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Abstract of the Dissertation

Design of efficient and accurate statistical approaches

to correct for confounding effects and identify true

signals in genetic association studies

by

Jong Wha Joanne Joo

Doctor of Philosophy in Bioinformatics Program

University of California, Los Angeles, 2015

Professor Eleazar Eskin, Chair

Over the past decades, genome-wide association studies have dramatically improved

especially with the advent of the hight-throughput technologies such as microarray and

next generation sequencing. Although genome-wide association studies have been ex-

tremely successful in identifying tens of thousands of variants associated with various

disease or traits, many studies have reported that some of the associations are spurious

induced by various confounding factors such as population structure or technical arti-

facts. In this dissertation, I focus on effectively and accurately identifying true signals

in genome-wide association studies in the presence of confounding effects. First, I intro-

duce a method that effectively identifying regulatory hotspots while correcting for false

signals induced by technical confounding effects in expression quantitative loci studies.

Technical confounding factors such as a batch effect complicates the expression quantita-

tive loci analysis by inducing heterogeneity in gene expressions. This creates correlations

between the samples and may cause spurious associations leading to spurious regulatory

hotspots. By formulating the problem of identifying genetic signals in a linear mixed

model framework, I show how we can identify regulatory hotspots while capturing het-
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erogeneity in expression quantitative loci studies. Second, I introduce an efficient and

accurate multiple-phenotype analysis method for high-dimensional data in the presence

of population structure. Recently, large amounts of genomic data such as expression data

have been collected from genome-wide association studies cohorts and in many cases it

is preferable to analyze more than thousands of phenotypes simultaneously than analyze

each phenotype one at a time. However, when confounding factors, such as population

structure, exit in the data, even a small bias is induced by the confounding effects, the bias

accumulates for each phenotype and may cause serious problems in multiple-phenotype

analysis. By incorporating linear mixed model in the statistics of multivariate regression,

I show we can increase the accuracy of multiple phenotype analysis dramatically in high-

dimensional data. Lastly, I introduce an efficient multiple testing correction method in

linear mixed model. The significance threshold differs as a function of species, marker

densities, genetic relatedness, and trait heritability. However, none of the previous multi-

ple testing correction methods can comprehensively account for these factors. I show that

the significant threshold changes with the dosage of genetic relatedness and introduce a

novel multiple testing correction approach that utilizes linear mixed model to account for

the confounding effects in the data.

iii



The dissertation of Jong Wha Joanne Joo is approved.

Matteo Pellegrini

Jason Ernst

Bogdan Pasaniuc

Aldons J. Lusis

Eleazar Eskin, Committee Chair

University of California, Los Angeles

2015

iv



This dissertation is dedicated to my husband Sang Eon Bak who supported my studies,

my daughter Jooin Bak who was born during the course of my studies for being such a

joy, my second baby who is not born yet, and my parents Seung Ki Joo and Seong Ae

Kim for all of their love and support. Lastly, I thank to the God.

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Genetic association studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Expression quantitative trait loci studies . . . . . . . . . . . . . . . . . . . 6

2.3 Confounding factors in genetic studies . . . . . . . . . . . . . . . . . . . . 6

2.4 Linear Mixed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Multiple hypothesis testing correction . . . . . . . . . . . . . . . . . . . . . 10

3 Effectively identifying regulatory hotspots while capturing expression

heterogeneity in gene expression studies . . . . . . . . . . . . . . . . . . . . 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 NICE eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 NICE eliminates spurious regulatory hotspots while preserving true

genetic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 NICE eliminates spurious hotspots while preserving genetic hotspots

in Yeast dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.4 NICE discovers novel yeast regulatory hotspots . . . . . . . . . . . 22

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 ICE eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.4 NICE eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.5 p-value based approach . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.6 Simulated dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.7 Yeast datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.8 Running previous methods . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Supplementary Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Supplementary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Efficient and accurate multiple-phenotype regression method for high

dimensional data considering population structure . . . . . . . . . . . . . 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Correcting for population structure in multivariate analysis . . . . . 49

4.2.2 GAMMA corrects for population structure and accurately identifies

genetic variances in a simulated study . . . . . . . . . . . . . . . . 51

4.2.3 GAMMA identifies regulatory hotspots related to regulatory ele-

ments of a yeast dataset . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 GAMMA identifies variants that associated with a gut microbiome 56

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



4.4.1 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Multiple-phenotypes analysis . . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Correcting for population structure . . . . . . . . . . . . . . . . . . 62

4.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.5 Simulated dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.6 Real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Supplementary Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Multiple Testing Correction in Linear Mixed Models . . . . . . . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Overview of the method . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Permutation is inaccurate in LMM . . . . . . . . . . . . . . . . . . 74

5.2.3 MultiTrans accurately approximates covariance between test statistics 75

5.2.4 MultiTrans accurately corrects for multiple testing . . . . . . . . . . 77

5.2.5 Per-marker threshold depends on both heritability and genetic re-

latedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.6 MultiTrans applied to the real traits . . . . . . . . . . . . . . . . . 83

5.2.7 Efficiency of MultiTrans . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Previous multiple testing correction methods for non-LMM . . . . . 89

5.4.2 Multiple testing correction methods for LMM . . . . . . . . . . . . 92

viii



5.4.3 HMDP dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.4 Yeast dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.5 HapMap dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



List of Figures

2.1 An example that population structure causes false signals in GWAS. This

figure and caption is from nature reviews genetics [FE12]. Panel b shows

a Manhattan plot with the association results for 140,000 SNPs and body

weight for 38 inbred strains from the Mouse Phenome Database [BGM07,

HAA07,GMB09]. Almost every locus appears to be associated with body

weight as each of the many SNPs that differentiate the wild-derived and

classical inbred strains appears to be associated with body weight. A visu-

alization of the cause of the spurious associations is shown panel c. Many

SNPs and the phenotype are both correlated with the genetic relatedness

or population structure among the strains. Statistical techniques can take

into account the genetic relationships between the strains to correct for

population structure, thus minimizing spurious associations. In this exam-

ple, EMMA [KZW08] was applied to the data (panel d). . . . . . . . . . . 7

2.2 An example that the hotspots are inconsistent between replicates in eQTL

study. This figure and caption is from genetics [KYE08]. Comparison of

the strength of trans-regulatory bands between replicated subsets. The

horizontal axis is the genomic positions of the markers in megabases, and

the vertical axis is the strength of regulatory hotspots quantified as the

average log P-values at each marker across all genes. Each peak represents

the strength of the trans-regulatory band at a particular marker SNP. The

taller the peak, the more pronounced a trans-regulatory band is in an eQTL

map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

x



3.1 (a) Graphical model of genetic and spurious associations. SNP 1 has ge-

netic effect on the first three genes (blue arrows). SNP 2 has no genetic

effect on any of the genes, however, it has spurious associations with many

of the genes, because by chance, it happens to be correlated with a con-

founding factor (red arrows). (b) ICE [KYE08] models the confounding

effects by estimating the global correlation structure of the expression lev-

els of all genes (grey block). However, this eliminates genetic associations

in addition to confounding effects as any regulatory hotspots, the first three

genes, will also be captured in the global correlation structure and be elimi-

nated. (c) NICE uses only a subset of genes to model the global correlation

structure between expression levels used to correct for confounding factors.

Since any subset of genes will capture the confounding effects, in practice,

using the bottom four genes (grey block), we can eliminate the confounding

effects but preserve the genetic effects. . . . . . . . . . . . . . . . . . . . . 16

3.2 eQTL maps of different methods applied to a simulated data. The x-

axis corresponds to SNP positions and the y-axis corresponds to the gene

positions. The intensity of a point on the plot represents the significance

of the association. The diagonal band represents the cis-effects and the

vertical bands represent hotspots. Blue arrows show the locations of real

genetic regulatory hotspots, green arrows show those of missing hotspots,

and red arrows show those of spurious hotspots. (a)-(f) shows the eQTL

map applying the standard t-test, SVA, ICE, LMM-EH, PANAMA, and

NICE, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Inflation factors of different methods, t-test, SVA, ICE, LMM-EH, PANAMA,

and NICE applied to a simulated data. ∆λ is defined as 1− λ. . . . . . . . 19

xi



3.4 eQTL maps of two versions of a yeast dataset that were generated 3 years

apart in different locations. The standard t-test is used to generate the

p-values. (a) An eQTL map of the yeast dataset generated in 2005 [BK05].

(b) An eQTL map of the yeast dataset generated in 2008 [SK08]. (c) The

eQTL map using the maximum p-value of two datasets to show the putative

genetic associations in the yeast dataset. Graph on the top of each eQTL

map shows the strength of regulatory hotspots by taking the average over

all genes of the -log p-values for a given SNP. . . . . . . . . . . . . . . . . 22

3.5 Putative, missing and spurious hotspots for the standard t-test, SVA, ICE,

LMM-EH, PANAMA and NICE applied to the yeast dataset generated in

2005 [BK05] (a) The average over all genes of the -log of the maximum

p-value of the two yeast datasets for each SNP. (b)-(g) The average over

all genes of the -log p-value for each SNP for several methods, the stan-

dard t-test, SVA, ICE, LMM-EH, PANAMA, and NICE. Blue asterisks

show putative genetic regulatory hotspots predicted from merged dataset,

green arrows show missing hotspots, and red arrows show spurious hotspots

identified by each method. Red horizontal lines show thresholds to select

significant peaks which is two standard deviations above the mean. Note

that the t-test has a distinct advantage in this evaluation because p-values

from the t-test are used to determine the putative regulatory hotspots. . . 23

3.6 Sensitivity and the number of spurious hotspots of different thresholds

applied to the yeast dataset generated in 2005 [BK05]. x-axis corresponds

to the number of spurious hotspots and y-axis corresponds to the sensitivity.

Threshold of the mean, 1 standard deviation above the mean, 2 standard

deviation above the mean, and etc. applied. . . . . . . . . . . . . . . . . . 24

xii



3.7 Inflation factors of different methods, t-test, SVA, ICE, LMM-EH, PANAMA,

and NICE applied to the yeast dataset generated in 2005 [BK05]. ∆λ is

defined as 1− λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 The number of cis associations in the yeast dataset [BK05] applying the

standard t-test, SVA, ICE, LMM-EH, PANAMA, and NICE. . . . . . . . . 25

3.1 Putative, missing and additional hotspots for the standard t-test, SVA,

ICE, LMM-EH, PANAMA, and NICE applied to the yeast dataset gen-

erated in 2008 [SK08]. (a) The average over all genes of the -log of the

maximum p-value of the two yeast datasets for each SNP. (b)-(g) The av-

erage over all genes of the -log p-value for each SNP for the standard t-test,

SVA, ICE, PANAMA and NICE. Blue asterisks show putative genetic reg-

ulatory hotspots predicted from merged dataset, green arrows show missing

hotspots, and red arrows show additional hotspots. Red horizontal lines

show thresholds to select significant peaks which is two standard deviations

above the mean. Note that the t-test has a distinct advantage in this eval-

uation because p-values from the t-test are used to determine the putative

regulatory hotspots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 eQTL maps of NICE using different thresholds applied to a simulated data.

(a)-(c) Threshold of η = 0.3, η = 0.5, and η = 0.7 applied, respectively.

Blue arrows show the locations of real genetic regulatory hotspots. . . . . . 42

3.3 The number of genes selected by NICE to build the intersample correlation
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CHAPTER 1

Introduction

1.1 Motivation

Elucidating the content of a DNA sequence is critical to deeper understand and decode

the genetic information for any biological system. With the advent of high-throughput

technologies such as microarray and next generation sequencing, nowadays it is feasible

to scan millions of variants and tens of thousands of gene expressions. In addition, sys-

tematic tools have been developed to analyze the massive amount of data. As a result,

genome-wide association studies (GWAS) have successfully identified numerous loci at

which variants influence disease risk or quantitative traits.

However, it has been found that many of these identifications are from false positive

signals. Many GWAS have reported the existence of various hidden confounding factors,

such as unobserved covariates, batch effects, genetic relatedness, environmental pertur-

bations, and so on. These confounders may cause spurious associations by inducing com-

plex dependencies among the individuals and lead to serious problems in various fields of

GWAS. For example, it has been reported in many studies that genetic relatedness or pop-

ulation structure, which is one of the representative confounding factors in GWAS, creates

many spurious associations in GWAS [KCP02, FRP04, MCP04, COL05, HYH05, RZL05,

VP05,BSK06,SSV06,FG06,FE12]. Another representative confounding factor is technical

artifacts such as a batch effect. This creates heterogeneity in measurements of gene expres-
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sions and may create spurious associations in eQTL studies [LS07,KYE08,LKS10,FSL12].

These confounders may cause even more serious problem in multiple-phenotype analy-

sis. Typical GWAS test correlation between a single phenotype and each genotype one at

a time, referred to as “single-phenotype analysis”. However, analyzing multiple pheno-

types simultaneously, referred to as “multiple-phenotype analysis”, often has advantages

over single-phenotype analysis. For example, multiple-phenotype analysis can increase

the statistical power and may allow to detect signals which is not detectable in single-

phenotype analysis due to its small effect sizes. However, when confounding effects exist

in the data, it may cause serious problems in the multiple-phenotype analysis. This is

because even a small bias is induced by the confounding effects, this bias accumulates for

each phenotype in the multiple-phenotype analysis.

Morover, these confounding factors affect multiple testing correction which is an essential

step in GWAS analysis and small change in significance threshold may cause many false

positives or false negatives. As the number of SNPs genotyped by current association

studies is dramatically increasing, the large number of correlated markers brings to the

forefront the multiple hypothesis testing correction problem and has motivated much re-

cent activity to address it [WY93,Lin05,SM05,CB07,HKE09]. Unfortunately, in the case

when confoundings are present, these cause a violation of the basic assumption necessary

for previous approaches which is that the individuals in the sample are i.i.d.. How to

correct for multiple testing in the presence of confounding is a fundamental problem and

a promising avenue for GWAS.

In this dissertation, I would like to introduce my works on correcting for false signals

induced by various confounding factors such as population structure and technical arti-

facts. By correcting the confounding effects I was able to remove false positive signals and
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increase statistical power to identify true signals. In addition, I worked on multiple test-

ing correction to estimate accurate significance threshold in the presence of confounding

effects to identify true signals in GWAS.

1.2 Organization

The main focus of my research has been developing efficient and accurate statistical ap-

proaches to correct for the false signals due to various confounding factors such as technical

artifacts or genetic relatedness, and identify true genetic signals in GWAS.

Linear mixed model has been established as a standard analysis tool for GWAS as it

can correct for these hidden factors [KSS10,LLK12,LLH13,YZG14,LTB15]. I applied the

linear mixed model to various fields of GWAS to explicitly model these hidden factors

and avoid false positives and increase statistical power to detect the true signals.

First, in Chapter 2, I introduce some basic concepts of GWAS and backgrounds of my

research such as confounders that cause problems in GWAS, Linear Mixed Models that

can fix the confounding effects, and multiple hypothesis testing correction which is an

essential step in GWAS that perform up to millions of statistical tests.

Then in Chapter 3, I introduce my work in eQTL studies that tries to correct for con-

founding factors such as a batch effect to identify genetic regulatory hotspots. I have

shown that previous methods that attempt to correct for confounding effects, either fail

to correct for spurious signals or remove both spurious signals and true signals. I introduce

a novel approach that accurately and effectively remove the false signals while preserving

true signals in eQTL studies to identify genetic regulatory hotspots.
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In Chapter 4, I introduce my work in multiple-phenotype analysis that tries to effi-

ciently and accurately perform multiple phenotype analysis for high dimensional data

in the presence of population structure. From experiments, I have shown that in the

multiple-phenotype analysis, the bias due to the genetic relatedness accumulates for each

phenotype and may cause serious problems in the multiple-phenotype analysis even if it

is ignorable in the single-phenotype analysis. I introduce an approach that can correct

for confounding effects induced by population structure which dramatically increases the

accuracy of multiple-phenotype analysis in high-dimensional data.

In Chapter 5, I introduce my work in multiple testing correction in linear mixed mod-

els. In this work, I have shown that the p-value threshold for significance, referred to as

the per-marker threshold, differs as a function of genetic relatedness. As well as I have

shown that none of the previous approaches, including permutation test, give accurate

per-marker thresholds as their underlying i.i.d. assumption no longer holds under the

linear mixed model. I introduced an approach based on the multivariate normal distribu-

tion that can efficiently estimate per-marker threshold correcting the effects of population

structure.

Lastly, in Chapter 6, I talk about the conclusions of my research.
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CHAPTER 2

Background

2.1 Genetic association studies

SNP is a single letter change in DNA, part of the natural genetic variation within a pop-

ulation that are known to associated with complex disease or traits. Genetic association

studies seek for SNPs potentially causing phenotypic changes. For the purpose, genetic

studies look for the association between a SNP’s minor allele frequency and phenotype

values or disease status by testing whether the data is more likely under the null hy-

pothesis which assumes there is no association or under the alternative hypothesis which

assumes there exists an association. Often a test statistic that reflects how likely the

data is under the null model is used to compute a p-value and a predetermined p-value

threshold is used to determine whether the association is statistically significant or not.

With the advent of high throughput technologies such as microarray and next generation

sequencing, now it is possible to perform the genetic association studies in Genome-wide

scale, referred to as Genome-wise association studies (GWAS) and association study is in

a new era of big data. As the data size grows, efficient analytical tools for analyzing large

datasets are required and many efficient systematical tools for analyzing a large amount

of data have been emerged.
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2.2 Expression quantitative trait loci studies

Given the rapid increase of the available data on genetic variants, GWAS have successfully

identified tens of thousands of SNPs associated with many traits for the past years. How-

ever, none of the biological knowledge was encoded in standard GWAS analysis and the

functional relevance of most discovered loci remains unclear. In has been reported that

a large portion of phenotypic variability in disease risk can be explained by regulatory

variants, referred to as expression quantitative trait loci (eQTL), that is, genetic vari-

ants that regulate the expression levels of genes [SMD03,NGZ10,GHC10,DYK13,ND13].

eQTL studies treat gene expression as a molecular phenotypic trait and seek for SNPs

that are associated with the gene expression. Along with GWAS, eQTL studies became

popular in genetic research not only to characterize functional sequence variation but also

for understanding the basic processes of gene regulation and interpretation of GWAS.

2.3 Confounding factors in genetic studies

GWAS have reported the existence of various hidden factors, such as unobserved covari-

ates, genetic relatedness, environmental perturbations, and so on. Those shared con-

founding factors induces complex dependencies among the individuals and complicates

the analysis of GWAS leading to spurious associations.

