
A UPC++ Actor Library and Its Evaluation
On a Shallow Water Proxy Application

Alexander Pöppl
Department of Informatics

Technical University of Munich
Munich, Germany
poeppl@in.tum.de

Scott Baden
Computational Research Division

Lawrence Berkeley National Laboratory
Department of Computer Science and Engineering

University of California, San Diego
baden@ucsd.edu

Michael Bader
Department of Informatics

Technical University of Munich
Munich, Germany
bader@in.tum.de

offer their expected performance. Currently, many applications
still follow the Bulk Synchronous Parallel (BSP) model, with
clearly defined phases for computation, communication and
synchronization. The most widely used approach here is to
use MPI for inter-node communication and parallelization, and
OpenMP for the on-node parallelization. The BSP approach
enables a clear separation of concerns, but the structure,
especially with the synchronization step at the end may be too
rigid to obtain the best performance. As the number of nodes
increases, so will the difficulty of maintaining the pure BSP
model, and therefore the burden to the application programmer.

A promising model is the Partitioned Global Address
Space (PGAS) programming model [2]. This model assumes
a global address space, but exposes the separate physical
address domains. This may ease the burden on the application
programmers, as they no longer need to think about in terms of
message-passing, but can access data on remote ranks directly.
Another promising model is the task-based programming model
[3]. Here, the programmer specifies pieces of computation
and communication as tasks, and also their dependencies.
Afterwards, the resulting task graph is handed to a scheduling
system that schedules them onto available computing resources.
This model has been implemented in OpenMP [4] and also
in runtime systems, for example in StarPU, which enables
distributed task scheduling onto heterogeneous machines [5],
or the AllScale project [6], which aims to separate the
specification of parallelism from its low-level management on
the target hardware. Task-based parallelism has been employed
successfully in complex applications, for example in the Uintah
application framework [7].

In the Invasive Computing project1, we investigate novel
approaches to use future, parallel and heterogeneous computers
[8]. Most of the research is focused around the project’s
own hardware architecture, a cache-incoherent heterogeneous
Multiprocessor System-on-Chip (MPSoC). This architecture
features multiple smaller groups of CPU cores (called tiles)
that share a cache hierarchy and a memory. The different
tiles are connected using a Network-on-Chip. There are
different types of tiles, such as tiles containing normal CPU

1http://www.invasic.de

Abstract—Programmability is one of the key challenges of
Exascale Computing. Using the actor model for distributed
computations may be one solution. The actor model separates
computation from communication while still enabling their over-
lap. Each actor possesses specified c ommunication e ndpoints to
publish and receive information. Computations are undertaken
based on the data available on these channels. We present a
library that implements this programming model using UPC++,
a PGAS library, and evaluate three different parallelization
strategies, one based on rank-sequential execution, one based
on multiple threads in a rank, and one based on OpenMP
tasks. In an evaluation of our library using shallow water proxy
applications, our solution compares favorably against an earlier
implementation based on X10, and a BSP-based approach.

Index Terms—Actor-based computation, tsunami simulation,
programming models, PGAS

I. INTRODUCTION

With this work, we demonstrate the performance and usabil-
ity benefits of using the actor model for classical HPC. We will
introduce an actor model based on the FunState [1] approach,
and its implementation as a library in UPC++. There, we will
explore and evaluate three different parallelization strategies
for the actor library. We apply the actor model to a tsunami
simulation proxy application, and compare its performance
against our prior application SWE-X10 based on actorX10,
an X10 implementation of our actor library, and SWE, the
original tsunami application using MPI and OpenMP with the
BSP approach for parallelization. We show that our solution
demonstrates significantly higher performance in a weak scaling
test, and also a significantly better performance with a lower
per-core computational load compared to SWE-X10. We also
demonstrate a clear performance benefit compared t o SWE.

II. MOTIVATION AND RELATED WORK

The imminent arrival of exascale computing introduced the
debate on how to program these machines so that they can

http://www.invasic.de

cores, accelerators, and IO tiles. Applications are written in
a modified version of X10, a language that implements the
Asynchronous Partitioned Global Address Space (APGAS)
model. We worked on applications from HPC with an invasive
multigrid application [9] and an elastic MPI runtime [10]. Most
target applications for this architecture, however, are from the
domain of embedded systems. Here, it is important to have
predictable application behavior and performance, especially
with respect to hard real time scenarios. A popular approach
to programming parallel application in this domain is the actor
model.

The actor model relies on active objects, referred to as actors,
to propel a computation. Actors execute their functionality
concurrently, based on the data available to them. There is
no direct data sharing between the different actors; they are
connected through channels with FiFo semantics. An actor may
perform a computation when the state of the channels changes,
i.e., when an actor at the other end of a channel inserts or
removes a token. The actor model was originally proposed by
Hewitt [11] as a concept to facilitate programming for artificial
intelligence. Agha [12] provided the first formal notation of
the computational model. In the years since its inception, there
have been a number of implementations of the model, with
different characteristics emphasized.

In the Invasive Computing project, we implemented the actor
model using the FunState model, which emphasizes clearly
defined communication channels between the different actors
[1]. The resulting library, actorX10 [13], implements this model
in a distributed memory environment (X10-based APGAS). In
[13] and [14], we showed that this approach can be used
for applications in HPC as well, by implementing a tsunami
simulation proxy application, SWE-X10. SWE-X10 uses actors
for communication across cores as well as shared memory
domains and has been shown to work on the invasive hardware
platform [15] as well as on HPC systems [14]. The PGAS
features of X10 enable a straightforward implementation of
the actor communication scheme, as the language enables an
implicit transfer of arbitrary objects between ranks, and global
pointers make it easy to track the relationships between the
different actors.

On the other hand, using X10 comes with a number of
drawbacks. Its high-level nature makes vectorization of code
difficult unless one uses special annotations that enable manip-
ulation of the intermediate C++ representation of the compiler.
Legacy applications need to be rewritten in X10, which causes
additional programming overhead. Furthermore, the use of
third-party libraries such as netCDF [16] requires the creation
of X10 wrapper classes to translate between X10 and C++
objects. Finally, a high performance communication backend
is only available on clusters using the PAMI interconnect,
otherwise an MPI translation layer is used [17].

ActorX10 is not the only implementation of the actor
model: a popular implementation today is Akka [18], which
has been incorporated into the Scala standard library in
newer versions. However, it is not used for distributed HPC
applications. The C++ Actor Framework (CAF) [19], [20]

also supports distributed applications, but uses TCP sockets
or OpenMPI as communication backend. CAF relies on a
single mailbox and is able to handle incoming messages in
arbitrary ordering. In contrast to that, we employ ports and
channels as clearly defined communication points between
actors. Therefore, communication between actors is more
structured, and only specific actors can communicate with each
other. Charm++ [21], [22] has a concept that is similar to actors.
Objects (referred to as chares) send each other asynchronously
executed remote procedure calls (signified by entry methods).
Application programmers specify chares and entry methods
using a custom notation (akin to CORBA interface files [23]).
Similarly to the actor model, communication is structured
through specific endpoints (entry methods), and chares need
not be aware of the placement of communication partners. In
essence, the model implemented in Charm++ resembles the
CAF actor model more closely than ours.

As mentioned before, actorX10 shares the FunState actor
formalism with the actor library that we propose in this paper,
and exposes a similar interface for the application. However, we
were able to identify bottlenecks and a number of opportunities
for improvement, which enables us to scale an application to
large-scale computations in the HPC context.

Therefore, we chose to implement an actor library that uses
a modern communication infrastructure and an established
programming language. The UPC++ library2 fits these require-
ments well. It is implemented using modern C++ and utilizes
C++ templates to provide a type-safe interface for asynchronous
interaction within distributed memory environments. Like X10,
it follows the APGAS model. However, it is implemented
on a lower level so that communication operations and
their overhead are made more explicit, allowing more finely
grained control. All remote communication operations are
performed asynchronously, and it is possible to send structured
data as well as to execute code on remote ranks. Unlike
with MPI, only one one-sided communication is supported,
i.e., it is not necessary to have two ranks involved in the
communication. Furthermore, the performance of UPC++ has
been shown to match, or even surpass the one of competitive
MPI implementations [24]. To implement the communication
operations, the low-level communication library GASNet-EX
uses network interconnection fabrics such as InfiniBand or
Cray Aries directly [25]. Furthermore, using standard C++
enables interoperability with other libraries (e.g. netCDF I/O),
debugging tools and performance analysis tools, and the
integration of legacy components without wrappers. These
features make UPC++ a perfect choice as the platform for the
actor library.

