some terminology

to refer to values that processes decide across iterations

and in the two different phases of an iteration. We then

use D
ρ

ζ
(i) to denote pi.d at the end of phase ρ ∈ {1, 2} of

iteration ζ.

Before we show our main result of this section, we state

and prove a few lemmas.

Lemma 7.1 Let φ be an execution of S-WLE. For every

iteration ζ of S-WLE, if pi finishes phase 1 of both ζ and

ζ + 1, thenD1
ζ+1

(i) ⊆ D1
ζ
(i).

Proof:

19

Proof by contradiction. Suppose that there is an iteration

ζ such that the assertion D1
ζ+1

(i) ⊆ D1
ζ
(i) is false. This

implies that there is some process pℓ, ℓ , i, for which

D1
ζ+1

(i)[ℓ] ,⊥ and D1
ζ
(i)[ℓ] =⊥. By Lemma 5.10, in the

execution of S-ROC in phase 1 of iteration ζ + 1, there is

a chain ωℓ such that ωℓ[r] = i, r > 0. By assumption, for

every process p j such that ωℓ[ρ] = j, ρ ≤ r, p j′ must be in

p j.P, where ωℓ[ρ − 1] = j′. Otherwise, by the algorithm,

some process with identifier ωℓ[ρ], ρ ≤ r, stops before

sending any messages in round ρ.

Now suppose that ωℓ[1] = j. By the algorithm,

p j.sr(r) contains some survivor set S j, for every round

r ∈ {z ∈ R : z ≤ t + 1} of the execution of S-ROC

in iteration ζ. Equivalently, there is such a survivor set

S i for pi. By assumption, there is some survivor set S c

such that S c ⊆ Correct(φ). By (3,2)-Intersection, S i ei-

ther intersects S j or intersects S c. If S i intersects S j,

then by Lemma 5.13, D1
ζ
(i)[ℓ] ,⊥, contradicting our ini-

tial assumption. If S i intersects S c, then by Lemma 5.14

D2
ζ
(c) ⊆ D2

ζ
(i), for some non-faulty pc ∈ Correct(φ). By

Agreement,D2
ζ
(c)[ℓ] ,⊥, and consequentlyD1

ζ
(i)[ℓ] ,⊥,

again contradicting our initial assumption.

This completes the proof of the lemma.

�

Lemma 7.2 Let φ be an execution of S-WLE and ζ be

an iteration of S-WLE. No process is elected in ζ unless

some process crashes or stops in ζ.

Proof:

By RO Uniformity, we have that 1 ≤ valsi ≤ 2, i ∈ {1, 2}.

By Validity and RO Uniformity, there is some value d in

vals1 such that d ∈ pi.d for every process pi that finishes

phase 2 of iteration ζ, and d contains the least number

of non-⊥ values. Because d , N , there must be a pro-

cess pe such that e is the smallest index of d such that

d[e] ,⊥. We then have that pe sets pe.elected to true un-

less pe crashes. Thus, if Leader(ζ, φ) =⊥, then pe must

crash or stop in ζ.

�

Lemma 7.3 Let φ be an execution of S-WLE, ζ and ζ′

be iterations of φ, ζ + 1 < ζ′, such that Leader(ζ, φ) =

Leader(ζ′, φ) = pe. If Leader(ζ + 1, φ) = pe′ , e , e′,

then there is a process pi that crashes or stops in some

iteration ζ′′, ζ ≤ ζ′′ ≤ ζ′.

Proof:

If pe is elected in iteration ζ of φ, then there is a value d

in vals1 of ζ such that e is the smallest index of d with

a non-⊥ value, and d ∈ D2
ζ
(e). Now if pe′ j is elected in

iteration ζ + 1, then there is a value d′ in vals1 of ζ + 1

such that e′ is the smallest index of d′ with a non-⊥ value,

and d′ ∈ D2
ζ
(e′). By assumption, pe is elected again in

iteration ζ′. As before, there must be a value d′′ in vals1

of ζ′ such that e is the smallest index of d′′ with a non-⊥

value.

There are two possibilities regarding the identifiers e

and e′: 1) e′ < e; 2) e < e′. If e′ < e, then there must be a

second value dc in vals1 of ζ such that d ⊆ dc (by assump-

tion, pe has not crashed by iteration ζ′ > ζ + 1; by valid-

ity, every non-faulty process pc is such that pe.a ∈ pc.d).

Let pi be a process such that D1
ζ
(i) = d. Suppose by

way of contradiction that pi finishes phase 2 of ζ + 1.

By Lemma 7.1, D1
ζ+1

(i) ⊆ D1
ζ
(i), and D1

ζ+1
(i)[e′] =⊥.

By Validity, there is some pc ∈ Correct(φ) such that

D1
ζ+1

(c)[e′] ,⊥. Note that pe′ does not crash or stop in it-

eration ζ+1 or in a previous iteration. By RO Uniformity,

D1
ζ+1

(i) ⊆ D1
ζ+1

(c) = d′. By RO Uniformity and Valid-

ity, D1
ζ+1

(i) must be the value used by every process that

completes phase 2 of iteration ζ + 1 to determine whether

it elects itself or not. Since e′ is not the smallest index of

D1
ζ+1

(i) that evaluates to a non-⊥ value, pe′ is not elected

in ζ+1. This contradicts our initial assumption. We hence

have that pi must crash or stop by iteration ζ + 1.