One of the representative confounding factors in GWAS is the genetic relatedness or

population structure. GWAS predict an association by looking at the association be-

tween a SNP’s minor allele frequency and phenotype values or disease status. However,

not only disease-causing SNPs cause allele frequency differences but also SNPs influenced

by ancestry may cause the differences [KCP02, FRP04, MCP04, COL05, HYH05, RZL05,

VP05, BSK06, SSV06, FG06]. This is because allele frequencies vary from population to
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population due to each populations unique genetic and social history. Figure 2.1 is a fig-

ure from nature reviews genetics [FE12] and it shows an example of how serious problems

population structure can causes in mice GWAS. The panel C shows a graphical model

that many SNPs and a phenotype are both correlated with population structure. Panel

b and c show associations detected before and after correcting for population structure,

accordingly. In human studies, the genetic relatedness may not be as extreme as the one

in mice studies, however, without correcting for population structure, they may result

many false positives as well.

Figure 2.1. An example that population structure causes false signals in GWAS. This
figure and caption is from nature reviews genetics [FE12]. Panel b shows a Manhattan
plot with the association results for 140,000 SNPs and body weight for 38 inbred strains
from the Mouse Phenome Database [BGM07,HAA07,GMB09]. Almost every locus
appears to be associated with body weight as each of the many SNPs that differentiate
the wild-derived and classical inbred strains appears to be associated with body weight.
A visualization of the cause of the spurious associations is shown panel c. Many SNPs
and the phenotype are both correlated with the genetic relatedness or population
structure among the strains. Statistical techniques can take into account the genetic
relationships between the strains to correct for population structure, thus minimizing
spurious associations. In this example, EMMA [KZW08] was applied to the data (panel
d).

Another popular confounding factor that may induce false identifications is the technical

confounding factors such as a batch effect that affects the global correlation structure of
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the expression levels of the genes in eQTL studies. For example, let’s say the gene expres-

sions of the first half of the sample are measured in the first day of the experiment and

gene expressions of the other half of the samples are measured in the second day of the

experiment. And let’s say, by a technical artifact, all the measurements in the first day are

higher than those of the second day. This induces spurious correlations between the first

half of the samples and between the other half of the samples in terms of gene expressions.

As GWAS test tens of thousands of SNPs, by chance, some SNPs can be correlated with

the genes due to the spurious correlation structure induced by the confounding effects and

may result false positive identifications. This phenomenon has been reported by many

previous studies [FE12, LS07, LKS10] including an eQTL study of recombinant inbred

mice, where the regulatory hotspots are inconsistent between replicates [KYE08] (Figure

2.2).

Figure 2.2. An example that the hotspots are inconsistent between replicates in eQTL
study. This figure and caption is from genetics [KYE08]. Comparison of the strength of
trans-regulatory bands between replicated subsets. The horizontal axis is the genomic
positions of the markers in megabases, and the vertical axis is the strength of regulatory
hotspots quantified as the average log P-values at each marker across all genes. Each
peak represents the strength of the trans-regulatory band at a particular marker SNP.
The taller the peak, the more pronounced a trans-regulatory band is in an eQTL map.

2.4 Linear Mixed Model

To explicitly model the hidden factors in order to avoid false positives and increase statis-

tical power, nowadays the linear mixed model (LMM) has been established as a standard

analysis tool for GWAS [KSS10,LLK12,LLH13,YZG14,LTB15].
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The typical GWAS test the association by estimating the maximum likelihood param-

eter of the following linear model;

y = µ1n + βkxk + e (2.1)

Let n bet the number of samples analyzing, then y is a vector of length n that contains

phenotype values, µ is the model mean and 1n is a vector of length n that contains 1s,

xk is a vector of length n that contains genotype values of kth SNP that we are test-

ing, βk is the effect size of the kth SNP, and e is a random vector of length n drawn

from multivariate normal distribution with mean 0 and covariance matrix σ2
eI, denoted

as e ∼ N(0, σ2
eI), where I is the identity matrix.

However, when there exist confounding factors, the equation (5.1) does no longer fit

to the generative model of the data [Esk15]. To accommodate the effects of confounding

factors, LMM adds an extra term u to the standard linear model (Equation (5.1)) and

the statistical model for LMM is as follows:

y = µ1n + βkxk + u+ e (2.2)

Here, u contains the random variables that accommodates the effects of confounding

factors, where we assume u ∼ N(0, σ2
gK) and K is the spurious correlation structure

between the samples induced by confounding factors that we want to correct. For example,

if we are intended to correct for the spurious correlation structure induced by population

structure, K will be a matrix that contains the correlation between the samples in terms

of the SNPs, referred to as the “kinship matrix”. However, if we are intended to correct

for the spurious correlation structure induced by the confounding effects that affects gene
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expressions, the K will be a matrix that contains the correlation between the samples in

terms of the gene expressions.

2.5 Multiple hypothesis testing correction

The multiple hypothesis testing problem is the situation when we consider many hypothe-

ses simultaneously. When we perform one hypothesis test, the probability of making an

error with a standard p-value cut-off of α is α. However, when we perform m hypothesis

test, if we use the p-value cut-off of α, the probability of making at least one error in-

creases as a function of m, 1 − (1 − α)m. Thus, we want to control this type I error by

adjusting the p-value threshold for each test, αp, thus the probability of making at least

one error to be α; 1− (1− pαp)m = α.

Multiple hypothesis testing is an essential step in GWAS analysis, especially, as the

number of SNPs genotyped by current association studies is dramatically increasing. A

challenge in multiple hypothesis testing in GWAS is a large number of markers are cor-

related thus the typical multiple hypothesis correction such as Bonferroni correction may

cause many false negatives. To address this problem, many statistical methods have been

proposed based on permutation test [WY93] or multivariate normal distribution frame-

work to speed up the process [Lin05,SM05,CB07,HKE09]. Another challenge in multiple

testing correction in GWAS is that the correct per-marker threshold differs as a function

of species, marker densities, genetic relatedness, and trait heritability. However, none of

the previous multiple testing correction methods can comprehensively account for these

factors; therefore, these methods are not applicable for linear mixed models.
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CHAPTER 3

Effectively identifying regulatory hotspots while

capturing expression heterogeneity in gene

expression studies

3.1 Introduction

Understanding the relationship between genetic variation and gene regulation has re-

cently received a lot of interest. The most common approach to study this relationship is

through an expression quantitative trait (eQTL) study where both genetic variation and

expression levels are collected from a set of individuals and associations between genetic

variation and expression are estimated [BYC02, BK05, KFT07, CLS05, BWD05, CSE05,

SNF07, ETZ08, SBB07]. Any identified association, or eQTL, suggests the presence of a

region harboring genetic variation that affects expression levels.

In eQTL mapping, two types of eQTLs are analyzed: cis-eQTLs that are in close proximity

to the gene locus and trans-eQTLs that occur at a greater distances from the gene lo-

cus [MLB09]. Previous eQTL studies in multiple organisms [BK05,KFT07,CLS05,CSE05]

have shown that many genes are trans-regulated by a small number of genomic regions,

known as “regulatory hotspots”. Although several eQTL studies have successfully identi-

fied regulatory hotspots [CLE05,HWW05,WKH04], it has been reported in studies of re-

combinant inbred (RI) mice that regulatory hotspots replicate poorly [PLW06]. Previous
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studies have discovered that these regulatory hotspots are spurious associations caused by

various confounding factors, such as batch effects or other technical artifacts which induce

noise during sample preparation or expression measurements [Chu02, FCD03, BMH07].

Confounding factors create heterogeneity in expression data and may induce spurious as-

sociations between SNPs and gene expressions, leading to the identification of “spurious

regulatory hotspots” [KYE08]. In these spurious hotspots, SNPs appear to be associated

with gene expression levels, although they do not have genetic effects on the genes.

Several computational methods have been developed to correct for confounding effects us-

ing various statistical methods such as singular value decomposition or linear mixed mod-

els [LS07,KYE08,LKS10,FSL12]. The main assumption behind most of these methods is

that the confounding factors influence the global correlation structure between the gene

expression values. Hence, the methods, such as ICE [KYE08] and SVA [LS07], attempt

to estimate the global correlation structure and use it as a covariate in the association to

remove confounding effects from the association statistic. Although these methods effec-

tively remove spurious regulatory hotspots, they may also remove true hotspots caused by

genetic factors. This is because global correlation structure contains genetic effects, so by

correcting for the global structure, genetic effects are removed as well. For example, in a

well studied yeast dataset several hotspots are known to be true genetic effects since they

have been validated by additional data such as protein measurements [FRS07, PRR07].

Unfortunately, these hotspots are removed in addition to the spurious ones. Other meth-

ods [LKS10,FSL12] also do not explicitly remove true genetic signals and either eliminate

true hotspots or fail to remove spurious hotspots in our experiments.

In this chapter, we introduce a new method called Next-generation Intersample Cor-

relation Emended (NICE) eQTL mapping that attempts to eliminate spurious regulatory

hotspots while retaining hotspots caused by genetic effects utilizing a novel statistical
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framework. Our method leverages an insight that confounding factors would affect the

majority of genes, while genetic effects would only affect a subset. This insight allows

us to distinguish between confounding and genetic effects. We used a recently developed

statistic [HE12] to differentiate between genes that are affected by both genetic effects

and confounding effects versus genes that are affected by only confounding effects. Using

genes only affected by confounding, we are able to correct for the confounding effects

but preserve the genetic effects. We first show by simulations that NICE successfully

eliminates spurious regulatory hotspots while preserving regulatory hotspots correspond-

ing to real genetic effects. On the other hand, previous methods either fail to eliminate

confounding effects or fail to retain the genetic effects.

We demonstrate the utility of NICE with a yeast dataset. Two versions of a yeast dataset

were generated in 2005 [BK05] and 2008 [SK08]. Since they were generated 3 years apart

in different locations, the hotspots that are shared between the datasets are likely to be

the real genetic effects, while hotspots that are different between the datasets are likely

to be spurious hotspots. We utilize our method on only the first dataset to see if we can

discriminate which hotspots are real and spurious as determined by the second dataset.

Applied to the yeast dataset, NICE identifies 83% of the putative regulatory hotspots

which are consistent between the two versions of a yeast dataset. Previous methods

applied to this dataset either eliminate many of the putative hotspots or predict many

spurious hotspots. In addition, NICE eQTL mapping identifies either more or a compa-

rable number of cis associations relative to previous methods. Furthermore, applied to

a yeast dataset grown in different conditions, NICE identifies genes that are related to

gene-by-environment interactions and discovers novel yeast regulatory hotspots that are

likely to have a true biological mechanism.
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3.2 Results

3.2.1 NICE eQTL mapping

Our goal is to identify true genetic associations in an eQTL mapping study without

predicting spurious associations due to confounding factors. Consistent with previous

approaches that correct for the confounding factors based on singular value decomposi-

tion or linear mixed models, we assume that the confounding factors affect the global

correlation structure of expressions. That is, we assume that confounding factors affects

the expression levels of most of the genes. On the other hand, we assume that genetic

factors only affect the expression levels of a subset of the genes related to the regulatory

pathways. Figure 3.1 (a) shows a graphical model that contains both genetic and spurious

associations due to a confounding factor. SNP 1 has a genetic effect on multiple genes and

thus, is a regulatory hotspot. Unlike SNP 1, SNP 2 has no direct genetic effects on any

of the gene. However, SNP 2 has spurious associations with many of the genes because

by chance, it happens to be correlated with the confounder and this results in a spurious

regulatory hotspot.

To eliminate spurious associations, ICE [KYE08] models the confounding effects by es-

timating the global correlation structure of the expression levels of all genes and using

this structure as a covariate in the association statistic. This has the same effect as if the

confounding factor itself is included as a covariate in the association statistic removing

its effect. Unfortunately, any regulatory hotspots, as in the case of the first three genes of

Figure 3.1 (b), will also be captured in the global correlation structure and be eliminated.

For this reason, ICE [KYE08] tends to eliminate true regulatory hotspots in addition to

confounding effects.
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In contract to ICE [KYE08], NICE uses only a subset of genes to model the global corre-

lation structure between expression levels used to correct for confounding factors. Since

most genes are affected by confounding effects, any subset of genes will likely capture the

confounding effects and utilizing only those genes to estimate the global correlation struc-

ture is enough to correct for the confounding factor. Theoretically, if we can correct for

confounding effects using the genes that are not involved in true regulatory hotspots, we

would eliminate spurious associations while preserving true genetic associations. Unfor-

tunately, we do not know in advance which genes are involved in the regulatory hotspots

which complicates choosing which genes to use to correct for the confounding. Practi-

cally, almost all genes are affected by confounding effects while only some genes have both

confounding and genetic effects. We expect this second group of genes to show stronger

associations than the others. Thus we use the weakly associated genes to model the con-

founding factors. For example, in Figure 3.1 (c), by using the four most weakly associated

genes, we may correct for the confounding effects but preserve the genetic effects.

3.2.2 NICE eliminates spurious regulatory hotspots while preserving true

genetic effects

To validate that our method eliminates spurious regulatory hotspots while preserving reg-

ulatory hotspots corresponding to real genetic effects, we generated a simulated dataset

with both true regulatory hotspots and a batch effect that creates spurious hotspots. We

create a dataset that has 1000 samples with 1000 SNPs and 1000 gene expression levels.

We added 5 trans-regulatory hotspots and cis effects. For each of the trans-regulatory

hotspots, 20% of the genes have trans effects. SNPs are randomly generated with minor

allele frequencies of 30%. A batch effect is simulated where expression levels in the first

half of samples are correlated with each other, but not correlated with the second half of

the samples, and vice versa.
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Figure 3.1. (a) Graphical model of genetic and spurious associations. SNP 1 has
genetic effect on the first three genes (blue arrows). SNP 2 has no genetic effect on any
of the genes, however, it has spurious associations with many of the genes, because by
chance, it happens to be correlated with a confounding factor (red arrows). (b)
ICE [KYE08] models the confounding effects by estimating the global correlation
structure of the expression levels of all genes (grey block). However, this eliminates
genetic associations in addition to confounding effects as any regulatory hotspots, the
first three genes, will also be captured in the global correlation structure and be
eliminated. (c) NICE uses only a subset of genes to model the global correlation
structure between expression levels used to correct for confounding factors. Since any
subset of genes will capture the confounding effects, in practice, using the bottom four
genes (grey block), we can eliminate the confounding effects but preserve the genetic
effects.

We visualize the results of an eQTL study through use of an eQTL plot such as those

shown in Figure 3.2. The x-axis corresponds to SNP positions and the y-axis corresponds

to the gene positions. The intensity of a point on the plot represents the significance of the

association. The diagonal band represents the cis-effects and the vertical bands represent

hotspots. On the eQTL plot, we mark successfully identified regulatory hotspots with

blue arrows, missed regulatory hotspot with green arrows and spurious hotspots with red

arrows. In the simulated data, the eQTL plot shows 5 regulatory hotspots (Figure 3.2 (a),

blue arrows) and 8 spurious hotspots (Figure 3.2 (a), red arrows) induced by the batch
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effect we simulated.

We compared our method to several methods including SVA [LS07], ICE [KYE08], LMM-

EH [LKS10], and PANAMA [FSL12], that try to correct expression heterogeneity on

simulated data and showed the results on eQTL plots (Figure 3.2). NICE successfully

identifies 5 real regulatory hotspots and eliminates spurious ones (Figure 3.2 (f)). SVA

also identifies 5 real regulatory hotspots and eliminated spurious ones (Figure 3.2 (b)),

which is expected as SVA meant to capture only the broad signal and our simulated data

contains only one large batch effect. In the next section, we show that SVA does not per-

form as well on a real dataset which contains more realistic confounding effects. On the

other hand, ICE and LMM-EH remove not only spurious hotspots but also real hotspots

(Figure 3.2 (c) and (d)). PANAMA fails to remove the spurious hotspots and does not

show a big difference with the standard t-test (Figure 3.2 (a) and (e))). The results are

summarized in Table 3.1. All methods successfully identify cis effects. We further study

the test statistics of p-values by estimating the genomic control inflation factor λ [DR99]

to check if the p-values are either inflated (λ > 1 ) or deflated (λ < 1). Figure 3.3 shows

∆λ which is defined as 1−λ. ∆λ of SVA and NICE are close to zero. On the other hand,

the standard t-test and PANAMA show inflation (∆λ > 0) and ICE and LMM-EH show

deflation (∆λ < 0).

3.2.3 NICE eliminates spurious hotspots while preserving genetic hotspots

in Yeast dataset

We take advantage of a unique dataset consisting of two versions of a yeast dataset gen-

erated in 2005 [BK05] and 2008 [SK08] to validate our method. The two datasets contain

similar strains, but were generated 3 years apart in different locations. For this reason,

the hotspots that are shared between the datasets are likely real genetic effects, while
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Figure 3.2. eQTL maps of different methods applied to a simulated data. The x-axis
corresponds to SNP positions and the y-axis corresponds to the gene positions. The
intensity of a point on the plot represents the significance of the association. The
diagonal band represents the cis-effects and the vertical bands represent hotspots. Blue
arrows show the locations of real genetic regulatory hotspots, green arrows show those of
missing hotspots, and red arrows show those of spurious hotspots. (a)-(f) shows the
eQTL map applying the standard t-test, SVA, ICE, LMM-EH, PANAMA, and NICE,
respectively.

hotspots that are different between the datasets may be spurious hotspots caused by

technical confounding factors present at the time of generation of one of the datasets. In

addition, some of these hotspots were further validated by other experimental data such

as protein levels [FRS07,PRR07].

To determine which hotspots in the two datasets are regulatory hotspots due to genetic

effects, we use the following approach. We first compute a p-value for each gene-SNP pair

in both datasets using the standard t-test (Figure 3.4 (a) and Figure 3.4 (b)). We then
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Figure 3.3. Inflation factors of different methods, t-test, SVA, ICE, LMM-EH,
PANAMA, and NICE applied to a simulated data. ∆λ is defined as 1− λ.

Method Real hotspots Missing hotspots Spurious hotspots Sensitivity FDR

t-test 5 0 8 1.0 0.62
SVA 5 0 0 1.0 0
ICE 0 5 0 0 NA

LMM-EH 0 5 0 0 NA
PANAMA 5 0 8 1.0 0.62

NICE 5 0 0 1.0 0

Table 3.1. The number of real, missing and spurious hotspots identified by different
methods applied to a simulated data and their sensitivities and false discovery rates.
Given the number of real (R), missing (M) and spurious (S) hotspots identified, we
calculate sensitivity and false discovery rate as R/(R +M) and S/(R + S), respectively.

merge the p-values of two datasets by taking a maximum p-value between the two (Figure

3.4 (c)). The idea is that associations due to true genetic effects are likely to have signif-

icant p-values in both datasets while associations due to the confounding effects tend to

have a significant p-value in only one of datasets. Thus, by taking the maximum p-value,

we can identify the associations that are significant in both datasets. From the merged

p-values of two datasets, we identify the top 12 hotspots in terms of their association

strength, hotspot level which is described in the following paragraph, and consider them

as regulatory hotspots. We call the top 12 hotspots as “putative hotspots”. We are in-
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terested in the number of hotspots each method recovers among these putative hotspots.