III. THE FUNSTATE ACTOR MODEL

In the following, we introduce the Actor Programming Model
as the formal model for our library and the basic concepts used
in our implementation. For our library, we follow a simplified
version [13] of the FunState formalism [1].

2http://upcxx.lbl.gov/

http://upcxx.lbl.gov/

An Actor Graph is a directed multigraph Ga = (A,C).
The vertices of the graph are the actors, and edges are the
channels that connect the actors. Channels cn,t are queues with
a finite capacity n of tokens of a specific type t. An actor
a = (ID, r, I, O, F,R) ∈ A is a tuple containing a unique
name ID, a placement (e.g. on a rank) r, the set of InPorts
I , the set of OutPorts O, the set of functions F executed by
the actor, and the finite state machine (FSM) R. The In- and
OutPorts of an actor are each connected to a single Channel,
and provide the sole means of data exchange between actors,
using tokens of type t. There is no direct access to shared data
structures, or any other means of communication that would
bypass the channels. The functionality executed by an actor
is encapsulated in functions f ∈ F . We distinguish between
guard functions Fguard and actions Faction. A guard function test
if tokens and capacity of connected channels are sufficient to
execute an action, or determine which action will be performed.
This is done without modifying the data in the channel. Actions
are allowed to modify the actor’s state and tokens available
in the channels. They will typically consume tokens available
on the InPorts in order to compute results subsequently made
available on the OutPorts.

The behavior of an actor is determined by its FSM R =
(Q, q0, T), a tuple containing the set of states Q, the initial
state q0 ∈ Q, and the set of state transitions T. The latter are
again a tuple t = (q, k, f, q′) ∈ T with originating state q, the
activation pattern k, actions f and resulting state q′. k may
consist of guard functions and checks to make sure that there
are enough tokens available on the InPorts as well as sufficient
space available on the OutPorts. The state machine R of an
actor a is activated whenever there is a change, i.e. a new
token added or a token removed, in the channels associated
with the actors’ ports, I ∪O.

We will illustrate this using a shallow water equations proxy
application as an example in section VI.

IV. UNDERLYING TECHNOLOGY STACK

The actor library and application described in this paper
use UPC++ 1.0 [24], [26]–[28] as the underlying framework
for parallelization. UPC++ follows the Asynchronous Parti-
tioned Global Address Space (APGAS) programming model. It
provides high-level, type-safe abstractions for one-sided data
movement, a communication style that has been embraced by
most modern interconnection networks. The key features for
this work are global pointers, distributed objects and remote
procedure calls.

A. Library Features

UPC++ runs under a Single Program Multiple Data (SPMD)
control model. Each rank executes an instance of the same
program. The memory of each process is partitioned into a
private memory segment and a shared segment that is accessible
globally by all ranks. It is possible to hold pointers (referred
to as global pointers) to the shared segment of other ranks,
but a dereferencing is not possible. Instead, one may transfer
data using remote memory accesses to transfer data to and

from the remote process, or one may operate on the remote
data directly using remote procedure calls (RPCs). All remote
operations are performed asynchronously. After issuing the
request, control is returned directly to the application, without
the request necessarily being carried out immediately. Instead,
the application programmer may attach notification actions
(referred to as completion handlers) to the completion of a
specific communication-related operation (or operations), such
as the end of the source-side part of an operation, or the overall
operation completion. Notification actions may be a range of
different completions, for example, one may receive a future,
which is an object that encapsulates a value that is not yet
available, issue local procedure calls (LPCs) to notify other
threads on the same rank of the completion, or issue remote
procedure calls to execute code on remote ranks.

RPCs enable the application programmer to execute code on
a specific remote rank. They receive as parameters a lambda
function or a function pointer and the parameters passed to
the lambda or the function, and may return the result of the
execution of the lambda function on the remote rank. As of
the current framework version, it is not yet possible to transfer
arbitrary object graphs, but only objects with types that fulfill
certain criteria. The types of the parameters and the return
value need to conform to the DefinitelyTriviallySerializable
3 type trait, or be within a set of supported types. This set
contains, among others, std::vectors, distributed objects
and views. A feature that would allow for arbitrary object
graphs to be serialized is currently under development and will
be included in a future version of the library.

Another important concept is the distributed object. It is
created collectively, and provides a common name for objects
across all participating ranks. There are convenience methods
to copy the data from other ranks, or one can use RPCs to
access data directly on another rank.

The final important feature for our actor library is the way
multiple threads are handled in UPC++. UPC++ introduces
an abstraction that encapsulates all the UPC++-internal state
relevant for a thread, called a thread persona. Each operating
system thread is assigned a persona, and further personas may
be created by the application programmer. The persona that
is created and assigned upon initialization of the library at
application start is referred to as the master persona. A thread
may assume any persona, but one needs to be careful not to
use the same persona on multiple threads at the same time.
This concept is important, as completions are signaled only to
the persona that issued them. Furthermore, incoming RPCs are
only handled by the master persona of the receiving rank. For
communication between different personas of a single UPC++
rank, local procedure calls may be used. They work similarly
to the remote procedure calls, but are issued within a rank,

3They are a “C++ type that is DefinitelyTriviallySerializable, or a type for
which there is a user-supplied implementation of the visitor function serialize”
[27]. A DefinitelyTriviallySerializable type is a “C++ type that is either Triv-
iallyCopyable and has no user-supplied implementation of the visitor function,
or for which the trait is_definitely_trivially_serializable is
specialized to have a member value that is true.” [27]

and performed on a specific persona.

B. Library Implementation

The UPC++ runtime does not employ background threads in
order to process communication requests or to perform internal
communications [24]. Instead, the cost of communication
operations is made explicit through the use of computational
resources during library calls. To this end, the specification
describes for every function of the library API if and what
kind of background operations may be performed alongside the
specified functionality of the operation. The library developers
distinguish two kinds of work that may be performed, internal
progress or user-level progress. Internal progress involves
operations that will not have an immediate effect on the
application, but instead comprise processing of asynchronous
operations, both by handing them to the GASNet-EX run-
time, as well as handling the runtime’s responses. This type
of progress will typically be generated by operations that
require progress themselves, i.e. communication operations
such as RPCs. User-level progress has to be requested by the
programmer through upcxx::progress(), by waiting on
futures or when barriers are issued. Finding a balance between
computations and giving sufficient amount of computation
time to the library is left to the application programmer. Not
querying for progress in a timely manner may cause inefficient
use of resources, as results that may already be available are
not regarded.

UPC++ has two different threading modes available: the
sequential and the parallel thread mode. Depending on the
mode that is chosen, a different library is linked. The sequential
threading mode assumes that there is only ever a single
thread in a rank that calls UPC++ library functions. This
assumption allows the backend to mostly forgo synchronization
and leads to less overhead for UPC++ library calls. The parallel
threading mode makes UPC++ thread-safe at the cost of
reduced efficiency [28]. UPC++ is built on top of GasNET-EX,
which provides a low overhead, low level network-independent
communication layer that can take advantage of offload support
on a variety of communication networks [24].

V. IMPLEMENTATION OF THE ACTOR LIBRARY

In the following, we will discuss the implementation of the
Actor Library in C++ using UPC++.

A. Actor Graph

The first component is the actor graph, which we model in
the ActorGraph class. Actor graphs are created collectively
across the entire application. Therefore each rank has its
own local control object for the graph. The instances on
the different ranks are linked together internally using a
distributed object (upcxx::dist_object<ActorGraph
*>). Furthermore, the instance holds a dictionary of actor
names to global pointers to the actors. The information in this
dictionary is used mainly to connect the different actors during
initialization. Later, the actors hold the global pointers directly.
For the actor graph sizes (≈ 65000 actors) we encountered in

our scaling tests, replicating the entire hash map on each rank
was sufficient. If the library is to be used in exascale scenarios,
the locally replicated dictionary may be replaced with an
indirect distributed hash table similar to the one implemented in
[24] or [29]. New actors may be added using the addActor()
method. Whenever this happens, a global reference is created,
and broadcast to the actor graph instances on the other ranks.
The connection of ports is performed through the actor graph’s
connectPorts() method. Here, only global pointers to the
involved actors as well as the port names in question are needed,
and it is not necessary for either of the involved actors to be
in the local part of the actor graph. Instead, the local graph
will issue RPCs to the involved ranks as needed to connect
the actors.