Now if e < e′, then d′[e] =⊥ by assumption (e is the

smallest index in d′ with a non-⊥ value). We use a similar

argument as in the first case. Suppose by way of contra-

diction that pe′ finishes phase 2 of ζ′. By Lemma 7.1,

D1
ζ′

(e′) ⊆ D1
ζ+1

(e′), andD1
ζ′

(e′)[e] =⊥. By Validity, there

is some pc ∈ Correct(φ) such that D1
ζ′

(c)[e] ,⊥. Note

that pe does not crash or stop in iteration ζ′ or in a previ-

ous iteration. By RO Uniformity, D1
ζ′

(i) ⊆ D1
ζ′

(c) = d′′.

By RO Uniformity and Validity, D1
ζ′

(i) must be the value

used by every process that completes phase 2 of iteration

ζ′ to determine whether it elects itself or not. Since e is

not the smallest index of D1
ζ′

(i) that evaluates to a non-⊥

value, pe is not elected in ζ′. This contradicts our ini-

20

tial assumption. We conclude that pe is not elected in ζ′

unless pe′ crashes or stops by iteration ζ′.

Finally, we have that either pe′ crashes or stops by it-

eration ζ′ or some faulty process pi crashes or stops by

iteration ζ + 1. This concludes the proof of the lemma.

�

Theorem 7.4 S-WLE satisfies E-Stability.

Proof:

Let φ be an execution of S-WLE. By LE-Liveness, in-

finitely often some process is elected in φ. By Lemma 7.2,

an iteration ζ has no leader elected only if some some

process crashes in ζ, and by assumption there is a finite

number of processes that crash or stop. Thus, there is a

bounded number of iterations that have no leader elected.

Let t be a time such that every iteration that starts after

t has a leader elected. Such a t exists by the previous ar-

gument. We then have that every iteration that starts after

t has a leader elected, and it remains to show that there

is some t′ ≥ t and some process pe such that for every

iteration ζ that starts after t′, pe is elected in both ζ and

ζ + 1. Suppose by way of contradiction that there is no

such t′ in φ. Let pe be a process that is elected infinitely

often after. Such a process must exist because the set of

processes is finite. By assumption, there is an infinite se-

quence of non-consecutive iterations ζ1 < ζ2 < ζ3 . . . such

that pe is elected in ζi but not in ζi + 1. By Lemma 7.3,

for every i ∈ Z, there is an iteration ζ, ζi ≤ ζ ≤ ζi+1, such

that some process crashes or stops in ζ. By assumption,

the number of processes crashing or stopping is bounded.

Consequently, there cannot be such an infinite sequence.

We conclude that there must be some t′ ≥ t and some pro-

cess pe such that for every iteration ζ that starts after t′,

pe is elected in both ζ and ζ + 1.

�

8 A discussion on the Primary-

Backup approach

Developing a Primary-Backup protocol that uses WLE is

future work. We can, however, make a few observations

regarding the use of an algorithm as WLE (or S-WLE)

for a Primary-Backup protocol. As mentioned previously,

WLE enables faulty processes to be elected. In a Primary-

Backup system, this feature impacts on liveness, although

not on correctness. Often, there is a time bound in the

replies to client requests, and it is impossible to meet such

bounds if the primary can be faulty. A immediate conse-

quence of electing faulty processes is that service time is

not bounded during the period of time a faulty process re-

mains as the primary. As discussed before, processes that

commit failures (but do not stop or crash) are detected. In

practice, we rely on an off-line mechanism to detect these

anomalies and take the appropriate measures that can be

for example, to remove faulty processes from the system.

It is possible, however, that faulty processes go through

an iteration of WLE undetected as such, and fail to reply

to client requests due to receive-omission failures . To

solve this problem, we can require clients to broadcast

requests to all the replicas and the primary to broadcast

replies to all the backup replicas as well. Correct pro-

cesses are also capable of detecting failures in such cases,

although they may not be able to ”warn” the faulty pri-

mary that it is actually faulty. Recall that failure detection

for omission failures requires twofold replication.

Finally, the iterations of the repeat loop of WLE are

consecutive without any delay in between for expositional

purposes. In practice, iterations should be delayed until

failures are detected, they are manually triggered, or if

none of these are desirable or possible, some time thresh-

old is reached.

9 Conclusions

We described in this paper a weaker version of the leader

election problem and an algorithm that solves this prob-

lem. This version of the problem, unlike the traditional

definition of leader election, enables faulty processes to

be elected. The main advantage of enabling it is requiring

a lower degree of replication.

There are other interesting features of the WLE algo-

rithm. First, it is uses cores and survivor sets instead of

a threshold. This enables more flexible characterizations

of systems with an heterogeneous set of processes. Sec-

ond, it uses an unusual type of Intersection property, i.e.,

21

(3,2)-Intersection. This property generalizes a degree of

replication of the form n > (3t/2), where t is the thresh-

old on the number of failures in any execution. Finally,

correct processes are able to detect faulty processes. By

Lemma 5.16, non-crashed faulty processes decide upon

lists with fewer values, and one can build an alarm system

by collecting decision values by the end of every iteration.

Although we have not thoroughly investigated using

WLE to build Primary-Backup systems, we believe our

algorithm provide practical benefits compared to previous

solutions.

References

[1] L. Lamport, “The Part-Time Parliament,” ACM

Transactions on Computer Systems, vol. 16, pp. 133–

169, May 1998.

[2] N. Budhiraja, K. Marzullo, F. Schneider, and

S. Toueg, “Optimal primary-backup protocols,” in 6th

International Workshop on Distributed Algorithms

(WDAG), pp. 362–378, Nov 1992.

[3] F. Junqueira and K. Marzullo, “Lower Bound on the

Number of Rounds for Synchronous Consensus with

Dependent Process Failures,” Tech. Rep. CS2003-

0734, UCSD, 2001.

22