The 2008 dataset is of higher quality than the 2005 dataset since it uses a newer version

of the array technology. We can verify the relative quality of the datasets by comparing

the number of cis-eQTLs identified in each dataset which demonstrates that the 2008

dataset is of higher quality. For this reason, we expect that all hotspots originally found

in the 2005 dataset that are true effects will be found in the 2008 dataset. Thus hotspots

identified in the 2005 dataset but not in the 2008 dataset are likely spurious.

We measure the presence of a hotspot by computing the sum of the log p-values of all of

associations of a single marker with the expression level of each gene. This measure called

“hotspot level” identifies the hotspots since it captures which SNPs are associated with

many gene expression levels. We visualize the hotspot level at the top of our eQTL plots

(Figure 3.4). We use the hotspot level to identify the putative hotspots from the merged

p-values of two datasets (blue asterisks in Figure 3.5 (a)).

Our goal in this experiment is to identify the true regulatory hotspots and eliminate

the spurious hotspots using 2005 yeast dataset [BK05]. We apply each approach to the

2005 data and evaluate the results using knowledge of which hotspots are true hotspots ob-

tained using both the 2005 and the 2008 datasets [BK05,SK08]. We compute the hotspot

levels for following methods; the standard t-test, SVA, ICE, LMM-EH, PANAMA, and

NICE (Figure 3.5). We consider a SNP as a hotspot if its hotspot level is two standard

deviations above the mean. We use this criteria because it provides a reasonable threshold

to separate hotspots and noisy peaks. Other thresholds are shown to be inappropriate

since using lower thresholds, all methods identify not only most of the putative hotspots

but also many spurious hotspots and using higher thresholds, all methods miss most of

the putative hotspots. Figure 3.6 shows a plot similar to ROC curve that shows sensi-

tivity and the number of spurious hotspots of different thresholds. The x-axis shows the
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number of spurious hotspots and the y-axis shows the sensitivity. For different thresholds,

NICE performs the best. We annotate results of each method with blue asterisks, green

and red arrows which indicate putative genetic regulatory hotspots predicted from the

p-values of merged datasets, missing hotspots and false positive hotspots, respectively.

The results show that our method identifies all but two of the putative hotspots while

only predicting one spurious hotspots (Figure 3.5 (g)). ICE and LMM-EH makes several

false positive predictions and SVA, LMM-EH, and PANAMA miss many hotspots (Figure

3.5 (c) ∼ (f)). We note that the t-test has a distinct advantage in this evaluation because

p-values from the t-test are used to determine the gold standard (Figure 3.5 (b)) and it is

inappropriate to evaluate the t-test in terms of Sensitivity and FDR estimated from the

gold standard. Table 3.2 summarizes the results. Figure 3.7 shows the inflation factors

of the methods. The standard t-test, SVA and PANAMA show inflation. NICE shows

deflation but not as much as ICE and comparable to LMM-EH. Supplementary Figure 3.1

and Supplementary Table 3.1 show the results of the same analysis from the point of view

of analyzing the 2008 data and comparing to the hotspots found in the intersection of

the 2005 and 2008 datasets. We note that NICE discovers several additional hotspots not

identified in the 2005 data which is expected because the 2008 data is of higher quality

in general. Below we show that several of these additional hotspots are likely real genetic

effects.

Consistent with previous analyses [KYE08, LKS10, FSL12], to compare the statistical

power of the methods, we compared the number of cis associations reported by the differ-

ent methods (Figure ??). NICE is able to identify more cis associations than the t-test,

SVA, ICE, and PANAMA and identify a comparable number of cis associations to LMM-

EH. This suggest that NICE is not only able to identify true regulatory hotspots but also

increases the general sensitivity of the eQTL detection.
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Figure 3.4. eQTL maps of two versions of a yeast dataset that were generated 3 years
apart in different locations. The standard t-test is used to generate the p-values. (a) An
eQTL map of the yeast dataset generated in 2005 [BK05]. (b) An eQTL map of the
yeast dataset generated in 2008 [SK08]. (c) The eQTL map using the maximum p-value
of two datasets to show the putative genetic associations in the yeast dataset. Graph on
the top of each eQTL map shows the strength of regulatory hotspots by taking the
average over all genes of the -log p-values for a given SNP.

Method Putative hotspots Missing hotspots Spurious hotspots Sensitivity FDR

t-test 9 3 0 0.75 0
SVA 5 7 0 0.42 0
ICE 8 4 3 0.67 0.27

LMM-EH 2 10 5 0.17 0.71
PANAMA 5 7 0 0.42 0

NICE 10 2 1 0.83 0.09

Table 3.2. The number of putative, missing and spurious hotspots identified by
different methods applied to the 2005 yeast data [BK05] and their sensitivities and false
discovery rates. Given the number of putative (R), missing (M) and spurious (S)
hotspots identified, we calculate sensitivity and false discovery rate as R/(R +M) and
S/(R + S), respectively. Note that it is inappropriate to evaluate the t-test in terms of
Sensitivity and FDR estimated from putative regulatory hotspots because p-values from
the t-test are used to determine the putative hotspots.

3.2.4 NICE discovers novel yeast regulatory hotspots

We reanalyze the 2008 yeast dataset described above using NICE to demonstrate the

utility of our approach. The dataset contains expression for yeast strains grown in both
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Figure 3.5. Putative, missing and spurious hotspots for the standard t-test, SVA, ICE,
LMM-EH, PANAMA and NICE applied to the yeast dataset generated in 2005 [BK05]
(a) The average over all genes of the -log of the maximum p-value of the two yeast
datasets for each SNP. (b)-(g) The average over all genes of the -log p-value for each
SNP for several methods, the standard t-test, SVA, ICE, LMM-EH, PANAMA, and
NICE. Blue asterisks show putative genetic regulatory hotspots predicted from merged
dataset, green arrows show missing hotspots, and red arrows show spurious hotspots
identified by each method. Red horizontal lines show thresholds to select significant
peaks which is two standard deviations above the mean. Note that the t-test has a
distinct advantage in this evaluation because p-values from the t-test are used to
determine the putative regulatory hotspots.

glucose and ethanol media. In our experiments above, we compared the consistency be-

tween the 2005 data and the 2008 data both grown in glucose. Here we analyze both

conditions in the 2008 data in order to identify both hotspots in each condition as well as

hotspots involved in gene by environment interactions consistent with the previous anal-
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Figure 3.6. Sensitivity and the number of spurious hotspots of different thresholds
applied to the yeast dataset generated in 2005 [BK05]. x-axis corresponds to the number
of spurious hotspots and y-axis corresponds to the sensitivity. Threshold of the mean, 1
standard deviation above the mean, 2 standard deviation above the mean, and etc.
applied.

Figure 3.7. Inflation factors of different methods, t-test, SVA, ICE, LMM-EH,
PANAMA, and NICE applied to the yeast dataset generated in 2005 [BK05]. ∆λ is
defined as 1− λ.

yses of this data [SK08]. In order to be consistent with the previous analyses, we utilize

the method for determining the presence of a hotspot defined in Smith and Kruglyak

(2008) instead of the metric we use above. We begin by dividing the yeast genome into

611 20kb bins. For each bin, we count the number of significant trans linkages in the

bin. Assuming a Poisson process, the number of expected linkages in each bin is the ratio

between the number of trans linkages and the number of bins. For simplicity, we used
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Figure 3.8. The number of cis associations in the yeast dataset [BK05] applying the
standard t-test, SVA, ICE, LMM-EH, PANAMA, and NICE.

the top 3000 trans associations identified by each method yielding a lambda of 4.9. After

adjusting for the number of bins using a Bonferroni correction, a bin is considered to

have a statistically significant (p < 0.05) if it has > 13 linkages. When we identify sig-

nificant linkages using a p-value cutoff (p < 5×10−5), we achieved almost the same result.

To compare the regulatory hotspots found by various methods, we first define eleven

putative regulatory hotspots from a collection of independent experiments using the same

parental strains grown in glucose [BYC02, YBW03](Supplementary Table 3.2). Some of

these hotspots are expected because of deletions in one of the strains including a hotspot

at Chr3:90000 for LEU2 and a hotspot at chr5:110000 for URA3.

We first analyze the glucose data from Simith and Kruglyak (2008). Table 3.3 shows

the number of known hotspots captured by each method. We see that both the t-test

and NICE capture 9 of the putative regulatory hotspots while ICE captures only 8. Both

NICE and ICE capture many more hotspots than the t-test and we wanted to know

whether these are spurious or real. For this, we analyzed the 2005 dataset using the same

definition of regulatory hotspots as in Smith and Kruglyak (2008) and found that 2/5,
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5/14 and 8/17 of the additional hotspots found by the t-test, ICE and NICE replicated,

respectively. Those additional hotspots that do not overlap with the 2005 dataset could

be specific to the 2008 experiment so we further compared them to the ethanol dataset.

We found that 3/5, 13/14 and 15/17 of the additional hotspots found by the t-test, ICE

and NICE respectively, replicated in the ethanol experiment. These two results suggest

that not only does NICE control for spurious regulatory hotspots, it also discovers more

regulatory hotspots that are likely to have a true biological mechanism.

One of the additional hotspots NICE finds to be shared between ethanol and glucose

is at Chr7:380000. However, from the t-test results, this hotspot appears to be ethanol

specific. We further confirm that this hotspot was also found by NICE in the 2005 data

suggesting that it is likely to be a real hotspot that is not condition specific. The two

possible candidate genes are RPB9 and MNP1 since the regulatory hotspot is linked in

cis to the expression of both of these genes at p-values of 6.8 × 10−6 and 2.2 × 10−4 re-

spectively. RPB9 is a RNA polymerase II subunit that is crucial for transcription fidelity

while MNP1 is a putative mitochondrial ribosomal protein that is required for respiratory

growth. NICE also finds an additional hotspot at Chr14:1360000 in the glucose data

from both 2005 and 2008 but is absent from the ethanol data suggesting that is a glucose

specific hotspot. The t-test does not find this hotspot in either glucose datasets. The

closest gene is APT2 which is an apparent pseudogene that is not expressed in normal

conditions. Interestingly, in our data, we find a strong association between Chr14:1360000

and APT2 in cis at a p-value of 2.3× 10−17 suggesting that this gene might be functional

in a glucose dependent way.
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Method Putative Missing Additional Glucose shared Ethanol Shared

t-test 9 2 5 2 3
ICE 8 3 14 5 13

NICE 9 2 17 8 15

Table 3.3. The number of putative, missing, and additional hotspots identified by
different methods applied to the 2008 yeast dataset grown in glucose media [SK08]. The
last two columns show the number of glucose shared and ethanol shared hotspots of the
additional hotspots compared to glucose dataset generated in 2005 [BK05] and ethanol
dataset generated in 2008 [SK08].

3.3 Discussion

In this chapter, we present a novel approach, NICE, for identifying true genetic regu-

latory hotspots while eliminating spurious hotspots caused by confounding factors. We

leverage the insight that confounding factors are likely to affect the majority of genes,

while genetic effects are likely to affect only a smaller subset. This insight allows our

approach to distinguish between true and spurious regulatory hotspots. Our approach

is related to previous methods that correct for confounding factors such as ICE or SVA

which model the global correlation structure and use this structure to correct the associ-

ation statistics to eliminate the effect of any confounding factors affecting the association

statistic. NICE uses only a subset of genes predicted not to be part of the true genetic

hotspot to model the global correlation structure between expression levels to correct for

confounding factors which eliminates the confounding factors but preserves true hotspots.

We compared to several previous approaches [LS07,KYE08,LKS10,FSL12] on both sim-

ulated and real dataset, and demonstrated that our method also achieves higher or com-

parable statistical power to identify associations while correcting for confounding factors.

While our approach NICE extends the mixed model approach that ICE [KYE08] pro-
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posed, in principal, the basic idea behind our approach can be applied to other approaches

for correcting for expression heterogeneity such as singular value decomposition (SVD)

based SVA approach [LS07]. In that case, for each SNP, a separate SVD would be

computed only taking into account genes that are predicted not to be part of a genetic

hotspot. Similarly, the techniques presented in LMM-EH [LKS10] can also be adapted

in this framework to incorporate multiple variance components to correct for population

structure and also correct for bias in estimating the global correlation structure in the

presence of population structure.

Our method is based on the assumption that confounding factors are likely to affect

the majority of genes, while genetic effects are likely to affect only a subset of the genes.

While our approach is an improvement over current methods, in some cases this assump-

tion may be violated, for example, slightly different growth temperatures between batches

may result in a specific subset of genes being differentially expressed (e.g. heat shock, cell

cycle regulators, etc.). In these cases, our approach would be unable to distinguish those

confounding effects from real genetic effects. An additional challenge in eQTL studies

is correcting for multiple testing. Possible approaches for multiple testing correction is

either applying permutation tests or false discovery rates. Unfortunately, in the case when

confounding is present, the confounding causes a violation of the basic assumption nec-

essary for these approaches which is that the individuals in the sample are i.i.d. Shared

confounding factors induces complex dependencies among the gene expression patterns of

individuals and complicates multiple testing. How to correct for multiple testing in the

presence of confounding is a fundamental problem and a promising avenue of future work

which is beyond the scope of this dissertation.
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3.4 Materials and Methods

3.4.1 Generative model

We assume the following linear mixed model as the generative model of the expression

levels,

Y = µ+Xβ + u+ e (3.1)

Let n be the number of individuals, m be the number of genes and l be the number of

SNPs. Y is a n×m matrix with the gene expression values, µ is a n× l matrix with the

means of expression levels of individuals, X is a n × l matrix with SNPs encoded by 0

and 1 for haploid and 0, 1, and 2 for diploid, β is a l ×m matrix with their coefficients,

and u and e are n×m matrix with multivariate normal random variables sampled from

N(0, σ2
gH) and N(0, σ2

eI) accounting for the confounding effects and random errors. Here,

H is n× n covariance matrix that explains intersample correlation structure induced by

confounders and I is an n × n identity matrix. σ2
g and σ2

e are coefficients of the two

variance components.

3.4.2 eQTL mapping

Based on our generative model, equation (3.1), we map eQTL as follows. To test the

effect of SNP j on the expression level of gene i, we assume the model

yi = µi + xjβij + ui + εij (3.2)

where yi is a size n vector denoting gene expression levels of individuals, µi is a size n

vector denoting the mean of expression levels of individuals, xj is a size n binary vector

denoting SNPs of individuals, ui ∼ N(0, σ2
gH) is confounding effects, and εij ∼ N(0, σ2

eI)
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is residual errors. The null hypothesis that we want to test is βij = 0. Typically, H is

defined or estimated before the eQTL mapping. Given estimated Ĥ, we use the efficient

mixed-model association (EMMA) C package [KZW08] to efficiently estimate the variance

components (σ2
g and σ2

e). We use the F test as previously suggested on the basis of REML

estimates of variance components [KZW08,YPB06,ZAK07]. The challenge in this model

is how to estimate Ĥ that is close to the true covariance structure of confounding, H.

3.4.3 ICE eQTL mapping

ICE (Intersample Correlation Emended) eQTL mapping approach [KYE08] utilizes global

intersample correlation generated from all genes to estimate H. Global intersample cor-

relation matrix from an expression dataset is generated as follows. Let Y be an m × n

expression matrix with n individuals for m genes. Let µi, σi be the mean and standard

deviation of expression values of the ith genes (Yi1, Yi2, ..., Yin). Let Z be an m×n matrix

with each element Zij = (Yij − µi)/σi. The intersample correlation matrix is defined as

the covariance matrix of Z, Ĥ = Cov(Z). The estimated intersample correlation matrix

Ĥ is then used in the linear mixed model in equation (3.2) to correct for the confounding

effects.

3.4.4 NICE eQTL mapping

We propose a new eQTL mapping approach called NICE (Next-generation Intersample

Correlation Emended) eQTL mapping. NICE builds upon the framework of ICE eQTL

mapping but uses a more refined strategy to estimate H, the covariance matrix of con-

founding effects. The primary limitation of ICE is that it uses the global intersample

correlation generated from all genes. If there exists a regulatory hotspot that affects

many genes, ICE will overly correct for the confounding and remove the associations to

the regulatory hotspot. To overcome this challenge, we must use the genes that are only
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affected by the confounding but not by the regulatory hotspots to estimate H. It turns out

that segregating these two groups of genes is a highly challenging computational problem.

3.4.4.1 Assumptions

We assume that confounding affects the global correlation structure of the gene expressions

thereby affecting most of the genes. This is the standard assumption consistent to previous

approaches. We then assume that true regulatory hotspots affect only a subset of the

genes. This assumption will be invalid only if a hotspot affects most of the genes, which

will be unlikely in practice. Our goal is to separate the genes affected by the true genetic

effects from the genes affected only by the confounding. If we can successfully separate

them, we will be able to more accurately estimate H using the genes affected only by the

confounding. To this end, we make an assumption that the effect size of genetic effects is

greater than the magnitude by which the confounding affects the expression levels. That

is, we assume that the genes with true genetic effects tend to have more significant results

than the other genes affected only by the confounding. This assumption may not be

true if the genetic effects are small and the confounding is severe, but in such cases, the

noisy data will be highly challenging and in this dissertation we will ignore such cases.

Additionally, we assume that the true genetic effects of regulatory hotspot may have a

structure. For example, the hotspot may be related to an enhancer element up-regulating

many genes, in which case the mean of the effect will be nonzero. Ideally, we would want

to use such structures to discriminate the true genetic effects from confounding.

3.4.4.2 Bayesian framework

For our purpose of separating the genes with true genetic effects from the genes with only

confounding effects, Bayesian framework fits well because it gives for each gene a posterior

probability that the genetic effect will exist or not. Given a SNP that we want to test,
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we first apply the standard t-test between the SNP and all genes to obtain the effect sizes

and standard errors of the SNP effect with respect to all genes. Let βi be the estimated

effect size of the SNP to gene i and let Vi be the variance of it. We assume a model that

P (βi|no genetic effect) = N(βi; 0, Vi)

and

P (βi|genetic effect) = N(βi;µ, Vi)

Note that a few simplifications are employed in this model. First, based on our assumption

that the confounding effects are sufficiently smaller than the genetic effects, we approxi-

mated the confounding effects as zero. Second, in order to capture the possible structure

within genetic effects, we employed the mean term µ. Although this is a simplified model,

we found that this approach can capture the majority of the genes affected by the genetic

effects, which turns out to be sufficient for our purpose of finding accurate H.

We assume a prior for the effect size

µ ∼ N(0, σ2) .

