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Dementia of Alzheimer’s Type (DAT) is associated with devastating and irreversible cognitive 

decline. Predicting which patients with mild cognitive impairment (MCI) will progress to DAT is 

an ongoing challenge in the field. We developed a deep learning model to predict conversion from 

MCI to DAT. Structural magnetic resonance imaging scans were used as input to a three-

dimensional convolutional neural network (3D-CNN). The 3D-CNN was trained using transfer 

learning; in the source task, normal control and DAT scans were used to pre-train the model. This 

pre-trained model was then re-trained on the target task of classifying which MCI patients 

converted to DAT. Our model resulted in 82.4% classification accuracy at the target task, 

outperforming current models in the field. Next, we visualized brain regions that significantly 

contribute to the prediction of MCI conversion using an occlusion map approach. Contributory 

regions included the pons, amygdala, and hippocampus. Finally, we showed that the model’s 

prediction value is significantly correlated with rates of change in clinical assessment scores, 

indicating that the model is able to predict an individual patient’s future cognitive decline. This 

information, in conjunction with the identified anatomical features, will aid in building a 

personalized therapeutic strategy for individuals with MCI.

Keywords

Convolutional Neural Network; Dementia of Alzheimer’s Type; Magnetic resonance imaging; 
Mild Cognitive Impairment; Predictive Modeling

1. Introduction

Dementia of Alzheimer’s Type (DAT) is a common and severe neurodegenerative disorder 

(Alzheimer's Association, 2019; Heun et al., 1997). Mild Cognitive Impairment (MCI), 

which is characterized by noticeable cognitive decline, precedes DAT and 10%-12% of 

individuals with MCI convert to DAT every year (Petersen, 2000). Predicting patients who 

will progress from MCI to DAT is important for patient care as well as in patient selection 

for clinical trials aimed at treating and preventing Alzheimer’s disease (Roberson and 

Mucke, 2006). However, current diagnostic tools for predicting conversion to DAT rely 

heavily on clinical interviews and neuropsychological evaluations, and may not be sensitive 

to the earliest changes required to predict future disease development. Thus, new 

methodology is needed in order to better predict disease progression.

With the development of computational methods such as machine learning and deep 

learning, there is increased utility of biomarker-based diagnosis for disease prediction. 

Numerous computational methodologies have been proposed to tackle the problem of 

predicting which MCI patients will convert to DAT (MCI-Converters or MCI-C) vs. those 

who do not (MCI-Non-Converters or MCI-NC) (Basaia et al., 2019; Cheng et al., 2015; Li, 

H. et al., 2014; Suk et al., 2017). Of those published, reported accuracy of models is around 

75% to 80%. There are, however, several limitations of existing studies. First, many failed to 

assess their model using a separate, independent test dataset. It is important to randomly 

reserve a portion of the whole data set to be included in the independent test set (Kuhn and 

Johnson, 2013). This is the gold standard practice in the field to evaluate a model’s 

effectiveness and generalizability (Russell and Norvig, 2016), particularly in the absence of 
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feature visualization. In addition, previous research has relied on specific features (e.g., 

cortical thickness, hippocampal volume) extracted from raw data to train the model (Zheng 

and Casari, 2018). This approach assumes that the chosen feature is the most informative 

and may neglect important information inherent in the raw data.

CNN is a deep-learning approach that has evolved in recent years to produce better 

classification performance and feature visualization than conventional machine learning 

methods across several fields (Borji et al., 2019). A CNN trained on raw, whole brain data 

can automatically extract the important imaging features and can offer insights beyond 

current methods in predicting disease progression. An end-to-end system, which places the 

model’s input and output on each end of the model, requires minimal or no feature 

extraction, producing features that are not biased. This approach has not yet been actively 

implemented to predict conversion from MCI to DAT.

In the present study, we implemented an end-to-end 3D-CNN model with transfer learning 

(Torrey and Shavlik, 2010) to classify MCI-NC vs. MCI-C patients using structural 

magnetic resonance images (sMRI). Transfer learning improves the model’s performance by 

training the model through two classification tasks: the source task and the target task. At the 

source task, the model is pre-trained using visual information similar to that used in the 

target task. Through this task, the model learns generic knowledge that will be helpful in 

target classification. At the target task, the model is re-trained with the resource that is 

directly relevant to the classification objective using the previously established generic 

knowledge.

The present study aimed to predict which individuals with MCI converted (MCI-C) and did 

not covert (MCI-NC), using a CNN model that has been first trained on sMRI scans of 

healthy individuals (NC) and those with suspected Alzheimer’s disease (DAT). Using the 

terminology described above, we used NC and DAT scans in the source task. The model 

learns features that most strongly distinguish healthy from diseased brains. The generic 

knowledge obtained from the source task is transferred to the target task in which scans from 

patients with MCI are used. The model is then re-trained with MCI-NC and MCI-C patients 

scans, to extract features that can predict conversion to DAT. Previous research suggests that 

the classification task of NC vs. DAT is similar to the classification task of MCI-NC vs. 

MCI-C (Coupé et al., 2012; Da et al., 2014; Young et al., 2013) and has been used to pre-

train machine learning models in previous studies (Basaia et al., 2019; Cheng et al., 2015). 

In this project, we utilized a classification task of NC vs. DAT as the source task for transfer 

learning to our target task model.

Furthermore, we utilized a novel occlusion map method (Zeiler and Fergus, 2014) to 

visualize the features significantly contributing to our model. Finally, we demonstrate the 

model’s clinical relevance through the association of the model’s prediction output to rate of 

cognitive decline.
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2. Materials and Methods

2.1. Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

The source task utilized 1406 DAT and 2084 NC scans from 1080 subjects. At the source 

task only, scans from multiple timepoints are included, if available. In the target task, we 

examined MCI-C patients with a conversion time of up to 3 years (longer conversion times 

are examined later) to MCI-NC patients with a clinical diagnosis that remains MCI for a 

duration of at least 3 years. MCI subjects with a duration of MCI less than 3 years without 

conversion were excluded due to the potential possibility of near-future conversion. This 

resulted in 228 MCI-C patients and 222 MCI-NC patients.