Finally, the computation is started using the actor graph
by all participating ranks through calling the run() method.
This will cause the start of the actor-based computation, which
will only terminate if all actors signal their termination using
their stop() method and all messages that may have been
issued are handled. Upon termination, the execution time of the
computation for the given rank is returned by the act method.

B. Actors

The Actor class serves as an abstract base class for user-
defined actors. It comprises a unique name, and dictionaries for
its In- and OutPorts. Additionally, it implements the necessary
book-keeping to keep track of RPCs and LPCs that may still
be in the internal queues of UPC++. The state machine is
provided by the application programmer through implementing
the act() method. For each change in one of the ports, the
finite state machine needs to be given the chance to perform a
state transition. Therefore, actor instances need to keep track of
how often the act method still needs to be called (i.e. how often
the actor has been triggered). Whenever one of the ports has
a token added or removed in the connected actor, the trigger
count is incremented, and whenever act() has been called,
the trigger count is decremented.

C. Execution Strategies

Similar to MPI, UPC++ does not enforce a canonical way to
parallelize an application. Therefore, we use the UPC++ library
to communicate within and between ranks and implemented our
own parallelization schemes. To realize parallel actor execution,
we implemented three different execution strategies for the actor
library, one relying on UPC++ ranks (“rank-based”), one based
on C++ threads (“thread-based”), and one based on OpenMP
tasks (“task-based”). In all cases, they implement the execution
semantics of our actor model as specified in section III. This
requires functionality that watches for changes in the channels
and activates the corresponding actor when such a change
happens, until the actor eventually signals its termination. For
all execution strategies, this necessitates one or more event
loops per rank. In the loop, the application needs to make
tokens from other ranks available, and then execute the act()
method on the local actors.

For the rank-based execution strategy, the event loop for
each UPC++ rank is realized in the ActorGraph class. In
the beginning of each iteration, there is a query for progress
to the UPC++ runtime, causing waiting RPCs to be processed.
Afterwards, any actor that has received any changes to its ports
will get a chance to execute its act() method. This strategy
is best suited for a small number of actors per UPC++ rank, as
all actors within a rank are processed sequentially. Parallelism
is achieved instead using multiple UPC++ ranks per physical
node. In our case, we got the best results using one rank per
logical core, and four to eight actors per rank. This method
only uses one thread for the computation, and therefore avoids
LPCs, and is able to use the faster, sequential UPC++ backend.

The thread-based execution strategy uses multiple C++
threads per UPC++ rank to parallelize actor execution. Each
Actor instance is mapped onto its own thread, and the
ActorGraph is mapped to the main thread of the rank. The
individual actors and the actor graph each have their own
event loop. The actor graph’s loop continuously queries the
UPC++ runtime for progress to process incoming RPCs, and
therefore to exchange tokens and queue capacity updates with
neighboring ranks. After an event is processed, an LPC is sent
to the persona of the affected actor. In the actor’s event loop,
the first step is to query the runtime for progress to handle
incoming LPCs, followed by a call to the act method if there
was a change in one of the channels connected to the actor’s
ports. The actor graph queries for progress continuously in
order to receive incoming RPCs from other ranks. For this
method, one needs to be mindful of the amount of work done
by the communication thread. If it is underutilized, there is a
waste of resources, and if there is too much load on it, data
exchange between actors is stalled. Furthermore, this model
may cause additional overhead through spinning of the actors
for progress. As there are multiple threads using functionality
of the UPC++ runtime, its parallel backend is required.

Finally, the task-based execution strategy parallelizes the
actor execution using OpenMP tasks. As with the rank-based
execution strategy, there is only a single event loop per rank,
in the ActorGraph instance. Similarly as with the other
parallelization models, the runtime is queried for progress to
process incoming RPCs. Then, we iterate through all local
actors, and for those that have a positive trigger count, we
schedule an OpenMP task that queries for progress and executes
act(). The tasks are then executed asynchronously on worker
threads (see Figure 1 for a possible execution trace) by the
OpenMP runtime. We therefore needed to make sure that
only a single worker thread is working on each actor at the
same time. OpenMP enables the specification of dependencies
between different tasks through memory addresses, in our
case the address of an actor. This makes sure that tasks from
different actors are executed concurrently, while preventing
two tasks from the same actor to be executed at the same time.
The advantage of this approach compared to the thread-based
execution strategy is the possibility to match the number of
threads employed by a node to its computational resources.
Instead of a one-to-one mapping of actors to operating system

CPU1 a1 a2 a1 a2 a1

CPU1 a0 a0 a1 a0

...

CPUn ak ak−1 ak ak

Fig. 1. OpenMP tasking for Actor FSM Execution. k actors are scheduled
onto n CPU cores

1:RPC
(insert Data)

3:LPC
(trigger Actor)

A1 A2A1::Out A2::In

2:RPC
(update capacity)

A1 A2A1::Out A2::In

Rank N Rank M

2:LPC
(trigger Actor)

1:read
(dequeue Data)

Channel

Channel

3:LPC
(track RPC
completion)

4:LPC
(track RPC
completion)

Fig. 2. Communication using Ports. The upper half depicts a write()
issued by actor “A1” on the port “Out”, and the lower half depicts a read()
issued by actor “A2” on the port “In”. RPCs are issued if the communication
occurs across rank-boundaries. The LPCs depicted in blue are issued when
the task-based execution strategy is used, while the green ones are needed
when the thread-based execution-model is used.

threads, work is distributed onto a number of threads specified
at runtime. When an actor is not triggered, it will not create
tasks to be scheduled, and it therefore does not use up any
CPU resources. Compared to the rank-based execution strategy,
we are able to distribute a larger amount of actors onto a
single rank without decreasing the performance significantly.
This reduces the number of RPCs that need to be issued for
communication across rank boundaries. As with the thread-
based execution strategy, the use of multiple worker threads
necessitates the parallel UPC++ backend.

D. Ports and Communication

Ports are implemented through the class templates
InPort<T,c> and OutPort<T,c> with a fixed token
type T and capacity c. They are used as the communication
interface to other actors and handle the insertion (write())
and extraction (read()) of data from the channels. Channels
are also implemented as class templates Channel<T,c> with
the same template parameters. Internally, they use a ring buffer
to store data until it is read. We chose to have the channels
always on the same rank as the InPort so that the receiving
actor does not need to buffer messages. The communication
scheme is depicted in Figure 2. When an actor (“A1”) writes to
its port (“Out”), the port will insert the token into the channel.

If the channel is on another rank, the port will issue an RPC to
that rank, otherwise, the channel is accessed directly. Next, the
receiving actor (“A2”) needs to be notified of the change. To
that end, depending on the choice of execution strategy, LPCs
may need to be issued. When using the thread-based execution
strategy, an LPC is sent to the persona of “A2”, to trigger a
state machine execution. Finally, it is necessary to keep track
of the number of currently active RPCs. For the rank-based
and the thread-based execution strategies, that book-keeping
can be performed locally using a lambda-continuation, and
for the task-based execution strategy, an LPC-continuation is
attached to the actor.

A read operation starts with the InPort removing the data
from the channel. Afterwards, the corresponding port on the
other side of the channel needs to be notified. The notification
comprises an update to the counter local to the OutPort,
followed by triggering of the sending actor. As with writing to
the channel, if necessary, the notification will be issued using
an RPC. The notification and book-keeping are performed akin
to the ones of the read operation, with LPCs being issued as
necessary.