Let Ti be a random variable which has a value 1 if gene i is affected by the genetic effect

of the SNP of interest and a value 0 otherwise. Let π be the prior probability that each

gene is affected by the genetic effect such that

P (Ti = 1) = π, i = 1, ...,m .

Then we assume a beta prior on π

π ∼ Beta(α1, α2) .
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Let T = (T1, ..., Tm) be the vector indicating the existence of genetic effect in all genes.

Let ~β = (β1, ..., βm). Our goal is to estimate the posterior probability that the genetic

effect exists for each gene i, namely

P (Ti = 1|~β) .

Notice that T can have 2m different values. Let U = {t1, ..., t2m} be the set of those values.

By the Bayes’ theorem,

P (Ti = 1|~β) =
P (~β|Ti = 1)P (Ti = 1)

P (~β|Ti = 0)P (Ti = 0) + P (~β|Ti = 1)P (Ti = 1)

=

∑
t∈Ui

P (~β|T = t)P (T = t)∑
t∈U P (~β|T = t)P (T = t)

(3.3)

where Ui is a subset of U whose elements’ ith value is 1. Thus, we should calculate for

each t the posterior probability of T ,

g(t) = P (~β|T = t)P (T = t) ∝ P (T = t|~β) ,

consisting of the probability of ~β given T and the prior probability of T .

3.4.4.3 Connection to meta-analytic approach

It turns out that our Bayesian model for eQTL mapping is equivalent to a meta-analysis

model although their contexts are different. In a meta-analysis of genetic association

studies that combines multiple independent studies, if there exists heterogeneity which

refers to the differences in effect sizes of studies [HE11], it is challenging to predict which

study has an effect and which study does not. Thus, the problem of finding studies having

effect is essentially equivalent to the problem of finding genes having genetic effects in our

context. Recently, we have developed an efficient method to solve this problem in the
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context of meta-analysis [HE12]. Here we adapt this approach to calculate the posterior

probability of T . We briefly describe below how we can calculate g(t).

g(t) consists of the prior probability of T and the probability of ~β given T . The prior

probability of T is

P (T = t) =

∫ ∞
−∞

P (T = t|π)p(π)dπ

=

∫ ∞
−∞

π|t|(1− π)m−|t|p(π)dπ

=

∫ ∞
−∞

π|t|(1− π)m−|t|
1

B(α1, α2)
πα1−1(1− π)α2−1dπ

=
B(|t|+ α1,m− |t|+ α2)

B(α1, α2)

where |t| is the number of 1’s in t and B is the beta function.

The probability of ~β given T is

P (~β|T = t) =

∫ ∞
−∞

∏
i∈t0

N(βi; 0, Vi)
∏
i∈t1

N(βi;µ, Vi)p(µ)dµ

=
∏
i∈t0

N(βi; 0, Vi)

∫ ∞
−∞

∏
i∈t1

N(βi;µ, Vi)p(µ)dµ (3.4)

where t0 is the indices of 0 in t and t1 is the indices of 1 in t. We can analytically work

on the integration to obtain

∫ ∞
−∞

∏
i∈t1

N(βi;µ, Vi)p(µ)dµ = C̄ ·N(β̄; 0, V̄ + σ2)

where

β̄ =

∑
iWiβi∑
iWi

and V̄ =
1∑
iWi
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where Wi = V −1
i is the inverse variance or precision. The summations are all with respect

to i ∈ t1. C̄ is a scaling factor such that

C̄ =
1

(
√

2π)m−1

√∏
iWi∑
iWi

exp

{
−1

2

(∑
i

Wiβ
2
i −

(
∑

iWiβi)
2∑

iWi

)}
.

See Han and Eskin [HE12] for the details of the derivation. As a result, we can calculate

g(t) for every t.

3.4.4.4 MCMC

Although we calculate g(t) for each t, it is impractical to perform an exact calculation of

P (Ti = 1|~β) in equation (3.3) since we have a large number of genes. Thus, we use the

following Markov Chain Monte Carlo (MCMC) method [HE12].

1. Start from a random t.

2. Choose a next t, t′, based on the moves defined below.

3. If g(t) < g(t′), move to t′. Otherwise, move to t′ with probability g(t′)/g(t).

4. Repeat from step 2.

The set of moves we use for choosing t′ is {M1,M2, ...,Mm} ∪ {Mshuffle}. Mi is a simple

flipping move of Ti between 0 and 1. Mshuffle is a move that shuffles the values of T .

At each step, we randomly choose a move from this set assuming a uniform distribution.

Other moves can also be used such as moves based on the Bayes factors. We allow nB

burn-in and sample nS times. After sampling, nS samples gives us an approximation of

the distribution over g(t), which subsequently gives the approximations of equation (3.3).

Calculating the posterior probability is the most computationally intensive part of NICE

relative to ICE [KYE08] with respect to the running time. By using MCMC, we make

dramatic reductions in computational cost which allows NICE to scale to large datasets.
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3.4.4.5 NICE intersample correlation matrix

After we calculate the posterior probability that the gene is affected by the true genetic

effect of the SNP for each gene, we select genes with probability less than a threshold

η = 0.5. This set of genes represents the genes that are putatively affected only by

the confounding. Thus, we use this set of genes to build the intersample correlation

matrix ĤNICE. Then we apply ĤNICE to the linear mixed model (3.2) to correct for

the confounding in our eQTL mapping. The reason why we choose η = 0.5 threshold is

because we want to approximately find a subset of genes without genetic effects. Although

it is ideal to select all the genes without genetic effects, any subset of those genes are likely

to capture the global correlation structure as shown in Figure 3.1 (c), and is enough to

correct for confounding effects. We choose genes which have an effect with less than 50%

chance to select genes that are putatively affected only by the confounding effect. However,

we find that unless the threshold is too extreme (e.g. η ≤ 0.1 and η ≥ 0.9), all thresholds

yield similar results and the result is robust to the parameter (Supplementary Figure

3.2). We count the number of genes selected by NICE using the posterior probability

with threshold η = 0.5 applied to the yeast data generated in 2005 [BK05] (blue dots in

Supplementary Figure 3.3). Except for the putative hotspots, mostly, NICE uses majority

of the genes to build the intersample correlation matrix ĤNICE similar to ICE [KYE08].

3.4.4.6 Implementation

To calculate the posterior probability in equation (3.3), we used METASOFT [HE11]

with prior parameters, σ = 0.05, α1 = 1, and α2 = 5. We used σ = 0.05 assuming a

small effect size but the choice of the effect size up to 0.4, which is a possible choice of

a large effect size in GWAS [?,?], did not affect the results significantly (Supplementary

Figure 3.4). We assume that confounding affects most of the genes while true regulatory

hotspots affect only a subset of the genes. Based on the assumption we assume that 20%
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of the genes have trans effects for our prior (α1/α2 = 0.2). We used α1 = 1 and α2 = 5

for diffuse distribution. In practice, changing α1 and α2 priors results in similar results

as changing the threshold η (data not shown). As shown in the Supplementary Figure

3.2, the results are robust unless the threshold/priors are too extreme. We suggest to use

these default priors as they are based on our model assumption if one does not have prior

information about a data. We used nB = 1, 000 burn-in and nS = 1, 000, 000 sampling in

MCMC. We selected genes with posterior probability less than η = 0.5. If less than 1%

of the genes were selected to calculate the covariance matrix, we used the standard t-test

instead of NICE.

3.4.5 p-value based approach

Instead of using posterior probability described in previous sections, here we show if a

more standard test statistics, such as p-value from the standard t-test could be used for

selecting genes without genetic effects to estimate the intersample correlation matrix H.

We apply p-value for selecting genes without genetic effects in the following approach.

For each SNP, we first order genes based on the p-value obtained using the standard

t-test, {g1, g2, ..., gm}, where g1 is a gene with the largest p-value and gm is a gene with

the smallest p-value when there are m number of genes. Then we select the first x % of

the ordered genes {g1, g2, ..., g xm
100
} as the genes without genetic effects and use expression

levels of those genes to estimate H. The following processes are the same as those of

NICE. Let’s say α is the percentage of genes that have trans effects on a trans-regulatory

hotspot. When we apply this approach to various simulated datasets with different α,

x = 100−α gives the best estimation of H to correct for the confounding effects but retain

the true genetic effects (here we show only the case when α = 20). However, when we

use less (x < 100−α) or more (x > 100−α) genes, we fail to remove confounding effects

or fail to retain the true genetic effects, respectively. Supplementary Figure 3.5 (a)∼(c)
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show eQTL maps when this approach is applied to our simulated data. Our simulated

data has trans effects on 20 % of the genes (α = 20), in other words, 80 % of genes do

not have trans effects. Therefore, when we use 80 % (x = 80) of the genes to build the

intersample correlation matrix H, we are able to correct for the confounding effects but

retain the genetic effects. However, when we use less, e.g. 60 % (x = 60), of the genes,

or more, e.g. 99 % (x = 99), of the genes, we either fail to remove confounding effects

or fail to retain the true genetic effects, respectively. Unfortunately, we do not know how

many genes have trans effects for each marker in advance. Moreover, we note that this

approach creates many spurious associations other than the ones induced by confounding

effects. For example, many horizontal lines appear in the eQTL map (Supplementary

Figure 3.5 (a)). This is because when we select x % of genes with the largest p-value,

some of the selected genes are shared between many SNPs and this creates spurious

associations between the shared genes and the SNPs. We also applied this approach to

the yeast dataset generated in 2005 [BK05] using 10 %, 30 %, 50 %, 70 %, and 90 %

of the genes. As a result, it misses many putative hotspots as well as makes many false

positive predictions (Supplementary Figure 3.6).

Thus, we conclude that p-value is an ineffective approach for selecting genes without

genetic effects. On the other hand, the posterior probability that we use for NICE is

robust as the value of η neither has significant influence on the results nor is specific to

the datasets.

3.4.6 Simulated dataset

We generated a simulated dataset for 1000 genes, 1000 SNPs, over 100 samples based

on our generative model, equation (3.1), with σg = 0.9 and σe = 0.1. Assuming haploid,

SNPs are encoded by 0 and 1 and randomly generated with minor allele frequency of 30%.

A batch effect is simulated as a confounding effect where expression levels in the first half
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of samples are correlated with each other, but not correlated with the second half of the

samples, and vice versa. 5 randomly selected trans-regulatory hotspots are simulated and

for each of them, 20% of the genes have trans effects of size 0.4 where half have positive

effects and the other half have negative effects. Cis effect is simulated with size of 0.5.

3.4.7 Yeast datasets

We evaluate our method by utilizing replicate gene expression datasets. We used two

versions of a yeast dataset produced 3 years apart at different locations using different

microarray platforms. The first data [BK05] was generated in 2005 of which 6,138 probes

and 2,956 genotyped loci in 112 segregants are used. The second data [SK08] was gener-

ated in 2008 of which 6,138 probes and 2,956 genotyped loci in 109 segregants are used.

We classified the eQTL as cis-acting when the location of the SNP and the location of the

probe are within 50 kb. We showed the number of cis-eQTLs for different FDRs where

FDRs were calculated using q-value function of R.

3.4.8 Running previous methods

For running previous methods, SVA [LS07], ICE [KYE08], LMM-EH [LKS10] and PANAMA

[FSL12], we downloaded the program available from the authors and run the program us-

ing default options. For running SVA, ’two-step’ method is used. For running LMM-EH,

eLMM v1.2 is used for generating covariance matrix KEH and FaST-LMM v2.05 [LLL11]

is used for calculating the associations. For running eLMM, ICE covariance matrix is

used for initial KEH . REM number of EM steps for each full iteration is set to 3 and

REM number of total iterations is set to 10∼20. eLMM provides LMM-EH-PS which cor-

rects for confounding factors as well as population structure. We use LMM-EH instead

of LMM-EH-PS because neither of our simulated nor yeast datasets contain population

structure. In addition, LMM-EH-PS fails to run in our windows machine with 1.73GHz
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Intel Core i7 CPU and 4G RAM.; For running PANAMA, Nicolo Fusi who is the author

of PANAMA helped running the program.
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3.5 Supplementary Figure

Supplementary Figure 3.1. Putative, missing and additional hotspots for the
standard t-test, SVA, ICE, LMM-EH, PANAMA, and NICE applied to the yeast dataset
generated in 2008 [SK08]. (a) The average over all genes of the -log of the maximum
p-value of the two yeast datasets for each SNP. (b)-(g) The average over all genes of the
-log p-value for each SNP for the standard t-test, SVA, ICE, PANAMA and NICE. Blue
asterisks show putative genetic regulatory hotspots predicted from merged dataset, green
arrows show missing hotspots, and red arrows show additional hotspots. Red horizontal
lines show thresholds to select significant peaks which is two standard deviations above
the mean. Note that the t-test has a distinct advantage in this evaluation because
p-values from the t-test are used to determine the putative regulatory hotspots.
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Supplementary Figure 3.2. eQTL maps of NICE using different thresholds applied
to a simulated data. (a)-(c) Threshold of η = 0.3, η = 0.5, and η = 0.7 applied,
respectively. Blue arrows show the locations of real genetic regulatory hotspots.

Supplementary Figure 3.3. The number of genes selected by NICE to build the
intersample correlation matrix ĤNICE applied to the yeast dataset generated in
2005 [BK05]. The bottom plot shows hotspot levels of NICE as in the Figure 3.5 (g).
The blue dots on the top of the hotspot levels show the number of genes selected by
NICE using the posterior probability less than a threshold η = 0.5.
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Supplementary Figure 3.4. eQTL maps of NICE using different σ values applied to
a simulated data. (a)-(c) σ = 0.05, σ = 0.2, and σ = 0.4 applied, respectively. Blue
arrows show the locations of real genetic regulatory hotspots. The results of NICE are
robust to the prior σ.

Supplementary Figure 3.5. eQTL maps when p-value from the standard t-test is
used for selecting genes without genetic effects to build the intersample correlation
matrix H applied to a simulated data. (a)∼(c) eQTL maps when 60% (x = 60), 80%
(x = 80), and 99% (x = 99) of the genes with the largest p-value are selected,
respectively. The simulated data has trans effects on 20% of the genes for each
trans-regulatory hotspot. Blue arrows show the locations of real genetic regulatory
hotspots.

43



Supplementary Figure 3.6. Putative, missing and spurious hotspots when p-value
from the standard t-test is used for selecting genes without genetic effects to build the
intersample correlation matrix H applied to the yeast dataset generated in 2005 [BK05].
(a) Putative hotspots as in the Figure 3.5 (a). (b)∼(e) eQTL maps when 10% (x = 10),
30% (x = 30), 50% (x = 50), 70% (x = 70), and 90% (x = 90) of the genes with the
largest p-value are selected, respectively.
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3.6 Supplementary Table

Method Putative hotspots Missing hotspots Additional hotspots

t-test 6 6 0
SVA 1 11 3
ICE 6 6 3

LMM-EH 1 11 1
PANAMA 6 6 0

NICE 9 3 5

Supplementary Table 3.1. The number of putative, missing, and additional hotspots
identified by different methods applied to yeast data generated in 2008 [SK08].

Chromosome Position Gene

2 380000 unknown
2 550000 AMN1
3 90000 LEU2
3 200000 MAT
5 110000 URA3
8 90000 GPA1
12 670000 HAP1
12 1000000 SIR3
14 480000 unknown
15 180000 unknown
15 580000 CAT5

Supplementary Table 3.2. List of putative hotspots. We define eleven putative
regulatory hotspots from a collection of independent experiments using the same
parental strains grown in glucose [BYC02,YBW03].
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CHAPTER 4

Efficient and accurate multiple-phenotype regression

method for high dimensional data considering

population structure

4.1 Introduction

Over the past few years, genome-wide association studies (GWAS) have been used to find

genetic variants that are involved in disease and other traits by testing for correlations

between these traits and genetic variants across the genome. A typical GWAS examines

the correlation of a single phenotype and each genotype one at a time. Recently, large

amounts of genomic data such as expression data have been collected from GWAS cohorts.

This data often contains thousands of phenotypes per individual. The standard approach

to analyze this type of data is to perform a GWAS on each phenotype individually, a

single-phenotype analysis.

The genomic loci that are of the most interest are the loci that affect many pheno-

types. For example, researchers may want to detect variants that affect the profile of

gut microbiota, which encompasses tens of thousands of species [LDB96, GRG99]. An-

other example is the detection of regulatory hotspots in eQTL (expression quantitative

trait loci) studies. Many genes are known to be regulated by a small number of genomic

regions called trans-regulatory hotspots [CLE05, HWW05, WKH04], and these are very
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important evidence of the presence of master regulators of transcription. Moreover, a

major flaw of the analysis strategy of analyzing phenotypes independently is that this

strategy is underpowered. For example, unmeasured aspects of complex biological net-

works, such as protein mediators, could be captured with many phenotypes together that

might be missed with a single phenotype or a few phenotypes [OHP12].

Many multivariate methods have been proposed that are designed to or could be applied

to jointly analyze large numbers of genomic phenotypes. Most of the methods perform

some form of data reduction, such as cluster analysis and factor analysis [ABB00,Qua01].

However, these data-reduction methods have many issues such as the difficulty of deter-

mining the number of principal components, doubts about the generalizability of principal

components, etc. [NLS07]. Alternatively, Zapala and Schork proposed a way of analyzing

high-dimensional data using multivariate distance matrix regression called Multivariate

Distance Matrix Regression (MDMR) analysis [ZS12a]. MDMR constructs a distance or

dissimilarity matrix whose elements are tested for association with independent variable

of interest. Then, based on the traditional linear models, it tests for the association

between a set of independent variables. The method is simple and directly applicable

to high dimensional multiple phenotype analysis. In addition, users can flexibly choose

appropriate distance matrices [WS06] depending on their experiments.

Each of the previous methods is based on the assumption that the phenotypes of the

individuals are independently and identically distributed (i.i.d.). Unfortunately, as has

been shown in GWAS studies, this assumption is not valid due to a phenomenon referred

to as population structure. Allele frequencies are known to vary widely from population to

population, due to each population’s unique genetic and social history. These differences

in allele frequencies along with the correlation of the phenotype with the populations may

cause spurious correlation between genotypes and phenotypes and may induce spurious
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associations [KCP02,FRP04,MCP04,COL05,HYH05,RZL05,VP05,BSK06,SSV06,FG06,

FE12]. This problem is even more serious when analyzing multiple-phenotypes because

this bias in test statistics accumulates from each phenotype which we show in our ex-

periments. Unfortunately, none of the previously mentioned multivariate methods are

able to correct for the population structure and may cause a significant amount of false

positive results. Recently, multiple-phenotypes analysis methods considering population

structure [ZS14,KVS12] have been developed but these methods and related methods are

not applicable for large numbers of phenotypes because their computational costs scale

quadratically with the number of phenotypes which is impractical.