Included in the target task is the single timepoint sMRI scan at which an individual first 

received a diagnosis of MCI. Group differences in demographic and clinical history 

information were evaluated with one-way analyses of variance and chi-square tests. 

Demographic information and clinical scores for the sample are shown in Table 1. The 

distributions of conversion time of MCI-C patients and duration of diagnosis for MCI-NC 

patients are shown in Figure 1. Additional clinical information is provided in Supplemental 

Table 11.

2.2. Structural MRI data setup for transfer learning

1.5T and 3T sMRI data were downloaded from ADNI. (Detailed MRI scanner protocols for 

T1-weighted sequences by vendor are available online: http://adni.loni.usc.edu/methods/

documents/mri-protocols/). Preprocessing included skull-stripping (Wang et al., 2011), re-

orientation, cropping and padding. This resulted in images with 158 x 196 x 170 voxels. The 

FMRIB Software Library (FSL; https://fsl.fmrib.ox.ac.uk) was then used to correct intensity 

inhomogeneity by using an N3 algorithm (Sled et al., 1998) and to co-register the scans to 

the Montreal Neurological Institute (MNI) 152 atlas by using affine linear alignment.

For the source task, DAT and NC scans were randomly selected and divided into train, 

validation, and test sets (Figure 2). To provide diverse generic knowledge, 90% of the data 

(3143 scans) were assigned to the train set while the validation and test set each contained 

5% of the data (172 and 175 scans respectively). ANOVAs were calculated to confirm that 

groups within the train, validation, and test set did not differ significantly in demographic 

and clinical characteristics: sex, race, ethnicity, marital status, age, years of education, 

clinical scores, and genetic information1.

1Clinical scores and genetic information include CDR, ADAS11, ADAS13, MMSE, RAVLT immediate, RAVLT learning, RAVLT 
forgetting, RAVLT percent forgetting, FAQ, APGN1, APGN2, APOE2, APOE3, and APOE4.
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For the target task, MCI-C and MCI-NC scans were randomly split into training, validation, 

and test sets by following the conventional ratio of 70% vs. 15% vs. 15% (314, 68, and 68 

scans, respectively). ANOVAs were also calculated to confirm the no significant group 

difference between train, validation, and test set. To avoid data leakage (Wen et al., 2020), 

which exposes the information of the test set to the train and validation set, thereby falsely 

producing a higher test set classification accuracy, a single time point scan was used for each 

subject. The test portion of the target task was also ensured to be fully independent from the 

data used in both the source task and the training/validation portion of the target task. 

Therefore, no subjects in the target task test set overlapped with the rest of the samples. This 

step has been overlooked in previous research and is crucial for avoiding biased learning and 

increasing the generalizability of the model.

2.3. Architecture of Convolutional Neural Network

A base model for transfer learning was developed by benchmarking Residual Network 50 

(ResNet50) (He et al., 2016). ResNet50 is composed of 5 residual blocks. The first block 

contains one convolutional and pooling layer, and the following blocks consist of 3, 4, 6, and 

3 bottleneck layers, respectively. Each bottleneck layer has 3 convolutional layers 

interconnected through a skip connection that can smooth the loss landscape and is 

beneficial in achieving global optima (Li et al., 2018; Orhan and Pitkow, 2017). Each 

convolutional layer receives representations from the previous layers and transforms them to 

the deeper level of feature maps. These feature maps then contribute to the model’s 

classification decision.

ResNet50, however, has over 23 million trainable parameters, which is complex enough to 

cause high variance for the MCI-C vs. MCI-NC classification task. Therefore, we tailored 

ResNet50 to this task by reducing the number and width of convolutional layers. The 

resulting model had narrower and shorter network architecture than ResNet50 and was 

named ResNet29 (Figure 3). The number of filters of the convolutional layer in the first 

convolutional block was reduced from 64 to 32. The number of bottleneck layers in the 

following residual blocks were reduced from 3, 4, 6, and 3 to 2, 2, 2, and 2, respectively. 

Finally, one additional residual block which consists of one bottleneck layer was added at 

the end. The number of filters of each residual block was divided by 4. In the end, the model 

has about 4 million trainable parameters.

ResNet29 was developed as an end-to-end binary classification model. The model produces 

two prediction scores: the probability that the scan is classified as an MCI-C subject and the 

inverse probability that the scan is an MCI-NC subject. The sum of these two prediction 

scores is always one; If the prediction score for MCI-C is higher than the prediction score 

for MCI-NC, then the model decides the given brain scan is from an MCI-C patient. 

Similarly, if the prediction score for MCI-NC is higher than the prediction score for MCI-C, 

then the model predicts the given brain scan belongs to the MCI-NC patient group.

All codes were built in Python Keras as a TensorFlow backend. Experiments were conducted 

by using 4 NVIDIA P100 Pascal (12G HBM2 memory). The training time for the source 

and target task were 9 and 3 hours, respectively.
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2.4. Hyperparameters

Hyperparameters are variables set before training which determine the network structure and 

how the network is trained. We evaluated multiple hyperparameters with the objective of 

improving classification accuracy. At the source task, the model was trained with a 

cyclically changing learning rate to avoid the model being stuck in local optima and to 

promote the model to reach to the global optima (Loshchilov and Hutter, 2016). The 

maximum learning rate and minimum learning rate were set as 1e-2 and 1e-4. The learning 

rate was cyclically changing through the entire epoch of 75 with a unit epoch of 25. To 

reduce overfitting, ridge regression and weight constraint with the value of 4e-4 and 2 were 

used throughout every convolutional layer, and a batch normalization layer was also used 

(Ioffe and Szegedy, 2015). To prevent gradient exploding, gradient clipping was set as 1 

(Philipp et al., 2018).

The model and the weight matrix obtained from NC vs. DAT classification task were 

transferred to the target task of classifying MCI-NC vs. MCI-C. At the target task, the first 

127 out of 155 layers were frozen, which resulted in 2,767,106 trainable parameters. The 

model was retrained with a cyclically changing learning rate from 1e-3 to 1e-5 with a unit 

epoch of 25 through the entire epoch of 125. Ridge regression, weight constraint, and 

gradient clipping were set as 7e-4, 2, and 1, and a batch normalization layer was also used.