VI. POND, AN ACTOR-BASED TSUNAMI APPLICATION

Tsunamis are typically simulated using the shallow water
equations, which may be derived from the more general Navier-
Stokes equations by averaging over the unknown quantities
along the water column [30]. The equations are given as h

hu
hv

t

+

 hu
hu2 + 1

2gh
2

huv

x

+

 hv
huv

hv2 + 1
2gh

2

y

= S(t, x, y)

Here, x and y refer to the two spatial dimensions, t refers
to time, h is the height of the water column, hu and hv
are the momenta in the two spatial dimensions, g is the
gravitational constant, and S(x, y, t) is used to model source
terms. Depending on the source terms used, one may model,
e.g., tsunamis, or flooding.

As a sample application to demonstrate the use of our UPC++
actor library, we implemented Pond, a shallow water proxy
application. The application is based on two prior applications,
SWE and SWE-X10. In the following, we will first discuss the
two prior applications and highlight their influence on Pond,
beginning with SWE. Then we will introduce Pond, with a
focus on the actor graph and implementation choices that are
different here.

SWE4 [31] implements a Finite Volume discretization on
a Cartesian grid with explicit Euler time stepping, following
the approach of LeVeque et al [30]. This yields the following
update scheme:

Q
(n+1)
i,j = Q(n)

i,j −
∆t

∆x

(
A+∆Q

(n)
i− 1

2 ,j
+A−∆Q

(n)
i+ 1

2 ,j

)
(1)

− ∆t

∆y

(
B+∆Q

(n)
i,j− 1

2

+ B−∆Q
(n)
i,j+ 1

2

)
,

4https://www5.in.tum.de/wiki/index.php/SWE

For each grid cell i, j, the unknown quantities Q
(n)
i,j =

[h
(n)
i,j , (hu)

(n)
i,j , (hv)

(n)
i,j , b

(n)
i,j] are updated iteratively based on

an initial state t0 with a timestep ∆t. A±∆Q
(n)

i± 1
1 ,j

and

B±∆Q
(n)

i,j± 1
1

denote the solutions of the Riemann problems at
the left and right, and top and bottom boundaries, respectively.

The SWE framework offers multiple approximate Riemann
solvers for the aforementioned Riemann problems, with
different characteristics in terms of precision, applicability
(e.g. capability of handling inundation of coastal areas) and
computational effort. For our solution, we chose to utilize the
HLLE Riemann solver [32], which is able to model inundation
of dry areas of the domain.

The implementation uses the abstraction of the SWE_Block
class for a Cartesian grid patch of the simulation domain.
The class serves as an encapsulation of the computational
parts of the simulation. In SWE, the computation of a new
time step is organized as follows: 1. Set boundary conditions.
In the beginning of the iterations, the cells at the boundary
of the block’s domain need to be set according to specified
boundary conditions, according to the scenario for the edges
of the simulation domain or based on data from other blocks
for edges adjacent to other blocks (ghost layers). 2. Compute
Fluxes. Next, for all cell boundaries, the fluxes are computed by
iterating over the block-local domain. In SWE, this process may
be parallelized using OpenMP-parallel for loops. The individual
flux computations are data-parallel and may be vectorized [33]
using OpenMP pragmas5 with a suitable compiler. 3. Updating
cell values. Thereafter, the cell quantities are updated according
to the scheme above, based on the timestep size ∆t. Finally,
if desired, output data may be produced using the netCDF I/O
library.

SWE follows the BSP programming model for parallelization,
with MPI as the inter-rank communication interface. Each
node is assigned an MPI rank, and a single block, relying on
OpenMP for intra-node parallelism. In the beginning of each
timestep, ghost layers are exchanged using MPI_SendRecv
calls. After the flux computation, the largest globally safe time
step is determined using an MPI_Allreduce operation.

SWE-X10 is an actor-based tsunami simulation proxy
application, written in X10, using the actorX10 library [13],
[14]. It shares the numerical approach (see Equation 1) of
SWE, and also implements an SWEBlock class that offers the
same operations also offered by its counterpart in SWE. Its
system design is very similar to Pond, and it may be seen as
its direct precursor. In SWE-X10, we partition the simulation
domain into quadratic patches (each managed by a SWEBlock
instance) and assign each patch to an actor. Instead of one
large patch per rank as in SWE that is parallelized using
OpenMP, here there will be multiple sequentially executed
actors that run concurrently. The patches need to communicate
the cell values on their boundaries to adjacent patches, therefore
we connect actors with adjacent patches using channels of

5Using #pragma omp simd with a reduction on the loops and by
requiring the compiler to generate vectorized versions of the Riemann solver
functions using #pragma omp declare simd.

https://www5.in.tum.de/wiki/index.php/SWE

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Fig. 3. Sample actor graph with a 3× 3 grid. Actors depicted in orange are
on one node, and actors depicted in green on another.

CommunicationData objects that hold the row/column of
the cell data that is to be transferred. The basic setup is depicted
in Figure 3. In contrast to SWE, there is no global dependency
here, the coordination is completely local, as each actor only
depends on its direct neighbors. This removes the global waiting
condition that leads to all ranks always waiting for the slowest
one, and enables actors to proceed with computing time steps
without always having to wait for slower counterparts in parts of
the simulation domain not directly adjacent to theirs. However,
the timestep is fixed at the start of the simulation. This setup
does not yet exploit the advantages of the actor model.

One way to profit from the actor model is the use of
lazy activation, as shown in [14]. Here, an actor only starts
computing and sending updates to its neighbors when the
tsunami actually reaches the edges of the actor’s domain.
Actors that are in parts of the simulation domain that are
at rest initially do not perform any computations at all. In a
test scenario, we were able to significantly reduce the number
of CPU hours spent on the computations of the solution of
a scenario. Another feature that is easier to implement using
the actor model is patch-adaptive local time stepping (LTS).
With LTS, the actors set their individual timestep as a defined
fraction of the original timestep (i.e. . . . , 1

4 ,
1
2 , 1, 2, . . .) for the

patch they manage. The individual actors send their updates out
as they are computed, and actors receiving them may either use
the data if the time step fits, interpolate in case the neighbor
has a bigger timestep, or throw out unnecessary updates if
the neighbor has a smaller timestep. This can be especially
interesting in parts of the domain where inundation occurs.
These areas can have a significantly smaller time step than areas
that only contain water, or areas that the wave already passed
through. In comparison to the global time stepping scheme of
SWE, one only needs to compute the small timesteps where
they are actually required, instead of in the entire simulation

domain. We currently have a prototypic implementation of this
in SWE-X10.

Pond may be viewed as an amalgamation of SWE and SWE-
X10. As both SWE and Pond are written in C++, we reuse
the SWE_Block class with OpenMP disabled, but otherwise
unchanged. We also reuse other parts of SWE, such as the
File I/O, and the HLLE solver. On top of that, we added the
actor-based coordination as implemented in SWE-X10. As the
focus on this paper is more on the actor library and its different
execution strategies, we stuck to a basic implementation, as
originally shown in [13]. Implementation of Lazy Activation
and LTS should be possible without any modifications of the
actor library.

The actor graph for Pond may therefore be written as

GPond
a = (APond, CPond) (2)

APond = {ai,j | 0 6 i < nx ∧ 0 6 j < ny}
CPond =

{
cai,j ,ai′,j′ | (i = i′ ∧ |j − j′| = 1)

∨ (|i− i′| = 1 ∧ j = j′)
}
,

similarly to the SWE-X10’s actor graph [13]. Figure 3 depicts
an example actor graph for a simulation domain distributed
onto 3× 3 patches.

As we execute Pond on distributed memory systems, the
actor graph needs to be distributed onto multiple ranks. For
unstructured grid codes, a known technique is the use of graph
partitioners such as Metis [34]. Metis uses a multi-level graph
partitioning approach to provide a balanced graph partitioning
with minimal edge cut. This yields a partitioning of the actor
graph that balances load balancing against communication
overhead. We configured the graph partitioning library to
produce contiguous partitions with a maximal load imbalance
of ±10%.

The actor-based modeling lead to a layered software archi-
tecture in Pond. At the top layer, the actor graph implicitly
coordinates the computation of updates based on the available
data from the neighbors. The simulation actors control the
calculations on the patch-level based on the available data. This
behavior is encoded in the simulation actors’ FSMs. The FSM’s
actions call functionality from the bottom layer SWE_Block
class that is responsible for the implementation of the iterations
over the patch domain. In terms of the FunState model, we
obtain

ai,j =
(
ID, r, Iai,j

, Oai,j
, Fa, Ra

)
(3)

Iai,j =
{
ipi′,j′ |cai′,j′ ,ai,j ∈ CPond

}
Oai,j =

{
opi′,j′ |cai,j ,ai′,j′ ∈ CPond

}
.