In this chapter, we propose a method, called GAMMA (Generalized Analysis of Molecu-

lar variance for Mixed model Analysis), that efficiently analyzes large numbers of pheno-

types while simultaneously considering population structure. Recently, the linear mixed

model (LMM) has become a popular approach for GWAS as it can correct for population

structure [KYE08,KSS10,LLL11,SAB12,ZS12b,SVP12]. The LMM incorporates genetic

similarities between all pairs of individuals, known as the kinship, into their model and

corrects for population structure. We take the idea of MDMR [NLS07, ZS12a] that per-

forms multivariate regression using distance matrices to form a statistic to test the effect

of covariates on multiple phenotypes and extend it to incorporate linear mixed model in

the statistics to correct for population structure.

To demonstrate the utility of GAMMA, using both simulated and real datasets, we com-

pared our method with some of representative previous methods, the standard t-test;

one of the standard and the simplest method for GWAS, EMMA [KYE08]; a representa-

tive single-phenotype analysis method that implements LMM and corrects for population

structure [LLL11, ZS12b], and MDMR [ZS12a]; a multiple-phenotypes analysis method.

In a simulated study, GAMMA corrects for population structure and accurately identifies
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genetic variants associated with phenotypes. However, previous methods that analyze

each phenotype individually do not have enough power to detect the associations and are

not able to detect the variants. MDMR [ZS12a] predicts many spurious associations due

to population structure. We further applied GAMMA to real datasets. Applied to a yeast

dataset, GAMMA could identify most of the regulatory hotspots that are known to be

related to regulatory elements in previous study [JSH14], while previous methods fail to

detect those hotspots. Applied to a gut microbiome dataset from mouse, GAMMA could

correct for population structure and identify biological meaningful variants that are likely

to be correlated with taxa. While previous methods either result in significant number of

false positives or fail to find any of the variants.

4.2 Results

4.2.1 Correcting for population structure in multivariate analysis

Unlike the traditional univariate analysis that tests an association between each pheno-

type and each genotype, our goal is to identify SNPs that are associated with multiple

phenotypes. Let’s say n is the number of samples, m is the number of phenotypes, and

we are analyzing an association between ith SNP and m phenotypes. The standard mul-

tivariate regression analysis assumes a linear model as follows:

Y = Xiβ + E

where Y is an n×m matrix, where each column vector yj contains jth phenotype values,

Xi is a vector of length n containing genotypes of ith SNP, β is a vector of length m,

where each entry βj contains an effect of ith SNP on jth phenotype, and E is a n ×m

matrix, where each column vector ej contains i.i.d. residual errors of jth phenotype.

Here, we assume that each column of the random effect E follows a multivariate normal
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distribution, ej ∼ N(0, σ2
ejI), where I is an n×n identity matrix with unknown magnitude

σ2
ej.

To test an association between ith SNP and m phenotypes, we test whether any of βj is

0 or not from the linear model. The standard least-squares solution for β̂j is (X ′iXi)
−1X ′iyj,

However, this is problematic when n � m, which is often the case in genomics data, as

there could be many solutions when there are more unknown variables than observations.

Alternatively, MDMR [ZS12a] form a statistic to test an effect of a variable on multiple

phenotypes by utilizing the fact that the sums of squares associated with the linear model

can be calculated directly from a n× n distance matrix D estimated from Y, where each

element dij reflects the distance between sample i and j. This is because the standard

multivariate analysis proceeds through a partitioning of the total sum of squares and

cross products (SSCP) matrix, and the relevant information contained in required inner

product matrices could be achieved by an n× n outer product matrix YY′, which could

be obtained from any n× n distance matrix estimated from Y.

However, in GWAS, it has been widely known that genetic relatedness, referred to

as population structure, complicates the analysis by creating spurious associations. The

linear model does not account for population structure and assuming the linear model

may induce many false positive identifications. Moreover, this could cause even more

significant problem in multiple-phenotypes analysis because the bias accumulates for each

phenotype as their test statistics are summed over the phenotypes (See details in Material

and Methods.). Recently, the linear mixed model has emerged as a powerful tool for

GWAS as it could correct for population structure. To incorporate effects of population

structure, GAMMA assumes a linear mixed model instead of the linear model as follows:

Y = Xiβ + U + E

which has an extra n ×m matrix term U, where each column vector uj contains effects

50



of population structure of jth phenotype. This is an extension of the following widely

utilized linear mixed model for univariate analysis:

yj = Xiβj + uj + ej

where uj ∼ N(0, σ2
gjK) andK is the kinship matrix which encodes the relatedness between

individuals and σ2
gj is the variance of the phenotype accounted for by the genetic variation

in the sample. Based on the linear mixed model, we perform a multivariate regression

analysis through partitioning of the total SSCP matrix to estimate a test statistic for the

multiple phenotype analysis. Details of how we perform the inference are described in

Materials and Methods.

4.2.2 GAMMA corrects for population structure and accurately identifies

genetic variances in a simulated study

Our goal is to detect an association between a variant and multiple phenotypes. A trans-

regulatory hotspot is a variant that regulates many genes, thus, detecting trans-regulatory

hotspots is a good applications for GAMMA. To validate that our method eliminates ef-

fects of population structure and accurately identifies true trans-regulatory hotspots, we

generated a simulated dataset that contains true trans-regulatory hotspots as well as a

complicated population structure. We created a dataset that has 96 samples with 100

SNPs and 1000 gene expression levels. To accommodate population structure, we took

SNPs from a subset of a Hybrid Mouse Diversity Panel (HMDP) [BFO10] that con-

tains significant amounts of population structure. To accommodate the trans-regulatory

hotspots, we simulated 5 trans-regulatory hotspots on the gene expression. For each of

the trans-regulatory hotspot, we added trans effects to 20% of the genes. In addition,

we added cis effects [MLB09], which are associations between SNPs and genes in close

proximity, as they are well-known eQTLs that exist in real organisms.
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We applied the standard t-test, EMMA [KYE08], MDMR [ZS12a], and GAMMA

on the simulated dataset. We visualized the results of a study in a plot (Figure 4.1),

where the x-axis shows SNP locations and the y-axis shows -log10 p-values. As the t-test

and EMMA give a p-value for each phenotype, we averaged the p-values over all of the

phenotypes for each SNP. On the top of each plot, we marked the locations of the true

trans-regulatory hotspots with blue arrows. As a result, from the plot we could clearly see

that GAMMA successfully identifies the true trans-regulatory hotspots without any false

positive identifications (Figure 4.1 (d)). However, the standard t-test and EMMA fail to

identify the true trans-regulatory hotspots as they do not have enough power to detect the

associations (Figure 4.1 (a) and (b)). MDMR results many false positive identifications

induced by spurious associations due to population structure (Figure 4.1 (c)).

Figure 4.1. The results of different methods applied to a simulated dataset. The x-axis
shows SNP locations and the y-axis shows log10p-value of associations between each
SNP and all the genes. Blue arrows show the location of the true trans-regulatory
hotspots. (a) The result of the standard t-test. (b) The result of EMMA. For (a) and
(b), we averaged the log10p-values over all of the genes for each SNP. (c) The result of
MDMR. (d) The result of GAMMA.
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4.2.3 GAMMA identifies regulatory hotspots related to regulatory elements

of a yeast dataset

Yeast is one of the model organisms that are known to contain several trans-regulatory

hotspots. For example, in a well-studied yeast dataset, several hotspots are known to

be true genetic effects since they have been validated by additional data such as protein

measurements [FRS07, PRR07]. Unfortunately, expression data are known to contain

significant amounts of confounding effects from various technical artifacts such as batch

effects. To correct for these confounding effects, we applied NICE [JSH14], a recently

developed method that corrects for the heterogeneity in expression data, to the yeast

dataset and drew an eQTL map shown in Figure 4.2. On the map, the x-axis corresponds

to SNP locations and the y-axis corresponds to gene locations. The intensity of each

point on the map represents the significance of the association between a gene and a

SNP. There are some vertical bands in the eQTL map which represent trans-regulatory

hotspots. However, it is not easy to tell exactly which ones are the trans-regulatory

hotspots as the map does not show associations between each SNP and all the genes but

only shows associations between each SNP and a single gene.

We applied the standard t-test, EMMA [KYE08], MDMR [ZS12a], and GAMMA to

the yeast dataset to detect the trans-regulatory hotspots. To remove the confounding

effects and other effects from various technical artifacts, we applied genomic control λ

which is a standard way of removing unknown plausible effects [DRW01]. The inflation

factor λ tells how much the statistics of obtained p-values are departed from a uniform

distribution; λ > 1 indicates an inflation and λ < 1 indicates a deflation. The λ values are

1.20, 0.86, 3.64 and 0.98 for the t-test, EMMA, MDMR and GAMMA, accordingly. As the

yeast dataset does not contain a significant amount of population structure, the λ value

is not very big even for the t-test. However, λ value is very big for MDMR which shows

that even a small amount of bias could cause significant problem in multiple-phenotypes
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analysis. GAMMA could successfully correct for the bias and the λ value for GAMMA is

close to 1. Figure 4.3 (a) and (b) show the results of MDMR and GAMMA, accordingly.

The x-axis shows locations of the SNPs and the y-axis shows -log10 p-values. The blue stars

above each plot show hotspots that were reported as putative trans-regulatory hotspots in

a previous study [JSH14] for the yeast data. As a result, GAMMA (Figure 4.3 (b)) shows

significant signals on most of the putative hotspots. However, MDMR (Figure 4.3 (a))

does not show significant signals on those sites. The t-test and EMMA fail to identify

the trans-regulatory hotspots as each phenotype are expected to have too small effect

that is hard to be detected with a single-phenotype analysis (Supplementary Figure 4.1

in Supplementary).

Figure 4.2. An eQTL map of a real yeast dataset. P values are estimated from
NICE [JSH14]. The x-axis corresponds to SNP locations and the y-axis corresponds to
the gene locations. The intensity of each point on the map represents the significance of
the association. The diagonal band represents the cis effects and the vertical bands
represent trans-regulatory hotspots.
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Figure 4.3. The results of MDMR and GAMMA applied to a yeast dataset. The x-axis
corresponds to SNP locations and the y-axis corresponds to gene locations. The y-axis
corresponds to -log10 of p value. Blue stars above each plot show putative hotspots that
were reported in a previous study [JSH14] for the yeast data. (a) The result of MDMR.
(b) The result of GAMMA.
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4.2.4 GAMMA identifies variants that associated with a gut microbiome

There is an increasing body of evidence that diet and host genetics both affect the

composition of gut microbiota, and that shifts in microbial communities can lead to

cardio-metabolic diseases such as obesity [LBT05], diabetes [LBT05] and metabolic dis-

eases [KTN13]. Bacteria in a gut constitute a complex ecosystem where most of the

interactions in this system are still unknown. There could be clinical overlap between the

taxa and some taxa could be co-expressed. The networks between the taxa are compli-

cated and unclear that it is hard to tell a SNP affects a specific taxon but affects jointly

many taxa in a profile of the microbiome. For the reason, it would be very useful to per-

form a multiple-phenotypes analysis for the microbiome data. We applied the standard

t-test, EMMA [KYE08], MDMR [ZS12a], and GAMMA on a gut microbiome dataset from

HMDP which contains 26 common genus level taxa identified from 592 mice samples, and

197,885 SNPs. Because of the nature of meta-genomics data, the distributions of abun-

dances of species are often highly aggregated or skewed, and there are also usually rare

species that contribute many zeros. For the reason, the data is not normally distributed

and contains lots of noises for many unknown reasons and we did not apply the genomic

control as the λ values are very high except for EMMA which is known to have a deflation

problem [LLL11,JSH14].

We applied GAMMA on the dataset (Supplementary Figure 2 in Supplementary). We

defined the peaks with p value ≤ 5× 10−6 as the significant ones and we found 9 loci in

mouse genome that are likely to be associated with the genus level taxa. Table 4.1 shows

the list of the loci and many of these loci contain a number of strong candidate genes

based on the literature, overlapping signals with clinical traits and functional variations

such as cis-expression quantitative trait loci. For example, chr 1 and 2 loci are the same

regions detected with obesity traits in our previous study using the same mice [PNO13]. In

addition, global gene expression in epididymal adipose tissue and liver showed a significant
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cis-eQTL with genes reside in six out of nine detected loci. On the other hand, MDMR

predicts many false positives as mouse data are known to contain significant amounts of

population structure. We applied MDMR on one of the smallest chromosome, chr19, and

even in the small region, MDMR results 1989 significant peaks out of 5621 loci which shows

that MDMR is not applicable for any dataset with population structure (Supplementary

Figure 3 in Supplementary). The t-test and EMMA fail to detect significant signals due

to the low power (Supplementary Figure 4 in Supplementary).

57



4.3 Discussion

In this chapter, we present an accurate and efficient method, GAMMA, for identifying

genetic variants associated with multiple phenotypes considering population structure.

Population structure is a widespread confounding factor that creates genetic relatedness

between the samples. This may create many spurious associations between genotypes and

phenotypes and results in false identifications. This makes not only the genotypes but also

the phenotypes dependent on each other and breaks the i.i.d. assumption of the standard

multivariate approaches and makes it inappropriate to apply previous multivariate meth-

ods. Moreover, the bias accumulates for each phenotype so when there is a small amount

of population structure and even it does not make a big problem in single-phenotype

analysis, it could results a serious problem in multiple-phenotypes analysis.

Applied to both a simulated and real datasets including a yeast and a gut microbiome

from mouse, GAMMA successfully identifies the variants associated with multiple phe-

notypes. However [KYE08, ZS12a], other methods either results in many false positives

or fail to identify true signals. We applied a pseudo-F statistic that was introduced by

Brian H.M. et al. (2011), as it provides fast and clear way of estimating a test statistic,

especially applicable when the number of phenotypes is much larger than the number of

samples, which is often the case in genomics data. However, other appropriate multivari-

ate methods could be applied to GAMMA as well.

There are some complications in comparing results of single-phenotype analysis with

those of multiple-phenotypes analysis. We use the average p-value of all the phenotypes

for each SNP for the single-phenotype analysis, which could be somewhat a naive way

of comparing the results of a single-phenotype analysis and multiple-phenotypes analysis.

GAMMA only provides information of whether a set of phenotypes is or is not associated

with a SNP but does not provide the information of which phenotypes in a set are asso-
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ciated with the SNP. There exist methods for determining which phenotype the SNP is

associated with such as the m-values of Han et al. [HE12].

4.4 Materials and Methods

4.4.1 Linear Mixed Models

For analyzing ith SNP, we assume the following linear mixed model as the generative

model:

Y = Xiβ + U + E (4.1)

Let n be the number of individuals and m be the number of genes. Here, Y is an n×m

matrix, where each column vector yj contains jth phenotype values, Xi is a vector of

length n with genotypes of ith SNP, and β is a vector of length m, where each entry βj

contains an effect of ith SNP on jth phenotype. U is an n×m matrix, where each column

vector uj contains the effect of population structure of jth phenotype. E is a n×m matrix,

where each column vector ej contains i.i.d. residual errors of jth phenotype. We assume

the random effects, uj and ej, follow multivariate normal distribution, uj ∼ N(0, σ2
gjK)

and ej ∼ N(0, σ2
ejI), where K is a known n×n genetic similarity matrix and I is an n×n

identity matrix with unknown magnitudes σ2
gj and σ2

ej, accordingly.

4.4.2 Multiple-phenotypes analysis

Let’s say we are analyzing associations between the ith SNP and the jth phenotype.

Traditional univariate analysis is based on the following linear model:

yj = Xiβj + ej (4.2)
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Here, yj is a vector of length n with jth phenotype values, Xi is a vector of length n with

ith SNP values, βj is a value contains an effect of ith SNP on jth phenotype and ej is a

vector of length n with i.i.d. residual errors of jth phenotype. To test associations, we

test the null hypothesis H0 : βj = 0 against the alternative hypothesis HA : βj 6= 0. We

can perform a F-test for the analysis by comparing two models, model 1: yj = ej and

model 2: yj = Xiβj + ej. The standard F-statistic is given as follows:

F =
(RSS1 −RSS2)/(p2 − p1)

RSS2/(n− p2)
(4.3)

where RSS1 and RSS2 are the residual sum of squares (RSS) of model 1 and model

2, accordingly, and p1 and p2 are the number of parameters in model 1 and model 2,

accordingly. Applying this statistic (Eq. 4.3) to our case, we find the following:

RSS1 = y′jyj, RSS2 = (yj −Xiβ̂j)
′(yj −Xiβ̂j) = y′j(I −Hi)yj = r̂′j r̂j

RSS1 −RSS2 = y′jyj − y′j(I −Hi)yj = y′jHiyj = ŷ′j ŷj, p1 = 1, p2 = 2
(4.4)

where β̂j = (X ′iXi)
−1X ′iyj, Hi = Xi(X

′
iXi)

−1X ′i and r̂j = yj− ŷj = yj−Xi(X
′
iXi)

−1X ′iyj =

(I −Hi)yj. Applying Eq. 4.4 to Eq. 4.3, we find the following F-statistic:

F =
ŷ′j ŷj/(2− 1)

r̂′j r̂j/(n− 2)
(4.5)

Utilizing the fact that the RSS statistics follow χ2, we could extend the univariate case

into a multivariate case in the following:

Y = Xiβ + E (4.6)

where Y is a n×m matrix, where each column vector yj contains jth phenotype values,

β is a vector of length m, where each entry βj contains an effect of ith SNP on jth
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phenotype, and E is a n×m matrix, where each column vector ej contains i.i.d. residual

errors of jth phenotype. Here, we assume that the random effect ej follows multivariate

normal distribution, ej ∼ N(0, σ2
ejI), where I is an n × n identity matrix with unknown

magnitudes σ2
ej. In the multivariate case, both RSS1 and RSS2 are m×m matrices, where

the diagonal element RSSj,j is RSS for jth phenotype as calculated in the univariate case.

Given this, if we take the trace of this matrix, we obtain a sum of χ2 statistics. Thus in

the multivariate case (Eq. 4.6), we can estimate a pseudo-F statistic as follows:

F =
tr(Ŷ

′
Ŷ)/(2− 1)

tr(R̂
′
R̂)/(n− 2)

(4.7)

where R̂ = Y − Ŷ = Y −Xi(X
′
iXi)

−1X ′iY = (I −Hi)Y. The reason why we call this a

“pseudo” F statistic is because it is not guaranteed that we are summing independent χ2

statistics, and when they are not independent we do not expect that the result is also χ2.

Here we note that the trace of an inner product matrix is the same as the trace of an

outer product matrix; tr(Ŷ
′
Ŷ) = tr(ŶŶ

′
) and tr(R̂

′
R̂) = tr(R̂R̂

′
). The advantage of this

duality is that we can estimate the trace of ŶŶ
′
and R̂R̂

′
from the outer product matrix

YY′ by utilizing the fact that ŶŶ
′

= Hi(YY′)Hi and R̂R̂
′

= (I − Hi)(YY′)(I − Hi).