All convolutional layers were initialized with ‘he_normal’ (He et al., 2015). Additionally, 

the ‘elu’ activation function, proposed by Clevert et al., (2015), was used with the intention 

of increasing training speed. Finally, the output layer used the ‘softmax’ activation function, 

which produces the output probabilities between 0 and 1, with the sum of the probabilities 

been equal to 1 (Nwankpa et al., 2018). Categorical cross entropy was used as a loss 

function and stochastic gradient descent was used as an optimizer.

2.5. Feature Visualization Method: Occlusion Map

Feature visualization was completed using an occlusion method implemented on all sMRI 

scans that had been included in the test set of the target task. Following model training, each 

sMRI scan was fed into the model with a 2x2x2 voxel patch (intensity 0) ‘occluded’. The 

patch position was iterated through each voxel with a stride of 2 of the whole 3D brain. 

Predictions scores were extracted from the model of each iterated occluded brain and the 

prediction score (for either class, MCI-C or MCI-NC) was recorded at the occluded brain 

region. This visualization creates a heatmap of brain regions that significantly alter the 

model prediction.

A degree of change in prediction score due to the occluded portion represents the importance 

of that region for the model’s classification decision. The brain regions where the prediction 

score decreased when occluded vs. un-occluded were colored as blue (Blue occlusion map). 

In contrast, the brain regions where the prediction score increased when occluded were 

colored as red (Red occlusion map). The blue regions contribute to a higher prediction score 

of the predicted class in the un-occluded image, and the red regions contribute to produce 

higher prediction score of the class not predicted in the un-occluded image. To the best of 

our knowledge, this method has yet to be implemented for classifying MCI-NC vs. MCI-C.
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2.6. Relating Mean Intensity Values of Gray Matter beneath the Occlusion Maps to 
Neuropsychological and Cerebrospinal Fluid Measures

To validate the model, we calculated the Mean Intensity values of Gray Matter Beneath the 

Occlusion Map (MIGMBO). Atrophy in gray matter (both cortex and deep nuclei) is related 

to the accumulation of amyloid beta plaques and neurofilament tangles (Bejanin et al., 2017; 

Jack et al., 2019; Sepulcre et al., 2016). To identify the meaningful information that 

contributes to the conversion from MCI to DAT, MIGMBO for all patients in the test set of 

the target task were calculated and regressed with measures of clinical change, 

neuropsychological test performance, and cerebrospinal fluid (CSF) markers.

For clinical measures, we included the rate of change in the Clinical Dementia Rating-Sum 

of Boxes (CDRSB), Alzheimer’s Disease Assessment Scale – cognitive 11 item (ADAS 11) 

and cognitive 13 item (ADAS 13), Mini Mental State Exam (MMSE), Rey Auditory Verbal 

Learning Test (RAVLT) – RAVLT Immediate, RAVLT Learning, RAVLT Forgetting, 

RAVLT Percent Forgetting, and Functional Activities Questionnaire (FAQ) (Folstein et al., 

1975; Mayo, 2012; Rosen et al., 1984; Samtani et al., 2014; Schmidt, 1996; Skinner et al., 

2012). For CSF measures, we included Amyloid Beta (Aβ), Tau, Phosphorylated Tau (P-

Tau), Aβ/Tau, and Aβ/P-Tau (Detailed description of csf acquisition protocols can be found 

on the ADNI website: http://adni.loni.usc.edu/data-samples/data-types/).

The output of our generated occlusion maps were divided into three bins based on strength 

of change in the model’s prediction, and each bin was used as a predictor for change in 

variables listed above in a multiple regression analysis. The ‘low’ occlusion bin are those in 

which there was only a small change in the prediction score, i.e., a change within one 

standard deviation. The ‘medium’ occlusion bin are those in which the prediction score 

changed between one and two standard deviations. The ‘high’ occlusion bin are those in 

which prediction score changed greater than two standard deviations.

Y ∼ β0 + β1x1 + β2x2 + β3x3

Y = Rate of 9 Neuropsycℎological measures
5 CSF measures

x1 = m < ∣ occlusion mask ∣ ≤ m + 1σ
x2 = m + 1σ < ∣ occlusion mask ∣ ≤ m + 2σ
x3 = m + 2σ < ∣ occlusion mask ∣
, where m indicates mean of whole occlusion map,
and σ indicates standard deviation of whole occlusion map.

To determine the gray matter regions that contribute to the DAT progression, the blue 

occlusion map for MCI-NC predicted patients and the red occlusion map for MCI-C 

predicted patients were used. The blue occlusion map of MCI-NC patients identifies the 

brain regions that make the MCI-NC brain scan look more similar to the MCI-C brain scan. 

The red occlusion map of MCI-C patients shows the brain regions that make the MCI-C 

brain scan look more dissimilar to the MCI-NC brain scan. Therefore, the brain regions 

covered by these occlusion maps provide information about DAT progression.
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The other occlusion map, i.e., the red occlusion map for MCI-NC and the blue occlusion 

map for MCI-C, represent the brain regions that are indicative of MCI-NC that does not 

progress to DAT. Therefore, these regions were not used to examine brain regions that 

associate conversion to DAT to clinical and CSF measures.

2.7. Relating CNN’s prediction score to Neuropsychological Measures

To evaluate the clinical validity of the 3D-CNN model, we examined the prediction score 

from the earliest sMRI scan of an MCI patient to the rate of cognitive decline. Out of 514 

MCI-NC and 277 MCI-C subjects throughout the whole conversion and duration years 

(Figure 1), patients whose brain scan were used in training/validating the model were 

excluded. This resulted in a sample of 323 MCI-NC and 86 MCI-C patients. The 

longitudinal clinical scores (i.e., CDRSB, ADAS11, ADAS13, MMSE, RAVLT – RAVLT 

Immediate, RAVLT Learning, RAVLT Forgetting, RAVLT Percent Forgetting, and FAQ) 

from the first MCI-diagnosed time point to the end of clinical history were used to obtain the 

month-wise rate of change in clinical assessments scores. Pearson’s correlation between the 

CNN prediction score from the baseline sMRI scan and the clinical scores’ month-wise rate 

of change obtained through the first to the last clinical history were also examined.