The finite state machine Ra is depicted in Figure 4. The set
of functions consists of the guards: mayRead() returns true if
there is at least one data item available in each channel, and
mayWrite() returns true if there is sufficient space available in
all channels to write at least one data item to each channel. The
actions sendData() and receiveData() write data from the copy
layer to the channels or read from the channels and write to the

initialstart

compute
updates

terminated

mayWrite()
sendData()

tcur < tend ∧ mayRead() ∧ mayWrite()
receiveData(); computeFluxes();

applyUpdates(); sendData()

tcur ≥ tend
stop()

Fig. 4. Finite state machine for the simulation actor. Italicized functions are
guard functions, the rest are actions.

ghost layers, respectively. Once data is read, computeFluxes()
and applyUpdates() are called to perform the computation of
fluxes and the updating of the cells’ unknown values.

VII. RESULTS

We tested the implementation on the Knights Landing
partition of the National Energy Research Scientific Computing
Center’s Cori Cluster [35]. The partition employs 9688 nodes
with a single-socket Intel Xeon Phi and a combined theoretical
peak performance of 29.5 PFlop. Each Xeon Phi is equipped
with 68 cores clocked at 1.4GHz, yielding a theoretical peak
performance of 6 TFlop (SP) per node. The peak memory
bandwidth is 102 GB/s for the off-chip DDR memory, and
around 460 GB/s for the on-chip MCDRAM. For our tests, we
used the default configuration of the KNL nodes, and the Intel
Programming Environment. Optimizations were enabled (O3),
and the iteration over the patch was therefore automatically
vectorized using AVX-512.

We compare Pond using the three different execution strate-
gies (as described in subsection V-C) to the two applications
described in the previous section, the X10 application SWE-
X10, and the BSP-based SWE. As described above, all
applications use the same numerical scheme, and the same
vectorized HLLE solver. In all tests, we used a radial dam
break scenario, which is easily scaled to any size. We measure
the time from the start of the actor graph execution until all
actors are terminated for Pond and SWE-X10, and the time
from the beginning of the first iteration to the end of the last
one for SWE. File I/O was disabled in all cases. Finally, we
are able to compute the number of Flop/s based on the number
of iterations in SWE, and the number of patch updates in
SWE-X10 and Pond. The configurations are also described in
Table I. We chose them based on the best results obtained in
empirical pre-tests.

The weak scaling test was performed with a per-node
workload of 4096× 4096 grid cells per node. We performed

tests starting on a single node up to 128 nodes. The base
workload per core was set at 256× 256 grid cells per logical
thread. Results are shown in Figure 5a.

SWE-MPI scaled about linearly with the number of nodes in
the computation. SWE-X10 exhibited the lowest performance,
with roughly an order of magnitude lower performance com-
pared to SWE-MPI or the fast configurations of Pond. At this
lower level, scaling is linear from two nodes up to 32 nodes. For
larger configurations, the job failed to complete, with all of the
allocated computation time spent on the distribution of actors.
The architecture of the actorX10 library unfortunately requires
this to be performed sequentially. While overhead is small for
configurations with a small number of nodes, the high number
of actors for runs with more than 32 nodes, the number of
actors (4096), and channels(≈ 16000) that need to be migrated
proved infeasible. For Pond, there are significant differences
between the different actor execution strategies. Pond Thread
performs worst, at a similar level as SWE-X10. Pond Rank
performs on a level competitive with SWE-MPI, managing
to yield a roughly 20% performance benefit over SWE-MPI
for the largest run with 128 nodes. Pond Task outperforms
the other implementations in this test, and is on average 38%
faster than SWE-MPI, with over 50% higher performance for
the run with 128 nodes.

In the weak scaling test, Pond Rank, Pond Task and SWE-
MPI exhibited comparable performance and scaled linearly
with the number of nodes. Therefore, we performed strong
scaling tests to explore the scalability limits of the respective
applications. In the first test, we set the size of the simulation
domain to 16384 × 16384 grid cells. For a single-node
configuration, this led to a patch size of 512× 512 grid cells,
down to a patch size of 64 × 64 grid cells with 128 nodes.
In the second test, we set the size of the simulation domain
to 8192× 8192 cells, yielding configurations with 256× 256
cells per patch for single-node runs down to 32× 32 for runs
with 128 nodes. For Pond and SWE-X10, the patch size for
an individual actor is determined so that there is at least one
actor per logical core of the node. If it is not possible to evenly
divide the patch size in this case, the patch size is halved,
and the smaller patches are distributed. In the case of SWE-
MPI, the OpenMP parallel for-loop handles the distribution of
the node-local data to the cores. Nevertheless, the per-node
working set size remains the same between all configurations.

The results of both tests, shown in Figure 6a and Figure 6c
suggest similar conclusions. The performance of SWE-MPI
degenerates gradually as the size each core’s working set
shrinks. For the actor-based solutions, the more constrained
patch size leads to a more sudden drops in performance, as
smaller patch sizes–necessary to evenly distribute the grid–lead
to more actors and therefore more coordination overhead. SWE-
X10 only yields acceptable performance using patch sizes of
at least 512 × 512, otherwise performance is dominated by
coordination overhead. The application performs significantly
better with large patch sizes. For patch sizes smaller than
256×256, there are no more performance benefits to increasing
the number of ranks in the computation, and the additional

TABLE I
CONFIGURATIONS USED FOR THE SCALING TESTS

Execution Type Symbol Description
Pond Rank × Pond using the rank-based execution

strategy. One Rank per logical core, and
four to eight actors per rank

Pond Thread ⊗ Pond using the thread-based execution
strategy. Two ranks per node, and one
to two actors per logical core

Pond Task � Pond using the task-based execution
strategy. Sixteen ranks per node, and
roughly four to eight actors per logical
core

SWE-X10 � SWE-X10 using actorX10. Two Places
per node, and one to two actors per
logical core

SWE-MPI • SWE using MPI and OpenMP. One rank
per node, and 272 OpenMP threads per
rank

Linear - - - Ideal scaling based on fastest single
node configuration of Pond Task, one
rank, no RPCs.

1 2 4 8 16 32 64 128

1011

1012

1013

1014

Number of Nodes

Fl
op

/s

Pond Rank
Pond Thread
Pond Task
SWE-X10
SWE-MPI

Linear

(a) Weak Scaling

1 2 4 8 16 32 64 128

1

1.2

1.4

1.6

Number of Nodes

Fl
op

/s
cf

.S
W

E
-M

PI

Pond Rank
Pond Task
SWE-MPI

(b) Detailed comparison

Fig. 5. Weak Scaling test (4096 × 4096 cells per node). The largest two
configurations of SWE-X10 did not run to completion.