The outer product matrix YY′ could be obtained from any n × n symmetric matrix of

distances or dissimilarities [Gow66, MA01]. Let’s say we have a distance matrix D with

each element dij. Let A be a matrix where each element aij = (−1/2)dij, and we can

center the matrix by taking Gower’s centered matrix G [Gow66,MA01]:

G = (I − 1

n
11′)A(I − 1

n
11′) (4.8)

where 1 is a column of 1’s of length n. Then this matrix G is an outer product matrix
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and we can generate a pseudo F statistic from a distance matrix as follows:

F =
tr(HiGHi)/(2− 1)

tr[(I −Hi)G(I −Hi)]/(n− 2)
(4.9)

4.4.3 Correcting for population structure

In GWAS, it has been widely known that genetic relatedness, referred to as population

structure, complicates the analysis by creating spurious associations. The linear model

(Eq. 4.6) does not account for the population structure and applying the model to the

multiple-phenotypes analysis may induce false positive identifications. Recently, the lin-

ear mixed model has emerged as a powerful tool for GWAS as it could correct for the

population structure. To incorporate the effect of population structure, instead of a linear

model (Eq. 4.6), GAMMA assumes a linear mixed model (Eq. 4.1) which has an extra

term U accounting for the effects of population structure. This is an extension of the

following widely utilized linear mixed model for an univariate analysis:

yj = Xiβj + uj + ej

Based on the linear mixed model (Eq. 4.1), each phenotype follows a multivariate normal

distribution with mean and variance as follows:

yj ∼ N(Xiβj,Σj)

where Σj = σ2
gj
K+σ2

ejI is the variance of jth phenotype. We compute a covariance matrix,

Σ̂ = σ̂2
gK + σ̂2

eI as described in Implementation and the alternate model is transformed

by the inverse square root of this matrix as follows:

Σ̂−1/2yj ∼ N(Σ̂−1/2Xiβj, σ
2I)
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Thus, to incorporate population structure, we transform genotypes and phenotypes; X̃i =

Σ̂−1/2Xi and ỹj = Σ̂−1/2yj, and apply them to Eq. 4.9 to get an alternative pseudo-F

statistic as follows:

F =
tr(H̃iG̃H̃i)/(2− 1)

tr[(I − H̃i)G̃(I − H̃i)]/(n− 2)

where H̃i = X̃i(X̃
′
iX̃i)

−1X̃ ′i and G̃ is a Gower’s centered matrix estimated from D̃ in turn

estimated from Ỹ, where each column vector of Ỹ is ỹj.

4.4.4 Implementation

For running GAMMA, we need to compute the covariance matrix Σ̂ = σ̂2
gK+ σ̂2

eI and for

that we need the estimates of σ̂2
g and σ̂2

e . Let σ2
gj and σ2

ej be the two variance components

of jth phenotype, where j = 1, ...,m. We follow the approach taken in EMMAX [KSS10]

or FaST-LMM [LLL11] and estimated σ2
gj and σ2

ej in the null model, with no SNP effect.

As we take into account multiple phenotypes, a median value of σ̂2
gj is used for σ̂2

g and

a median value of σ̂2
ej is used for σ̂2

e which practically worked well in both of our real

datasets. Bray-Curtis measure [BC57,Gow66] is used to calculate the dissimilarity matrix

for MDMR and GAMMA. R package vegan is used to estimate the pseudo-F statistics

for MDMR and GAMMA. As the distribution of pseudo-F statistic is complicated and

does not exactly follows χ2 distribution as described in the section 4.2., we performed

an adaptive permutation for estimating the p-values for MDMR and GAMMA; up to

105 permutations for the simulated dataset and 106 permutations for the yeast and the

microbiome datasets. For running EMMA [KYE08], efficient mixed-model association

(EMMA) C package is used.
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4.4.5 Simulated dataset

We generated a simulated dataset for 1000 genes, 100 SNPs, over 96 samples based on our

generative model (Eq. 4.1) by sampling from a multivariate normal distribution. SNPs are

extracted from a HMDP [BFO10] which is a mouse association study panel with significant

amounts of population structure. Five randomly selected trans-regulatory hotspots are

simulated and for each of these, 20% of the genes have trans effects of size 1. Cis effect

is simulated with the size of 2. σ2
g = 0.8 and σ2

e = 0.2 is used.

4.4.6 Real datasets

We evaluated our method using a yeast dataset [BK05]. The dataset contains 6,138 probes

and 2,956 genotyped loci in 112 segregants. In addition we evaluated our method using

a gut microbiome dataset from 592 mice from 110 HMDP strains. The study protocol

has been described in detail elsewhere [PNO13]. Bacterial 16S rRNA gene V4 region

was sequenced using Illumina MiSeq platform and data was analyzed using established

guidelines [BSF13]. The relative abundance of each taxon was calculated by dividing

the sequences pertaining to a specific taxon by the total number of bacterial sequences

for that sample. We focused on abundant microbes, OTUs with at least 0.01% relative

abundance and for genome-wide association study we used 197885 SNPs and 26 genus

level taxa. Minor Allele Frequency less than 5% and missing values more than 10% are

filtered out. We expect the dataset contains population structure as mouse dataset is one

of the known model organism that contains significant amount of population structure.

We applied Arcsign transformation on the phenotype values.
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4.5 Supplementary Figure

Supplementary Figure 4.1. The results of the standard t-test and EMMA applied to
a yeast dataset. The x-axis corresponds to SNP locations and the y-axis corresponds to
gene locations. The y-axis corresponds to sum of -log10 of p value over the genes. Blue
stars above each plot show putative hotspots that were reported in a previous
study [JSH14] in the yeast data. (a) The result of the standard t-test. (b) The result of
EMMA.
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Supplementary Figure 4.2. The result of GAMMA applied to a gut microbiome
dataset. The x-axis corresponds to SNP locations and the y-axis corresponds to gene
locations. The y-axis corresponds to -log10 of p value.

Supplementary Figure 4.3. The result of MDMR applied to chromosome 19 of a gut
microbiome dataset. The x-axis corresponds to SNP locations and the y-axis
corresponds to gene locations. The y-axis corresponds to -log10 of p value.

Supplementary Figure 4.4. The results of the standard t-test and EMMA applied to
a gut microbiome dataset. The x-axis corresponds to SNP locations and the y-axis
corresponds to gene locations. The y-axis corresponds to sum of -log10 of p value over
the genus. (a) The result of the standard t-test. (b) The result of EMMA.
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CHAPTER 5

Multiple Testing Correction in Linear Mixed Models

5.1 Introduction

Genome-wide association studies (GWAS) have discovered many variants implicated in

complex traits in studies of both humans [HGB07,SRR07,ZWL07,ADL08,MAC08,KAT13,

LVB13,ROC13] and model organisms [BK05,SK08,BFO10,FBO11,PGJ11,AVF11,ZKT12,

FE12]. In GWAS, both genetic information on variants spread throughout the genome

and phenotypic information are collected from a population. The correlation between

the genetic information at each variant, referred to as the genotype, and the phenotypic

information are assessed to identify the set of variants associated with the trait of interest.

GWAS now are routinely performed on tens of thousands of individuals and millions of

genetic variants.

One of the major challenges in GWAS is multiple hypothesis testing. Because each GWAS

involves computing up to millions of statistical tests, the p-value threshold for significance,

referred to as the per-marker threshold, must be adjusted to control the overall false pos-

itive rate. The Bonferroni correction [Sid67] assumes independence among the associa-

tion tests. However, there is a substantial degree of correlation between the association

statistics due to a phenomenon called linkage disequilibrium [RCB01], which renders the

Bonferroni correction too conservative [GBB10]. The permutation test [WY93], which

samples the null distribution of statistics by repeatedly permuting the phenotypes and
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computing the association statistics for each permutation, is considered to be the gold

standard because it accurately accounts for the correlation structure of the genome at the

expense of computational cost. Several strategies aimed at speeding up the computational

cost of the permutation test have recently been developed [Lin05,SM05,CB07,HKE09].

Recently, the linear mixed model (LMM) [KYE08, KSS10, LLL11, ZS14, LTB15] has be-

come the standard practice for performing GWAS. The LMM can address two impor-

tant challenges in GWAS: population structure and insufficient power. Population struc-

ture refers to a complex relatedness structure among individuals, which can generate

false positives or spurious associations when utilizing traditional association study tech-

niques [KYE08, KSS10]. LMM approaches can avoid these false positives by explicitly

modeling these genetic relationships [KYE08,KSS10,LLL11,ZS14,LTB15,JKF15,JSH14].

Moreover, even when there is no population structure, LMM can increase the statistical

power of GWAS [LLH13, YZG14, LTB15]. Due to these desirable properties, LMM has

become a widely used method in current GWAS [CHP13,HMI14,CGX14,HBM15,FSC13].

However, the current approaches for multiple hypothesis testing correction cannot be ap-

plied to LMM. Even the gold standard, the permutation test, is not applicable to LMM,

because the underlying idea is that each permutation represents a sample from the null

distribution. This is not the case in LMM, because the phenotypes have a covariance struc-

ture induced by the complex patterns of relatedness among the individuals. Unfortunately,

to date no available approach can correct for multiple testing in LMM, because almost all

known multiple testing correction approaches are based on the permutation test and only

aim to increase the efficiency of the permutation test [Lin05,SM05,CB07,Bro08,HKE09].

By performing simulations, we demonstrated that multiple testing burden changes with

heritability, and that the permutation test inaccurately corrects for the multiple testing

when heritability is non-zero.
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In this chapter, we first set up the gold standard approach for multiple testing correction

in LMM. Our approach is a bootstrapping resampling approach that is the equivalent of

permutation test for LMM. Specifically, our parametric bootstrapping approach samples

randomized null phenotypes from the distribution fitted by LMM. This approach straight-

forwardly accounts for the effect of between-individual genetic relatedness on phenotypes.

However, similar to the permutation test, this approach is computationally expensive due

to the large number of resamplings, and is therefore only suitable to small datasets.

To address this issue, we developed a new approach called multiple testing in transformed

space (MultiTrans), which can efficiently correct for multiple testing for LMM. To effi-

ciently approximate the results of parametric bootstrapping, we employ a strategy that

directly samples statistics instead of sampling phenotypes. Both sampling phenotypes

in bootstrapping and sampling of statistics in our new approach involve sampling from

a multivariate normal distribution (MVN). However, the sampling of statistics is much

more efficient because the time complexity of the sampling procedure is independent of

the number of individuals. To obtain the covariance matrix of the MVN for statistics,

previous strategies [Lin05,SM05,CB07,HKE09] that directly use the genotype correlation

structure as the covariance matrix cannot be applied, because such a relationship no longer

holds under LMM. Therefore, we developed a new approach to overcome this challenge,

which transforms genotype dosages into a space where phenotypic correlation between re-

lated individuals can be accounted. Finally, to reduce computational cost in GWAS where

linkage disequilibrium is expected to be local, we apply the sliding window-based sam-

pling approach [HKE09]. We applied our approach to the Hybrid Mouse Diversity Panel

(HMDP) dataset [BFO10], a yeast dataset [SK08], and the HapMap dataset [GBH03];

the results demonstrated that our method can perform multiple hypothesis correction as

accurately as parametric bootstrapping, while reducing the time required from months to
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hours. Applying our approach to a number of different phenotypes in these real datasets

also provided an intuition that the per-marker threshold depends on both the heritability

of the trait and the genetic relatedness between individuals. We expect that our method

will be widely used to obtain correct per-marker threshold in future studies utilizing LMM.

5.2 Results

5.2.1 Overview of the method

In multiple testing correction, our goal is to find the per-marker threshold that gives an

overall false positive rate of α. Let us assume the following linear model:

Y = µ1n +Xiβi + e (5.1)

Here, n is the number of individuals, µ is the mean of the phenotypic values, 1n is a vector

of n ones, Y is a vector of length n with the phenotypic values, Xi is a vector of length n

with the genotypic values of ith marker, βi is the coefficient of ith marker, and e is a vector

of length n sampled from N (0, σ2I) accounting for the residual errors. Let Si and Sj be

the test statistics for ith and jth markers under the linear model, accordingly. Under

the assumption of a linear model (Equation (5.1)), we can derive the equality between

covariance of the two statistics, Cov(Si, Sj), and the correlation of the genotypes, rij, as

follows:

Cov(Si, Sj) ≡
XT
i Xj√

XT
i Xi

√
XT
j Xj

≡ Cor(Xi, Xj) ≡ rij (5.2)

The derivation of this equality is described in detail in Materials and Methods. This

property has been reported in previous studies [HKE09,KLE11,HKK14].

Let m be the number of markers, and Σ be the m × m covariance matrix between the
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statistics whose (i, j)th element is Σi,j = Cov(Si, Sj). According to the central limit the-

orem [Was13], the statistics over multiple markers asymptotically follow a MVN. Thus,

under the null hypothesis, when n is large, Si ∼ N (0, 1) and the vector of statistics

(S1, ..., Sm) asymptotically follows a MVN with mean 0 and variance Σ. Figure 5.1 (a)

shows a probability density function of bivariate normal distribution at two markers un-

der the null hypothesis. The area outside the meshed rectangle region shows the critical

region under the null hypothesis in which, if a p-value falls within this region, the null

hypothesis is rejected. Figure 5.1 (b) shows the image when we project the MVN in

Figure 5.1 (a) into the xy space. Let u be pointwise p-value that is shown as each point

in the MVN. Four corners of the shaded rectangle are (Φ−1(u/2),Φ−1(u/2)), (Φ−1(1 −

u/2),Φ−1(u/2)), (Φ−1(u/2),Φ−1(1 − u/2)) and (Φ−1(1 − u/2),Φ−1(1 − u/2)), where Φ

is the cumulative density function of the standard normal distribution. Let pα be the

outside-rectangle probability in Figure 5.1 (b). Then, given an overall significance level

α, the per-marker threshold is approximated by searching for the pointwise p-value u

whose pα is α. Utilizing the equality in Equation (5.2), the covariance matrix of the MVN

could be estimated as Σ = {rij} under the linear model (Equation (5.1)). However, in

Figure 5.1. Probability density function of a bivariate MVN at two markers under the
null hypothesis. (b) shows the image when we project the MVN (a) into the xy space.

LMM, the properties in Equation (5.2) are no longer valid. Let us assume the follownig
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LMM:

Y = µ1n +Xiβ
M
i + g + e (5.3)

Here, βMi are the coefficients of ith marker under the LMM. LMM has an extra term g of

the linear model (Equation (5.1)), which is a vector of length n sampled from N (0, σ2
gK)

accounting for the effect of genetic relatedness, where K is a n × n kinship matrix that

explains the genetic correlation between individuals. Under the LMM, Y ∼ N (µ1n +

Xiβ
M
i , σ

2
gK + σ2

eI) and the equality between covariance of statistics and correlation of

genotypes in Equation (5.2) is no longer valid. Let SMi and SMj be the test statistics

under the LMM and V̂ = σ̂2
gK,+σ̂2

eI be the estimated covariance matrix by fitting the

data into the LMM. Then, the covariance between the statistics in Equation (5.2) changes

as follows:

Cov(SMi , S
M
j ) =

XT
i V̂

−1Xj√
XT
i V̂

−1Xi

√
XT
j V̂

−1Xj

(5.4)

=Cor(V̂ −1/2Xi, V̂
−1/2Xj) ≡ rMij (5.5)

That is, the covariance is equivalent to the correlation of the genotype data that is trans-

formed by V̂ −1/2 (which is why we call our method ‘multiple-testing in transformed space’,

or MultiTrans). The details of the derivation are provided in the Materials and Methods.

Note that the covariance of statistics of two markers that are in linkage disequilibrium

with each other depends on V̂ , which in turn depends on the heritability (σ2
g) of the trait.

Thus, heritability affects the covariance of the statistics, which results in different per-

marker thresholds. Utilizing the Equation (5.5), we can compute the ΣM = {rMij } directly

from genotypes and sample the test statistics from the MVN with ΣM to approximate

the true null distribution and find the correct per-marker threshold.

To efficiently sample the statistics from the MVN, we make a local linkage disequilib-
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rium assumption that the statistics at distant markers are uncorrelated. Under this as-

sumption, we adapt a sliding-window Monte-Carlo approach [HKE09] to accurately and

efficiently estimate the per-marker thresholds.

5.2.2 Permutation is inaccurate in LMM

LMM has become one of the standard analysis methods for GWAS [KYE08,KSS10,LLL11,

LLH13,ZS14,YZG14,LTB15] because it can explicitly model hidden factors, such as pop-

ulation structure, to avoid false positives, and can also increase the statistical power of

the study. However, the permutation test, which has been widely considered to be the

gold standard for multiple testing, is not applicable to LMM. The underlying assumption

of the permutation test is that if we permute either the genotypes or phenotypes, we can

generate the null distribution of our test statistics. However, under the LMM, permuta-

tion alters correlations between the individuals specific to LMM, and the correlation is no

longer explained by the permuted genotypes or the phenotypes. Thus, applying LMMs

to permuted data may result in spurious statistics. Alternatively, we can generate a null

distribution for LMM by utilizing parametric bootstrapping, a resampling method that

samples null phenotypes from MVN based on LMM and uses them to generate the null

distribution (see Materials and Methods for the details of the parametric bootstrapping).

A similar approach was used in a previous study of power calculation [KKW10], and it

can be thought of as the gold standard approach for LMM.

To show that the permutation cannot approximate the true null distribution for LMM,

whereas parametric bootstrapping can do so accurately, we evaluated p-values estimated

from the permutation test and those estimated from the parametric bootstrapping for

LMM under the null hypothesis. Because the HMDP dataset is known to contain a

significant amount of population structure [FE12], we used 100 genotypes and a pheno-
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type of low-density lipoprotein (LDL) estimates from this dataset. For the permutation

test, we first permuted the phenotype 10, 000 times. Next, we estimated a p-value for

each genotype-phenotype pair by fitting the data to the LMM (Equation (5.3)) using a

kinship matrix, K, estimated from the whole genome of the HMDP dataset. For para-

metric bootstrapping, we first fitted the data to the LMM and estimated its parameters,

σ̂2
g = 0.702 and σ̂2

e = 0.298. Using these parameters, we sampled 10, 000 null phenotypes

from MVN with the covariance matrix, V̂ = σ̂2
gK + σ̂2

eI. Then, we estimated a p-value

for each genotype-phenotype pair by fitting the data to the LMM using a kinship matrix,

K, estimated from the whole genome of the HMDP dataset. Theoretically, under the

null hypothesis, the p-values estimated from each marker and null phenotypes should be

uniformly distributed. Thus, for each marker, if we rank 10, 000 p-values estimated from

null phenotypes in ascending order, then the 5th-percentile p-value, which is 500th small-

est one, should be close to 0.05. Figure 5.2 shows the 5th-percentile p-values estimated

from the permutation test (red stars) and the parametric bootstrapping (blue dots). Each

point represents the 5th-percentile p-value of a marker. As shown in the figure, the para-

metric bootstrapping gives accurate p-values very close to 0.05, which demonstrates that

parametric bootstrapping can accurately approximate the null distribution for LMM. On

the other hand, the permutation test yielded inflated p-values, which demonstrating that

the distribution generated from the permutation cannot be used to approximate the true

null distribution for LMM.