3. Results

3.1. 3D-CNN classification results

Classifying MCI-C vs. MCI-NC through transfer learning with a base model of ResNet29 

was successful. The loss value of training and validation set decreased throughout the 

training epochs (Figure 4a). This indicates that the model was well optimized with a set of 

well-defined hyperparameters. It produced a test set classification accuracy of 82.4% and 

0.827 Area Under the Curve (AUC) as well as 0.189 Equal Error Rate (EER) value (Figure 

4b).

The test set was composed of MCI-C patients whose conversion time was between 0 and 3 

years. To further look at the models’ prediction performance over a longer conversion time, 

a separate MCI-C dataset with a conversion time longer than 3 years was used. In conversion 

times from 0 to 3 years, 3 to 6 years, and 6 to 10 years, there were 37, 39, and 9 MCI-C 

subjects, and the same model and its weight matrix were implemented to predict these 

patients. The model’s sensitivity for these three groups were 81.08%, 71.79%, and 55.56%, 

respectively. The results showed that prediction score decreases with longer conversion 

times (Figure 5).

Furthermore, we provide the model’s separate accuracy on 1.5T and 3.0T sMRI scanner 

(Table 2.). For 1.5T scanner, 25 out of 32 scans are correctly predicted and report 78.13% 

accuracy. For 3.0T scanner, 31 out of 36 scans are correctly predicted at 86.11% accuracy.

3.2. Feature Visualization

Using occlusion mapping, we identified structural features recognized by the model. As seen 

in Figures 5 and 6, the occlusion of the hippocampus, parahippocampal gyrus, amygdala, 

and pons increased the probability score for MCI-C; the hippocampus, parahippocampal 
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gyrus, amygdala, and pons were covered by the blue occlusion map for MCI-NC and the red 

occlusion map for MCI-NC. On the other hand, the occlusion of the nucleus accumbens, 

caudate nucleus, globus pallidus, thalamus, cerebellum, and midbrain increased the 

probability score for MCI-NC; these regions were covered by the red occlusion map for 

MCI-NC and the blue occlusion map for MCI-C. We note that the occlusion maps for MCI-

NC and MCI-C are complementary.

3.3. Relating MIGMBO to rate of change in Neuropsychological (Clinical) Measures

The MIGMBO score from the high occlusion bin predicted the rate of change in CDRSB, 

ADAS11, ADAS13, MMSE and FAQ score at a significance level of 0.05 (Table 3.). 

MIGMBO was negatively correlated with the rate of MMSE decline and positively 

correlated with the rate of increase in CDRSB, ADAS11, ADAS13, and FAQ score. In 

contrast, the MIGMBO score did not show a significant correlation with rate of change in 

RAVLT scores.

3.4. Relating MIGMBO to CSF Measures

MIGMBO scores showed strong correlation with Aβ, Aβ/Tau, and Aβ/P-Tau with a p-value 

below 0.05, indicating statistical significance (Table 4.). For relating Aβ/Tau and Aβ/P-Tau, 

all predictors showed a significant relationship. The low, medium, and high occlusion maps 

all played a crucial role in predicting the dependent variables. With Tau and P-Tau, 

MIGMBO showed p-values of 0.0683 and 0.0707, respectively, which approximate 

statistical significance.

3.5. Relating CNN-based prediction score to rate of Cognitive Decline

The CNN-based prediction score at the first MCI-diagnosed timepoint showed significant 

correlation with the rate of change in CDRSB, FAQ, MMSE, and RAVLT forgetting (Table 

5.). The CNN prediction score was positively correlated with the rate of change in the 

CDRSB and FAQ scores and was negatively correlated with the rate of change in the MMSE 

and RAVLT forgetting scores. On the other hand, RAVLT immediate, RAVLT learning, 

ADAS11, and ADAD13 did not show a significant correlation with the 3D-CNN-based 

prediction scores.

The prediction score produced by the baseline sMRI scan also showed significant correlation 

with the rate of cognitive decline (Table 5). It was positively correlated with the rate of 

change in CDRSB and the FAQ score, and negatively correlated with MMSE, RAVLT 

Forgetting, and RAVLT Percent Forgetting scores.

4. Discussion

Leveraging ADNI data, we aimed to predict MCI conversion to DAT using a CNN model 

trained on sMRI scans of healthy individuals and those with DAT. In so doing, we developed 

ResNet29, an end-to-end 3D-CNN which trained, through transfer learning of these sMRI 

scans of healthy vs. DAT subjects, to predict MCI patients that either remained stable in their 

diagnosis or progressed to DAT. Our model achieved this with an 82.4% accuracy, and also 

showed the most significant prediction increase from random guess, 31.7%.
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ResNet 29 trained through a novel transfer learning meets the level of complexity that is 

required to interpret the heterogeneous nature of DAT development. Most biomarkers of 

DAT, including atrophy on sMRI scans, are known to nonlinearly worsen with increased 

disease severity (Jack Jr et al., 2013). We recognize this is a limitation of machine learning 

models which are trained on the final stage of disease outcomes. However, we note that our 

base model, ResNet29, is constructed with a series of convolutional layers so that it may 

extract complex patterns through a series of non-linear transformations. The model learns 

generic knowledge through NC and DAT scans during the source task so that it is finely 

optimized to determine the degree (expressed as a probability of belonging to the MCI-C) to 

which a subject’s baseline scan resembles a DAT scan. We additionally note that our model 

is designed to individually classify ultimate disease outcome, rather than reflect the nuances 

of disease progression.