1 2 4 8 16 32 64 128

1012

1013

1014

Fl
op

/s

Pond Rank
Pond Thread
Pond Task
SWE-X10
SWE-MPI

Linear

(a) 16384x16384 grid cells

1 2 4 8 16 32 64 128

1

1.2

1.4

1.6

Fl
op

/s
cf

.S
W

E
-M

PI

Pond Rank
Pond Task
SWE-MPI

(b) Detailed comparison: Strong Scaling 16384× 16384

1 2 4 8 16 32 64 128

1011

1012

1013

1014

Fl
op

/s

Pond Rank
Pond Thread
Pond Task
SWE-X10
SWE-MPI

Linear

(c) 8192x8192 grid cells

1 2 4 8 16 32 64 128

1

1.5

2

Number of Nodes

Fl
op

/s
cf

.S
W

E
-M

PI

Pond Rank
Pond Task
SWE-MPI

(d) Detailed comparison: Strong Scaling 8192× 8192

Fig. 6. Strong Scaling test. See Table I for the configurations. In Figure 6b
and Figure 6d, the relative performance compared to the run of SWE-MPI
with the corresponding number of nodes is displayed

compute capacity is used up completely on the additional
overhead. A similar behavior may be observed with Pond
Thread. This may be explained by their similar execution
strategy. In both cases, each actor is executed on its own
thread. There is overhead for the communication between the
threads of a rank, and for Pond Thread, the communication
is handled by a single communication thread. As there are
typically more actors than cores, the operating system may not
be able to schedule the threads at the same time. In SWE-X10,
actors without work are sent to sleep, which will cause the
overhead of an OS context change. In Pond Thread, an actor
without work will continue polling for progress, again causing
overhead, as the compute resource might have been used for
the computation of updates by another actor. Both approaches
have the same effect: they are only feasible if the workload
per thread is sufficiently large, a property that prevents more
fine-grained parallelization. This is handled differently with
the other execution strategies. With Pond Rank, each rank only
has one thread, leading to one UPC++ rank per logical core.
Each rank is responsible for its own progress, and, as there
is only one thread per UPC++ rank, the sequential UPC++
backend may be used. In contrast to Pond Thread, there is no
need for synchronization and locking, which leads to better
performance. In case of Pond Task, work is distributed onto the
worker threads through the OpenMP runtime, and actors only
get scheduled if they are actually triggered. The OpenMP master
thread is responsible for communication and keeps polling the
UPC++ runtime for updates. This may be a bottleneck if there
are too many communication requests to be performed, leading
to the worker threads being idle while the master thread is
busy evaluating incoming RPCs.

We evaluated this effect in a separate strong scaling test,
again with 16384 × 16384 grid cells by comparing the
performance of different amounts of UPC++ ranks per node (see
Figure 7). We found that for the Xeon Phi, configurations using
eight or sixteen ranks per node outperformed configurations
with one, two or four ranks per node, especially in situations
with smaller workloads per actor. For runs with a smaller
number of nodes, and therefore a larger computational cost for
each task, a low number of ranks per node is a better choice, as
more cores may be utilized for computation, whereas for runs
with more nodes, the individual tasks carry less load, while
the number of communication requests remains the same. This
value is difficult to fine-tune automatically by the library, as the
incoming communication requests are always handled by the
single thread holding the master persona. We anticipate that this
value needs to be fine-tuned to respective target architectures
and the anticipated workload.

VIII. OUTLOOK AND CONCLUSION

In this work, we introduced an actor library built on top of
the UPC++ PGAS library. The library is based on the FunState
model and uses explicit communication channels and finite
state machines in order to expose the control and data flow
of an application explicitly. We implemented three execution
strategies: one using threads for each actor, one using UPC++

1 2 4 8 16 32 64 128

1012

1013

1014

Number of Nodes

Fl
op

/s

1 Rank per Node
2 Ranks per Node
4 Ranks per Node
8 Ranks per Node
16 Ranks per Node

Linear

Fig. 7. Strong scaling test evaluating different configurations of the task-
based execution strategy of Pond. We compare different numbers of Ranks
per physical node.

ranks for parallelization, and one relying on OpenMP tasks.
To demonstrate the viability of using actor-based programming
in HPC, we implemented Pond, a tsunami simulation proxy
application using the UPC++ actor library. UPC++ facilitates
the use of one-sided communication operations, enabling us to
overlap communication and communication using operations
that mirror the capabilities of the underlying hardware. We
compared it to SWE-X10, a prior actor-based application
written in X10, and SWE, a tsunami application using MPI
and OpenMP on the Intel Xeon Phi partition of Cori. Pond
outperforms SWE-X10 by an order of magnitude in a weak
scaling test. Due to the lower overhead of our library, we are
able to use significantly smaller patch sizes without penalizing
performance. Pond also outperforms SWE, a straightforward
BSP-type implementation, with the added benefit that the
application programmer does not need to implement OpenMP
and MPI parallelization, but only needs to specify the actors
and the communication with their neighborhood. For our
actor library, we found that the OpenMP-based execution
strategy which maps actor state machine executions to OpenMP
tasks performs best, except at the scalability limit of the
strong scaling test, where the rank-based execution strategy
outperforms it. In further work, we want to implement the
actor-based approach using other emerging runtime systems,
such as HPX [36]. Furthermore, we would like to extend Pond
to enable block-adaptive local time stepping. Finally, we would
like to explore a use of the actor model for other problem
domains. Both our actor library and Pond are available under
the GPL at https://bitbucket.org/apoeppl/actor-upcxx.

ACKNOWLEDGMENTS

This research was funded by the German Research Foun-
dation (DFG, Deutsche Forschungsgemeinschaft) - Project
number 14671743 - TRR 89 Invasive Computing. This research
was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration. This research used resources of the National

https://bitbucket.org/apoeppl/actor-upcxx

Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. Scott Baden was supported in part by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration.

REFERENCES

[1] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich,
“FunState – an internal design representation for codesign,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9,
no. 4, pp. 524–544, Aug. 2001.

[2] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands,
C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and
T. Wen, “Productivity and performance using partitioned global
address space languages,” in Proceedings of the 2007 International
Workshop on Parallel Symbolic Computation, ser. PASCO ’07.
New York, NY, USA: ACM, 2007, pp. 24–32. [Online]. Available:
http://doi.acm.org.eaccess.ub.tum.de/10.1145/1278177.1278183

[3] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer,
K. Katrinis, E. Laure, and D. S. Nikolopoulos, “A taxonomy of task-based
parallel programming technologies for high-performance computing,”
The Journal of Supercomputing, vol. 74, no. 4, pp. 1422–1434, Apr
2018. [Online]. Available: https://doi.org/10.1007/s11227-018-2238-4

[4] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of OpenMP
tasks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, March 2009.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 2, pp. 187–198, 2011. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631

[6] A. Hendricks, T. Heller, H. Jordan, P. Thoman, T. Fahringer, and
D. Fey, “The AllScale runtime interface: Theoretical foundation
and concept,” in Proceedings of the 9th Workshop on Many-Task
Computing on Clouds, Grids, and Supercomputers, ser. MTAGS ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 13–19. [Online]. Available:
https://doi-org.eaccess.ub.tum.de/10.1109/MTAGS.2016.4

[7] Q. Meng, A. Humphrey, and M. Berzins, “The Uintah framework:
A unified heterogeneous task scheduling and runtime system,” in
Digital Proceedings of The International Conference for High
Performance Computing, Networking, Storage and Analysis, 2012, pp.
2441–2448, sC12 2nd International Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance
Computing, WOLFHPC 2012. [Online]. Available: http://www.sci.utah.
edu/publications/Men2012b/uintah-wolfhpc12.pdf

[8] S. Wildermann, M. Bader, L. Bauer, M. Damschen, D. Gabriel, M. Gerndt,
M. Glas̈s, J. Henkel, J. Paul, A. Pöppl, S. Roloff, T. Schwarzer, G. Snelt-
ing, W. Stechele, J. Teich, A. Weichselgartner, and A. Zwinkau, “Invasive
computing for timing-predictable stream processing on MPSoCs,” it -
Information Technology, vol. 58, no. 6, pp. 267–280, Sep. 2016.

[9] H.-J. Bungartz, C. Riesinger, M. Schreiber, G. Snelting, and
A. Zwinkau, “Invasive computing in HPC with X10,” in Proceedings
of the Third ACM SIGPLAN X10 Workshop, ser. X10 ’13. New
York, NY, USA: ACM, 2013, pp. 12–19. [Online]. Available:
http://doi.acm.org/10.1145/2481268.2481274

[10] A. Mo-Hellenbrand, I. Comprés, O. Meister, H.-J. Bungartz,
M. Gerndt, and M. Bader, “A large-scale malleable tsunami
simulation realized on an elastic MPI infrastructure,” in Proceedings
of the Computing Frontiers Conference, ser. CF’17. New York,
NY, USA: ACM, 2017, pp. 271–274. [Online]. Available: http:
//doi.acm.org.eaccess.ub.tum.de/10.1145/3075564.3075585

[11] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular ACTOR for-
malism for artificial intelligence,” in Proceedings of the 3rd International
Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245.

[12] G. A. Agha, “ACTORS: A model of concurrent computation in distributed
systems,” MIT Artificial Intelligence Laboratory, Tech. Rep. AITR-844,
Jun. 1985.