5.2.3 MultiTrans accurately approximates covariance between test statistics

As shown in the previous section, the parametric bootstrapping closely approximates the

true null distribution for LMM, and can thus be used as the gold standard for multi-
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Figure 5.2. 5th-percentile p-values estimated from the permutation test and
parametric bootstrapping for LMM under the null hypothesis. One hundred markers
and LDL estimates from the HMDP dataset were used. The x-axis shows the markers
and the y-axis shows the 5th-percentile p-value. The gray horizontal line shows a
p-value of 0.05, each red star shows the 5th-percentile p-value of a marker estimated
from the permutation test, and each blue dot shows the 5th-percentile p-value of a
marker estimated from parametric bootstrapping.

ple testing in LMM. MultiTrans is rooted on in the idea of parametric bootstrapping.

However, to efficiently approximate the results of parametric bootstrapping, MultiTrans

samples statistics directly from MVN with a covariance matrix estimated from trans-

formed genotypes. In this section, we show how accurately MultiTrans approximates the

covariance matrix of test statistics using the transformation strategy (Equation (5.5)),

by testing the difference between the empirical estimate of covariance of test statistics,

Cov(SMi , S
M
j ), and the correlation of transformed genotypes, Cor(V̂ −1/2Xi, V̂

−1/2Xj), uti-

lizing simulated datasets.

We generated three sets of genotypes, with 100 markers each from the HMDP dataset,

a yeast dataset, and the HapMap dataset. 105 phenotypes simulated for four different

cases each with heritability, 0, 0.2, 0.5, and 0.8, and
β̂

σ̂

√
N was used as the test statistic.

We compared the correlation of the genotypes and covariance of the test statistics be-
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fore and after applying the transformation strategy. The term ‘heritability’ is defined as

σ2
g/(σ

2
g +σ2

e), which represents the fraction of variance explained by population structure,

as in Yang et al [YBM10]. Figure 5.3 shows the histogram of the differences between

the covariance of test statistics and the correlation of genotypes, estimated from a sim-

ulated dataset of HMDP. Gray bars represent the differences between the covariance of

test statistics and the correlation of untranformed genotypes, rij. Black bars represent

the differences between the covariance of test statistics and the correlation of genotypes

transformed by the squared root of V̂ −1/2, rMij . As shown in Figure 5.3, the difference is

centered at zero when we use tranformed genotypes, regardless of heritability. However, if

we do not use transformation, the difference deviates widely from zero as the heritability

increases, indicating that the naive genotype correlation cannot effectively approximate

the covariance of statistics well. Figure 5.4 shows the scatter plot of the covariance of test

statistics (x-axis) and the correlation of genotypes (y-axis). Red and Black dots represent

cases in which we did or did not use genotype transformation, respectively. When heri-

tability is zero (Figure 5.3 (a) and Figure 5.4 (a)), the equality in Equation (5.2) holds

as expected. However, as the heritability increases (Figure 5.3 (b)-(d) and Figure 5.4

(b)-(d)), the discrepancy between the covariance of statistics and the correlation of geno-

types increases. After applying our genotype transformation and using Equation (5.5)

to approximate the covariance of statistics, the differences are calibrated back to zero.

We applied the same strategy to simulated datasets from the yeast data (Figure 5.5 and

Figure 5.6) and HapMap data (Figure 5.7 and Figure 5.8), and obtained consistent results

across the three species.

5.2.4 MultiTrans accurately corrects for multiple testing

We examined the accuracy of our method, MultiTrans, for multiple testing in LMM.

We compared MultiTrans with three different methods: Bonferroni correction; SLIDE
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Figure 5.3. Histograms showing the differences between the covariance of statistics and
the correlation of genotypes estimated from a simulated HMDP dataset. Heritability:
(a) 0; (b) 0.2; (c) 0.5; and (d) 0.8. The x-axis represents the difference between the
covariance of statistics and the correlation of genotypes, and the y-axis represents the
frequencies. Gray bars represent the differences before applying genotype tranformation,
and black bars represent the differences after applying genotype transformation.

Figure 5.4. Scatter plots showing the covariance of statistics and the correlation of
genotypes estimated from a simulated HMDP dataset. Heritability: (a) 0; (b) 0.2; (c)
0.5; and (d) 0.8. The x-axis represents the covariance of statistics, and the y-axis
represents the corresponding correlation of genotypes. Red and black dots represent
cases in which we did or did not use genotype transformation, respectively.

[HKE09], which is one of the MVN-based multiple testing correction method; and the

standard parametric bootstrapping approach. Due to the computational cost of paramet-

ric bootstrapping, we applied each method only to chromosome 1 of the HMDP dataset.

Table 5.1 shows the per-marker thresholds of different methods at the 5% significance lev-

elWe simulated four different situations, each with heritability 0, 0.2, 0.5, and 0.8. Across

the range of heritabilities, MultiTrans yielded very accurate per-marker thresholds very

close to those of parametric bootstrapping. On the other hand, the Bonferroni correction

gave very stringent thresholds. Previous studies showed that SLIDE closely approximates
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Figure 5.5. Histograms showing the differences between the covariance of statistics and
the correlation of genotypes estimated from a simulated yeast dataset. Heritability: (a)
0; (b) 0.2; (c) 0.5; and (d) 0.8. The x-axis represents the difference between the
covariance of statistics and the correlation of genotypes, and the y-axis represents the
frequencies. Gray bars represent the differences before applying genotype tranformation,
and black bars represent the differences after applying genotype transformation.

Figure 5.6. Scatter plots showing the covariance of statistics and the correlation of
genotypes estimated from a simulated yeast dataset. Heritability: (a) 0; (b) 0.2; (c) 0.5;
and (d) 0.8. The x-axis represents the covariance of statistics, and the y-axis represents
the corresponding correlation of genotypes. Red and black dots represent cases in which
we did or did not use genotype transformation, respectively.

the permutation test and gives accurate per-marker thresholds for the standard linear

model [HKE09]. When the simulated heritability is zero, LMM is equivalent to the stan-

dard linear model. Thus, it is not surprising that SLIDE gives a per-marker threshold of

6.59E-05, very close to the threshold obtained from parametric bootstrapping, 6.71E-05.

However, SLIDE performed worse as the heritability increased. This is expected based on

the results in the previous section showing that the discrepancy between the covariance

of statistics and the correlation of genotypes increases as the heritability increases if we

do not account for phenotype correlations specific to LMM.
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Figure 5.7. Histograms showing the differences between the covariance of statistics and
the correlation of genotypes estimated from a simulated HapMap dataset. Heritability:
(a) 0; (b) 0.2; (c) 0.5; and (d) 0.8. The x-axis represents the difference between the
covariance of statistics and the correlation of genotypes, and the y-axis represents the
frequencies. Gray bars represent the differences before applying genotype tranformation,
and black bars represent the differences after applying genotype transformation.

Figure 5.8. Scatter plots showing the covariance of statistics and the correlation of
genotypes estimated from a simulated HapMap dataset. Heritability: (a) 0; (b) 0.2; (c)
0.5; and (d) 0.8. The x-axis represents the covariance of statistics, and the y-axis
represents the corresponding correlation of genotypes. Red and black dots represent
cases in which we did or did not use genotype transformation, respectively.

Heritability Bonferroni SLIDE MultiTrans Bootstrapping

0 5.19E-06 6.59E-05 6.59E-05 6.71E-05
0.2 5.19E-06 6.59E-05 5.17E-05 5.29E-05
0.5 5.19E-06 6.59E-05 4.71E-05 4.85E-05
0.8 5.19E-06 6.59E-05 4.54E-05 4.48E-05

Table 5.1. Per-marker thresholds at the 5% significance level for different simulated
heritabilities of 0, 0.2, 0.5, and 0.8, applied to chromosome 1 of the HMDP dataset.
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5.2.5 Per-marker threshold depends on both heritability and genetic relat-

edness

We applied MultiTrans to various datasets from different species and with different her-

itabilities to see how heritability affects the per-marker thresholds, as well as how per-

marker thresholds changes in a dataset-specific manner. Due to the computational cost

of parametric bootstrapping, in the previous section (Table 5.1) we tested each method

only on chromosome 1, which contains 9629 markers. Taking advantage of the efficiency

of MultiTrans, in this experiment we were able to apply MultiTrans to the whole genome

in large datasets.

Figure (5.9) shows the per-marker thresholds of the whole genome of the HMDP dataset

estimated from MultiTrans for four simulated situations, each with heritability 0, 0.2, 0.5,

and 0.8, over a range of significance levels from 0.1% to 10%. The red, blue, green, and

orange solid lines show the per-marker thresholds of MultiTrans, and they demonstrate

how heritability affected the per-marker thresholds for the HMDP dataset; as the heri-

tability increased the per-marker thresholds decreased. However, this was not reflected

in the previous methods, the Bonferroni correction (blue solid line in Figure 5.9) and

SLIDE (black dotted line in Figure 5.9), whose per-marker thresholds did not change as

the heritability changed.

In addition, we applied MultiTrans to the whole genome of yeast and HapMap datasets.

Table 5.2 shows the per-marker thresholds at a significance level of 5%, estimated from

MultiTrans for the HMDP, yeast, and HapMap datasets. For each dataset, four different

heritabilities (0, 0.2, 0.5, and 0.8) were simulated. For all datasets, the per-marker thresh-

old decreased as the heritability increased. However, the amount that heritability affected

the per-marker thresholds differed across the datasets. As heritability changed, the HMDP
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Figure 5.9. Per-marker thresholds for different heritabilities applied to the whole
genome of the HMDP dataset. The x-axis represents the overall significance level, α,
from 0.1% to 10%. The y-axis represents the corresponding per-marker thresholds. The
gray vertical line shows the significance level, 5%. The red, blue, green, and orange solid
lines show the result of MultiTrans when heritability is 0, 0.2, 0.5, and 0.8. The purple
solid line shows the results of Bonferroni correction for all four heritabilities. The black
dotted line shows the result of SLIDE for all four heritabilities.

and yeast datasets exhibited larger differences in their per-marker thresholds than the

HapMap dataset. The reason that different datasets show different changes in per-marker

threshold given the same changes in heritability is that not only the heritability but also

the amount of genetic relatedness in genotypes may affect the per-marker thresholds. For

example, if individuals are less related or unrelated in a study, even for a trait that is

highly heritable, the correlation of genotypes, rij (Equation (5.2)), and the correlation of

transformed genotypes, rMij (Equation (5.5)), may be similar. This is because their kinship

matrix K may be similar to the identity matrix I, and V̂ = σ̂2
gK+ σ̂2

eI ≈ (σ̂2
g + σ̂2

e)Il there-

fore, the transformation with V̂ 1/2 may not significantly change the correlation between
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the genotypes. In this case, the influence of heritability (σ̂2
g) on the per-marker thresholds

may be very small. Figure 5.10 shows heatmaps of genetic relatedness reflected in kinship

matrices for the HMDP, yeast, and HapMap datasets. The color of each pixel represents

the strength of the relatedness, with yellow indicating strong correlation between indi-

viduals and red indicating no relatedness. Compared to the HDMP and yeast datasets,

the HapMap dataset shows smaller relatedness between the individuals. In addition, we

show the histogram of off-diagonal values of kinship matrices for the HMDP, yeast, and

HapMap datasets (Figure 5.11). The figure shows that the individuals in HapMap are