Compared to previous studies (Table 6), our model achieved the highest accuracy in 

classifying MCI-NC from MCI-C. Li, H. and colleagues (2014) used a Random Forest 

method with weak hierarchical lasso feature selection to achieve 74.8% classification 

accuracy using 161 MCI-NC and 132 MCI-C sMRI scans. Cheng et al. (2015) produced 

79.4% classification accuracy by using Domain Transfer Feature Selection (DTFS) and 

Domain Transfer Sample Selection (DTSS) for extracting features and Support Vector 

Machine (SVM) model for classifying 43 MCI-NC and 56 MCI-C patients. Similarly, Suk et 

al. (2017) had 74.8% classification accuracy in classifying 226 MCI-NC and 167 MCI-C 

patients by using a 2D-CNN based on 93 regions of interest (ROIs) as features2. By using 

3D-CNN, Basaia and colleagues (2019) showed 74.9% classification accuracy in classifying 

533 MCI-NC and 280 MCI-C patients based on gray matter tissue probability maps, and Yee 

and colleagues (2020) recorded 74.7% accuracy in classifying 871 MCI-NC and 362 MCI-C 

scans.

While most previous research did not use an independent test set, Basaia and colleagues 

(2019) assigned a relatively small portion (10%) of the whole dataset as a test set to verify 

the model’s generalized performance. The most effective splitting ratio of the training, 

validation, and test sets is still under discussion, although we set the ratio as 70:15:15 which 

is traditionally accepted and successfully demonstrated the generalizability of our model.

The ability to predict DAT conversion based on a single time point MRI is advantageous for 

the clinical field. While some previous studies include multimodal biomarkers in their 

prediction models, such as positron emission tomography (PET) and cerebrospinal fluid 

(CSF) biomarkers of disease (Cheng et al., 2015), our model outperformed these models 

with high accuracy by using a single time point sMRI scan. sMRI is often included in 

routine assessment of those at risk for AD. It is less expensive than other imaging scans and 

is minimally invasive, therefore reducing patient risk. Our model showed 8% higher 

accuracy in prediction with 3T than 1.5T sMRI scans. This finding is consistent with the 

known accuracy advantages of higher resolution images for CNN (Sabottke & Spieler, 

2020). Nevertheless, the accuracy of 78% with 1.5T scanners, which are more common in 

hospital settings, is still high, indicating that our model is clinically implementable. In 

293 ROI for each sMRI and PET, and 3 features from CSF are used.
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comparison to studies using combined modalities, our model produces more accurate 

predictions on DAT progression with less economic burden and infection risk to the patients.

Several factors contributed to the improvement of the classification performance by our 

model. It was largely empowered by the architecture of our deep learning model, specifically 

tailored for the MCI-C vs. MCI-NC classification task. These factors include our novel 

transfer learning pipeline using healthy vs. AD subjects that can produce diverse generic 

knowledge while avoiding data leakage, along with various engineering techniques such as a 

cyclically changing learning rate (Loshchilov and Hutter, 2016). Finally, we carefully tuned 

a set of hyperparameters including the type of activation layers, number of convolutional 

layers and their size and learning rates, through numerous experimental condition until the 

model achieved the highest accuracy reported here. Further, these identified sets of 

hyperparameters that produced the best prediction results were validated using the test set 

which also showed the highest accuracy from the numerous experiments: 82.4%.

In addition, our model was provided with a whole 3D brain scan without specification of any 

particular feature for training. Previous studies have limited the input resource through 

feature engineering. For example, studies that selected gray matter as the feature for model 

training (Basaia et al., 2019) did not consider CSF space or white matter changes known to 

also play an important role in DAT and the pathological process of Alzheimer’s disease 

(Jack Jr et al., 2010; Li, X. et al., 2014; Weiler et al., 2015). Additionally, Cheng et al. 

(2015) selected subjectively defined “useful” features using DTFS and DTSS. Machines 

trained with these samples could be biased and thus may not be generalizable to independent 

populations. Therefore, unlike feature engineering which limits the information able to be 

learned based on a researcher’s pre-assumption of what may be important in classification, 

the presented model learned from every possible feature available in the image.

It should be noted that the conversion times in previous studies range from 1.5 (Suk et al., 

2017) to 4 years (Li, H. et al., 2014), while one of the latest experiments uses a 3-year 

conversion time window (Basaia et al., 2019). We chose this conversion time for the present 

study in order to directly compare performance to the most current research. Further, setting 

the conversion time at 3 years provided a well-balanced data set between MCI-NC (N=222) 

and MCI-C (N=228) (Buda et al., 2018). It allowed unbiased learning by the model on MCI-

C and MCI-NC patients’ brains.

To the best of our knowledge, a deep learning model that can identify anatomical brain 

regions critical for predicting the conversion from MCI to DAT has not been demonstrated 

previously. Feature visualization methods are able to highlight regions in an input image 

with strong influence on the classification decision. It is important as it enables us to 

understand and validate the reasoning that has driven the model’s classification. Especially 

in the study of neurodegenerative disease, it is critical to explain the behavior of a machine/

deep learning model to elucidate the neuroimaging biomarkers that contribute to conversion 

from MCI to DAT. State-of-the-art visualization techniques include Gradient Class 

Activation Map (Grad-CAM) and Guided Gradient CAM (Guided-Grad-CAM) (Selvaraju et 

al., 2017; Yee et al., 2020). However, in the medical field, these methods are unable 

visualize the features that contribute to disease-negative samples (Ardila et al., 2019). 
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Further, feature maps that directly contribute to the classification decision often have too low 

resolution to show fine structural features within the brain.

An occlusion method to feature visualization avoids these problems and produces finer 

feature maps (Zeiler and Fergus, 2014). We implemented an occlusion method and identified 

key brain structures that contribute to DAT conversion. The occlusion method is critical in 

this research as the occlusion patch could represent structural alteration. A major strength of 

the presented model is that the input is naïve to specified brain regions. As the model uses 

whole 3D sMRI scan as an input without limiting itself to predefined ROIs or features that 

are obtained from feature engineering, the occlusion map, too, examined the level of 

contribution at the voxel level (2x2x2) in the progression of disease. The results that the 

occlusion map shows are completely driven by statistical calculations from the ResNet29.