[13] S. Roloff, A. Pöppl, T. Schwarzer, S. Wildermann, M. Bader, M. Glaß,
F. Hannig, and J. Teich, “ActorX10: An actor library for X10,” in
Proceedings of the 6th ACM SIGPLAN Workshop on X10, ser. X10 2016.
New York, NY, USA: ACM, 2016, pp. 24–29. [Online]. Available:
http://doi.acm.org/10.1145/2931028.2931033

[14] A. Pöppl, M. Bader, T. Schwarzer, and M. GlaSS, “SWE-X10: Simulating
shallow water waves with lazy activation of patches using ActorX10,”
in 2016 Second International Workshop on Extreme Scale Programming
Models and Middleware (ESPM2), Nov 2016, pp. 32–39.

[15] A. Pöppl, M. Damschen, F. Schmaus, A. Fried, M. Mohr, M. Blankertz,
L. Bauer, J. Henkel, W. Schröder-Preikschat, and M. Bader, “Shallow
water waves on a deep technology stack: Accelerating a finite volume
tsunami model using reconfigurable hardware in invasive computing,” in
Euro-Par 2017: Parallel Processing Workshops, D. B. Heras, L. Bougé,
G. Mencagli, E. Jeannot, R. Sakellariou, R. M. Badia, J. G. Barbosa,
L. Ricci, S. L. Scott, S. Lankes, and J. Weidendorfer, Eds. Cham:
Springer International Publishing, 2018, pp. 676–687.

[16] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
IEEE Computer Graphics and Applications, vol. 10, no. 4, pp. 76–82,
July 1990.

[17] O. Tardieu, B. Herta, D. Cunningham, D. Grove, P. Kambadur,
V. Saraswat, A. Shinnar, M. Takeuchi, and M. Vaziri, “X10 and APGAS
at petascale,” in Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’14.
New York, NY, USA: ACM, 2014, pp. 53–66. [Online]. Available:
http://doi.acm.org/10.1145/2555243.2555245

[18] P. Nordwall, J. Andrén, J. Rudolph, A. Engelen, C. Batay, and
H. Edelson, “The Akka actor library documentation,” 2011. [Online].
Available: https://doc.akka.io/docs/akka/current/

[19] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch, “Native
Actors – A Scalable Software Platform for Distributed, Heterogeneous
Environments,” in Proc. of the 4rd ACM SIGPLAN Conference on Systems,
Programming, and Applications (SPLASH ’13), Workshop AGERE! New
York, NY, USA: ACM, Oct. 2013, pp. 87–96.

[20] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting
Actor Programming in C++,” Computer Languages, Systems &
Structures, vol. 45, pp. 105–131, April 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.cl.2016.01.002

[21] L. V. Kalé, B. Ramkumar, A. B. Sinha, and A. Gursoy, “The CHARM
Parallel Programming Language and System: Part I – Description of
Language Features,” Parallel Programming Laboratory Technical Report
#95-02, 1994.

[22] L. V. Kalé and G. Zheng, “The Charm++ programming model,” in
Parallel Science and Engineering Applications: The Charm++ Approach.
CRC Press, 2016, pp. 1–16.

[23] O. Portal, “Object management group: common object request broker,”
OMG. org. Retrieved from omg. org August, vol. 22, p. 2009, 2009.

[24] J. Bachan, S. B. Baden, S. Hofmeyr, M. Jacquelin, A. Kamil,
D. Bonachea, P. H. Hargrove, and H. Ahmed, “UPC++: A
High-Performance Communication Framework for Asynchronous
Computation,” in Proceedings of the 33rd IEEE International Parallel &
Distributed Processing Symposium, ser. IPDPS. IEEE, 2019. [Online].
Available: https://escholarship.org/uc/item/1gd059hj

[25] D. Bonachea and P. H. Hargrove, “GASNet-EX: A High-Performance,
Portable Communication Library for Exascale,” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-2001174, October 2018, to
appear: Languages and Compilers for Parallel Computing (LCPC’18).
[Online]. Available: https://escholarship.org/uc/item/0xg7b704

[26] J. Bachan, D. Bonachea, P. H. Hargrove, S. Hofmeyr, M. Jacquelin,
A. Kamil, B. van Straalen, and S. B. Baden, “The UPC++
PGAS library for exascale computing,” in Proceedings of the
Second Annual PGAS Applications Workshop, ser. PAW17. New
York, NY, USA: ACM, 2017, pp. 7:1–7:4. [Online]. Available:
http://doi.acm.org/10.1145/3144779.3169108

[27] “UPC++ Specification, v1.0 Draft 10,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-2001192, March 2019. [Online]. Available:
https://escholarship.org/uc/item/25m555p9

[28] J. Bachan, S. B. Baden, D. Bonachea, P. H. Hargrove, S. Hofmeyr,
M. Jacquelin, A. Kamil, and B. van Straalen, “UPC++ Programmer’s
Guide, v1.0-2019.3.0,” Lawrence Berkeley National Laboratory,

http://doi.acm.org.eaccess.ub.tum.de/10.1145/1278177.1278183
https://doi.org/10.1007/s11227-018-2238-4
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
https://doi-org.eaccess.ub.tum.de/10.1109/MTAGS.2016.4
http://www.sci.utah.edu/publications/Men2012b/uintah-wolfhpc12.pdf
http://www.sci.utah.edu/publications/Men2012b/uintah-wolfhpc12.pdf
http://doi.acm.org/10.1145/2481268.2481274
http://doi.acm.org.eaccess.ub.tum.de/10.1145/3075564.3075585
http://doi.acm.org.eaccess.ub.tum.de/10.1145/3075564.3075585
http://doi.acm.org/10.1145/2931028.2931033
http://doi.acm.org/10.1145/2555243.2555245
https://doc.akka.io/docs/akka/current/
http://dx.doi.org/10.1016/j.cl.2016.01.002
https://escholarship.org/uc/item/1gd059hj
https://escholarship.org/uc/item/0xg7b704
http://doi.acm.org/10.1145/3144779.3169108
https://escholarship.org/uc/item/25m555p9

Tech. Rep. LBNL-2001191, March 2019. [Online]. Available:
https://escholarship.org/uc/item/9vf0h34w

[29] L. Monnerat and C. L. Amorim, “An effective single-hop distributed
hash table with high lookup performance and low traffic overhead,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 7,
pp. 1767–1788, 2015. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.3342

[30] R. J. LeVeque, D. L. George, and M. J. Berger, “Tsunami modelling
with adaptively refined finite volume methods,” Acta Numerica, vol. 20,
pp. 211–289, 2011.

[31] A. Breuer and M. Bader, “Teaching parallel programming models on
a shallow-water code,” in Proceedings of the 2012 11th International
Symposium on Parallel and Distributed Computing, ser. ISPDC ’12.
IEEE Computer Society, 2012, pp. 301–308.

[32] A. Harten, P. D. Lax, and B. van Leer, “On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws,” in Upwind
and High-Resolution Schemes, M. Y. Hussaini, B. van Leer, and
J. Van Rosendale, Eds. Springer, 1997, pp. 53–79. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-60543-7_4

[33] M. Bader, A. Breuer, W. Hölzl, and S. Rettenberger, “Vectorization
of an augmented Riemann solver for the shallow water equations,” in
Proceedings of the 2014 International Conference on High Performance
Computing and Simulation (HPCS 2014). IEEE, 2014, pp. 193–201.