less related to each other than those in the HMDP and yeast datasets.

``````````````̀Heritability
Datasets

HMDP Yeast HapMap

0 4.03E-06 5.09E-05 7.29E-08
0.2 3.38E-06 4.65E-05 7.08E-08
0.5 3.16E-06 4.24E-05 7.07E-08
0.8 3.10E-06 3.87E-05 7.06E-08

Table 5.2. Per-marker thresholds at a 5% significance level estimated from MultiTrans
for different simulated heritabilities of 0, 0.2, 0.5, and 0.8, applied to the whole genome
of HMDP, yeast, and HapMap datasets.

5.2.6 MultiTrans applied to the real traits

Because MultiTrans is efficient and accurate, we were able to apply MultiTrans to a

large number of real phenotypes in the HMDP, yeast, and HapMap datasets. As de-

scribed above, these datasets have different genetic relatedness, and the phenotypes in

each dataset have different heritabilities; therefore, each phenotype will have a unique

per-marker threshold. Table 5.3 confirms that multiple phenotypes in the three datasets

have different per-marker thresholds.
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Figure 5.10. Heatmaps of genetic relatedness reflected in a kinship matrix for different
datasets. (a) HMDP, (b) yeast, and (c) HapMap. Individuals are ordered from left to
right on the x-axis, and from bottom to top on the y-axis. Each pixel of the heatmap
shows the strength of the correlation between the individuals, with yellow indicating
strong correlation and red indicating no correlation.

Figure 5.11. Histograms of off-diagonal values of kinship matrix (a) HMDP (b) Yeast
(c) HapMap.

5.2.7 Efficiency of MultiTrans

To demonstrate the efficiency of MultiTrans, we compared the running time of MultiTrans

and parametric bootstrapping, which can accurately correct p-values for multiple testing

in LMM. Both MultiTrans and the parametric bootstrapping must calculate the inverse

square root of the covariance matrix V̂ −1/2 once. However, parametric bootstrapping

needs to sample null phenotypes from MVN multiple times and estimate statistics for each
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HMDP
Phenotype Heritability MultiTrans;

Thioglycolate treated 0.036 3.91E-06
free fluid 0.653 3.13E-06

low-density lipoprotein 0.706 3.12E-06
glucose 0.735 3.11E-06

mesenteric fat pad (percentage) 0.712 3.10E-06
lean mass 0.865 3.09E-06
fat mass 0.884 3.08E-06

Yeast
ProbeID Heritability MultiTrans

YMR073C 0.010 5.06E-05
YMR242C 0.111 4.82E-05
YLR447C 0.214 4.63E-05
YDR186C 0.310 4.48E-05
YHL012W 0.409 4.34E-05
YOL144W 0.503 4.23E-05
YFL018C 0.615 4.09E-05
YCR107W 0.700 3.99E-05
YMR312W 0.819 3.85E-05
YNL046W 0.911 3.73E-05

HapMap
ProbeID Heritability MultiTrans

ILMN 1756694 0.013 7.28E-08
ILMN 1851657 0.156 7.13E-08
ILMN 1803219 0.225 7.08E-08
ILMN 1741165 0.401 7.07E-08
ILMN 1704746 0.728 7.06E-08

Table 5.3. Per-marker thresholds for various real phenotypes of HMDP, Yeast, and
HapMap datasets estimated from MultiTrans.

of them, which takes a lot of time [YZG14,LTB15]. To compare the running time of Multi-

Trans and parametric bootstrapping, we estimated the running time of both methods uti-

lizing four different datasets; HMDP [BFO10], HapMap [GBH03], 1000Genomes [AAA10],

and NFBC (Northern Finland Birth Cohorts) [SSH09], which contains 99, 1184, 2504, and

5326 individuals, respectively. MultiTrans assumes local linkage disequilibrium; that the
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statistics outside a range of a window are independent to each other, and apply a sliding-

window approach (see Materials and Methods for the details of sliding window approach).

The running time of MultiTrans depends on the size of the window, so we applied two

different window sizes, 100 and 1000. Figure 5.12 shows the running times of MultiTrans

and parametric bootstrapping for different numbers of individuals for 100, 000 markers.

For both MultiTrans and the parametric bootstrapping, 10, 000 numbers of samplings

were performed, and the running times were extrapolated from one chromosome. When

the number of individuals was 5326, the parametric bootstrapping took about 5 months,

which is impractical, whereas MultiTrans took only 2.57 hours or 3.71 hours using a win-

dow size of 100 or 1000, respectively. Even for 99 individuals, parametric bootstrapping

took more than 22 days, whereas MultiTrans took only 13.35 minutes or 1.45 hours using

a window size of 100 or 1000, respectively. The result shows that even for a small study,

MultiTrans is 2421 times faster or 376 times faster than the parametric bootstrapping

using a window size of 100 or 1000, respectively. The discrepancy between the running

times of MultiTrans and parametric bootstrapping will increase not only as the number

of individuals increases, but also as the numbers of samplings or markers increases (data

not shown).

5.3 Discussion

Multiple testing correction is a very well-studied problem in the context of GWAS [Gen92,

WY93, GB02, SM05, Lin05, CB07, HKE09], with the most widely utilized approach being

the permutation test. In most modern GWAS, LMM is applied to account for the effect

of population structure or increase statistical power. Unfortunately, in these studies, the

permutation test is not only impractical due to the computational cost [CB07], but the

assumptions required for permutation testing are not satisfied under LMM and may lead

to spurious associations.
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Figure 5.12. Comparison of running time of MultiTrans and the parametric
bootstrapping. The running times evaluated for 100, 000 markers and 10, 000
samplingw. The x-axis shows the number of individuals, and the y-axis shows the
running time. The blue and red lines show the running times of MultiTrans using
window sizes of 100 and 1000, respectively, in minutes. The green line shows the
running time of parametric bootstrapping in days.

Here, we showned that the heritability of a trait affects the significance threshold,as well

how to perform multiple testing correction in the context of LMM association studies.

Our proposed method, MultiTrans, accurately corrects for multiple hypothesis testing

and is also efficient, making it applicable to large GWAS. In addition, we demonstrated

the accuracy and efficiency of MultiTrans utilizing mouse, yeast, and human datasets.

Theoretically, parametric bootstrapping can be applied to LMM for multiple hypothesis

testing. However, this approach is computationally very expensive. Instead of sampling

phenotypes, MultiTrans samples statistics directly from a MVN whose covariance matrix

is estimated from transformed genotypes and applies a sliding-window Monte Carlo ap-

proach to speed up the sampling procedure. Comparing the running time of MultiTrans

and parametric bootstrapping, which can accurately correct the p-values for multiple test-
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ing in LMM, we showed that the parametric bootstrapping approach is impractical even

for a small study, whereas MultiTrans can dramatically reduce the running time.

Our results show that the heritability changes the covariance of statistics and per-marker

thresholds. In addition, we made the novel observation that the per-marker threshold

tends to decrease as the heritability increases for the HMDP, yeast, and HapMap datasets.

We also provided an intuition regarding how genetic relatedness in datasets affects the

per-marker threshold. To our knowledge, our study is the first study to explain the rela-

tionship between heritability, genetic relatedness, and the per-marker threshold.

The ideas behind our approach extend multivariate normal approaches for modeling the

joint distribution of GWAS statistics to scenarios in which mixed models are utilized to

compute the association statistics. In this chapter, we demonstrated how this extension

can be used to compute the significance threshold for multiple testing correction; how-

ever, this framework can be utilized for other applications of MVNs as well. For example,

similar extensions can be applied to fine mapping methods [HKK14, KYL14, HKWss],

GWAS statistic imputation [LBR13,PZS14], joint testing [ZPG10], follow-up SNP selec-

tion [KLE11], etc.
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5.4 Material and Methods

5.4.1 Previous multiple testing correction methods for non-LMM

5.4.1.1 Permutation test

The permutation test gives a simple way to compute the null sampling distribution for

a test statistic by repeatedly permuting either genotypes or phenotypes and computing

the association statistic for each permutation. The permutation test can be thought of

as a re-sampling approach that samples individuals from a uniform distribution without

replacement. The permutation test accurately accounts for the correlation structure of

the genome, and therefore, has been used as the gold standard for GWAS. However, it is

computationally expensive, and its running time is linearly dependent on the number of

individuals.

5.4.1.2 Methods using multivariate normal approximation

Several previous studies proposed alternative approaches to permutation because the per-

mutation test is computationally expensive especially when the number of individuals is

large. The idea underlying these approaches is sampling of test statistics directly from

MVN, taking advantage of the the fact that the statistics over multiple markers asymp-

totically follows a MVN [SM05,Lin05].

Below, we show how to obtain the covariance matrix of the MVN. Let m be the number

of markers, Si be a statistic for the ith marker, and Σ = {Cov(Si, Sj)} be the m × m

covariance matrix between the statistics. Assuming the following linear model, we can
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derive the covariance matrix for the MVN.

Y = µ1n +Xiβi + e

Here, n is the number of individuals, µ is a mean of the phenotypic values, 1n is a vector

of n ones, Y is a vector of length n with the phenotypic values, Xi is a vector of length n

with the genotypic values of ith marker, βi is their coefficients, and e is a vector of length

n sampled from N (0, σ2
eI) accounting for the residual errors. Here, we assume that Y and

Xi are normalized as mean 0 and variance 1. Then, the phenotype follows a MVN with

a mean and variance as follows:

Y ∼ N (µ1n +Xiβi, σ
2
eI)

The ordinary least-squares solution of β for the ith and jth marker are as follows:

β̂i =(XT
i Xi)

−1XT
i Y ∼ N

(
βi,

σ2
e

XT
i Xi

)
β̂j =(XT

j Xj)
−1XT

j Y ∼ N
(
βj,

σ2
e

XT
j Xj

)

The statistics of the two markers are computed as follows:

Si =
β̂i
σ̂e

√
XT
i Xi ∼ N

(
βi

√
XT
i Xi

σe
, 1

)

Sj =
β̂j
σ̂e

√
XT
j Xj ∼ N

βj
√
XT
j Xj

σe
, 1
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Here, the estimated values for µ, e, and σ for the ith marker are as follows: µ̂ =
1TnXi

XT
i Xi

, ê =

Y − µ̂1n − Xβ̂ and σ̂ =

√
êT ê

n− 2
. Then, we can prove that the covariance of the two

statistics, Cov(Si, Sj), is equal to the correlation between the genotypes, rij, as follows

[HKE09,HKK14,HKWss]:

Cov(Si, Sj) =Cov

(
β̂i
σe

√
XT
i Xi,

β̂j
σe

√
XT
j Xj

)

=
1

σ2
e

Cov

 XT
i Y√
XT
i Xi

,
XT
j Y√
XT
j Xj


=

XT
i Xj√

XT
i Xi

√
XT
j Xj

=Cor(Xi, Xj) = rij

(5.6)

Previous studies showed that this relationship between genotype correlation and MVN co-

variance holds for binary traits as well, using different ways of derivations [SM05,HKE09].

Using the properties of Equation (5.6), we can sample the statistics directly from the

MVN with mean 0 and variance Σ = {rij} instead of permuting phenotypes. In fact, in

this sampling, phenotype information is not needed. Specifically, under the null hypoth-

esis, by the multivariate central limit theorem [Was13], if the number of individuals, n, is

large, Si ∼ N (0, 1) and the vector of statistics (S1, ..., Sm) asymptotically follows a MVN

with mean 0 and variance Σ. Given a pointwise p-value u, let R(u) be the m-dimensional

rectangle with corners Φ−1(u/2)1m and Φ−1(1− u/2)1m, where Φ is the cumulative den-

sity function of the standard normal distribution and 1m is the vector of m ones. Then,

the significance level pα is approximated as the outside-rectangle probability as shown in
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Figure 5.1,

pα = 1− 1

(2π)
m
2 |Σ| 12

∫
R(u)

e−
1
2
XT Σ−1XdX (5.7)

Thus, given an overall significance threshold α, the per-marker threshold can be approx-

imated by searching for a pointwise p-value u whose significance level pα is α.

5.4.2 Multiple testing correction methods for LMM

5.4.2.1 Parametric bootstrapping re-sampling approach

Because no available approach can correct for correcting for multiple testing in LMM, we

first set up the gold standard approach, which is the equivalent of the permutation test

for LMM. We emphasize that the traditional permutation test and its variations do not

work for LMM. The idea underlying permutation testing is that each permutation is a

sample from the null distribution, which is not the case in LMM, because the permuta-

tion alters the dependency of the phenotype on the relatedness structure. If we permute

phenotypes, relatedness structure between the individuals and its effect on phenotype is

ignored, which can lead to an inflation of p-values.

We propose a resampling-based multiple hypothesis testing approach for LMM, which

utilizes the parametric bootstrapping strategy. Figure 5.13 (a) shows an overview of

the parametric bootstrapping applied to multiple hypothesis testing described as follows.

First, by fitting to LMM, we estimate parameters σ̂g
2 and σ̂2

e to generate a covariance

matrix of the data, V̂ = σ̂2
gK + σ̂2

eI. Second, we sample size-n vectors of null pheno-

types from the distribution from MVN with the covariance matrix V̂ . Third, using each

size-n vector of those null phenotypes, we compute null statistics (S1, S2, · · · , Sm). This

parametric bootstrapping approach can be thought of as the permutation-equivalent for

LMM. A similar approach was used in a previous study for power calculation [KKW10].

92



Unfortunately, this parametric bootstrapping approach is computationally very expensive.

5.4.2.2 MultiTrans

5.4.2.2.1 MVN approximation for LMM As described in the previous section,

the parametric bootstrapping strategy is impractical due to its high computational cost.

To make the procedure efficient, we propose a new approach, MultiTrans. MultiTrans

alternatively samples statistics directly from MVN without needing to generate any null

phenotypes. Figure 5.13 (b) shows an overview of the MultiTrans. Once we obtain the

null samples, we can obtain the per-marker threshold using Equation (5.7). However, the

challenge is to charaterize the covariance of MVN for LMM.

5.4.2.2.2 Covariance of MVN in LMM For LMM, Equation (5.6) is no longer

valid. That is, we cannot use the genotype correlation matrix as the covariance matrix of

MVN for LMM. To derive the covariance matrix, we assume a LMM instead of the linear

model as follows:

Y = µ1n +Xiβ
M
i + g + e

, where µ is a mean of the phenotypic values, 1n is a vector of n ones, Y is a vector of

length n with the phenotypic values, Xi is a vector of length n with the genotypic values

of ith marker, βMi is their coefficients under the LMM, g is a vector of length n sampled

from N (0, σ2
gK) accounting for population structure effects where K is a n × n matrix

that explains the correlation between the individuals induced by population structure,

and e is a vector of length n sampled from N (0, σ2I) accounting for the residual errors.

Under this model, the phenotype follows a MVN with a mean and variance as follows:

Y ∼ N (µ1n +Xiβ
M
i , σ

2
gK + σ2

eI)
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Given the observed data, it is straightforward to fit LMM and estimate parameters σ2
g and

σ2
e using standard strategies, which define the covariance matrix of phenotypes, Cov(Y ) =

V̂ = σ̂2
gK,+σ̂2

eI. Now we utilize the fact that after obtaining V̂ , the remaining regression

procedure is equivalent to performing ordinary least-squares in the transformed space,

V̂ −1/2Y ∼ N (V̂ −1/2µ1n + V̂ −1/2Xiβ
M
i , I)

, where both genotypes and phenotypes are transformed by a factor V̂ −1/2. Assuming that

V̂ −1/2Xi and V̂ −1/2Y are normalized as mean 0 and variance 1 (without loss of generality),

the ordinary least-squares solution of βMi for ith marker and jth marker are as follows:

β̂Mi =(XT
i V̂

−1Xi)
−1XT

i V̂
−1Y ∼ N

(
βMi , (X

T
i V̂

−1Xi)
−1
)

β̂Mj =(XT
j V̂

−1Xj)
−1XT

j V̂
−1Y ∼ N

(
βMj , (X

T
j V̂

−1Xj)
−1
)

The statistics are computed as follows:

Si =β̂Mi

√
XT
i V̂

−1Xi ∼ N
(
βMi

√
XT
i V̂

−1Xi, 1

)
Sj =β̂Mj

√
XT
j V̂

−1Xj ∼ N
(
βMi

√
XT
j V̂

−1Xj, 1

)

Accordingly, the correlation between the statistics changes from Equation (5.6) to the

following and the correlation between the statistics are equal to the correlation between

the marker transformed by the inverse square root of V̂ ,

Cov(SMi , S
M
j ) =Cov

 XT
i V̂

−1Y√
XT
i V̂

−1Xi

,
XT
j V̂

−1Y√
XT
j V̂

−1Xj


=

XT
i V̂

−1/2(V̂ −1/2)TXj√
XT
i (V̂ −1/2)T V̂ −1/2Xi

√
XT
j (V̂ −1/2)T V̂ −1/2Xj

=Cor(V̂ −1/2Xi, V̂
−1/2Xj) = rMij
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Utilizing the covariance matrix estimated from transformed genotypes, we can generate a

large number of samples, (S1, S2, · · · , Sm), to approximate MVN and correct p-values by

integrating over the outside of the rectangle, as in Equation (5.7).

5.4.2.2.3 Sliding-window approach If m is large, the standard sampling approach

that samples (S1, S2, · · · , Sm) from MVN using Cholesky decomposition [HMR96] is com-

putationally very expensive. However, under the local linkage disequilibrium assumption,

the statistics at distant markers are uncorrelated and we can split the region into small

blocks to dramatically decrease computational cost. In addition, we can perform a sliding-

window approach as follows to incorporate the inter-block correlations to accurately esti-

mate the p-values [HKE09]. Let f(S1, S2, · · · , Sm) be the joint probability density func-

tion of the statistics. Under the local linkage disequilibrium assumption, the statistics at

distant markers are uncorrelated. Thus given a window size w, we can assume that Si

is conditionally independent of S1, S2, · · · , Si−w−1 given Si−w, Si−w+1, · · · , Si−1. Utilizing

the chain rule,

f(S1, S2, · · · , Sm) = f(S1)f(S2|S1)f(S3|S1, S2) · · · f(Sm|Sm−w, · · · , Sm−1)

Thus, we can sample Si given Si−w, Si−w+1, · · · , Si−1, based on the conditional distribution

f(Si|Si−w, · · · , Si−1) and efficiently generate a large number of samples.

5.4.3 HMDP dataset

We evaluated our approach using a HMDP (high resolution association mapping) mouse

dataset [BFO10] which contains 102,987 SNPs in 99 individuals. SNPs with a minor allele

frequency less than 5 % and missing more than 10 % are filtered. To test the difference

between covariance of test statistics and correlation between the genotypes, we generated

a simulated dataset by extracting 100 SNPs from chromosome 1. Seven phenotypes with
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Figure 5.13. Overview of the re-sampling procedures of parametric bootstrapping (a)
and MultiTrans (b). 104 sampling applied for both parametric bootstrapping and
MultiTrans.
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different heritabilities which were estimated from the HMDP dataset [BFO10] were used

for section 2.6.

5.4.4 Yeast dataset

We evaluated our approach utilizing a yeast dataset [SK08] that contains 2,956 SNPs in

109 segregants. To test the difference between covariance of test statistics and correlation

between the genotypes, we generated a simulated dataset by extracting 100 consecutive

SNPs from chromosome 4. Ten gene expressions with different heritabilities, which were

estimated from the yeast dataset [SK08], were used for section 2.6.

5.4.5 HapMap dataset

We evaluated our approach utilizing a HapMap Phase 3 dataset [GBH03] which contains

1,070,114 SNPs in 1,184 individuals. SNPs with a minor allele frequency less than 5 %

and missing more than 10 % are filtered. To test the difference between the covariance of

test statistics and correlation between the genotypes, we generated a simulated dataset

by extracting 100 consecutive SNPs from chromosome 22. Five gene expressions with

different heritabilities, which were estimated from the HapMap dataset [GBH03], were

used for section 2.6.

5.4.6 Implementation

For the results of MultiTrans in section 2.3 Table 5.1 and section 2.5 Figure 5.9, a window

size of 1000 was used, and 107 number of samplings were performed. For the results

of the parametric bootstrapping in section 2.3 Table 5.1, 105 samplings were performed.

To evaluate our method for various ranges of heritabilities, we applied our method for

four different heritabilities, 0, 0.2, 0.5, and 0.8. To estimate p-values and the variance
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components (σ2
g and σ2

e ) for LMM, one of the LMM-solver, pylmm [FE15] were used.

In practice, however, other LMM-based methods such as EMMA [KYE08], EMMAX

[KSS10], FaST-LMM [LLL11], etc, could be also used.
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CHAPTER 6

Conclusion

Getting the benefit of high-throughput technologies that made it possible to cost ef-

fectively obtain DNA sequence information from individuals, GWAS have discovered

a large number of genetic variants involved in disease and traits in past decade. De-

spite the tremendously successful, it has been reported that there exist various hid-

den confounding factors such as population structure [KCP02, FRP04, MCP04, COL05,

HYH05, RZL05, VP05, BSK06, SSV06, FG06] or technical artifacts [FE12, LS07, LKS10]

that complicates the GWAS analysis. Applying the standard polygenic model to the

data with confounding effects may cause an inflation of the values of the association

statistics leading to false positive identification [Esk15]. Many statistical approaches

have been proposed for addressing this problem and most recently linear mixed model

has emerged and successfully increased both accuracy and statistical power in many

GWAS [KSS10,LLK12,LLH13,YZG14,LTB15].

The first contribution of my work is in eQTL studies. The last few years have seen

the development of large efforts for understanding how the GWAS variants contribute to

disease through eQTL studies. Especially, trans regulatory hotspots are of most interest

where hundreds or even thousands of genes are trans regulated by a small number of

genomic loci. However, as shown in studies of recombinant inbred (RI) mice [KYE08],

many of these regulatory hotspots replicate poorly. Utilizing the linear mixed model, I

explicitly modeled the confounding effects and developed an efficient approach that iden-
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tifies regulatory hotspots while correcting for confounding effects in eQTL studies.

The second contribution of my work is in multiple hypothesis testing. As the size of

GWAS data grows, in many cases analyzing multiple phenotypes simultaneously is prefer-

able than analysis each phenotype one at a time. Despite the fact that confounding effects

may cause serious problems in multiple phenotype analysis, none of the previous multiple

phenotype approach were aware of this problem. I have shown that even a small bias

induced by confounding effect could cause serious problem in multivariate analysis and

developed a multiple phenotype analysis that can be applied to linear mixed model to

correct for the confounding effects.

My last contribution is in multiple hypothesis testing correction for GWAS. Multiple

hypothesis testing correction is an essential step in current GWAS which test tens of thou-

sands of variants. Unfortunately, in the case when confounding is present, the confounding

causes a violation of the basic assumption necessary for the standard approaches, such

as permutation tests or false discovery rates, which is that the individuals in the sample

are i.i.d. Shared confounding factors induces complex dependencies among the phenotype

patterns of individuals and complicates multiple testing. I have shown that confounding

effects affect the significance threshold and developed an efficient multiple hypothesis cor-

rection method for linear mixed model that can accommodate those confounding factors

and increase statistical power.
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FSL12. Nicoló Fusi, Oliver Stegle, and Neil D. Lawrence. “Joint modelling of con-
founding factors and prominent genetic regulators provides increased accuracy
in genetical genomics studies.” PLoS Comput Biol, 8(1):e1002330, 1 2012.

GB02. Alan Genz and Frank Bretz. “Comparison of methods for the computation of
multivariate t probabilities.” Journal of Computational and Graphical Statis-
tics, 11(4):950–971, 2002.

GBB10. Xiaoyi Gao, Lewis C. Becker, Diane M. Becker, Joshua D. Starmer, and
Michael A. Province. “Avoiding the high Bonferroni penalty in genome-wide
association studies.” Genetic epidemiology, 34(1):100–105, 2010.

GBH03. Richard A. Gibbs, John W. Belmont, Paul Hardenbol, Thomas D. Willis,
Fuli Yu, Huanming Yang, Lan-Yang . Y. Ch’ang, Wei Huang, Bin Liu, and
Yan Shen. “The international HapMap project.” Nature, 426(6968):789–796,
2003.

Gen92. Alan Genz. “Numerical computation of multivariate normal probabilities.”
Journal of computational and graphical statistics, 1(2):141–149, 1992.

GHC10. Eric R. Gamazon, R. Stephanie Huang, Nancy J. Cox, and M. Eileen Dolan.
“Chemotherapeutic drug susceptibility associated SNPs are enriched in ex-
pression quantitative trait loci.” Proc Natl Acad Sci U S A, 107(20):9287–92,
5 2010.

106



GMB09. Stephen C. Grubb, Terry P. Maddatu, Carol J. Bult, and Molly A. Bogue.
“Mouse phenome database.” Nucleic Acids Res, 37(Database issue):D720–30,
1 2009.

Gow66. John C. Gower. “Some distance properties of latent root and vector methods
used in multivariate analysis.” Biometrika, 53(3-4):325–338, 1966.

GRG99. S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold.
“Quantitative analysis of complex protein mixtures using isotope-coded affinity
tags.” Nat Biotechnol, 17(10):994–9, 10 1999.

HAA07. John M. Hancock, Niels C. Adams, Vassilis Aidinis, Andrew Blake, Molly
Bogue, Steve D. M. Brown, Elissa J. Chesler, Duncan Davidson, Christopher
Duran, Janan T. Eppig, Valérie Gailus-Durner, Hilary Gates, Georgios V. Gk-
outos, Simon Greenaway, Martin Hrabé de Angelis, George Kollias, Sophie
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