The blue occlusion map presented brain regions that decreased the probability of being 

MCI-NC or MCI-C patients when such structural alteration occurs. For example, the 

hippocampus was covered by the blue occlusion map for MCI-NC-predicted patients. Thus, 

when information from the hippocampus was missing (occluded), the model recognized 

MCI-NC-predicted scans as more similar to an MCI-C scan; the probability for MCI-NC 

was decreased while the probability for MCI-C was increased. Therefore, morphological 

alteration in the hippocampus contributes to the DAT classification. This aligns with our 

understanding of the importance of the hippocampus during MCI stages and progression 

into DAT (Ferrarini et al., 2009; Gupta et al., 2019; Lee et al., 2020; Li et al., 2007). In 

contrast, the thalamus was covered by the blue occlusion map for MCI-C-predicted 

patients---meaning that when information from the thalamus was missing in the model, 

MCI-C-predicted patients looked more similar to MCI-NC patients. Therefore, as far as we 

can measure, structural change in the thalamus does not promote the DAT development 

within a 3-year window.

Many subcortical white matter and deep gray structures were detected as features. As both 

MCI-C and MCI-NC patients have MCI, they do not yet manifest significant cortical atrophy 

on sMRI. These patients experience cognitive decline related to atrophy in these regions. 

(For DAT patients, cortical regions are recognized as a feature (Supplementary Figure S14)).

For the quantitative voxel analysis, we segmented subcortical regions by using FMRIB’s 

Integrated Registration and Segmentation Tool and count the number of voxels of the blue 

occlusion map, the red occlusion map, and whole brain structure. The sizes of two groups’ 

subcortical structures presented similarly; they did not show a difference between their size 

at the significance level of 0.1. Surprisingly, however, the blue occlusion map was dominant 

in the hippocampus, amygdala, and pons for MCI-NC patients, while was dominant in the 

nucleus accumbens, caudate nucleus, globus pallidus, and thalamus for MCI-C patients 

(Table 7). Therefore, within a 3-year time window until DAT diagnosis, structural changes in 

the hippocampus, amygdala, and pons promote DAT development, rather than the nucleus 

accumbens, caudate nucleus, globus pallidus, putamen, and thalamus. We note that the 

occlusion patch color (black) used in the occlusion map did not alter the visualization 

results, as we found identical results using a white colored patch.
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Brain structures recognized by our deep learning model were consistent with previous 

research. Previous research has been published that structural alteration of subcortical brain 

structures reflects DAT progression. Many research studies indicate that morphological 

changes in the hippocampus and amygdala (Ball et al., 1985; Convit et al., 1993; Gupta et 

al., 2019; Lee et al., 2020; Lehericy et al., 1994; Li et al., 2007; Poulin et al., 2011; Zanchi et 

al., 2017) are significant. Also, the pons was recognized as a significant biomarker in 

predicting AD progression. Olivieri et al. (2019) suggested that structural alteration occurs 

in the pons before AD develops ieri et al., 2019).

To further provide content validity on regions identified by the occlusion map, we used the 

mean intensity value of gray matter beneath the three occlusion maps. Gray matter is known 

to be associated with the biomarkers of AD pathology (Bejanin et al., 2017; Jack et al., 

2019; Sepulcre et al., 2016). Therefore, by showing the relationship between MIGMBOs and 

rate of cognitive decline, verified that our occlusion maps captured clinically meaningful 

brain regions. The MIGMBO score of the high occlusion map showed positive correlation 

with rate of change in CDRSB, ADAS11, ADAS13, and FAQ and negative correlation with 

rate of change in MMSE. Therefore, the higher the mean intensity of gray matter is, 

CDRSB, ADAS11, ADAS13, and FAQ scores increase and MMSE scores decrease more 

quickly.

Also, by showing a significant correlation with MIGMBO and accumulation of Aβ, Aβ/Tau 

and, Aβ/P- Tau, we confirmed that the model’s prediction aligns with neuropathologic 

markers of AD by solely utilizing information from a sMRI scan. All three occlusion maps, 

which were split based on their degree of prediction change, could be a useful resource in 

predicting Aβ, Aβ/Tau and, Aβ/P-Tau.

Finally, we showed that the prediction scores from our model were related to worsening of 

neuropsychological performance measures over time. Since all scans received a prediction 

score of being classified as MCI-C, we calculated the Pearson’s correlation between this 

score and the rate of cognitive decline for all the patients with MCI. The rate of change in 

CDRSB and FAQ were positively correlated with an MCI-C classification. This indicates 

that as the confidence in a scan being classified as MCI-C increases, the faster the increase 

in CDRSB and FAQ score. Additionally, rate of change in MMSE, RAVLT Forgetting, and 

RAVLT Percent Forgetting were negatively correlated with the predicted MCI-C score. This 

indicates that these scores decrease more quickly as the confidence that the scan should be 

classified as MCI-C increases.

Aside from the sMRI scan from the first MCI-diagnosed time point, we used the baseline 

sMRI scan of all MCI-C and MCI-NC patients in showing these correlations. Therefore, 

regardless of conversion time and duration time of MCI-C and MCI-NC patients, the model 

could predict the future cognitive decline of an individual patient by solely utilizing a sMRI 

scan from the first visit to the clinic. Considering that we do not know which patients will 

suffer from cognitive deficit in clinical practice, these results provide evidence that the 

model could be used to foretell future cognitive decline.
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In future research, we plan to include all subcortical brain structures, including sub-

structures of the brain stem and cerebellum, as well as parcellated cortical regions to predict 

the DAT progression throughout different conversion years of MCI-C patients and duration 

years of MCI-NC patients. This regression model could show the contribution of each brain 

region in promoting conversion to DAT and improve personalized preventive medicine.