[34] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 359–392, 1998. [Online]. Available:
https://doi.org/10.1137/S1064827595287997

[35] Y. He, B. Cook, J. Deslippe, B. Friesen, R. Gerber, R. Hartman-
Baker, A. Koniges, T. Kurth, S. Leak, W.-S. Yang, Z. Zhao,
E. Baron, and P. Hauschildt, “Preparing NERSC users for Cori, a
Cray XC40 system with Intel many integrated cores,” Concurrency
and Computation: Practice and Experience, vol. 30, no. 1,
p. e4291, 2018, e4291 CPE-17-0254. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4291

[36] H. Kaiser, B. A. L. aka wash, T. Heller, A. Bergé, M. Simberg,
J. Biddiscombe, A. Bikineev, G. Mercer, A. Schäfer, A. Serio, and
et al., “Stellar-group/hpx: Hpx v1.3.0: The c++ standards library for
parallelism and concurrency,” May 2019.

https://escholarship.org/uc/item/9vf0h34w
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3342
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3342
http://dx.doi.org/10.1007/978-3-642-60543-7_4
https://doi.org/10.1137/S1064827595287997
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4291
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4291

APPENDIX: ARTIFACT DESCRIPTION

Summary of the experiments reported

We ran strong scaling and weak scaling tests with node
configurations of 1, 2, 4, 8, 16, 32, 64 and 128 nodes with the
applications SWE, SWE-X10 and Pond. For Pond, we tested
the three different execution strategies (rank-based execution
strategy, thread-based execution strategy and task-based
execution strategy). We built the applications using the
following commands:

Application Compile Command
SWE scons buildVariablesFile =

build/options/SWE_cray_mpi_vectorized.py

SWE-X10 make clean; make NATIVE=1 NERSC=1
LOG=info RT=mpi

Pond Rank CXX="env UPCXX_THREADMODE=seq upcxx
-O3" cmake -DBUILD_RELEASE=ON -
DBUILD_USING_UPCXX_WRAPPER=ON
-DENABLE_FILE_OUTPUT=OFF -
DENABLE_MEMORY_SANITATION=OFF
-DENABLE_LOGGING=OFF -
DENABLE_O3_UPCXX_BACKEND=ON -
DENABLE_PARALLEL_UPCXX_BACKEND=OFF
-DACTORLIB_USE_OPENMP_TASKS=OFF -
DIS_CROSS_COMPILING=ON -build pond
<PATH>; make

Pond Thread CXX="env UPCXX_THREADMODE=par upcxx
-O3" cmake -DBUILD_RELEASE=ON -
DBUILD_USING_UPCXX_WRAPPER=ON
-DENABLE_FILE_OUTPUT=OFF -
DENABLE_MEMORY_SANITATION=OFF
-DENABLE_LOGGING=OFF -
DENABLE_O3_UPCXX_BACKEND=ON -
DENABLE_PARALLEL_UPCXX_BACKEND=ON
-DACTORLIB_USE_OPENMP_TASKS=OFF -
DIS_CROSS_COMPILING=ON -build pond
<PATH>; make

Pond Task CXX="env UPCXX_THREADMODE=par upcxx
-O3" cmake -DBUILD_RELEASE=ON -
DBUILD_USING_UPCXX_WRAPPER=ON
-DENABLE_FILE_OUTPUT=OFF -
DENABLE_MEMORY_SANITATION=OFF
-DENABLE_LOGGING=OFF -
DENABLE_O3_UPCXX_BACKEND=ON -
DENABLE_PARALLEL_UPCXX_BACKEND=ON
-DACTORLIB_USE_OPENMP_TASKS=ON -
DIS_CROSS_COMPILING=ON -build pond
<PATH>; make

Depending on the cluster configuration, the path to Metis
and NetCDF needs to be provided manually. A generator for
the SLURM scripts that were used for our experiments may be
found in the actor-upcxx GIT repository (folder jobscript-gen).

Artifact Availability

a) Software Artifact Availability: Some author-created
software artifacts are NOT maintained in a public repository
or are NOT available under an OSI-approved license.

b) Hardware Artifact Availability: There are no author-
created hardware artifacts.

c) Data Artifact Availability: There are no author-created
data artifacts.

d) Proprietary Artifacts: None of the associated artifacts,
author-created or otherwise, are proprietary.

e) List of URLs and/or DOIs where artifacts are available:

• SWE: https://github.com/TUM-I5/SWE

• actorX10: Not currently publicly available, contact
Alexander Pöppl for access

• SWE-X10: Not currently publicly available, contact
Alexander Pöppl for access

• Pond and Actor Library: https://bitbucket.org/apoeppl/
actor-upcxx

• X10 2.3.1: http://x10-lang.org/releases/x10-release-231.
html

• UPC++: https://upcxx.lbl.gov

Consideration for SCC

No.

Baseline experimental setup, and modifications made for the
paper

f) Relevant hardware details: KNL Compute Nodes: Each
node is a single-socket Intelő Xeon Phi Processor 7250
("Knights Landing") processor with 68 cores per node @ 1.4
GHz

g) Operating systems and versions: SUSE Linux Enter-
prise Server 15

h) Compilers and versions:

• Intel C++ Compiler: icpc version 18.0.1.163 (gcc version
7.3.0 compatibility)

• IBM X10 Compiler: X10 2.3.1

i) Applications and versions:
j) Libraries and versions:

• UPC++ 2019.3.0
• Metis 5.1.0

k) Key algorithms: Actor Library, HLLE Solver
l) Input datasets and versions: N.A.
m) Paper Modifications: For the default version of SWE,

the OpenMP parallelization was not functional, we re-enabled
it in the build system and modified the code where necessary.
We also added the HLLE solver (not part of the main repository.
It works as a drop-in replacement to the other Riemann solvers.
Finally, we had to slightly modify the build system to make it
work on Cori. A GIT patch containing the modifications, and
the HLLE solver are available at: https://bitbucket.org/apoeppl/
actor-upcxx/downloads/

Changes necessary to run SWE-X10 on Cori are pushed to
the SWE-X10 Git repository in the branch fix_cori-compilation.
The C++ code the X10 compiler generates seems to trigger a
bug in the Intel C++ Compiler, version 19. Furthermore, the
newest Java version capable of running the X10 Compiler is
Java 7, therefore, the JAVA_HOME variable needs to be pointed
to such an installation.

The version of Pond and the actor library that has the
functionality that was used for the test is marked in the actor-
upcxx repository with the tag pond-paper-submission-commit.
In some cases, the commits may not match the logs, this is
due to changes in the job script generator that was used for
the generation of the SLURM scripts for the tests.

https://github.com/TUM-I5/SWE
https://bitbucket.org/apoeppl/actor-upcxx
https://bitbucket.org/apoeppl/actor-upcxx
http://x10-lang.org/releases/x10-release-231.html
http://x10-lang.org/releases/x10-release-231.html
https://upcxx.lbl.gov
https://bitbucket.org/apoeppl/actor-upcxx/downloads/
https://bitbucket.org/apoeppl/actor-upcxx/downloads/

n) Output from scripts that gathers execution environment
information: Contains the default modules on Cori plus changes
to run Pond on the KNL partition. Due to a system upgrade
shortly before the submission, the previous environment could
not be completely replicated, a number of previously available
packages were removed.

1) modules/3.2.11.1
2) nsg/1.2.0
3) intel/19.0.3.199
4) craype-network-aries
5) craype/2.5.18
6) cray-libsci/19.02.1
7) udreg/2.3.2-7.0.0.1_4.23__g8175d3d.ari
8) ugni/6.0.14.0-7.0.0.1_7.25__ge78e5b0.ari
9) pmi/5.0.14

10) dmapp/7.1.1-7.0.0.1_5.15__g25e5077.ari

11) gni-headers/5.0.12.0-7.0.0.1_7.30__g3b1768f.ari
12) xpmem/2.2.17-7.0.0.1_3.20__g7acee3a.ari
13) job/2.2.4-7.0.0.1_3.26__g36b56f4.ari
14) dvs/2.11_2.2.131-7.0.0.1_7.3__gd2a05f7e
15) alps/6.6.50-7.0.0.1_3.30__g962f7108.ari
16) rca/2.2.20-7.0.0.1_4.29__g8e3fb5b.ari
17) atp/2.1.3
18) PrgEnv-intel/6.0.5
19) craype-mic-knl
20) cray-mpich/7.7.6
21) craype-hugepages2M
22) altd/2.0
23) darshan/3.1.7
24) gcc/7.3.0
25) cmake/3.14.4
26) cray-netcdf-hdf5parallel/4.6.1.3
27) upcxx/2019.3.2

	Introduction
	Motivation and Related Work
	The FunState Actor Model
	Underlying Technology Stack
	Library Features
	Library Implementation

	Implementation of the Actor Library
	Actor Graph
	Actors
	Execution Strategies
	Ports and Communication

	Pond, an Actor-Based Tsunami Application
	Results
	Outlook and Conclusion
	References