In conclusion, the current clinical evaluation protocols cannot accurately predict which 

patients with MCI will progress to DAT (Ward et al., 2013). An automated classification 

system for MCI-NC vs. MCI-C, such as the method presented in this study, offers promise 

for informing the clinical prognosis of these patients. Furthermore, the methods presented 

here will be useful for identifying which patients would benefit most from participating in 

clinical trials by providing individualized information on the disease progression, i.e., brain 

regions that cause cognitive deficit and future cognitive decline. Our methods not only 

produced the highest performance in the field, but also avoided problems previously 

neglected such as data shortage, high variance, and data leakage. Our research showed high 

accuracy in predicting conversion as well as novel visualization features, both critical to 

advancing our understanding of conversion from MCI to DAT, and personalized preventive 

medicine.
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Highlights

• Deep learning shows the highest accuracy in predicting Dementia of 

Alzheimer’s Type

• Novel transfer learning that improves performance, but avoids data leakage 

problem

• Occlusion map identifies brain regions progressing to Dementia of 

Alzheimer’s Type

• Deep learning’s prediction score can foretell an individual’s cognitive decline

• Structural features of brain are associated with pathology of Alzheimer’s 

Disease
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Figure 1. 
Distribution of MCI-C (N=277) and MCI-NC (N=514) patients according to years until 

conversion and duration of diagnosis, respectively: Upper histogram red box: MCI-C 

patients who converted to DAT within 3 years were selected for the target task (N=228). As 

a comparison to this group, lower histogram red box: MCI-NC patients whose duration of 

MCI diagnosis is at least 3 years (N=222) are included in this study.
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Figure 2. 
Graphical layout of data division for the source task and target task. The number of scans 

and patients used for train, validation, and test set are shown. The percentage in parenthesis 

indicates the ratio of data size compared to the whole dataset, i.e., either source or target data 

set. The number of 1.5T and 3.0T scans are also shown in brackets.
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Figure 3. 
(a). Architecture of Convolutional Neural Network (CNN). The original ImageNet Model, 

i.e., ResNet50 was scaled down by narrowing and shortening the model. Figure 3. (b) 

Bottleneck layers were set to reduce the model’s complexity and thereby improve the 

classification performance (He et al., 2016). Figure 3. (c) Skip connection was used to 

enable the model to reach a global optima (He et al., 2016).
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Figure 4. 
Loss history of train and validation data (a) and classification performance (b), i.e., Area 

Under the Curve (AUC) and Equal Error Rate (EER) on test data. Train and validation loss 

continuously decreased along the epochs, indicating that the model was learning. The weight 

matrix that was restored and used to evaluate the test classification accuracy was where the 

validation loss showed the minimum. Test classification accuracy reported 82.4%. AUC and 

EER value are 0.827 and 0.189, respectively.
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Figure 5. 
The sensitivity to predict patients with conversion years from 0 to 10. The random guess is 

10% as it is the chance of one out of 10 different conversion years.
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Figure 6. 
Occlusion maps (a) sagittal plane, (b) coronal plane, and (c) transverse plane across all 

correctly predicted MCI-NC patients. The red color indicates a higher prediction score, 

whereas the blue color indicates a lower prediction score. The blue regions indicate 

importance in predicting MCI-NC, and include the pons, amygdala, hippocampus, and 

parahippocampal gyrus.
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Figure 7. 
Occlusion maps (a) sagittal plane, (b) coronal plane, and (c) transverse plane across all 

correctly predicted MCI-C patients. The red color indicates a higher prediction score, 

whereas the blue color indicates a lower prediction score. The blue regions indicate 

importance in predicting MCI-C, and include the midbrain, nucleus accumbens, caudate 

nucleus, cerebellum, globus pallidus, and thalamus.
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Table 1.

Demographic and Clinical Information within Subjects for the Source and Target Tasks

Source Task Target Task

NC DAT p value MCI-NC MCI-C p value

N total 2084 1406 -- 222 228 --

Age 76.49 (±5.92) 76.18 (±7.22) ns 72.25 (±−7.32) 74.18 (±6.96) p < .05

% Male 49.80% 60.10% ns 63.10% 57.00% ns

Education 16.35 (±2.74) 15.35 (±2.90) p < .05 15.97 (±−2.85) 15.87 (±−2.78) ns

CDRSB 0.09 (±0.30) 5.22 (±2.41) p < .05 1.18 (±−0.63) 1.97 (±−0.98) p < .05

ADAS11 5.56 (±2.85) 20.47 (±7.85) p < .05 8.61 (±−3.41) 13.17 (±−5) p < .05

ADAS13 8.7 (±1.32) 31.03 (±9.43) p < .05 13.77 (±−5.33) 21.27 (±−6.04) p < .05

MMSE 29.04 (±1.21) 22.31 (±3.68) p < .05 28 (±−1.69) 26.77 (±−1.72) p < .05

Results are reported as mean ± standard deviation. Age and education are reported in years. CDR=Clinical Dementia Rating Scale; 
ADAS11=Alzheimer’s Disease Assessment Scale 11; ADAS13=Alzheimer’s Disease Assessment Scale 13; MMSE=Mini Mental State Exam.
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Table 2.

Prediction accuracy on 1.5T and 3.0T scans in the test set.

Scanner N total N correctly predicted
Accuracy

(%)

1.5T 32 25 78.13

3.0T 36 31 86.11
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Table 3.

Correlation between MIGMBO and rate of cognitive decline: Red MCI-C and Blue MCI-NC

Clinical
Measures constant

Low
x1

Medium
x2

High
x3

N R2 F-statistic p-value

CDRSB 1.181
(0.771)

0.046
(0.677)

−0.073
(0.507)

***0.007
(0.000)

68 0.275 8.07 0.0001

ADAS11 −2.795
(−0.627)

0.303
(0.943)

−0.282
(−0.882)

***0.014
(3.251)

68 0.156 3.95 0.0120

ADAS13 −4.007
(−0.770)

0.405
(1.080)

−.372
(−0.994)

***0.018
(3.529)

68 0.182 4.74 0.0048

MMSE 3.735
(1.475)

0.013
(0.073)

−0.048
(−0.264)

***−0.008
(−3.402)

68 0.204 5.47 0.0021

RAVLT Immediate 4.529
(0.783)

0.008
(0.016)

−0.060
(−0.144)

−0.008
(−1.476) 68 0.053 1.19 0.3215

RAVLT Learning −3.392
(−1.938)

0.137
(0.282)

−0.088
(0.486)

−0.002
(0.233) 68 0.084 1.95 0.1306

RAVLT Forgetting −0.365
(−0.164)

−0.176
(−1.092)

0.183
(1.144)

−0.003
(−1.398) 68 0.039 0.86 0.4645

RAVLT Percent Forgetting 16.104
(0.585)

**−4.596
(0.024)

**4.382
(0.031)

−0.019
(0.493) 68 0.079 1.84 0.1493

FAQ 5.463
(1.333)

−0.046
(−0.156)

−0.057
(−0.194)

***0.018
(4.551)

68 0.260 7.51 0.0002

Notes: Figures in parentheses are t statistics.

*
p<.10

**
p<0.05

***
p<0.01. MIGMBO score could predict the rate of change in CDRSB, ADAS11, ADAS13, MMSE, and FAQ score. MIGMBO score from the 

most significant occlusion map are important in predicting rate of cognitive decline.
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Table 4.

Correlation between MIGMBO and CSF Measures: Red MCI-C and Blue MCI-NC

CSF
Measures constant

Low
x1

Medium
x2

High
x3

N R2 F-statistic p-value

Aβ
***4029.0

(3.0)

***480.7
(3.4)

***−507.3
(−3.5)

**−2.3
(−2.2)

26 .494 7.15 0.00159

Tau −791.4
(−1.3)

−76.5
(−1.2)

87.3
(1.3)

0.8
(1.6) 29 .244 2.69 0.0683

P-Tau −93.1
(−1.3)

−10.1
(−1.3)

11.3
(1.5)

0.1
(1.6) 29 .241 2.65 0.0707

Aβ/Tau
***30.8

(4.1)

***3.3
(4.2)

***−3.6
(−4.4)

***−0.0
(−2.9)

26 .634 12.7 4.98e-05

Aβ/P-Tau
***388.0

(4.4)

***42.1
(4.5)

***−45.3
(−4.7)

***−0.2
(−3.0)

26 .665 14.6 1.92e-05

Notes: Figures in parentheses are t statistics.

*
p<.10

**
p<0.05

***
p<0.01. MIGMBO score could predict accumulation of Aβ, and ratio of Aβ/Tau and Aβ/P-Tau. All three predictors, i.e., MIGMBO score from 

the least, medium, and the most significant occlusion map, contribute to the prediction.
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Table 5.

Correlation between CNN prediction score and clinical assessment scores’ rate of change

CDRSB ADAS11 ADAS13 MMSE RAVLT
Immediate

RAVLT
Learning

RAVLT
Forgetting

RAVLT
Percent

Forgetting
FAQ

First MCI sMRI (N = 
409)

***0.264 0.062 0.039 ***−0.146 0.000 *0.089 **−0.117 −0.078 ***0.243

Baseline sMRI (N = 
409)

***0.242 0.008 0.005 ***−0.177 −0.011 *0.094 **−0.106 ***−0.143 ***0.144

Correlation between CNN prediction score from first MCI-diagnosed sMRI scan and clinical assessment scores' rate of change (the first row). CNN 
prediction score is positively correlated with the rate of change in CDRSB and FAQ score and negatively correlated with rate of change in MMSE 
and RAVLT Forgetting score. Correlation between CNN-based score from the baseline sMRI scan and clinical assessment scores' rate of change. 
CNN prediction score is positively correlated with the rate of change in CDRSB and FAQ score and negatively correlated with the rate of change in 
MMSE, RAVLT Forgetting, and RAVLT percent Forgetting (the second row).

*
p<.10

**
p<0.05

***
p<0.01.
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Table 6.

Summary of MCI-C vs. MCI-NC classification research

Biomarker Conversion time
(years)

Random guess
(%) Accuracy (%) Increase (%)

Proposed model sMRI 3 50.7 82.4 31.7

Yee et al., 2020 FDG 3 70.6 74.7 4.1

Basaia et al., 2019 sMRI 3 65.6 74.9 9.3

Suk et al., 2017 sMRI, Clinical Score 1.5 57.5 74.8 17.3

Cheng et al., 2015 sMRI, PET, CSF 2 56.6 79.4 22.8

Li et al., 2014 MRI, Meta features3 4 54.9 74.8 19.9

3MRI features indicates average cortical thickness, standard deviation in cortical thickness, volumes of cortical parcellations, volumes 
of specific white matter parcellations, and the total surface area of the cortex. And Meta features includes demographic, genetic 

information, baseline cognitive scores, and lab tests. 305 MRI features and 52 Meta features are used.
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Table 7.

Mean number of voxels beneath the occlusion map

N Blue occlusion map N Red occlusion map N Total

MCI-NC MCI-C MCI-NC MCI-C MCI-NC MCI-C

Brain Stem
***

13927±4200 17025±2814 17051±3728 16218±2332 30979±7256 33247±3501

Accumbens
*** ***

305±279 526±276 655±303 357±255 960±324 883±266

Amygdala
*** ***

2608±1422 1303±1096 955±991 2261±1228 3562±1053 3564±830

Caudate
***

4567±1157 5408±1330 5056±1632 4721±1047 9623±2221 10129±1637

Hippocampus
*** ***

7218±3455 3505±2633 3122±2373 6128±2768 10340±2882 9632±1686

Pallidus
*** ***

1655±749 2174±697 2363±695 1899±622 4017±1121 4073±606

Putamen 5293±1717 5680±1336 5164±1837 4918±1312 10457±3086 10598±1890

Thalamus
***

6878±1901 8210±1836 9585±2203 8577±2066 16463±3361 16787±1884

Notes: The number shows mean ± standard deviation. The symbol * shows p-value from t-statistics, which indicate the difference between the 
number of voxels in the occlusion map for MCI-C and MCI-NC patients

*
p<.10

**
p<0.05

***
p<0.01. For MCI-NC patients, the blue occlusion map is dominant in the amygdala and hippocampus. For MCI-C patients, the blue occlusion 

map is dominant in the accumbens, caudate, pallidus, and thalamus. There is no significant difference in the whole volume of brain structure 
between MCI-NC and MCI-C patients.
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